diff options
Diffstat (limited to 'lib/fset.ml')
-rw-r--r-- | lib/fset.ml | 235 |
1 files changed, 235 insertions, 0 deletions
diff --git a/lib/fset.ml b/lib/fset.ml new file mode 100644 index 00000000..567feaa7 --- /dev/null +++ b/lib/fset.ml @@ -0,0 +1,235 @@ +module Make = functor (X : Set.OrderedType) -> +struct + + type elt = X.t + type t = Empty | Node of t * elt * t * int + + + (* Sets are represented by balanced binary trees (the heights of the + children differ by at most 2 *) + + let height = function + Empty -> 0 + | Node(_, _, _, h) -> h + + (* Creates a new node with left son l, value x and right son r. + l and r must be balanced and | height l - height r | <= 2. + Inline expansion of height for better speed. *) + + let create l x r = + let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in + let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in + Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1)) + + (* Same as create, but performs one step of rebalancing if necessary. + Assumes l and r balanced. + Inline expansion of create for better speed in the most frequent case + where no rebalancing is required. *) + + let bal l x r = + let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in + let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in + if hl > hr + 2 then begin + match l with + Empty -> invalid_arg "Set.bal" + | Node(ll, lv, lr, _) -> + if height ll >= height lr then + create ll lv (create lr x r) + else begin + match lr with + Empty -> invalid_arg "Set.bal" + | Node(lrl, lrv, lrr, _)-> + create (create ll lv lrl) lrv (create lrr x r) + end + end else if hr > hl + 2 then begin + match r with + Empty -> invalid_arg "Set.bal" + | Node(rl, rv, rr, _) -> + if height rr >= height rl then + create (create l x rl) rv rr + else begin + match rl with + Empty -> invalid_arg "Set.bal" + | Node(rll, rlv, rlr, _) -> + create (create l x rll) rlv (create rlr rv rr) + end + end else + Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1)) + + (* Same as bal, but repeat rebalancing until the final result + is balanced. *) + + let rec join l x r = + match bal l x r with + Empty -> invalid_arg "Set.join" + | Node(l', x', r', _) as t' -> + let d = height l' - height r' in + if d < -2 or d > 2 then join l' x' r' else t' + + (* Merge two trees l and r into one. + All elements of l must precede the elements of r. + Assumes | height l - height r | <= 2. *) + + let rec merge t1 t2 = + match (t1, t2) with + (Empty, t) -> t + | (t, Empty) -> t + | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> + bal l1 v1 (bal (merge r1 l2) v2 r2) + + (* Same as merge, but does not assume anything about l and r. *) + + let rec concat t1 t2 = + match (t1, t2) with + (Empty, t) -> t + | (t, Empty) -> t + | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> + join l1 v1 (join (concat r1 l2) v2 r2) + + (* Splitting *) + + let rec split x = function + Empty -> + (Empty, None, Empty) + | Node(l, v, r, _) -> + let c = X.compare x v in + if c = 0 then (l, Some v, r) + else if c < 0 then + let (ll, vl, rl) = split x l in (ll, vl, join rl v r) + else + let (lr, vr, rr) = split x r in (join l v lr, vr, rr) + + (* Implementation of the set operations *) + + let empty = Empty + + let is_empty = function Empty -> true | _ -> false + + let rec mem x = function + Empty -> false + | Node(l, v, r, _) -> + let c = X.compare x v in + c = 0 || mem x (if c < 0 then l else r) + + let rec add x = function + Empty -> Node(Empty, x, Empty, 1) + | Node(l, v, r, _) as t -> + let c = X.compare x v in + if c = 0 then t else + if c < 0 then bal (add x l) v r else bal l v (add x r) + + let singleton x = Node(Empty, x, Empty, 1) + + let rec remove x = function + Empty -> Empty + | Node(l, v, r, _) -> + let c = X.compare x v in + if c = 0 then merge l r else + if c < 0 then bal (remove x l) v r else bal l v (remove x r) + + let rec union s1 s2 = + match (s1, s2) with + (Empty, t2) -> t2 + | (t1, Empty) -> t1 + | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> + if h1 >= h2 then + if h2 = 1 then add v2 s1 else begin + let (l2, _, r2) = split v1 s2 in + join (union l1 l2) v1 (union r1 r2) + end + else + if h1 = 1 then add v1 s2 else begin + let (l1, _, r1) = split v2 s1 in + join (union l1 l2) v2 (union r1 r2) + end + + let rec inter s1 s2 = + match (s1, s2) with + (Empty, t2) -> Empty + | (t1, Empty) -> Empty + | (Node(l1, v1, r1, _), t2) -> + match split v1 t2 with + (l2, None, r2) -> + concat (inter l1 l2) (inter r1 r2) + | (l2, Some _, r2) -> + join (inter l1 l2) v1 (inter r1 r2) + + let rec diff s1 s2 = + match (s1, s2) with + (Empty, t2) -> Empty + | (t1, Empty) -> t1 + | (Node(l1, v1, r1, _), t2) -> + match split v1 t2 with + (l2, None, r2) -> + join (diff l1 l2) v1 (diff r1 r2) + | (l2, Some _, r2) -> + concat (diff l1 l2) (diff r1 r2) + + let rec compare_aux l1 l2 = + match (l1, l2) with + ([], []) -> 0 + | ([], _) -> -1 + | (_, []) -> 1 + | (Empty :: t1, Empty :: t2) -> + compare_aux t1 t2 + | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) -> + let c = compare v1 v2 in + if c <> 0 then c else compare_aux (r1::t1) (r2::t2) + | (Node(l1, v1, r1, _) :: t1, t2) -> + compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2 + | (t1, Node(l2, v2, r2, _) :: t2) -> + compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2) + + let compare s1 s2 = + compare_aux [s1] [s2] + + let equal s1 s2 = + compare s1 s2 = 0 + + let rec subset s1 s2 = + match (s1, s2) with + Empty, _ -> + true + | _, Empty -> + false + | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> + let c = X.compare v1 v2 in + if c = 0 then + subset l1 l2 && subset r1 r2 + else if c < 0 then + subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2 + else + subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2 + + let rec iter f = function + Empty -> () + | Node(l, v, r, _) -> iter f l; f v; iter f r + + let rec fold f s accu = + match s with + Empty -> accu + | Node(l, v, r, _) -> fold f l (f v (fold f r accu)) + + let rec cardinal = function + Empty -> 0 + | Node(l, v, r, _) -> cardinal l + 1 + cardinal r + + let rec elements_aux accu = function + Empty -> accu + | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l + + let elements s = + elements_aux [] s + + let rec min_elt = function + Empty -> raise Not_found + | Node(Empty, v, r, _) -> v + | Node(l, v, r, _) -> min_elt l + + let rec max_elt = function + Empty -> raise Not_found + | Node(l, v, Empty, _) -> v + | Node(l, v, r, _) -> max_elt r + + let choose = min_elt +end |