summaryrefslogtreecommitdiff
path: root/plugins/fourier/fourierR.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/fourier/fourierR.ml')
-rw-r--r--plugins/fourier/fourierR.ml629
1 files changed, 629 insertions, 0 deletions
diff --git a/plugins/fourier/fourierR.ml b/plugins/fourier/fourierR.ml
new file mode 100644
index 00000000..3f490bab
--- /dev/null
+++ b/plugins/fourier/fourierR.ml
@@ -0,0 +1,629 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id$ *)
+
+
+
+(* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
+des inéquations et équations sont entiers. En attendant la tactique Field.
+*)
+
+open Term
+open Tactics
+open Clenv
+open Names
+open Libnames
+open Tacticals
+open Tacmach
+open Fourier
+open Contradiction
+
+(******************************************************************************
+Opérations sur les combinaisons linéaires affines.
+La partie homogène d'une combinaison linéaire est en fait une table de hash
+qui donne le coefficient d'un terme du calcul des constructions,
+qui est zéro si le terme n'y est pas.
+*)
+
+type flin = {fhom:(constr , rational)Hashtbl.t;
+ fcste:rational};;
+
+let flin_zero () = {fhom=Hashtbl.create 50;fcste=r0};;
+
+let flin_coef f x = try (Hashtbl.find f.fhom x) with _-> r0;;
+
+let flin_add f x c =
+ let cx = flin_coef f x in
+ Hashtbl.remove f.fhom x;
+ Hashtbl.add f.fhom x (rplus cx c);
+ f
+;;
+let flin_add_cste f c =
+ {fhom=f.fhom;
+ fcste=rplus f.fcste c}
+;;
+
+let flin_one () = flin_add_cste (flin_zero()) r1;;
+
+let flin_plus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
+;;
+
+let flin_minus f1 f2 =
+ let f3 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Hashtbl.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
+ flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
+;;
+let flin_emult a f =
+ let f2 = flin_zero() in
+ Hashtbl.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
+ flin_add_cste f2 (rmult a f.fcste);
+;;
+
+(*****************************************************************************)
+open Vernacexpr
+
+type ineq = Rlt | Rle | Rgt | Rge
+
+let string_of_R_constant kn =
+ match Names.repr_con kn with
+ | MPfile dir, sec_dir, id when
+ sec_dir = empty_dirpath &&
+ string_of_dirpath dir = "Coq.Reals.Rdefinitions"
+ -> string_of_label id
+ | _ -> "constant_not_of_R"
+
+let rec string_of_R_constr c =
+ match kind_of_term c with
+ Cast (c,_,_) -> string_of_R_constr c
+ |Const c -> string_of_R_constant c
+ | _ -> "not_of_constant"
+
+let rec rational_of_constr c =
+ match kind_of_term c with
+ | Cast (c,_,_) -> (rational_of_constr c)
+ | App (c,args) ->
+ (match (string_of_R_constr c) with
+ | "Ropp" ->
+ rop (rational_of_constr args.(0))
+ | "Rinv" ->
+ rinv (rational_of_constr args.(0))
+ | "Rmult" ->
+ rmult (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rdiv" ->
+ rdiv (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rplus" ->
+ rplus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | "Rminus" ->
+ rminus (rational_of_constr args.(0))
+ (rational_of_constr args.(1))
+ | _ -> failwith "not a rational")
+ | Const kn ->
+ (match (string_of_R_constant kn) with
+ "R1" -> r1
+ |"R0" -> r0
+ | _ -> failwith "not a rational")
+ | _ -> failwith "not a rational"
+;;
+
+let rec flin_of_constr c =
+ try(
+ match kind_of_term c with
+ | Cast (c,_,_) -> (flin_of_constr c)
+ | App (c,args) ->
+ (match (string_of_R_constr c) with
+ "Ropp" ->
+ flin_emult (rop r1) (flin_of_constr args.(0))
+ | "Rplus"->
+ flin_plus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ | "Rminus"->
+ flin_minus (flin_of_constr args.(0))
+ (flin_of_constr args.(1))
+ | "Rmult"->
+ (try (let a=(rational_of_constr args.(0)) in
+ try (let b = (rational_of_constr args.(1)) in
+ (flin_add_cste (flin_zero()) (rmult a b)))
+ with _-> (flin_add (flin_zero())
+ args.(1)
+ a))
+ with _-> (flin_add (flin_zero())
+ args.(0)
+ (rational_of_constr args.(1))))
+ | "Rinv"->
+ let a=(rational_of_constr args.(0)) in
+ flin_add_cste (flin_zero()) (rinv a)
+ | "Rdiv"->
+ (let b=(rational_of_constr args.(1)) in
+ try (let a = (rational_of_constr args.(0)) in
+ (flin_add_cste (flin_zero()) (rdiv a b)))
+ with _-> (flin_add (flin_zero())
+ args.(0)
+ (rinv b)))
+ |_->assert false)
+ | Const c ->
+ (match (string_of_R_constant c) with
+ "R1" -> flin_one ()
+ |"R0" -> flin_zero ()
+ |_-> assert false)
+ |_-> assert false)
+ with _ -> flin_add (flin_zero())
+ c
+ r1
+;;
+
+let flin_to_alist f =
+ let res=ref [] in
+ Hashtbl.iter (fun x c -> res:=(c,x)::(!res)) f;
+ !res
+;;
+
+(* Représentation des hypothèses qui sont des inéquations ou des équations.
+*)
+type hineq={hname:constr; (* le nom de l'hypothèse *)
+ htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
+ hleft:constr;
+ hright:constr;
+ hflin:flin;
+ hstrict:bool}
+;;
+
+(* Transforme une hypothese h:t en inéquation flin<0 ou flin<=0
+*)
+let ineq1_of_constr (h,t) =
+ match (kind_of_term t) with
+ App (f,args) ->
+ (match kind_of_term f with
+ Const c when Array.length args = 2 ->
+ let t1= args.(0) in
+ let t2= args.(1) in
+ (match (string_of_R_constant c) with
+ "Rlt" -> [{hname=h;
+ htype="Rlt";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=true}]
+ |"Rgt" -> [{hname=h;
+ htype="Rgt";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=true}]
+ |"Rle" -> [{hname=h;
+ htype="Rle";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false}]
+ |"Rge" -> [{hname=h;
+ htype="Rge";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_->assert false)
+ | Ind (kn,i) ->
+ if IndRef(kn,i) = Coqlib.glob_eq then
+ let t0= args.(0) in
+ let t1= args.(1) in
+ let t2= args.(2) in
+ (match (kind_of_term t0) with
+ Const c ->
+ (match (string_of_R_constant c) with
+ "R"->
+ [{hname=h;
+ htype="eqTLR";
+ hleft=t1;
+ hright=t2;
+ hflin= flin_minus (flin_of_constr t1)
+ (flin_of_constr t2);
+ hstrict=false};
+ {hname=h;
+ htype="eqTRL";
+ hleft=t2;
+ hright=t1;
+ hflin= flin_minus (flin_of_constr t2)
+ (flin_of_constr t1);
+ hstrict=false}]
+ |_-> assert false)
+ |_-> assert false)
+ else
+ assert false
+ |_-> assert false)
+ |_-> assert false
+;;
+
+(* Applique la méthode de Fourier à une liste d'hypothèses (type hineq)
+*)
+
+let fourier_lineq lineq1 =
+ let nvar=ref (-1) in
+ let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *)
+ List.iter (fun f ->
+ Hashtbl.iter (fun x _ -> if not (Hashtbl.mem hvar x) then begin
+ nvar:=(!nvar)+1;
+ Hashtbl.add hvar x (!nvar)
+ end)
+ f.hflin.fhom)
+ lineq1;
+ let sys= List.map (fun h->
+ let v=Array.create ((!nvar)+1) r0 in
+ Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x)<-c)
+ h.hflin.fhom;
+ ((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
+ lineq1 in
+ unsolvable sys
+;;
+
+(*********************************************************************)
+(* Defined constants *)
+
+let get = Lazy.force
+let constant = Coqlib.gen_constant "Fourier"
+
+(* Standard library *)
+open Coqlib
+let coq_sym_eqT = lazy (build_coq_eq_sym ())
+let coq_False = lazy (build_coq_False ())
+let coq_not = lazy (build_coq_not ())
+let coq_eq = lazy (build_coq_eq ())
+
+(* Rdefinitions *)
+let constant_real = constant ["Reals";"Rdefinitions"]
+
+let coq_Rlt = lazy (constant_real "Rlt")
+let coq_Rgt = lazy (constant_real "Rgt")
+let coq_Rle = lazy (constant_real "Rle")
+let coq_Rge = lazy (constant_real "Rge")
+let coq_R = lazy (constant_real "R")
+let coq_Rminus = lazy (constant_real "Rminus")
+let coq_Rmult = lazy (constant_real "Rmult")
+let coq_Rplus = lazy (constant_real "Rplus")
+let coq_Ropp = lazy (constant_real "Ropp")
+let coq_Rinv = lazy (constant_real "Rinv")
+let coq_R0 = lazy (constant_real "R0")
+let coq_R1 = lazy (constant_real "R1")
+
+(* RIneq *)
+let coq_Rinv_1 = lazy (constant ["Reals";"RIneq"] "Rinv_1")
+
+(* Fourier_util *)
+let constant_fourier = constant ["fourier";"Fourier_util"]
+
+let coq_Rlt_zero_1 = lazy (constant_fourier "Rlt_zero_1")
+let coq_Rlt_zero_pos_plus1 = lazy (constant_fourier "Rlt_zero_pos_plus1")
+let coq_Rle_zero_pos_plus1 = lazy (constant_fourier "Rle_zero_pos_plus1")
+let coq_Rlt_mult_inv_pos = lazy (constant_fourier "Rlt_mult_inv_pos")
+let coq_Rle_zero_zero = lazy (constant_fourier "Rle_zero_zero")
+let coq_Rle_zero_1 = lazy (constant_fourier "Rle_zero_1")
+let coq_Rle_mult_inv_pos = lazy (constant_fourier "Rle_mult_inv_pos")
+let coq_Rnot_lt0 = lazy (constant_fourier "Rnot_lt0")
+let coq_Rle_not_lt = lazy (constant_fourier "Rle_not_lt")
+let coq_Rfourier_gt_to_lt = lazy (constant_fourier "Rfourier_gt_to_lt")
+let coq_Rfourier_ge_to_le = lazy (constant_fourier "Rfourier_ge_to_le")
+let coq_Rfourier_eqLR_to_le = lazy (constant_fourier "Rfourier_eqLR_to_le")
+let coq_Rfourier_eqRL_to_le = lazy (constant_fourier "Rfourier_eqRL_to_le")
+
+let coq_Rfourier_not_ge_lt = lazy (constant_fourier "Rfourier_not_ge_lt")
+let coq_Rfourier_not_gt_le = lazy (constant_fourier "Rfourier_not_gt_le")
+let coq_Rfourier_not_le_gt = lazy (constant_fourier "Rfourier_not_le_gt")
+let coq_Rfourier_not_lt_ge = lazy (constant_fourier "Rfourier_not_lt_ge")
+let coq_Rfourier_lt = lazy (constant_fourier "Rfourier_lt")
+let coq_Rfourier_le = lazy (constant_fourier "Rfourier_le")
+let coq_Rfourier_lt_lt = lazy (constant_fourier "Rfourier_lt_lt")
+let coq_Rfourier_lt_le = lazy (constant_fourier "Rfourier_lt_le")
+let coq_Rfourier_le_lt = lazy (constant_fourier "Rfourier_le_lt")
+let coq_Rfourier_le_le = lazy (constant_fourier "Rfourier_le_le")
+let coq_Rnot_lt_lt = lazy (constant_fourier "Rnot_lt_lt")
+let coq_Rnot_le_le = lazy (constant_fourier "Rnot_le_le")
+let coq_Rlt_not_le_frac_opp = lazy (constant_fourier "Rlt_not_le_frac_opp")
+
+(******************************************************************************
+Construction de la preuve en cas de succès de la méthode de Fourier,
+i.e. on obtient une contradiction.
+*)
+let is_int x = (x.den)=1
+;;
+
+(* fraction = couple (num,den) *)
+let rec rational_to_fraction x= (x.num,x.den)
+;;
+
+(* traduction -3 -> (Ropp (Rplus R1 (Rplus R1 R1)))
+*)
+let int_to_real n =
+ let nn=abs n in
+ if nn=0
+ then get coq_R0
+ else
+ (let s=ref (get coq_R1) in
+ for i=1 to (nn-1) do s:=mkApp (get coq_Rplus,[|get coq_R1;!s|]) done;
+ if n<0 then mkApp (get coq_Ropp, [|!s|]) else !s)
+;;
+(* -1/2 -> (Rmult (Ropp R1) (Rinv (Rplus R1 R1)))
+*)
+let rational_to_real x =
+ let (n,d)=rational_to_fraction x in
+ mkApp (get coq_Rmult,
+ [|int_to_real n;mkApp(get coq_Rinv,[|int_to_real d|])|])
+;;
+
+(* preuve que 0<n*1/d
+*)
+let tac_zero_inf_pos gl (n,d) =
+ let tacn=ref (apply (get coq_Rlt_zero_1)) in
+ let tacd=ref (apply (get coq_Rlt_zero_1)) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
+ (tclTHENS (apply (get coq_Rlt_mult_inv_pos)) [!tacn;!tacd])
+;;
+
+(* preuve que 0<=n*1/d
+*)
+let tac_zero_infeq_pos gl (n,d)=
+ let tacn=ref (if n=0
+ then (apply (get coq_Rle_zero_zero))
+ else (apply (get coq_Rle_zero_1))) in
+ let tacd=ref (apply (get coq_Rlt_zero_1)) in
+ for i=1 to n-1 do
+ tacn:=(tclTHEN (apply (get coq_Rle_zero_pos_plus1)) !tacn); done;
+ for i=1 to d-1 do
+ tacd:=(tclTHEN (apply (get coq_Rlt_zero_pos_plus1)) !tacd); done;
+ (tclTHENS (apply (get coq_Rle_mult_inv_pos)) [!tacn;!tacd])
+;;
+
+(* preuve que 0<(-n)*(1/d) => False
+*)
+let tac_zero_inf_false gl (n,d) =
+ if n=0 then (apply (get coq_Rnot_lt0))
+ else
+ (tclTHEN (apply (get coq_Rle_not_lt))
+ (tac_zero_infeq_pos gl (-n,d)))
+;;
+
+(* preuve que 0<=(-n)*(1/d) => False
+*)
+let tac_zero_infeq_false gl (n,d) =
+ (tclTHEN (apply (get coq_Rlt_not_le_frac_opp))
+ (tac_zero_inf_pos gl (-n,d)))
+;;
+
+let create_meta () = mkMeta(Evarutil.new_meta());;
+
+let my_cut c gl=
+ let concl = pf_concl gl in
+ apply_type (mkProd(Anonymous,c,concl)) [create_meta()] gl
+;;
+
+let exact = exact_check;;
+
+let tac_use h = match h.htype with
+ "Rlt" -> exact h.hname
+ |"Rle" -> exact h.hname
+ |"Rgt" -> (tclTHEN (apply (get coq_Rfourier_gt_to_lt))
+ (exact h.hname))
+ |"Rge" -> (tclTHEN (apply (get coq_Rfourier_ge_to_le))
+ (exact h.hname))
+ |"eqTLR" -> (tclTHEN (apply (get coq_Rfourier_eqLR_to_le))
+ (exact h.hname))
+ |"eqTRL" -> (tclTHEN (apply (get coq_Rfourier_eqRL_to_le))
+ (exact h.hname))
+ |_->assert false
+;;
+
+(*
+let is_ineq (h,t) =
+ match (kind_of_term t) with
+ App (f,args) ->
+ (match (string_of_R_constr f) with
+ "Rlt" -> true
+ | "Rgt" -> true
+ | "Rle" -> true
+ | "Rge" -> true
+(* Wrong:not in Rdefinitions: *) | "eqT" ->
+ (match (string_of_R_constr args.(0)) with
+ "R" -> true
+ | _ -> false)
+ | _ ->false)
+ |_->false
+;;
+*)
+
+let list_of_sign s = List.map (fun (x,_,z)->(x,z)) s;;
+
+let mkAppL a =
+ let l = Array.to_list a in
+ mkApp(List.hd l, Array.of_list (List.tl l))
+;;
+
+(* Résolution d'inéquations linéaires dans R *)
+let rec fourier gl=
+ Coqlib.check_required_library ["Coq";"fourier";"Fourier"];
+ let goal = strip_outer_cast (pf_concl gl) in
+ let fhyp=id_of_string "new_hyp_for_fourier" in
+ (* si le but est une inéquation, on introduit son contraire,
+ et le but à prouver devient False *)
+ try (let tac =
+ match (kind_of_term goal) with
+ App (f,args) ->
+ (match (string_of_R_constr f) with
+ "Rlt" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_ge_lt))
+ (intro_using fhyp))
+ fourier)
+ |"Rle" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_gt_le))
+ (intro_using fhyp))
+ fourier)
+ |"Rgt" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_le_gt))
+ (intro_using fhyp))
+ fourier)
+ |"Rge" ->
+ (tclTHEN
+ (tclTHEN (apply (get coq_Rfourier_not_lt_ge))
+ (intro_using fhyp))
+ fourier)
+ |_->assert false)
+ |_->assert false
+ in tac gl)
+ with _ ->
+ (* les hypothèses *)
+ let hyps = List.map (fun (h,t)-> (mkVar h,t))
+ (list_of_sign (pf_hyps gl)) in
+ let lineq =ref [] in
+ List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq))
+ with _ -> ())
+ hyps;
+ (* lineq = les inéquations découlant des hypothèses *)
+ if !lineq=[] then Util.error "No inequalities";
+ let res=fourier_lineq (!lineq) in
+ let tac=ref tclIDTAC in
+ if res=[]
+ then Util.error "fourier failed"
+ (* l'algorithme de Fourier a réussi: on va en tirer une preuve Coq *)
+ else (match res with
+ [(cres,sres,lc)]->
+ (* lc=coefficients multiplicateurs des inéquations
+ qui donnent 0<cres ou 0<=cres selon sres *)
+ (*print_string "Fourier's method can prove the goal...";flush stdout;*)
+ let lutil=ref [] in
+ List.iter
+ (fun (h,c) ->
+ if c<>r0
+ then (lutil:=(h,c)::(!lutil)(*;
+ print_rational(c);print_string " "*)))
+ (List.combine (!lineq) lc);
+ (* on construit la combinaison linéaire des inéquation *)
+ (match (!lutil) with
+ (h1,c1)::lutil ->
+ let s=ref (h1.hstrict) in
+ let t1=ref (mkAppL [|get coq_Rmult;
+ rational_to_real c1;
+ h1.hleft|]) in
+ let t2=ref (mkAppL [|get coq_Rmult;
+ rational_to_real c1;
+ h1.hright|]) in
+ List.iter (fun (h,c) ->
+ s:=(!s)||(h.hstrict);
+ t1:=(mkAppL [|get coq_Rplus;
+ !t1;
+ mkAppL [|get coq_Rmult;
+ rational_to_real c;
+ h.hleft|] |]);
+ t2:=(mkAppL [|get coq_Rplus;
+ !t2;
+ mkAppL [|get coq_Rmult;
+ rational_to_real c;
+ h.hright|] |]))
+ lutil;
+ let ineq=mkAppL [|if (!s) then get coq_Rlt else get coq_Rle;
+ !t1;
+ !t2 |] in
+ let tc=rational_to_real cres in
+ (* puis sa preuve *)
+ let tac1=ref (if h1.hstrict
+ then (tclTHENS (apply (get coq_Rfourier_lt))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])
+ else (tclTHENS (apply (get coq_Rfourier_le))
+ [tac_use h1;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c1)])) in
+ s:=h1.hstrict;
+ List.iter (fun (h,c)->
+ (if (!s)
+ then (if h.hstrict
+ then tac1:=(tclTHENS (apply (get coq_Rfourier_lt_lt))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (get coq_Rfourier_lt_le))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)]))
+ else (if h.hstrict
+ then tac1:=(tclTHENS (apply (get coq_Rfourier_le_lt))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])
+ else tac1:=(tclTHENS (apply (get coq_Rfourier_le_le))
+ [!tac1;tac_use h;
+ tac_zero_inf_pos gl
+ (rational_to_fraction c)])));
+ s:=(!s)||(h.hstrict))
+ lutil;
+ let tac2= if sres
+ then tac_zero_inf_false gl (rational_to_fraction cres)
+ else tac_zero_infeq_false gl (rational_to_fraction cres)
+ in
+ tac:=(tclTHENS (my_cut ineq)
+ [tclTHEN (change_in_concl None
+ (mkAppL [| get coq_not; ineq|]
+ ))
+ (tclTHEN (apply (if sres then get coq_Rnot_lt_lt
+ else get coq_Rnot_le_le))
+ (tclTHENS (Equality.replace
+ (mkAppL [|get coq_Rminus;!t2;!t1|]
+ )
+ tc)
+ [tac2;
+ (tclTHENS
+ (Equality.replace
+ (mkApp (get coq_Rinv,
+ [|get coq_R1|]))
+ (get coq_R1))
+(* en attendant Field, ça peut aider Ring de remplacer 1/1 par 1 ... *)
+
+ [tclORELSE
+ (Ring.polynom [])
+ tclIDTAC;
+ (tclTHEN (apply (get coq_sym_eqT))
+ (apply (get coq_Rinv_1)))]
+
+ )
+ ]));
+ !tac1]);
+ tac:=(tclTHENS (cut (get coq_False))
+ [tclTHEN intro (contradiction None);
+ !tac])
+ |_-> assert false) |_-> assert false
+ );
+(* ((tclTHEN !tac (tclFAIL 1 (* 1 au hasard... *))) gl) *)
+ (!tac gl)
+(* ((tclABSTRACT None !tac) gl) *)
+
+;;
+
+(*
+let fourier_tac x gl =
+ fourier gl
+;;
+
+let v_fourier = add_tactic "Fourier" fourier_tac
+*)
+