summaryrefslogtreecommitdiff
path: root/plugins/extraction/big.ml
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/extraction/big.ml')
-rw-r--r--plugins/extraction/big.ml154
1 files changed, 154 insertions, 0 deletions
diff --git a/plugins/extraction/big.ml b/plugins/extraction/big.ml
new file mode 100644
index 00000000..9a5bf56b
--- /dev/null
+++ b/plugins/extraction/big.ml
@@ -0,0 +1,154 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** [Big] : a wrapper around ocaml [Big_int] with nicer names,
+ and a few extraction-specific constructions *)
+
+(** To be linked with [nums.(cma|cmxa)] *)
+
+open Big_int
+
+type big_int = Big_int.big_int
+ (** The type of big integers. *)
+
+let zero = zero_big_int
+ (** The big integer [0]. *)
+let one = unit_big_int
+ (** The big integer [1]. *)
+let two = big_int_of_int 2
+ (** The big integer [2]. *)
+
+(** {6 Arithmetic operations} *)
+
+let opp = minus_big_int
+ (** Unary negation. *)
+let abs = abs_big_int
+ (** Absolute value. *)
+let add = add_big_int
+ (** Addition. *)
+let succ = succ_big_int
+ (** Successor (add 1). *)
+let add_int = add_int_big_int
+ (** Addition of a small integer to a big integer. *)
+let sub = sub_big_int
+ (** Subtraction. *)
+let pred = pred_big_int
+ (** Predecessor (subtract 1). *)
+let mult = mult_big_int
+ (** Multiplication of two big integers. *)
+let mult_int = mult_int_big_int
+ (** Multiplication of a big integer by a small integer *)
+let square = square_big_int
+ (** Return the square of the given big integer *)
+let sqrt = sqrt_big_int
+ (** [sqrt_big_int a] returns the integer square root of [a],
+ that is, the largest big integer [r] such that [r * r <= a].
+ Raise [Invalid_argument] if [a] is negative. *)
+let quomod = quomod_big_int
+ (** Euclidean division of two big integers.
+ The first part of the result is the quotient,
+ the second part is the remainder.
+ Writing [(q,r) = quomod_big_int a b], we have
+ [a = q * b + r] and [0 <= r < |b|].
+ Raise [Division_by_zero] if the divisor is zero. *)
+let div = div_big_int
+ (** Euclidean quotient of two big integers.
+ This is the first result [q] of [quomod_big_int] (see above). *)
+let modulo = mod_big_int
+ (** Euclidean modulus of two big integers.
+ This is the second result [r] of [quomod_big_int] (see above). *)
+let gcd = gcd_big_int
+ (** Greatest common divisor of two big integers. *)
+let power = power_big_int_positive_big_int
+ (** Exponentiation functions. Return the big integer
+ representing the first argument [a] raised to the power [b]
+ (the second argument). Depending
+ on the function, [a] and [b] can be either small integers
+ or big integers. Raise [Invalid_argument] if [b] is negative. *)
+
+(** {6 Comparisons and tests} *)
+
+let sign = sign_big_int
+ (** Return [0] if the given big integer is zero,
+ [1] if it is positive, and [-1] if it is negative. *)
+let compare = compare_big_int
+ (** [compare_big_int a b] returns [0] if [a] and [b] are equal,
+ [1] if [a] is greater than [b], and [-1] if [a] is smaller
+ than [b]. *)
+let eq = eq_big_int
+let le = le_big_int
+let ge = ge_big_int
+let lt = lt_big_int
+let gt = gt_big_int
+ (** Usual boolean comparisons between two big integers. *)
+let max = max_big_int
+ (** Return the greater of its two arguments. *)
+let min = min_big_int
+ (** Return the smaller of its two arguments. *)
+
+(** {6 Conversions to and from strings} *)
+
+let to_string = string_of_big_int
+ (** Return the string representation of the given big integer,
+ in decimal (base 10). *)
+let of_string = big_int_of_string
+ (** Convert a string to a big integer, in decimal.
+ The string consists of an optional [-] or [+] sign,
+ followed by one or several decimal digits. *)
+
+(** {6 Conversions to and from other numerical types} *)
+
+let of_int = big_int_of_int
+ (** Convert a small integer to a big integer. *)
+let is_int = is_int_big_int
+ (** Test whether the given big integer is small enough to
+ be representable as a small integer (type [int])
+ without loss of precision. On a 32-bit platform,
+ [is_int_big_int a] returns [true] if and only if
+ [a] is between 2{^30} and 2{^30}-1. On a 64-bit platform,
+ [is_int_big_int a] returns [true] if and only if
+ [a] is between -2{^62} and 2{^62}-1. *)
+let to_int = int_of_big_int
+ (** Convert a big integer to a small integer (type [int]).
+ Raises [Failure "int_of_big_int"] if the big integer
+ is not representable as a small integer. *)
+
+(** Functions used by extraction *)
+
+let double x = mult_int 2 x
+let doubleplusone x = succ (double x)
+
+let nat_case fO fS n = if sign n <= 0 then fO () else fS (pred n)
+
+let positive_case f2p1 f2p f1 p =
+ if le p one then f1 () else
+ let (q,r) = quomod p two in if eq r zero then f2p q else f2p1 q
+
+let n_case fO fp n = if sign n <= 0 then fO () else fp n
+
+let z_case fO fp fn z =
+ let s = sign z in
+ if s = 0 then fO () else if s > 0 then fp z else fn (opp z)
+
+let compare_case e l g x y =
+ let s = compare x y in if s = 0 then e else if s<0 then l else g
+
+let nat_rec fO fS =
+ let rec loop acc n =
+ if sign n <= 0 then acc else loop (fS acc) (pred n)
+ in loop fO
+
+let positive_rec f2p1 f2p f1 =
+ let rec loop n =
+ if le n one then f1
+ else
+ let (q,r) = quomod n two in
+ if eq r zero then f2p (loop q) else f2p1 (loop q)
+ in loop
+
+let z_rec fO fp fn = z_case (fun _ -> fO) fp fn