summaryrefslogtreecommitdiff
path: root/lib/rtree.ml
diff options
context:
space:
mode:
Diffstat (limited to 'lib/rtree.ml')
-rw-r--r--lib/rtree.ml131
1 files changed, 131 insertions, 0 deletions
diff --git a/lib/rtree.ml b/lib/rtree.ml
new file mode 100644
index 00000000..53cc372f
--- /dev/null
+++ b/lib/rtree.ml
@@ -0,0 +1,131 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: rtree.ml,v 1.2.8.1 2004/07/16 19:30:31 herbelin Exp $ i*)
+
+
+(* Type of regular trees:
+ - Param denotes tree variables (like de Bruijn indices)
+ - Node denotes the usual tree node, labelles with 'a
+ - Rec(j,v1..vn) introduces infinite tree. It denotes
+ v(j+1) with parameters 0..n-1 replaced by
+ Rec(0,v1..vn)..Rec(n-1,v1..vn) respectively.
+ Parameters n and higher denote parameters globals to the
+ current Rec node (as usual in de Bruijn binding system)
+ *)
+type 'a t =
+ Param of int
+ | Node of 'a * 'a t array
+ | Rec of int * 'a t array
+
+(* Building trees *)
+let mk_param i = Param i
+let mk_node lab sons = Node (lab, sons)
+
+(* Given a vector of n bodies, builds the n mutual recursive trees.
+ Recursive calls are made with parameters 0 to n-1. We check
+ the bodies actually build something by checking it is not
+ directly one of the parameters 0 to n-1. *)
+let mk_rec defs =
+ Array.mapi
+ (fun i d ->
+ (match d with
+ Param k when k < Array.length defs -> failwith "invalid rec call"
+ | _ -> ());
+ Rec(i,defs))
+ defs
+
+(* The usual lift operation *)
+let rec lift_rtree_rec depth n = function
+ Param i -> if i < depth then Param i else Param (i+n)
+ | Node (l,sons) -> Node (l,Array.map (lift_rtree_rec depth n) sons)
+ | Rec(j,defs) ->
+ Rec(j, Array.map (lift_rtree_rec (depth+Array.length defs) n) defs)
+
+let lift n t = if n=0 then t else lift_rtree_rec 0 n t
+
+(* The usual subst operation *)
+let rec subst_rtree_rec depth sub = function
+ Param i ->
+ if i < depth then Param i
+ else if i-depth < Array.length sub then lift depth sub.(i-depth)
+ else Param (i-Array.length sub)
+ | Node (l,sons) -> Node (l,Array.map (subst_rtree_rec depth sub) sons)
+ | Rec(j,defs) ->
+ Rec(j, Array.map (subst_rtree_rec (depth+Array.length defs) sub) defs)
+
+let subst_rtree sub t = subst_rtree_rec 0 sub t
+
+let rec map f t = match t with
+ Param i -> Param i
+ | Node (a,sons) -> Node (f a, Array.map (map f) sons)
+ | Rec(j,defs) -> Rec (j, Array.map (map f) defs)
+
+let rec smartmap f t = match t with
+ Param i -> t
+ | Node (a,sons) ->
+ let a'=f a and sons' = Util.array_smartmap (map f) sons in
+ if a'==a && sons'==sons then
+ t
+ else
+ Node (a',sons')
+ | Rec(j,defs) ->
+ let defs' = Util.array_smartmap (map f) defs in
+ if defs'==defs then
+ t
+ else
+ Rec(j,defs')
+
+(* To avoid looping, we must check that every body introduces a node
+ or a parameter *)
+let rec expand_rtree = function
+ | Rec(j,defs) ->
+ let sub = Array.init (Array.length defs) (fun i -> Rec(i,defs)) in
+ expand_rtree (subst_rtree sub defs.(j))
+ | t -> t
+
+(* Tree destructors, expanding loops when necessary *)
+let dest_param t =
+ match expand_rtree t with
+ Param i -> i
+ | _ -> failwith "dest_param"
+
+let dest_node t =
+ match expand_rtree t with
+ Node (l,sons) -> (l,sons)
+ | _ -> failwith "dest_node"
+
+(* Tests if a given tree is infinite or not. It proceeds *)
+let rec is_infinite = function
+ Param i -> i = (-1)
+ | Node(_,sons) -> Util.array_exists is_infinite sons
+ | Rec(j,defs) ->
+ let newdefs =
+ Array.mapi (fun i def -> if i=j then Param (-1) else def) defs in
+ let sub =
+ Array.init (Array.length defs)
+ (fun i -> if i=j then Param (-1) else Rec(i,newdefs)) in
+ is_infinite (subst_rtree sub defs.(j))
+
+(* Pretty-print a tree (not so pretty) *)
+open Pp
+
+let rec pp_tree prl t =
+ match t with
+ Param k -> str"#"++int k
+ | Node(lab,[||]) -> hov 2 (str"("++prl lab++str")")
+ | Node(lab,v) ->
+ hov 2 (str"("++prl lab++str","++brk(1,0)++
+ Util.prvect_with_sep Util.pr_coma (pp_tree prl) v++str")")
+ | Rec(i,v) ->
+ if Array.length v = 0 then str"Rec{}"
+ else if Array.length v = 1 then
+ hov 2 (str"Rec{"++pp_tree prl v.(0)++str"}")
+ else
+ hov 2 (str"Rec{"++int i++str","++brk(1,0)++
+ Util.prvect_with_sep Util.pr_coma (pp_tree prl) v++str"}")