diff options
Diffstat (limited to 'lib/bigint.ml')
-rw-r--r-- | lib/bigint.ml | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/lib/bigint.ml b/lib/bigint.ml new file mode 100644 index 00000000..5bcceb5c --- /dev/null +++ b/lib/bigint.ml @@ -0,0 +1,392 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: bigint.ml 7305 2005-08-19 19:51:02Z letouzey $ *) + +(*i*) +open Pp +(*i*) + +(***************************************************) +(* Basic operations on (unbounded) integer numbers *) +(***************************************************) + +(* An integer is canonically represented as an array of k-digits blocs. + + 0 is represented by the empty array and -1 by the singleton [|-1|]. + The first bloc is in the range ]0;10^k[ for positive numbers. + The first bloc is in the range ]-10^k;-1[ for negative ones. + All other blocs are numbers in the range [0;10^k[. + + Negative numbers are represented using 2's complementation. For instance, + with 4-digits blocs, [-9655;6789] denotes -96543211 +*) + +(* The base is a power of 10 in order to facilitate the parsing and printing + of numbers in digital notation. + + All functions, to the exception of to_string and of_string should work + with an arbitrary base, even if not a power of 10. + + In practice, we set k=4 so that no overflow in ocaml machine words + (i.e. the interval [-2^30;2^30-1]) occur when multiplying two + numbers less than (10^k) +*) + +(* The main parameters *) + +let size = + let rec log10 n = if n < 10 then 0 else 1 + log10 (n / 10) in + (log10 max_int) / 2 + +let format_size = + (* How to parametrize a printf format *) + if size = 4 then Printf.sprintf "%04d" + else fun n -> + let rec aux j l n = + if j=size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10) + in String.concat "" (aux 0 [] n) + +(* The base is 10^size *) +let base = + let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size + +(* Basic numbers *) +let zero = [||] +let neg_one = [|-1|] + +(* Sign of an integer *) +let is_strictly_neg n = n<>[||] && n.(0) < 0 +let is_strictly_pos n = n<>[||] && n.(0) > 0 +let is_neg_or_zero n = n=[||] or n.(0) < 0 +let is_pos_or_zero n = n=[||] or n.(0) > 0 + +let normalize_pos n = + let k = ref 0 in + while !k < Array.length n & n.(!k) = 0 do incr k done; + Array.sub n !k (Array.length n - !k) + +let normalize_neg n = + let k = ref 1 in + while !k < Array.length n & n.(!k) = base - 1 do incr k done; + let n' = Array.sub n !k (Array.length n - !k) in + if Array.length n' = 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n') + +let rec normalize n = + if Array.length n = 0 then n else + if n.(0) = -1 then normalize_neg n else normalize_pos n + +let neg m = + if m = zero then zero else + let n = Array.copy m in + let i = ref (Array.length m - 1) in + while !i > 0 & n.(!i) = 0 do decr i done; + if !i > 0 then begin + n.(!i) <- base - n.(!i); decr i; + while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done; + n.(0) <- - n.(0) - 1; + if n.(0) < -1 then (n.(0) <- n.(0) + base; Array.append [| -1 |] n) else + if n.(0) = - base then (n.(0) <- 0; Array.append [| -1 |] n) + else normalize n + end else (n.(0) <- - n.(0); n) + +let push_carry r j = + let j = ref j in + while !j > 0 & r.(!j) < 0 do + r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1 + done; + while !j > 0 & r.(!j) >= base do + r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1 + done; + if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r) + else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r) + else if r.(0) = -base then (r.(0) <- 0; Array.append [| -1 |] r) + else normalize r + +let add_to r a j = + if a = zero then r else begin + for i = Array.length r - 1 downto j+1 do + r.(i) <- r.(i) + a.(i-j); + if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1) + done; + r.(j) <- r.(j) + a.(0); + push_carry r j + end + +let add n m = + let d = Array.length n - Array.length m in + if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d) + +let sub_to r a j = + if a = zero then r else begin + for i = Array.length r - 1 downto j+1 do + r.(i) <- r.(i) - a.(i-j); + if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1) + done; + r.(j) <- r.(j) - a.(0); + push_carry r j + end + +let sub n m = + let d = Array.length n - Array.length m in + if d >= 0 then sub_to (Array.copy n) m d + else let r = neg m in add_to r n (Array.length r - Array.length n) + +let rec mult m n = + if m = zero or n = zero then zero else + let l = Array.length m + Array.length n in + let r = Array.create l 0 in + for i = Array.length m - 1 downto 0 do + for j = Array.length n - 1 downto 0 do + let p = m.(i) * n.(j) + r.(i+j+1) in + let (q,s) = + if p < 0 + then (p + 1) / base - 1, (p + 1) mod base + base - 1 + else p / base, p mod base in + r.(i+j+1) <- s; + if q <> 0 then r.(i+j) <- r.(i+j) + q; + done + done; + normalize r + +let rec less_than_same_size m n i j = + i < Array.length m && + (m.(i) < n.(j) or (m.(i) = n.(j) && less_than_same_size m n (i+1) (j+1))) + +let less_than m n = + if is_strictly_neg m then + is_pos_or_zero n or Array.length m > Array.length n + or (Array.length m = Array.length n && less_than_same_size m n 0 0) + else + is_strictly_pos n && (Array.length m < Array.length n or + (Array.length m = Array.length n && less_than_same_size m n 0 0)) + +let equal m n = (m = n) + +let less_or_equal_than m n = equal m n or less_than m n + +let less_than_shift_pos k m n = + (Array.length m - k < Array.length n) + or (Array.length m - k = Array.length n && less_than_same_size m n k 0) + +let rec can_divide k m d i = + (i = Array.length d) or + (m.(k+i) > d.(i)) or + (m.(k+i) = d.(i) && can_divide k m d (i+1)) + +(* computes m - d * q * base^(|m|-k) in-place on positive numbers *) +let sub_mult m d q k = + if q <> 0 then + for i = Array.length d - 1 downto 0 do + let v = d.(i) * q in + m.(k+i) <- m.(k+i) - v mod base; + if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1); + if v >= base then m.(k+i-1) <- m.(k+i-1) - v / base; + done + +let euclid m d = + let isnegm, m = + if is_strictly_neg m then (-1),neg m else 1,Array.copy m in + let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in + if d = zero then raise Division_by_zero; + let q,r = + if less_than m d then (zero,m) else + let ql = Array.length m - Array.length d in + let q = Array.create (ql+1) 0 in + let i = ref 0 in + while not (less_than_shift_pos !i m d) do + if m.(!i)=0 then incr i else + if can_divide !i m d 0 then begin + let v = + if Array.length d > 1 && d.(0) <> m.(!i) then + (m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1) + else + m.(!i) / d.(0) in + q.(!i) <- q.(!i) + v; + sub_mult m d v !i + end else begin + let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in + q.(!i) <- q.(!i) + v / base; + sub_mult m d (v / base) !i; + q.(!i+1) <- q.(!i+1) + v mod base; + if q.(!i+1) >= base then + (q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1); + sub_mult m d (v mod base) (!i+1) + end + done; + (normalize q, normalize m) in + (if isnegd * isnegm = -1 then neg q else q), + (if isnegm = -1 then neg r else r) + +(* Parsing/printing ordinary 10-based numbers *) + +let of_string s = + let isneg = String.length s > 1 & s.[0] = '-' in + let n = if isneg then 1 else 0 in + let d = ref n in + while !d < String.length s && s.[!d] = '0' do incr d done; + if !d = String.length s then zero else + let r = (String.length s - !d) mod size in + let h = String.sub s (!d) r in + if !d = String.length s - 1 && isneg && h="1" then neg_one else + let e = if h<>"" then 1 else 0 in + let l = (String.length s - !d) / size in + let a = Array.create (l + e + n) 0 in + if isneg then begin + a.(0) <- (-1); + let carry = ref 0 in + for i=l downto 1 do + let v = int_of_string (String.sub s ((i-1)*size + !d +r) size)+ !carry in + if v <> 0 then (a.(i+e)<- base - v; carry := 1) else carry := 0 + done; + if e=1 then a.(1) <- base - !carry - int_of_string h; + end + else begin + if e=1 then a.(0) <- int_of_string h; + for i=1 to l do + a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size) + done + end; + a + +let to_string_pos sgn n = + if Array.length n = 0 then "0" else + sgn ^ + String.concat "" + (string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n))) + +let to_string n = + if is_strictly_neg n then to_string_pos "-" (neg n) + else to_string_pos "" n + +(******************************************************************) +(* Optimized operations on (unbounded) integer numbers *) +(* integers smaller than base are represented as machine integers *) +(******************************************************************) + +type bigint = Obj.t + +let ints_of_int n = + if n >= base then [| n / base; n mod base |] + else if n <= - base then [| n / base - 1; n mod base + base |] + else if n = 0 then [| |] else [| n |] + +let big_of_int n = + if n >= base then Obj.repr [| n / base; n mod base |] + else if n <= - base then Obj.repr [| n / base - 1; n mod base + base |] + else Obj.repr n + +let big_of_ints n = + let n = normalize n in + if n = zero then Obj.repr 0 else + if Array.length n = 1 then Obj.repr n.(0) else + Obj.repr n + +let coerce_to_int = (Obj.magic : Obj.t -> int) +let coerce_to_ints = (Obj.magic : Obj.t -> int array) + +let ints_of_z n = + if Obj.is_int n then ints_of_int (coerce_to_int n) + else coerce_to_ints n + +let app_pair f (m, n) = + (f m, f n) + +let add m n = + if Obj.is_int m & Obj.is_int n + then big_of_int (coerce_to_int m + coerce_to_int n) + else big_of_ints (add (ints_of_z m) (ints_of_z n)) + +let sub m n = + if Obj.is_int m & Obj.is_int n + then big_of_int (coerce_to_int m - coerce_to_int n) + else big_of_ints (sub (ints_of_z m) (ints_of_z n)) + +let mult m n = + if Obj.is_int m & Obj.is_int n + then big_of_int (coerce_to_int m * coerce_to_int n) + else big_of_ints (mult (ints_of_z m) (ints_of_z n)) + +let euclid m n = + if Obj.is_int m & Obj.is_int n + then app_pair big_of_int + (coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n) + else app_pair big_of_ints (euclid (ints_of_z m) (ints_of_z n)) + +let less_than m n = + if Obj.is_int m & Obj.is_int n + then coerce_to_int m < coerce_to_int n + else less_than (ints_of_z m) (ints_of_z n) + +let neg n = + if Obj.is_int n then big_of_int (- (coerce_to_int n)) + else big_of_ints (neg (ints_of_z n)) + +let of_string m = big_of_ints (of_string m) +let to_string m = to_string (ints_of_z m) + +let zero = big_of_int 0 +let one = big_of_int 1 +let sub_1 n = sub n one +let add_1 n = add n one +let two = big_of_int 2 +let neg_two = big_of_int (-2) +let mult_2 n = add n n +let is_zero n = n=zero + +let div2_with_rest n = + let (q,b) = euclid n two in + (q, b = one) + +let is_strictly_neg n = is_strictly_neg (ints_of_z n) +let is_strictly_pos n = is_strictly_pos (ints_of_z n) +let is_neg_or_zero n = is_neg_or_zero (ints_of_z n) +let is_pos_or_zero n = is_pos_or_zero (ints_of_z n) + +let pr_bigint n = str (to_string n) + +(* Testing suite *) + +let check () = + let numbers = [ + "1";"2";"99";"100";"101";"9999";"10000";"10001"; + "999999";"1000000";"1000001";"99999999";"100000000";"100000001"; + "1234";"5678";"12345678";"987654321"; + "-1";"-2";"-99";"-100";"-101";"-9999";"-10000";"-10001"; + "-999999";"-1000000";"-1000001";"-99999999";"-100000000";"-100000001"; + "-1234";"-5678";"-12345678";"-987654321";"0" + ] + in + let eucl n m = + let n' = abs_float n and m' = abs_float m in + let q' = floor (n' /. m') in let r' = n' -. m' *. q' in + (if n *. m < 0. & q' <> 0. then -. q' else q'), + (if n < 0. then -. r' else r') in + let round f = floor (abs_float f +. 0.5) *. (if f < 0. then -1. else 1.) in + let i = ref 0 in + let compare op n n' = + incr i; + let s = Printf.sprintf "%30s" (to_string n) in + let s' = Printf.sprintf "% 30.0f" (round n') in + if s <> s' then Printf.printf "%s: %s <> %s\n" op s s' in +List.iter (fun a -> List.iter (fun b -> + let n = of_string a and m = of_string b in + let n' = float_of_string a and m' = float_of_string b in + let a = add n m and a' = n' +. m' in + let s = sub n m and s' = n' -. m' in + let p = mult n m and p' = n' *. m' in + let q,r = try euclid n m with Division_by_zero -> zero,zero + and q',r' = eucl n' m' in + compare "+" a a'; + compare "-" s s'; + compare "*" p p'; + compare "/" q q'; + compare "%" r r') numbers) numbers; + Printf.printf "%i tests done\n" !i + + |