summaryrefslogtreecommitdiff
path: root/kernel/term.ml
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/term.ml')
-rw-r--r--kernel/term.ml325
1 files changed, 229 insertions, 96 deletions
diff --git a/kernel/term.ml b/kernel/term.ml
index 1f3d2635..68565659 100644
--- a/kernel/term.ml
+++ b/kernel/term.ml
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: term.ml 11309 2008-08-06 10:30:35Z herbelin $ *)
+(* $Id$ *)
(* This module instantiates the structure of generic deBruijn terms to Coq *)
@@ -26,7 +26,7 @@ type metavariable = int
(* This defines Cases annotations *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
type case_printing =
- { ind_nargs : int; (* number of real args of the inductive type *)
+ { ind_nargs : int; (* length of the arity of the inductive type *)
style : case_style }
type case_info =
{ ci_ind : inductive;
@@ -42,7 +42,7 @@ type contents = Pos | Null
type sorts =
| Prop of contents (* proposition types *)
| Type of universe
-
+
let prop_sort = Prop Null
let set_sort = Prop Pos
let type1_sort = Type type1_univ
@@ -58,7 +58,7 @@ let family_of_sort = function
(* Constructions as implemented *)
(********************************************************************)
-type cast_kind = VMcast | DEFAULTcast
+type cast_kind = VMcast | DEFAULTcast
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
@@ -93,7 +93,7 @@ type ('constr, 'types) kind_of_term =
(* Experimental *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
- | CastType of 'types * 'types
+ | CastType of 'types * 'types
| ProdType of name * 'types * 'types
| LetInType of name * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
@@ -118,7 +118,7 @@ type fixpoint = (int array * int) * rec_declaration
type cofixpoint = int * rec_declaration
(***************************)
-(* hash-consing functions *)
+(* hash-consing functions *)
(***************************)
let comp_term t1 t2 =
@@ -184,7 +184,7 @@ module Hconstr =
type t = constr
type u = (constr -> constr) *
((sorts -> sorts) * (constant -> constant) *
- (kernel_name -> kernel_name) * (name -> name) *
+ (mutual_inductive -> mutual_inductive) * (name -> name) *
(identifier -> identifier))
let hash_sub = hash_term
let equal = comp_term
@@ -211,7 +211,7 @@ let mkVar id = Var id
let mkSort s = Sort s
(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
-(* (that means t2 is declared as the type of t1)
+(* (that means t2 is declared as the type of t1)
[s] is the strategy to use when *)
let mkCast (t1,k2,t2) =
match t1 with
@@ -230,14 +230,14 @@ let mkLetIn (x,c1,t,c2) = LetIn (x,c1,t,c2)
(* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *)
(* We ensure applicative terms have at least one argument and the
function is not itself an applicative term *)
-let mkApp (f, a) =
+let mkApp (f, a) =
if Array.length a = 0 then f else
match f with
| App (g, cl) -> App (g, Array.append cl a)
| _ -> App (f, a)
-(* Constructs a constant *)
+(* Constructs a constant *)
(* The array of terms correspond to the variables introduced in the section *)
let mkConst c = Const c
@@ -248,7 +248,7 @@ let mkEvar e = Evar e
(* The array of terms correspond to the variables introduced in the section *)
let mkInd m = Ind m
-(* Constructs the jth constructor of the ith (co)inductive type of the
+(* Constructs the jth constructor of the ith (co)inductive type of the
block named kn. The array of terms correspond to the variables
introduced in the section *)
let mkConstruct c = Construct c
@@ -261,6 +261,7 @@ let mkFix fix = Fix fix
let mkCoFix cofix = CoFix cofix
let kind_of_term c = c
+let kind_of_term2 c = c
(************************************************************************)
(* kind_of_term = constructions as seen by the user *)
@@ -284,7 +285,7 @@ type hnftype =
(* Non primitive term destructors *)
(**********************************************************************)
-(* Destructor operations : partial functions
+(* Destructor operations : partial functions
Raise invalid_arg "dest*" if the const has not the expected form *)
(* Destructs a DeBrujin index *)
@@ -348,8 +349,12 @@ let same_kind c1 c2 = (isprop c1 & isprop c2) or (is_Type c1 & is_Type c2)
(* Tests if an evar *)
let isEvar c = match kind_of_term c with Evar _ -> true | _ -> false
+let isEvar_or_Meta c = match kind_of_term c with
+ | Evar _ | Meta _ -> true
+ | _ -> false
+
(* Destructs a casted term *)
-let destCast c = match kind_of_term c with
+let destCast c = match kind_of_term c with
| Cast (t1,k,t2) -> (t1,k,t2)
| _ -> invalid_arg "destCast"
@@ -366,22 +371,22 @@ let isVar c = match kind_of_term c with Var _ -> true | _ -> false
let isInd c = match kind_of_term c with Ind _ -> true | _ -> false
(* Destructs the product (x:t1)t2 *)
-let destProd c = match kind_of_term c with
- | Prod (x,t1,t2) -> (x,t1,t2)
+let destProd c = match kind_of_term c with
+ | Prod (x,t1,t2) -> (x,t1,t2)
| _ -> invalid_arg "destProd"
let isProd c = match kind_of_term c with | Prod _ -> true | _ -> false
(* Destructs the abstraction [x:t1]t2 *)
-let destLambda c = match kind_of_term c with
- | Lambda (x,t1,t2) -> (x,t1,t2)
+let destLambda c = match kind_of_term c with
+ | Lambda (x,t1,t2) -> (x,t1,t2)
| _ -> invalid_arg "destLambda"
let isLambda c = match kind_of_term c with | Lambda _ -> true | _ -> false
(* Destructs the let [x:=b:t1]t2 *)
-let destLetIn c = match kind_of_term c with
- | LetIn (x,b,t1,t2) -> (x,b,t1,t2)
+let destLetIn c = match kind_of_term c with
+ | LetIn (x,b,t1,t2) -> (x,b,t1,t2)
| _ -> invalid_arg "destProd"
let isLetIn c = match kind_of_term c with LetIn _ -> true | _ -> false
@@ -430,13 +435,13 @@ let destCase c = match kind_of_term c with
let isCase c = match kind_of_term c with Case _ -> true | _ -> false
-let destFix c = match kind_of_term c with
+let destFix c = match kind_of_term c with
| Fix fix -> fix
| _ -> invalid_arg "destFix"
let isFix c = match kind_of_term c with Fix _ -> true | _ -> false
-let destCoFix c = match kind_of_term c with
+let destCoFix c = match kind_of_term c with
| CoFix cofix -> cofix
| _ -> invalid_arg "destCoFix"
@@ -466,7 +471,7 @@ let rec under_casts f c = match kind_of_term c with
(* flattens application lists throwing casts in-between *)
let rec collapse_appl c = match kind_of_term c with
- | App (f,cl) ->
+ | App (f,cl) ->
let rec collapse_rec f cl2 =
match kind_of_term (strip_outer_cast f) with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
@@ -482,12 +487,12 @@ let decompose_app c =
(* strips head casts and flattens head applications *)
let rec strip_head_cast c = match kind_of_term c with
- | App (f,cl) ->
+ | App (f,cl) ->
let rec collapse_rec f cl2 = match kind_of_term f with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| Cast (c,_,_) -> collapse_rec c cl2
| _ -> if Array.length cl2 = 0 then f else mkApp (f,cl2)
- in
+ in
collapse_rec f cl
| Cast (c,_,_) -> strip_head_cast c
| _ -> c
@@ -550,7 +555,7 @@ let iter_constr_with_binders g f n c = match kind_of_term c with
| App (c,l) -> f n c; Array.iter (f n) l
| Evar (_,l) -> Array.iter (f n) l
| Case (_,p,c,bl) -> f n p; f n c; Array.iter (f n) bl
- | Fix (_,(_,tl,bl)) ->
+ | Fix (_,(_,tl,bl)) ->
Array.iter (f n) tl;
Array.iter (f (iterate g (Array.length tl) n)) bl
| CoFix (_,(_,tl,bl)) ->
@@ -604,6 +609,7 @@ let map_constr_with_binders g f l c = match kind_of_term c with
application associativity, binders name and Cases annotations are
not taken into account *)
+
let compare_constr f t1 t2 =
match kind_of_term t1, kind_of_term t2 with
| Rel n1, Rel n2 -> n1 = n2
@@ -619,15 +625,15 @@ let compare_constr f t1 t2 =
if Array.length l1 = Array.length l2 then
f c1 c2 & array_for_all2 f l1 l2
else
- let (h1,l1) = decompose_app t1 in
+ let (h1,l1) = decompose_app t1 in
let (h2,l2) = decompose_app t2 in
if List.length l1 = List.length l2 then
f h1 h2 & List.for_all2 f l1 l2
else false
| Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_for_all2 f l1 l2
- | Const c1, Const c2 -> c1 = c2
- | Ind c1, Ind c2 -> c1 = c2
- | Construct c1, Construct c2 -> c1 = c2
+ | Const c1, Const c2 -> eq_constant c1 c2
+ | Ind c1, Ind c2 -> eq_ind c1 c2
+ | Construct c1, Construct c2 -> eq_constructor c1 c2
| Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
f p1 p2 & f c1 c2 & array_for_all2 f bl1 bl2
| Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
@@ -642,7 +648,7 @@ let compare_constr f t1 t2 =
type types = constr
-type strategy = types option
+type strategy = types option
type named_declaration = identifier * constr option * types
type rel_declaration = name * constr option * types
@@ -653,6 +659,34 @@ let map_rel_declaration = map_named_declaration
let fold_named_declaration f (_, v, ty) a = f ty (Option.fold_right f v a)
let fold_rel_declaration = fold_named_declaration
+(***************************************************************************)
+(* Type of local contexts (telescopes) *)
+(***************************************************************************)
+
+(*s Signatures of ordered optionally named variables, intended to be
+ accessed by de Bruijn indices (to represent bound variables) *)
+
+type rel_context = rel_declaration list
+
+let empty_rel_context = []
+
+let add_rel_decl d ctxt = d::ctxt
+
+let rec lookup_rel n sign =
+ match n, sign with
+ | 1, decl :: _ -> decl
+ | n, _ :: sign -> lookup_rel (n-1) sign
+ | _, [] -> raise Not_found
+
+let rel_context_length = List.length
+
+let rel_context_nhyps hyps =
+ let rec nhyps acc = function
+ | [] -> acc
+ | (_,None,_)::hyps -> nhyps (1+acc) hyps
+ | (_,Some _,_)::hyps -> nhyps acc hyps in
+ nhyps 0 hyps
+
(****************************************************************************)
(* Functions for dealing with constr terms *)
(****************************************************************************)
@@ -666,11 +700,11 @@ exception LocalOccur
(* (closedn n M) raises FreeVar if a variable of height greater than n
occurs in M, returns () otherwise *)
-let closedn n c =
+let closedn n c =
let rec closed_rec n c = match kind_of_term c with
| Rel m -> if m>n then raise LocalOccur
| _ -> iter_constr_with_binders succ closed_rec n c
- in
+ in
try closed_rec n c; true with LocalOccur -> false
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
@@ -679,21 +713,21 @@ let closed0 = closedn 0
(* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *)
-let noccurn n term =
+let noccurn n term =
let rec occur_rec n c = match kind_of_term c with
| Rel m -> if m = n then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
- in
+ in
try occur_rec n term; true with LocalOccur -> false
-(* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M
+(* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M
for n <= p < n+m *)
-let noccur_between n m term =
+let noccur_between n m term =
let rec occur_rec n c = match kind_of_term c with
| Rel(p) -> if n<=p && p<n+m then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
- in
+ in
try occur_rec n term; true with LocalOccur -> false
(* Checking function for terms containing existential variables.
@@ -703,7 +737,7 @@ let noccur_between n m term =
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
-let noccur_with_meta n m term =
+let noccur_with_meta n m term =
let rec occur_rec n c = match kind_of_term c with
| Rel p -> if n<=p & p<n+m then raise LocalOccur
| App(f,cl) ->
@@ -728,18 +762,18 @@ let rec exliftn el c = match kind_of_term c with
(* Lifting the binding depth across k bindings *)
-let liftn k n =
+let liftn k n =
match el_liftn (pred n) (el_shft k ELID) with
| ELID -> (fun c -> c)
| el -> exliftn el
-
+
let lift k = liftn k 1
(*********************)
(* Substituting *)
(*********************)
-(* (subst1 M c) substitutes M for Rel(1) in c
+(* (subst1 M c) substitutes M for Rel(1) in c
we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel
M1,...,Mn for respectively Rel(1),...,Rel(n) in c *)
@@ -759,15 +793,15 @@ let rec lift_substituend depth s =
let make_substituend c = { sinfo=Unknown; sit=c }
let substn_many lamv n c =
- let lv = Array.length lamv in
+ let lv = Array.length lamv in
if lv = 0 then c
- else
+ else
let rec substrec depth c = match kind_of_term c with
| Rel k ->
if k<=depth then c
else if k-depth <= lv then lift_substituend depth lamv.(k-depth-1)
else mkRel (k-lv)
- | _ -> map_constr_with_binders succ substrec depth c in
+ | _ -> map_constr_with_binders succ substrec depth c in
substrec n c
(*
@@ -791,21 +825,21 @@ let substl_named_decl = substl_decl
let rec thin_val = function
| [] -> []
- | (((id,{ sit = v }) as s)::tl) when isVar v ->
+ | (((id,{ sit = v }) as s)::tl) when isVar v ->
if id = destVar v then thin_val tl else s::(thin_val tl)
| h::tl -> h::(thin_val tl)
(* (replace_vars sigma M) applies substitution sigma to term M *)
-let replace_vars var_alist =
+let replace_vars var_alist =
let var_alist =
List.map (fun (str,c) -> (str,make_substituend c)) var_alist in
- let var_alist = thin_val var_alist in
+ let var_alist = thin_val var_alist in
let rec substrec n c = match kind_of_term c with
| Var x ->
(try lift_substituend n (List.assoc x var_alist)
with Not_found -> c)
| _ -> map_constr_with_binders succ substrec n c
- in
+ in
if var_alist = [] then (function x -> x) else substrec 0
(*
@@ -910,7 +944,7 @@ let mkAppA v =
if l=0 then anomaly "mkAppA received an empty array"
else mkApp (v.(0), Array.sub v 1 (Array.length v -1))
-(* Constructs a constant *)
+(* Constructs a constant *)
(* The array of terms correspond to the variables introduced in the section *)
let mkConst = mkConst
@@ -921,7 +955,7 @@ let mkEvar = mkEvar
(* The array of terms correspond to the variables introduced in the section *)
let mkInd = mkInd
-(* Constructs the jth constructor of the ith (co)inductive type of the
+(* Constructs the jth constructor of the ith (co)inductive type of the
block named kn. The array of terms correspond to the variables
introduced in the section *)
let mkConstruct = mkConstruct
@@ -930,15 +964,15 @@ let mkConstruct = mkConstruct
let mkCase = mkCase
let mkCaseL (ci, p, c, ac) = mkCase (ci, p, c, Array.of_list ac)
-(* If recindxs = [|i1,...in|]
+(* If recindxs = [|i1,...in|]
funnames = [|f1,...fn|]
typarray = [|t1,...tn|]
bodies = [|b1,...bn|]
- then
+ then
mkFix ((recindxs,i),(funnames,typarray,bodies))
-
- constructs the ith function of the block
+
+ constructs the ith function of the block
Fixpoint f1 [ctx1] : t1 := b1
with f2 [ctx2] : t2 := b2
@@ -953,12 +987,12 @@ let mkFix = mkFix
(* If funnames = [|f1,...fn|]
typarray = [|t1,...tn|]
bodies = [|b1,...bn|]
- then
+ then
mkCoFix (i,(funnames,typsarray,bodies))
- constructs the ith function of the block
-
+ constructs the ith function of the block
+
CoFixpoint f1 : t1 := b1
with f2 : t2 := b2
...
@@ -984,7 +1018,7 @@ let prodn n env b =
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b))
| _ -> assert false
- in
+ in
prodrec (n,env,b)
(* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *)
@@ -996,7 +1030,7 @@ let lamn n env b =
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b))
| _ -> assert false
- in
+ in
lamrec (n,env,b)
(* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *)
@@ -1007,29 +1041,29 @@ let applist (f,l) = mkApp (f, Array.of_list l)
let applistc f l = mkApp (f, Array.of_list l)
let appvect = mkApp
-
+
let appvectc f l = mkApp (f,l)
-
+
(* to_lambda n (x1:T1)...(xn:Tn)T =
* [x1:T1]...[xn:Tn]T *)
let rec to_lambda n prod =
- if n = 0 then
- prod
- else
- match kind_of_term prod with
+ if n = 0 then
+ prod
+ else
+ match kind_of_term prod with
| Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda (n-1) bd)
| Cast (c,_,_) -> to_lambda n c
- | _ -> errorlabstrm "to_lambda" (mt ())
+ | _ -> errorlabstrm "to_lambda" (mt ())
let rec to_prod n lam =
- if n=0 then
+ if n=0 then
lam
- else
- match kind_of_term lam with
+ else
+ match kind_of_term lam with
| Lambda (na,ty,bd) -> mkProd (na,ty,to_prod (n-1) bd)
| Cast (c,_,_) -> to_prod n c
- | _ -> errorlabstrm "to_prod" (mt ())
-
+ | _ -> errorlabstrm "to_prod" (mt ())
+
(* pseudo-reduction rule:
* [prod_app s (Prod(_,B)) N --> B[N]
* with an strip_outer_cast on the first argument to produce a product *)
@@ -1048,91 +1082,190 @@ let prod_appvect t nL = Array.fold_left prod_app t nL
(* prod_applist T [ a1 ; ... ; an ] -> (T a1 ... an) *)
let prod_applist t nL = List.fold_left prod_app t nL
+let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c)
+let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c)
+
(*********************************)
(* Other term destructors *)
(*********************************)
(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
-let decompose_prod =
+let decompose_prod =
let rec prodec_rec l c = match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) c
| Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
- in
+ in
prodec_rec []
(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
-let decompose_lam =
+let decompose_lam =
let rec lamdec_rec l c = match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
| Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
- in
+ in
lamdec_rec []
-(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
+(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_prod_n n =
if n < 0 then error "decompose_prod_n: integer parameter must be positive";
- let rec prodec_rec l n c =
- if n=0 then l,c
- else match kind_of_term c with
+ let rec prodec_rec l n c =
+ if n=0 then l,c
+ else match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) (n-1) c
| Cast (c,_,_) -> prodec_rec l n c
| _ -> error "decompose_prod_n: not enough products"
- in
- prodec_rec [] n
+ in
+ prodec_rec [] n
-(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
+(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_lam_n n =
if n < 0 then error "decompose_lam_n: integer parameter must be positive";
- let rec lamdec_rec l n c =
- if n=0 then l,c
- else match kind_of_term c with
+ let rec lamdec_rec l n c =
+ if n=0 then l,c
+ else match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c
| Cast (c,_,_) -> lamdec_rec l n c
| _ -> error "decompose_lam_n: not enough abstractions"
- in
- lamdec_rec [] n
+ in
+ lamdec_rec [] n
+
+(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
+ ([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
+let decompose_prod_assum =
+ let rec prodec_rec l c =
+ match kind_of_term c with
+ | Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) c
+ | LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) c
+ | Cast (c,_,_) -> prodec_rec l c
+ | _ -> l,c
+ in
+ prodec_rec empty_rel_context
+
+(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
+ ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
+let decompose_lam_assum =
+ let rec lamdec_rec l c =
+ match kind_of_term c with
+ | Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) c
+ | LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) c
+ | Cast (c,_,_) -> lamdec_rec l c
+ | _ -> l,c
+ in
+ lamdec_rec empty_rel_context
+
+(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
+ into the pair ([(xn,Tn);...;(x1,T1)],T) *)
+let decompose_prod_n_assum n =
+ if n < 0 then
+ error "decompose_prod_n_assum: integer parameter must be positive";
+ let rec prodec_rec l n c =
+ if n=0 then l,c
+ else match kind_of_term c with
+ | Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) (n-1) c
+ | LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) (n-1) c
+ | Cast (c,_,_) -> prodec_rec l n c
+ | c -> error "decompose_prod_n_assum: not enough assumptions"
+ in
+ prodec_rec empty_rel_context n
+
+(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
+ into the pair ([(xn,Tn);...;(x1,T1)],T)
+ Lets in between are not expanded but turn into local definitions,
+ but n is the actual number of destructurated lambdas. *)
+let decompose_lam_n_assum n =
+ if n < 0 then
+ error "decompose_lam_n_assum: integer parameter must be positive";
+ let rec lamdec_rec l n c =
+ if n=0 then l,c
+ else match kind_of_term c with
+ | Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) (n-1) c
+ | LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) n c
+ | Cast (c,_,_) -> lamdec_rec l n c
+ | c -> error "decompose_lam_n_assum: not enough abstractions"
+ in
+ lamdec_rec empty_rel_context n
(* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction
* gives n (casts are ignored) *)
-let nb_lam =
+let nb_lam =
let rec nbrec n c = match kind_of_term c with
| Lambda (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
- in
+ in
nbrec 0
-
+
(* similar to nb_lam, but gives the number of products instead *)
-let nb_prod =
+let nb_prod =
let rec nbrec n c = match kind_of_term c with
| Prod (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
- in
+ in
nbrec 0
-(* Rem: end of import from old module Generic *)
+let prod_assum t = fst (decompose_prod_assum t)
+let prod_n_assum n t = fst (decompose_prod_n_assum n t)
+let strip_prod_assum t = snd (decompose_prod_assum t)
+let strip_prod t = snd (decompose_prod t)
+let strip_prod_n n t = snd (decompose_prod_n n t)
+let lam_assum t = fst (decompose_lam_assum t)
+let lam_n_assum n t = fst (decompose_lam_n_assum n t)
+let strip_lam_assum t = snd (decompose_lam_assum t)
+let strip_lam t = snd (decompose_lam t)
+let strip_lam_n n t = snd (decompose_lam_n n t)
+
+(***************************)
+(* Arities *)
+(***************************)
+
+(* An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort.
+ Such a term can canonically be seen as the pair of a context of types
+ and of a sort *)
+
+type arity = rel_context * sorts
+
+let destArity =
+ let rec prodec_rec l c =
+ match kind_of_term c with
+ | Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c
+ | LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c
+ | Cast (c,_,_) -> prodec_rec l c
+ | Sort s -> l,s
+ | _ -> anomaly "destArity: not an arity"
+ in
+ prodec_rec []
+
+let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign
+
+let rec isArity c =
+ match kind_of_term c with
+ | Prod (_,_,c) -> isArity c
+ | LetIn (_,b,_,c) -> isArity (subst1 b c)
+ | Cast (c,_,_) -> isArity c
+ | Sort _ -> true
+ | _ -> false
(*******************************)
-(* alpha conversion functions *)
+(* alpha conversion functions *)
(*******************************)
(* alpha conversion : ignore print names and casts *)
-let rec eq_constr m n =
+let rec eq_constr m n =
(m==n) or
compare_constr eq_constr m n
let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
(*******************)
-(* hash-consing *)
+(* hash-consing *)
(*******************)
module Htype =