diff options
Diffstat (limited to 'plugins/funind/recdef.ml')
-rw-r--r-- | plugins/funind/recdef.ml | 1473 |
1 files changed, 1473 insertions, 0 deletions
diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml new file mode 100644 index 00000000..3b0b8628 --- /dev/null +++ b/plugins/funind/recdef.ml @@ -0,0 +1,1473 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i camlp4deps: "parsing/grammar.cma" i*) + +(* $Id$ *) + +open Term +open Termops +open Namegen +open Environ +open Declarations +open Entries +open Pp +open Names +open Libnames +open Nameops +open Util +open Closure +open RedFlags +open Tacticals +open Typing +open Tacmach +open Tactics +open Nametab +open Decls +open Declare +open Decl_kinds +open Tacred +open Proof_type +open Vernacinterp +open Pfedit +open Topconstr +open Rawterm +open Pretyping +open Pretyping.Default +open Safe_typing +open Constrintern +open Hiddentac + +open Equality +open Auto +open Eauto + +open Genarg + + +let compute_renamed_type gls c = + rename_bound_vars_as_displayed [] (pf_type_of gls c) + +let qed () = Lemmas.save_named true +let defined () = Lemmas.save_named false + +let pf_get_new_ids idl g = + let ids = pf_ids_of_hyps g in + List.fold_right + (fun id acc -> next_global_ident_away id (acc@ids)::acc) + idl + [] + +let pf_get_new_id id g = + List.hd (pf_get_new_ids [id] g) + +let h_intros l = + tclMAP h_intro l + +let debug_queue = Queue.create () + + +let rec print_debug_queue e = + let lmsg,goal = Queue.pop debug_queue in + if Queue.is_empty debug_queue + then + msgnl (lmsg ++ (str " raised exception " ++ Cerrors.explain_exn e) ++ str " on goal " ++ goal) + else + begin + print_debug_queue e; + msgnl (str " from " ++ lmsg ++ str " on goal " ++ goal); + end + + +let do_observe_tac s tac g = + let goal = Printer.pr_goal (sig_it g) in + let lmsg = (str "recdef ") ++ (str s) in + Queue.add (lmsg,goal) debug_queue; + try + let v = tac g in + ignore(Queue.pop debug_queue); + v + with e -> + if not (Queue.is_empty debug_queue) + then + print_debug_queue e; + raise e + +(*let do_observe_tac s tac g = + let goal = begin (Printer.pr_goal (sig_it g)) end in + try let v = tac g in msgnl (goal ++ fnl () ++ (str "recdef ") ++ + (str s)++(str " ")++(str "finished")); v + with e -> + msgnl (str "observation "++str s++str " raised exception " ++ + Cerrors.explain_exn e ++ str " on goal " ++ goal ); + raise e;; +*) + +let observe_tac s tac g = + if Tacinterp.get_debug () <> Tactic_debug.DebugOff + then do_observe_tac s tac g + else tac g + +let hyp_ids = List.map id_of_string + ["x";"v";"k";"def";"p";"h";"n";"h'"; "anonymous"; "teq"; "rec_res"; + "hspec";"heq"; "hrec"; "hex"; "teq"; "pmax";"hle"];; + +let rec nthtl = function + l, 0 -> l | _::tl, n -> nthtl (tl, n-1) | [], _ -> [];; + +let hyp_id n l = List.nth l n;; + +let (x_id:identifier) = hyp_id 0 hyp_ids;; +let (v_id:identifier) = hyp_id 1 hyp_ids;; +let (k_id:identifier) = hyp_id 2 hyp_ids;; +let (def_id:identifier) = hyp_id 3 hyp_ids;; +let (p_id:identifier) = hyp_id 4 hyp_ids;; +let (h_id:identifier) = hyp_id 5 hyp_ids;; +let (n_id:identifier) = hyp_id 6 hyp_ids;; +let (h'_id:identifier) = hyp_id 7 hyp_ids;; +let (ano_id:identifier) = hyp_id 8 hyp_ids;; +let (rec_res_id:identifier) = hyp_id 10 hyp_ids;; +let (hspec_id:identifier) = hyp_id 11 hyp_ids;; +let (heq_id:identifier) = hyp_id 12 hyp_ids;; +let (hrec_id:identifier) = hyp_id 13 hyp_ids;; +let (hex_id:identifier) = hyp_id 14 hyp_ids;; +let (teq_id:identifier) = hyp_id 15 hyp_ids;; +let (pmax_id:identifier) = hyp_id 16 hyp_ids;; +let (hle_id:identifier) = hyp_id 17 hyp_ids;; + +let message s = if Flags.is_verbose () then msgnl(str s);; + +let def_of_const t = + match (kind_of_term t) with + Const sp -> + (try (match (Global.lookup_constant sp) with + {const_body=Some c} -> Declarations.force c + |_ -> assert false) + with _ -> + anomaly ("Cannot find definition of constant "^ + (string_of_id (id_of_label (con_label sp)))) + ) + |_ -> assert false + +let type_of_const t = + match (kind_of_term t) with + Const sp -> Typeops.type_of_constant (Global.env()) sp + |_ -> assert false + +let arg_type t = + match kind_of_term (def_of_const t) with + Lambda(a,b,c) -> b + | _ -> assert false;; + +let evaluable_of_global_reference r = + match r with + ConstRef sp -> EvalConstRef sp + | VarRef id -> EvalVarRef id + | _ -> assert false;; + + +let rank_for_arg_list h = + let predicate a b = + try List.for_all2 eq_constr a b with + Invalid_argument _ -> false in + let rec rank_aux i = function + | [] -> None + | x::tl -> if predicate h x then Some i else rank_aux (i+1) tl in + rank_aux 0;; + +let rec (find_call_occs : int -> constr -> constr -> + (constr list -> constr) * constr list list) = + fun nb_lam f expr -> + match (kind_of_term expr) with + App (g, args) when g = f -> + (fun l -> List.hd l), [Array.to_list args] + | App (g, args) -> + let (largs: constr list) = Array.to_list args in + let rec find_aux = function + [] -> (fun x -> []), [] + | a::upper_tl -> + (match find_aux upper_tl with + (cf, ((arg1::args) as args_for_upper_tl)) -> + (match find_call_occs nb_lam f a with + cf2, (_ :: _ as other_args) -> + let rec avoid_duplicates args = + match args with + | [] -> (fun _ -> []), [] + | h::tl -> + let recomb_tl, args_for_tl = + avoid_duplicates tl in + match rank_for_arg_list h args_for_upper_tl with + | None -> + (fun l -> List.hd l::recomb_tl(List.tl l)), + h::args_for_tl + | Some i -> + (fun l -> List.nth l (i+List.length args_for_tl):: + recomb_tl l), + args_for_tl + in + let recombine, other_args' = + avoid_duplicates other_args in + let len1 = List.length other_args' in + (fun l -> cf2 (recombine l)::cf(nthtl(l,len1))), + other_args'@args_for_upper_tl + | _, [] -> (fun x -> a::cf x), args_for_upper_tl) + | _, [] -> + (match find_call_occs nb_lam f a with + cf, (arg1::args) -> (fun l -> cf l::upper_tl), (arg1::args) + | _, [] -> (fun x -> a::upper_tl), [])) in + begin + match (find_aux largs) with + cf, [] -> (fun l -> mkApp(g, args)), [] + | cf, args -> + (fun l -> mkApp (g, Array.of_list (cf l))), args + end + | Rel(v) -> if v > nb_lam then error "find_call_occs : Rel" else ((fun l -> expr),[]) + | Var(id) -> (fun l -> expr), [] + | Meta(_) -> error "find_call_occs : Meta" + | Evar(_) -> error "find_call_occs : Evar" + | Sort(_) -> (fun l -> expr), [] + | Cast(b,_,_) -> find_call_occs nb_lam f b + | Prod(_,_,_) -> error "find_call_occs : Prod" + | Lambda(na,t,b) -> + begin + match find_call_occs (succ nb_lam) f b with + | _, [] -> (* Lambda are authorized as long as they do not contain + recursives calls *) + (fun l -> expr),[] + | _ -> error "find_call_occs : Lambda" + end + | LetIn(na,v,t,b) -> + begin + match find_call_occs nb_lam f v, find_call_occs (succ nb_lam) f b with + | (_,[]),(_,[]) -> + ((fun l -> expr), []) + | (_,[]),(cf,(_::_ as l)) -> + ((fun l -> mkLetIn(na,v,t,cf l)),l) + | (cf,(_::_ as l)),(_,[]) -> + ((fun l -> mkLetIn(na,cf l,t,b)), l) + | _ -> error "find_call_occs : LetIn" + end + | Const(_) -> (fun l -> expr), [] + | Ind(_) -> (fun l -> expr), [] + | Construct (_, _) -> (fun l -> expr), [] + | Case(i,t,a,r) -> + (match find_call_occs nb_lam f a with + cf, (arg1::args) -> (fun l -> mkCase(i, t, (cf l), r)),(arg1::args) + | _ -> (fun l -> expr),[]) + | Fix(_) -> error "find_call_occs : Fix" + | CoFix(_) -> error "find_call_occs : CoFix";; + +let coq_constant s = + Coqlib.gen_constant_in_modules "RecursiveDefinition" + (Coqlib.init_modules @ Coqlib.arith_modules) s;; + +let coq_base_constant s = + Coqlib.gen_constant_in_modules "RecursiveDefinition" + (Coqlib.init_modules @ [["Coq";"Arith";"Le"];["Coq";"Arith";"Lt"]]) s;; + +let constant sl s = + constr_of_global + (locate (make_qualid(Names.make_dirpath + (List.map id_of_string (List.rev sl))) + (id_of_string s)));; + +let find_reference sl s = + (locate (make_qualid(Names.make_dirpath + (List.map id_of_string (List.rev sl))) + (id_of_string s)));; + +let delayed_force f = f () + +let le_lt_SS = function () -> (constant ["Recdef"] "le_lt_SS") +let le_lt_n_Sm = function () -> (coq_base_constant "le_lt_n_Sm") + +let le_trans = function () -> (coq_base_constant "le_trans") +let le_lt_trans = function () -> (coq_base_constant "le_lt_trans") +let lt_S_n = function () -> (coq_base_constant "lt_S_n") +let le_n = function () -> (coq_base_constant "le_n") +let refl_equal = function () -> (coq_base_constant "eq_refl") +let eq = function () -> (coq_base_constant "eq") +let ex = function () -> (coq_base_constant "ex") +let coq_sig_ref = function () -> (find_reference ["Coq";"Init";"Specif"] "sig") +let coq_sig = function () -> (coq_base_constant "sig") +let coq_O = function () -> (coq_base_constant "O") +let coq_S = function () -> (coq_base_constant "S") + +let gt_antirefl = function () -> (coq_constant "gt_irrefl") +let lt_n_O = function () -> (coq_base_constant "lt_n_O") +let lt_n_Sn = function () -> (coq_base_constant "lt_n_Sn") + +let f_equal = function () -> (coq_constant "f_equal") +let well_founded_induction = function () -> (coq_constant "well_founded_induction") +let well_founded = function () -> (coq_constant "well_founded") +let acc_rel = function () -> (coq_constant "Acc") +let acc_inv_id = function () -> (coq_constant "Acc_inv") +let well_founded_ltof = function () -> (Coqlib.coq_constant "" ["Arith";"Wf_nat"] "well_founded_ltof") +let iter_ref = function () -> (try find_reference ["Recdef"] "iter" with Not_found -> error "module Recdef not loaded") +let max_ref = function () -> (find_reference ["Recdef"] "max") +let iter = function () -> (constr_of_global (delayed_force iter_ref)) +let max_constr = function () -> (constr_of_global (delayed_force max_ref)) + +let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof") +let coq_conj = function () -> find_reference ["Coq";"Init";"Logic"] "conj" + +(* These are specific to experiments in nat with lt as well_founded_relation, *) +(* but this should be made more general. *) +let nat = function () -> (coq_base_constant "nat") +let lt = function () -> (coq_base_constant "lt") + +(* This is simply an implementation of the case_eq tactic. this code + should be replaced with the tactic defined in Ltac in Init/Tactics.v *) +let mkCaseEq a : tactic = + (fun g -> + let type_of_a = pf_type_of g a in + tclTHENLIST + [h_generalize [mkApp(delayed_force refl_equal, [| type_of_a; a|])]; + (fun g2 -> + change_in_concl None + (pattern_occs [((false,[1]), a)] (pf_env g2) Evd.empty (pf_concl g2)) + g2); + simplest_case a] g);; + +(* This is like the previous one except that it also rewrite on all + hypotheses except the ones given in the first argument. All the + modified hypotheses are generalized in the process and should be + introduced back later; the result is the pair of the tactic and the + list of hypotheses that have been generalized and cleared. *) +let mkDestructEq : + identifier list -> constr -> goal sigma -> tactic * identifier list = + fun not_on_hyp expr g -> + let hyps = pf_hyps g in + let to_revert = + Util.map_succeed + (fun (id,_,t) -> + if List.mem id not_on_hyp || not (Termops.occur_term expr t) + then failwith "is_expr_context"; + id) hyps in + let to_revert_constr = List.rev_map mkVar to_revert in + let type_of_expr = pf_type_of g expr in + let new_hyps = mkApp(delayed_force refl_equal, [|type_of_expr; expr|]):: + to_revert_constr in + tclTHENLIST + [h_generalize new_hyps; + (fun g2 -> + change_in_concl None + (pattern_occs [((false,[1]), expr)] (pf_env g2) Evd.empty (pf_concl g2)) g2); + simplest_case expr], to_revert + +let rec mk_intros_and_continue thin_intros (extra_eqn:bool) + cont_function (eqs:constr list) nb_lam (expr:constr) g = + observe_tac "mk_intros_and_continue" ( + let finalize () = if extra_eqn then + let teq = pf_get_new_id teq_id g in + tclTHENLIST + [ h_intro teq; + thin thin_intros; + h_intros thin_intros; + + tclMAP + (fun eq -> tclTRY (Equality.general_rewrite_in true all_occurrences (* deps proofs also: *) true teq eq false)) + (List.rev eqs); + (fun g1 -> + let ty_teq = pf_type_of g1 (mkVar teq) in + let teq_lhs,teq_rhs = + let _,args = try destApp ty_teq with _ -> Pp.msgnl (Printer.pr_goal (sig_it g1) ++ fnl () ++ pr_id teq ++ str ":" ++ Printer.pr_lconstr ty_teq); assert false in + args.(1),args.(2) + in + cont_function (mkVar teq::eqs) (replace_term teq_lhs teq_rhs expr) g1 + ) + ] + + else + tclTHENSEQ[ + thin thin_intros; + h_intros thin_intros; + cont_function eqs expr + ] + in + if nb_lam = 0 + then finalize () + else + match kind_of_term expr with + | Lambda (n, _, b) -> + let n1 = + match n with + Name x -> x + | Anonymous -> ano_id + in + let new_n = pf_get_new_id n1 g in + tclTHEN (h_intro new_n) + (mk_intros_and_continue thin_intros extra_eqn cont_function eqs + (pred nb_lam) (subst1 (mkVar new_n) b)) + | _ -> + assert false) g +(* finalize () *) +let const_of_ref = function + ConstRef kn -> kn + | _ -> anomaly "ConstRef expected" + +let simpl_iter clause = + reduce + (Lazy + {rBeta=true;rIota=true;rZeta= true; rDelta=false; + rConst = [ EvalConstRef (const_of_ref (delayed_force iter_ref))]}) +(* (Simpl (Some ([],mkConst (const_of_ref (delayed_force iter_ref))))) *) + clause + +(* The boolean value is_mes expresses that the termination is expressed + using a measure function instead of a well-founded relation. *) +let tclUSER tac is_mes l g = + let clear_tac = + match l with + | None -> h_clear true [] + | Some l -> tclMAP (fun id -> tclTRY (h_clear false [id])) (List.rev l) + in + tclTHENSEQ + [ + clear_tac; + if is_mes + then tclTHEN + (unfold_in_concl [(all_occurrences, evaluable_of_global_reference + (delayed_force ltof_ref))]) + tac + else tac + ] + g + + +let list_rewrite (rev:bool) (eqs: constr list) = + tclREPEAT + (List.fold_right + (fun eq i -> tclORELSE (rewriteLR eq) i) + (if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));; + +let base_leaf_terminate (func:global_reference) eqs expr = +(* let _ = msgnl (str "entering base_leaf") in *) + (fun g -> + let k',h = + match pf_get_new_ids [k_id;h_id] g with + [k';h] -> k',h + | _ -> assert false + in + tclTHENLIST + [observe_tac "first split" (split (ImplicitBindings [expr])); + observe_tac "second split" + (split (ImplicitBindings [delayed_force coq_O])); + observe_tac "intro k" (h_intro k'); + observe_tac "case on k" + (tclTHENS (simplest_case (mkVar k')) + [(tclTHEN (h_intro h) + (tclTHEN (simplest_elim (mkApp (delayed_force gt_antirefl, + [| delayed_force coq_O |]))) + default_auto)); tclIDTAC ]); + intros; + simpl_iter onConcl; + unfold_constr func; + list_rewrite true eqs; + default_auto] g);; + +(* La fonction est donnee en premier argument a la + fonctionnelle suivie d'autres Lambdas et de Case ... + Pour recuperer la fonction f a partir de la + fonctionnelle *) + +let get_f foncl = + match (kind_of_term (def_of_const foncl)) with + Lambda (Name f, _, _) -> f + |_ -> error "la fonctionnelle est mal definie";; + + +let rec compute_le_proofs = function + [] -> assumption + | a::tl -> + tclORELSE assumption + (tclTHENS + (fun g -> + let le_trans = delayed_force le_trans in + let t_le_trans = compute_renamed_type g le_trans in + let m_id = + let _,_,t = destProd t_le_trans in + let na,_,_ = destProd t in + Nameops.out_name na + in + apply_with_bindings + (le_trans, + ExplicitBindings[dummy_loc,NamedHyp m_id,a]) + g) + [compute_le_proofs tl; + tclORELSE (apply (delayed_force le_n)) assumption]) + +let make_lt_proof pmax le_proof = + tclTHENS + (fun g -> + let le_lt_trans = delayed_force le_lt_trans in + let t_le_lt_trans = compute_renamed_type g le_lt_trans in + let m_id = + let _,_,t = destProd t_le_lt_trans in + let na,_,_ = destProd t in + Nameops.out_name na + in + apply_with_bindings + (le_lt_trans, + ExplicitBindings[dummy_loc,NamedHyp m_id, pmax]) g) + [observe_tac "compute_le_proofs" (compute_le_proofs le_proof); + tclTHENLIST[observe_tac "lt_S_n" (apply (delayed_force lt_S_n)); default_full_auto]];; + +let rec list_cond_rewrite k def pmax cond_eqs le_proofs = + match cond_eqs with + [] -> tclIDTAC + | eq::eqs -> + (fun g -> + let t_eq = compute_renamed_type g (mkVar eq) in + let k_id,def_id = + let k_na,_,t = destProd t_eq in + let _,_,t = destProd t in + let def_na,_,_ = destProd t in + Nameops.out_name k_na,Nameops.out_name def_na + in + tclTHENS + (general_rewrite_bindings false all_occurrences + (* dep proofs also: *) true + (mkVar eq, + ExplicitBindings[dummy_loc, NamedHyp k_id, mkVar k; + dummy_loc, NamedHyp def_id, mkVar def]) false) + [list_cond_rewrite k def pmax eqs le_proofs; + observe_tac "make_lt_proof" (make_lt_proof pmax le_proofs)] g + ) + +let rec introduce_all_equalities func eqs values specs bound le_proofs + cond_eqs = + match specs with + [] -> + fun g -> + let ids = pf_ids_of_hyps g in + let s_max = mkApp(delayed_force coq_S, [|bound|]) in + let k = next_ident_away_in_goal k_id ids in + let ids = k::ids in + let h' = next_ident_away_in_goal (h'_id) ids in + let ids = h'::ids in + let def = next_ident_away_in_goal def_id ids in + tclTHENLIST + [observe_tac "introduce_all_equalities_final split" (split (ImplicitBindings [s_max])); + observe_tac "introduce_all_equalities_final intro k" (h_intro k); + tclTHENS + (observe_tac "introduce_all_equalities_final case k" (simplest_case (mkVar k))) + [ + tclTHENLIST[h_intro h'; + simplest_elim(mkApp(delayed_force lt_n_O,[|s_max|])); + default_full_auto]; + tclIDTAC + ]; + observe_tac "clearing k " (clear [k]); + observe_tac "intros k h' def" (h_intros [k;h';def]); + observe_tac "simple_iter" (simpl_iter onConcl); + observe_tac "unfold functional" + (unfold_in_concl[((true,[1]),evaluable_of_global_reference func)]); + observe_tac "rewriting equations" + (list_rewrite true eqs); + observe_tac ("cond rewrite "^(string_of_id k)) (list_cond_rewrite k def bound cond_eqs le_proofs); + observe_tac "refl equal" (apply (delayed_force refl_equal))] g + | spec1::specs -> + fun g -> + let ids = ids_of_named_context (pf_hyps g) in + let p = next_ident_away_in_goal p_id ids in + let ids = p::ids in + let pmax = next_ident_away_in_goal pmax_id ids in + let ids = pmax::ids in + let hle1 = next_ident_away_in_goal hle_id ids in + let ids = hle1::ids in + let hle2 = next_ident_away_in_goal hle_id ids in + let ids = hle2::ids in + let heq = next_ident_away_in_goal heq_id ids in + tclTHENLIST + [simplest_elim (mkVar spec1); + list_rewrite true eqs; + h_intros [p; heq]; + simplest_elim (mkApp(delayed_force max_constr, [| bound; mkVar p|])); + h_intros [pmax; hle1; hle2]; + introduce_all_equalities func eqs values specs + (mkVar pmax) ((mkVar pmax)::le_proofs) + (heq::cond_eqs)] g;; + +let string_match s = + if String.length s < 3 then failwith "string_match"; + try + for i = 0 to 3 do + if String.get s i <> String.get "Acc_" i then failwith "string_match" + done; + with Invalid_argument _ -> failwith "string_match" + +let retrieve_acc_var g = + (* Julien: I don't like this version .... *) + let hyps = pf_ids_of_hyps g in + map_succeed + (fun id -> string_match (string_of_id id);id) + hyps + +let rec introduce_all_values concl_tac is_mes acc_inv func context_fn + eqs hrec args values specs = + (match args with + [] -> + tclTHENLIST + [observe_tac "split" (split(ImplicitBindings + [context_fn (List.map mkVar (List.rev values))])); + observe_tac "introduce_all_equalities" (introduce_all_equalities func eqs + (List.rev values) (List.rev specs) (delayed_force coq_O) [] [])] + | arg::args -> + (fun g -> + let ids = ids_of_named_context (pf_hyps g) in + let rec_res = next_ident_away_in_goal rec_res_id ids in + let ids = rec_res::ids in + let hspec = next_ident_away_in_goal hspec_id ids in + let tac = + observe_tac "introduce_all_values" ( + introduce_all_values concl_tac is_mes acc_inv func context_fn eqs + hrec args + (rec_res::values)(hspec::specs)) in + (tclTHENS + (observe_tac "elim h_rec" + (simplest_elim (mkApp(mkVar hrec, Array.of_list arg))) + ) + [tclTHENLIST [h_intros [rec_res; hspec]; + tac]; + (tclTHENS + (observe_tac "acc_inv" (apply (Lazy.force acc_inv))) + [(* tclTHEN (tclTRY(list_rewrite true eqs)) *) + (observe_tac "h_assumption" h_assumption) + ; + tclTHENLIST + [ + tclTRY(list_rewrite true eqs); + observe_tac "user proof" + (fun g -> + tclUSER + concl_tac + is_mes + (Some (hrec::hspec::(retrieve_acc_var g)@specs)) + g + ) + ] + ] + ) + ]) g) + + ) + + +let rec_leaf_terminate f_constr concl_tac is_mes acc_inv hrec (func:global_reference) eqs expr = + match find_call_occs 0 f_constr expr with + | context_fn, args -> + observe_tac "introduce_all_values" + (introduce_all_values concl_tac is_mes acc_inv func context_fn eqs hrec args [] []) + +let proveterminate rec_arg_id is_mes acc_inv (hrec:identifier) + (f_constr:constr) (func:global_reference) base_leaf rec_leaf = + let rec proveterminate (eqs:constr list) (expr:constr) = + try + (* let _ = msgnl (str "entering proveterminate") in *) + let v = + match (kind_of_term expr) with + Case (ci, t, a, l) -> + (match find_call_occs 0 f_constr a with + _,[] -> + (fun g -> + let destruct_tac, rev_to_thin_intro = + mkDestructEq rec_arg_id a g in + tclTHENS destruct_tac + (list_map_i + (fun i -> mk_intros_and_continue + (List.rev rev_to_thin_intro) + true + proveterminate + eqs + ci.ci_cstr_nargs.(i)) + 0 (Array.to_list l)) g) + | _, _::_ -> + (match find_call_occs 0 f_constr expr with + _,[] -> observe_tac "base_leaf" (base_leaf func eqs expr) + | _, _:: _ -> + observe_tac "rec_leaf" + (rec_leaf is_mes acc_inv hrec func eqs expr))) + | _ -> + (match find_call_occs 0 f_constr expr with + _,[] -> + (try observe_tac "base_leaf" (base_leaf func eqs expr) + with e -> (msgerrnl (str "failure in base case");raise e )) + | _, _::_ -> + observe_tac "rec_leaf" + (rec_leaf is_mes acc_inv hrec func eqs expr)) in + v + with e -> begin msgerrnl(str "failure in proveterminate"); raise e end + in + proveterminate + +let hyp_terminates nb_args func = + let a_arrow_b = arg_type (constr_of_global func) in + let rev_args,b = decompose_prod_n nb_args a_arrow_b in + let left = + mkApp(delayed_force iter, + Array.of_list + (lift 5 a_arrow_b:: mkRel 3:: + constr_of_global func::mkRel 1:: + List.rev (list_map_i (fun i _ -> mkRel (6+i)) 0 rev_args) + ) + ) + in + let right = mkRel 5 in + let equality = mkApp(delayed_force eq, [|lift 5 b; left; right|]) in + let result = (mkProd ((Name def_id) , lift 4 a_arrow_b, equality)) in + let cond = mkApp(delayed_force lt, [|(mkRel 2); (mkRel 1)|]) in + let nb_iter = + mkApp(delayed_force ex, + [|delayed_force nat; + (mkLambda + (Name + p_id, + delayed_force nat, + (mkProd (Name k_id, delayed_force nat, + mkArrow cond result))))|])in + let value = mkApp(delayed_force coq_sig, + [|b; + (mkLambda (Name v_id, b, nb_iter))|]) in + compose_prod rev_args value + + + +let tclUSER_if_not_mes concl_tac is_mes names_to_suppress = + if is_mes + then tclCOMPLETE (h_simplest_apply (delayed_force well_founded_ltof)) + else tclUSER concl_tac is_mes names_to_suppress + +let termination_proof_header is_mes input_type ids args_id relation + rec_arg_num rec_arg_id tac wf_tac : tactic = + begin + fun g -> + let nargs = List.length args_id in + let pre_rec_args = + List.rev_map + mkVar (fst (list_chop (rec_arg_num - 1) args_id)) + in + let relation = substl pre_rec_args relation in + let input_type = substl pre_rec_args input_type in + let wf_thm = next_ident_away_in_goal (id_of_string ("wf_R")) ids in + let wf_rec_arg = + next_ident_away_in_goal + (id_of_string ("Acc_"^(string_of_id rec_arg_id))) + (wf_thm::ids) + in + let hrec = next_ident_away_in_goal hrec_id + (wf_rec_arg::wf_thm::ids) in + let acc_inv = + lazy ( + mkApp ( + delayed_force acc_inv_id, + [|input_type;relation;mkVar rec_arg_id|] + ) + ) + in + tclTHEN + (h_intros args_id) + (tclTHENS + (observe_tac + "first assert" + (assert_tac + (Name wf_rec_arg) + (mkApp (delayed_force acc_rel, + [|input_type;relation;mkVar rec_arg_id|]) + ) + ) + ) + [ + (* accesibility proof *) + tclTHENS + (observe_tac + "second assert" + (assert_tac + (Name wf_thm) + (mkApp (delayed_force well_founded,[|input_type;relation|])) + ) + ) + [ + (* interactive proof that the relation is well_founded *) + observe_tac "wf_tac" (wf_tac is_mes (Some args_id)); + (* this gives the accessibility argument *) + observe_tac + "apply wf_thm" + (h_simplest_apply (mkApp(mkVar wf_thm,[|mkVar rec_arg_id|])) + ) + ] + ; + (* rest of the proof *) + tclTHENSEQ + [observe_tac "generalize" + (onNLastHypsId (nargs+1) + (tclMAP (fun id -> + tclTHEN (h_generalize [mkVar id]) (h_clear false [id])) + )) + ; + observe_tac "h_fix" (h_fix (Some hrec) (nargs+1)); + h_intros args_id; + h_intro wf_rec_arg; + observe_tac "tac" (tac wf_rec_arg hrec acc_inv) + ] + ] + ) g + end + + + +let rec instantiate_lambda t l = + match l with + | [] -> t + | a::l -> + let (bound_name, _, body) = destLambda t in + instantiate_lambda (subst1 a body) l +;; + + +let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_arg_num : tactic = + begin + fun g -> + let ids = ids_of_named_context (pf_hyps g) in + let func_body = (def_of_const (constr_of_global func)) in + let (f_name, _, body1) = destLambda func_body in + let f_id = + match f_name with + | Name f_id -> next_ident_away_in_goal f_id ids + | Anonymous -> anomaly "Anonymous function" + in + let n_names_types,_ = decompose_lam_n nb_args body1 in + let n_ids,ids = + List.fold_left + (fun (n_ids,ids) (n_name,_) -> + match n_name with + | Name id -> + let n_id = next_ident_away_in_goal id ids in + n_id::n_ids,n_id::ids + | _ -> anomaly "anonymous argument" + ) + ([],(f_id::ids)) + n_names_types + in + let rec_arg_id = List.nth n_ids (rec_arg_num - 1) in + let expr = instantiate_lambda func_body (mkVar f_id::(List.map mkVar n_ids)) in + termination_proof_header + is_mes + input_type + ids + n_ids + relation + rec_arg_num + rec_arg_id + (fun rec_arg_id hrec acc_inv g -> + (proveterminate + [rec_arg_id] + is_mes + acc_inv + hrec + (mkVar f_id) + func + base_leaf_terminate + (rec_leaf_terminate (mkVar f_id) concl_tac) + [] + expr + ) + g + ) + (tclUSER_if_not_mes concl_tac) + g + end + +let get_current_subgoals_types () = + let pts = get_pftreestate () in + let _,subs = extract_open_pftreestate pts in + List.map snd ((* List.sort (fun (x,_) (y,_) -> x -y ) *)subs ) + +let build_and_l l = + let and_constr = Coqlib.build_coq_and () in + let conj_constr = coq_conj () in + let mk_and p1 p2 = + Term.mkApp(and_constr,[|p1;p2|]) in + let rec f = function + | [] -> failwith "empty list of subgoals!" + | [p] -> p,tclIDTAC,1 + | p1::pl -> + let c,tac,nb = f pl in + mk_and p1 c, + tclTHENS + (apply (constr_of_global conj_constr)) + [tclIDTAC; + tac + ],nb+1 + in f l + + +let is_rec_res id = + let rec_res_name = string_of_id rec_res_id in + let id_name = string_of_id id in + try + String.sub id_name 0 (String.length rec_res_name) = rec_res_name + with _ -> false + +let clear_goals = + let rec clear_goal t = + match kind_of_term t with + | Prod(Name id as na,t',b) -> + let b' = clear_goal b in + if noccurn 1 b' && (is_rec_res id) + then pop b' + else if b' == b then t + else mkProd(na,t',b') + | _ -> map_constr clear_goal t + in + List.map clear_goal + + +let build_new_goal_type () = + let sub_gls_types = get_current_subgoals_types () in + (* Pp.msgnl (str "sub_gls_types1 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) + let sub_gls_types = clear_goals sub_gls_types in + (* Pp.msgnl (str "sub_gls_types2 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *) + let res = build_and_l sub_gls_types in + res + +let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref_ goal_name (gls_type,decompose_and_tac,nb_goal) = + (* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *) + let current_proof_name = get_current_proof_name () in + let name = match goal_name with + | Some s -> s + | None -> + try (add_suffix current_proof_name "_subproof") + with _ -> anomaly "open_new_goal with an unamed theorem" + in + let sign = Global.named_context () in + let sign = clear_proofs sign in + let na = next_global_ident_away name [] in + if occur_existential gls_type then + Util.error "\"abstract\" cannot handle existentials"; + let hook _ _ = + let opacity = + let na_ref = Libnames.Ident (dummy_loc,na) in + let na_global = Nametab.global na_ref in + match na_global with + ConstRef c -> + let cb = Global.lookup_constant c in + if cb.Declarations.const_opaque then true + else begin match cb.const_body with None -> true | _ -> false end + | _ -> anomaly "equation_lemma: not a constant" + in + let lemma = mkConst (Lib.make_con na) in + ref_ := Some lemma ; + let lid = ref [] in + let h_num = ref (-1) in + Flags.silently Vernacentries.interp (Vernacexpr.VernacAbort None); + build_proof + ( fun gls -> + let hid = next_ident_away_in_goal h_id (pf_ids_of_hyps gls) in + tclTHENSEQ + [ + h_generalize [lemma]; + h_intro hid; + (fun g -> + let ids = pf_ids_of_hyps g in + tclTHEN + (Elim.h_decompose_and (mkVar hid)) + (fun g -> + let ids' = pf_ids_of_hyps g in + lid := List.rev (list_subtract ids' ids); + if !lid = [] then lid := [hid]; + tclIDTAC g + ) + g + ); + ] gls) + (fun g -> + match kind_of_term (pf_concl g) with + | App(f,_) when eq_constr f (well_founded ()) -> + Auto.h_auto None [] (Some []) g + | _ -> + incr h_num; + (observe_tac "finishing using" + ( + tclCOMPLETE( + tclFIRST[ + tclTHEN + (eapply_with_bindings (mkVar (List.nth !lid !h_num), NoBindings)) + e_assumption; + Eauto.eauto_with_bases + false + (true,5) + [delayed_force refl_equal] + [Auto.Hint_db.empty empty_transparent_state false] + ] + ) + ) + ) + g) +; + Lemmas.save_named opacity; + in + start_proof + na + (Decl_kinds.Global, Decl_kinds.Proof Decl_kinds.Lemma) + sign + gls_type + hook ; + if Indfun_common.is_strict_tcc () + then + by (tclIDTAC) + else + begin + by ( + fun g -> + tclTHEN + (decompose_and_tac) + (tclORELSE + (tclFIRST + (List.map + (fun c -> + tclTHENSEQ + [intros; + h_simplest_apply (interp_constr Evd.empty (Global.env()) c); + tclCOMPLETE Auto.default_auto + ] + ) + using_lemmas) + ) tclIDTAC) + g) + end; + try + by tclIDTAC; (* raises UserError _ if the proof is complete *) + if Flags.is_verbose () then (pp (Printer.pr_open_subgoals())) + with UserError _ -> + defined () + +;; + + +let com_terminate + tcc_lemma_name + tcc_lemma_ref + is_mes + fonctional_ref + input_type + relation + rec_arg_num + thm_name using_lemmas + nb_args + hook = + let start_proof (tac_start:tactic) (tac_end:tactic) = + let (evmap, env) = Lemmas.get_current_context() in + start_proof thm_name + (Global, Proof Lemma) (Environ.named_context_val env) + (hyp_terminates nb_args fonctional_ref) hook; + + by (observe_tac "starting_tac" tac_start); + by (observe_tac "whole_start" (whole_start tac_end nb_args is_mes fonctional_ref + input_type relation rec_arg_num )) + in + start_proof tclIDTAC tclIDTAC; + try + let new_goal_type = build_new_goal_type () in + open_new_goal start_proof using_lemmas tcc_lemma_ref + (Some tcc_lemma_name) + (new_goal_type); + + with Failure "empty list of subgoals!" -> + (* a non recursive function declared with measure ! *) + defined () + + + + +let ind_of_ref = function + | IndRef (ind,i) -> (ind,i) + | _ -> anomaly "IndRef expected" + +let (value_f:constr list -> global_reference -> constr) = + fun al fterm -> + let d0 = dummy_loc in + let rev_x_id_l = + ( + List.fold_left + (fun x_id_l _ -> + let x_id = next_ident_away_in_goal x_id x_id_l in + x_id::x_id_l + ) + [] + al + ) + in + let fun_body = + RCases + (d0,RegularStyle,None, + [RApp(d0, RRef(d0,fterm), List.rev_map (fun x_id -> RVar(d0, x_id)) rev_x_id_l), + (Anonymous,None)], + [d0, [v_id], [PatCstr(d0,(ind_of_ref + (delayed_force coq_sig_ref),1), + [PatVar(d0, Name v_id); + PatVar(d0, Anonymous)], + Anonymous)], + RVar(d0,v_id)]) + in + let value = + List.fold_left2 + (fun acc x_id a -> + RLambda + (d0, Name x_id, Explicit, RDynamic(d0, constr_in a), + acc + ) + ) + fun_body + rev_x_id_l + (List.rev al) + in + understand Evd.empty (Global.env()) value;; + +let (declare_fun : identifier -> logical_kind -> constr -> global_reference) = + fun f_id kind value -> + let ce = {const_entry_body = value; + const_entry_type = None; + const_entry_opaque = false; + const_entry_boxed = true} in + ConstRef(declare_constant f_id (DefinitionEntry ce, kind));; + +let (declare_f : identifier -> logical_kind -> constr list -> global_reference -> global_reference) = + fun f_id kind input_type fterm_ref -> + declare_fun f_id kind (value_f input_type fterm_ref);; + +let rec n_x_id ids n = + if n = 0 then [] + else let x = next_ident_away_in_goal x_id ids in + x::n_x_id (x::ids) (n-1);; + +let start_equation (f:global_reference) (term_f:global_reference) + (cont_tactic:identifier list -> tactic) g = + let ids = pf_ids_of_hyps g in + let terminate_constr = constr_of_global term_f in + let nargs = nb_prod (type_of_const terminate_constr) in + let x = n_x_id ids nargs in + tclTHENLIST [ + h_intros x; + unfold_in_concl [(all_occurrences, evaluable_of_global_reference f)]; + observe_tac "simplest_case" + (simplest_case (mkApp (terminate_constr, + Array.of_list (List.map mkVar x)))); + observe_tac "prove_eq" (cont_tactic x)] g;; + +let base_leaf_eq func eqs f_id g = + let ids = pf_ids_of_hyps g in + let k = next_ident_away_in_goal k_id ids in + let p = next_ident_away_in_goal p_id (k::ids) in + let v = next_ident_away_in_goal v_id (p::k::ids) in + let heq = next_ident_away_in_goal heq_id (v::p::k::ids) in + let heq1 = next_ident_away_in_goal heq_id (heq::v::p::k::ids) in + let hex = next_ident_away_in_goal hex_id (heq1::heq::v::p::k::ids) in + tclTHENLIST [ + h_intros [v; hex]; + simplest_elim (mkVar hex); + h_intros [p;heq1]; + tclTRY + (rewriteRL + (mkApp(mkVar heq1, + [|mkApp (delayed_force coq_S, [|mkVar p|]); + mkApp(delayed_force lt_n_Sn, [|mkVar p|]); f_id|]))); + simpl_iter onConcl; + tclTRY (unfold_in_concl [((true,[1]), evaluable_of_global_reference func)]); + observe_tac "list_revrite" (list_rewrite true eqs); + apply (delayed_force refl_equal)] g;; + +let f_S t = mkApp(delayed_force coq_S, [|t|]);; + + +let rec introduce_all_values_eq cont_tac functional termine + f p heq1 pmax bounds le_proofs eqs ids = + function + [] -> + let heq2 = next_ident_away_in_goal heq_id ids in + tclTHENLIST + [pose_proof (Name heq2) + (mkApp(mkVar heq1, [|f_S(f_S(mkVar pmax))|])); + simpl_iter (onHyp heq2); + unfold_in_hyp [((true,[1]), evaluable_of_global_reference + (global_of_constr functional))] + (heq2, InHyp); + tclTHENS + (fun gls -> + let t_eq = compute_renamed_type gls (mkVar heq2) in + let def_id = + let _,_,t = destProd t_eq in let def_na,_,_ = destProd t in + Nameops.out_name def_na + in + observe_tac "rewrite heq" (general_rewrite_bindings false all_occurrences + (* dep proofs also: *) true (mkVar heq2, + ExplicitBindings[dummy_loc,NamedHyp def_id, + f]) false) gls) + [tclTHENLIST + [observe_tac "list_rewrite" (list_rewrite true eqs); + cont_tac pmax le_proofs]; + tclTHENLIST[apply (delayed_force le_lt_SS); + compute_le_proofs le_proofs]]] + | arg::args -> + let v' = next_ident_away_in_goal v_id ids in + let ids = v'::ids in + let hex' = next_ident_away_in_goal hex_id ids in + let ids = hex'::ids in + let p' = next_ident_away_in_goal p_id ids in + let ids = p'::ids in + let new_pmax = next_ident_away_in_goal pmax_id ids in + let ids = pmax::ids in + let hle1 = next_ident_away_in_goal hle_id ids in + let ids = hle1::ids in + let hle2 = next_ident_away_in_goal hle_id ids in + let ids = hle2::ids in + let heq = next_ident_away_in_goal heq_id ids in + let ids = heq::ids in + let heq2 = next_ident_away_in_goal heq_id ids in + let ids = heq2::ids in + tclTHENLIST + [mkCaseEq(mkApp(termine, Array.of_list arg)); + h_intros [v'; hex']; + simplest_elim(mkVar hex'); + h_intros [p']; + simplest_elim(mkApp(delayed_force max_constr, [|mkVar pmax; + mkVar p'|])); + h_intros [new_pmax;hle1;hle2]; + introduce_all_values_eq + (fun pmax' le_proofs'-> + tclTHENLIST + [cont_tac pmax' le_proofs'; + h_intros [heq;heq2]; + observe_tac ("rewriteRL " ^ (string_of_id heq2)) + (tclTRY (rewriteLR (mkVar heq2))); + tclTRY (tclTHENS + ( fun g -> + let t_eq = compute_renamed_type g (mkVar heq) in + let k_id,def_id = + let k_na,_,t = destProd t_eq in + let _,_,t = destProd t in + let def_na,_,_ = destProd t in + Nameops.out_name k_na,Nameops.out_name def_na + in + let c_b = (mkVar heq, + ExplicitBindings + [dummy_loc, NamedHyp k_id, + f_S(mkVar pmax'); + dummy_loc, NamedHyp def_id, f]) + in + observe_tac "general_rewrite_bindings" ( (general_rewrite_bindings false all_occurrences (* dep proofs also: *) true + c_b false)) + g + ) + [tclIDTAC; + tclTHENLIST + [apply (delayed_force le_lt_n_Sm); + compute_le_proofs le_proofs']])]) + functional termine f p heq1 new_pmax + (p'::bounds)((mkVar pmax)::le_proofs) eqs + (heq2::heq::hle2::hle1::new_pmax::p'::hex'::v'::ids) args] + + +let rec_leaf_eq termine f ids functional eqs expr fn args = + let p = next_ident_away_in_goal p_id ids in + let ids = p::ids in + let v = next_ident_away_in_goal v_id ids in + let ids = v::ids in + let hex = next_ident_away_in_goal hex_id ids in + let ids = hex::ids in + let heq1 = next_ident_away_in_goal heq_id ids in + let ids = heq1::ids in + let hle1 = next_ident_away_in_goal hle_id ids in + let ids = hle1::ids in + tclTHENLIST + [observe_tac "intros v hex" (h_intros [v;hex]); + simplest_elim (mkVar hex); + h_intros [p;heq1]; + h_generalize [mkApp(delayed_force le_n,[|mkVar p|])]; + h_intros [hle1]; + observe_tac "introduce_all_values_eq" (introduce_all_values_eq + (fun _ _ -> tclIDTAC) + functional termine f p heq1 p [] [] eqs ids args); + observe_tac "failing here" (apply (delayed_force refl_equal))] + +let rec prove_eq (termine:constr) (f:constr)(functional:global_reference) + (eqs:constr list) (expr:constr) = +(* tclTRY *) + observe_tac "prove_eq" (match kind_of_term expr with + Case(ci,t,a,l) -> + (match find_call_occs 0 f a with + _,[] -> + (fun g -> + let destruct_tac,rev_to_thin_intro = mkDestructEq [] a g in + tclTHENS + destruct_tac + (list_map_i + (fun i -> mk_intros_and_continue + (List.rev rev_to_thin_intro) true + (prove_eq termine f functional) + eqs ci.ci_cstr_nargs.(i)) + 0 (Array.to_list l)) g) + | _,_::_ -> + (match find_call_occs 0 f expr with + _,[] -> observe_tac "base_leaf_eq(1)" (base_leaf_eq functional eqs f) + | fn,args -> + fun g -> + let ids = ids_of_named_context (pf_hyps g) in + observe_tac "rec_leaf_eq" (rec_leaf_eq termine f ids + (constr_of_global functional) + eqs expr fn args) g)) + | _ -> + (match find_call_occs 0 f expr with + _,[] -> observe_tac "base_leaf_eq(2)" ( base_leaf_eq functional eqs f) + | fn,args -> + fun g -> + let ids = ids_of_named_context (pf_hyps g) in + observe_tac "rec_leaf_eq" (rec_leaf_eq + termine f ids (constr_of_global functional) + eqs expr fn args) g));; + +let (com_eqn : identifier -> + global_reference -> global_reference -> global_reference + -> constr -> unit) = + fun eq_name functional_ref f_ref terminate_ref equation_lemma_type -> + let opacity = + match terminate_ref with + | ConstRef c -> + let cb = Global.lookup_constant c in + if cb.Declarations.const_opaque then true + else begin match cb.const_body with None -> true | _ -> false end + | _ -> anomaly "terminate_lemma: not a constant" + in + let (evmap, env) = Lemmas.get_current_context() in + let f_constr = (constr_of_global f_ref) in + let equation_lemma_type = subst1 f_constr equation_lemma_type in + (start_proof eq_name (Global, Proof Lemma) + (Environ.named_context_val env) equation_lemma_type (fun _ _ -> ()); + by + (start_equation f_ref terminate_ref + (fun x -> + prove_eq + (constr_of_global terminate_ref) + f_constr + functional_ref + [] + (instantiate_lambda + (def_of_const (constr_of_global functional_ref)) + (f_constr::List.map mkVar x) + ) + ) + ); +(* (try Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowProof) with _ -> ()); *) +(* Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowScript); *) + Flags.silently (fun () -> Lemmas.save_named opacity) () ; +(* Pp.msgnl (str "eqn finished"); *) + + );; + +let nf_zeta env = + Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA]) + env + Evd.empty + +let nf_betaiotazeta = (* Reductionops.local_strong Reductionops.whd_betaiotazeta *) + let clos_norm_flags flgs env sigma t = + Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in + clos_norm_flags Closure.betaiotazeta Environ.empty_env Evd.empty + + +let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num eq + generate_induction_principle using_lemmas : unit = + let function_type = interp_constr Evd.empty (Global.env()) type_of_f in + let env = push_named (function_name,None,function_type) (Global.env()) in +(* Pp.msgnl (str "function type := " ++ Printer.pr_lconstr function_type); *) + let equation_lemma_type = + nf_betaiotazeta + (interp_gen (OfType None) Evd.empty env ~impls:rec_impls eq) + in +(* Pp.msgnl (str "lemma type := " ++ Printer.pr_lconstr equation_lemma_type ++ fnl ()); *) + let res_vars,eq' = decompose_prod equation_lemma_type in + let env_eq' = Environ.push_rel_context (List.map (fun (x,y) -> (x,None,y)) res_vars) env in + let eq' = nf_zeta env_eq' eq' in + let res = +(* Pp.msgnl (str "res_var :=" ++ Printer.pr_lconstr_env (push_rel_context (List.map (function (x,t) -> (x,None,t)) res_vars) env) eq'); *) +(* Pp.msgnl (str "rec_arg_num := " ++ str (string_of_int rec_arg_num)); *) +(* Pp.msgnl (str "eq' := " ++ str (string_of_int rec_arg_num)); *) + match kind_of_term eq' with + | App(e,[|_;_;eq_fix|]) -> + mkLambda (Name function_name,function_type,subst_var function_name (compose_lam res_vars eq_fix)) + | _ -> failwith "Recursive Definition (res not eq)" + in + let pre_rec_args,function_type_before_rec_arg = decompose_prod_n (rec_arg_num - 1) function_type in + let (_, rec_arg_type, _) = destProd function_type_before_rec_arg in + let arg_types = List.rev_map snd (fst (decompose_prod_n (List.length res_vars) function_type)) in + let equation_id = add_suffix function_name "_equation" in + let functional_id = add_suffix function_name "_F" in + let term_id = add_suffix function_name "_terminate" in + let functional_ref = declare_fun functional_id (IsDefinition Definition) res in + let env_with_pre_rec_args = push_rel_context(List.map (function (x,t) -> (x,None,t)) pre_rec_args) env in + let relation = + interp_constr + Evd.empty + env_with_pre_rec_args + r + in + let tcc_lemma_name = add_suffix function_name "_tcc" in + let tcc_lemma_constr = ref None in + (* let _ = Pp.msgnl (str "relation := " ++ Printer.pr_lconstr_env env_with_pre_rec_args relation) in *) + let hook _ _ = + let term_ref = Nametab.locate (qualid_of_ident term_id) in + let f_ref = declare_f function_name (IsProof Lemma) arg_types term_ref in +(* message "start second proof"; *) + let stop = ref false in + begin + try com_eqn equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type) + with e -> + begin + if Tacinterp.get_debug () <> Tactic_debug.DebugOff + then pperrnl (str "Cannot create equation Lemma " ++ Cerrors.explain_exn e) + else anomaly "Cannot create equation Lemma" + ; +(* ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ()); *) + stop := true; + end + end; + if not !stop + then + let eq_ref = Nametab.locate (qualid_of_ident equation_id ) in + let f_ref = destConst (constr_of_global f_ref) + and functional_ref = destConst (constr_of_global functional_ref) + and eq_ref = destConst (constr_of_global eq_ref) in + generate_induction_principle f_ref tcc_lemma_constr + functional_ref eq_ref rec_arg_num rec_arg_type (nb_prod res) relation; + if Flags.is_verbose () + then msgnl (h 1 (Ppconstr.pr_id function_name ++ + spc () ++ str"is defined" )++ fnl () ++ + h 1 (Ppconstr.pr_id equation_id ++ + spc () ++ str"is defined" ) + ) + in + try + com_terminate + tcc_lemma_name + tcc_lemma_constr + is_mes functional_ref + rec_arg_type + relation rec_arg_num + term_id + using_lemmas + (List.length res_vars) + hook + with e -> + begin + ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ()); +(* anomaly "Cannot create termination Lemma" *) + raise e + end + + + |