diff options
Diffstat (limited to 'plugins/field/LegacyField_Tactic.v')
-rw-r--r-- | plugins/field/LegacyField_Tactic.v | 431 |
1 files changed, 0 insertions, 431 deletions
diff --git a/plugins/field/LegacyField_Tactic.v b/plugins/field/LegacyField_Tactic.v deleted file mode 100644 index 8a55d582..00000000 --- a/plugins/field/LegacyField_Tactic.v +++ /dev/null @@ -1,431 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -Require Import List. -Require Import LegacyRing. -Require Export LegacyField_Compl. -Require Export LegacyField_Theory. - -(**** Interpretation A --> ExprA ****) - -Ltac get_component a s := eval cbv beta iota delta [a] in (a s). - -Ltac body_of s := eval cbv beta iota delta [s] in s. - -Ltac mem_assoc var lvar := - match constr:lvar with - | nil => constr:false - | ?X1 :: ?X2 => - match constr:(X1 = var) with - | (?X1 = ?X1) => constr:true - | _ => mem_assoc var X2 - end - end. - -Ltac number lvar := - let rec number_aux lvar cpt := - match constr:lvar with - | (@nil ?X1) => constr:(@nil (prod X1 nat)) - | ?X2 :: ?X3 => - let l2 := number_aux X3 (S cpt) in - constr:((X2,cpt) :: l2) - end - in number_aux lvar 0. - -Ltac build_varlist FT trm := - let rec seek_var lvar trm := - let AT := get_component A FT - with AzeroT := get_component Azero FT - with AoneT := get_component Aone FT - with AplusT := get_component Aplus FT - with AmultT := get_component Amult FT - with AoppT := get_component Aopp FT - with AinvT := get_component Ainv FT in - match constr:trm with - | AzeroT => lvar - | AoneT => lvar - | (AplusT ?X1 ?X2) => - let l1 := seek_var lvar X1 in - seek_var l1 X2 - | (AmultT ?X1 ?X2) => - let l1 := seek_var lvar X1 in - seek_var l1 X2 - | (AoppT ?X1) => seek_var lvar X1 - | (AinvT ?X1) => seek_var lvar X1 - | ?X1 => - let res := mem_assoc X1 lvar in - match constr:res with - | true => lvar - | false => constr:(X1 :: lvar) - end - end in - let AT := get_component A FT in - let lvar := seek_var (@nil AT) trm in - number lvar. - -Ltac assoc elt lst := - match constr:lst with - | nil => fail - | (?X1,?X2) :: ?X3 => - match constr:(elt = X1) with - | (?X1 = ?X1) => constr:X2 - | _ => assoc elt X3 - end - end. - -Ltac interp_A FT lvar trm := - let AT := get_component A FT - with AzeroT := get_component Azero FT - with AoneT := get_component Aone FT - with AplusT := get_component Aplus FT - with AmultT := get_component Amult FT - with AoppT := get_component Aopp FT - with AinvT := get_component Ainv FT in - match constr:trm with - | AzeroT => constr:EAzero - | AoneT => constr:EAone - | (AplusT ?X1 ?X2) => - let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in - constr:(EAplus e1 e2) - | (AmultT ?X1 ?X2) => - let e1 := interp_A FT lvar X1 with e2 := interp_A FT lvar X2 in - constr:(EAmult e1 e2) - | (AoppT ?X1) => - let e := interp_A FT lvar X1 in - constr:(EAopp e) - | (AinvT ?X1) => let e := interp_A FT lvar X1 in - constr:(EAinv e) - | ?X1 => let idx := assoc X1 lvar in - constr:(EAvar idx) - end. - -(************************) -(* Simplification *) -(************************) - -(**** Generation of the multiplier ****) - -Ltac remove e l := - match constr:l with - | nil => l - | e :: ?X2 => constr:X2 - | ?X2 :: ?X3 => let nl := remove e X3 in constr:(X2 :: nl) - end. - -Ltac union l1 l2 := - match constr:l1 with - | nil => l2 - | ?X2 :: ?X3 => - let nl2 := remove X2 l2 in - let nl := union X3 nl2 in - constr:(X2 :: nl) - end. - -Ltac raw_give_mult trm := - match constr:trm with - | (EAinv ?X1) => constr:(X1 :: nil) - | (EAopp ?X1) => raw_give_mult X1 - | (EAplus ?X1 ?X2) => - let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in - union l1 l2 - | (EAmult ?X1 ?X2) => - let l1 := raw_give_mult X1 with l2 := raw_give_mult X2 in - eval compute in (app l1 l2) - | _ => constr:(@nil ExprA) - end. - -Ltac give_mult trm := - let ltrm := raw_give_mult trm in - constr:(mult_of_list ltrm). - -(**** Associativity ****) - -Ltac apply_assoc FT lvar trm := - let t := eval compute in (assoc trm) in - match constr:(t = trm) with - | (?X1 = ?X1) => idtac - | _ => - rewrite <- (assoc_correct FT trm); change (assoc trm) with t - end. - -(**** Distribution *****) - -Ltac apply_distrib FT lvar trm := - let t := eval compute in (distrib trm) in - match constr:(t = trm) with - | (?X1 = ?X1) => idtac - | _ => - rewrite <- (distrib_correct FT trm); - change (distrib trm) with t - end. - -(**** Multiplication by the inverse product ****) - -Ltac grep_mult := match goal with - | id:(interp_ExprA _ _ _ <> _) |- _ => id - end. - -Ltac weak_reduce := - match goal with - | |- context [(interp_ExprA ?X1 ?X2 _)] => - cbv beta iota zeta - delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero - Aone Aplus Amult Aopp Ainv] - end. - -Ltac multiply mul := - match goal with - | |- (interp_ExprA ?FT ?X2 ?X3 = interp_ExprA ?FT ?X2 ?X4) => - let AzeroT := get_component Azero FT in - cut (interp_ExprA FT X2 mul <> AzeroT); - [ intro; (let id := grep_mult in apply (mult_eq FT X3 X4 mul X2 id)) - | weak_reduce; - (let AoneT := get_component Aone ltac:(body_of FT) - with AmultT := get_component Amult ltac:(body_of FT) in - try - match goal with - | |- context [(AmultT _ AoneT)] => rewrite (AmultT_1r FT) - end; clear FT X2) ] - end. - -Ltac apply_multiply FT lvar trm := - let t := eval compute in (multiply trm) in - match constr:(t = trm) with - | (?X1 = ?X1) => idtac - | _ => - rewrite <- (multiply_correct FT trm); - change (multiply trm) with t - end. - -(**** Permutations and simplification ****) - -Ltac apply_inverse mul FT lvar trm := - let t := eval compute in (inverse_simplif mul trm) in - match constr:(t = trm) with - | (?X1 = ?X1) => idtac - | _ => - rewrite <- (inverse_correct FT trm mul); - [ change (inverse_simplif mul trm) with t | assumption ] - end. -(**** Inverse test ****) - -Ltac strong_fail tac := first [ tac | fail 2 ]. - -Ltac inverse_test_aux FT trm := - let AplusT := get_component Aplus FT - with AmultT := get_component Amult FT - with AoppT := get_component Aopp FT - with AinvT := get_component Ainv FT in - match constr:trm with - | (AinvT _) => fail 1 - | (AoppT ?X1) => - strong_fail ltac:(inverse_test_aux FT X1; idtac) - | (AplusT ?X1 ?X2) => - strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2) - | (AmultT ?X1 ?X2) => - strong_fail ltac:(inverse_test_aux FT X1; inverse_test_aux FT X2) - | _ => idtac - end. - -Ltac inverse_test FT := - let AplusT := get_component Aplus FT in - match goal with - | |- (?X1 = ?X2) => inverse_test_aux FT (AplusT X1 X2) - end. - -(**** Field itself ****) - -Ltac apply_simplif sfun := - match goal with - | |- (interp_ExprA ?X1 ?X2 ?X3 = interp_ExprA _ _ _) => - sfun X1 X2 X3 - end; - match goal with - | |- (interp_ExprA _ _ _ = interp_ExprA ?X1 ?X2 ?X3) => - sfun X1 X2 X3 - end. - -Ltac unfolds FT := - match get_component Aminus FT with - | Some ?X1 => unfold X1 - | _ => idtac - end; - match get_component Adiv FT with - | Some ?X1 => unfold X1 - | _ => idtac - end. - -Ltac reduce FT := - let AzeroT := get_component Azero FT - with AoneT := get_component Aone FT - with AplusT := get_component Aplus FT - with AmultT := get_component Amult FT - with AoppT := get_component Aopp FT - with AinvT := get_component Ainv FT in - (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] || - compute). - -Ltac field_gen_aux FT := - let AplusT := get_component Aplus FT in - match goal with - | |- (?X1 = ?X2) => - let lvar := build_varlist FT (AplusT X1 X2) in - let trm1 := interp_A FT lvar X1 with trm2 := interp_A FT lvar X2 in - let mul := give_mult (EAplus trm1 trm2) in - cut - (let ft := FT in - let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2); - [ compute; auto - | intros ft vm; apply_simplif apply_distrib; - apply_simplif apply_assoc; multiply mul; - [ apply_simplif apply_multiply; - apply_simplif ltac:(apply_inverse mul); - (let id := grep_mult in - clear id; weak_reduce; clear ft vm; first - [ inverse_test FT; legacy ring | field_gen_aux FT ]) - | idtac ] ] - end. - -Ltac field_gen FT := - unfolds FT; (inverse_test FT; legacy ring) || field_gen_aux FT. - -(*****************************) -(* Term Simplification *) -(*****************************) - -(**** Minus and division expansions ****) - -Ltac init_exp FT trm := - let e := - (match get_component Aminus FT with - | Some ?X1 => eval cbv beta delta [X1] in trm - | _ => trm - end) in - match get_component Adiv FT with - | Some ?X1 => eval cbv beta delta [X1] in e - | _ => e - end. - -(**** Inverses simplification ****) - -Ltac simpl_inv trm := - match constr:trm with - | (EAplus ?X1 ?X2) => - let e1 := simpl_inv X1 with e2 := simpl_inv X2 in - constr:(EAplus e1 e2) - | (EAmult ?X1 ?X2) => - let e1 := simpl_inv X1 with e2 := simpl_inv X2 in - constr:(EAmult e1 e2) - | (EAopp ?X1) => let e := simpl_inv X1 in - constr:(EAopp e) - | (EAinv ?X1) => SimplInvAux X1 - | ?X1 => constr:X1 - end - with SimplInvAux trm := - match constr:trm with - | (EAinv ?X1) => simpl_inv X1 - | (EAmult ?X1 ?X2) => - let e1 := simpl_inv (EAinv X1) with e2 := simpl_inv (EAinv X2) in - constr:(EAmult e1 e2) - | ?X1 => let e := simpl_inv X1 in - constr:(EAinv e) - end. - -(**** Monom simplification ****) - -Ltac map_tactic fcn lst := - match constr:lst with - | nil => lst - | ?X2 :: ?X3 => - let r := fcn X2 with t := map_tactic fcn X3 in - constr:(r :: t) - end. - -Ltac build_monom_aux lst trm := - match constr:lst with - | nil => eval compute in (assoc trm) - | ?X1 :: ?X2 => build_monom_aux X2 (EAmult trm X1) - end. - -Ltac build_monom lnum lden := - let ildn := map_tactic ltac:(fun e => constr:(EAinv e)) lden in - let ltot := eval compute in (app lnum ildn) in - let trm := build_monom_aux ltot EAone in - match constr:trm with - | (EAmult _ ?X1) => constr:X1 - | ?X1 => constr:X1 - end. - -Ltac simpl_monom_aux lnum lden trm := - match constr:trm with - | (EAmult (EAinv ?X1) ?X2) => - let mma := mem_assoc X1 lnum in - match constr:mma with - | true => - let newlnum := remove X1 lnum in - simpl_monom_aux newlnum lden X2 - | false => simpl_monom_aux lnum (X1 :: lden) X2 - end - | (EAmult ?X1 ?X2) => - let mma := mem_assoc X1 lden in - match constr:mma with - | true => - let newlden := remove X1 lden in - simpl_monom_aux lnum newlden X2 - | false => simpl_monom_aux (X1 :: lnum) lden X2 - end - | (EAinv ?X1) => - let mma := mem_assoc X1 lnum in - match constr:mma with - | true => - let newlnum := remove X1 lnum in - build_monom newlnum lden - | false => build_monom lnum (X1 :: lden) - end - | ?X1 => - let mma := mem_assoc X1 lden in - match constr:mma with - | true => - let newlden := remove X1 lden in - build_monom lnum newlden - | false => build_monom (X1 :: lnum) lden - end - end. - -Ltac simpl_monom trm := simpl_monom_aux (@nil ExprA) (@nil ExprA) trm. - -Ltac simpl_all_monomials trm := - match constr:trm with - | (EAplus ?X1 ?X2) => - let e1 := simpl_monom X1 with e2 := simpl_all_monomials X2 in - constr:(EAplus e1 e2) - | ?X1 => simpl_monom X1 - end. - -(**** Associativity and distribution ****) - -Ltac assoc_distrib trm := eval compute in (assoc (distrib trm)). - -(**** The tactic Field_Term ****) - -Ltac eval_weak_reduce trm := - eval - cbv beta iota zeta - delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list A Azero Aone Aplus - Amult Aopp Ainv] in trm. - -Ltac field_term FT exp := - let newexp := init_exp FT exp in - let lvar := build_varlist FT newexp in - let trm := interp_A FT lvar newexp in - let tma := eval compute in (assoc trm) in - let tsmp := - simpl_all_monomials - ltac:(assoc_distrib ltac:(simpl_all_monomials ltac:(simpl_inv tma))) in - let trep := eval_weak_reduce (interp_ExprA FT lvar tsmp) in - (replace exp with trep; [ legacy ring trep | field_gen FT ]). |