summaryrefslogtreecommitdiff
path: root/kernel/term.ml
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/term.ml')
-rw-r--r--kernel/term.ml727
1 files changed, 411 insertions, 316 deletions
diff --git a/kernel/term.ml b/kernel/term.ml
index 1894417c..dcb63cf7 100644
--- a/kernel/term.ml
+++ b/kernel/term.ml
@@ -1,14 +1,27 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: term.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
-(* This module instantiates the structure of generic deBruijn terms to Coq *)
+(* File initially created by Gérard Huet and Thierry Coquand in 1984 *)
+(* Extension to inductive constructions by Christine Paulin for Coq V5.6 *)
+(* Extension to mutual inductive constructions by Christine Paulin for
+ Coq V5.10.2 *)
+(* Extension to co-inductive constructions by Eduardo Gimenez *)
+(* Optimization of substitution functions by Chet Murthy *)
+(* Optimization of lifting functions by Bruno Barras, Mar 1997 *)
+(* Hash-consing by Bruno Barras in Feb 1998 *)
+(* Restructuration of Coq of the type-checking kernel by Jean-Christophe
+ Filliâtre, 1999 *)
+(* Abstraction of the syntax of terms and iterators by Hugo Herbelin, 2000 *)
+(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
+
+(* This file defines the internal syntax of the Calculus of
+ Inductive Constructions (CIC) terms together with constructors,
+ destructors, iterators and basic functions *)
open Util
open Pp
@@ -16,12 +29,14 @@ open Names
open Univ
open Esubst
-(* Coq abstract syntax with deBruijn variables; 'a is the type of sorts *)
type existential_key = int
type metavariable = int
(* This defines the strategy to use for verifiying a Cast *)
+(* Warning: REVERTcast is not exported to vo-files; as of r14492, it has to *)
+(* come after the vo-exported cast_kind so as to be compatible with coqchk *)
+type cast_kind = VMcast | DEFAULTcast | REVERTcast
(* This defines Cases annotations *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
@@ -31,7 +46,7 @@ type case_printing =
type case_info =
{ ci_ind : inductive;
ci_npar : int;
- ci_cstr_nargs : int array; (* number of real args of each constructor *)
+ ci_cstr_ndecls : int array; (* number of pattern vars of each constructor *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
@@ -58,8 +73,6 @@ let family_of_sort = function
(* Constructions as implemented *)
(********************************************************************)
-type cast_kind = VMcast | DEFAULTcast
-
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
@@ -90,24 +103,6 @@ type ('constr, 'types) kind_of_term =
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
-(* Experimental *)
-type ('constr, 'types) kind_of_type =
- | SortType of sorts
- | CastType of 'types * 'types
- | ProdType of name * 'types * 'types
- | LetInType of name * 'constr * 'types * 'types
- | AtomicType of 'constr * 'constr array
-
-let kind_of_type = function
- | Sort s -> SortType s
- | Cast (c,_,t) -> CastType (c, t)
- | Prod (na,t,c) -> ProdType (na, t, c)
- | LetIn (na,b,t,c) -> LetInType (na, b, t, c)
- | App (c,l) -> AtomicType (c, l)
- | (Rel _ | Meta _ | Var _ | Evar _ | Const _ | Case _ | Fix _ | CoFix _ | Ind _ as c)
- -> AtomicType (c,[||])
- | (Lambda _ | Construct _) -> failwith "Not a type"
-
(* constr is the fixpoint of the previous type. Requires option
-rectypes of the Caml compiler to be set *)
type constr = (constr,constr) kind_of_term
@@ -117,82 +112,10 @@ type rec_declaration = name array * constr array * constr array
type fixpoint = (int array * int) * rec_declaration
type cofixpoint = int * rec_declaration
-(***************************)
-(* hash-consing functions *)
-(***************************)
-let comp_term t1 t2 =
- match t1, t2 with
- | Rel n1, Rel n2 -> n1 = n2
- | Meta m1, Meta m2 -> m1 == m2
- | Var id1, Var id2 -> id1 == id2
- | Sort s1, Sort s2 -> s1 == s2
- | Cast (c1,_,t1), Cast (c2,_,t2) -> c1 == c2 & t1 == t2
- | Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
- | Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
- | LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) ->
- n1 == n2 & b1 == b2 & t1 == t2 & c1 == c2
- | App (c1,l1), App (c2,l2) -> c1 == c2 & array_for_all2 (==) l1 l2
- | Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_for_all2 (==) l1 l2
- | Const c1, Const c2 -> c1 == c2
- | Ind (sp1,i1), Ind (sp2,i2) -> sp1 == sp2 & i1 = i2
- | Construct ((sp1,i1),j1), Construct ((sp2,i2),j2) ->
- sp1 == sp2 & i1 = i2 & j1 = j2
- | Case (ci1,p1,c1,bl1), Case (ci2,p2,c2,bl2) ->
- ci1 == ci2 & p1 == p2 & c1 == c2 & array_for_all2 (==) bl1 bl2
- | Fix (ln1,(lna1,tl1,bl1)), Fix (ln2,(lna2,tl2,bl2)) ->
- ln1 = ln2
- & array_for_all2 (==) lna1 lna2
- & array_for_all2 (==) tl1 tl2
- & array_for_all2 (==) bl1 bl2
- | CoFix(ln1,(lna1,tl1,bl1)), CoFix(ln2,(lna2,tl2,bl2)) ->
- ln1 = ln2
- & array_for_all2 (==) lna1 lna2
- & array_for_all2 (==) tl1 tl2
- & array_for_all2 (==) bl1 bl2
- | _ -> false
-
-let hash_term (sh_rec,(sh_sort,sh_con,sh_kn,sh_na,sh_id)) t =
- match t with
- | Rel _ -> t
- | Meta x -> Meta x
- | Var x -> Var (sh_id x)
- | Sort s -> Sort (sh_sort s)
- | Cast (c, k, t) -> Cast (sh_rec c, k, (sh_rec t))
- | Prod (na,t,c) -> Prod (sh_na na, sh_rec t, sh_rec c)
- | Lambda (na,t,c) -> Lambda (sh_na na, sh_rec t, sh_rec c)
- | LetIn (na,b,t,c) -> LetIn (sh_na na, sh_rec b, sh_rec t, sh_rec c)
- | App (c,l) -> App (sh_rec c, Array.map sh_rec l)
- | Evar (e,l) -> Evar (e, Array.map sh_rec l)
- | Const c -> Const (sh_con c)
- | Ind (kn,i) -> Ind (sh_kn kn,i)
- | Construct ((kn,i),j) -> Construct ((sh_kn kn,i),j)
- | Case (ci,p,c,bl) -> (* TO DO: extract ind_kn *)
- Case (ci, sh_rec p, sh_rec c, Array.map sh_rec bl)
- | Fix (ln,(lna,tl,bl)) ->
- Fix (ln,(Array.map sh_na lna,
- Array.map sh_rec tl,
- Array.map sh_rec bl))
- | CoFix(ln,(lna,tl,bl)) ->
- CoFix (ln,(Array.map sh_na lna,
- Array.map sh_rec tl,
- Array.map sh_rec bl))
-
-module Hconstr =
- Hashcons.Make(
- struct
- type t = constr
- type u = (constr -> constr) *
- ((sorts -> sorts) * (constant -> constant) *
- (mutual_inductive -> mutual_inductive) * (name -> name) *
- (identifier -> identifier))
- let hash_sub = hash_term
- let equal = comp_term
- let hash = Hashtbl.hash
- end)
-
-let hcons_term (hsorts,hcon,hkn,hname,hident) =
- Hashcons.recursive_hcons Hconstr.f (hsorts,hcon,hkn,hname,hident)
+(*********************)
+(* Term constructors *)
+(*********************)
(* Constructs a DeBrujin index with number n *)
let rels =
@@ -201,21 +124,20 @@ let rels =
let mkRel n = if 0<n & n<=16 then rels.(n-1) else Rel n
-(* Constructs an existential variable named "?n" *)
-let mkMeta n = Meta n
-
-(* Constructs a Variable named id *)
-let mkVar id = Var id
-
(* Construct a type *)
-let mkSort s = Sort s
+let mkProp = Sort prop_sort
+let mkSet = Sort set_sort
+let mkType u = Sort (Type u)
+let mkSort = function
+ | Prop Null -> mkProp (* Easy sharing *)
+ | Prop Pos -> mkSet
+ | s -> Sort s
(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
-(* (that means t2 is declared as the type of t1)
- [s] is the strategy to use when *)
+(* (that means t2 is declared as the type of t1) *)
let mkCast (t1,k2,t2) =
match t1 with
- | Cast (c,k1, _) when k1 = k2 -> Cast (c,k1,t2)
+ | Cast (c,k1, _) when k1 = VMcast & k1 = k2 -> Cast (c,k1,t2)
| _ -> Cast (t1,k2,t2)
(* Constructs the product (x:t1)t2 *)
@@ -236,16 +158,13 @@ let mkApp (f, a) =
| App (g, cl) -> App (g, Array.append cl a)
| _ -> App (f, a)
-
(* Constructs a constant *)
-(* The array of terms correspond to the variables introduced in the section *)
let mkConst c = Const c
(* Constructs an existential variable *)
let mkEvar e = Evar e
(* Constructs the ith (co)inductive type of the block named kn *)
-(* The array of terms correspond to the variables introduced in the section *)
let mkInd m = Ind m
(* Constructs the jth constructor of the ith (co)inductive type of the
@@ -256,12 +175,48 @@ let mkConstruct c = Construct c
(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
let mkCase (ci, p, c, ac) = Case (ci, p, c, ac)
+(* If recindxs = [|i1,...in|]
+ funnames = [|f1,...fn|]
+ typarray = [|t1,...tn|]
+ bodies = [|b1,...bn|]
+ then
+
+ mkFix ((recindxs,i),(funnames,typarray,bodies))
+
+ constructs the ith function of the block
+
+ Fixpoint f1 [ctx1] : t1 := b1
+ with f2 [ctx2] : t2 := b2
+ ...
+ with fn [ctxn] : tn := bn.
+
+ where the lenght of the jth context is ij.
+*)
+
let mkFix fix = Fix fix
-let mkCoFix cofix = CoFix cofix
+(* If funnames = [|f1,...fn|]
+ typarray = [|t1,...tn|]
+ bodies = [|b1,...bn|]
+ then
+
+ mkCoFix (i,(funnames,typsarray,bodies))
+
+ constructs the ith function of the block
+
+ CoFixpoint f1 : t1 := b1
+ with f2 : t2 := b2
+ ...
+ with fn : tn := bn.
+*)
+let mkCoFix cofix= CoFix cofix
+
+(* Constructs an existential variable named "?n" *)
+let mkMeta n = Meta n
+
+(* Constructs a Variable named id *)
+let mkVar id = Var id
-let kind_of_term c = c
-let kind_of_term2 c = c
(************************************************************************)
(* kind_of_term = constructions as seen by the user *)
@@ -271,15 +226,25 @@ let kind_of_term2 c = c
least one argument and the function is not itself an applicative
term *)
-let kind_of_term = kind_of_term
+let kind_of_term c = c
+(* Experimental, used in Presburger contrib *)
+type ('constr, 'types) kind_of_type =
+ | SortType of sorts
+ | CastType of 'types * 'types
+ | ProdType of name * 'types * 'types
+ | LetInType of name * 'constr * 'types * 'types
+ | AtomicType of 'constr * 'constr array
-(* En vue d'un kind_of_type : constr -> hnftype ??? *)
-type hnftype =
- | HnfSort of sorts
- | HnfProd of name * constr * constr
- | HnfAtom of constr
- | HnfInd of inductive * constr array
+let kind_of_type = function
+ | Sort s -> SortType s
+ | Cast (c,_,t) -> CastType (c, t)
+ | Prod (na,t,c) -> ProdType (na, t, c)
+ | LetIn (na,b,t,c) -> LetInType (na, b, t, c)
+ | App (c,l) -> AtomicType (c, l)
+ | (Rel _ | Meta _ | Var _ | Evar _ | Const _ | Case _ | Fix _ | CoFix _ | Ind _ as c)
+ -> AtomicType (c,[||])
+ | (Lambda _ | Construct _) -> failwith "Not a type"
(**********************************************************************)
(* Non primitive term destructors *)
@@ -334,18 +299,12 @@ let rec is_Type c = match kind_of_term c with
| Cast (c,_,_) -> is_Type c
| _ -> false
-let isType = function
- | Type _ -> true
- | _ -> false
-
let is_small = function
| Prop _ -> true
| _ -> false
let iskind c = isprop c or is_Type c
-let same_kind c1 c2 = (isprop c1 & isprop c2) or (is_Type c1 & is_Type c2)
-
(* Tests if an evar *)
let isEvar c = match kind_of_term c with Evar _ -> true | _ -> false
@@ -366,6 +325,7 @@ let isRel c = match kind_of_term c with Rel _ -> true | _ -> false
(* Tests if a variable *)
let isVar c = match kind_of_term c with Var _ -> true | _ -> false
+let isVarId id c = match kind_of_term c with Var id' -> id = id' | _ -> false
(* Tests if an inductive *)
let isInd c = match kind_of_term c with Ind _ -> true | _ -> false
@@ -387,7 +347,7 @@ let isLambda c = match kind_of_term c with | Lambda _ -> true | _ -> false
(* Destructs the let [x:=b:t1]t2 *)
let destLetIn c = match kind_of_term c with
| LetIn (x,b,t1,t2) -> (x,b,t1,t2)
- | _ -> invalid_arg "destProd"
+ | _ -> invalid_arg "destLetIn"
let isLetIn c = match kind_of_term c with LetIn _ -> true | _ -> false
@@ -412,10 +372,6 @@ let destEvar c = match kind_of_term c with
| Evar (kn, a as r) -> r
| _ -> invalid_arg "destEvar"
-let num_of_evar c = match kind_of_term c with
- | Evar (n, _) -> n
- | _ -> anomaly "num_of_evar called with bad args"
-
(* Destructs a (co)inductive type named kn *)
let destInd c = match kind_of_term c with
| Ind (kn, a as r) -> r
@@ -485,18 +441,6 @@ let decompose_app c =
| App (f,cl) -> (f, Array.to_list cl)
| _ -> (c,[])
-(* strips head casts and flattens head applications *)
-let rec strip_head_cast c = match kind_of_term c with
- | App (f,cl) ->
- let rec collapse_rec f cl2 = match kind_of_term f with
- | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
- | Cast (c,_,_) -> collapse_rec c cl2
- | _ -> if Array.length cl2 = 0 then f else mkApp (f,cl2)
- in
- collapse_rec f cl
- | Cast (c,_,_) -> strip_head_cast c
- | _ -> c
-
(****************************************************************************)
(* Functions to recur through subterms *)
(****************************************************************************)
@@ -621,15 +565,11 @@ let compare_constr f t1 t2 =
| Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 & f c1 c2
| Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 & f c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 & f t1 t2 & f c1 c2
+ | App (c1,l1), _ when isCast c1 -> f (mkApp (pi1 (destCast c1),l1)) t2
+ | _, App (c2,l2) when isCast c2 -> f t1 (mkApp (pi1 (destCast c2),l2))
| App (c1,l1), App (c2,l2) ->
- if Array.length l1 = Array.length l2 then
- f c1 c2 & array_for_all2 f l1 l2
- else
- let (h1,l1) = decompose_app t1 in
- let (h2,l2) = decompose_app t2 in
- if List.length l1 = List.length l2 then
- f h1 h2 & List.for_all2 f l1 l2
- else false
+ Array.length l1 = Array.length l2 &&
+ f c1 c2 && array_for_all2 f l1 l2
| Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_for_all2 f l1 l2
| Const c1, Const c2 -> eq_constant c1 c2
| Ind c1, Ind c2 -> eq_ind c1 c2
@@ -642,6 +582,62 @@ let compare_constr f t1 t2 =
ln1 = ln2 & array_for_all2 f tl1 tl2 & array_for_all2 f bl1 bl2
| _ -> false
+(*******************************)
+(* alpha conversion functions *)
+(*******************************)
+
+(* alpha conversion : ignore print names and casts *)
+
+let rec eq_constr m n =
+ (m==n) or
+ compare_constr eq_constr m n
+
+let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
+
+let constr_ord_int f t1 t2 =
+ let (=?) f g i1 i2 j1 j2=
+ let c=f i1 i2 in
+ if c=0 then g j1 j2 else c in
+ let (==?) fg h i1 i2 j1 j2 k1 k2=
+ let c=fg i1 i2 j1 j2 in
+ if c=0 then h k1 k2 else c in
+ match kind_of_term t1, kind_of_term t2 with
+ | Rel n1, Rel n2 -> n1 - n2
+ | Meta m1, Meta m2 -> m1 - m2
+ | Var id1, Var id2 -> id_ord id1 id2
+ | Sort s1, Sort s2 -> Pervasives.compare s1 s2
+ | Cast (c1,_,_), _ -> f c1 t2
+ | _, Cast (c2,_,_) -> f t1 c2
+ | Prod (_,t1,c1), Prod (_,t2,c2)
+ | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
+ (f =? f) t1 t2 c1 c2
+ | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
+ ((f =? f) ==? f) b1 b2 t1 t2 c1 c2
+ | App (c1,l1), _ when isCast c1 -> f (mkApp (pi1 (destCast c1),l1)) t2
+ | _, App (c2,l2) when isCast c2 -> f t1 (mkApp (pi1 (destCast c2),l2))
+ | App (c1,l1), App (c2,l2) -> (f =? (array_compare f)) c1 c2 l1 l2
+ | Evar (e1,l1), Evar (e2,l2) ->
+ ((-) =? (array_compare f)) e1 e2 l1 l2
+ | Const c1, Const c2 -> kn_ord (canonical_con c1) (canonical_con c2)
+ | Ind (spx, ix), Ind (spy, iy) ->
+ let c = ix - iy in if c = 0 then kn_ord (canonical_mind spx) (canonical_mind spy) else c
+ | Construct ((spx, ix), jx), Construct ((spy, iy), jy) ->
+ let c = jx - jy in if c = 0 then
+ (let c = ix - iy in if c = 0 then kn_ord (canonical_mind spx) (canonical_mind spy) else c)
+ else c
+ | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
+ ((f =? f) ==? (array_compare f)) p1 p2 c1 c2 bl1 bl2
+ | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
+ ((Pervasives.compare =? (array_compare f)) ==? (array_compare f))
+ ln1 ln2 tl1 tl2 bl1 bl2
+ | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
+ ((Pervasives.compare =? (array_compare f)) ==? (array_compare f))
+ ln1 ln2 tl1 tl2 bl1 bl2
+ | t1, t2 -> Pervasives.compare t1 t2
+
+let rec constr_ord m n=
+ constr_ord_int constr_ord m n
+
(***************************************************************************)
(* Type of assumptions *)
(***************************************************************************)
@@ -659,6 +655,18 @@ let map_rel_declaration = map_named_declaration
let fold_named_declaration f (_, v, ty) a = f ty (Option.fold_right f v a)
let fold_rel_declaration = fold_named_declaration
+let exists_named_declaration f (_, v, ty) = Option.cata f false v || f ty
+let exists_rel_declaration f (_, v, ty) = Option.cata f false v || f ty
+
+let for_all_named_declaration f (_, v, ty) = Option.cata f true v && f ty
+let for_all_rel_declaration f (_, v, ty) = Option.cata f true v && f ty
+
+let eq_named_declaration (i1, c1, t1) (i2, c2, t2) =
+ id_ord i1 i2 = 0 && Option.Misc.compare eq_constr c1 c2 && eq_constr t1 t2
+
+let eq_rel_declaration (n1, c1, t1) (n2, c2, t2) =
+ n1 = n2 && Option.Misc.compare eq_constr c1 c2 && eq_constr t1 t2
+
(***************************************************************************)
(* Type of local contexts (telescopes) *)
(***************************************************************************)
@@ -762,12 +770,12 @@ let rec exliftn el c = match kind_of_term c with
(* Lifting the binding depth across k bindings *)
-let liftn k n =
- match el_liftn (pred n) (el_shft k ELID) with
+let liftn n k =
+ match el_liftn (pred k) (el_shft n el_id) with
| ELID -> (fun c -> c)
| el -> exliftn el
-let lift k = liftn k 1
+let lift n = liftn n 1
(*********************)
(* Substituting *)
@@ -814,12 +822,12 @@ let substnl laml n =
let substl laml = substnl laml 0
let subst1 lam = substl [lam]
-let substnl_decl laml k (id,bodyopt,typ) =
- (id,Option.map (substnl laml k) bodyopt,substnl laml k typ)
+let substnl_decl laml k = map_rel_declaration (substnl laml k)
let substl_decl laml = substnl_decl laml 0
let subst1_decl lam = substl_decl [lam]
-let subst1_named_decl = subst1_decl
+let substnl_named laml k = map_named_declaration (substnl laml k)
let substl_named_decl = substl_decl
+let subst1_named_decl = subst1_decl
(* (thin_val sigma) removes identity substitutions from sigma *)
@@ -858,44 +866,12 @@ let substn_vars p vars =
let subst_vars = substn_vars 1
-(*********************)
-(* Term constructors *)
-(*********************)
-
-(* Constructs a DeBrujin index with number n *)
-let mkRel = mkRel
-
-(* Constructs an existential variable named "?n" *)
-let mkMeta = mkMeta
-
-(* Constructs a Variable named id *)
-let mkVar = mkVar
-
-(* Construct a type *)
-let mkProp = mkSort prop_sort
-let mkSet = mkSort set_sort
-let mkType u = mkSort (Type u)
-let mkSort = function
- | Prop Null -> mkProp (* Easy sharing *)
- | Prop Pos -> mkSet
- | s -> mkSort s
-
-(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
-(* (that means t2 is declared as the type of t1) *)
-let mkCast = mkCast
+(***************************)
+(* Other term constructors *)
+(***************************)
-(* Constructs the product (x:t1)t2 *)
-let mkProd = mkProd
let mkNamedProd id typ c = mkProd (Name id, typ, subst_var id c)
-let mkProd_string s t c = mkProd (Name (id_of_string s), t, c)
-
-(* Constructs the abstraction [x:t1]t2 *)
-let mkLambda = mkLambda
let mkNamedLambda id typ c = mkLambda (Name id, typ, subst_var id c)
-let mkLambda_string s t c = mkLambda (Name (id_of_string s), t, c)
-
-(* Constructs [x=c_1:t]c_2 *)
-let mkLetIn = mkLetIn
let mkNamedLetIn id c1 t c2 = mkLetIn (Name id, c1, t, subst_var id c2)
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
@@ -909,17 +885,6 @@ let mkNamedProd_or_LetIn (id,body,t) c =
| None -> mkNamedProd id t c
| Some b -> mkNamedLetIn id b t c
-(* Constructs either [[x:t]c] or [[x=b:t]c] *)
-let mkLambda_or_LetIn (na,body,t) c =
- match body with
- | None -> mkLambda (na, t, c)
- | Some b -> mkLetIn (na, b, t, c)
-
-let mkNamedLambda_or_LetIn (id,body,t) c =
- match body with
- | None -> mkNamedLambda id t c
- | Some b -> mkNamedLetIn id b t c
-
(* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
match body with
@@ -934,83 +899,16 @@ let mkNamedProd_wo_LetIn (id,body,t) c =
(* non-dependent product t1 -> t2 *)
let mkArrow t1 t2 = mkProd (Anonymous, t1, t2)
-(* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *)
-(* We ensure applicative terms have at most one arguments and the
- function is not itself an applicative term *)
-let mkApp = mkApp
-
-let mkAppA v =
- let l = Array.length v in
- if l=0 then anomaly "mkAppA received an empty array"
- else mkApp (v.(0), Array.sub v 1 (Array.length v -1))
-
-(* Constructs a constant *)
-(* The array of terms correspond to the variables introduced in the section *)
-let mkConst = mkConst
-
-(* Constructs an existential variable *)
-let mkEvar = mkEvar
-
-(* Constructs the ith (co)inductive type of the block named kn *)
-(* The array of terms correspond to the variables introduced in the section *)
-let mkInd = mkInd
-
-(* Constructs the jth constructor of the ith (co)inductive type of the
- block named kn. The array of terms correspond to the variables
- introduced in the section *)
-let mkConstruct = mkConstruct
-
-(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
-let mkCase = mkCase
-let mkCaseL (ci, p, c, ac) = mkCase (ci, p, c, Array.of_list ac)
-
-(* If recindxs = [|i1,...in|]
- funnames = [|f1,...fn|]
- typarray = [|t1,...tn|]
- bodies = [|b1,...bn|]
- then
-
- mkFix ((recindxs,i),(funnames,typarray,bodies))
-
- constructs the ith function of the block
-
- Fixpoint f1 [ctx1] : t1 := b1
- with f2 [ctx2] : t2 := b2
- ...
- with fn [ctxn] : tn := bn.
-
- where the lenght of the jth context is ij.
-*)
-
-let mkFix = mkFix
-
-(* If funnames = [|f1,...fn|]
- typarray = [|t1,...tn|]
- bodies = [|b1,...bn|]
- then
-
- mkCoFix (i,(funnames,typsarray,bodies))
-
- constructs the ith function of the block
-
- CoFixpoint f1 : t1 := b1
- with f2 : t2 := b2
- ...
- with fn : tn := bn.
-*)
-let mkCoFix = mkCoFix
-
-(* Construct an implicit *)
-let implicit_sort = Type (make_univ(make_dirpath[id_of_string"implicit"],0))
-let mkImplicit = mkSort implicit_sort
-
-(***************************)
-(* Other term constructors *)
-(***************************)
+(* Constructs either [[x:t]c] or [[x=b:t]c] *)
+let mkLambda_or_LetIn (na,body,t) c =
+ match body with
+ | None -> mkLambda (na, t, c)
+ | Some b -> mkLetIn (na, b, t, c)
-let abs_implicit c = mkLambda (Anonymous, mkImplicit, c)
-let lambda_implicit a = mkLambda (Name(id_of_string"y"), mkImplicit, a)
-let lambda_implicit_lift n a = iterate lambda_implicit n (lift n a)
+let mkNamedLambda_or_LetIn (id,body,t) c =
+ match body with
+ | None -> mkNamedLambda id t c
+ | Some b -> mkNamedLetIn id b t c
(* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *)
let prodn n env b =
@@ -1252,37 +1150,216 @@ let rec isArity c =
| Sort _ -> true
| _ -> false
-(*******************************)
-(* alpha conversion functions *)
-(*******************************)
-
-(* alpha conversion : ignore print names and casts *)
-
-let rec eq_constr m n =
- (m==n) or
- compare_constr eq_constr m n
-
-let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
-
(*******************)
(* hash-consing *)
(*******************)
-module Htype =
- Hashcons.Make(
- struct
- type t = types
- type u = (constr -> constr) * (sorts -> sorts)
-(*
- let hash_sub (hc,hs) j = {body=hc j.body; typ=hs j.typ}
- let equal j1 j2 = j1.body==j2.body & j1.typ==j2.typ
+(* Hash-consing of [constr] does not use the module [Hashcons] because
+ [Hashcons] is not efficient on deep tree-like data
+ structures. Indeed, [Hashcons] is based the (very efficient)
+ generic hash function [Hashtbl.hash], which computes the hash key
+ through a depth bounded traversal of the data structure to be
+ hashed. As a consequence, for a deep [constr] like the natural
+ number 1000 (S (S (... (S O)))), the same hash is assigned to all
+ the sub [constr]s greater than the maximal depth handled by
+ [Hashtbl.hash]. This entails a huge number of collisions in the
+ hash table and leads to cubic hash-consing in this worst-case.
+
+ In order to compute a hash key that is independent of the data
+ structure depth while being constant-time, an incremental hashing
+ function must be devised. A standard implementation creates a cache
+ of the hashing function by decorating each node of the hash-consed
+ data structure with its hash key. In that case, the hash function
+ can deduce the hash key of a toplevel data structure by a local
+ computation based on the cache held on its substructures.
+ Unfortunately, this simple implementation introduces a space
+ overhead that is damageable for the hash-consing of small [constr]s
+ (the most common case). One can think of an heterogeneous
+ distribution of caches on smartly chosen nodes, but this is forbidden
+ by the use of generic equality in Coq source code. (Indeed, this forces
+ each [constr] to have a unique canonical representation.)
+
+ Given that hash-consing proceeds inductively, we can nonetheless
+ computes the hash key incrementally during hash-consing by changing
+ a little the signature of the hash-consing function: it now returns
+ both the hash-consed term and its hash key. This simple solution is
+ implemented in the following code: it does not introduce a space
+ overhead in [constr], that's why the efficiency is unchanged for
+ small [constr]s. Besides, it does handle deep [constr]s without
+ introducing an unreasonable number of collisions in the hash table.
+ Some benchmarks make us think that this implementation of
+ hash-consing is linear in the size of the hash-consed data
+ structure for our daily use of Coq.
*)
-(**)
- let hash_sub (hc,hs) j = hc j
- let equal j1 j2 = j1==j2
-(**)
- let hash = Hashtbl.hash
- end)
+
+let array_eqeq t1 t2 =
+ t1 == t2 ||
+ (Array.length t1 = Array.length t2 &&
+ let rec aux i =
+ (i = Array.length t1) || (t1.(i) == t2.(i) && aux (i + 1))
+ in aux 0)
+
+let equals_constr t1 t2 =
+ match t1, t2 with
+ | Rel n1, Rel n2 -> n1 == n2
+ | Meta m1, Meta m2 -> m1 == m2
+ | Var id1, Var id2 -> id1 == id2
+ | Sort s1, Sort s2 -> s1 == s2
+ | Cast (c1,k1,t1), Cast (c2,k2,t2) -> c1 == c2 & k1 == k2 & t1 == t2
+ | Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
+ | Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
+ | LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) ->
+ n1 == n2 & b1 == b2 & t1 == t2 & c1 == c2
+ | App (c1,l1), App (c2,l2) -> c1 == c2 & array_eqeq l1 l2
+ | Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_eqeq l1 l2
+ | Const c1, Const c2 -> c1 == c2
+ | Ind (sp1,i1), Ind (sp2,i2) -> sp1 == sp2 & i1 = i2
+ | Construct ((sp1,i1),j1), Construct ((sp2,i2),j2) ->
+ sp1 == sp2 & i1 = i2 & j1 = j2
+ | Case (ci1,p1,c1,bl1), Case (ci2,p2,c2,bl2) ->
+ ci1 == ci2 & p1 == p2 & c1 == c2 & array_eqeq bl1 bl2
+ | Fix (ln1,(lna1,tl1,bl1)), Fix (ln2,(lna2,tl2,bl2)) ->
+ ln1 = ln2
+ & array_eqeq lna1 lna2
+ & array_eqeq tl1 tl2
+ & array_eqeq bl1 bl2
+ | CoFix(ln1,(lna1,tl1,bl1)), CoFix(ln2,(lna2,tl2,bl2)) ->
+ ln1 = ln2
+ & array_eqeq lna1 lna2
+ & array_eqeq tl1 tl2
+ & array_eqeq bl1 bl2
+ | _ -> false
+
+(** Note that the following Make has the side effect of creating
+ once and for all the table we'll use for hash-consing all constr *)
+
+module H = Hashtbl_alt.Make(struct type t = constr let equals = equals_constr end)
+
+open Hashtbl_alt.Combine
+
+(* [hcons_term hash_consing_functions constr] computes an hash-consed
+ representation for [constr] using [hash_consing_functions] on
+ leaves. *)
+let hcons_term (sh_sort,sh_ci,sh_construct,sh_ind,sh_con,sh_na,sh_id) =
+
+ (* Note : we hash-cons constr arrays *in place* *)
+
+ let rec hash_term_array t =
+ let accu = ref 0 in
+ for i = 0 to Array.length t - 1 do
+ let x, h = sh_rec t.(i) in
+ accu := combine !accu h;
+ t.(i) <- x
+ done;
+ !accu
+
+ and hash_term t =
+ match t with
+ | Var i ->
+ (Var (sh_id i), combinesmall 1 (Hashtbl.hash i))
+ | Sort s ->
+ (Sort (sh_sort s), combinesmall 2 (Hashtbl.hash s))
+ | Cast (c, k, t) ->
+ let c, hc = sh_rec c in
+ let t, ht = sh_rec t in
+ (Cast (c, k, t), combinesmall 3 (combine3 hc (Hashtbl.hash k) ht))
+ | Prod (na,t,c) ->
+ let t, ht = sh_rec t
+ and c, hc = sh_rec c in
+ (Prod (sh_na na, t, c), combinesmall 4 (combine3 (Hashtbl.hash na) ht hc))
+ | Lambda (na,t,c) ->
+ let t, ht = sh_rec t
+ and c, hc = sh_rec c in
+ (Lambda (sh_na na, t, c), combinesmall 5 (combine3 (Hashtbl.hash na) ht hc))
+ | LetIn (na,b,t,c) ->
+ let b, hb = sh_rec b in
+ let t, ht = sh_rec t in
+ let c, hc = sh_rec c in
+ (LetIn (sh_na na, b, t, c), combinesmall 6 (combine4 (Hashtbl.hash na) hb ht hc))
+ | App (c,l) ->
+ let c, hc = sh_rec c in
+ let hl = hash_term_array l in
+ (App (c, l), combinesmall 7 (combine hl hc))
+ | Evar (e,l) ->
+ let hl = hash_term_array l in
+ (* since the array have been hashed in place : *)
+ (t, combinesmall 8 (combine (Hashtbl.hash e) hl))
+ | Const c ->
+ (Const (sh_con c), combinesmall 9 (Hashtbl.hash c))
+ | Ind ((kn,i) as ind) ->
+ (Ind (sh_ind ind), combinesmall 9 (combine (Hashtbl.hash kn) i))
+ | Construct (((kn,i),j) as c)->
+ (Construct (sh_construct c), combinesmall 10 (combine3 (Hashtbl.hash kn) i j))
+ | Case (ci,p,c,bl) ->
+ let p, hp = sh_rec p
+ and c, hc = sh_rec c in
+ let hbl = hash_term_array bl in
+ let hbl = combine (combine hc hp) hbl in
+ (Case (sh_ci ci, p, c, bl), combinesmall 11 hbl)
+ | Fix (ln,(lna,tl,bl)) ->
+ let hbl = hash_term_array bl in
+ let htl = hash_term_array tl in
+ Array.iteri (fun i x -> lna.(i) <- sh_na x) lna;
+ (* since the three arrays have been hashed in place : *)
+ (t, combinesmall 13 (combine (Hashtbl.hash lna) (combine hbl htl)))
+ | CoFix(ln,(lna,tl,bl)) ->
+ let hbl = hash_term_array bl in
+ let htl = hash_term_array tl in
+ Array.iteri (fun i x -> lna.(i) <- sh_na x) lna;
+ (* since the three arrays have been hashed in place : *)
+ (t, combinesmall 14 (combine (Hashtbl.hash lna) (combine hbl htl)))
+ | Meta n ->
+ (t, combinesmall 15 n)
+ | Rel n ->
+ (t, combinesmall 16 n)
+
+ and sh_rec t =
+ let (y, h) = hash_term t in
+ (* [h] must be positive. *)
+ let h = h land 0x3FFFFFFF in
+ (H.may_add_and_get h y, h)
+
+ in
+ (* Make sure our statically allocated Rels (1 to 16) are considered
+ as canonical, and hence hash-consed to themselves *)
+ ignore (hash_term_array rels);
+
+ fun t -> fst (sh_rec t)
+
+(* Exported hashing fonction on constr, used mainly in plugins.
+ Appears to have slight differences from [snd (hash_term t)] above ? *)
+
+let rec hash_constr t =
+ match kind_of_term t with
+ | Var i -> combinesmall 1 (Hashtbl.hash i)
+ | Sort s -> combinesmall 2 (Hashtbl.hash s)
+ | Cast (c, _, _) -> hash_constr c
+ | Prod (_, t, c) -> combinesmall 4 (combine (hash_constr t) (hash_constr c))
+ | Lambda (_, t, c) -> combinesmall 5 (combine (hash_constr t) (hash_constr c))
+ | LetIn (_, b, t, c) ->
+ combinesmall 6 (combine3 (hash_constr b) (hash_constr t) (hash_constr c))
+ | App (c,l) when isCast c -> hash_constr (mkApp (pi1 (destCast c),l))
+ | App (c,l) ->
+ combinesmall 7 (combine (hash_term_array l) (hash_constr c))
+ | Evar (e,l) ->
+ combinesmall 8 (combine (Hashtbl.hash e) (hash_term_array l))
+ | Const c ->
+ combinesmall 9 (Hashtbl.hash c) (* TODO: proper hash function for constants *)
+ | Ind (kn,i) ->
+ combinesmall 9 (combine (Hashtbl.hash kn) i)
+ | Construct ((kn,i),j) ->
+ combinesmall 10 (combine3 (Hashtbl.hash kn) i j)
+ | Case (_ , p, c, bl) ->
+ combinesmall 11 (combine3 (hash_constr c) (hash_constr p) (hash_term_array bl))
+ | Fix (ln ,(_, tl, bl)) ->
+ combinesmall 13 (combine (hash_term_array bl) (hash_term_array tl))
+ | CoFix(ln, (_, tl, bl)) ->
+ combinesmall 14 (combine (hash_term_array bl) (hash_term_array tl))
+ | Meta n -> combinesmall 15 n
+ | Rel n -> combinesmall 16 n
+
+and hash_term_array t =
+ Array.fold_left (fun acc t -> combine (hash_constr t) acc) 0 t
module Hsorts =
Hashcons.Make(
@@ -1300,16 +1377,34 @@ module Hsorts =
let hash = Hashtbl.hash
end)
-let hsort = Hsorts.f
+module Hcaseinfo =
+ Hashcons.Make(
+ struct
+ type t = case_info
+ type u = inductive -> inductive
+ let hash_sub hind ci = { ci with ci_ind = hind ci.ci_ind }
+ let equal ci ci' =
+ ci.ci_ind == ci'.ci_ind &&
+ ci.ci_npar = ci'.ci_npar &&
+ ci.ci_cstr_ndecls = ci'.ci_cstr_ndecls && (* we use (=) on purpose *)
+ ci.ci_pp_info = ci'.ci_pp_info (* we use (=) on purpose *)
+ let hash = Hashtbl.hash
+ end)
-let hcons_constr (hcon,hkn,hdir,hname,hident,hstr) =
- let hsortscci = Hashcons.simple_hcons hsort hcons1_univ in
- let hcci = hcons_term (hsortscci,hcon,hkn,hname,hident) in
- let htcci = Hashcons.simple_hcons Htype.f (hcci,hsortscci) in
- (hcci,htcci)
+let hcons_sorts = Hashcons.simple_hcons Hsorts.f hcons_univ
+let hcons_caseinfo = Hashcons.simple_hcons Hcaseinfo.f hcons_ind
-let (hcons1_constr, hcons1_types) = hcons_constr (hcons_names())
+let hcons_constr =
+ hcons_term
+ (hcons_sorts,
+ hcons_caseinfo,
+ hcons_construct,
+ hcons_ind,
+ hcons_con,
+ hcons_name,
+ hcons_ident)
+let hcons_types = hcons_constr
(*******)
(* Type of abstract machine values *)