diff options
Diffstat (limited to 'plugins/micromega/ZCoeff.v')
-rw-r--r-- | plugins/micromega/ZCoeff.v | 173 |
1 files changed, 173 insertions, 0 deletions
diff --git a/plugins/micromega/ZCoeff.v b/plugins/micromega/ZCoeff.v new file mode 100644 index 00000000..f27cd15e --- /dev/null +++ b/plugins/micromega/ZCoeff.v @@ -0,0 +1,173 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Evgeny Makarov, INRIA, 2007 *) +(************************************************************************) + +Require Import OrderedRing. +Require Import RingMicromega. +Require Import ZArith. +Require Import InitialRing. +Require Import Setoid. + +Import OrderedRingSyntax. + +Set Implicit Arguments. + +Section InitialMorphism. + +Variable R : Type. +Variables rO rI : R. +Variables rplus rtimes rminus: R -> R -> R. +Variable ropp : R -> R. +Variables req rle rlt : R -> R -> Prop. + +Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt. + +Notation "0" := rO. +Notation "1" := rI. +Notation "x + y" := (rplus x y). +Notation "x * y " := (rtimes x y). +Notation "x - y " := (rminus x y). +Notation "- x" := (ropp x). +Notation "x == y" := (req x y). +Notation "x ~= y" := (~ req x y). +Notation "x <= y" := (rle x y). +Notation "x < y" := (rlt x y). + +Lemma req_refl : forall x, req x x. +Proof. + destruct sor.(SORsetoid). + apply Equivalence_Reflexive. +Qed. + +Lemma req_sym : forall x y, req x y -> req y x. +Proof. + destruct sor.(SORsetoid). + apply Equivalence_Symmetric. +Qed. + +Lemma req_trans : forall x y z, req x y -> req y z -> req x z. +Proof. + destruct sor.(SORsetoid). + apply Equivalence_Transitive. +Qed. + + +Add Relation R req + reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _) + symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _) + transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _) +as sor_setoid. + +Add Morphism rplus with signature req ==> req ==> req as rplus_morph. +Proof. +exact sor.(SORplus_wd). +Qed. +Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph. +Proof. +exact sor.(SORtimes_wd). +Qed. +Add Morphism ropp with signature req ==> req as ropp_morph. +Proof. +exact sor.(SORopp_wd). +Qed. +Add Morphism rle with signature req ==> req ==> iff as rle_morph. +Proof. +exact sor.(SORle_wd). +Qed. +Add Morphism rlt with signature req ==> req ==> iff as rlt_morph. +Proof. +exact sor.(SORlt_wd). +Qed. +Add Morphism rminus with signature req ==> req ==> req as rminus_morph. +Proof. + exact (rminus_morph sor). +Qed. + +Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption. +Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption. + +Definition gen_order_phi_Z : Z -> R := gen_phiZ 0 1 rplus rtimes ropp. + +Notation phi_pos := (gen_phiPOS 1 rplus rtimes). +Notation phi_pos1 := (gen_phiPOS1 1 rplus rtimes). + +Notation "[ x ]" := (gen_order_phi_Z x). + +Lemma ring_ops_wd : ring_eq_ext rplus rtimes ropp req. +Proof. +constructor. +exact rplus_morph. +exact rtimes_morph. +exact ropp_morph. +Qed. + +Lemma Zring_morph : + ring_morph 0 1 rplus rtimes rminus ropp req + 0%Z 1%Z Zplus Zmult Zminus Zopp + Zeq_bool gen_order_phi_Z. +Proof. +exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)). +Qed. + +Lemma phi_pos1_pos : forall x : positive, 0 < phi_pos1 x. +Proof. +induction x as [x IH | x IH |]; simpl; +try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_pos_pos sor); +try apply (Rlt_0_1 sor); assumption. +Qed. + +Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Psucc x) == 1 + phi_pos1 x. +Proof. +exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd + (Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))). +Qed. + +Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y. +Proof. +intros x y H. pattern y; apply Plt_ind with x. +rewrite phi_pos1_succ; apply (Rlt_succ_r sor). +clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor). +assumption. +Qed. + +Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y]. +Proof. +unfold Zlt; intros x y H; +do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt)); +destruct x; destruct y; simpl in *; try discriminate. +apply phi_pos1_pos. +now apply clt_pos_morph. +apply <- (Ropp_neg_pos sor); apply phi_pos1_pos. +apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos. +apply phi_pos1_pos. +rewrite Pcompare_antisym in H; simpl in H. apply -> (Ropp_lt_mono sor). +now apply clt_pos_morph. +Qed. + +Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y]. +Proof. +unfold Zle_bool; intros x y H. +case_eq (x ?= y)%Z; intro H1; rewrite H1 in H. +le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1. +le_less. now apply clt_morph. +discriminate. +Qed. + +Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y]. +Proof. +intros x y H. unfold Zeq_bool in H. +case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H). +apply (Rlt_neq sor). now apply clt_morph. +fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1. +apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph. +Qed. + +End InitialMorphism. + + |