summaryrefslogtreecommitdiff
path: root/kernel/term.ml
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/term.ml')
-rw-r--r--kernel/term.ml190
1 files changed, 95 insertions, 95 deletions
diff --git a/kernel/term.ml b/kernel/term.ml
index 30e73e4f..7060d000 100644
--- a/kernel/term.ml
+++ b/kernel/term.ml
@@ -6,9 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: term.ml,v 1.95.2.1 2004/07/16 19:30:26 herbelin Exp $ *)
+(* $Id: term.ml 8049 2006-02-16 10:42:18Z coq $ *)
-(* This module instanciates the structure of generic deBruijn terms to Coq *)
+(* This module instantiates the structure of generic deBruijn terms to Coq *)
open Util
open Pp
@@ -21,6 +21,8 @@ open Esubst
type existential_key = int
type metavariable = int
+(* This defines the strategy to use for verifiying a Cast *)
+
(* This defines Cases annotations *)
type pattern_source = DefaultPat of int | RegularPat
type case_style = LetStyle | IfStyle | MatchStyle | RegularStyle
@@ -31,6 +33,7 @@ type case_printing =
type case_info =
{ ci_ind : inductive;
ci_npar : int;
+ ci_cstr_nargs : int array; (* number of real args of each constructor *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
@@ -56,6 +59,8 @@ let family_of_sort = function
(* Constructions as implemented *)
(********************************************************************)
+type cast_kind = VMcast | DEFAULTcast
+
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
@@ -74,7 +79,7 @@ type ('constr, 'types) kind_of_term =
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of sorts
- | Cast of 'constr * 'types
+ | Cast of 'constr * cast_kind * 'types
| Prod of name * 'types * 'types
| Lambda of name * 'types * 'constr
| LetIn of name * 'constr * 'types * 'constr
@@ -89,14 +94,14 @@ type ('constr, 'types) kind_of_term =
(* Experimental *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
- | CastType of 'types * 'types
+ | CastType of 'types * 'types
| ProdType of name * 'types * 'types
| LetInType of name * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
let kind_of_type = function
| Sort s -> SortType s
- | Cast (c,t) -> CastType (c, t)
+ | Cast (c,_,t) -> CastType (c, t)
| Prod (na,t,c) -> ProdType (na, t, c)
| LetIn (na,b,t,c) -> LetInType (na, b, t, c)
| App (c,l) -> AtomicType (c, l)
@@ -123,7 +128,7 @@ let comp_term t1 t2 =
| Meta m1, Meta m2 -> m1 == m2
| Var id1, Var id2 -> id1 == id2
| Sort s1, Sort s2 -> s1 == s2
- | Cast (c1,t1), Cast (c2,t2) -> c1 == c2 & t1 == t2
+ | Cast (c1,_,t1), Cast (c2,_,t2) -> c1 == c2 & t1 == t2
| Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
| Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
| LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) ->
@@ -148,19 +153,19 @@ let comp_term t1 t2 =
& array_for_all2 (==) bl1 bl2
| _ -> false
-let hash_term (sh_rec,(sh_sort,sh_kn,sh_na,sh_id)) t =
+let hash_term (sh_rec,(sh_sort,sh_con,sh_kn,sh_na,sh_id)) t =
match t with
| Rel _ -> t
| Meta x -> Meta x
| Var x -> Var (sh_id x)
| Sort s -> Sort (sh_sort s)
- | Cast (c,t) -> Cast (sh_rec c, sh_rec t)
+ | Cast (c, k, t) -> Cast (sh_rec c, k, (sh_rec t))
| Prod (na,t,c) -> Prod (sh_na na, sh_rec t, sh_rec c)
| Lambda (na,t,c) -> Lambda (sh_na na, sh_rec t, sh_rec c)
| LetIn (na,b,t,c) -> LetIn (sh_na na, sh_rec b, sh_rec t, sh_rec c)
| App (c,l) -> App (sh_rec c, Array.map sh_rec l)
| Evar (e,l) -> Evar (e, Array.map sh_rec l)
- | Const c -> Const (sh_kn c)
+ | Const c -> Const (sh_con c)
| Ind (kn,i) -> Ind (sh_kn kn,i)
| Construct ((kn,i),j) -> Construct ((sh_kn kn,i),j)
| Case (ci,p,c,bl) -> (* TO DO: extract ind_kn *)
@@ -179,15 +184,16 @@ module Hconstr =
struct
type t = constr
type u = (constr -> constr) *
- ((sorts -> sorts) * (kernel_name -> kernel_name)
- * (name -> name) * (identifier -> identifier))
+ ((sorts -> sorts) * (constant -> constant) *
+ (kernel_name -> kernel_name) * (name -> name) *
+ (identifier -> identifier))
let hash_sub = hash_term
let equal = comp_term
let hash = Hashtbl.hash
end)
-let hcons_term (hsorts,hkn,hname,hident) =
- Hashcons.recursive_hcons Hconstr.f (hsorts,hkn,hname,hident)
+let hcons_term (hsorts,hcon,hkn,hname,hident) =
+ Hashcons.recursive_hcons Hconstr.f (hsorts,hcon,hkn,hname,hident)
(* Constructs a DeBrujin index with number n *)
let rels =
@@ -206,11 +212,12 @@ let mkVar id = Var id
let mkSort s = Sort s
(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
-(* (that means t2 is declared as the type of t1) *)
-let mkCast (t1,t2) =
+(* (that means t2 is declared as the type of t1)
+ [s] is the strategy to use when *)
+let mkCast (t1,k2,t2) =
match t1 with
- | Cast (t,_) -> Cast (t,t2)
- | _ -> Cast (t1,t2)
+ | Cast (c,k1, _) when k1 = k2 -> Cast (c,k1,t2)
+ | _ -> Cast (t1,k2,t2)
(* Constructs the product (x:t1)t2 *)
let mkProd (x,t1,t2) = Prod (x,t1,t2)
@@ -225,7 +232,7 @@ let mkLetIn (x,c1,t,c2) = LetIn (x,c1,t,c2)
(* We ensure applicative terms have at least one argument and the
function is not itself an applicative term *)
let mkApp (f, a) =
- if a=[||] then f else
+ if Array.length a = 0 then f else
match f with
| App (g, cl) -> App (g, Array.append cl a)
| _ -> App (f, a)
@@ -309,22 +316,22 @@ let destSort c = match kind_of_term c with
let rec isprop c = match kind_of_term c with
| Sort (Prop _) -> true
- | Cast (c,_) -> isprop c
+ | Cast (c,_,_) -> isprop c
| _ -> false
let rec is_Prop c = match kind_of_term c with
| Sort (Prop Null) -> true
- | Cast (c,_) -> is_Prop c
+ | Cast (c,_,_) -> is_Prop c
| _ -> false
let rec is_Set c = match kind_of_term c with
| Sort (Prop Pos) -> true
- | Cast (c,_) -> is_Set c
+ | Cast (c,_,_) -> is_Set c
| _ -> false
let rec is_Type c = match kind_of_term c with
| Sort (Type _) -> true
- | Cast (c,_) -> is_Type c
+ | Cast (c,_,_) -> is_Type c
| _ -> false
let isType = function
@@ -344,10 +351,11 @@ let isEvar c = match kind_of_term c with Evar _ -> true | _ -> false
(* Destructs a casted term *)
let destCast c = match kind_of_term c with
- | Cast (t1, t2) -> (t1,t2)
+ | Cast (t1,k,t2) -> (t1,k,t2)
| _ -> invalid_arg "destCast"
-let isCast c = match kind_of_term c with Cast (_,_) -> true | _ -> false
+let isCast c = match kind_of_term c with Cast _ -> true | _ -> false
+
(* Tests if a de Bruijn index *)
let isRel c = match kind_of_term c with Rel _ -> true | _ -> false
@@ -374,12 +382,16 @@ let destLetIn c = match kind_of_term c with
| _ -> invalid_arg "destProd"
(* Destructs an application *)
-let destApplication c = match kind_of_term c with
+let destApp c = match kind_of_term c with
| App (f,a) -> (f, a)
| _ -> invalid_arg "destApplication"
+let destApplication = destApp
+
let isApp c = match kind_of_term c with App _ -> true | _ -> false
+let isProd c = match kind_of_term c with | Prod(_) -> true | _ -> false
+
(* Destructs a constant *)
let destConst c = match kind_of_term c with
| Const kn -> kn
@@ -423,24 +435,41 @@ let destCoFix c = match kind_of_term c with
| _ -> invalid_arg "destCoFix"
(******************************************************************)
+(* Cast management *)
+(******************************************************************)
+
+let rec strip_outer_cast c = match kind_of_term c with
+ | Cast (c,_,_) -> strip_outer_cast c
+ | _ -> c
+
+(* Fonction spéciale qui laisse les cast clés sous les Fix ou les Case *)
+
+let under_outer_cast f c = match kind_of_term c with
+ | Cast (b,k,t) -> mkCast (f b, k, f t)
+ | _ -> f c
+
+let rec under_casts f c = match kind_of_term c with
+ | Cast (c,k,t) -> mkCast (under_casts f c, k, t)
+ | _ -> f c
+
+(******************************************************************)
(* Flattening and unflattening of embedded applications and casts *)
(******************************************************************)
-(* flattens application lists *)
+(* flattens application lists throwing casts in-between *)
let rec collapse_appl c = match kind_of_term c with
| App (f,cl) ->
- let rec collapse_rec f cl2 = match kind_of_term f with
+ let rec collapse_rec f cl2 =
+ match kind_of_term (strip_outer_cast f) with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
- | Cast (c,_) when isApp c -> collapse_rec c cl2
- | _ -> if cl2 = [||] then f else mkApp (f,cl2)
- in
+ | _ -> mkApp (f,cl2)
+ in
collapse_rec f cl
| _ -> c
-let rec decompose_app c =
- match kind_of_term (collapse_appl c) with
+let decompose_app c =
+ match kind_of_term c with
| App (f,cl) -> (f, Array.to_list cl)
- | Cast (c,t) -> decompose_app c
| _ -> (c,[])
(* strips head casts and flattens head applications *)
@@ -448,11 +477,11 @@ let rec strip_head_cast c = match kind_of_term c with
| App (f,cl) ->
let rec collapse_rec f cl2 = match kind_of_term f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
- | Cast (c,_) -> collapse_rec c cl2
- | _ -> if cl2 = [||] then f else mkApp (f,cl2)
+ | Cast (c,_,_) -> collapse_rec c cl2
+ | _ -> if Array.length cl2 = 0 then f else mkApp (f,cl2)
in
collapse_rec f cl
- | Cast (c,t) -> strip_head_cast c
+ | Cast (c,_,_) -> strip_head_cast c
| _ -> c
(****************************************************************************)
@@ -466,7 +495,7 @@ let rec strip_head_cast c = match kind_of_term c with
let fold_constr f acc c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
- | Cast (c,t) -> f (f acc c) t
+ | Cast (c,_,t) -> f (f acc c) t
| Prod (_,t,c) -> f (f acc t) c
| Lambda (_,t,c) -> f (f acc t) c
| LetIn (_,b,t,c) -> f (f (f acc b) t) c
@@ -487,7 +516,7 @@ let fold_constr f acc c = match kind_of_term c with
let iter_constr f c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
- | Cast (c,t) -> f c; f t
+ | Cast (c,_,t) -> f c; f t
| Prod (_,t,c) -> f t; f c
| Lambda (_,t,c) -> f t; f c
| LetIn (_,b,t,c) -> f b; f t; f c
@@ -506,7 +535,7 @@ let iter_constr f c = match kind_of_term c with
let iter_constr_with_binders g f n c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
- | Cast (c,t) -> f n c; f n t
+ | Cast (c,_,t) -> f n c; f n t
| Prod (_,t,c) -> f n t; f (g n) c
| Lambda (_,t,c) -> f n t; f (g n) c
| LetIn (_,b,t,c) -> f n b; f n t; f (g n) c
@@ -527,7 +556,7 @@ let iter_constr_with_binders g f n c = match kind_of_term c with
let map_constr f c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
- | Cast (c,t) -> mkCast (f c, f t)
+ | Cast (c,k,t) -> mkCast (f c, k, f t)
| Prod (na,t,c) -> mkProd (na, f t, f c)
| Lambda (na,t,c) -> mkLambda (na, f t, f c)
| LetIn (na,b,t,c) -> mkLetIn (na, f b, f t, f c)
@@ -548,7 +577,7 @@ let map_constr f c = match kind_of_term c with
let map_constr_with_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
- | Cast (c,t) -> mkCast (f l c, f l t)
+ | Cast (c,k,t) -> mkCast (f l c, k, f l t)
| Prod (na,t,c) -> mkProd (na, f l t, f (g l) c)
| Lambda (na,t,c) -> mkLambda (na, f l t, f (g l) c)
| LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g l) c)
@@ -573,8 +602,8 @@ let compare_constr f t1 t2 =
| Meta m1, Meta m2 -> m1 = m2
| Var id1, Var id2 -> id1 = id2
| Sort s1, Sort s2 -> s1 = s2
- | Cast (c1,_), _ -> f c1 t2
- | _, Cast (c2,_) -> f t1 c2
+ | Cast (c1,_,_), _ -> f c1 t2
+ | _, Cast (c2,_,_) -> f t1 c2
| Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 & f c1 c2
| Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 & f c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 & f t1 t2 & f c1 c2
@@ -605,6 +634,8 @@ let compare_constr f t1 t2 =
type types = constr
+type strategy = types option
+
let type_app f tt = f tt
let body_of_type ty = ty
@@ -671,7 +702,7 @@ let noccur_with_meta n m term =
| Rel p -> if n<=p & p<n+m then raise LocalOccur
| App(f,cl) ->
(match kind_of_term f with
- | Cast (c,_) when isMeta c -> ()
+ | Cast (c,_,_) when isMeta c -> ()
| Meta _ -> ()
| _ -> iter_constr_with_binders succ occur_rec n c)
| Evar (_, _) -> ()
@@ -746,7 +777,7 @@ let substl laml =
substn_many (Array.map make_substituend (Array.of_list laml)) 0
let subst1 lam = substl [lam]
-let substl_decl laml (id,bodyopt,typ as d) =
+let substl_decl laml (id,bodyopt,typ) =
match bodyopt with
| None -> (id,None,substl laml typ)
| Some body -> (id, Some (substl laml body), type_app (substl laml) typ)
@@ -789,32 +820,6 @@ let substn_vars p vars =
let subst_vars = substn_vars 1
-(*
-map_kn : (kernel_name -> kernel_name) -> constr -> constr
-
-This should be rewritten to prevent duplication of constr's when not
-necessary.
-For now, it uses map_constr and is rather ineffective
-*)
-
-let rec map_kn f c =
- let func = map_kn f in
- match kind_of_term c with
- | Const kn ->
- mkConst (f kn)
- | Ind (kn,i) ->
- mkInd (f kn,i)
- | Construct ((kn,i),j) ->
- mkConstruct ((f kn,i),j)
- | Case (ci,p,c,l) ->
- let ci' = { ci with ci_ind = let (kn,i) = ci.ci_ind in f kn, i } in
- mkCase (ci', func p, func c, array_smartmap func l)
- | _ -> map_constr func c
-
-let subst_mps sub =
- map_kn (subst_kn sub)
-
-
(*********************)
(* Term constructors *)
(*********************)
@@ -965,20 +970,6 @@ let mkCoFix = mkCoFix
let implicit_sort = Type (make_univ(make_dirpath[id_of_string"implicit"],0))
let mkImplicit = mkSort implicit_sort
-let rec strip_outer_cast c = match kind_of_term c with
- | Cast (c,_) -> strip_outer_cast c
- | _ -> c
-
-(* Fonction spéciale qui laisse les cast clés sous les Fix ou les Case *)
-
-let under_outer_cast f c = match kind_of_term c with
- | Cast (b,t) -> mkCast (f b,f t)
- | _ -> f c
-
-let rec under_casts f c = match kind_of_term c with
- | Cast (c,t) -> mkCast (under_casts f c, t)
- | _ -> f c
-
(***************************)
(* Other term constructors *)
(***************************)
@@ -1027,7 +1018,7 @@ let rec to_lambda n prod =
else
match kind_of_term prod with
| Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda (n-1) bd)
- | Cast (c,_) -> to_lambda n c
+ | Cast (c,_,_) -> to_lambda n c
| _ -> errorlabstrm "to_lambda" (mt ())
let rec to_prod n lam =
@@ -1036,7 +1027,7 @@ let rec to_prod n lam =
else
match kind_of_term lam with
| Lambda (na,ty,bd) -> mkProd (na,ty,to_prod (n-1) bd)
- | Cast (c,_) -> to_prod n c
+ | Cast (c,_,_) -> to_prod n c
| _ -> errorlabstrm "to_prod" (mt ())
(* pseudo-reduction rule:
@@ -1066,7 +1057,7 @@ let prod_applist t nL = List.fold_left prod_app t nL
let decompose_prod =
let rec prodec_rec l c = match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) c
- | Cast (c,_) -> prodec_rec l c
+ | Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
in
prodec_rec []
@@ -1076,7 +1067,7 @@ let decompose_prod =
let decompose_lam =
let rec lamdec_rec l c = match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
- | Cast (c,_) -> lamdec_rec l c
+ | Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
in
lamdec_rec []
@@ -1089,7 +1080,7 @@ let decompose_prod_n n =
if n=0 then l,c
else match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) (n-1) c
- | Cast (c,_) -> prodec_rec l n c
+ | Cast (c,_,_) -> prodec_rec l n c
| _ -> error "decompose_prod_n: not enough products"
in
prodec_rec [] n
@@ -1102,7 +1093,7 @@ let decompose_lam_n n =
if n=0 then l,c
else match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c
- | Cast (c,_) -> lamdec_rec l n c
+ | Cast (c,_,_) -> lamdec_rec l n c
| _ -> error "decompose_lam_n: not enough abstractions"
in
lamdec_rec [] n
@@ -1112,7 +1103,7 @@ let decompose_lam_n n =
let nb_lam =
let rec nbrec n c = match kind_of_term c with
| Lambda (_,_,c) -> nbrec (n+1) c
- | Cast (c,_) -> nbrec n c
+ | Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0
@@ -1121,7 +1112,7 @@ let nb_lam =
let nb_prod =
let rec nbrec n c = match kind_of_term c with
| Prod (_,_,c) -> nbrec (n+1) c
- | Cast (c,_) -> nbrec n c
+ | Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0
@@ -1137,6 +1128,7 @@ let nb_prod =
let rec eq_constr m n =
(m==n) or
compare_constr eq_constr m n
+
let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
(*******************)
@@ -1177,10 +1169,18 @@ module Hsorts =
let hsort = Hsorts.f
-let hcons_constr (hkn,hdir,hname,hident,hstr) =
+let hcons_constr (hcon,hkn,hdir,hname,hident,hstr) =
let hsortscci = Hashcons.simple_hcons hsort hcons1_univ in
- let hcci = hcons_term (hsortscci,hkn,hname,hident) in
+ let hcci = hcons_term (hsortscci,hcon,hkn,hname,hident) in
let htcci = Hashcons.simple_hcons Htype.f (hcci,hsortscci) in
(hcci,htcci)
let (hcons1_constr, hcons1_types) = hcons_constr (hcons_names())
+
+
+(*******)
+(* Type of abstract machine values *)
+type values
+
+
+