diff options
Diffstat (limited to 'plugins/micromega/QMicromega.v')
-rw-r--r-- | plugins/micromega/QMicromega.v | 22 |
1 files changed, 17 insertions, 5 deletions
diff --git a/plugins/micromega/QMicromega.v b/plugins/micromega/QMicromega.v index 5ff6a1a7..792e2c3c 100644 --- a/plugins/micromega/QMicromega.v +++ b/plugins/micromega/QMicromega.v @@ -1,6 +1,6 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) @@ -60,7 +60,7 @@ Proof. Qed. -(*Definition Zeval_expr := eval_pexpr 0 Zplus Zmult Zminus Zopp (fun x => x) (fun x => Z_of_N x) (Zpower).*) +(*Definition Zeval_expr := eval_pexpr 0 Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => Z.of_N x) (Z.pow).*) Require Import EnvRing. Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := @@ -71,7 +71,7 @@ Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q := | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Lemma Qeval_expr_simpl : forall env e, @@ -83,7 +83,7 @@ Lemma Qeval_expr_simpl : forall env e, | PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2) | PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2) | PEopp pe1 => - (Qeval_expr env pe1) - | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n) + | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n) end. Proof. destruct e ; reflexivity. @@ -91,7 +91,7 @@ Qed. Definition Qeval_expr' := eval_pexpr Qplus Qmult Qminus Qopp (fun x => x) (fun x => x) (pow_N 1 Qmult). -Lemma QNpower : forall r n, r ^ Z_of_N n = pow_N 1 Qmult r n. +Lemma QNpower : forall r n, r ^ Z.of_N n = pow_N 1 Qmult r n. Proof. destruct n ; reflexivity. Qed. @@ -173,8 +173,15 @@ Require Import Tauto. Definition Qnormalise := @cnf_normalise Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool. Definition Qnegate := @cnf_negate Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool. +Definition qunsat := check_inconsistent 0 Qeq_bool Qle_bool. + +Definition qdeduce := nformula_plus_nformula 0 Qplus Qeq_bool. + + + Definition QTautoChecker (f : BFormula (Formula Q)) (w: list QWitness) : bool := @tauto_checker (Formula Q) (NFormula Q) + qunsat qdeduce Qnormalise Qnegate QWitness QWeakChecker f w. @@ -186,6 +193,11 @@ Proof. unfold QTautoChecker. apply (tauto_checker_sound Qeval_formula Qeval_nformula). apply Qeval_nformula_dec. + intros until env. + unfold eval_nformula. unfold RingMicromega.eval_nformula. + destruct t. + apply (check_inconsistent_sound Qsor QSORaddon) ; auto. + unfold qdeduce. apply (nformula_plus_nformula_correct Qsor QSORaddon). intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_normalise_correct Qsor QSORaddon). intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_negate_correct Qsor QSORaddon). intros t w0. |