summaryrefslogtreecommitdiff
path: root/parsing/g_intsyntax.ml
diff options
context:
space:
mode:
Diffstat (limited to 'parsing/g_intsyntax.ml')
-rw-r--r--parsing/g_intsyntax.ml342
1 files changed, 342 insertions, 0 deletions
diff --git a/parsing/g_intsyntax.ml b/parsing/g_intsyntax.ml
new file mode 100644
index 00000000..6ab8f99c
--- /dev/null
+++ b/parsing/g_intsyntax.ml
@@ -0,0 +1,342 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: g_intsyntax.ml 11087 2008-06-10 13:29:52Z letouzey $ i*)
+
+(* digit-based syntax for int31, bigN bigZ and bigQ *)
+
+open Bigint
+open Libnames
+open Rawterm
+
+(*** Constants for locating the int31 and bigN ***)
+
+
+
+let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
+let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)
+
+(* copied on g_zsyntax.ml, where it is said to be a temporary hack*)
+(* takes a path an identifier in the form of a string list and a string,
+ returns a kernel_name *)
+let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id)
+
+
+(* int31 stuff *)
+let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
+let int31_path = make_path int31_module "int31"
+let int31_id = make_kn int31_module
+let int31_scope = "int31_scope"
+
+let int31_construct = ConstructRef ((int31_id "int31",0),1)
+
+let int31_0 = ConstructRef ((int31_id "digits",0),1)
+let int31_1 = ConstructRef ((int31_id "digits",0),2)
+
+
+(* bigN stuff*)
+let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
+let zn2z_path = make_path zn2z_module "zn2z"
+let zn2z_id = make_kn zn2z_module
+
+let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
+let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
+
+let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
+let bigN_path = make_path (bigN_module@["BigN"]) "t"
+(* big ugly hack *)
+let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)),
+ Names.mk_label "BigN")),
+ [], Names.id_of_string id) : Names.kernel_name)
+let bigN_scope = "bigN_scope"
+
+(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
+let n_inlined = of_string "7"
+let bigN_constructor =
+ (* converts a bigint into an int the ugly way *)
+ let rec to_int i =
+ if equal i zero then
+ 0
+ else
+ let (quo,rem) = div2_with_rest i in
+ if rem then
+ 2*(to_int quo)+1
+ else
+ 2*(to_int quo)
+ in
+ fun i ->
+ ConstructRef ((bigN_id "t_",0),
+ if less_than i n_inlined then
+ (to_int i)+1
+ else
+ (to_int n_inlined)+1
+ )
+
+(*bigZ stuff*)
+let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
+let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
+(* big ugly hack bis *)
+let bigZ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigZ_module)),
+ Names.mk_label "BigZ")),
+ [], Names.id_of_string id) : Names.kernel_name)
+let bigZ_scope = "bigZ_scope"
+
+let bigZ_pos = ConstructRef ((bigZ_id "t_",0),1)
+let bigZ_neg = ConstructRef ((bigZ_id "t_",0),2)
+
+
+(*bigQ stuff*)
+let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
+let qmake_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "QMake_base"]
+let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
+(* big ugly hack bis *)
+let bigQ_id = make_kn qmake_module
+let bigQ_scope = "bigQ_scope"
+
+let bigQ_z = ConstructRef ((bigQ_id "q_type",0),1)
+
+
+(*** Definition of the Non_closed exception, used in the pretty printing ***)
+exception Non_closed
+
+(*** Parsing for int31 in digital notation ***)
+
+(* parses a *non-negative* integer (from bigint.ml) into an int31
+ wraps modulo 2^31 *)
+let int31_of_pos_bigint dloc n =
+ let ref_construct = RRef (dloc, int31_construct) in
+ let ref_0 = RRef (dloc, int31_0) in
+ let ref_1 = RRef (dloc, int31_1) in
+ let rec args counter n =
+ if counter <= 0 then
+ []
+ else
+ let (q,r) = div2_with_rest n in
+ (if r then ref_1 else ref_0)::(args (counter-1) q)
+ in
+ RApp (dloc, ref_construct, List.rev (args 31 n))
+
+let error_negative dloc =
+ Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers")
+
+let interp_int31 dloc n =
+ if is_pos_or_zero n then
+ int31_of_pos_bigint dloc n
+ else
+ error_negative dloc
+
+(* Pretty prints an int31 *)
+
+let bigint_of_int31 =
+ let rec args_parsing args cur =
+ match args with
+ | [] -> cur
+ | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
+ | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
+ | _ -> raise Non_closed
+ in
+ function
+ | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
+ | _ -> raise Non_closed
+
+let uninterp_int31 i =
+ try
+ Some (bigint_of_int31 i)
+ with Non_closed ->
+ None
+
+(* Actually declares the interpreter for int31 *)
+let _ = Notation.declare_numeral_interpreter int31_scope
+ (int31_path, int31_module)
+ interp_int31
+ ([RRef (Util.dummy_loc, int31_construct)],
+ uninterp_int31,
+ true)
+
+
+(*** Parsing for bigN in digital notation ***)
+(* the base for bigN (in Coq) that is 2^31 in our case *)
+let base = pow two (of_string "31")
+
+(* base of the bigN of height N : *)
+let rank n = pow base (pow two n)
+
+(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
+ it is expected to be used only when the quotient would also need 2^n int31 to be
+ stored *)
+let split_at n bi =
+ euclid bi (rank (sub_1 n))
+
+(* search the height of the Coq bigint needed to represent the integer bi *)
+let height bi =
+ let rec height_aux n =
+ if less_than bi (rank n) then
+ n
+ else
+ height_aux (add_1 n)
+ in
+ height_aux zero
+
+
+(* n must be a non-negative integer (from bigint.ml) *)
+let word_of_pos_bigint dloc hght n =
+ let ref_W0 = RRef (dloc, zn2z_W0) in
+ let ref_WW = RRef (dloc, zn2z_WW) in
+ let rec decomp hgt n =
+ if is_neg_or_zero hgt then
+ int31_of_pos_bigint dloc n
+ else if equal n zero then
+ RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
+ else
+ let (h,l) = split_at hgt n in
+ RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
+ decomp (sub_1 hgt) h;
+ decomp (sub_1 hgt) l])
+ in
+ decomp hght n
+
+let bigN_of_pos_bigint dloc n =
+ let ref_constructor i = RRef (dloc, bigN_constructor i) in
+ let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
+ [word]
+ else
+ [G_natsyntax.nat_of_int dloc (sub h n_inlined);
+ word])
+ in
+ let hght = height n in
+ result hght (word_of_pos_bigint dloc hght n)
+
+let bigN_error_negative dloc =
+ Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers")
+
+let interp_bigN dloc n =
+ if is_pos_or_zero n then
+ bigN_of_pos_bigint dloc n
+ else
+ bigN_error_negative dloc
+
+
+(* Pretty prints a bigN *)
+
+let bigint_of_word =
+ let rec get_height rc =
+ match rc with
+ | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
+ let hleft = get_height lft in
+ let hright = get_height rght in
+ add_1
+ (if less_than hleft hright then
+ hright
+ else
+ hleft)
+ | _ -> zero
+ in
+ let rec transform hght rc =
+ match rc with
+ | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
+ | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in
+ add (mult (rank new_hght)
+ (transform (new_hght) lft))
+ (transform (new_hght) rght)
+ | _ -> bigint_of_int31 rc
+ in
+ fun rc ->
+ let hght = get_height rc in
+ transform hght rc
+
+let bigint_of_bigN rc =
+ match rc with
+ | RApp (_,_,[one_arg]) -> bigint_of_word one_arg
+ | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
+ | _ -> raise Non_closed
+
+let uninterp_bigN rc =
+ try
+ Some (bigint_of_bigN rc)
+ with Non_closed ->
+ None
+
+
+(* declare the list of constructors of bigN used in the declaration of the
+ numeral interpreter *)
+
+let bigN_list_of_constructors =
+ let rec build i =
+ if less_than i (add_1 n_inlined) then
+ RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
+ else
+ []
+ in
+ build zero
+
+(* Actually declares the interpreter for bigN *)
+let _ = Notation.declare_numeral_interpreter bigN_scope
+ (bigN_path, bigN_module)
+ interp_bigN
+ (bigN_list_of_constructors,
+ uninterp_bigN,
+ true)
+
+
+(*** Parsing for bigZ in digital notation ***)
+let interp_bigZ dloc n =
+ let ref_pos = RRef (dloc, bigZ_pos) in
+ let ref_neg = RRef (dloc, bigZ_neg) in
+ if is_pos_or_zero n then
+ RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
+ else
+ RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
+
+(* pretty printing functions for bigZ *)
+let bigint_of_bigZ = function
+ | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
+ | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg ->
+ let opp_val = bigint_of_bigN one_arg in
+ if equal opp_val zero then
+ raise Non_closed
+ else
+ neg opp_val
+ | _ -> raise Non_closed
+
+
+let uninterp_bigZ rc =
+ try
+ Some (bigint_of_bigZ rc)
+ with Non_closed ->
+ None
+
+(* Actually declares the interpreter for bigN *)
+let _ = Notation.declare_numeral_interpreter bigZ_scope
+ (bigZ_path, bigZ_module)
+ interp_bigZ
+ ([RRef (Util.dummy_loc, bigZ_pos);
+ RRef (Util.dummy_loc, bigZ_neg)],
+ uninterp_bigZ,
+ true)
+
+(*** Parsing for bigQ in digital notation ***)
+let interp_bigQ dloc n =
+ let ref_z = RRef (dloc, bigQ_z) in
+ let ref_pos = RRef (dloc, bigZ_pos) in
+ let ref_neg = RRef (dloc, bigZ_neg) in
+ if is_pos_or_zero n then
+ RApp (dloc, ref_z,
+ [RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])])
+ else
+ RApp (dloc, ref_z,
+ [RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])])
+
+let uninterp_bigQ rc = None
+
+
+(* Actually declares the interpreter for bigQ *)
+let _ = Notation.declare_numeral_interpreter bigQ_scope
+ (bigQ_path, bigQ_module)
+ interp_bigQ
+ ([], uninterp_bigQ,
+ true)