summaryrefslogtreecommitdiff
path: root/lib/fset.ml
diff options
context:
space:
mode:
Diffstat (limited to 'lib/fset.ml')
-rw-r--r--lib/fset.ml235
1 files changed, 235 insertions, 0 deletions
diff --git a/lib/fset.ml b/lib/fset.ml
new file mode 100644
index 00000000..567feaa7
--- /dev/null
+++ b/lib/fset.ml
@@ -0,0 +1,235 @@
+module Make = functor (X : Set.OrderedType) ->
+struct
+
+ type elt = X.t
+ type t = Empty | Node of t * elt * t * int
+
+
+ (* Sets are represented by balanced binary trees (the heights of the
+ children differ by at most 2 *)
+
+ let height = function
+ Empty -> 0
+ | Node(_, _, _, h) -> h
+
+ (* Creates a new node with left son l, value x and right son r.
+ l and r must be balanced and | height l - height r | <= 2.
+ Inline expansion of height for better speed. *)
+
+ let create l x r =
+ let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
+ let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
+ Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ (* Same as create, but performs one step of rebalancing if necessary.
+ Assumes l and r balanced.
+ Inline expansion of create for better speed in the most frequent case
+ where no rebalancing is required. *)
+
+ let bal l x r =
+ let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in
+ let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in
+ if hl > hr + 2 then begin
+ match l with
+ Empty -> invalid_arg "Set.bal"
+ | Node(ll, lv, lr, _) ->
+ if height ll >= height lr then
+ create ll lv (create lr x r)
+ else begin
+ match lr with
+ Empty -> invalid_arg "Set.bal"
+ | Node(lrl, lrv, lrr, _)->
+ create (create ll lv lrl) lrv (create lrr x r)
+ end
+ end else if hr > hl + 2 then begin
+ match r with
+ Empty -> invalid_arg "Set.bal"
+ | Node(rl, rv, rr, _) ->
+ if height rr >= height rl then
+ create (create l x rl) rv rr
+ else begin
+ match rl with
+ Empty -> invalid_arg "Set.bal"
+ | Node(rll, rlv, rlr, _) ->
+ create (create l x rll) rlv (create rlr rv rr)
+ end
+ end else
+ Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1))
+
+ (* Same as bal, but repeat rebalancing until the final result
+ is balanced. *)
+
+ let rec join l x r =
+ match bal l x r with
+ Empty -> invalid_arg "Set.join"
+ | Node(l', x', r', _) as t' ->
+ let d = height l' - height r' in
+ if d < -2 or d > 2 then join l' x' r' else t'
+
+ (* Merge two trees l and r into one.
+ All elements of l must precede the elements of r.
+ Assumes | height l - height r | <= 2. *)
+
+ let rec merge t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
+ bal l1 v1 (bal (merge r1 l2) v2 r2)
+
+ (* Same as merge, but does not assume anything about l and r. *)
+
+ let rec concat t1 t2 =
+ match (t1, t2) with
+ (Empty, t) -> t
+ | (t, Empty) -> t
+ | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
+ join l1 v1 (join (concat r1 l2) v2 r2)
+
+ (* Splitting *)
+
+ let rec split x = function
+ Empty ->
+ (Empty, None, Empty)
+ | Node(l, v, r, _) ->
+ let c = X.compare x v in
+ if c = 0 then (l, Some v, r)
+ else if c < 0 then
+ let (ll, vl, rl) = split x l in (ll, vl, join rl v r)
+ else
+ let (lr, vr, rr) = split x r in (join l v lr, vr, rr)
+
+ (* Implementation of the set operations *)
+
+ let empty = Empty
+
+ let is_empty = function Empty -> true | _ -> false
+
+ let rec mem x = function
+ Empty -> false
+ | Node(l, v, r, _) ->
+ let c = X.compare x v in
+ c = 0 || mem x (if c < 0 then l else r)
+
+ let rec add x = function
+ Empty -> Node(Empty, x, Empty, 1)
+ | Node(l, v, r, _) as t ->
+ let c = X.compare x v in
+ if c = 0 then t else
+ if c < 0 then bal (add x l) v r else bal l v (add x r)
+
+ let singleton x = Node(Empty, x, Empty, 1)
+
+ let rec remove x = function
+ Empty -> Empty
+ | Node(l, v, r, _) ->
+ let c = X.compare x v in
+ if c = 0 then merge l r else
+ if c < 0 then bal (remove x l) v r else bal l v (remove x r)
+
+ let rec union s1 s2 =
+ match (s1, s2) with
+ (Empty, t2) -> t2
+ | (t1, Empty) -> t1
+ | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
+ if h1 >= h2 then
+ if h2 = 1 then add v2 s1 else begin
+ let (l2, _, r2) = split v1 s2 in
+ join (union l1 l2) v1 (union r1 r2)
+ end
+ else
+ if h1 = 1 then add v1 s2 else begin
+ let (l1, _, r1) = split v2 s1 in
+ join (union l1 l2) v2 (union r1 r2)
+ end
+
+ let rec inter s1 s2 =
+ match (s1, s2) with
+ (Empty, t2) -> Empty
+ | (t1, Empty) -> Empty
+ | (Node(l1, v1, r1, _), t2) ->
+ match split v1 t2 with
+ (l2, None, r2) ->
+ concat (inter l1 l2) (inter r1 r2)
+ | (l2, Some _, r2) ->
+ join (inter l1 l2) v1 (inter r1 r2)
+
+ let rec diff s1 s2 =
+ match (s1, s2) with
+ (Empty, t2) -> Empty
+ | (t1, Empty) -> t1
+ | (Node(l1, v1, r1, _), t2) ->
+ match split v1 t2 with
+ (l2, None, r2) ->
+ join (diff l1 l2) v1 (diff r1 r2)
+ | (l2, Some _, r2) ->
+ concat (diff l1 l2) (diff r1 r2)
+
+ let rec compare_aux l1 l2 =
+ match (l1, l2) with
+ ([], []) -> 0
+ | ([], _) -> -1
+ | (_, []) -> 1
+ | (Empty :: t1, Empty :: t2) ->
+ compare_aux t1 t2
+ | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) ->
+ let c = compare v1 v2 in
+ if c <> 0 then c else compare_aux (r1::t1) (r2::t2)
+ | (Node(l1, v1, r1, _) :: t1, t2) ->
+ compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2
+ | (t1, Node(l2, v2, r2, _) :: t2) ->
+ compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2)
+
+ let compare s1 s2 =
+ compare_aux [s1] [s2]
+
+ let equal s1 s2 =
+ compare s1 s2 = 0
+
+ let rec subset s1 s2 =
+ match (s1, s2) with
+ Empty, _ ->
+ true
+ | _, Empty ->
+ false
+ | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
+ let c = X.compare v1 v2 in
+ if c = 0 then
+ subset l1 l2 && subset r1 r2
+ else if c < 0 then
+ subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
+ else
+ subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
+
+ let rec iter f = function
+ Empty -> ()
+ | Node(l, v, r, _) -> iter f l; f v; iter f r
+
+ let rec fold f s accu =
+ match s with
+ Empty -> accu
+ | Node(l, v, r, _) -> fold f l (f v (fold f r accu))
+
+ let rec cardinal = function
+ Empty -> 0
+ | Node(l, v, r, _) -> cardinal l + 1 + cardinal r
+
+ let rec elements_aux accu = function
+ Empty -> accu
+ | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l
+
+ let elements s =
+ elements_aux [] s
+
+ let rec min_elt = function
+ Empty -> raise Not_found
+ | Node(Empty, v, r, _) -> v
+ | Node(l, v, r, _) -> min_elt l
+
+ let rec max_elt = function
+ Empty -> raise Not_found
+ | Node(l, v, Empty, _) -> v
+ | Node(l, v, r, _) -> max_elt r
+
+ let choose = min_elt
+end