diff options
Diffstat (limited to 'kernel/esubst.ml')
-rw-r--r-- | kernel/esubst.ml | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/kernel/esubst.ml b/kernel/esubst.ml new file mode 100644 index 00000000..38db01fc --- /dev/null +++ b/kernel/esubst.ml @@ -0,0 +1,137 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: esubst.ml,v 1.4.2.1 2004/07/16 19:30:25 herbelin Exp $ *) + +open Util + +(*********************) +(* Lifting *) +(*********************) + +(* Explicit lifts and basic operations *) +type lift = + | ELID + | ELSHFT of lift * int (* ELSHFT(l,n) == lift of n, then apply lift l *) + | ELLFT of int * lift (* ELLFT(n,l) == apply l to de Bruijn > n *) + (* i.e under n binders *) + +(* compose a relocation of magnitude n *) +let rec el_shft_rec n = function + | ELSHFT(el,k) -> el_shft_rec (k+n) el + | el -> ELSHFT(el,n) +let el_shft n el = if n = 0 then el else el_shft_rec n el + +(* cross n binders *) +let rec el_liftn_rec n = function + | ELID -> ELID + | ELLFT(k,el) -> el_liftn_rec (n+k) el + | el -> ELLFT(n, el) +let el_liftn n el = if n = 0 then el else el_liftn_rec n el + +let el_lift el = el_liftn_rec 1 el + +(* relocation of de Bruijn n in an explicit lift *) +let rec reloc_rel n = function + | ELID -> n + | ELLFT(k,el) -> + if n <= k then n else (reloc_rel (n-k) el) + k + | ELSHFT(el,k) -> (reloc_rel (n+k) el) + +let rec is_lift_id = function + | ELID -> true + | ELSHFT(e,n) -> n=0 & is_lift_id e + | ELLFT (_,e) -> is_lift_id e + +(*********************) +(* Substitutions *) +(*********************) + +(* (bounded) explicit substitutions of type 'a *) +type 'a subs = + | ESID of int (* ESID(n) = %n END bounded identity *) + | CONS of 'a * 'a subs (* CONS(t,S) = (S.t) parallel substitution *) + | SHIFT of int * 'a subs (* SHIFT(n,S) = (^n o S) terms in S are relocated *) + (* with n vars *) + | LIFT of int * 'a subs (* LIFT(n,S) = (%n S) stands for ((^n o S).n...1) *) + +(* operations of subs: collapses constructors when possible. + * Needn't be recursive if we always use these functions + *) + +let subs_cons(x,s) = CONS(x,s) + +let subs_liftn n = function + | ESID p -> ESID (p+n) (* bounded identity lifted extends by p *) + | LIFT (p,lenv) -> LIFT (p+n, lenv) + | lenv -> LIFT (n,lenv) + +let subs_lift a = subs_liftn 1 a +let subs_liftn n a = if n = 0 then a else subs_liftn n a + +let subs_shft = function + | (0, s) -> s + | (n, SHIFT (k,s1)) -> SHIFT (k+n, s1) + | (n, s) -> SHIFT (n,s) +let subs_shft (n,a) = if n = 0 then a else subs_shft(n,a) + +let subs_shift_cons = function + (0, s, t) -> CONS(t,s) +| (k, SHIFT(n,s1), t) -> CONS(t,SHIFT(k+n, s1)) +| (k, s, t) -> CONS(t,SHIFT(k, s));; + +(* Tests whether a substitution is extensionnaly equal to the identity *) +let rec is_subs_id = function + ESID _ -> true + | LIFT(_,s) -> is_subs_id s + | SHIFT(0,s) -> is_subs_id s + | _ -> false + +(* Expands de Bruijn k in the explicit substitution subs + * lams accumulates de shifts to perform when retrieving the i-th value + * the rules used are the following: + * + * [id]k --> k + * [S.t]1 --> t + * [S.t]k --> [S](k-1) if k > 1 + * [^n o S] k --> [^n]([S]k) + * [(%n S)] k --> k if k <= n + * [(%n S)] k --> [^n]([S](k-n)) + * + * the result is (Inr (k+lams,p)) when the variable is just relocated + * where p is None if the variable points inside subs and Some(k) if the + * variable points k bindings beyond subs. + *) +let rec exp_rel lams k subs = + match (k,subs) with + | (1, CONS (def,_)) -> Inl(lams,def) + | (_, CONS (_,l)) -> exp_rel lams (pred k) l + | (_, LIFT (n,_)) when k<=n -> Inr(lams+k,None) + | (_, LIFT (n,l)) -> exp_rel (n+lams) (k-n) l + | (_, SHIFT (n,s)) -> exp_rel (n+lams) k s + | (_, ESID n) when k<=n -> Inr(lams+k,None) + | (_, ESID n) -> Inr(lams+k,Some (k-n)) + +let expand_rel k subs = exp_rel 0 k subs + +let rec comp mk_cl s1 s2 = + match (s1, s2) with + | _, ESID _ -> s1 + | ESID _, _ -> s2 + | SHIFT(k,s), _ -> subs_shft(k, comp mk_cl s s2) + | _, CONS(x,s') -> CONS(mk_cl(s1,x), comp mk_cl s1 s') + | CONS(x,s), SHIFT(k,s') -> comp mk_cl s (subs_shft(k-1, s')) + | CONS(x,s), LIFT(k,s') -> CONS(x,comp mk_cl s (subs_liftn (k-1) s')) + | LIFT(k,s), SHIFT(k',s') -> + if k<k' + then subs_shft(k, comp mk_cl s (subs_shft(k'-k, s'))) + else subs_shft(k', comp mk_cl (subs_liftn (k-k') s) s') + | LIFT(k,s), LIFT(k',s') -> + if k<k' + then subs_liftn k (comp mk_cl s (subs_liftn (k'-k) s')) + else subs_liftn k' (comp mk_cl (subs_liftn (k-k') s) s') |