diff options
Diffstat (limited to 'doc/refman')
47 files changed, 0 insertions, 36336 deletions
diff --git a/doc/refman/AddRefMan-pre.tex b/doc/refman/AddRefMan-pre.tex deleted file mode 100644 index 461e8e6d..00000000 --- a/doc/refman/AddRefMan-pre.tex +++ /dev/null @@ -1,62 +0,0 @@ -%\coverpage{Addendum to the Reference Manual}{\ } -%\addcontentsline{toc}{part}{Additional documentation} -%BEGIN LATEX -\setheaders{Presentation of the Addendum} -%END LATEX -\chapter*{Presentation of the Addendum} - -Here you will find several pieces of additional documentation for the -\Coq\ Reference Manual. Each of this chapters is concentrated on a -particular topic, that should interest only a fraction of the \Coq\ -users: that's the reason why they are apart from the Reference -Manual. - -\begin{description} - -\item[Extended pattern-matching] This chapter details the use of - generalized pattern-matching. It is contributed by Cristina Cornes - and Hugo Herbelin. - -\item[Implicit coercions] This chapter details the use of the coercion - mechanism. It is contributed by Amokrane Saïbi. - -%\item[Proof of imperative programs] This chapter explains how to -% prove properties of annotated programs with imperative features. -% It is contributed by Jean-Christophe Filliâtre - -\item[Program extraction] This chapter explains how to extract in practice ML - files from $\FW$ terms. It is contributed by Jean-Christophe - Filliâtre and Pierre Letouzey. - -\item[Program] This chapter explains the use of the \texttt{Program} - vernacular which allows the development of certified - programs in \Coq. It is contributed by Matthieu Sozeau and replaces - the previous \texttt{Program} tactic by Catherine Parent. - -%\item[Natural] This chapter is due to Yann Coscoy. It is the user -% manual of the tools he wrote for printing proofs in natural -% language. At this time, French and English languages are supported. - -\item[omega] \texttt{omega}, written by Pierre Crégut, solves a whole - class of arithmetic problems. - -\item[The {\tt ring} tactic] This is a tactic to do AC rewriting. This - chapter explains how to use it and how it works. - The chapter is contributed by Patrick Loiseleur. - -\item[The {\tt Setoid\_replace} tactic] This is a - tactic to do rewriting on types equipped with specific (only partially - substitutive) equality. The chapter is contributed by Clément Renard. - -\item[Calling external provers] This chapter describes several tactics - which call external provers. - -\end{description} - -\atableofcontents - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Cases.tex b/doc/refman/Cases.tex deleted file mode 100644 index 3ff4e25d..00000000 --- a/doc/refman/Cases.tex +++ /dev/null @@ -1,750 +0,0 @@ -\achapter{Extended pattern-matching} -%BEGIN LATEX -\defaultheaders -%END LATEX -\aauthor{Cristina Cornes and Hugo Herbelin} - -\label{Mult-match-full} -\ttindex{Cases} -\index{ML-like patterns} - -This section describes the full form of pattern-matching in {\Coq} terms. - -\asection{Patterns}\label{implementation} The full syntax of {\tt -match} is presented in Figures~\ref{term-syntax} -and~\ref{term-syntax-aux}. Identifiers in patterns are either -constructor names or variables. Any identifier that is not the -constructor of an inductive or co-inductive type is considered to be a -variable. A variable name cannot occur more than once in a given -pattern. It is recommended to start variable names by a lowercase -letter. - -If a pattern has the form $(c~\vec{x})$ where $c$ is a constructor -symbol and $\vec{x}$ is a linear vector of (distinct) variables, it is -called {\em simple}: it is the kind of pattern recognized by the basic -version of {\tt match}. On the opposite, if it is a variable $x$ or -has the form $(c~\vec{p})$ with $p$ not only made of variables, the -pattern is called {\em nested}. - -A variable pattern matches any value, and the identifier is bound to -that value. The pattern ``\texttt{\_}'' (called ``don't care'' or -``wildcard'' symbol) also matches any value, but does not bind -anything. It may occur an arbitrary number of times in a -pattern. Alias patterns written \texttt{(}{\sl pattern} \texttt{as} -{\sl identifier}\texttt{)} are also accepted. This pattern matches the -same values as {\sl pattern} does and {\sl identifier} is bound to the -matched value. -A pattern of the form {\pattern}{\tt |}{\pattern} is called -disjunctive. A list of patterns separated with commas is also -considered as a pattern and is called {\em multiple pattern}. However -multiple patterns can only occur at the root of pattern-matching -equations. Disjunctions of {\em multiple pattern} are allowed though. - -Since extended {\tt match} expressions are compiled into the primitive -ones, the expressiveness of the theory remains the same. Once the -stage of parsing has finished only simple patterns remain. Re-nesting -of pattern is performed at printing time. An easy way to see the -result of the expansion is to toggle off the nesting performed at -printing (use here {\tt Set Printing Matching}), then by printing the term -with \texttt{Print} if the term is a constant, or using the command -\texttt{Check}. - -The extended \texttt{match} still accepts an optional {\em elimination -predicate} given after the keyword \texttt{return}. Given a pattern -matching expression, if all the right-hand-sides of \texttt{=>} ({\em -rhs} in short) have the same type, then this type can be sometimes -synthesized, and so we can omit the \texttt{return} part. Otherwise -the predicate after \texttt{return} has to be provided, like for the basic -\texttt{match}. - -Let us illustrate through examples the different aspects of extended -pattern matching. Consider for example the function that computes the -maximum of two natural numbers. We can write it in primitive syntax -by: - -\begin{coq_example} -Fixpoint max (n m:nat) {struct m} : nat := - match n with - | O => m - | S n' => match m with - | O => S n' - | S m' => S (max n' m') - end - end. -\end{coq_example} - -\paragraph{Multiple patterns} - -Using multiple patterns in the definition of {\tt max} allows to write: - -\begin{coq_example} -Reset max. -Fixpoint max (n m:nat) {struct m} : nat := - match n, m with - | O, _ => m - | S n', O => S n' - | S n', S m' => S (max n' m') - end. -\end{coq_example} - -which will be compiled into the previous form. - -The pattern-matching compilation strategy examines patterns from left -to right. A \texttt{match} expression is generated {\bf only} when -there is at least one constructor in the column of patterns. E.g. the -following example does not build a \texttt{match} expression. - -\begin{coq_example} -Check (fun x:nat => match x return nat with - | y => y - end). -\end{coq_example} - -\paragraph{Aliasing subpatterns} - -We can also use ``\texttt{as} {\ident}'' to associate a name to a -sub-pattern: - -\begin{coq_example} -Reset max. -Fixpoint max (n m:nat) {struct n} : nat := - match n, m with - | O, _ => m - | S n' as p, O => p - | S n', S m' => S (max n' m') - end. -\end{coq_example} - -\paragraph{Nested patterns} - -Here is now an example of nested patterns: - -\begin{coq_example} -Fixpoint even (n:nat) : bool := - match n with - | O => true - | S O => false - | S (S n') => even n' - end. -\end{coq_example} - -This is compiled into: - -\begin{coq_example} -Print even. -\end{coq_example} - -In the previous examples patterns do not conflict with, but -sometimes it is comfortable to write patterns that admit a non -trivial superposition. Consider -the boolean function \texttt{lef} that given two natural numbers -yields \texttt{true} if the first one is less or equal than the second -one and \texttt{false} otherwise. We can write it as follows: - -\begin{coq_example} -Fixpoint lef (n m:nat) {struct m} : bool := - match n, m with - | O, x => true - | x, O => false - | S n, S m => lef n m - end. -\end{coq_example} - -Note that the first and the second multiple pattern superpose because -the couple of values \texttt{O O} matches both. Thus, what is the result -of the function on those values? To eliminate ambiguity we use the -{\em textual priority rule}: we consider patterns ordered from top to -bottom, then a value is matched by the pattern at the $ith$ row if and -only if it is not matched by some pattern of a previous row. Thus in the -example, -\texttt{O O} is matched by the first pattern, and so \texttt{(lef O O)} -yields \texttt{true}. - -Another way to write this function is: - -\begin{coq_example} -Reset lef. -Fixpoint lef (n m:nat) {struct m} : bool := - match n, m with - | O, x => true - | S n, S m => lef n m - | _, _ => false - end. -\end{coq_example} - -Here the last pattern superposes with the first two. Because -of the priority rule, the last pattern -will be used only for values that do not match neither the first nor -the second one. - -Terms with useless patterns are not accepted by the -system. Here is an example: -% Test failure -\begin{coq_eval} -Set Printing Depth 50. - (********** The following is not correct and should produce **********) - (**************** Error: This clause is redundant ********************) -\end{coq_eval} -\begin{coq_example} -Check (fun x:nat => - match x with - | O => true - | S _ => false - | x => true - end). -\end{coq_example} - -\paragraph{Disjunctive patterns} - -Multiple patterns that share the same right-hand-side can be -factorized using the notation \nelist{\multpattern}{\tt |}. For instance, -{\tt max} can be rewritten as follows: - -\begin{coq_eval} -Reset max. -\end{coq_eval} -\begin{coq_example} -Fixpoint max (n m:nat) {struct m} : nat := - match n, m with - | S n', S m' => S (max n' m') - | 0, p | p, 0 => p - end. -\end{coq_example} - -Similarly, factorization of (non necessary multiple) patterns -that share the same variables is possible by using the notation -\nelist{\pattern}{\tt |}. Here is an example: - -\begin{coq_example} -Definition filter_2_4 (n:nat) : nat := - match n with - | 2 as m | 4 as m => m - | _ => 0 - end. -\end{coq_example} - -Here is another example using disjunctive subpatterns. - -\begin{coq_example} -Definition filter_some_square_corners (p:nat*nat) : nat*nat := - match p with - | ((2 as m | 4 as m), (3 as n | 5 as n)) => (m,n) - | _ => (0,0) - end. -\end{coq_example} - -\asection{About patterns of parametric types} -When matching objects of a parametric type, constructors in patterns -{\em do not expect} the parameter arguments. Their value is deduced -during expansion. -Consider for example the type of polymorphic lists: - -\begin{coq_example} -Inductive List (A:Set) : Set := - | nil : List A - | cons : A -> List A -> List A. -\end{coq_example} - -We can check the function {\em tail}: - -\begin{coq_example} -Check - (fun l:List nat => - match l with - | nil => nil nat - | cons _ l' => l' - end). -\end{coq_example} - - -When we use parameters in patterns there is an error message: -% Test failure -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(******** Error: The constructor cons expects 2 arguments ************) -\end{coq_eval} -\begin{coq_example} -Check - (fun l:List nat => - match l with - | nil A => nil nat - | cons A _ l' => l' - end). -\end{coq_example} - - - -\asection{Matching objects of dependent types} -The previous examples illustrate pattern matching on objects of -non-dependent types, but we can also -use the expansion strategy to destructure objects of dependent type. -Consider the type \texttt{listn} of lists of a certain length: -\label{listn} - -\begin{coq_example} -Inductive listn : nat -> Set := - | niln : listn 0 - | consn : forall n:nat, nat -> listn n -> listn (S n). -\end{coq_example} - -\asubsection{Understanding dependencies in patterns} -We can define the function \texttt{length} over \texttt{listn} by: - -\begin{coq_example} -Definition length (n:nat) (l:listn n) := n. -\end{coq_example} - -Just for illustrating pattern matching, -we can define it by case analysis: - -\begin{coq_example} -Reset length. -Definition length (n:nat) (l:listn n) := - match l with - | niln => 0 - | consn n _ _ => S n - end. -\end{coq_example} - -We can understand the meaning of this definition using the -same notions of usual pattern matching. - -% -% Constraining of dependencies is not longer valid in V7 -% -\iffalse -Now suppose we split the second pattern of \texttt{length} into two -cases so to give an -alternative definition using nested patterns: -\begin{coq_example} -Definition length1 (n:nat) (l:listn n) := - match l with - | niln => 0 - | consn n _ niln => S n - | consn n _ (consn _ _ _) => S n - end. -\end{coq_example} - -It is obvious that \texttt{length1} is another version of -\texttt{length}. We can also give the following definition: -\begin{coq_example} -Definition length2 (n:nat) (l:listn n) := - match l with - | niln => 0 - | consn n _ niln => 1 - | consn n _ (consn m _ _) => S (S m) - end. -\end{coq_example} - -If we forget that \texttt{listn} is a dependent type and we read these -definitions using the usual semantics of pattern matching, we can conclude -that \texttt{length1} -and \texttt{length2} are different functions. -In fact, they are equivalent -because the pattern \texttt{niln} implies that \texttt{n} can only match -the value $0$ and analogously the pattern \texttt{consn} determines that \texttt{n} can -only match values of the form $(S~v)$ where $v$ is the value matched by -\texttt{m}. - -The converse is also true. If -we destructure the length value with the pattern \texttt{O} then the list -value should be $niln$. -Thus, the following term \texttt{length3} corresponds to the function -\texttt{length} but this time defined by case analysis on the dependencies instead of on the list: - -\begin{coq_example} -Definition length3 (n:nat) (l:listn n) := - match l with - | niln => 0 - | consn O _ _ => 1 - | consn (S n) _ _ => S (S n) - end. -\end{coq_example} - -When we have nested patterns of dependent types, the semantics of -pattern matching becomes a little more difficult because -the set of values that are matched by a sub-pattern may be conditioned by the -values matched by another sub-pattern. Dependent nested patterns are -somehow constrained patterns. -In the examples, the expansion of -\texttt{length1} and \texttt{length2} yields exactly the same term - but the -expansion of \texttt{length3} is completely different. \texttt{length1} and -\texttt{length2} are expanded into two nested case analysis on -\texttt{listn} while \texttt{length3} is expanded into a case analysis on -\texttt{listn} containing a case analysis on natural numbers inside. - - -In practice the user can think about the patterns as independent and -it is the expansion algorithm that cares to relate them. \\ -\fi -% -% -% - -\asubsection{When the elimination predicate must be provided} -The examples given so far do not need an explicit elimination predicate - because all the rhs have the same type and the -strategy succeeds to synthesize it. -Unfortunately when dealing with dependent patterns it often happens -that we need to write cases where the type of the rhs are -different instances of the elimination predicate. -The function \texttt{concat} for \texttt{listn} -is an example where the branches have different type -and we need to provide the elimination predicate: - -\begin{coq_example} -Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} : - listn (n + m) := - match l in listn n return listn (n + m) with - | niln => l' - | consn n' a y => consn (n' + m) a (concat n' y m l') - end. -\end{coq_example} -The elimination predicate is {\tt fun (n:nat) (l:listn n) => listn~(n+m)}. -In general if $m$ has type $(I~q_1\ldots q_r~t_1\ldots t_s)$ where -$q_1\ldots q_r$ are parameters, the elimination predicate should be of -the form~: -{\tt fun $y_1$\ldots $y_s$ $x$:($I$~$q_1$\ldots $q_r$~$y_1$\ldots - $y_s$) => Q}. - -In the concrete syntax, it should be written~: -\[ \kw{match}~m~\kw{as}~x~\kw{in}~(I~\_\ldots \_~y_1\ldots y_s)~\kw{return}~Q~\kw{with}~\ldots~\kw{end}\] - -The variables which appear in the \kw{in} and \kw{as} clause are new -and bounded in the property $Q$ in the \kw{return} clause. The -parameters of the inductive definitions should not be mentioned and -are replaced by \kw{\_}. - -Recall that a list of patterns is also a pattern. So, when -we destructure several terms at the same time and the branches have -different type we need to provide -the elimination predicate for this multiple pattern. -It is done using the same scheme, each term may be associated to an -\kw{as} and \kw{in} clause in order to introduce a dependent product. - -For example, an equivalent definition for \texttt{concat} (even though the matching on the second term is trivial) would have -been: - -\begin{coq_example} -Reset concat. -Fixpoint concat (n:nat) (l:listn n) (m:nat) (l':listn m) {struct l} : - listn (n + m) := - match l in listn n, l' return listn (n + m) with - | niln, x => x - | consn n' a y, x => consn (n' + m) a (concat n' y m x) - end. -\end{coq_example} - -% Notice that this time, the predicate \texttt{[n,\_:nat](listn (plus n -% m))} is binary because we -% destructure both \texttt{l} and \texttt{l'} whose types have arity one. -% In general, if we destructure the terms $e_1\ldots e_n$ -% the predicate will be of arity $m$ where $m$ is the sum of the -% number of dependencies of the type of $e_1, e_2,\ldots e_n$ -% (the $\lambda$-abstractions -% should correspond from left to right to each dependent argument of the -% type of $e_1\ldots e_n$). -When the arity of the predicate (i.e. number of abstractions) is not -correct Coq raises an error message. For example: - -% Test failure -\begin{coq_eval} -Reset concat. -Set Printing Depth 50. -(********** The following is not correct and should produce ***********) -(** Error: the term l' has type listn m while it is expected to have **) -(** type listn (?31 + ?32) **) -\end{coq_eval} -\begin{coq_example} -Fixpoint concat - (n:nat) (l:listn n) (m:nat) - (l':listn m) {struct l} : listn (n + m) := - match l, l' with - | niln, x => x - | consn n' a y, x => consn (n' + m) a (concat n' y m x) - end. -\end{coq_example} - -\asection{Using pattern matching to write proofs} -In all the previous examples the elimination predicate does not depend -on the object(s) matched. But it may depend and the typical case -is when we write a proof by induction or a function that yields an -object of dependent type. An example of proof using \texttt{match} in -given in Section~\ref{refine-example}. - -For example, we can write -the function \texttt{buildlist} that given a natural number -$n$ builds a list of length $n$ containing zeros as follows: - -\begin{coq_example} -Fixpoint buildlist (n:nat) : listn n := - match n return listn n with - | O => niln - | S n => consn n 0 (buildlist n) - end. -\end{coq_example} - -We can also use multiple patterns. -Consider the following definition of the predicate less-equal -\texttt{Le}: - -\begin{coq_example} -Inductive LE : nat -> nat -> Prop := - | LEO : forall n:nat, LE 0 n - | LES : forall n m:nat, LE n m -> LE (S n) (S m). -\end{coq_example} - -We can use multiple patterns to write the proof of the lemma - \texttt{forall (n m:nat), (LE n m)}\verb=\/=\texttt{(LE m n)}: - -\begin{coq_example} -Fixpoint dec (n m:nat) {struct n} : LE n m \/ LE m n := - match n, m return LE n m \/ LE m n with - | O, x => or_introl (LE x 0) (LEO x) - | x, O => or_intror (LE x 0) (LEO x) - | S n as n', S m as m' => - match dec n m with - | or_introl h => or_introl (LE m' n') (LES n m h) - | or_intror h => or_intror (LE n' m') (LES m n h) - end - end. -\end{coq_example} -In the example of \texttt{dec}, -the first \texttt{match} is dependent while -the second is not. - -% In general, consider the terms $e_1\ldots e_n$, -% where the type of $e_i$ is an instance of a family type -% $\lb (\vec{d_i}:\vec{D_i}) \mto T_i$ ($1\leq i -% \leq n$). Then, in expression \texttt{match} $e_1,\ldots, -% e_n$ \texttt{of} \ldots \texttt{end}, the -% elimination predicate ${\cal P}$ should be of the form: -% $[\vec{d_1}:\vec{D_1}][x_1:T_1]\ldots [\vec{d_n}:\vec{D_n}][x_n:T_n]Q.$ - -The user can also use \texttt{match} in combination with the tactic -\texttt{refine} (see Section~\ref{refine}) to build incomplete proofs -beginning with a \texttt{match} construction. - -\asection{Pattern-matching on inductive objects involving local -definitions} - -If local definitions occur in the type of a constructor, then there -are two ways to match on this constructor. Either the local -definitions are skipped and matching is done only on the true arguments -of the constructors, or the bindings for local definitions can also -be caught in the matching. - -Example. - -\begin{coq_eval} -Reset Initial. -Require Import Arith. -\end{coq_eval} - -\begin{coq_example*} -Inductive list : nat -> Set := - | nil : list 0 - | cons : forall n:nat, let m := (2 * n) in list m -> list (S (S m)). -\end{coq_example*} - -In the next example, the local definition is not caught. - -\begin{coq_example} -Fixpoint length n (l:list n) {struct l} : nat := - match l with - | nil => 0 - | cons n l0 => S (length (2 * n) l0) - end. -\end{coq_example} - -But in this example, it is. - -\begin{coq_example} -Fixpoint length' n (l:list n) {struct l} : nat := - match l with - | nil => 0 - | cons _ m l0 => S (length' m l0) - end. -\end{coq_example} - -\Rem for a given matching clause, either none of the local -definitions or all of them can be caught. - -\asection{Pattern-matching and coercions} - -If a mismatch occurs between the expected type of a pattern and its -actual type, a coercion made from constructors is sought. If such a -coercion can be found, it is automatically inserted around the -pattern. - -Example: - -\begin{coq_example} -Inductive I : Set := - | C1 : nat -> I - | C2 : I -> I. -Coercion C1 : nat >-> I. -Check (fun x => match x with - | C2 O => 0 - | _ => 0 - end). -\end{coq_example} - - -\asection{When does the expansion strategy fail ?}\label{limitations} -The strategy works very like in ML languages when treating -patterns of non-dependent type. -But there are new cases of failure that are due to the presence of -dependencies. - -The error messages of the current implementation may be sometimes -confusing. When the tactic fails because patterns are somehow -incorrect then error messages refer to the initial expression. But the -strategy may succeed to build an expression whose sub-expressions are -well typed when the whole expression is not. In this situation the -message makes reference to the expanded expression. We encourage -users, when they have patterns with the same outer constructor in -different equations, to name the variable patterns in the same -positions with the same name. -E.g. to write {\small\texttt{(cons n O x) => e1}} -and {\small\texttt{(cons n \_ x) => e2}} instead of -{\small\texttt{(cons n O x) => e1}} and -{\small\texttt{(cons n' \_ x') => e2}}. -This helps to maintain certain name correspondence between the -generated expression and the original. - -Here is a summary of the error messages corresponding to each situation: - -\begin{ErrMsgs} -\item \sverb{The constructor } {\sl - ident} \sverb{ expects } {\sl num} \sverb{ arguments} - - \sverb{The variable } {\sl ident} \sverb{ is bound several times - in pattern } {\sl term} - - \sverb{Found a constructor of inductive type } {\term} - \sverb{ while a constructor of } {\term} \sverb{ is expected} - - Patterns are incorrect (because constructors are not applied to - the correct number of the arguments, because they are not linear or - they are wrongly typed). - -\item \errindex{Non exhaustive pattern-matching} - -The pattern matching is not exhaustive. - -\item \sverb{The elimination predicate } {\sl term} \sverb{ should be - of arity } {\sl num} \sverb{ (for non dependent case) or } {\sl - num} \sverb{ (for dependent case)} - -The elimination predicate provided to \texttt{match} has not the - expected arity. - - -%\item the whole expression is wrongly typed - -% CADUC ? -% , or the synthesis of -% implicit arguments fails (for example to find the elimination -% predicate or to resolve implicit arguments in the rhs). - -% There are {\em nested patterns of dependent type}, the elimination -% predicate corresponds to non-dependent case and has the form -% $[x_1:T_1]...[x_n:T_n]T$ and {\bf some} $x_i$ occurs {\bf free} in -% $T$. Then, the strategy may fail to find out a correct elimination -% predicate during some step of compilation. In this situation we -% recommend the user to rewrite the nested dependent patterns into -% several \texttt{match} with {\em simple patterns}. - -\item {\tt Unable to infer a match predicate\\ - Either there is a type incompatiblity or the problem involves\\ - dependencies} - - There is a type mismatch between the different branches. - The user should provide an elimination predicate. - -% Obsolete ? -% \item because of nested patterns, it may happen that even though all -% the rhs have the same type, the strategy needs dependent elimination -% and so an elimination predicate must be provided. The system warns -% about this situation, trying to compile anyway with the -% non-dependent strategy. The risen message is: - -% \begin{itemize} -% \item {\tt Warning: This pattern matching may need dependent -% elimination to be compiled. I will try, but if fails try again -% giving dependent elimination predicate.} -% \end{itemize} - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% % LA PROPAGATION DES CONTRAINTES ARRIERE N'EST PAS FAITE DANS LA V7 -% TODO -% \item there are {\em nested patterns of dependent type} and the -% strategy builds a term that is well typed but recursive calls in fix -% point are reported as illegal: -% \begin{itemize} -% \item {\tt Error: Recursive call applied to an illegal term ...} -% \end{itemize} - -% This is because the strategy generates a term that is correct w.r.t. -% the initial term but which does not pass the guard condition. In -% this situation we recommend the user to transform the nested dependent -% patterns into {\em several \texttt{match} of simple patterns}. Let us -% explain this with an example. Consider the following definition of a -% function that yields the last element of a list and \texttt{O} if it is -% empty: - -% \begin{coq_example} -% Fixpoint last [n:nat; l:(listn n)] : nat := -% match l of -% (consn _ a niln) => a -% | (consn m _ x) => (last m x) | niln => O -% end. -% \end{coq_example} - -% It fails because of the priority between patterns, we know that this -% definition is equivalent to the following more explicit one (which -% fails too): - -% \begin{coq_example*} -% Fixpoint last [n:nat; l:(listn n)] : nat := -% match l of -% (consn _ a niln) => a -% | (consn n _ (consn m b x)) => (last n (consn m b x)) -% | niln => O -% end. -% \end{coq_example*} - -% Note that the recursive call {\tt (last n (consn m b x))} is not -% guarded. When treating with patterns of dependent types the strategy -% interprets the first definition of \texttt{last} as the second -% one\footnote{In languages of the ML family the first definition would -% be translated into a term where the variable \texttt{x} is shared in -% the expression. When patterns are of non-dependent types, Coq -% compiles as in ML languages using sharing. When patterns are of -% dependent types the compilation reconstructs the term as in the -% second definition of \texttt{last} so to ensure the result of -% expansion is well typed.}. Thus it generates a term where the -% recursive call is rejected by the guard condition. - -% You can get rid of this problem by writing the definition with -% \emph{simple patterns}: - -% \begin{coq_example} -% Fixpoint last [n:nat; l:(listn n)] : nat := -% <[_:nat]nat>match l of -% (consn m a x) => Cases x of niln => a | _ => (last m x) end -% | niln => O -% end. -% \end{coq_example} - -\end{ErrMsgs} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Classes.tex b/doc/refman/Classes.tex deleted file mode 100644 index 20ff649a..00000000 --- a/doc/refman/Classes.tex +++ /dev/null @@ -1,418 +0,0 @@ -\def\Haskell{\textsc{Haskell}\xspace} -\def\eol{\setlength\parskip{0pt}\par} -\def\indent#1{\noindent\kern#1} -\def\cst#1{\textsf{#1}} - -\newcommand\tele[1]{\overrightarrow{#1}} - -\achapter{\protect{Type Classes}} -\aauthor{Matthieu Sozeau} -\label{typeclasses} - -\begin{flushleft} - \em The status of Type Classes is (extremely) experimental. -\end{flushleft} - -This chapter presents a quick reference of the commands related to type -classes. For an actual introduction to type classes, there is a -description of the system \cite{sozeau08} and the literature on type -classes in \Haskell which also applies. - -\asection{Class and Instance declarations} -\label{ClassesInstances} - -The syntax for class and instance declarations is the same as -record syntax of \Coq: -\def\kw{\texttt} -\def\classid{\texttt} - -\begin{center} -\[\begin{array}{l} -\kw{Class}~\classid{Id}~(\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) -[: \sort] := \{\\ -\begin{array}{p{0em}lcl} - & \cst{f}_1 & : & \type_1 ; \\ - & \vdots & & \\ - & \cst{f}_m & : & \type_m \}. -\end{array}\end{array}\] -\end{center} -\begin{center} -\[\begin{array}{l} -\kw{Instance}~\ident~:~\classid{Id}~\term_1 \cdots \term_n := \{\\ -\begin{array}{p{0em}lcl} - & \cst{f}_1 & := & \term_{f_1} ; \\ - & \vdots & & \\ - & \cst{f}_m & := & \term_{f_m} \}. -\end{array}\end{array}\] -\end{center} -\begin{coq_eval} - Reset Initial. - Generalizable All Variables. -\end{coq_eval} - -The $\tele{\alpha_i : \tau_i}$ variables are called the \emph{parameters} -of the class and the $\tele{f_k : \type_k}$ are called the -\emph{methods}. Each class definition gives rise to a corresponding -record declaration and each instance is a regular definition whose name -is given by $\ident$ and type is an instantiation of the record type. - -We'll use the following example class in the rest of the chapter: - -\begin{coq_example*} -Class EqDec (A : Type) := { - eqb : A -> A -> bool ; - eqb_leibniz : forall x y, eqb x y = true -> x = y }. -\end{coq_example*} - -This class implements a boolean equality test which is compatible with -Leibniz equality on some type. An example implementation is: - -\begin{coq_example*} -Instance unit_EqDec : EqDec unit := -{ eqb x y := true ; - eqb_leibniz x y H := - match x, y return x = y with tt, tt => refl_equal tt end }. -\end{coq_example*} - -If one does not give all the members in the \texttt{Instance} -declaration, Coq enters the proof-mode and the user is asked to build -inhabitants of the remaining fields, e.g.: - -\begin{coq_example*} -Instance eq_bool : EqDec bool := -{ eqb x y := if x then y else negb y }. -\end{coq_example*} -\begin{coq_example} -Proof. intros x y H. - destruct x ; destruct y ; (discriminate || reflexivity). -Defined. -\end{coq_example} - -One has to take care that the transparency of every field is determined -by the transparency of the \texttt{Instance} proof. One can use -alternatively the \texttt{Program} \texttt{Instance} \comindex{Program Instance} variant which has -richer facilities for dealing with obligations. - -\asection{Binding classes} - -Once a type class is declared, one can use it in class binders: -\begin{coq_example} -Definition neqb {A} {eqa : EqDec A} (x y : A) := negb (eqb x y). -\end{coq_example} - -When one calls a class method, a constraint is generated that is -satisfied only in contexts where the appropriate instances can be -found. In the example above, a constraint \texttt{EqDec A} is generated and -satisfied by \texttt{{eqa : EqDec A}}. In case no satisfying constraint can be -found, an error is raised: - -\begin{coq_example} -Definition neqb' (A : Type) (x y : A) := negb (eqb x y). -\end{coq_example} - -The algorithm used to solve constraints is a variant of the eauto tactic -that does proof search with a set of lemmas (the instances). It will use -local hypotheses as well as declared lemmas in the -\texttt{typeclass\_instances} database. Hence the example can also be -written: - -\begin{coq_example} -Definition neqb' A (eqa : EqDec A) (x y : A) := negb (eqb x y). -\end{coq_example} - -However, the generalizing binders should be used instead as they have -particular support for type classes: -\begin{itemize} -\item They automatically set the maximally implicit status for type - class arguments, making derived functions as easy to use as class - methods. In the example above, \texttt{A} and \texttt{eqa} should be - set maximally implicit. -\item They support implicit quantification on partialy applied type - classes (\S \ref{implicit-generalization}). - Any argument not given as part of a type class binder will be - automatically generalized. -\item They also support implicit quantification on superclasses - (\S \ref{classes:superclasses}) -\end{itemize} - -Following the previous example, one can write: -\begin{coq_example} -Definition neqb_impl `{eqa : EqDec A} (x y : A) := negb (eqb x y). -\end{coq_example} - -Here \texttt{A} is implicitly generalized, and the resulting function -is equivalent to the one above. - -\asection{Parameterized Instances} - -One can declare parameterized instances as in \Haskell simply by giving -the constraints as a binding context before the instance, e.g.: - -\begin{coq_example} -Instance prod_eqb `(EA : EqDec A, EB : EqDec B) : EqDec (A * B) := -{ eqb x y := match x, y with - | (la, ra), (lb, rb) => andb (eqb la lb) (eqb ra rb) - end }. -\end{coq_example} -\begin{coq_eval} -Admitted. -\end{coq_eval} - -These instances are used just as well as lemmas in the instance hint database. - -\asection{Sections and contexts} -\label{SectionContext} -To ease the parametrization of developments by type classes, we provide -a new way to introduce variables into section contexts, compatible with -the implicit argument mechanism. -The new command works similarly to the \texttt{Variables} vernacular -(see \ref{Variable}), except it accepts any binding context as argument. -For example: - -\begin{coq_example} -Section EqDec_defs. - Context `{EA : EqDec A}. -\end{coq_example} - -\begin{coq_example*} - Global Instance option_eqb : EqDec (option A) := - { eqb x y := match x, y with - | Some x, Some y => eqb x y - | None, None => true - | _, _ => false - end }. -\end{coq_example*} -\begin{coq_eval} -Proof. -intros x y ; destruct x ; destruct y ; intros H ; -try discriminate ; try apply eqb_leibniz in H ; -subst ; auto. -Defined. -\end{coq_eval} - -\begin{coq_example} -End EqDec_defs. -About option_eqb. -\end{coq_example} - -Here the \texttt{Global} modifier redeclares the instance at the end of -the section, once it has been generalized by the context variables it uses. - -\asection{Building hierarchies} - -\subsection{Superclasses} -\label{classes:superclasses} -One can also parameterize classes by other classes, generating a -hierarchy of classes and superclasses. In the same way, we give the -superclasses as a binding context: - -\begin{coq_example*} -Class Ord `(E : EqDec A) := - { le : A -> A -> bool }. -\end{coq_example*} - -Contrary to \Haskell, we have no special syntax for superclasses, but -this declaration is morally equivalent to: -\begin{verbatim} -Class `(E : EqDec A) => Ord A := - { le : A -> A -> bool }. -\end{verbatim} - -This declaration means that any instance of the \texttt{Ord} class must -have an instance of \texttt{EqDec}. The parameters of the subclass contain -at least all the parameters of its superclasses in their order of -appearance (here \texttt{A} is the only one). -As we have seen, \texttt{Ord} is encoded as a record type with two parameters: -a type \texttt{A} and an \texttt{E} of type \texttt{EqDec A}. However, one can -still use it as if it had a single parameter inside generalizing binders: the -generalization of superclasses will be done automatically. -\begin{coq_example*} -Definition le_eqb `{Ord A} (x y : A) := andb (le x y) (le y x). -\end{coq_example*} - -In some cases, to be able to specify sharing of structures, one may want to give -explicitly the superclasses. It is is possible to do it directly in regular -binders, and using the \texttt{!} modifier in class binders. For -example: -\begin{coq_example*} -Definition lt `{eqa : EqDec A, ! Ord eqa} (x y : A) := - andb (le x y) (neqb x y). -\end{coq_example*} - -The \texttt{!} modifier switches the way a binder is parsed back to the -regular interpretation of Coq. In particular, it uses the implicit -arguments mechanism if available, as shown in the example. - -\subsection{Substructures} - -Substructures are components of a class which are instances of a class -themselves. They often arise when using classes for logical properties, -e.g.: - -\begin{coq_eval} -Require Import Relations. -\end{coq_eval} -\begin{coq_example*} -Class Reflexive (A : Type) (R : relation A) := - reflexivity : forall x, R x x. -Class Transitive (A : Type) (R : relation A) := - transitivity : forall x y z, R x y -> R y z -> R x z. -\end{coq_example*} - -This declares singleton classes for reflexive and transitive relations, -(see \ref{SingletonClass} for an explanation). -These may be used as part of other classes: - -\begin{coq_example*} -Class PreOrder (A : Type) (R : relation A) := -{ PreOrder_Reflexive :> Reflexive A R ; - PreOrder_Transitive :> Transitive A R }. -\end{coq_example*} - -The syntax \texttt{:>} indicates that each \texttt{PreOrder} can be seen -as a \texttt{Reflexive} relation. So each time a reflexive relation is -needed, a preorder can be used instead. This is very similar to the -coercion mechanism of \texttt{Structure} declarations. -The implementation simply declares each projection as an instance. - -One can also declare existing objects or structure -projections using the \texttt{Existing Instance} command to achieve the -same effect. - -\section{Summary of the commands -\label{TypeClassCommands}} - -\subsection{\tt Class {\ident} {\binder$_1$ \ldots~\binder$_n$} - : \sort := \{ field$_1$ ; \ldots ; field$_k$ \}.} -\comindex{Class} -\label{Class} - -The \texttt{Class} command is used to declare a type class with -parameters {\binder$_1$} to {\binder$_n$} and fields {\tt field$_1$} to -{\tt field$_k$}. - -\begin{Variants} -\item \label{SingletonClass} {\tt Class {\ident} {\binder$_1$ \ldots \binder$_n$} - : \sort := \ident$_1$ : \type$_1$.} - This variant declares a \emph{singleton} class whose only method is - {\tt \ident$_1$}. This singleton class is a so-called definitional - class, represented simply as a definition - {\tt {\ident} \binder$_1$ \ldots \binder$_n$ := \type$_1$} and whose - instances are themselves objects of this type. Definitional classes - are not wrapped inside records, and the trivial projection of an - instance of such a class is convertible to the instance itself. This can - be useful to make instances of existing objects easily and to reduce - proof size by not inserting useless projections. The class - constant itself is declared rigid during resolution so that the class - abstraction is maintained. - -\item \label{ExistingClass} {\tt Existing Class {\ident}.\comindex{Existing Class}} - This variant declares a class a posteriori from a constant or - inductive definition. No methods or instances are defined. -\end{Variants} - -\subsection{\tt Instance {\ident} {\binder$_1$ \ldots \binder$_n$} : - {Class} {t$_1$ \ldots t$_n$} [| \textit{priority}] - := \{ field$_1$ := b$_1$ ; \ldots ; field$_i$ := b$_i$ \}} -\comindex{Instance} -\label{Instance} - -The \texttt{Instance} command is used to declare a type class instance -named {\ident} of the class \emph{Class} with parameters {t$_1$} to {t$_n$} and -fields {\tt b$_1$} to {\tt b$_i$}, where each field must be a declared -field of the class. Missing fields must be filled in interactive proof mode. - -An arbitrary context of the form {\tt \binder$_1$ \ldots \binder$_n$} -can be put after the name of the instance and before the colon to -declare a parameterized instance. -An optional \textit{priority} can be declared, 0 being the highest -priority as for auto hints. - -\begin{Variants} -\item {\tt Instance {\ident} {\binder$_1$ \ldots \binder$_n$} : - forall {\binder$_{n+1}$ \ldots \binder$_m$}, - {Class} {t$_1$ \ldots t$_n$} [| \textit{priority}] := \term} - This syntax is used for declaration of singleton class instances or - for directly giving an explicit term of type - {\tt forall {\binder$_{n+1}$ \ldots \binder$_m$}, {Class} {t$_1$ \ldots t$_n$}}. - One need not even mention the unique field name for singleton classes. - -\item {\tt Global Instance} One can use the \texttt{Global} modifier on - instances declared in a section so that their generalization is automatically - redeclared after the section is closed. - -\item {\tt Program Instance} \comindex{Program Instance} - Switches the type-checking to \Program~(chapter \ref{Program}) - and uses the obligation mechanism to manage missing fields. - -\item {\tt Declare Instance} \comindex{Declare Instance} - In a {\tt Module Type}, this command states that a corresponding - concrete instance should exist in any implementation of this - {\tt Module Type}. This is similar to the distinction between - {\tt Parameter} vs. {\tt Definition}, or between {\tt Declare Module} - and {\tt Module}. - -\end{Variants} - -Besides the {\tt Class} and {\tt Instance} vernacular commands, there -are a few other commands related to type classes. - -\subsection{\tt Existing Instance {\ident}} -\comindex{Existing Instance} -\label{ExistingInstance} - -This commands adds an arbitrary constant whose type ends with an applied -type class to the instance database. It can be used for redeclaring -instances at the end of sections, or declaring structure projections as -instances. This is almost equivalent to {\tt Hint Resolve {\ident} : - typeclass\_instances}. - -\begin{Variants} -\item {\tt Existing Instances {\ident}$_1$ \ldots {\ident}$_n$} - \comindex{Existing Instances} - With this command, several existing instances can be declared at once. -\end{Variants} - -\subsection{\tt Context {\binder$_1$ \ldots \binder$_n$}} -\comindex{Context} -\label{Context} - -Declares variables according to the given binding context, which might -use implicit generalization (see \ref{SectionContext}). - -\subsection{\tt Typeclasses Transparent, Opaque {\ident$_1$ \ldots \ident$_n$}} -\comindex{Typeclasses Transparent} -\comindex{Typeclasses Opaque} -\label{TypeclassesTransparency} - -This commands defines the transparency of {\ident$_1$ \ldots \ident$_n$} -during type class resolution. It is useful when some constants prevent some -unifications and make resolution fail. It is also useful to declare -constants which should never be unfolded during proof-search, like -fixpoints or anything which does not look like an abbreviation. This can -additionally speed up proof search as the typeclass map can be indexed -by such rigid constants (see \ref{HintTransparency}). -By default, all constants and local variables are considered transparent. -One should take care not to make opaque any constant that is used to -abbreviate a type, like {\tt relation A := A -> A -> Prop}. - -This is equivalent to {\tt Hint Transparent,Opaque} {\ident} {\tt: typeclass\_instances}. - -\subsection{\tt Typeclasses eauto := [debug] [dfs | bfs] [\emph{depth}]} -\comindex{Typeclasses eauto} -\label{TypeclassesEauto} - -This commands allows to customize the type class resolution tactic, -based on a variant of eauto. The flags semantics are: -\begin{itemize} -\item {\tt debug} In debug mode, the trace of successfully applied - tactics is printed. -\item {\tt dfs, bfs} This sets the search strategy to depth-first search - (the default) or breadth-first search. -\item {\emph{depth}} This sets the depth of the search (the default is 100). -\end{itemize} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Coercion.tex b/doc/refman/Coercion.tex deleted file mode 100644 index 3b6c949b..00000000 --- a/doc/refman/Coercion.tex +++ /dev/null @@ -1,564 +0,0 @@ -\achapter{Implicit Coercions} -\aauthor{Amokrane Saïbi} - -\label{Coercions-full} -\index{Coercions!presentation} - -\asection{General Presentation} - -This section describes the inheritance mechanism of {\Coq}. In {\Coq} with -inheritance, we are not interested in adding any expressive power to -our theory, but only convenience. Given a term, possibly not typable, -we are interested in the problem of determining if it can be well -typed modulo insertion of appropriate coercions. We allow to write: - -\begin{itemize} -\item $f~a$ where $f:forall~ x:A, B$ and $a:A'$ when $A'$ can - be seen in some sense as a subtype of $A$. -\item $x:A$ when $A$ is not a type, but can be seen in - a certain sense as a type: set, group, category etc. -\item $f~a$ when $f$ is not a function, but can be seen in a certain sense - as a function: bijection, functor, any structure morphism etc. -\end{itemize} - -\asection{Classes} -\index{Coercions!classes} - A class with $n$ parameters is any defined name with a type -$forall~ (x_1:A_1)..(x_n:A_n), s$ where $s$ is a sort. Thus a class with -parameters is considered as a single class and not as a family of -classes. An object of a class $C$ is any term of type $C~t_1 -.. t_n$. In addition to these user-classes, we have two abstract -classes: - -\begin{itemize} -\item {\tt Sortclass}, the class of sorts; - its objects are the terms whose type is a sort. -\item {\tt Funclass}, the class of functions; - its objects are all the terms with a functional - type, i.e. of form $forall~ x:A, B$. -\end{itemize} - -Formally, the syntax of a classes is defined on Figure~\ref{fig:classes}. -\begin{figure} -\begin{centerframe} -\begin{tabular}{lcl} -{\class} & ::= & {\qualid} \\ - & $|$ & {\tt Sortclass} \\ - & $|$ & {\tt Funclass} -\end{tabular} -\end{centerframe} -\caption{Syntax of classes} -\label{fig:classes} -\end{figure} - -\asection{Coercions} -\index{Coercions!Funclass} -\index{Coercions!Sortclass} - A name $f$ can be declared as a coercion between a source user-class -$C$ with $n$ parameters and a target class $D$ if one of these -conditions holds: - -\newcommand{\oftype}{\!:\!} - -\begin{itemize} -\item $D$ is a user-class, then the type of $f$ must have the form - $forall~ (x_1 \oftype A_1)..(x_n \oftype A_n)(y\oftype C~x_1..x_n), D~u_1..u_m$ where $m$ - is the number of parameters of $D$. -\item $D$ is {\tt Funclass}, then the type of $f$ must have the form - $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n)(x:A), B$. -\item $D$ is {\tt Sortclass}, then the type of $f$ must have the form - $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n), s$ with $s$ a sort. -\end{itemize} - -We then write $f:C \mbox{\texttt{>->}} D$. The restriction on the type -of coercions is called {\em the uniform inheritance condition}. -Remark that the abstract classes {\tt Funclass} and {\tt Sortclass} -cannot be source classes. - -To coerce an object $t:C~t_1..t_n$ of $C$ towards $D$, we have to -apply the coercion $f$ to it; the obtained term $f~t_1..t_n~t$ is -then an object of $D$. - -\asection{Identity Coercions} -\index{Coercions!identity} - - Identity coercions are special cases of coercions used to go around -the uniform inheritance condition. Let $C$ and $D$ be two classes -with respectively $n$ and $m$ parameters and -$f:forall~(x_1:T_1)..(x_k:T_k)(y:C~u_1..u_n), D~v_1..v_m$ a function which -does not verify the uniform inheritance condition. To declare $f$ as -coercion, one has first to declare a subclass $C'$ of $C$: - -$$C' := fun~ (x_1:T_1)..(x_k:T_k) => C~u_1..u_n$$ - -\noindent We then define an {\em identity coercion} between $C'$ and $C$: -\begin{eqnarray*} -Id\_C'\_C & := & fun~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k) => (y:C~u_1..u_n)\\ -\end{eqnarray*} - -We can now declare $f$ as coercion from $C'$ to $D$, since we can -``cast'' its type as -$forall~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k),D~v_1..v_m$.\\ The identity -coercions have a special status: to coerce an object $t:C'~t_1..t_k$ -of $C'$ towards $C$, we does not have to insert explicitly $Id\_C'\_C$ -since $Id\_C'\_C~t_1..t_k~t$ is convertible with $t$. However we -``rewrite'' the type of $t$ to become an object of $C$; in this case, -it becomes $C~u_1^*..u_k^*$ where each $u_i^*$ is the result of the -substitution in $u_i$ of the variables $x_j$ by $t_j$. - - -\asection{Inheritance Graph} -\index{Coercions!inheritance graph} -Coercions form an inheritance graph with classes as nodes. We call -{\em coercion path} an ordered list of coercions between two nodes of -the graph. A class $C$ is said to be a subclass of $D$ if there is a -coercion path in the graph from $C$ to $D$; we also say that $C$ -inherits from $D$. Our mechanism supports multiple inheritance since a -class may inherit from several classes, contrary to simple inheritance -where a class inherits from at most one class. However there must be -at most one path between two classes. If this is not the case, only -the {\em oldest} one is valid and the others are ignored. So the order -of declaration of coercions is important. - -We extend notations for coercions to coercion paths. For instance -$[f_1;..;f_k]:C \mbox{\texttt{>->}} D$ is the coercion path composed -by the coercions $f_1..f_k$. The application of a coercion path to a -term consists of the successive application of its coercions. - -\asection{Declaration of Coercions} - -%%%%% "Class" is useless, since classes are implicitely defined via coercions. - -% \asubsection{\tt Class {\qualid}.}\comindex{Class} -% Declares {\qualid} as a new class. - -% \begin{ErrMsgs} -% \item {\qualid} \errindex{not declared} -% \item {\qualid} \errindex{is already a class} -% \item \errindex{Type of {\qualid} does not end with a sort} -% \end{ErrMsgs} - -% \begin{Variant} -% \item {\tt Class Local {\qualid}.} \\ -% Declares the construction denoted by {\qualid} as a new local class to -% the current section. -% \end{Variant} - -% END "Class" is useless - -\asubsection{\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.} -\comindex{Coercion} - -Declares the construction denoted by {\qualid} as a coercion between -{\class$_1$} and {\class$_2$}. - -% Useless information -% The classes {\class$_1$} and {\class$_2$} are first declared if necessary. - -\begin{ErrMsgs} -\item {\qualid} \errindex{not declared} -\item {\qualid} \errindex{is already a coercion} -\item \errindex{Funclass cannot be a source class} -\item \errindex{Sortclass cannot be a source class} -\item {\qualid} \errindex{is not a function} -\item \errindex{Cannot find the source class of {\qualid}} -\item \errindex{Cannot recognize {\class$_1$} as a source class of {\qualid}} -\item {\qualid} \errindex{does not respect the uniform inheritance condition} -\item \errindex{Found target class {\class} instead of {\class$_2$}} - -\end{ErrMsgs} - -When the coercion {\qualid} is added to the inheritance graph, non -valid coercion paths are ignored; they are signaled by a warning. -\\[0.3cm] -\noindent {\bf Warning :} -\begin{enumerate} -\item \begin{tabbing} -{\tt Ambiguous paths: }\= $[f_1^1;..;f_{n_1}^1] : C_1\mbox{\tt >->}D_1$\\ - \> ... \\ - \>$[f_1^m;..;f_{n_m}^m] : C_m\mbox{\tt >->}D_m$ - \end{tabbing} -\end{enumerate} - -\begin{Variants} -\item {\tt Local Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.} -\comindex{Local Coercion}\\ - Declares the construction denoted by {\qualid} as a coercion local to - the current section. - -\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\ - This defines {\ident} just like \texttt{Definition {\ident} := - {\term}}, and then declares {\ident} as a coercion between it - source and its target. - -\item {\tt Coercion {\ident} := {\term} : {\type}}\\ - This defines {\ident} just like - \texttt{Definition {\ident} : {\type} := {\term}}, and then - declares {\ident} as a coercion between it source and its target. - -\item {\tt Local Coercion {\ident} := {\term}}\comindex{Local Coercion}\\ - This defines {\ident} just like \texttt{Let {\ident} := - {\term}}, and then declares {\ident} as a coercion between it - source and its target. - -\item Assumptions can be declared as coercions at declaration -time. This extends the grammar of assumptions from -Figure~\ref{sentences-syntax} as follows: -\comindex{Variable \mbox{\rm (and coercions)}} -\comindex{Axiom \mbox{\rm (and coercions)}} -\comindex{Parameter \mbox{\rm (and coercions)}} -\comindex{Hypothesis \mbox{\rm (and coercions)}} - -\begin{tabular}{lcl} -%% Declarations -{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\ -&&\\ -{\assums} & ::= & {\simpleassums} \\ - & $|$ & \nelist{{\tt (} \simpleassums {\tt )}}{} \\ -&&\\ -{\simpleassums} & ::= & \nelist{\ident}{} {\tt :}\zeroone{{\tt >}} {\term}\\ -\end{tabular} - -If the extra {\tt >} is present before the type of some assumptions, these -assumptions are declared as coercions. - -\item Constructors of inductive types can be declared as coercions at -definition time of the inductive type. This extends and modifies the -grammar of inductive types from Figure \ref{sentences-syntax} as follows: -\comindex{Inductive \mbox{\rm (and coercions)}} -\comindex{CoInductive \mbox{\rm (and coercions)}} - -\begin{center} -\begin{tabular}{lcl} -%% Inductives -{\inductive} & ::= & - {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\ - & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\ - & & \\ -{\inductivebody} & ::= & - {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\ - && ~~~\zeroone{\zeroone{\tt |} \nelist{\constructor}{|}} \\ - & & \\ -{\constructor} & ::= & {\ident} \zeroone{\binders} \zeroone{{\tt :}\zeroone{\tt >} {\term}} \\ -\end{tabular} -\end{center} - -Especially, if the extra {\tt >} is present in a constructor -declaration, this constructor is declared as a coercion. -\end{Variants} - -\asubsection{\tt Identity Coercion {\ident}:{\class$_1$} >-> {\class$_2$}.} -\comindex{Identity Coercion} - -We check that {\class$_1$} is a constant with a value of the form -$fun~ (x_1:T_1)..(x_n:T_n) => (\mbox{\class}_2~t_1..t_m)$ where $m$ is the -number of parameters of \class$_2$. Then we define an identity -function with the type -$forall~ (x_1:T_1)..(x_n:T_n)(y:\mbox{\class}_1~x_1..x_n), -{\mbox{\class}_2}~t_1..t_m$, and we declare it as an identity -coercion between {\class$_1$} and {\class$_2$}. - -\begin{ErrMsgs} -\item {\class$_1$} \errindex{must be a transparent constant} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Local Identity Coercion {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\ -Idem but locally to the current section. - -\item {\tt SubClass {\ident} := {\type}.} \\ -\comindex{SubClass} - If {\type} is a class -{\ident'} applied to some arguments then {\ident} is defined and an -identity coercion of name {\tt Id\_{\ident}\_{\ident'}} is -declared. Otherwise said, this is an abbreviation for - -{\tt Definition {\ident} := {\type}.} - - followed by - -{\tt Identity Coercion Id\_{\ident}\_{\ident'}:{\ident} >-> {\ident'}}. - -\item {\tt Local SubClass {\ident} := {\type}.} \\ -Same as before but locally to the current section. - -\end{Variants} - -\asection{Displaying Available Coercions} - -\asubsection{\tt Print Classes.} -\comindex{Print Classes} -Print the list of declared classes in the current context. - -\asubsection{\tt Print Coercions.} -\comindex{Print Coercions} -Print the list of declared coercions in the current context. - -\asubsection{\tt Print Graph.} -\comindex{Print Graph} -Print the list of valid coercion paths in the current context. - -\asubsection{\tt Print Coercion Paths {\class$_1$} {\class$_2$}.} -\comindex{Print Coercion Paths} -Print the list of valid coercion paths from {\class$_1$} to {\class$_2$}. - -\asection{Activating the Printing of Coercions} - -\asubsection{\tt Set Printing Coercions.} -\comindex{Set Printing Coercions} -\comindex{Unset Printing Coercions} - -This command forces all the coercions to be printed. -Conversely, to skip the printing of coercions, use - {\tt Unset Printing Coercions}. -By default, coercions are not printed. - -\asubsection{\tt Set Printing Coercion {\qualid}.} -\comindex{Set Printing Coercion} -\comindex{Unset Printing Coercion} - -This command forces coercion denoted by {\qualid} to be printed. -To skip the printing of coercion {\qualid}, use - {\tt Unset Printing Coercion {\qualid}}. -By default, a coercion is never printed. - -\asection{Classes as Records} -\label{Coercions-and-records} -\index{Coercions!and records} -We allow the definition of {\em Structures with Inheritance} (or -classes as records) by extending the existing {\tt Record} macro -(see Section~\ref{Record}). Its new syntax is: - -\begin{center} -\begin{tabular}{l} -{\tt Record \zeroone{>}~{\ident} \zeroone{\binders} : {\sort} := \zeroone{\ident$_0$} \verb+{+} \\ -~~~~\begin{tabular}{l} - {\tt \ident$_1$ $[$:$|$:>$]$ \term$_1$ ;} \\ - ... \\ - {\tt \ident$_n$ $[$:$|$:>$]$ \term$_n$ \verb+}+. } - \end{tabular} -\end{tabular} -\end{center} -The identifier {\ident} is the name of the defined record and {\sort} -is its type. The identifier {\ident$_0$} is the name of its -constructor. The identifiers {\ident$_1$}, .., {\ident$_n$} are the -names of its fields and {\term$_1$}, .., {\term$_n$} their respective -types. The alternative {\tt $[$:$|$:>$]$} is ``{\tt :}'' or ``{\tt -:>}''. If {\tt {\ident$_i$}:>{\term$_i$}}, then {\ident$_i$} is -automatically declared as coercion from {\ident} to the class of -{\term$_i$}. Remark that {\ident$_i$} always verifies the uniform -inheritance condition. If the optional ``{\tt >}'' before {\ident} is -present, then {\ident$_0$} (or the default name {\tt Build\_{\ident}} -if {\ident$_0$} is omitted) is automatically declared as a coercion -from the class of {\term$_n$} to {\ident} (this may fail if the -uniform inheritance condition is not satisfied). - -\Rem The keyword {\tt Structure}\comindex{Structure} is a synonym of {\tt -Record}. - -\asection{Coercions and Sections} -\index{Coercions!and sections} - The inheritance mechanism is compatible with the section -mechanism. The global classes and coercions defined inside a section -are redefined after its closing, using their new value and new -type. The classes and coercions which are local to the section are -simply forgotten. -Coercions with a local source class or a local target class, and -coercions which do not verify the uniform inheritance condition any longer -are also forgotten. - -\asection{Coercions and Modules} -\index{Coercions!and modules} - -From Coq version 8.3, the coercions present in a module are activated -only when the module is explicitly imported. Formerly, the coercions -were activated as soon as the module was required, whatever it was -imported or not. - -To recover the behavior of the versions of Coq prior to 8.3, use the -following command: - -\comindex{Set Automatic Coercions Import} -\comindex{Unset Automatic Coercions Import} -\begin{verbatim} -Set Automatic Coercions Import. -\end{verbatim} - -To cancel the effect of the option, use instead: - -\begin{verbatim} -Unset Automatic Coercions Import. -\end{verbatim} - -\asection{Examples} - - There are three situations: - -\begin{itemize} -\item $f~a$ is ill-typed where $f:forall~x:A,B$ and $a:A'$. If there is a - coercion path between $A'$ and $A$, $f~a$ is transformed into - $f~a'$ where $a'$ is the result of the application of this - coercion path to $a$. - -We first give an example of coercion between atomic inductive types - -%\begin{\small} -\begin{coq_example} -Definition bool_in_nat (b:bool) := if b then 0 else 1. -Coercion bool_in_nat : bool >-> nat. -Check (0 = true). -Set Printing Coercions. -Check (0 = true). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - -\Warning ``\verb|Check true=O.|'' fails. This is ``normal'' behaviour of -coercions. To validate \verb|true=O|, the coercion is searched from -\verb=nat= to \verb=bool=. There is none. - -We give an example of coercion between classes with parameters. - -%\begin{\small} -\begin{coq_example} -Parameters - (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set). -Parameter f : forall n:nat, C n -> D (S n) true. -Coercion f : C >-> D. -Parameter g : forall (n:nat) (b:bool), D n b -> E b. -Coercion g : D >-> E. -Parameter c : C 0. -Parameter T : E true -> nat. -Check (T c). -Set Printing Coercions. -Check (T c). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - -We give now an example using identity coercions. - -%\begin{small} -\begin{coq_example} -Definition D' (b:bool) := D 1 b. -Identity Coercion IdD'D : D' >-> D. -Print IdD'D. -Parameter d' : D' true. -Check (T d'). -Set Printing Coercions. -Check (T d'). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - - - In the case of functional arguments, we use the monotonic rule of -sub-typing. Approximatively, to coerce $t:forall~x:A, B$ towards -$forall~x:A',B'$, one have to coerce $A'$ towards $A$ and $B$ towards -$B'$. An example is given below: - -%\begin{small} -\begin{coq_example} -Parameters (A B : Set) (h : A -> B). -Coercion h : A >-> B. -Parameter U : (A -> E true) -> nat. -Parameter t : B -> C 0. -Check (U t). -Set Printing Coercions. -Check (U t). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - - Remark the changes in the result following the modification of the -previous example. - -%\begin{small} -\begin{coq_example} -Parameter U' : (C 0 -> B) -> nat. -Parameter t' : E true -> A. -Check (U' t'). -Set Printing Coercions. -Check (U' t'). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - -\item An assumption $x:A$ when $A$ is not a type, is ill-typed. It is - replaced by $x:A'$ where $A'$ is the result of the application - to $A$ of the coercion path between the class of $A$ and {\tt - Sortclass} if it exists. This case occurs in the abstraction - $fun~ x:A => t$, universal quantification $forall~x:A, B$, - global variables and parameters of (co-)inductive definitions - and functions. In $forall~x:A, B$, such a coercion path may be - applied to $B$ also if necessary. - -%\begin{small} -\begin{coq_example} -Parameter Graph : Type. -Parameter Node : Graph -> Type. -Coercion Node : Graph >-> Sortclass. -Parameter G : Graph. -Parameter Arrows : G -> G -> Type. -Check Arrows. -Parameter fg : G -> G. -Check fg. -Set Printing Coercions. -Check fg. -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - -\item $f~a$ is ill-typed because $f:A$ is not a function. The term - $f$ is replaced by the term obtained by applying to $f$ the - coercion path between $A$ and {\tt Funclass} if it exists. - -%\begin{small} -\begin{coq_example} -Parameter bij : Set -> Set -> Set. -Parameter ap : forall A B:Set, bij A B -> A -> B. -Coercion ap : bij >-> Funclass. -Parameter b : bij nat nat. -Check (b 0). -Set Printing Coercions. -Check (b 0). -\end{coq_example} -%\end{small} - -\begin{coq_eval} -Unset Printing Coercions. -\end{coq_eval} - -Let us see the resulting graph of this session. - -%\begin{small} -\begin{coq_example} -Print Graph. -\end{coq_example} -%\end{small} - -\end{itemize} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Extraction.tex b/doc/refman/Extraction.tex deleted file mode 100644 index ee289ee7..00000000 --- a/doc/refman/Extraction.tex +++ /dev/null @@ -1,549 +0,0 @@ -\achapter{Extraction of programs in Objective Caml and Haskell} -\label{Extraction} -\aauthor{Jean-Christophe Filliâtre and Pierre Letouzey} -\index{Extraction} - -We present here the \Coq\ extraction commands, used to build certified -and relatively efficient functional programs, extracting them from -either \Coq\ functions or \Coq\ proofs of specifications. The -functional languages available as output are currently \ocaml{}, -\textsc{Haskell} and \textsc{Scheme}. In the following, ``ML'' will -be used (abusively) to refer to any of the three. - -\paragraph{Differences with old versions.} -The current extraction mechanism is new for version 7.0 of {\Coq}. -In particular, the \FW\ toplevel used as an intermediate step between -\Coq\ and ML has been withdrawn. It is also not possible -any more to import ML objects in this \FW\ toplevel. -The current mechanism also differs from -the one in previous versions of \Coq: there is no more -an explicit toplevel for the language (formerly called \textsc{Fml}). - -\asection{Generating ML code} -\comindex{Extraction} -\comindex{Recursive Extraction} -\comindex{Extraction Module} -\comindex{Recursive Extraction Module} - -The next two commands are meant to be used for rapid preview of -extraction. They both display extracted term(s) inside \Coq. - -\begin{description} -\item {\tt Extraction \qualid.} ~\par - Extracts one constant or module in the \Coq\ toplevel. - -\item {\tt Recursive Extraction \qualid$_1$ \dots\ \qualid$_n$.} ~\par - Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\ - \qualid$_n$ and all their dependencies in the \Coq\ toplevel. -\end{description} - -%% TODO error messages - -All the following commands produce real ML files. User can choose to produce -one monolithic file or one file per \Coq\ library. - -\begin{description} -\item {\tt Extraction "{\em file}"} - \qualid$_1$ \dots\ \qualid$_n$. ~\par - Recursive extraction of all the globals (or modules) \qualid$_1$ \dots\ - \qualid$_n$ and all their dependencies in one monolithic file {\em file}. - Global and local identifiers are renamed according to the chosen ML - language to fulfill its syntactic conventions, keeping original - names as much as possible. - -\item {\tt Extraction Library} \ident. ~\par - Extraction of the whole \Coq\ library {\tt\ident.v} to an ML module - {\tt\ident.ml}. In case of name clash, identifiers are here renamed - using prefixes \verb!coq_! or \verb!Coq_! to ensure a - session-independent renaming. - -\item {\tt Recursive Extraction Library} \ident. ~\par - Extraction of the \Coq\ library {\tt\ident.v} and all other modules - {\tt\ident.v} depends on. -\end{description} - -The list of globals \qualid$_i$ does not need to be -exhaustive: it is automatically completed into a complete and minimal -environment. - -\asection{Extraction options} - -\asubsection{Setting the target language} -\comindex{Extraction Language} - -The ability to fix target language is the first and more important -of the extraction options. Default is Ocaml. -\begin{description} -\item {\tt Extraction Language Ocaml}. -\item {\tt Extraction Language Haskell}. -\item {\tt Extraction Language Scheme}. -\end{description} - -\asubsection{Inlining and optimizations} - -Since Objective Caml is a strict language, the extracted -code has to be optimized in order to be efficient (for instance, when -using induction principles we do not want to compute all the recursive -calls but only the needed ones). So the extraction mechanism provides -an automatic optimization routine that will be -called each time the user want to generate Ocaml programs. Essentially, -it performs constants inlining and reductions. Therefore some -constants may not appear in resulting monolithic Ocaml program. -In the case of modular extraction, even if some inlining is done, the -inlined constant are nevertheless printed, to ensure -session-independent programs. - -Concerning Haskell, such optimizations are less useful because of -lazyness. We still make some optimizations, for example in order to -produce more readable code. - -All these optimizations are controled by the following \Coq\ options: - -\begin{description} - -\item \comindex{Set Extraction Optimize} -{\tt Set Extraction Optimize.} - -\item \comindex{Unset Extraction Optimize} -{\tt Unset Extraction Optimize.} - -Default is Set. This control all optimizations made on the ML terms -(mostly reduction of dummy beta/iota redexes, but also simplifications on -Cases, etc). Put this option to Unset if you want a ML term as close as -possible to the Coq term. - -\item \comindex{Set Extraction AutoInline} -{\tt Set Extraction AutoInline.} - -\item \comindex{Unset Extraction AutoInline} -{\tt Unset Extraction AutoInline.} - -Default is Set, so by default, the extraction mechanism feels free to -inline the bodies of some defined constants, according to some heuristics -like size of bodies, useness of some arguments, etc. Those heuristics are -not always perfect, you may want to disable this feature, do it by Unset. - -\item \comindex{Extraction Inline} -{\tt Extraction Inline} \qualid$_1$ \dots\ \qualid$_n$. - -\item \comindex{Extraction NoInline} -{\tt Extraction NoInline} \qualid$_1$ \dots\ \qualid$_n$. - -In addition to the automatic inline feature, you can now tell precisely to -inline some more constants by the {\tt Extraction Inline} command. Conversely, -you can forbid the automatic inlining of some specific constants by -the {\tt Extraction NoInline} command. -Those two commands enable a precise control of what is inlined and what is not. - -\item \comindex{Print Extraction Inline} -{\tt Print Extraction Inline}. - -Prints the current state of the table recording the custom inlinings -declared by the two previous commands. - -\item \comindex{Reset Extraction Inline} -{\tt Reset Extraction Inline}. - -Puts the table recording the custom inlinings back to empty. - -\end{description} - - -\paragraph{Inlining and printing of a constant declaration.} - -A user can explicitly ask for a constant to be extracted by two means: -\begin{itemize} -\item by mentioning it on the extraction command line -\item by extracting the whole \Coq\ module of this constant. -\end{itemize} -In both cases, the declaration of this constant will be present in the -produced file. -But this same constant may or may not be inlined in the following -terms, depending on the automatic/custom inlining mechanism. - - -For the constants non-explicitly required but needed for dependency -reasons, there are two cases: -\begin{itemize} -\item If an inlining decision is taken, whether automatically or not, -all occurrences of this constant are replaced by its extracted body, and -this constant is not declared in the generated file. -\item If no inlining decision is taken, the constant is normally - declared in the produced file. -\end{itemize} - -\asubsection{Extra elimination of useless arguments} - -\begin{description} -\item \comindex{Extraction Implicit} - {\tt Extraction Implicit} \qualid\ [ \ident$_1$ \dots\ \ident$_n$ ]. - -This experimental command allows to declare some arguments of -\qualid\ as implicit, i.e. useless in extracted code and hence to -be removed by extraction. Here \qualid\ can be any function or -inductive constructor, and \ident$_i$ are the names of the concerned -arguments. In fact, an argument can also be referred by a number -indicating its position, starting from 1. When an actual extraction -takes place, an error is raised if the {\tt Extraction Implicit} -declarations cannot be honored, that is if any of the implicited -variables still occurs in the final code. This declaration of useless -arguments is independent but complementary to the main elimination -principles of extraction (logical parts and types). -\end{description} - -\asubsection{Realizing axioms}\label{extraction:axioms} - -Extraction will fail if it encounters an informative -axiom not realized (see Section~\ref{extraction:axioms}). -A warning will be issued if it encounters an logical axiom, to remind -user that inconsistent logical axioms may lead to incorrect or -non-terminating extracted terms. - -It is possible to assume some axioms while developing a proof. Since -these axioms can be any kind of proposition or object or type, they may -perfectly well have some computational content. But a program must be -a closed term, and of course the system cannot guess the program which -realizes an axiom. Therefore, it is possible to tell the system -what ML term corresponds to a given axiom. - -\comindex{Extract Constant} -\begin{description} -\item{\tt Extract Constant \qualid\ => \str.} ~\par - Give an ML extraction for the given constant. - The \str\ may be an identifier or a quoted string. -\item{\tt Extract Inlined Constant \qualid\ => \str.} ~\par - Same as the previous one, except that the given ML terms will - be inlined everywhere instead of being declared via a let. -\end{description} - -Note that the {\tt Extract Inlined Constant} command is sugar -for an {\tt Extract Constant} followed by a {\tt Extraction Inline}. -Hence a {\tt Reset Extraction Inline} will have an effect on the -realized and inlined axiom. - -Of course, it is the responsibility of the user to ensure that the ML -terms given to realize the axioms do have the expected types. In -fact, the strings containing realizing code are just copied in the -extracted files. The extraction recognizes whether the realized axiom -should become a ML type constant or a ML object declaration. - -\Example -\begin{coq_example} -Axiom X:Set. -Axiom x:X. -Extract Constant X => "int". -Extract Constant x => "0". -\end{coq_example} - -Notice that in the case of type scheme axiom (i.e. whose type is an -arity, that is a sequence of product finished by a sort), then some type -variables has to be given. The syntax is then: - -\begin{description} -\item{\tt Extract Constant \qualid\ \str$_1$ \ldots \str$_n$ => \str.} ~\par -\end{description} - -The number of type variables is checked by the system. - -\Example -\begin{coq_example} -Axiom Y : Set -> Set -> Set. -Extract Constant Y "'a" "'b" => " 'a*'b ". -\end{coq_example} - -Realizing an axiom via {\tt Extract Constant} is only useful in the -case of an informative axiom (of sort Type or Set). A logical axiom -have no computational content and hence will not appears in extracted -terms. But a warning is nonetheless issued if extraction encounters a -logical axiom. This warning reminds user that inconsistent logical -axioms may lead to incorrect or non-terminating extracted terms. - -If an informative axiom has not been realized before an extraction, a -warning is also issued and the definition of the axiom is filled with -an exception labeled {\tt AXIOM TO BE REALIZED}. The user must then -search these exceptions inside the extracted file and replace them by -real code. - -\comindex{Extract Inductive} - -The system also provides a mechanism to specify ML terms for inductive -types and constructors. For instance, the user may want to use the ML -native boolean type instead of \Coq\ one. The syntax is the following: - -\begin{description} -\item{\tt Extract Inductive \qualid\ => \str\ [ \str\ \dots \str\ ]\ -{\it optstring}.} ~\par - Give an ML extraction for the given inductive type. You must specify - extractions for the type itself (first \str) and all its - constructors (between square brackets). If given, the final optional - string should contain a function emulating pattern-matching over this - inductive type. If this optional string is not given, the ML - extraction must be an ML inductive datatype, and the native - pattern-matching of the language will be used. -\end{description} - -For an inductive type with $k$ constructor, the function used to -emulate the match should expect $(k+1)$ arguments, first the $k$ -branches in functional form, and then the inductive element to -destruct. For instance, the match branch \verb$| S n => foo$ gives the -functional form \verb$(fun n -> foo)$. Note that a constructor with no -argument is considered to have one unit argument, in order to block -early evaluation of the branch: \verb$| O => bar$ leads to the functional -form \verb$(fun () -> bar)$. For instance, when extracting {\tt nat} -into {\tt int}, the code to provide has type: -{\tt (unit->'a)->(int->'a)->int->'a}. - -As for {\tt Extract Inductive}, this command should be used with care: -\begin{itemize} -\item The ML code provided by the user is currently \emph{not} checked at all by - extraction, even for syntax errors. - -\item Extracting an inductive type to a pre-existing ML inductive type -is quite sound. But extracting to a general type (by providing an -ad-hoc pattern-matching) will often \emph{not} be fully rigorously -correct. For instance, when extracting {\tt nat} to Ocaml's {\tt -int}, it is theoretically possible to build {\tt nat} values that are -larger than Ocaml's {\tt max\_int}. It is the user's responsability to -be sure that no overflow or other bad events occur in practice. - -\item Translating an inductive type to an ML type does \emph{not} -magically improve the asymptotic complexity of functions, even if the -ML type is an efficient representation. For instance, when extracting -{\tt nat} to Ocaml's {\tt int}, the function {\tt mult} stays -quadratic. It might be interesting to associate this translation with -some specific {\tt Extract Constant} when primitive counterparts exist. -\end{itemize} - -\Example -Typical examples are the following: -\begin{coq_example} -Extract Inductive unit => "unit" [ "()" ]. -Extract Inductive bool => "bool" [ "true" "false" ]. -Extract Inductive sumbool => "bool" [ "true" "false" ]. -\end{coq_example} - -If an inductive constructor or type has arity 2 and the corresponding -string is enclosed by parenthesis, then the rest of the string is used -as infix constructor or type. -\begin{coq_example} -Extract Inductive list => "list" [ "[]" "(::)" ]. -Extract Inductive prod => "(*)" [ "(,)" ]. -\end{coq_example} - -As an example of translation to a non-inductive datatype, let's turn -{\tt nat} into Ocaml's {\tt int} (see caveat above): -\begin{coq_example} -Extract Inductive nat => int [ "0" "succ" ] - "(fun fO fS n -> if n=0 then fO () else fS (n-1))". -\end{coq_example} - -\asubsection{Avoiding conflicts with existing filenames} - -\comindex{Extraction Blacklist} - -When using {\tt Extraction Library}, the names of the extracted files -directly depends from the names of the \Coq\ files. It may happen that -these filenames are in conflict with already existing files, -either in the standard library of the target language or in other -code that is meant to be linked with the extracted code. -For instance the module {\tt List} exists both in \Coq\ and in Ocaml. -It is possible to instruct the extraction not to use particular filenames. - -\begin{description} -\item{\tt Extraction Blacklist \ident \ldots \ident.} ~\par - Instruct the extraction to avoid using these names as filenames - for extracted code. -\item{\tt Print Extraction Blacklist.} ~\par - Show the current list of filenames the extraction should avoid. -\item{\tt Reset Extraction Blacklist.} ~\par - Allow the extraction to use any filename. -\end{description} - -For Ocaml, a typical use of these commands is -{\tt Extraction Blacklist String List}. - -\asection{Differences between \Coq\ and ML type systems} - - -Due to differences between \Coq\ and ML type systems, -some extracted programs are not directly typable in ML. -We now solve this problem (at least in Ocaml) by adding -when needed some unsafe casting {\tt Obj.magic}, which give -a generic type {\tt 'a} to any term. - -For example, here are two kinds of problem that can occur: - -\begin{itemize} - \item If some part of the program is {\em very} polymorphic, there - may be no ML type for it. In that case the extraction to ML works - all right but the generated code may be refused by the ML - type-checker. A very well known example is the {\em distr-pair} - function: -\begin{verbatim} -Definition dp := - fun (A B:Set)(x:A)(y:B)(f:forall C:Set, C->C) => (f A x, f B y). -\end{verbatim} - -In Ocaml, for instance, the direct extracted term would be: - -\begin{verbatim} -let dp x y f = Pair((f () x),(f () y)) -\end{verbatim} - -and would have type: -\begin{verbatim} -dp : 'a -> 'a -> (unit -> 'a -> 'b) -> ('b,'b) prod -\end{verbatim} - -which is not its original type, but a restriction. - -We now produce the following correct version: -\begin{verbatim} -let dp x y f = Pair ((Obj.magic f () x), (Obj.magic f () y)) -\end{verbatim} - - \item Some definitions of \Coq\ may have no counterpart in ML. This - happens when there is a quantification over types inside the type - of a constructor; for example: -\begin{verbatim} -Inductive anything : Set := dummy : forall A:Set, A -> anything. -\end{verbatim} - -which corresponds to the definition of an ML dynamic type. -In Ocaml, we must cast any argument of the constructor dummy. - -\end{itemize} - -Even with those unsafe castings, you should never get error like -``segmentation fault''. In fact even if your program may seem -ill-typed to the Ocaml type-checker, it can't go wrong: it comes -from a Coq well-typed terms, so for example inductives will always -have the correct number of arguments, etc. - -More details about the correctness of the extracted programs can be -found in \cite{Let02}. - -We have to say, though, that in most ``realistic'' programs, these -problems do not occur. For example all the programs of Coq library are -accepted by Caml type-checker without any {\tt Obj.magic} (see examples below). - - - -\asection{Some examples} - -We present here two examples of extractions, taken from the -\Coq\ Standard Library. We choose \ocaml\ as target language, -but all can be done in the other dialects with slight modifications. -We then indicate where to find other examples and tests of Extraction. - -\asubsection{A detailed example: Euclidean division} - -The file {\tt Euclid} contains the proof of Euclidean division -(theorem {\tt eucl\_dev}). The natural numbers defined in the example -files are unary integers defined by two constructors $O$ and $S$: -\begin{coq_example*} -Inductive nat : Set := - | O : nat - | S : nat -> nat. -\end{coq_example*} - -This module contains a theorem {\tt eucl\_dev}, whose type is: -\begin{verbatim} -forall b:nat, b > 0 -> forall a:nat, diveucl a b -\end{verbatim} -where {\tt diveucl} is a type for the pair of the quotient and the -modulo, plus some logical assertions that disappear during extraction. -We can now extract this program to \ocaml: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Require Import Euclid Wf_nat. -Extraction Inline gt_wf_rec lt_wf_rec induction_ltof2. -Recursive Extraction eucl_dev. -\end{coq_example} - -The inlining of {\tt gt\_wf\_rec} and others is not -mandatory. It only enhances readability of extracted code. -You can then copy-paste the output to a file {\tt euclid.ml} or let -\Coq\ do it for you with the following command: - -\begin{verbatim} -Extraction "euclid" eucl_dev. -\end{verbatim} - -Let us play the resulting program: - -\begin{verbatim} -# #use "euclid.ml";; -type nat = O | S of nat -type sumbool = Left | Right -val minus : nat -> nat -> nat = <fun> -val le_lt_dec : nat -> nat -> sumbool = <fun> -val le_gt_dec : nat -> nat -> sumbool = <fun> -type diveucl = Divex of nat * nat -val eucl_dev : nat -> nat -> diveucl = <fun> -# eucl_dev (S (S O)) (S (S (S (S (S O)))));; -- : diveucl = Divex (S (S O), S O) -\end{verbatim} -It is easier to test on \ocaml\ integers: -\begin{verbatim} -# let rec nat_of_int = function 0 -> O | n -> S (nat_of_int (n-1));; -val i2n : int -> nat = <fun> -# let rec int_of_nat = function O -> 0 | S p -> 1+(int_of_nat p);; -val n2i : nat -> int = <fun> -# let div a b = - let Divex (q,r) = eucl_dev (nat_of_int b) (nat_of_int a) - in (int_of_nat q, int_of_nat r);; -val div : int -> int -> int * int = <fun> -# div 173 15;; -- : int * int = (11, 8) -\end{verbatim} - -Note that these {\tt nat\_of\_int} and {\tt int\_of\_nat} are now -available via a mere {\tt Require Import ExtrOcamlIntConv} and then -adding these functions to the list of functions to extract. This file -{\tt ExtrOcamlIntConv.v} and some others in {\tt plugins/extraction/} -are meant to help building concrete program via extraction. - -\asubsection{Extraction's horror museum} - -Some pathological examples of extraction are grouped in the file -{\tt test-suite/success/extraction.v} of the sources of \Coq. - -\asubsection{Users' Contributions} - - Several of the \Coq\ Users' Contributions use extraction to produce - certified programs. In particular the following ones have an automatic - extraction test (just run {\tt make} in those directories): - - \begin{itemize} - \item Bordeaux/Additions - \item Bordeaux/EXCEPTIONS - \item Bordeaux/SearchTrees - \item Dyade/BDDS - \item Lannion - \item Lyon/CIRCUITS - \item Lyon/FIRING-SQUAD - \item Marseille/CIRCUITS - \item Muenchen/Higman - \item Nancy/FOUnify - \item Rocq/ARITH/Chinese - \item Rocq/COC - \item Rocq/GRAPHS - \item Rocq/HIGMAN - \item Sophia-Antipolis/Stalmarck - \item Suresnes/BDD - \end{itemize} - - Lannion, Rocq/HIGMAN and Lyon/CIRCUITS are a bit particular. They are - examples of developments where {\tt Obj.magic} are needed. - This is probably due to an heavy use of impredicativity. - After compilation those two examples run nonetheless, - thanks to the correction of the extraction~\cite{Let02}. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Helm.tex b/doc/refman/Helm.tex deleted file mode 100644 index ed94dfc5..00000000 --- a/doc/refman/Helm.tex +++ /dev/null @@ -1,313 +0,0 @@ -\label{Helm} -\index{XML exportation} -\index{Proof rendering} - -This section describes the exportation of {\Coq} theories to XML that -has been contributed by Claudio Sacerdoti Coen. Currently, the main -applications are the rendering and searching tool -developed within the HELM\footnote{Hypertextual Electronic Library of -Mathematics} and MoWGLI\footnote{Mathematics on the Web, Get it by -Logic and Interfaces} projects mainly at the University of Bologna and -partly at INRIA-Sophia Antipolis. - -\subsection{Practical use of the XML exportation tool} - -The basic way to export the logical content of a file into XML format -is to use {\tt coqc} with option {\tt -xml}. -When the {\tt -xml} flag is set, every definition or declaration is -immediately exported to XML once concluded. -The system environment variable {\tt COQ\_XML\_LIBRARY\_ROOT} must be -previously set to a directory in which the logical structure of the -exported objects is reflected. - - For {\tt Makefile} files generated by \verb+coq_makefile+ (see section - \ref{Makefile}), it is sufficient to compile the files using - \begin{quotation} - \verb+make COQ_XML=-xml+ - \end{quotation} - - To export a development to XML, the suggested procedure is then: - - \begin{enumerate} - \item add to your own contribution a valid \verb+Make+ file and use - \verb+coq_makefile+ to generate the \verb+Makefile+ from the \verb+Make+ - file. - - \Warning Since logical names are used to structure the XML - hierarchy, always add to the \verb+Make+ file at least one \verb+"-R"+ - option to map physical file names to logical module paths. - \item set the \verb+COQ_XML_LIBRARY_ROOT+ environment variable to - the directory where the XML file hierarchy must be physically - rooted. - \item compile your contribution with \verb+"make COQ_XML=-xml"+ - \end{enumerate} - -\Rem In case the system variable {\tt COQ\_XML\_LIBRARY\_ROOT} is not set, -the output is done on the standard output. Also, the files are -compressed using {\tt gzip} after creation. This is to save disk space -since the XML format is very verbose. - -\subsection{Reflection of the logical structure into the file system} - -For each {\Coq} logical object, several independent files associated -to this object are created. The structure of the long name of the -object is reflected in the directory structure of the file system. -E.g. an object of long name {\tt -{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}} is exported to files in the -subdirectory {{\ident$_1$}/{\ldots}/{\ident$_n$}} of the directory -bound to the environment variable {\tt COQ\_XML\_LIBRARY\_ROOT}. - -\subsection{What is exported?} - -The XML exportation tool exports the logical content of {\Coq} -theories. This covers global definitions (including lemmas, theorems, -...), global assumptions (parameters and axioms), local assumptions or -definitions, and inductive definitions. - -Vernacular files are exported to {\tt .theory.xml} files. -%Variables, -%definitions, theorems, axioms and proofs are exported to individual -%files whose suffixes range from {\tt .var.xml}, {\tt .con.xml}, {\tt -%.con.body.xml}, {\tt .con.types.xml} to {\tt .con.proof_tree.xml}. -Comments are pre-processed with {\sf coqdoc} (see section -\ref{coqdoc}). Especially, they have to be enclosed within {\tt (**} -and {\tt *)} to be exported. - -For each inductive definition of name -{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}, a file named {\tt -{\ident}.ind.xml} is created in the subdirectory {\tt -{\ident$_1$}/{\ldots}/{\ident$_n$}} of the xml library root -directory. It contains the arities and constructors of the type. For mutual inductive definitions, the file is named after the -name of the first inductive type of the block. - -For each global definition of base name {\tt -{\ident$_1$}.{\ldots}.{\ident$_n$}.{\ident}}, files named -{\tt {\ident}.con.body.xml} and {\tt {\ident}.con.xml} are created in the -subdirectory {\tt {\ident$_1$}/{\ldots}/{\ident$_n$}}. They -respectively contain the body and the type of the definition. - -For each global assumption of base name {\tt -{\ident$_1$}.{\ident$_2$}.{\ldots}.{\ident$_n$}.{\ident}}, a file -named {\tt {\ident}.con.xml} is created in the subdirectory {\tt -{\ident$_1$}/{\ldots}/{\ident$_n$}}. It contains the type of the -global assumption. - -For each local assumption or definition of base name {\ident} located -in sections {\ident$'_1$}, {\ldots}, {\ident$'_p$} of the module {\tt -{\ident$_1$}.{\ident$_2$}.{\ldots}.{\ident$_n$}.{\ident}}, a file -named {\tt {\ident}.var.xml} is created in the subdirectory {\tt -{\ident$_1$}/{\ldots}/{\ident$_n$}/{\ident$'_1$}/\ldots/{\ident$'_p$}}. -It contains its type and, if a definition, its body. - -In order to do proof-rendering (for example in natural language), some -redundant typing information is required, i.e. the type of at least -some of the subterms of the bodies and types of the CIC objects. These -types are called inner types and are exported to files of suffix {\tt -.types.xml} by the exportation tool. - - -% Deactivated -%% \subsection{Proof trees} - -%% For each definition or theorem that has been built with tactics, an -%% extra file of suffix {\tt proof\_tree.xml} is created. It contains the -%% proof scripts and is used for rendering the proof. - -\subsection[Inner types]{Inner types\label{inner-types}} - -The type of a subterm of a construction is called an {\em inner type} -if it respects the following conditions. - -\begin{enumerate} - \item Its sort is \verb+Prop+\footnote{or {\tt CProp} which is the - "sort"-like definition used in C-CoRN (see - \url{http://vacuumcleaner.cs.kun.nl/c-corn}) to type - computationally relevant predicative propositions.}. - \item It is not a type cast nor an atomic term (variable, constructor or constant). - \item If it's root is an abstraction, then the root's parent node is - not an abstraction, i.e. only the type of the outer abstraction of - a block of nested abstractions is printed. -\end{enumerate} - -The rationale for the 3$^{rd}$ condition is that the type of the inner -abstractions could be easily computed starting from the type of the -outer ones; moreover, the types of the inner abstractions requires a -lot of disk/memory space: removing the 3$^{rd}$ condition leads to XML -file that are two times as big as the ones exported applying the 3$^{rd}$ -condition. - -\subsection{Interactive exportation commands} - -There are also commands to be used interactively in {\tt coqtop}. - -\subsubsection[\tt Print XML {\qualid}]{\tt Print XML {\qualid}\comindex{Print XML}} - -If the variable {\tt COQ\_XML\_LIBRARY\_ROOT} is set, this command creates -files containing the logical content in XML format of {\qualid}. If -the variable is not set, the result is displayed on the standard -output. - -\begin{Variants} -\item {\tt Print XML File {\str} {\qualid}}\\ -This writes the logical content of {\qualid} in XML format to files -whose prefix is {\str}. -\end{Variants} - -\subsubsection[{\tt Show XML Proof}]{{\tt Show XML Proof}\comindex{Show XML Proof}} - -If the variable {\tt COQ\_XML\_LIBRARY\_ROOT} is set, this command creates -files containing the current proof in progress in XML format. It -writes also an XML file made of inner types. If the variable is not -set, the result is displayed on the standard output. - -\begin{Variants} -\item {\tt Show XML File {\str} Proof}\\ This writes the -logical content of {\qualid} in XML format to files whose prefix is -{\str}. -\end{Variants} - -\subsection{Applications: rendering, searching and publishing} - -The HELM team at the University of Bologna has developed tools -exploiting the XML exportation of {\Coq} libraries. This covers -rendering, searching and publishing tools. - -All these tools require a running http server and, if possible, a -MathML compliant browser. The procedure to install the suite of tools -ultimately allowing rendering and searching can be found on the HELM -web site \url{http://helm.cs.unibo.it/library.html}. - -It may be easier though to upload your developments on the HELM http -server and to re-use the infrastructure running on it. This requires -publishing your development. To this aim, follow the instructions on -\url{http://mowgli.cs.unibo.it}. - -Notice that the HELM server already hosts a copy of the standard -library of {\Coq} and of the {\Coq} user contributions. - -\subsection{Technical informations} - -\subsubsection{CIC with Explicit Named Substitutions} - -The exported files are XML encoding of the lambda-terms used by the -\Coq\ system. The implementative details of the \Coq\ system are hidden as much -as possible, so that the XML DTD is a straightforward encoding of the -Calculus of (Co)Inductive Constructions. - -Nevertheless, there is a feature of the \Coq\ system that can not be -hidden in a completely satisfactory way: discharging (see Sect.\ref{Section}). -In \Coq\ it is possible -to open a section, declare variables and use them in the rest of the section -as if they were axiom declarations. Once the section is closed, every definition and theorem in the section is discharged by abstracting it over the section -variables. Variable declarations as well as section declarations are entirely -dropped. Since we are interested in an XML encoding of definitions and -theorems as close as possible to those directly provided the user, we -do not want to export discharged forms. Exporting non-discharged theorem -and definitions together with theorems that rely on the discharged forms -obliges the tools that work on the XML encoding to implement discharging to -achieve logical consistency. Moreover, the rendering of the files can be -misleading, since hyperlinks can be shown between occurrences of the discharge -form of a definition and the non-discharged definition, that are different -objects. - -To overcome the previous limitations, Claudio Sacerdoti Coen developed in his -PhD. thesis an extension of CIC, called Calculus of (Co)Inductive Constructions -with Explicit Named Substitutions, that is a slight extension of CIC where -discharging is not necessary. The DTD of the exported XML files describes -constants, inductive types and variables of the Calculus of (Co)Inductive -Constructions with Explicit Named Substitutions. The conversion to the new -calculus is performed during the exportation phase. - -The following example shows a very small \Coq\ development together with its -version in CIC with Explicit Named Substitutions. - -\begin{verbatim} -# CIC version: # -Section S. - Variable A : Prop. - - Definition impl := A -> A. - - Theorem t : impl. (* uses the undischarged form of impl *) - Proof. - exact (fun (a:A) => a). - Qed. - -End S. - -Theorem t' : (impl False). (* uses the discharged form of impl *) - Proof. - exact (t False). (* uses the discharged form of t *) - Qed. -\end{verbatim} - -\begin{verbatim} -# Corresponding CIC with Explicit Named Substitutions version: # -Section S. - Variable A : Prop. - - Definition impl(A) := A -> A. (* theorems and definitions are - explicitly abstracted over the - variables. The name is sufficient to - completely describe the abstraction *) - - Theorem t(A) : impl. (* impl where A is not instantiated *) - Proof. - exact (fun (a:A) => a). - Qed. - -End S. - -Theorem t'() : impl{False/A}. (* impl where A is instantiated with False - Notice that t' does not depend on A *) - Proof. - exact t{False/A}. (* t where A is instantiated with False *) - Qed. -\end{verbatim} - -Further details on the typing and reduction rules of the calculus can be -found in Claudio Sacerdoti Coen PhD. dissertation, where the consistency -of the calculus is also proved. - -\subsubsection{The CIC with Explicit Named Substitutions XML DTD} - -A copy of the DTD can be found in the file ``\verb+cic.dtd+'' in the -\verb+plugins/xml+ source directory of \Coq. -The following is a very brief overview of the elements described in the DTD. - -\begin{description} - \item[]\texttt{<ConstantType>} - is the root element of the files that correspond to constant types. - \item[]\texttt{<ConstantBody>} - is the root element of the files that correspond to constant bodies. - It is used only for closed definitions and theorems (i.e. when no - metavariable occurs in the body or type of the constant) - \item[]\texttt{<CurrentProof>} - is the root element of the file that correspond to the body of a constant - that depends on metavariables (e.g. unfinished proofs) - \item[]\texttt{<Variable>} - is the root element of the files that correspond to variables - \item[]\texttt{<InductiveTypes>} - is the root element of the files that correspond to blocks - of mutually defined inductive definitions -\end{description} - -The elements - \verb+<LAMBDA>+, \verb+<CAST>+, \verb+<PROD>+, \verb+<REL>+, \verb+<SORT>+, - \verb+<APPLY>+, \verb+<VAR>+, \verb+<META>+, \verb+<IMPLICIT>+, \verb+<CONST>+, \verb+<LETIN>+, \verb+<MUTIND>+, \verb+<MUTCONSTRUCT>+, \verb+<MUTCASE>+, - \verb+<FIX>+ and \verb+<COFIX>+ are used to encode the constructors of CIC. - The \verb+sort+ or \verb+type+ attribute of the element, if present, is - respectively the sort or the type of the term, that is a sort because of the - typing rules of CIC. - -The element \verb+<instantiate>+ correspond to the application of an explicit -named substitution to its first argument, that is a reference to a definition -or declaration in the environment. - -All the other elements are just syntactic sugar. - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Micromega.tex b/doc/refman/Micromega.tex deleted file mode 100644 index 5f9ed443..00000000 --- a/doc/refman/Micromega.tex +++ /dev/null @@ -1,222 +0,0 @@ -\achapter{Micromega : tactics for solving arithmetic goals over ordered rings} -\aauthor{Frédéric Besson and Evgeny Makarov} -\newtheorem{theorem}{Theorem} - - -\asection{Short description of the tactics} -\tacindex{psatz} \tacindex{lra} -\label{sec:psatz-hurry} -The {\tt Psatz} module ({\tt Require Psatz.}) gives access to several tactics for solving arithmetic goals over - {\tt Z}\footnote{Support for {\tt nat} and {\tt N} is obtained by pre-processing the goal with the {\tt zify} tactic.}, {\tt Q} and {\tt R}: -\begin{itemize} -\item {\tt lia} is a decision procedure for linear integer arithmetic (see Section~\ref{sec:lia}); -\item {\tt nia} is an incomplete proof procedure for integer non-linear arithmetic (see Section~\ref{sec:nia}); -\item {\tt lra} is a decision procedure for linear (real or rational) arithmetic goals (see Section~\ref{sec:lra}); -\item {\tt psatz D n} where {\tt D} is {\tt Z}, {\tt Q} or {\tt R} and {\tt n} is an optional integer limiting the proof search depth is -is an incomplete proof procedure for non-linear arithmetic. It is based on John Harrison's Hol light driver to the external prover {\tt cspd}\footnote{Sources and binaries can be found at \url{https://projects.coin-or.org/Csdp}}. - Note that the {\tt csdp} driver is generating - a \emph{proof cache} thus allowing to rerun scripts even without {\tt csdp} (see Section~\ref{sec:psatz}). -\end{itemize} - -The tactics solve propositional formulas parameterised by atomic arithmetics expressions -interpreted over a domain $D \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R} \}$. -The syntax of the formulas is the following: -\[ -\begin{array}{lcl} - F &::=& A \mid P \mid \mathit{True} \mid \mathit{False} \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid F_1 \leftrightarrow F_2 \mid F_1 \to F_2 \mid \sim F\\ - A &::=& p_1 = p_2 \mid p_1 > p_2 \mid p_1 < p_2 \mid p_1 \ge p_2 \mid p_1 \le p_2 \\ - p &::=& c \mid x \mid {-}p \mid p_1 - p_2 \mid p_1 + p_2 \mid p_1 \times p_2 \mid p \verb!^! n - \end{array} - \] - where $c$ is a numeric constant, $x\in D$ is a numeric variable and the operators $-$, $+$, $\times$, are - respectively subtraction, addition, product, $p \verb!^!n $ is exponentiation by a constant $n$, $P$ is an - arbitrary proposition. - % - For {\tt Q}, equality is not leibnitz equality {\tt =} but the equality of rationals {\tt ==}. - -For {\tt Z} (resp. {\tt Q} ), $c$ ranges over integer constants (resp. rational constants). -%% The following table details for each domain $D \in \{\mathbb{Z},\mathbb{Q},\mathbb{R}\}$ the range of constants $c$ and exponent $n$. -%% \[ -%% \begin{array}{|c|c|c|c|} -%% \hline -%% &\mathbb{Z} & \mathbb{Q} & \mathbb{R} \\ -%% \hline -%% c &\mathtt{Z} & \mathtt{Q} & (see below) \\ -%% \hline -%% n &\mathtt{Z} & \mathtt{Z} & \mathtt{nat}\\ -%% \hline -%% \end{array} -%% \] -For {\tt R}, the tactic recognises as real constants the following expressions: -\begin{verbatim} -c ::= R0 | R1 | Rmul(c,c) | Rplus(c,c) | Rminus(c,c) | IZR z | IQR q | Rdiv(c,c) | Rinv c -\end{verbatim} -where ${\tt z}$ is a constant in {\tt Z} and {\tt q} is a constant in {\tt Q}. -This includes integer constants written using the decimal notation \emph{i.e.,} {\tt c\%R}. - -\asection{\emph{Positivstellensatz} refutations} -\label{sec:psatz-back} - -The name {\tt psatz} is an abbreviation for \emph{positivstellensatz} -- literally positivity theorem -- which -generalises Hilbert's \emph{nullstellensatz}. -% -It relies on the notion of $\mathit{Cone}$. Given a (finite) set of polynomials $S$, $Cone(S)$ is -inductively defined as the smallest set of polynomials closed under the following rules: -\[ -\begin{array}{l} -\dfrac{p \in S}{p \in Cone(S)} \quad -\dfrac{}{p^2 \in Cone(S)} \quad -\dfrac{p_1 \in Cone(S) \quad p_2 \in Cone(S) \quad \Join \in \{+,*\}} {p_1 \Join p_2 \in Cone(S)}\\ -\end{array} -\] -The following theorem provides a proof principle for checking that a set of polynomial inequalities do not have solutions\footnote{Variants deal with equalities and strict inequalities.}: -\begin{theorem} - \label{thm:psatz} - Let $S$ be a set of polynomials.\\ - If ${-}1$ belongs to $Cone(S)$ then the conjunction $\bigwedge_{p \in S} p\ge 0$ is unsatisfiable. -\end{theorem} -A proof based on this theorem is called a \emph{positivstellensatz} refutation. -% -The tactics work as follows. Formulas are normalised into conjonctive normal form $\bigwedge_i C_i$ where -$C_i$ has the general form $(\bigwedge_{j\in S_i} p_j \Join 0) \to \mathit{False})$ and $\Join \in \{>,\ge,=\}$ for $D\in -\{\mathbb{Q},\mathbb{R}\}$ and $\Join \in \{\ge, =\}$ for $\mathbb{Z}$. -% -For each conjunct $C_i$, the tactic calls a oracle which searches for $-1$ within the cone. -% -Upon success, the oracle returns a \emph{cone expression} that is normalised by the {\tt ring} tactic (see chapter~\ref{ring}) and checked to be -$-1$. - - -\asection{{\tt lra} : a decision procedure for linear real and rational arithmetic} -\label{sec:lra} -The {\tt lra} tactic is searching for \emph{linear} refutations using -Fourier elimination\footnote{More efficient linear programming techniques could equally be employed}. As a -result, this tactic explores a subset of the $Cone$ defined as: -\[ -LinCone(S) =\left\{ \left. \sum_{p \in S} \alpha_p \times p\ \right|\ \alpha_p \mbox{ are positive constants} \right\} -\] -The deductive power of {\tt lra} is the combined deductive power of {\tt ring\_simplify} and {\tt fourier}. -% -There is also an overlap with the {\tt field} tactic {\emph e.g.}, {\tt x = 10 * x / 10} is solved by {\tt lra}. - -\asection{ {\tt psatz} : a proof procedure for non-linear arithmetic} -\label{sec:psatz} -The {\tt psatz} tactic explores the $Cone$ by increasing degrees -- hence the depth parameter $n$. -In theory, such a proof search is complete -- if the goal is provable the search eventually stops. -Unfortunately, the external oracle is using numeric (approximate) optimisation techniques that might miss a -refutation. - -To illustrate the working of the tactic, consider we wish to prove the following Coq goal.\\ -\begin{coq_eval} - Require Import ZArith Psatz. - Open Scope Z_scope. -\end{coq_eval} -\begin{coq_example*} - Goal forall x, -x^2 >= 0 -> x - 1 >= 0 -> False. -\end{coq_example*} -\begin{coq_eval} -intro x; psatz Z 2. -\end{coq_eval} -Such a goal is solved by {\tt intro x; psatz Z 2}. The oracle returns the cone expression $2 \times -(\mathbf{x-1}) + \mathbf{x-1}\times\mathbf{x-1} + \mathbf{-x^2}$ (polynomial hypotheses are printed in bold). By construction, this -expression belongs to $Cone(\{-x^2, x -1\})$. Moreover, by running {\tt ring} we obtain $-1$. By -Theorem~\ref{thm:psatz}, the goal is valid. -% - -%% \paragraph{The {\tt sos} tactic} -- where {\tt sos} stands for \emph{sum of squares} -- tries to prove that a -%% single polynomial $p$ is positive by expressing it as a sum of squares \emph{i.e.,} $\sum_{i\in S} p_i^2$. -%% This amounts to searching for $p$ in the cone without generators \emph{i.e.}, $Cone(\{\})$. -% - -\asection{ {\tt lia} : a tactic for linear integer arithmetic } -\tacindex{lia} -\label{sec:lia} - -The tactic {\tt lia} offers an alternative to the {\tt omega} and {\tt romega} tactic (see -Chapter~\ref{OmegaChapter}). -% -Rougthly speaking, the deductive power of {\tt lia} is the combined deductive power of {\tt ring\_simplify} and {\tt omega}. -% -However, it solves linear goals that {\tt omega} and {\tt romega} do not solve, such as the -following so-called \emph{omega nightmare}~\cite{TheOmegaPaper}. -\begin{coq_example*} - Goal forall x y, - 27 <= 11 * x + 13 * y <= 45 -> - -10 <= 7 * x - 9 * y <= 4 -> False. -\end{coq_example*} -\begin{coq_eval} -intro x; lia; -\end{coq_eval} -The estimation of the relative efficiency of lia \emph{vs} {\tt omega} -and {\tt romega} is under evaluation. - -\paragraph{High level view of {\tt lia}.} -Over $\mathbb{R}$, \emph{positivstellensatz} refutations are a complete proof principle\footnote{In practice, the oracle might fail to produce such a refutation.}. -% -However, this is not the case over $\mathbb{Z}$. -% -Actually, \emph{positivstellensatz} refutations are not even sufficient to decide linear \emph{integer} -arithmetics. -% -The canonical exemple is {\tt 2 * x = 1 -> False} which is a theorem of $\mathbb{Z}$ but not a theorem of $\mathbb{R}$. -% -To remedy this weakness, the {\tt lia} tactic is using recursively a combination of: -% -\begin{itemize} -\item linear \emph{positivstellensatz} refutations; -\item cutting plane proofs; -\item case split. -\end{itemize} - -\paragraph{Cutting plane proofs} are a way to take into account the discreetness of $\mathbb{Z}$ by rounding up -(rational) constants up-to the closest integer. -% -\begin{theorem} - Let $p$ be an integer and $c$ a rational constant. - \[ - p \ge c \Rightarrow p \ge \lceil c \rceil - \] -\end{theorem} -For instance, from $2 * x = 1$ we can deduce -\begin{itemize} -\item $x \ge 1/2$ which cut plane is $ x \ge \lceil 1/2 \rceil = 1$; -\item $ x \le 1/2$ which cut plane is $ x \le \lfloor 1/2 \rfloor = 0$. -\end{itemize} -By combining these two facts (in normal form) $x - 1 \ge 0$ and $-x \ge 0$, we conclude by exhibiting a -\emph{positivstellensatz} refutation ($-1 \equiv \mathbf{x-1} + \mathbf{-x} \in Cone(\{x-1,x\})$). - -Cutting plane proofs and linear \emph{positivstellensatz} refutations are a complete proof principle for integer linear arithmetic. - -\paragraph{Case split} allow to enumerate over the possible values of an expression. -\begin{theorem} - Let $p$ be an integer and $c_1$ and $c_2$ integer constants. - \[ - c_1 \le p \le c_2 \Rightarrow \bigvee_{x \in [c_1,c_2]} p = x - \] -\end{theorem} -Our current oracle tries to find an expression $e$ with a small range $[c_1,c_2]$. -% -We generate $c_2 - c_1$ subgoals which contexts are enriched with an equation $e = i$ for $i \in [c_1,c_2]$ and -recursively search for a proof. - -\asection{ {\tt nia} : a proof procedure for non-linear integer arithmetic} -\tacindex{nia} -\label{sec:nia} -The {\tt nia} tactic is an {\emph experimental} proof procedure for non-linear integer arithmetic. -% -The tactic performs a limited amount of non-linear reasoning before running the -linear prover of {\tt lia}. -This pre-processing does the following: -\begin{itemize} -\item If the context contains an arithmetic expression of the form $e[x^2]$ where $x$ is a - monomial, the context is enriched with $x^2\ge 0$; -\item For all pairs of hypotheses $e_1\ge 0$, $e_2 \ge 0$, the context is enriched with $e_1 \times e_2 \ge 0$. -\end{itemize} -After pre-processing, the linear prover of {\tt lia} is searching for a proof by abstracting monomials by variables. - - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Natural.tex b/doc/refman/Natural.tex deleted file mode 100644 index 9a9abe5d..00000000 --- a/doc/refman/Natural.tex +++ /dev/null @@ -1,425 +0,0 @@ -\achapter{\texttt{Natural} : proofs in natural language} -\aauthor{Yann Coscoy} - -\asection{Introduction} - -\Natural~ is a package allowing the writing of proofs in natural -language. For instance, the proof in \Coq~of the induction principle on pairs -of natural numbers looks like this: - -\begin{coq_example*} -Require Natural. -\end{coq_example*} -\begin{coq_example} -Print nat_double_ind. -\end{coq_example} - -Piping it through the \Natural~pretty-printer gives: - -\comindex{Print Natural} -\begin{coq_example} -Print Natural nat_double_ind. -\end{coq_example} - -\asection{Activating \Natural} - -To enable the printing of proofs in natural language, you should -type under \texttt{coqtop} or \texttt{coqtop -full} the command - -\begin{coq_example*} -Require Natural. -\end{coq_example*} - -By default, proofs are transcripted in english. If you wish to print them -in French, set the French option by - -\comindex{Set Natural} -\begin{coq_example*} -Set Natural French. -\end{coq_example*} - -If you want to go back to English, type in - -\begin{coq_example*} -Set Natural English. -\end{coq_example*} - -Currently, only \verb=French= and \verb=English= are available. - -You may see for example the natural transcription of the proof of -the induction principle on pairs of natural numbers: - -\begin{coq_example*} -Print Natural nat_double_ind. -\end{coq_example*} - -You may also show in natural language the current proof in progress: - -\comindex{Show Natural} -\begin{coq_example} -Goal (n:nat)(le O n). -Induction n. -Show Natural Proof. -\end{coq_example} - -\subsection*{Restrictions} - -For \Natural, a proof is an object of type a proposition (i.e. an -object of type something of type {\tt Prop}). Only proofs are written -in natural language when typing {\tt Print Natural \ident}. All other -objects (the objects of type something which is of type {\tt Set} or -{\tt Type}) are written as usual $\lambda$-terms. - -\asection{Customizing \Natural} - -The transcription of proofs in natural language is mainly a paraphrase of -the formal proofs, but some specific hints in the transcription -can be given. -Three kinds of customization are available. - -\asubsection{Implicit proof steps} - -\subsubsection*{Implicit lemmas} - -Applying a given lemma or theorem \verb=lem1= of statement, say $A -\Rightarrow B$, to an hypothesis, say $H$ (assuming $A$) produces the -following kind of output translation: - -\begin{verbatim} -... -Using lem1 with H we get B. -... -\end{verbatim} - -But sometimes, you may prefer not to see the explicit invocation to -the lemma. You may prefer to see: - -\begin{verbatim} -... -With H we have A. -... -\end{verbatim} - -This is possible by declaring the lemma as implicit. You should type: - -\comindex{Add Natural} -\begin{coq_example*} -Add Natural Implicit lem1. -\end{coq_example*} - -By default, the lemmas \verb=proj1=, \verb=proj2=, \verb=sym_equal= -and \verb=sym_eqT= are declared implicit. To remove a lemma or a theorem -previously declared as implicit, say \verb=lem1=, use the command - -\comindex{Remove Natural} -\begin{coq_example*} -Remove Natural Implicit lem1. -\end{coq_example*} - -To test if the lemma or theorem \verb=lem1= is, or is not, -declared as implicit, type - -\comindex{Test Natural} -\begin{coq_example*} -Test Natural Implicit for lem1. -\end{coq_example*} - -\subsubsection*{Implicit proof constructors} - -Let \verb=constr1= be a proof constructor of a given inductive -proposition (or predicate) -\verb=Q= (of type \verb=Prop=). Assume \verb=constr1= proves -\verb=(x:A)(P x)->(Q x)=. Then, applying \verb=constr1= to an hypothesis, -say \verb=H= (assuming \verb=(P a)=) produces the following kind of output: - -\begin{verbatim} -... -By the definition of Q, with H we have (Q a). -... -\end{verbatim} - -But sometimes, you may prefer not to see the explicit invocation to -this constructor. You may prefer to see: - -\begin{verbatim} -... -With H we have (Q a). -... -\end{verbatim} - -This is possible by declaring the constructor as implicit. You should -type, as before: - -\comindex{Add Natural Implicit} -\begin{coq_example*} -Add Natural Implicit constr1. -\end{coq_example*} - -By default, the proposition (or predicate) constructors - -\verb=conj=, \verb=or_introl=, \verb=or_intror=, \verb=ex_intro=, -\verb=exT_intro=, \verb=refl_equal=, \verb=refl_eqT= and \verb=exist= - -\noindent are declared implicit. Note that declaring implicit the -constructor of a datatype (i.e. an inductive type of type \verb=Set=) -has no effect. - -As above, you can remove or test a constant declared implicit. - -\subsubsection*{Implicit inductive constants} - -Let \verb=Ind= be an inductive type (either a proposition (or a -predicate) -- on \verb=Prop= --, or a datatype -- on \verb=Set=). -Suppose the proof proceeds by induction on an hypothesis \verb=h= -proving \verb=Ind= (or more generally \verb=(Ind A1 ... An)=). The -following kind of output is produced: - -\begin{verbatim} -... -With H, we will prove A by induction on the definition of Ind. -Case 1. ... -Case 2. ... -... -\end{verbatim} - -But sometimes, you may prefer not to see the explicit invocation to -\verb=Ind=. You may prefer to see: - -\begin{verbatim} -... -We will prove A by induction on H. -Case 1. ... -Case 2. ... -... -\end{verbatim} - -This is possible by declaring the inductive type as implicit. You should -type, as before: - -\comindex{Add Natural Implicit} -\begin{coq_example*} -Add Natural Implicit Ind. -\end{coq_example*} - -This kind of parameterization works for any inductively defined -proposition (or predicate) or datatype. Especially, it works whatever -the definition is recursive or purely by cases. - -By default, the data type \verb=nat= and the inductive connectives -\verb=and=, \verb=or=, \verb=sig=, \verb=False=, \verb=eq=, -\verb=eqT=, \verb=ex= and \verb=exT= are declared implicit. - -As above, you can remove or test a constant declared implicit. Use -{\tt Remove Natural Contractible $id$} or {\tt Test Natural -Contractible for $id$}. - -\asubsection{Contractible proof steps} - -\subsubsection*{Contractible lemmas or constructors} - -Some lemmas, theorems or proof constructors of inductive predicates are -often applied in a row and you obtain an output of this kind: - -\begin{verbatim} -... -Using T with H1 and H2 we get P. - * By H3 we have Q. - Using T with theses results we get R. -... -\end{verbatim} - -where \verb=T=, \verb=H1=, \verb=H2= and \verb=H3= prove statements -of the form \verb=(X,Y:Prop)X->Y->(L X Y)=, \verb=A=, \verb=B= and \verb=C= -respectively (and thus \verb=R= is \verb=(L (L A B) C)=). - -You may obtain a condensed output of the form - -\begin{verbatim} -... -Using T with H1, H2, and H3 we get R. -... -\end{verbatim} - -by declaring \verb=T= as contractible: - -\comindex{Add Natural Contractible} -\begin{coq_example*} -Add Natural Contractible T. -\end{coq_example*} - -By default, the lemmas \verb=proj1=, \verb=proj2= and the proof -constructors \verb=conj=, \verb=or_introl=, \verb=or_intror= are -declared contractible. As for implicit notions, you can remove or -test a lemma or constructor declared contractible. - -\subsubsection*{Contractible induction steps} - -Let \verb=Ind= be an inductive type. When the proof proceeds by -induction in a row, you may obtain an output of this kind: - -\begin{verbatim} -... -We have (Ind A (Ind B C)). -We use definition of Ind in a study in two cases. -Case 1: We have A. -Case 2: We have (Ind B C). - We use definition of Ind in a study of two cases. - Case 2.1: We have B. - Case 2.2: We have C. -... -\end{verbatim} - -You may prefer to see - -\begin{verbatim} -... -We have (Ind A (Ind B C)). -We use definition of Ind in a study in three cases. -Case 1: We have A. -Case 2: We have B. -Case 3: We have C. -... -\end{verbatim} - -This is possible by declaring \verb=Ind= as contractible: - -\begin{coq_example*} -Add Natural Contractible T. -\end{coq_example*} - -By default, only \verb=or= is declared as a contractible inductive -constant. -As for implicit notions, you can remove or test an inductive notion declared -contractible. - -\asubsection{Transparent definitions} - -``Normal'' definitions are all constructions except proofs and proof constructors. - -\subsubsection*{Transparent non inductive normal definitions} - -When using the definition of a non inductive constant, say \verb=D=, the -following kind of output is produced: - -\begin{verbatim} -... -We have proved C which is equivalent to D. -... -\end{verbatim} - -But you may prefer to hide that D comes from the definition of C as -follows: - -\begin{verbatim} -... -We have prove D. -... -\end{verbatim} - -This is possible by declaring \verb=C= as transparent: - -\comindex{Add Natural Transparent} -\begin{coq_example*} -Add Natural Transparent D. -\end{coq_example*} - -By default, only \verb=not= (normally written \verb=~=) is declared as -a non inductive transparent definition. -As for implicit and contractible definitions, you can remove or test a -non inductive definition declared transparent. -Use \texttt{Remove Natural Transparent} \ident or -\texttt{Test Natural Transparent for} \ident. - -\subsubsection*{Transparent inductive definitions} - -Let \verb=Ind= be an inductive proposition (more generally: a -predicate \verb=(Ind x1 ... xn)=). Suppose the definition of -\verb=Ind= is non recursive and built with just -one constructor proving something like \verb=A -> B -> Ind=. -When coming back to the definition of \verb=Ind= the -following kind of output is produced: - -\begin{verbatim} -... -Assume Ind (H). - We use H with definition of Ind. - We have A and B. - ... -\end{verbatim} - -When \verb=H= is not used a second time in the proof, you may prefer -to hide that \verb=A= and \verb=B= comes from the definition of -\verb=Ind=. You may prefer to get directly: - -\begin{verbatim} -... -Assume A and B. -... -\end{verbatim} - -This is possible by declaring \verb=Ind= as transparent: - -\begin{coq_example*} -Add Natural Transparent Ind. -\end{coq_example*} - -By default, \verb=and=, \verb=or=, \verb=ex=, \verb=exT=, \verb=sig= -are declared as inductive transparent constants. As for implicit and -contractible constants, you can remove or test an inductive -constant declared transparent. - -As for implicit and contractible constants, you can remove or test an -inductive constant declared transparent. - -\asubsection{Extending the maximal depth of nested text} - -The depth of nested text is limited. To know the current depth, do: - -\comindex{Set Natural Depth} -\begin{coq_example} -Set Natural Depth. -\end{coq_example} - -To change the maximal depth of nested text (for instance to 125) do: - -\begin{coq_example} -Set Natural Depth 125. -\end{coq_example} - -\asubsection{Restoring the default parameterization} - -The command \verb=Set Natural Default= sets back the parameterization tables of -\Natural~ to their default values, as listed in the above sections. -Moreover, the language is set back to English and the max depth of -nested text is set back to its initial value. - -\asubsection{Printing the current parameterization} - -The commands {\tt Print Natural Implicit}, {\tt Print Natural -Contractible} and {\tt Print \\ Natural Transparent} print the list of -constructions declared {\tt Implicit}, {\tt Contractible}, -{\tt Transparent} respectively. - -\asubsection{Interferences with \texttt{Reset}} - -The customization of \texttt{Natural} is dependent of the \texttt{Reset} -command. If you reset the environment back to a point preceding an -\verb=Add Natural ...= command, the effect of the command will be -erased. Similarly, a reset back to a point before a -\verb=Remove Natural ... = command invalidates the removal. - -\asection{Error messages} - -An error occurs when trying to \verb=Print=, to \verb=Add=, to -\verb=Test=, or to \verb=remove= an undefined ident. Similarly, an -error occurs when trying to set a language unknown from \Natural. -Errors may also occur when trying to parameterize the printing of -proofs: some parameterization are effectively forbidden. -Note that to \verb=Remove= an ident absent from a table or to -\verb=Add= to a table an already present ident does not lead to an -error. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Nsatz.tex b/doc/refman/Nsatz.tex deleted file mode 100644 index 3ecc7e65..00000000 --- a/doc/refman/Nsatz.tex +++ /dev/null @@ -1,101 +0,0 @@ -\achapter{Nsatz: tactics for proving equalities in integral domains} -\aauthor{Loïc Pottier} - -The tactic \texttt{nsatz} proves goals of the form - -\[ \begin{array}{l} - \forall X_1,\ldots,X_n \in A,\\ - P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) , \ldots , P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\ - \vdash P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\ - \end{array} -\] -where $P,Q, P_1,Q_1,\ldots,P_s,Q_s$ are polynomials and A is an integral -domain, i.e. a commutative ring with no zero divisor. For example, A can be -$\mathbb{R}$, $\mathbb{Z}$, of $\mathbb{Q}$. Note that the equality $=$ used in these -goals can be any setoid equality -(see \ref{setoidtactics}) -, not only Leibnitz equality. - -It also proves formulas -\[ \begin{array}{l} - \forall X_1,\ldots,X_n \in A,\\ - P_1(X_1,\ldots,X_n) = Q_1(X_1,\ldots,X_n) \wedge \ldots \wedge P_s(X_1,\ldots,X_n) =Q_s(X_1,\ldots,X_n)\\ - \rightarrow P(X_1,\ldots,X_n) = Q(X_1,\ldots,X_n)\\ - \end{array} -\] doing automatic introductions. - -\asection{Using the basic tactic \texttt{nsatz}} -\tacindex{nsatz} - -Load the -\texttt{Nsatz} module: \texttt{Require Import Nsatz}.\\ - and use the tactic \texttt{nsatz}. - -\asection{More about \texttt{nsatz}} - -Hilbert's Nullstellensatz theorem shows how to reduce proofs of equalities on -polynomials on a commutative ring A with no zero divisor to algebraic computations: it is easy to see that if a polynomial -$P$ in $A[X_1,\ldots,X_n]$ verifies $c P^r = \sum_{i=1}^{s} S_i P_i$, with $c -\in A$, $c \not = 0$, $r$ a positive integer, and the $S_i$s in -$A[X_1,\ldots,X_n]$, then $P$ is zero whenever polynomials $P_1,...,P_s$ are -zero (the converse is also true when A is an algebraic closed field: -the method is complete). - -So, proving our initial problem can reduce into finding $S_1,\ldots,S_s$, $c$ -and $r$ such that $c (P-Q)^r = \sum_{i} S_i (P_i-Q_i)$, which will be proved by the -tactic \texttt{ring}. - -This is achieved by the computation of a Groebner basis of the -ideal generated by $P_1-Q_1,...,P_s-Q_s$, with an adapted version of the Buchberger -algorithm. - -This computation is done after a step of {\em reification}, which is -performed using {\em Type Classes} -(see \ref{typeclasses}) -. - -The \texttt{Nsatz} module defines the tactic -\texttt{nsatz}, which can be used without arguments: \\ -\vspace*{3mm} -\texttt{nsatz}\\ -or with the syntax: \\ -\vspace*{3mm} -\texttt{nsatz with radicalmax:={\em number}\%N strategy:={\em number}\%Z parameters:={\em list of variables} variables:={\em list of variables}}\\ -where: - -\begin{itemize} - \item \texttt{radicalmax} is a bound when for searching r s.t.$c (P-Q)^r = -\sum_{i=1..s} S_i (P_i - Q_i)$ - - \item \texttt{strategy} gives the order on variables $X_1,...X_n$ and -the strategy used in Buchberger algorithm (see -\cite{sugar} for details): - - \begin{itemize} - \item strategy = 0: reverse lexicographic order and newest s-polynomial. - \item strategy = 1: reverse lexicographic order and sugar strategy. - \item strategy = 2: pure lexicographic order and newest s-polynomial. - \item strategy = 3: pure lexicographic order and sugar strategy. - \end{itemize} - - \item \texttt{parameters} is the list of variables -$X_{i_1},\ldots,X_{i_k}$ among $X_1,...,X_n$ which are considered as - parameters: computation will be performed with rational fractions in these - variables, i.e. polynomials are considered with coefficients in -$R(X_{i_1},\ldots,X_{i_k})$. In this case, the coefficient $c$ can be a non -constant polynomial in $X_{i_1},\ldots,X_{i_k}$, and the tactic produces a goal -which states that $c$ is not zero. - - \item \texttt{variables} is the list of the variables -in the decreasing order in which they will be used in Buchberger algorithm. If \texttt{variables} = {(@nil -R)}, then \texttt{lvar} is replaced by all the variables which are not in -parameters. - -\end{itemize} - -See file \texttt{Nsatz.v} for many examples, specially in geometry. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Omega.tex b/doc/refman/Omega.tex deleted file mode 100644 index b9e899ce..00000000 --- a/doc/refman/Omega.tex +++ /dev/null @@ -1,226 +0,0 @@ -\achapter{Omega: a solver of quantifier-free problems in -Presburger Arithmetic} -\aauthor{Pierre Crégut} -\label{OmegaChapter} - -\asection{Description of {\tt omega}} -\tacindex{omega} -\label{description} - -{\tt omega} solves a goal in Presburger arithmetic, i.e. a universally -quantified formula made of equations and inequations. Equations may -be specified either on the type \verb=nat= of natural numbers or on -the type \verb=Z= of binary-encoded integer numbers. Formulas on -\verb=nat= are automatically injected into \verb=Z=. The procedure -may use any hypothesis of the current proof session to solve the goal. - -Multiplication is handled by {\tt omega} but only goals where at -least one of the two multiplicands of products is a constant are -solvable. This is the restriction meant by ``Presburger arithmetic''. - -If the tactic cannot solve the goal, it fails with an error message. -In any case, the computation eventually stops. - -\asubsection{Arithmetical goals recognized by {\tt omega}} - -{\tt omega} applied only to quantifier-free formulas built from the -connectors - -\begin{quote} -\verb=/\, \/, ~, ->= -\end{quote} - -on atomic formulas. Atomic formulas are built from the predicates - -\begin{quote} -\verb!=, le, lt, gt, ge! -\end{quote} - - on \verb=nat= or from the predicates - -\begin{quote} -\verb!=, <, <=, >, >=! -\end{quote} - - on \verb=Z=. In expressions of type \verb=nat=, {\tt omega} recognizes - -\begin{quote} -\verb!plus, minus, mult, pred, S, O! -\end{quote} - -and in expressions of type \verb=Z=, {\tt omega} recognizes - -\begin{quote} -\verb!+, -, *, Zsucc!, and constants. -\end{quote} - -All expressions of type \verb=nat= or \verb=Z= not built on these -operators are considered abstractly as if they -were arbitrary variables of type \verb=nat= or \verb=Z=. - -\asubsection{Messages from {\tt omega}} -\label{errors} - -When {\tt omega} does not solve the goal, one of the following errors -is generated: - -\begin{ErrMsgs} - -\item \errindex{omega can't solve this system} - - This may happen if your goal is not quantifier-free (if it is - universally quantified, try {\tt intros} first; if it contains - existentials quantifiers too, {\tt omega} is not strong enough to solve your - goal). This may happen also if your goal contains arithmetical - operators unknown from {\tt omega}. Finally, your goal may be really - wrong! - -\item \errindex{omega: Not a quantifier-free goal} - - If your goal is universally quantified, you should first apply {\tt - intro} as many time as needed. - -\item \errindex{omega: Unrecognized predicate or connective: {\sl ident}} - -\item \errindex{omega: Unrecognized atomic proposition: {\sl prop}} - -\item \errindex{omega: Can't solve a goal with proposition variables} - -\item \errindex{omega: Unrecognized proposition} - -\item \errindex{omega: Can't solve a goal with non-linear products} - -\item \errindex{omega: Can't solve a goal with equality on {\sl type}} - -\end{ErrMsgs} - -%% Ce code est débranché pour l'instant -%% -% \asubsection{Control over the output} -% There are some flags that can be set to get more information on the procedure - -% \begin{itemize} -% \item \verb=Time= to get the time used by the procedure -% \item \verb=System= to visualize the normalized systems. -% \item \verb=Action= to visualize the actions performed by the OMEGA -% procedure (see \ref{technical}). -% \end{itemize} - -% \comindex{Set omega Time} -% \comindex{UnSet omega Time} -% \comindex{Switch omega Time} -% \comindex{Set omega System} -% \comindex{UnSet omega System} -% \comindex{Switch omega System} -% \comindex{Set omega Action} -% \comindex{UnSet omega Action} -% \comindex{Switch omega Action} - -% Use {\tt Set omega {\rm\sl flag}} to set the flag -% {\rm\sl flag}. Use {\tt Unset omega {\rm\sl flag}} to unset it and -% {\tt Switch omega {\rm\sl flag}} to toggle it. - -\section{Using {\tt omega}} - -The {\tt omega} tactic does not belong to the core system. It should be -loaded by -\begin{coq_example*} -Require Import Omega. -Open Scope Z_scope. -\end{coq_example*} - -\example{} - -\begin{coq_example} -Goal forall m n:Z, 1 + 2 * m <> 2 * n. -intros; omega. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\example{} - -\begin{coq_example} -Goal forall z:Z, z > 0 -> 2 * z + 1 > z. -intro; omega. -\end{coq_example} - -% Other examples can be found in \verb+$COQLIB/theories/DEMOS/OMEGA+. - -\asection{Technical data} -\label{technical} - -\asubsection{Overview of the tactic} -\begin{itemize} - -\item The goal is negated twice and the first negation is introduced as an - hypothesis. -\item Hypothesis are decomposed in simple equations or inequations. Multiple - goals may result from this phase. -\item Equations and inequations over \verb=nat= are translated over - \verb=Z=, multiple goals may result from the translation of - substraction. -\item Equations and inequations are normalized. -\item Goals are solved by the {\it OMEGA} decision procedure. -\item The script of the solution is replayed. - -\end{itemize} - -\asubsection{Overview of the {\it OMEGA} decision procedure} - -The {\it OMEGA} decision procedure involved in the {\tt omega} tactic uses -a small subset of the decision procedure presented in - -\begin{quote} - "The Omega Test: a fast and practical integer programming -algorithm for dependence analysis", William Pugh, Communication of the -ACM , 1992, p 102-114. -\end{quote} - -Here is an overview, look at the original paper for more information. - -\begin{itemize} - -\item Equations and inequations are normalized by division by the GCD of their - coefficients. -\item Equations are eliminated, using the Banerjee test to get a coefficient - equal to one. -\item Note that each inequation defines a half space in the space of real value - of the variables. - \item Inequations are solved by projecting on the hyperspace - defined by cancelling one of the variable. They are partitioned - according to the sign of the coefficient of the eliminated - variable. Pairs of inequations from different classes define a - new edge in the projection. - \item Redundant inequations are eliminated or merged in new - equations that can be eliminated by the Banerjee test. -\item The last two steps are iterated until a contradiction is reached - (success) or there is no more variable to eliminate (failure). - -\end{itemize} - -It may happen that there is a real solution and no integer one. The last -steps of the Omega procedure (dark shadow) are not implemented, so the -decision procedure is only partial. - -\asection{Bugs} - -\begin{itemize} -\item The simplification procedure is very dumb and this results in - many redundant cases to explore. - -\item Much too slow. - -\item Certainly other bugs! You can report them to - -\begin{quote} - \url{Pierre.Cregut@cnet.francetelecom.fr} -\end{quote} - -\end{itemize} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Polynom.tex b/doc/refman/Polynom.tex deleted file mode 100644 index 3898bf4c..00000000 --- a/doc/refman/Polynom.tex +++ /dev/null @@ -1,1000 +0,0 @@ -\achapter{The \texttt{ring} and \texttt{field} tactic families} -\aauthor{Bruno Barras, Benjamin Gr\'egoire, Assia - Mahboubi, Laurent Th\'ery\footnote{based on previous work from - Patrick Loiseleur and Samuel Boutin}} -\label{ring} -\tacindex{ring} - -This chapter presents the tactics dedicated to deal with ring and -field equations. - -\asection{What does this tactic do?} - -\texttt{ring} does associative-commutative rewriting in ring and semi-ring -structures. Assume you have two binary functions $\oplus$ and $\otimes$ -that are associative and commutative, with $\oplus$ distributive on -$\otimes$, and two constants 0 and 1 that are unities for $\oplus$ and -$\otimes$. A \textit{polynomial} is an expression built on variables $V_0, V_1, -\dots$ and constants by application of $\oplus$ and $\otimes$. - -Let an {\it ordered product} be a product of variables $V_{i_1} -\otimes \ldots \otimes V_{i_n}$ verifying $i_1 \le i_2 \le \dots \le -i_n$. Let a \textit{monomial} be the product of a constant and an -ordered product. We can order the monomials by the lexicographic -order on products of variables. Let a \textit{canonical sum} be an -ordered sum of monomials that are all different, i.e. each monomial in -the sum is strictly less than the following monomial according to the -lexicographic order. It is an easy theorem to show that every -polynomial is equivalent (modulo the ring properties) to exactly one -canonical sum. This canonical sum is called the \textit{normal form} -of the polynomial. In fact, the actual representation shares monomials -with same prefixes. So what does \texttt{ring}? It normalizes -polynomials over any ring or semi-ring structure. The basic use of -\texttt{ring} is to simplify ring expressions, so that the user does -not have to deal manually with the theorems of associativity and -commutativity. - -\begin{Examples} -\item In the ring of integers, the normal form of -$x (3 + yx + 25(1 - z)) + zx$ is $28x + (-24)xz + xxy$. -\end{Examples} - -\texttt{ring} is also able to compute a normal form modulo monomial -equalities. For example, under the hypothesis that $2x^2 = yz+1$, - the normal form of $2(x + 1)x - x - zy$ is $x+1$. - -\asection{The variables map} - -It is frequent to have an expression built with + and - $\times$, but rarely on variables only. -Let us associate a number to each subterm of a ring -expression in the \gallina\ language. For example in the ring -\texttt{nat}, consider the expression: - -\begin{quotation} -\begin{verbatim} -(plus (mult (plus (f (5)) x) x) - (mult (if b then (4) else (f (3))) (2))) -\end{verbatim} -\end{quotation} - -\noindent As a ring expression, it has 3 subterms. Give each subterm a -number in an arbitrary order: - -\begin{tabular}{ccl} -0 & $\mapsto$ & \verb|if b then (4) else (f (3))| \\ -1 & $\mapsto$ & \verb|(f (5))| \\ -2 & $\mapsto$ & \verb|x| \\ -\end{tabular} - -\noindent Then normalize the ``abstract'' polynomial - -$$((V_1 \otimes V_2) \oplus V_2) \oplus (V_0 \otimes 2) $$ - -\noindent In our example the normal form is: - -$$(2 \otimes V_0) \oplus (V_1 \otimes V_2) \oplus (V_2 \otimes V_2)$$ - -\noindent Then substitute the variables by their values in the variables map to -get the concrete normal polynomial: - -\begin{quotation} -\begin{verbatim} -(plus (mult (2) (if b then (4) else (f (3)))) - (plus (mult (f (5)) x) (mult x x))) -\end{verbatim} -\end{quotation} - -\asection{Is it automatic?} - -Yes, building the variables map and doing the substitution after -normalizing is automatically done by the tactic. So you can just forget -this paragraph and use the tactic according to your intuition. - -\asection{Concrete usage in \Coq -\tacindex{ring} -\tacindex{ring\_simplify}} - -The {\tt ring} tactic solves equations upon polynomial expressions of -a ring (or semi-ring) structure. It proceeds by normalizing both hand -sides of the equation (w.r.t. associativity, commutativity and -distributivity, constant propagation, rewriting of monomials) -and comparing syntactically the results. - -{\tt ring\_simplify} applies the normalization procedure described -above to the terms given. The tactic then replaces all occurrences of -the terms given in the conclusion of the goal by their normal -forms. If no term is given, then the conclusion should be an equation -and both hand sides are normalized. -The tactic can also be applied in a hypothesis. - -The tactic must be loaded by \texttt{Require Import Ring}. The ring -structures must be declared with the \texttt{Add Ring} command (see -below). The ring of booleans is predefined; if one wants to use the -tactic on \texttt{nat} one must first require the module -\texttt{ArithRing} (exported by \texttt{Arith}); -for \texttt{Z}, do \texttt{Require Import -ZArithRing} or simply \texttt{Require Import ZArith}; -for \texttt{N}, do \texttt{Require Import NArithRing} or -\texttt{Require Import NArith}. - -\Example -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Require Import ZArith. -Open Scope Z_scope. -Goal forall a b c:Z, - (a + b + c)^2 = - a * a + b^2 + c * c + 2 * a * b + 2 * a * c + 2 * b * c. -\end{coq_example} -\begin{coq_example} -intros; ring. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} -\begin{coq_example} -Goal forall a b:Z, 2*a*b = 30 -> - (a+b)^2 = a^2 + b^2 + 30. -\end{coq_example} -\begin{coq_example} -intros a b H; ring [H]. -\end{coq_example} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{Variants} - \item {\tt ring [\term$_1$ {\ldots} \term$_n$]} decides the equality of two - terms modulo ring operations and rewriting of the equalities - defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$ - {\ldots} \term$_n$ has to be a proof of some equality $m = p$, - where $m$ is a monomial (after ``abstraction''), - $p$ a polynomial and $=$ the corresponding equality of the ring structure. - - \item {\tt ring\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1 \ldots t_m$ in -{\ident}} - performs the simplification in the hypothesis named {\tt ident}. -\end{Variants} - -\Warning \texttt{ring\_simplify \term$_1$; ring\_simplify \term$_2$} is -not equivalent to \texttt{ring\_simplify \term$_1$ \term$_2$}. In the -latter case the variables map is shared between the two terms, and -common subterm $t$ of \term$_1$ and \term$_2$ will have the same -associated variable number. So the first alternative should be -avoided for terms belonging to the same ring theory. - - -\begin{ErrMsgs} -\item \errindex{not a valid ring equation} - The conclusion of the goal is not provable in the corresponding ring - theory. -\item \errindex{arguments of ring\_simplify do not have all the same type} - {\tt ring\_simplify} cannot simplify terms of several rings at the - same time. Invoke the tactic once per ring structure. -\item \errindex{cannot find a declared ring structure over {\tt term}} - No ring has been declared for the type of the terms to be - simplified. Use {\tt Add Ring} first. -\item \errindex{cannot find a declared ring structure for equality - {\tt term}} - Same as above is the case of the {\tt ring} tactic. -\end{ErrMsgs} - -\asection{Adding a ring structure -\comindex{Add Ring}} - -Declaring a new ring consists in proving that a ring signature (a -carrier set, an equality, and ring operations: {\tt -Ring\_theory.ring\_theory} and {\tt Ring\_theory.semi\_ring\_theory}) -satisfies the ring axioms. Semi-rings (rings without $+$ inverse) are -also supported. The equality can be either Leibniz equality, or any -relation declared as a setoid (see~\ref{setoidtactics}). The definition -of ring and semi-rings (see module {\tt Ring\_theory}) is: -\begin{verbatim} - Record ring_theory : Prop := mk_rt { - Radd_0_l : forall x, 0 + x == x; - Radd_sym : forall x y, x + y == y + x; - Radd_assoc : forall x y z, x + (y + z) == (x + y) + z; - Rmul_1_l : forall x, 1 * x == x; - Rmul_sym : forall x y, x * y == y * x; - Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z; - Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z); - Rsub_def : forall x y, x - y == x + -y; - Ropp_def : forall x, x + (- x) == 0 - }. - -Record semi_ring_theory : Prop := mk_srt { - SRadd_0_l : forall n, 0 + n == n; - SRadd_sym : forall n m, n + m == m + n ; - SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p; - SRmul_1_l : forall n, 1*n == n; - SRmul_0_l : forall n, 0*n == 0; - SRmul_sym : forall n m, n*m == m*n; - SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p; - SRdistr_l : forall n m p, (n + m)*p == n*p + m*p - }. -\end{verbatim} - -This implementation of {\tt ring} also features a notion of constant -that can be parameterized. This can be used to improve the handling of -closed expressions when operations are effective. It consists in -introducing a type of \emph{coefficients} and an implementation of the -ring operations, and a morphism from the coefficient type to the ring -carrier type. The morphism needs not be injective, nor surjective. As -an example, one can consider the real numbers. The set of coefficients -could be the rational numbers, upon which the ring operations can be -implemented. The fact that there exists a morphism is defined by the -following properties: -\begin{verbatim} - Record ring_morph : Prop := mkmorph { - morph0 : [cO] == 0; - morph1 : [cI] == 1; - morph_add : forall x y, [x +! y] == [x]+[y]; - morph_sub : forall x y, [x -! y] == [x]-[y]; - morph_mul : forall x y, [x *! y] == [x]*[y]; - morph_opp : forall x, [-!x] == -[x]; - morph_eq : forall x y, x?=!y = true -> [x] == [y] - }. - - Record semi_morph : Prop := mkRmorph { - Smorph0 : [cO] == 0; - Smorph1 : [cI] == 1; - Smorph_add : forall x y, [x +! y] == [x]+[y]; - Smorph_mul : forall x y, [x *! y] == [x]*[y]; - Smorph_eq : forall x y, x?=!y = true -> [x] == [y] - }. -\end{verbatim} -where {\tt c0} and {\tt cI} denote the 0 and 1 of the coefficient set, -{\tt +!}, {\tt *!}, {\tt -!} are the implementations of the ring -operations, {\tt ==} is the equality of the coefficients, {\tt ?+!} is -an implementation of this equality, and {\tt [x]} is a notation for -the image of {\tt x} by the ring morphism. - -Since {\tt Z} is an initial ring (and {\tt N} is an initial -semi-ring), it can always be considered as a set of -coefficients. There are basically three kinds of (semi-)rings: -\begin{description} -\item[abstract rings] to be used when operations are not - effective. The set of coefficients is {\tt Z} (or {\tt N} for - semi-rings). -\item[computational rings] to be used when operations are - effective. The set of coefficients is the ring itself. The user only - has to provide an implementation for the equality. -\item[customized ring] for other cases. The user has to provide the - coefficient set and the morphism. -\end{description} - -This implementation of ring can also recognize simple -power expressions as ring expressions. A power function is specified by -the following property: -\begin{verbatim} - Section POWER. - Variable Cpow : Set. - Variable Cp_phi : N -> Cpow. - Variable rpow : R -> Cpow -> R. - - Record power_theory : Prop := mkpow_th { - rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n) - }. - - End POWER. -\end{verbatim} - - -The syntax for adding a new ring is {\tt Add Ring $name$ : $ring$ -($mod_1$,\dots,$mod_2$)}. The name is not relevent. It is just used -for error messages. The term $ring$ is a proof that the ring signature -satisfies the (semi-)ring axioms. The optional list of modifiers is -used to tailor the behavior of the tactic. The following list -describes their syntax and effects: -\begin{description} -\item[abstract] declares the ring as abstract. This is the default. -\item[decidable \term] declares the ring as computational. The expression - \term{} is - the correctness proof of an equality test {\tt ?=!} (which should be - evaluable). Its type should be of - the form {\tt forall x y, x?=!y = true $\rightarrow$ x == y}. -\item[morphism \term] declares the ring as a customized one. The expression - \term{} is - a proof that there exists a morphism between a set of coefficient - and the ring carrier (see {\tt Ring\_theory.ring\_morph} and {\tt - Ring\_theory.semi\_morph}). -\item[setoid \term$_1$ \term$_2$] forces the use of given setoid. The - expression \term$_1$ is a proof that the equality is indeed a setoid - (see {\tt Setoid.Setoid\_Theory}), and \term$_2$ a proof that the - ring operations are morphisms (see {\tt Ring\_theory.ring\_eq\_ext} and - {\tt Ring\_theory.sring\_eq\_ext}). This modifier needs not be used if the - setoid and morphisms have been declared. -\item[constants [\ltac]] specifies a tactic expression that, given a term, - returns either an object of the coefficient set that is mapped to - the expression via the morphism, or returns {\tt - InitialRing.NotConstant}. The default behaviour is to map only 0 and - 1 to their counterpart in the coefficient set. This is generally not - desirable for non trivial computational rings. -\item[preprocess [\ltac]] - specifies a tactic that is applied as a preliminary step for {\tt - ring} and {\tt ring\_simplify}. It can be used to transform a goal - so that it is better recognized. For instance, {\tt S n} can be - changed to {\tt plus 1 n}. -\item[postprocess [\ltac]] specifies a tactic that is applied as a final step - for {\tt ring\_simplify}. For instance, it can be used to undo - modifications of the preprocessor. -\item[power\_tac {\term} [\ltac]] allows {\tt ring} and {\tt ring\_simplify} to - recognize power expressions with a constant positive integer exponent - (example: $x^2$). The term {\term} is a proof that a given power function - satisfies the specification of a power function ({\term} has to be a - proof of {\tt Ring\_theory.power\_theory}) and {\ltac} specifies a - tactic expression that, given a term, ``abstracts'' it into an - object of type {\tt N} whose interpretation via {\tt Cp\_phi} (the - evaluation function of power coefficient) is the original term, or - returns {\tt InitialRing.NotConstant} if not a constant coefficient - (i.e. {\ltac} is the inverse function of {\tt Cp\_phi}). - See files {\tt plugins/setoid\_ring/ZArithRing.v} and - {\tt plugins/setoid\_ring/RealField.v} for examples. - By default the tactic does not recognize power expressions as ring - expressions. -\item[sign {\term}] allows {\tt ring\_simplify} to use a minus operation - when outputing its normal form, i.e writing $x - y$ instead of $x + (-y)$. - The term {\term} is a proof that a given sign function indicates expressions - that are signed ({\term} has to be a - proof of {\tt Ring\_theory.get\_sign}). See {\tt plugins/setoid\_ring/IntialRing.v} for examples of sign function. -\item[div {\term}] allows {\tt ring} and {\tt ring\_simplify} to use moniomals -with coefficient other than 1 in the rewriting. The term {\term} is a proof that a given division function satisfies the specification of an euclidean - division function ({\term} has to be a - proof of {\tt Ring\_theory.div\_theory}). For example, this function is - called when trying to rewrite $7x$ by $2x = z$ to tell that $7 = 3 * 2 + 1$. - See {\tt plugins/setoid\_ring/IntialRing.v} for examples of div function. - -\end{description} - - -\begin{ErrMsgs} -\item \errindex{bad ring structure} - The proof of the ring structure provided is not of the expected type. -\item \errindex{bad lemma for decidability of equality} - The equality function provided in the case of a computational ring - has not the expected type. -\item \errindex{ring {\it operation} should be declared as a morphism} - A setoid associated to the carrier of the ring structure as been - found, but the ring operation should be declared as - morphism. See~\ref{setoidtactics}. -\end{ErrMsgs} - -\asection{How does it work?} - -The code of \texttt{ring} is a good example of tactic written using -\textit{reflection}. What is reflection? Basically, it is writing -\Coq{} tactics in \Coq, rather than in \ocaml. From the philosophical -point of view, it is using the ability of the Calculus of -Constructions to speak and reason about itself. For the \texttt{ring} -tactic we used \Coq\ as a programming language and also as a proof -environment to build a tactic and to prove it correctness. - -The interested reader is strongly advised to have a look at the file -\texttt{Ring\_polynom.v}. Here a type for polynomials is defined: - -\begin{small} -\begin{flushleft} -\begin{verbatim} -Inductive PExpr : Type := - | PEc : C -> PExpr - | PEX : positive -> PExpr - | PEadd : PExpr -> PExpr -> PExpr - | PEsub : PExpr -> PExpr -> PExpr - | PEmul : PExpr -> PExpr -> PExpr - | PEopp : PExpr -> PExpr - | PEpow : PExpr -> N -> PExpr. -\end{verbatim} -\end{flushleft} -\end{small} - -Polynomials in normal form are defined as: -\begin{small} -\begin{flushleft} -\begin{verbatim} - Inductive Pol : Type := - | Pc : C -> Pol - | Pinj : positive -> Pol -> Pol - | PX : Pol -> positive -> Pol -> Pol. -\end{verbatim} -\end{flushleft} -\end{small} -where {\tt Pinj n P} denotes $P$ in which $V_i$ is replaced by -$V_{i+n}$, and {\tt PX P n Q} denotes $P \otimes V_1^{n} \oplus Q'$, -$Q'$ being $Q$ where $V_i$ is replaced by $V_{i+1}$. - - -Variables maps are represented by list of ring elements, and two -interpretation functions, one that maps a variables map and a -polynomial to an element of the concrete ring, and the second one that -does the same for normal forms: -\begin{small} -\begin{flushleft} -\begin{verbatim} -Definition PEeval : list R -> PExpr -> R := [...]. -Definition Pphi_dev : list R -> Pol -> R := [...]. -\end{verbatim} -\end{flushleft} -\end{small} - -A function to normalize polynomials is defined, and the big theorem is -its correctness w.r.t interpretation, that is: - -\begin{small} -\begin{flushleft} -\begin{verbatim} -Definition norm : PExpr -> Pol := [...]. -Lemma Pphi_dev_ok : - forall l pe npe, norm pe = npe -> PEeval l pe == Pphi_dev l npe. -\end{verbatim} -\end{flushleft} -\end{small} - -So now, what is the scheme for a normalization proof? Let \texttt{p} -be the polynomial expression that the user wants to normalize. First a -little piece of ML code guesses the type of \texttt{p}, the ring -theory \texttt{T} to use, an abstract polynomial \texttt{ap} and a -variables map \texttt{v} such that \texttt{p} is -$\beta\delta\iota$-equivalent to \verb|(PEeval v ap)|. Then we -replace it by \verb|(Pphi_dev v (norm ap))|, using the -main correctness theorem and we reduce it to a concrete expression -\texttt{p'}, which is the concrete normal form of -\texttt{p}. This is summarized in this diagram: -\begin{center} -\begin{tabular}{rcl} -\texttt{p} & $\rightarrow_{\beta\delta\iota}$ - & \texttt{(PEeval v ap)} \\ - & & $=_{\mathrm{(by\ the\ main\ correctness\ theorem)}}$ \\ -\texttt{p'} - & $\leftarrow_{\beta\delta\iota}$ - & \texttt{(Pphi\_dev v (norm ap))} -\end{tabular} -\end{center} -The user do not see the right part of the diagram. -From outside, the tactic behaves like a -$\beta\delta\iota$ simplification extended with AC rewriting rules. -Basically, the proof is only the application of the main -correctness theorem to well-chosen arguments. - - -\asection{Dealing with fields -\tacindex{field} -\tacindex{field\_simplify} -\tacindex{field\_simplify\_eq}} - - -The {\tt field} tactic is an extension of the {\tt ring} to deal with -rational expresision. Given a rational expression $F=0$. It first reduces the expression $F$ to a common denominator $N/D= 0$ where $N$ and $D$ are two ring -expressions. -For example, if we take $F = (1 - 1/x) x - x + 1$, this gives -$ N= (x -1) x - x^2 + x$ and $D= x$. It then calls {\tt ring} -to solve $N=0$. Note that {\tt field} also generates non-zero conditions -for all the denominators it encounters in the reduction. -In our example, it generates the condition $x \neq 0$. These -conditions appear as one subgoal which is a conjunction if there are -several denominators. -Non-zero conditions are {\it always} polynomial expressions. For example -when reducing the expression $1/(1 + 1/x)$, two side conditions are -generated: $x\neq 0$ and $x + 1 \neq 0$. Factorized expressions are -broken since a field is an integral domain, and when the equality test -on coefficients is complete w.r.t. the equality of the target field, -constants can be proven different from zero automatically. - -The tactic must be loaded by \texttt{Require Import Field}. New field -structures can be declared to the system with the \texttt{Add Field} -command (see below). The field of real numbers is defined in module -\texttt{RealField} (in texttt{plugins/setoid\_ring}). It is exported -by module \texttt{Rbase}, so that requiring \texttt{Rbase} or -\texttt{Reals} is enough to use the field tactics on real -numbers. Rational numbers in canonical form are also declared as a -field in module \texttt{Qcanon}. - - -\Example -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Require Import Reals. -Open Scope R_scope. -Goal forall x, x <> 0 -> - (1 - 1/x) * x - x + 1 = 0. -\end{coq_example} -\begin{coq_example} -intros; field; auto. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} -\begin{coq_example} -Goal forall x y, y <> 0 -> y = x -> x/y = 1. -\end{coq_example} -\begin{coq_example} -intros x y H H1; field [H1]; auto. -\end{coq_example} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{Variants} - \item {\tt field [\term$_1$ {\ldots} \term$_n$]} decides the equality of two - terms modulo field operations and rewriting of the equalities - defined by \term$_1$ {\ldots} \term$_n$. Each of \term$_1$ - {\ldots} \term$_n$ has to be a proof of some equality $m = p$, - where $m$ is a monomial (after ``abstraction''), - $p$ a polynomial and $=$ the corresponding equality of the field structure. - Beware that rewriting works with the equality $m=p$ only if $p$ is a - polynomial since rewriting is handled by the underlying {\tt ring} - tactic. - \item {\tt field\_simplify} - performs the simplification in the conclusion of the goal, $F_1 = F_2$ - becomes $N_1/D_1 = N_2/D_2$. A normalization step (the same as the - one for rings) is then applied to $N_1$, $D_1$, $N_2$ and - $D_2$. This way, polynomials remain in factorized form during the - fraction simplifications. This yields smaller expressions when - reducing to the same denominator since common factors can be - cancelled. - - \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$]} - performs the simplification in the conclusion of the goal using - the equalities - defined by \term$_1$ {\ldots} \term$_n$. - - \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots -$t_m$} - performs the simplification in the terms $t_1$ \ldots $t_m$ - of the conclusion of the goal using - the equalities - defined by \term$_1$ {\ldots} \term$_n$. - - \item {\tt field\_simplify in $H$} - performs the simplification in the assumption $H$. - - \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] in $H$} - performs the simplification in the assumption $H$ using - the equalities - defined by \term$_1$ {\ldots} \term$_n$. - - \item {\tt field\_simplify [\term$_1$ {\ldots} \term$_n$] $t_1$ \ldots -$t_m$ in $H$} - performs the simplification in the terms $t_1$ \ldots $t_n$ - of the assumption $H$ using - the equalities - defined by \term$_1$ {\ldots} \term$_m$. - - \item {\tt field\_simplify\_eq} - performs the simplification in the conclusion of the goal removing - the denominator. $F_1 = F_2$ - becomes $N_1 D_2 = N_2 D_1$. - - \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$]} - performs the simplification in the conclusion of the goal using - the equalities - defined by \term$_1$ {\ldots} \term$_n$. - - \item {\tt field\_simplify\_eq} in $H$ - performs the simplification in the assumption $H$. - - \item {\tt field\_simplify\_eq [\term$_1$ {\ldots} \term$_n$] in $H$} - performs the simplification in the assumption $H$ using - the equalities - defined by \term$_1$ {\ldots} \term$_n$. -\end{Variants} - -\asection{Adding a new field structure -\comindex{Add Field}} - -Declaring a new field consists in proving that a field signature (a -carrier set, an equality, and field operations: {\tt -Field\_theory.field\_theory} and {\tt Field\_theory.semi\_field\_theory}) -satisfies the field axioms. Semi-fields (fields without $+$ inverse) are -also supported. The equality can be either Leibniz equality, or any -relation declared as a setoid (see~\ref{setoidtactics}). The definition -of fields and semi-fields is: -\begin{verbatim} -Record field_theory : Prop := mk_field { - F_R : ring_theory rO rI radd rmul rsub ropp req; - F_1_neq_0 : ~ 1 == 0; - Fdiv_def : forall p q, p / q == p * / q; - Finv_l : forall p, ~ p == 0 -> / p * p == 1 -}. - -Record semi_field_theory : Prop := mk_sfield { - SF_SR : semi_ring_theory rO rI radd rmul req; - SF_1_neq_0 : ~ 1 == 0; - SFdiv_def : forall p q, p / q == p * / q; - SFinv_l : forall p, ~ p == 0 -> / p * p == 1 -}. -\end{verbatim} - -The result of the normalization process is a fraction represented by -the following type: -\begin{verbatim} -Record linear : Type := mk_linear { - num : PExpr C; - denum : PExpr C; - condition : list (PExpr C) }. -\end{verbatim} -where {\tt num} and {\tt denum} are the numerator and denominator; -{\tt condition} is a list of expressions that have appeared as a -denominator during the normalization process. These expressions must -be proven different from zero for the correctness of the algorithm. - -The syntax for adding a new field is {\tt Add Field $name$ : $field$ -($mod_1$,\dots,$mod_2$)}. The name is not relevent. It is just used -for error messages. $field$ is a proof that the field signature -satisfies the (semi-)field axioms. The optional list of modifiers is -used to tailor the behaviour of the tactic. Since field tactics are -built upon ring tactics, all mofifiers of the {\tt Add Ring} -apply. There is only one specific modifier: -\begin{description} -\item[completeness \term] allows the field tactic to prove - automatically that the image of non-zero coefficients are mapped to - non-zero elements of the field. \term is a proof of {\tt forall x y, - [x] == [y] -> x?=!y = true}, which is the completeness of equality - on coefficients w.r.t. the field equality. -\end{description} - -\asection{Legacy implementation} - -\Warning This tactic is the {\tt ring} tactic of previous versions of -\Coq{} and it should be considered as deprecated. It will probably be -removed in future releases. It has been kept only for compatibility -reasons and in order to help moving existing code to the newer -implementation described above. For more details, please refer to the -Coq Reference Manual, version 8.0. - - -\subsection{\tt legacy ring \term$_1$ \dots\ \term$_n$ -\tacindex{legacy ring} -\comindex{Add Legacy Ring} -\comindex{Add Legacy Semi Ring}} - -This tactic, written by Samuel Boutin and Patrick Loiseleur, applies -associative commutative rewriting on every ring. The tactic must be -loaded by \texttt{Require Import LegacyRing}. The ring must be declared in -the \texttt{Add Ring} command. The ring of booleans (with \texttt{andb} -as multiplication and \texttt{xorb} as addition) -is predefined; if one wants to use the tactic on \texttt{nat} one must -first require the module \texttt{LegacyArithRing}; for \texttt{Z}, do -\texttt{Require Import LegacyZArithRing}; for \texttt{N}, do \texttt{Require -Import LegacyNArithRing}. - -The terms \term$_1$, \dots, \term$_n$ must be subterms of the goal -conclusion. The tactic \texttt{ring} normalizes these terms -w.r.t. associativity and commutativity and replace them by their -normal form. - -\begin{Variants} -\item \texttt{legacy ring} When the goal is an equality $t_1=t_2$, it - acts like \texttt{ring\_simplify} $t_1$ $t_2$ and then - solves the equality by reflexivity. - -\item \texttt{ring\_nat} is a tactic macro for \texttt{repeat rewrite - S\_to\_plus\_one; ring}. The theorem \texttt{S\_to\_plus\_one} is a - proof that \texttt{forall (n:nat), S n = plus (S O) n}. - -\end{Variants} - -You can have a look at the files \texttt{LegacyRing.v}, -\texttt{ArithRing.v}, \texttt{ZArithRing.v} to see examples of the -\texttt{Add Ring} command. - -\subsection{Add a ring structure} - -It can be done in the \Coq toplevel (No ML file to edit and to link -with \Coq). First, \texttt{ring} can handle two kinds of structure: -rings and semi-rings. Semi-rings are like rings without an opposite to -addition. Their precise specification (in \gallina) can be found in -the file - -\begin{quotation} -\begin{verbatim} -plugins/ring/Ring_theory.v -\end{verbatim} -\end{quotation} - -The typical example of ring is \texttt{Z}, the typical -example of semi-ring is \texttt{nat}. - -The specification of a -ring is divided in two parts: first the record of constants -($\oplus$, $\otimes$, 1, 0, $\ominus$) and then the theorems -(associativity, commutativity, etc.). - -\begin{small} -\begin{flushleft} -\begin{verbatim} -Section Theory_of_semi_rings. - -Variable A : Type. -Variable Aplus : A -> A -> A. -Variable Amult : A -> A -> A. -Variable Aone : A. -Variable Azero : A. -(* There is also a "weakly decidable" equality on A. That means - that if (A_eq x y)=true then x=y but x=y can arise when - (A_eq x y)=false. On an abstract ring the function [x,y:A]false - is a good choice. The proof of A_eq_prop is in this case easy. *) -Variable Aeq : A -> A -> bool. - -Record Semi_Ring_Theory : Prop := -{ SR_plus_sym : (n,m:A)[| n + m == m + n |]; - SR_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |]; - - SR_mult_sym : (n,m:A)[| n*m == m*n |]; - SR_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |]; - SR_plus_zero_left :(n:A)[| 0 + n == n|]; - SR_mult_one_left : (n:A)[| 1*n == n |]; - SR_mult_zero_left : (n:A)[| 0*n == 0 |]; - SR_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |]; - SR_plus_reg_left : (n,m,p:A)[| n + m == n + p |] -> m==p; - SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y -}. -\end{verbatim} -\end{flushleft} -\end{small} - -\begin{small} -\begin{flushleft} -\begin{verbatim} -Section Theory_of_rings. - -Variable A : Type. - -Variable Aplus : A -> A -> A. -Variable Amult : A -> A -> A. -Variable Aone : A. -Variable Azero : A. -Variable Aopp : A -> A. -Variable Aeq : A -> A -> bool. - - -Record Ring_Theory : Prop := -{ Th_plus_sym : (n,m:A)[| n + m == m + n |]; - Th_plus_assoc : (n,m,p:A)[| n + (m + p) == (n + m) + p |]; - Th_mult_sym : (n,m:A)[| n*m == m*n |]; - Th_mult_assoc : (n,m,p:A)[| n*(m*p) == (n*m)*p |]; - Th_plus_zero_left :(n:A)[| 0 + n == n|]; - Th_mult_one_left : (n:A)[| 1*n == n |]; - Th_opp_def : (n:A) [| n + (-n) == 0 |]; - Th_distr_left : (n,m,p:A) [| (n + m)*p == n*p + m*p |]; - Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y -}. -\end{verbatim} -\end{flushleft} -\end{small} - -To define a ring structure on A, you must provide an addition, a -multiplication, an opposite function and two unities 0 and 1. - -You must then prove all theorems that make -(A,Aplus,Amult,Aone,Azero,Aeq) -a ring structure, and pack them with the \verb|Build_Ring_Theory| -constructor. - -Finally to register a ring the syntax is: - -\comindex{Add Legacy Ring} -\begin{quotation} - \texttt{Add Legacy Ring} \textit{A Aplus Amult Aone Azero Ainv Aeq T} - \texttt{[} \textit{c1 \dots cn} \texttt{].} -\end{quotation} - -\noindent where \textit{A} is a term of type \texttt{Set}, -\textit{Aplus} is a term of type \texttt{A->A->A}, -\textit{Amult} is a term of type \texttt{A->A->A}, -\textit{Aone} is a term of type \texttt{A}, -\textit{Azero} is a term of type \texttt{A}, -\textit{Ainv} is a term of type \texttt{A->A}, -\textit{Aeq} is a term of type \texttt{A->bool}, -\textit{T} is a term of type -\texttt{(Ring\_Theory }\textit{A Aplus Amult Aone Azero Ainv - Aeq}\texttt{)}. -The arguments \textit{c1 \dots cn}, -are the names of constructors which define closed terms: a -subterm will be considered as a constant if it is either one of the -terms \textit{c1 \dots cn} or the application of one of these terms to -closed terms. For \texttt{nat}, the given constructors are \texttt{S} -and \texttt{O}, and the closed terms are \texttt{O}, \texttt{(S O)}, -\texttt{(S (S O))}, \ldots - -\begin{Variants} -\item \texttt{Add Legacy Semi Ring} \textit{A Aplus Amult Aone Azero Aeq T} - \texttt{[} \textit{c1 \dots\ cn} \texttt{].}\comindex{Add Legacy Semi - Ring} - - There are two differences with the \texttt{Add Ring} command: there - is no inverse function and the term $T$ must be of type - \texttt{(Semi\_Ring\_Theory }\textit{A Aplus Amult Aone Azero - Aeq}\texttt{)}. - -\item \texttt{Add Legacy Abstract Ring} \textit{A Aplus Amult Aone Azero Ainv - Aeq T}\texttt{.}\comindex{Add Legacy Abstract Ring} - - This command should be used for when the operations of rings are not - computable; for example the real numbers of - \texttt{theories/REALS/}. Here $0+1$ is not beta-reduced to $1$ but - you still may want to \textit{rewrite} it to $1$ using the ring - axioms. The argument \texttt{Aeq} is not used; a good choice for - that function is \verb+[x:A]false+. - -\item \texttt{Add Legacy Abstract Semi Ring} \textit{A Aplus Amult Aone Azero - Aeq T}\texttt{.}\comindex{Add Legacy Abstract Semi Ring} - -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{Not a valid (semi)ring theory}. - - That happens when the typing condition does not hold. -\end{ErrMsgs} - -Currently, the hypothesis is made than no more than one ring structure -may be declared for a given type in \texttt{Set} or \texttt{Type}. -This allows automatic detection of the theory used to achieve the -normalization. On popular demand, we can change that and allow several -ring structures on the same set. - -The table of ring theories is compatible with the \Coq\ -sectioning mechanism. If you declare a ring inside a section, the -declaration will be thrown away when closing the section. -And when you load a compiled file, all the \texttt{Add Ring} -commands of this file that are not inside a section will be loaded. - -The typical example of ring is \texttt{Z}, and the typical example of -semi-ring is \texttt{nat}. Another ring structure is defined on the -booleans. - -\Warning Only the ring of booleans is loaded by default with the -\texttt{Ring} module. To load the ring structure for \texttt{nat}, -load the module \texttt{ArithRing}, and for \texttt{Z}, -load the module \texttt{ZArithRing}. - -\subsection{\tt legacy field -\tacindex{legacy field}} - -This tactic written by David~Delahaye and Micaela~Mayero solves equalities -using commutative field theory. Denominators have to be non equal to zero and, -as this is not decidable in general, this tactic may generate side conditions -requiring some expressions to be non equal to zero. This tactic must be loaded -by {\tt Require Import LegacyField}. Field theories are declared (as for -{\tt legacy ring}) with -the {\tt Add Legacy Field} command. - -\subsection{\tt Add Legacy Field -\comindex{Add Legacy Field}} - -This vernacular command adds a commutative field theory to the database for the -tactic {\tt field}. You must provide this theory as follows: -\begin{flushleft} -{\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero} {\it -Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}} -\end{flushleft} -where {\tt {\it A}} is a term of type {\tt Type}, {\tt {\it Aplus}} is -a term of type {\tt A->A->A}, {\tt {\it Amult}} is a term of type {\tt - A->A->A}, {\tt {\it Aone}} is a term of type {\tt A}, {\tt {\it - Azero}} is a term of type {\tt A}, {\tt {\it Aopp}} is a term of -type {\tt A->A}, {\tt {\it Aeq}} is a term of type {\tt A->bool}, {\tt - {\it Ainv}} is a term of type {\tt A->A}, {\tt {\it Rth}} is a term -of type {\tt (Ring\_Theory {\it A Aplus Amult Aone Azero Ainv Aeq})}, -and {\tt {\it Tinvl}} is a term of type {\tt forall n:{\it A}, - {\~{}}(n={\it Azero})->({\it Amult} ({\it Ainv} n) n)={\it Aone}}. -To build a ring theory, refer to Chapter~\ref{ring} for more details. - -This command adds also an entry in the ring theory table if this theory is not -already declared. So, it is useless to keep, for a given type, the {\tt Add -Ring} command if you declare a theory with {\tt Add Field}, except if you plan -to use specific features of {\tt ring} (see Chapter~\ref{ring}). However, the -module {\tt ring} is not loaded by {\tt Add Field} and you have to make a {\tt -Require Import Ring} if you want to call the {\tt ring} tactic. - -\begin{Variants} - -\item {\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero} -{\it Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}}\\ -{\tt \phantom{Add Field }with minus:={\it Aminus}} - -Adds also the term {\it Aminus} which must be a constant expressed by -means of {\it Aopp}. - -\item {\tt Add Legacy Field {\it A} {\it Aplus} {\it Amult} {\it Aone} {\it Azero} -{\it Aopp} {\it Aeq} {\it Ainv} {\it Rth} {\it Tinvl}}\\ -{\tt \phantom{Add Legacy Field }with div:={\it Adiv}} - -Adds also the term {\it Adiv} which must be a constant expressed by -means of {\it Ainv}. - -\end{Variants} - -\SeeAlso \cite{DelMay01} for more details regarding the implementation of {\tt -legacy field}. - -\asection{History of \texttt{ring}} - -First Samuel Boutin designed the tactic \texttt{ACDSimpl}. -This tactic did lot of rewriting. But the proofs -terms generated by rewriting were too big for \Coq's type-checker. -Let us see why: - -\begin{coq_eval} -Require Import ZArith. -Open Scope Z_scope. -\end{coq_eval} -\begin{coq_example} -Goal forall x y z:Z, x + 3 + y + y * z = x + 3 + y + z * y. -\end{coq_example} -\begin{coq_example*} -intros; rewrite (Zmult_comm y z); reflexivity. -Save toto. -\end{coq_example*} -\begin{coq_example} -Print toto. -\end{coq_example} - -At each step of rewriting, the whole context is duplicated in the proof -term. Then, a tactic that does hundreds of rewriting generates huge proof -terms. Since \texttt{ACDSimpl} was too slow, Samuel Boutin rewrote it -using reflection (see his article in TACS'97 \cite{Bou97}). Later, the -stuff was rewritten by Patrick -Loiseleur: the new tactic does not any more require \texttt{ACDSimpl} -to compile and it makes use of $\beta\delta\iota$-reduction -not only to replace the rewriting steps, but also to achieve the -interleaving of computation and -reasoning (see \ref{DiscussReflection}). He also wrote a -few ML code for the \texttt{Add Ring} command, that allow to register -new rings dynamically. - -Proofs terms generated by \texttt{ring} are quite small, they are -linear in the number of $\oplus$ and $\otimes$ operations in the -normalized terms. Type-checking those terms requires some time because it -makes a large use of the conversion rule, but -memory requirements are much smaller. - -\asection{Discussion} -\label{DiscussReflection} - -Efficiency is not the only motivation to use reflection -here. \texttt{ring} also deals with constants, it rewrites for example the -expression $34 + 2*x -x + 12$ to the expected result $x + 46$. For the -tactic \texttt{ACDSimpl}, the only constants were 0 and 1. So the -expression $34 + 2*(x - 1) + 12$ is interpreted as -$V_0 \oplus V_1 \otimes (V_2 \ominus 1) \oplus V_3$, -with the variables mapping -$\{V_0 \mt 34; V_1 \mt 2; V_2 \mt x; V_3 \mt 12 \}$. Then it is -rewritten to $34 - x + 2*x + 12$, very far from the expected -result. Here rewriting is not sufficient: you have to do some kind of -reduction (some kind of \textit{computation}) to achieve the -normalization. - -The tactic \texttt{ring} is not only faster than a classical one: -using reflection, we get for free integration of computation and -reasoning that would be very complex to implement in the classic fashion. - -Is it the ultimate way to write tactics? The answer is: yes and -no. The \texttt{ring} tactic uses intensively the conversion rule of -\CIC, that is replaces proof by computation the most as it is -possible. It can be useful in all situations where a classical tactic -generates huge proof terms. Symbolic Processing and Tautologies are in -that case. But there are also tactics like \texttt{auto} or -\texttt{linear} that do many complex computations, using side-effects -and backtracking, and generate a small proof term. Clearly, it would -be significantly less efficient to replace them by tactics using -reflection. - -Another idea suggested by Benjamin Werner: reflection could be used to -couple an external tool (a rewriting program or a model checker) with -\Coq. We define (in \Coq) a type of terms, a type of \emph{traces}, -and prove a correction theorem that states that \emph{replaying -traces} is safe w.r.t some interpretation. Then we let the external -tool do every computation (using side-effects, backtracking, -exception, or others features that are not available in pure lambda -calculus) to produce the trace: now we can check in Coq{} that the -trace has the expected semantic by applying the correction lemma. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/Program.tex b/doc/refman/Program.tex deleted file mode 100644 index 96073d71..00000000 --- a/doc/refman/Program.tex +++ /dev/null @@ -1,302 +0,0 @@ -\achapter{\Program{}} -\label{Program} -\aauthor{Matthieu Sozeau} -\index{Program} - -We present here the \Program\ tactic commands, used to build certified -\Coq\ programs, elaborating them from their algorithmic skeleton and a -rich specification \cite{Sozeau06}. It can be sought of as a dual of extraction -(see Chapter~\ref{Extraction}). The goal of \Program~is to program as in a regular -functional programming language whilst using as rich a specification as -desired and proving that the code meets the specification using the whole \Coq{} proof -apparatus. This is done using a technique originating from the -``Predicate subtyping'' mechanism of \PVS \cite{Rushby98}, which generates type-checking -conditions while typing a term constrained to a particular type. -Here we insert existential variables in the term, which must be filled -with proofs to get a complete \Coq\ term. \Program\ replaces the -\Program\ tactic by Catherine Parent \cite{Parent95b} which had a similar goal but is no longer -maintained. - -The languages available as input are currently restricted to \Coq's term -language, but may be extended to \ocaml{}, \textsc{Haskell} and others -in the future. We use the same syntax as \Coq\ and permit to use implicit -arguments and the existing coercion mechanism. -Input terms and types are typed in an extended system (\Russell) and -interpreted into \Coq\ terms. The interpretation process may produce -some proof obligations which need to be resolved to create the final term. - -\asection{Elaborating programs} -The main difference from \Coq\ is that an object in a type $T : \Set$ -can be considered as an object of type $\{ x : T~|~P\}$ for any -wellformed $P : \Prop$. -If we go from $T$ to the subset of $T$ verifying property $P$, we must -prove that the object under consideration verifies it. \Russell\ will -generate an obligation for every such coercion. In the other direction, -\Russell\ will automatically insert a projection. - -Another distinction is the treatment of pattern-matching. Apart from the -following differences, it is equivalent to the standard {\tt match} -operation (see Section~\ref{Caseexpr}). -\begin{itemize} -\item Generation of equalities. A {\tt match} expression is always - generalized by the corresponding equality. As an example, - the expression: - -\begin{coq_example*} - match x with - | 0 => t - | S n => u - end. -\end{coq_example*} -will be first rewrote to: -\begin{coq_example*} - (match x as y return (x = y -> _) with - | 0 => fun H : x = 0 -> t - | S n => fun H : x = S n -> u - end) (refl_equal n). -\end{coq_example*} - - This permits to get the proper equalities in the context of proof - obligations inside clauses, without which reasoning is very limited. - -\item Generation of inequalities. If a pattern intersects with a - previous one, an inequality is added in the context of the second - branch. See for example the definition of {\tt div2} below, where the second - branch is typed in a context where $\forall p, \_ <> S (S p)$. - -\item Coercion. If the object being matched is coercible to an inductive - type, the corresponding coercion will be automatically inserted. This also - works with the previous mechanism. -\end{itemize} - -\subsection{Syntactic control over equalities} -\label{ProgramSyntax} -To give more control over the generation of equalities, the typechecker will -fall back directly to \Coq's usual typing of dependent pattern-matching -if a {\tt return} or {\tt in} clause is specified. Likewise, -the {\tt if} construct is not treated specially by \Program{} so boolean -tests in the code are not automatically reflected in the obligations. -One can use the {\tt dec} combinator to get the correct hypotheses as in: - -\begin{coq_eval} -Require Import Program Arith. -\end{coq_eval} -\begin{coq_example} -Program Definition id (n : nat) : { x : nat | x = n } := - if dec (leb n 0) then 0 - else S (pred n). -\end{coq_example} - -The let tupling construct {\tt let (x1, ..., xn) := t in b} -does not produce an equality, contrary to the let pattern construct -{\tt let '(x1, ..., xn) := t in b}. -Also, {\tt {\term}:>} explicitly asks the system to coerce {\tt \term} to its -support type. It can be useful in notations, for example: -\begin{coq_example} -Notation " x `= y " := (@eq _ (x :>) (y :>)) (only parsing). -\end{coq_example} - -This notation denotes equality on subset types using equality on their -support types, avoiding uses of proof-irrelevance that would come up -when reasoning with equality on the subset types themselves. - -The next two commands are similar to their standard counterparts -Definition (see Section~\ref{Basic-definitions}) and Fixpoint (see Section~\ref{Fixpoint}) in that -they define constants. However, they may require the user to prove some -goals to construct the final definitions. - -\subsection{\tt Program Definition {\ident} := {\term}. - \comindex{Program Definition}\label{ProgramDefinition}} - -This command types the value {\term} in \Russell\ and generate proof -obligations. Once solved using the commands shown below, it binds the final -\Coq\ term to the name {\ident} in the environment. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Program Definition {\ident} {\tt :}{\term$_1$} := - {\term$_2$}.}\\ - It interprets the type {\term$_1$}, potentially generating proof - obligations to be resolved. Once done with them, we have a \Coq\ type - {\term$_1'$}. It then checks that the type of the interpretation of - {\term$_2$} is coercible to {\term$_1'$}, and registers {\ident} as - being of type {\term$_1'$} once the set of obligations generated - during the interpretation of {\term$_2$} and the aforementioned - coercion derivation are solved. -\item {\tt Program Definition {\ident} {\binder$_1$}\ldots{\binder$_n$} - {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\ - This is equivalent to \\ - {\tt Program Definition\,{\ident}\,{\tt :\,forall} % - {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}} \\ - \qquad {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,% - {\tt .} -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{In environment {\dots} the term: {\term$_2$} does not have type - {\term$_1$}}.\\ - \texttt{Actually, it has type {\term$_3$}}. -\end{ErrMsgs} - -\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold} - -\subsection{\tt Program Fixpoint {\ident} {\params} {\tt \{order\}} : type := \term - \comindex{Program Fixpoint} - \label{ProgramFixpoint}} - -The structural fixpoint operator behaves just like the one of Coq -(see Section~\ref{Fixpoint}), except it may also generate obligations. -It works with mutually recursive definitions too. - -\begin{coq_eval} -Admit Obligations. -\end{coq_eval} -\begin{coq_example} -Program Fixpoint div2 (n : nat) : { x : nat | n = 2 * x \/ n = 2 * x + 1 } := - match n with - | S (S p) => S (div2 p) - | _ => O - end. -\end{coq_example} - -Here we have one obligation for each branch (branches for \verb:0: and \verb:(S 0): are -automatically generated by the pattern-matching compilation algorithm). -\begin{coq_example} - Obligation 1. -\end{coq_example} - -One can use a well-founded order or a measure as termination orders using the syntax: -\begin{coq_eval} -Reset Initial. -Require Import Arith. -Require Import Program. -\end{coq_eval} -\begin{coq_example*} -Program Fixpoint div2 (n : nat) {measure n} : - { x : nat | n = 2 * x \/ n = 2 * x + 1 } := - match n with - | S (S p) => S (div2 p) - | _ => O - end. -\end{coq_example*} - -The order annotation can be either: -\begin{itemize} -\item {\tt measure f (R)?} where {\tt f} is a value of type {\tt X} - computed on any subset of the arguments and the optional - (parenthesised) term {\tt (R)} is a relation - on {\tt X}. By default {\tt X} defaults to {\tt nat} and {\tt R} to - {\tt lt}. -\item {\tt wf R x} which is equivalent to {\tt measure x (R)}. -\end{itemize} - -\paragraph{Caution} -When defining structurally recursive functions, the -generated obligations should have the prototype of the currently defined functional -in their context. In this case, the obligations should be transparent -(e.g. defined using {\tt Defined}) so that the guardedness condition on -recursive calls can be checked by the -kernel's type-checker. There is an optimization in the generation of -obligations which gets rid of the hypothesis corresponding to the -functionnal when it is not necessary, so that the obligation can be -declared opaque (e.g. using {\tt Qed}). However, as soon as it appears in the -context, the proof of the obligation is \emph{required} to be declared transparent. - -No such problems arise when using measures or well-founded recursion. - -\subsection{\tt Program Lemma {\ident} : type. - \comindex{Program Lemma} - \label{ProgramLemma}} - -The \Russell\ language can also be used to type statements of logical -properties. It will generate obligations, try to solve them -automatically and fail if some unsolved obligations remain. -In this case, one can first define the lemma's -statement using {\tt Program Definition} and use it as the goal afterwards. -Otherwise the proof will be started with the elobarted version as a goal. -The {\tt Program} prefix can similarly be used as a prefix for {\tt Variable}, {\tt - Hypothesis}, {\tt Axiom} etc... - -\section{Solving obligations} -The following commands are available to manipulate obligations. The -optional identifier is used when multiple functions have unsolved -obligations (e.g. when defining mutually recursive blocks). The optional -tactic is replaced by the default one if not specified. - -\begin{itemize} -\item {\tt [Local|Global] Obligation Tactic := \tacexpr}\comindex{Obligation Tactic} - Sets the default obligation - solving tactic applied to all obligations automatically, whether to - solve them or when starting to prove one, e.g. using {\tt Next}. - Local makes the setting last only for the current module. Inside - sections, local is the default. -\item {\tt Show Obligation Tactic}\comindex{Show Obligation Tactic} - Displays the current default tactic. -\item {\tt Obligations [of \ident]}\comindex{Obligations} Displays all remaining - obligations. -\item {\tt Obligation num [of \ident]}\comindex{Obligation} Start the proof of - obligation {\tt num}. -\item {\tt Next Obligation [of \ident]}\comindex{Next Obligation} Start the proof of the next - unsolved obligation. -\item {\tt Solve Obligations [of \ident] [using - \tacexpr]}\comindex{Solve Obligations} - Tries to solve - each obligation of \ident using the given tactic or the default one. -\item {\tt Solve All Obligations [using \tacexpr]} Tries to solve - each obligation of every program using the given tactic or the default - one (useful for mutually recursive definitions). -\item {\tt Admit Obligations [of \ident]}\comindex{Admit Obligations} - Admits all obligations (does not work with structurally recursive programs). -\item {\tt Preterm [of \ident]}\comindex{Preterm} - Shows the term that will be fed to - the kernel once the obligations are solved. Useful for debugging. -\item {\tt Set Transparent Obligations}\comindex{Set Transparent Obligations} - Control whether all obligations should be declared as transparent (the - default), or if the system should infer which obligations can be declared opaque. -\end{itemize} - -The module {\tt Coq.Program.Tactics} defines the default tactic for solving -obligations called {\tt program\_simpl}. Importing -{\tt Coq.Program.Program} also adds some useful notations, as documented in the file itself. - -\section{Frequently Asked Questions - \label{ProgramFAQ}} - -\begin{itemize} -\item {Ill-formed recursive definitions} - This error can happen when one tries to define a - function by structural recursion on a subset object, which means the Coq - function looks like: - - \verb$Program Fixpoint f (x : A | P) := match x with A b => f b end.$ - - Supposing $b : A$, the argument at the recursive call to f is not a - direct subterm of x as b is wrapped inside an {\tt exist} constructor to build - an object of type \verb${x : A | P}$. Hence the definition is rejected - by the guardedness condition checker. However one can use - wellfounded recursion on subset objects like this: - -\begin{verbatim} -Program Fixpoint f (x : A | P) { measure (size x) } := - match x with A b => f b end. -\end{verbatim} - - One will then just have to prove that the measure decreases at each recursive - call. There are three drawbacks though: - \begin{enumerate} - \item A measure function has to be defined; - \item The reduction is a little more involved, although it works well - using lazy evaluation; - \item Mutual recursion on the underlying inductive type isn't possible - anymore, but nested mutual recursion is always possible. - \end{enumerate} -\end{itemize} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% compile-command: "BIBINPUTS=\".\" make QUICK=1 -C ../.. doc/refman/Reference-Manual.pdf" -%%% End: diff --git a/doc/refman/RefMan-add.tex b/doc/refman/RefMan-add.tex deleted file mode 100644 index 2094c9d2..00000000 --- a/doc/refman/RefMan-add.tex +++ /dev/null @@ -1,58 +0,0 @@ -\chapter[List of additional documentation]{List of additional documentation\label{Addoc}} - -\section[Tutorials]{Tutorials\label{Tutorial}} -A companion volume to this reference manual, the \Coq\ Tutorial, is -aimed at gently introducing new users to developing proofs in \Coq\ -without assuming prior knowledge of type theory. In a second step, the -user can read also the tutorial on recursive types (document {\tt -RecTutorial.ps}). - -\section[The \Coq\ standard library]{The \Coq\ standard library\label{Addoc-library}} -A brief description of the \Coq\ standard library is given in the additional -document {\tt Library.dvi}. - -\section[Installation and un-installation procedures]{Installation and un-installation procedures\label{Addoc-install}} -A \verb!INSTALL! file in the distribution explains how to install -\Coq. - -\section[{\tt Extraction} of programs]{{\tt Extraction} of programs\label{Addoc-extract}} -{\tt Extraction} is a package offering some special facilities to -extract ML program files. It is described in the separate document -{\tt Extraction.dvi} -\index{Extraction of programs} - -\section[{\tt Program}]{A tool for {\tt Program}-ing\label{Addoc-program}} -{\tt Program} is a package offering some special facilities to -extract ML program files. It is described in the separate document -{\tt Program.dvi} -\index{Program-ing} - -\section[Proof printing in {\tt Natural} language]{Proof printing in {\tt Natural} language\label{Addoc-natural}} -{\tt Natural} is a tool to print proofs in natural language. -It is described in the separate document {\tt Natural.dvi}. -\index{Natural@{\tt Print Natural}} -\index{Printing in natural language} - -\section[The {\tt Omega} decision tactic]{The {\tt Omega} decision tactic\label{Addoc-omega}} -{\bf Omega} is a tactic to automatically solve arithmetical goals in -Presburger arithmetic (i.e. arithmetic without multiplication). -It is described in the separate document {\tt Omega.dvi}. -\index{Omega@{\tt Omega}} - -\section[Simplification on rings]{Simplification on rings\label{Addoc-polynom}} -A documentation of the package {\tt polynom} (simplification on rings) -can be found in the document {\tt Polynom.dvi} -\index{Polynom@{\tt Polynom}} -\index{Simplification on rings} - -%\section[Anomalies]{Anomalies\label{Addoc-anomalies}} -%The separate document {\tt Anomalies.*} gives a list of known -%anomalies and bugs of the system. Before communicating us an -%anomalous behavior, please check first whether it has been already -%reported in this document. - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-cic.tex b/doc/refman/RefMan-cic.tex deleted file mode 100644 index 6a132eba..00000000 --- a/doc/refman/RefMan-cic.tex +++ /dev/null @@ -1,1727 +0,0 @@ -\chapter[Calculus of Inductive Constructions]{Calculus of Inductive Constructions -\label{Cic} -\index{Cic@\textsc{CIC}} -\index{pCic@p\textsc{CIC}} -\index{Calculus of (Co)Inductive Constructions}} - -The underlying formal language of {\Coq} is a {\em Calculus of - Constructions} with {\em Inductive Definitions}. It is presented in -this chapter. -For {\Coq} version V7, this Calculus was known as the -{\em Calculus of (Co)Inductive Constructions}\index{Calculus of - (Co)Inductive Constructions} (\iCIC\ in short). -The underlying calculus of {\Coq} version V8.0 and up is a weaker - calculus where the sort \Set{} satisfies predicative rules. -We call this calculus the -{\em Predicative Calculus of (Co)Inductive - Constructions}\index{Predicative Calculus of - (Co)Inductive Constructions} (\pCIC\ in short). -In Section~\ref{impredicativity} we give the extra-rules for \iCIC. A - compiling option of \Coq{} allows to type-check theories in this - extended system. - -In \CIC\, all objects have a {\em type}. There are types for functions (or -programs), there are atomic types (especially datatypes)... but also -types for proofs and types for the types themselves. -Especially, any object handled in the formalism must belong to a -type. For instance, the statement {\it ``for all x, P''} is not -allowed in type theory; you must say instead: {\it ``for all x -belonging to T, P''}. The expression {\it ``x belonging to T''} is -written {\it ``x:T''}. One also says: {\it ``x has type T''}. -The terms of {\CIC} are detailed in Section~\ref{Terms}. - -In \CIC\, there is an internal reduction mechanism. In particular, it -allows to decide if two programs are {\em intentionally} equal (one -says {\em convertible}). Convertibility is presented in section -\ref{convertibility}. - -The remaining sections are concerned with the type-checking of terms. -The beginner can skip them. - -The reader seeking a background on the Calculus of Inductive -Constructions may read several papers. Giménez and Castéran~\cite{GimCas05} -provide -an introduction to inductive and co-inductive definitions in Coq. In -their book~\cite{CoqArt}, Bertot and Castéran give a precise -description of the \CIC{} based on numerous practical examples. -Barras~\cite{Bar99}, Werner~\cite{Wer94} and -Paulin-Mohring~\cite{Moh97} are the most recent theses dealing with -Inductive Definitions. Coquand-Huet~\cite{CoHu85a,CoHu85b,CoHu86} -introduces the Calculus of Constructions. Coquand-Paulin~\cite{CoPa89} -extended this calculus to inductive definitions. The {\CIC} is a -formulation of type theory including the possibility of inductive -constructions, Barendregt~\cite{Bar91} studies the modern form of type -theory. - -\section[The terms]{The terms\label{Terms}} - -In most type theories, one usually makes a syntactic distinction -between types and terms. This is not the case for \CIC\ which defines -both types and terms in the same syntactical structure. This is -because the type-theory itself forces terms and types to be defined in -a mutual recursive way and also because similar constructions can be -applied to both terms and types and consequently can share the same -syntactic structure. - -Consider for instance the $\ra$ constructor and assume \nat\ is the -type of natural numbers. Then $\ra$ is used both to denote -$\nat\ra\nat$ which is the type of functions from \nat\ to \nat, and -to denote $\nat \ra \Prop$ which is the type of unary predicates over -the natural numbers. Consider abstraction which builds functions. It -serves to build ``ordinary'' functions as $\kw{fun}~x:\nat \Ra ({\tt mult} ~x~x)$ (assuming {\tt mult} is already defined) but may build also -predicates over the natural numbers. For instance $\kw{fun}~x:\nat \Ra -(x=x)$ will -represent a predicate $P$, informally written in mathematics -$P(x)\equiv x=x$. If $P$ has type $\nat \ra \Prop$, $(P~x)$ is a -proposition, furthermore $\kw{forall}~x:\nat,(P~x)$ will represent the type of -functions which associate to each natural number $n$ an object of -type $(P~n)$ and consequently represent proofs of the formula -``$\forall x.P(x)$''. - -\subsection[Sorts]{Sorts\label{Sorts} -\index{Sorts}} -When manipulated as terms, types have themselves a type which is called a sort. - -There is an infinite well-founded typing hierarchy of sorts whose base -sorts are {\Prop} and {\Set}. - -The sort {\Prop} intends to be the type of logical propositions. If -$M$ is a logical proposition then it denotes the class of terms -representing proofs of $M$. An object $m$ belonging to $M$ witnesses -the fact that $M$ is provable. An object of type {\Prop} is called a -proposition. - -The sort {\Set} intends to be the type of small sets. This includes data -types such as booleans and naturals, but also products, subsets, and -function types over these data types. - -{\Prop} and {\Set} themselves can be manipulated as ordinary -terms. Consequently they also have a type. Because assuming simply -that {\Set} has type {\Set} leads to an inconsistent theory, the -language of {\CIC} has infinitely many sorts. There are, in addition -to {\Set} and {\Prop} a hierarchy of universes {\Type$(i)$} for any -integer $i$. - -Like {\Set}, all of the sorts {\Type$(i)$} contain small sets such as -booleans, natural numbers, as well as products, subsets and function -types over small sets. But, unlike {\Set}, they also contain large -sets, namely the sorts {\Set} and {\Type$(j)$} for $j<i$, and all -products, subsets and function types over these sorts. - -Formally, we call {\Sort} the set of sorts which is defined by: -\[\Sort \equiv \{\Prop,\Set,\Type(i)| i \in \NN\} \] -\index{Type@{\Type}} -\index{Prop@{\Prop}} -\index{Set@{\Set}} - -The sorts enjoy the following properties\footnote{In the Reference - Manual of versions of Coq prior to 8.4, the level of {\Type} typing - {\Prop} and {\Set} was numbered $0$. From Coq 8.4, it started to be - numbered $1$ so as to be able to leave room for re-interpreting - {\Set} in the hierarchy as {\Type$(0)$}. This change also put the - reference manual in accordance with the internal conventions adopted - in the implementation.}: {\Prop:\Type$(1)$}, {\Set:\Type$(1)$} and -{\Type$(i)$:\Type$(i+1)$}. - -The user will never mention explicitly the index $i$ when referring to -the universe \Type$(i)$. One only writes \Type. The -system itself generates for each instance of \Type\ a new -index for the universe and checks that the constraints between these -indexes can be solved. From the user point of view we consequently -have {\sf Type :Type}. - -We shall make precise in the typing rules the constraints between the -indexes. - -\paragraph{Implementation issues} -In practice, the {\Type} hierarchy is implemented using algebraic -universes. An algebraic universe $u$ is either a variable (a qualified -identifier with a number) or a successor of an algebraic universe (an -expression $u+1$), or an upper bound of algebraic universes (an -expression $max(u_1,...,u_n)$), or the base universe (the expression -$0$) which corresponds, in the arity of sort-polymorphic inductive -types, to the predicative sort {\Set}. A graph of constraints between -the universe variables is maintained globally. To ensure the existence -of a mapping of the universes to the positive integers, the graph of -constraints must remain acyclic. Typing expressions that violate the -acyclicity of the graph of constraints results in a \errindex{Universe -inconsistency} error (see also Section~\ref{PrintingUniverses}). - -\subsection{Constants} -Besides the sorts, the language also contains constants denoting -objects in the environment. These constants may denote previously -defined objects but also objects related to inductive definitions -(either the type itself or one of its constructors or destructors). - -\medskip\noindent {\bf Remark. } In other presentations of \CIC, -the inductive objects are not seen as -external declarations but as first-class terms. Usually the -definitions are also completely ignored. This is a nice theoretical -point of view but not so practical. An inductive definition is -specified by a possibly huge set of declarations, clearly we want to -share this specification among the various inductive objects and not -to duplicate it. So the specification should exist somewhere and the -various objects should refer to it. We choose one more level of -indirection where the objects are just represented as constants and -the environment gives the information on the kind of object the -constant refers to. - -\medskip -Our inductive objects will be manipulated as constants declared in the -environment. This roughly corresponds to the way they are actually -implemented in the \Coq\ system. It is simple to map this presentation -in a theory where inductive objects are represented by terms. - -\subsection{Terms} - -Terms are built from variables, global names, constructors, -abstraction, application, local declarations bindings (``let-in'' -expressions) and product. - -From a syntactic point of view, types cannot be distinguished from terms, -except that they cannot start by an abstraction, and that if a term is -a sort or a product, it should be a type. - -More precisely the language of the {\em Calculus of Inductive - Constructions} is built from the following rules: - -\begin{enumerate} -\item the sorts {\sf Set, Prop, Type} are terms. -\item names for global constants of the environment are terms. -\item variables are terms. -\item if $x$ is a variable and $T$, $U$ are terms then $\forall~x:T,U$ - ($\kw{forall}~x:T,U$ in \Coq{} concrete syntax) is a term. If $x$ - occurs in $U$, $\forall~x:T,U$ reads as {\it ``for all x of type T, - U''}. As $U$ depends on $x$, one says that $\forall~x:T,U$ is a - {\em dependent product}. If $x$ doesn't occurs in $U$ then - $\forall~x:T,U$ reads as {\it ``if T then U''}. A non dependent - product can be written: $T \rightarrow U$. -\item if $x$ is a variable and $T$, $U$ are terms then $\lb~x:T \mto U$ - ($\kw{fun}~x:T\Ra U$ in \Coq{} concrete syntax) is a term. This is a - notation for the $\lambda$-abstraction of - $\lambda$-calculus\index{lambda-calculus@$\lambda$-calculus} - \cite{Bar81}. The term $\lb~x:T \mto U$ is a function which maps - elements of $T$ to $U$. -\item if $T$ and $U$ are terms then $(T\ U)$ is a term - ($T~U$ in \Coq{} concrete syntax). The term $(T\ - U)$ reads as {\it ``T applied to U''}. -\item if $x$ is a variable, and $T$, $U$ are terms then - $\kw{let}~x:=T~\kw{in}~U$ is a - term which denotes the term $U$ where the variable $x$ is locally - bound to $T$. This stands for the common ``let-in'' construction of - functional programs such as ML or Scheme. -\end{enumerate} - -\paragraph{Notations.} Application associates to the left such that -$(t~t_1\ldots t_n)$ represents $(\ldots (t~t_1)\ldots t_n)$. The -products and arrows associate to the right such that $\forall~x:A,B\ra C\ra -D$ represents $\forall~x:A,(B\ra (C\ra D))$. One uses sometimes -$\forall~x~y:A,B$ or -$\lb~x~y:A\mto B$ to denote the abstraction or product of several variables -of the same type. The equivalent formulation is $\forall~x:A, \forall y:A,B$ or -$\lb~x:A \mto \lb y:A \mto B$ - -\paragraph{Free variables.} -The notion of free variables is defined as usual. In the expressions -$\lb~x:T\mto U$ and $\forall x:T, U$ the occurrences of $x$ in $U$ -are bound. They are represented by de Bruijn indexes in the internal -structure of terms. - -\paragraph[Substitution.]{Substitution.\index{Substitution}} -The notion of substituting a term $t$ to free occurrences of a -variable $x$ in a term $u$ is defined as usual. The resulting term -is written $\subst{u}{x}{t}$. - - -\section[Typed terms]{Typed terms\label{Typed-terms}} - -As objects of type theory, terms are subjected to {\em type -discipline}. The well typing of a term depends on an environment which -consists in a global environment (see below) and a local context. - -\paragraph{Local context.} -A {\em local context} (or shortly context) is an ordered list of -declarations of variables. The declaration of some variable $x$ is -either an assumption, written $x:T$ ($T$ is a type) or a definition, -written $x:=t:T$. We use brackets to write contexts. A -typical example is $[x:T;y:=u:U;z:V]$. Notice that the variables -declared in a context must be distinct. If $\Gamma$ declares some $x$, -we write $x \in \Gamma$. By writing $(x:T) \in \Gamma$ we mean that -either $x:T$ is an assumption in $\Gamma$ or that there exists some $t$ such -that $x:=t:T$ is a definition in $\Gamma$. If $\Gamma$ defines some -$x:=t:T$, we also write $(x:=t:T) \in \Gamma$. Contexts must be -themselves {\em well formed}. For the rest of the chapter, the -notation $\Gamma::(y:T)$ (resp. $\Gamma::(y:=t:T)$) denotes the context -$\Gamma$ enriched with the declaration $y:T$ (resp. $y:=t:T$). The -notation $[]$ denotes the empty context. \index{Context} - -% Does not seem to be used further... -% Si dans l'explication WF(E)[Gamma] concernant les constantes -% definies ds un contexte - -We define the inclusion of two contexts $\Gamma$ and $\Delta$ (written -as $\Gamma \subset \Delta$) as the property, for all variable $x$, -type $T$ and term $t$, if $(x:T) \in \Gamma$ then $(x:T) \in \Delta$ -and if $(x:=t:T) \in \Gamma$ then $(x:=t:T) \in \Delta$. -%We write -% $|\Delta|$ for the length of the context $\Delta$, that is for the number -% of declarations (assumptions or definitions) in $\Delta$. - -A variable $x$ is said to be free in $\Gamma$ if $\Gamma$ contains a -declaration $y:T$ such that $x$ is free in $T$. - -\paragraph[Environment.]{Environment.\index{Environment}} -Because we are manipulating global declarations (constants and global -assumptions), we also need to consider a global environment $E$. - -An environment is an ordered list of declarations of global -names. Declarations are either assumptions or ``standard'' -definitions, that is abbreviations for well-formed terms -but also definitions of inductive objects. In the latter -case, an object in the environment will define one or more constants -(that is types and constructors, see Section~\ref{Cic-inductive-definitions}). - -An assumption will be represented in the environment as -\Assum{\Gamma}{c}{T} which means that $c$ is assumed of some type $T$ -well-defined in some context $\Gamma$. An (ordinary) definition will -be represented in the environment as \Def{\Gamma}{c}{t}{T} which means -that $c$ is a constant which is valid in some context $\Gamma$ whose -value is $t$ and type is $T$. - -The rules for inductive definitions (see section -\ref{Cic-inductive-definitions}) have to be considered as assumption -rules to which the following definitions apply: if the name $c$ is -declared in $E$, we write $c \in E$ and if $c:T$ or $c:=t:T$ is -declared in $E$, we write $(c : T) \in E$. - -\paragraph[Typing rules.]{Typing rules.\label{Typing-rules}\index{Typing rules}} -In the following, we assume $E$ is a valid environment w.r.t. -inductive definitions. We define simultaneously two -judgments. The first one \WTEG{t}{T} means the term $t$ is well-typed -and has type $T$ in the environment $E$ and context $\Gamma$. The -second judgment \WFE{\Gamma} means that the environment $E$ is -well-formed and the context $\Gamma$ is a valid context in this -environment. It also means a third property which makes sure that any -constant in $E$ was defined in an environment which is included in -$\Gamma$ -\footnote{This requirement could be relaxed if we instead introduced - an explicit mechanism for instantiating constants. At the external - level, the Coq engine works accordingly to this view that all the - definitions in the environment were built in a sub-context of the - current context.}. - -A term $t$ is well typed in an environment $E$ iff there exists a -context $\Gamma$ and a term $T$ such that the judgment \WTEG{t}{T} can -be derived from the following rules. -\begin{description} -\item[W-E] \inference{\WF{[]}{[]}} -\item[W-S] % Ce n'est pas vrai : x peut apparaitre plusieurs fois dans Gamma -\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~x \not\in - \Gamma % \cup E - } - {\WFE{\Gamma::(x:T)}}~~~~~ - \frac{\WTEG{t}{T}~~~~x \not\in - \Gamma % \cup E - }{\WFE{\Gamma::(x:=t:T)}}} -\item[Def] \inference{\frac{\WTEG{t}{T}~~~c \notin E \cup \Gamma} - {\WF{E;\Def{\Gamma}{c}{t}{T}}{\Gamma}}} -\item[Assum] \inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~c \notin E \cup \Gamma} - {\WF{E;\Assum{\Gamma}{c}{T}}{\Gamma}}} -\item[Ax] \index{Typing rules!Ax} -\inference{\frac{\WFE{\Gamma}}{\WTEG{\Prop}{\Type(p)}}~~~~~ -\frac{\WFE{\Gamma}}{\WTEG{\Set}{\Type(q)}}} -\inference{\frac{\WFE{\Gamma}~~~~i<j}{\WTEG{\Type(i)}{\Type(j)}}} -\item[Var]\index{Typing rules!Var} - \inference{\frac{ \WFE{\Gamma}~~~~~(x:T) \in \Gamma~~\mbox{or}~~(x:=t:T) \in \Gamma~\mbox{for some $t$}}{\WTEG{x}{T}}} -\item[Const] \index{Typing rules!Const} -\inference{\frac{\WFE{\Gamma}~~~~(c:T) \in E~~\mbox{or}~~(c:=t:T) \in E~\mbox{for some $t$} }{\WTEG{c}{T}}} -\item[Prod] \index{Typing rules!Prod} -\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~ - \WTE{\Gamma::(x:T)}{U}{\Prop}} - { \WTEG{\forall~x:T,U}{\Prop}}} -\inference{\frac{\WTEG{T}{s}~~~~s \in\{\Prop, \Set\}~~~~~~ - \WTE{\Gamma::(x:T)}{U}{\Set}} - { \WTEG{\forall~x:T,U}{\Set}}} -\inference{\frac{\WTEG{T}{\Type(i)}~~~~i\leq k~~~ - \WTE{\Gamma::(x:T)}{U}{\Type(j)}~~~j \leq k} - {\WTEG{\forall~x:T,U}{\Type(k)}}} -\item[Lam]\index{Typing rules!Lam} -\inference{\frac{\WTEG{\forall~x:T,U}{s}~~~~ \WTE{\Gamma::(x:T)}{t}{U}} - {\WTEG{\lb~x:T\mto t}{\forall x:T, U}}} -\item[App]\index{Typing rules!App} - \inference{\frac{\WTEG{t}{\forall~x:U,T}~~~~\WTEG{u}{U}} - {\WTEG{(t\ u)}{\subst{T}{x}{u}}}} -\item[Let]\index{Typing rules!Let} -\inference{\frac{\WTEG{t}{T}~~~~ \WTE{\Gamma::(x:=t:T)}{u}{U}} - {\WTEG{\kw{let}~x:=t~\kw{in}~u}{\subst{U}{x}{t}}}} -\end{description} - -\Rem We may have $\kw{let}~x:=t~\kw{in}~u$ -well-typed without having $((\lb~x:T\mto u)~t)$ well-typed (where -$T$ is a type of $t$). This is because the value $t$ associated to $x$ -may be used in a conversion rule (see Section~\ref{conv-rules}). - -\section[Conversion rules]{Conversion rules\index{Conversion rules} -\label{conv-rules}} -\paragraph[$\beta$-reduction.]{$\beta$-reduction.\label{beta}\index{beta-reduction@$\beta$-reduction}} - -We want to be able to identify some terms as we can identify the -application of a function to a given argument with its result. For -instance the identity function over a given type $T$ can be written -$\lb~x:T\mto x$. In any environment $E$ and context $\Gamma$, we want to identify any object $a$ (of type $T$) with the -application $((\lb~x:T\mto x)~a)$. We define for this a {\em reduction} (or a -{\em conversion}) rule we call $\beta$: -\[ \WTEGRED{((\lb~x:T\mto - t)~u)}{\triangleright_{\beta}}{\subst{t}{x}{u}} \] -We say that $\subst{t}{x}{u}$ is the {\em $\beta$-contraction} of -$((\lb~x:T\mto t)~u)$ and, conversely, that $((\lb~x:T\mto t)~u)$ -is the {\em $\beta$-expansion} of $\subst{t}{x}{u}$. - -According to $\beta$-reduction, terms of the {\em Calculus of - Inductive Constructions} enjoy some fundamental properties such as -confluence, strong normalization, subject reduction. These results are -theoretically of great importance but we will not detail them here and -refer the interested reader to \cite{Coq85}. - -\paragraph[$\iota$-reduction.]{$\iota$-reduction.\label{iota}\index{iota-reduction@$\iota$-reduction}} -A specific conversion rule is associated to the inductive objects in -the environment. We shall give later on (see Section~\ref{iotared}) the -precise rules but it just says that a destructor applied to an object -built from a constructor behaves as expected. This reduction is -called $\iota$-reduction and is more precisely studied in -\cite{Moh93,Wer94}. - - -\paragraph[$\delta$-reduction.]{$\delta$-reduction.\label{delta}\index{delta-reduction@$\delta$-reduction}} - -We may have defined variables in contexts or constants in the global -environment. It is legal to identify such a reference with its value, -that is to expand (or unfold) it into its value. This -reduction is called $\delta$-reduction and shows as follows. - -$$\WTEGRED{x}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(x:=t:T) \in \Gamma$}~~~~~~~~~\WTEGRED{c}{\triangleright_{\delta}}{t}~~~~~\mbox{if $(c:=t:T) \in E$}$$ - - -\paragraph[$\zeta$-reduction.]{$\zeta$-reduction.\label{zeta}\index{zeta-reduction@$\zeta$-reduction}} - -Coq allows also to remove local definitions occurring in terms by -replacing the defined variable by its value. The declaration being -destroyed, this reduction differs from $\delta$-reduction. It is -called $\zeta$-reduction and shows as follows. - -$$\WTEGRED{\kw{let}~x:=u~\kw{in}~t}{\triangleright_{\zeta}}{\subst{t}{x}{u}}$$ - -\paragraph[Convertibility.]{Convertibility.\label{convertibility} -\index{beta-reduction@$\beta$-reduction}\index{iota-reduction@$\iota$-reduction}\index{delta-reduction@$\delta$-reduction}\index{zeta-reduction@$\zeta$-reduction}} - -Let us write $\WTEGRED{t}{\triangleright}{u}$ for the contextual closure of the relation $t$ reduces to $u$ in the environment $E$ and context $\Gamma$ with one of the previous reduction $\beta$, $\iota$, $\delta$ or $\zeta$. - -We say that two terms $t_1$ and $t_2$ are {\em convertible} (or {\em - equivalent)} in the environment $E$ and context $\Gamma$ iff there exists a term $u$ such that $\WTEGRED{t_1}{\triangleright \ldots \triangleright}{u}$ -and $\WTEGRED{t_2}{\triangleright \ldots \triangleright}{u}$. -We then write $\WTEGCONV{t_1}{t_2}$. - -The convertibility relation allows to introduce a new typing rule -which says that two convertible well-formed types have the same -inhabitants. - -At the moment, we did not take into account one rule between universes -which says that any term in a universe of index $i$ is also a term in -the universe of index $i+1$. This property is included into the -conversion rule by extending the equivalence relation of -convertibility into an order inductively defined by: -\begin{enumerate} -\item if $\WTEGCONV{t}{u}$ then $\WTEGLECONV{t}{u}$, -\item if $i \leq j$ then $\WTEGLECONV{\Type(i)}{\Type(j)}$, -\item for any $i$, $\WTEGLECONV{\Set}{\Type(i)}$, -\item $\WTEGLECONV{\Prop}{\Set}$, hence, by transitivity, - $\WTEGLECONV{\Prop}{\Type(i)}$, for any $i$ -\item if $\WTEGCONV{T}{U}$ and $\WTELECONV{\Gamma::(x:T)}{T'}{U'}$ then $\WTEGLECONV{\forall~x:T,T'}{\forall~x:U,U'}$. -\end{enumerate} - -The conversion rule is now exactly: - -\begin{description}\label{Conv} -\item[Conv]\index{Typing rules!Conv} - \inference{ - \frac{\WTEG{U}{s}~~~~\WTEG{t}{T}~~~~\WTEGLECONV{T}{U}}{\WTEG{t}{U}}} - \end{description} - - -\paragraph{$\eta$-conversion. -\label{eta} -\index{eta-conversion@$\eta$-conversion} -\index{eta-reduction@$\eta$-reduction}} - -An other important rule is the $\eta$-conversion. It is to identify -terms over a dummy abstraction of a variable followed by an -application of this variable. Let $T$ be a type, $t$ be a term in -which the variable $x$ doesn't occurs free. We have -\[ \WTEGRED{\lb~x:T\mto (t\ x)}{\triangleright}{t} \] -Indeed, as $x$ doesn't occur free in $t$, for any $u$ one -applies to $\lb~x:T\mto (t\ x)$, it $\beta$-reduces to $(t\ u)$. So -$\lb~x:T\mto (t\ x)$ and $t$ can be identified. - -\Rem The $\eta$-reduction is not taken into account in the -convertibility rule of \Coq. - -\paragraph[Normal form.]{Normal form.\index{Normal form}\label{Normal-form}\label{Head-normal-form}\index{Head normal form}} -A term which cannot be any more reduced is said to be in {\em normal - form}. There are several ways (or strategies) to apply the reduction -rule. Among them, we have to mention the {\em head reduction} which -will play an important role (see Chapter~\ref{Tactics}). Any term can -be written as $\lb~x_1:T_1\mto \ldots \lb x_k:T_k \mto -(t_0\ t_1\ldots t_n)$ where -$t_0$ is not an application. We say then that $t_0$ is the {\em head - of $t$}. If we assume that $t_0$ is $\lb~x:T\mto u_0$ then one step of -$\beta$-head reduction of $t$ is: -\[\lb~x_1:T_1\mto \ldots \lb x_k:T_k\mto (\lb~x:T\mto u_0\ t_1\ldots t_n) -~\triangleright ~ \lb~(x_1:T_1)\ldots(x_k:T_k)\mto -(\subst{u_0}{x}{t_1}\ t_2 \ldots t_n)\] -Iterating the process of head reduction until the head of the reduced -term is no more an abstraction leads to the {\em $\beta$-head normal - form} of $t$: -\[ t \triangleright \ldots \triangleright -\lb~x_1:T_1\mto \ldots\lb x_k:T_k\mto (v\ u_1 -\ldots u_m)\] -where $v$ is not an abstraction (nor an application). Note that the -head normal form must not be confused with the normal form since some -$u_i$ can be reducible. - -Similar notions of head-normal forms involving $\delta$, $\iota$ and $\zeta$ -reductions or any combination of those can also be defined. - -\section{Derived rules for environments} - -From the original rules of the type system, one can derive new rules -which change the context of definition of objects in the environment. -Because these rules correspond to elementary operations in the \Coq\ -engine used in the discharge mechanism at the end of a section, we -state them explicitly. - -\paragraph{Mechanism of substitution.} - -One rule which can be proved valid, is to replace a term $c$ by its -value in the environment. As we defined the substitution of a term for -a variable in a term, one can define the substitution of a term for a -constant. One easily extends this substitution to contexts and -environments. - -\paragraph{Substitution Property:} -\inference{\frac{\WF{E;\Def{\Gamma}{c}{t}{T}; F}{\Delta}} - {\WF{E; \subst{F}{c}{t}}{\subst{\Delta}{c}{t}}}} - - -\paragraph{Abstraction.} - -One can modify the context of definition of a constant $c$ by -abstracting a constant with respect to the last variable $x$ of its -defining context. For doing that, we need to check that the constants -appearing in the body of the declaration do not depend on $x$, we need -also to modify the reference to the constant $c$ in the environment -and context by explicitly applying this constant to the variable $x$. -Because of the rules for building environments and terms we know the -variable $x$ is available at each stage where $c$ is mentioned. - -\paragraph{Abstracting property:} - \inference{\frac{\WF{E; \Def{\Gamma::(x:U)}{c}{t}{T}; - F}{\Delta}~~~~\WFE{\Gamma}} - {\WF{E;\Def{\Gamma}{c}{\lb~x:U\mto t}{\forall~x:U,T}; - \subst{F}{c}{(c~x)}}{\subst{\Delta}{c}{(c~x)}}}} - -\paragraph{Pruning the context.} -We said the judgment \WFE{\Gamma} means that the defining contexts of -constants in $E$ are included in $\Gamma$. If one abstracts or -substitutes the constants with the above rules then it may happen -that the context $\Gamma$ is now bigger than the one needed for -defining the constants in $E$. Because defining contexts are growing -in $E$, the minimum context needed for defining the constants in $E$ -is the same as the one for the last constant. One can consequently -derive the following property. - -\paragraph{Pruning property:} -\inference{\frac{\WF{E; \Def{\Delta}{c}{t}{T}}{\Gamma}} - {\WF{E;\Def{\Delta}{c}{t}{T}}{\Delta}}} - - -\section[Inductive Definitions]{Inductive Definitions\label{Cic-inductive-definitions}} - -A (possibly mutual) inductive definition is specified by giving the -names and the type of the inductive sets or families to be -defined and the names and types of the constructors of the inductive -predicates. An inductive declaration in the environment can -consequently be represented with two contexts (one for inductive -definitions, one for constructors). - -Stating the rules for inductive definitions in their general form -needs quite tedious definitions. We shall try to give a concrete -understanding of the rules by precising them on running examples. We -take as examples the type of natural numbers, the type of -parameterized lists over a type $A$, the relation which states that -a list has some given length and the mutual inductive definition of trees and -forests. - -\subsection{Representing an inductive definition} -\subsubsection{Inductive definitions without parameters} -As for constants, inductive definitions can be defined in a non-empty -context. \\ -We write \NInd{\Gamma}{\Gamma_I}{\Gamma_C} an inductive -definition valid in a context $\Gamma$, a -context of definitions $\Gamma_I$ and a context of constructors -$\Gamma_C$. -\paragraph{Examples.} -The inductive declaration for the type of natural numbers will be: -\[\NInd{}{\nat:\Set}{\nO:\nat,\nS:\nat\ra\nat}\] -In a context with a variable $A:\Set$, the lists of elements in $A$ are -represented by: -\[\NInd{A:\Set}{\List:\Set}{\Nil:\List,\cons : A \ra \List \ra - \List}\] - Assuming - $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is - $[c_1:C_1;\ldots;c_n:C_n]$, the general typing rules are, - for $1\leq j\leq k$ and $1\leq i\leq n$: - -\bigskip -\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(I_j:A_j) \in E}} - -\inference{\frac{\NInd{\Gamma}{\Gamma_I}{\Gamma_C} \in E}{(c_i:C_i) \in E}} - -\subsubsection{Inductive definitions with parameters} - -We have to slightly complicate the representation above in order to handle -the delicate problem of parameters. -Let us explain that on the example of \List. With the above definition, -the type \List\ can only be used in an environment where we -have a variable $A:\Set$. Generally one want to consider lists of -elements in different types. For constants this is easily done by abstracting -the value over the parameter. In the case of inductive definitions we -have to handle the abstraction over several objects. - -One possible way to do that would be to define the type \List\ -inductively as being an inductive family of type $\Set\ra\Set$: -\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set,\List~A), - \cons : (\forall A:\Set, A \ra \List~A \ra \List~A)}\] -There are drawbacks to this point of view. The -information which says that for any $A$, $(\List~A)$ is an inductively defined -\Set\ has been lost. -So we introduce two important definitions. - -\paragraph{Inductive parameters, real arguments.} -An inductive definition $\NInd{\Gamma}{\Gamma_I}{\Gamma_C}$ admits -$r$ inductive parameters if each type of constructors $(c:C)$ in -$\Gamma_C$ is such that -\[C\equiv \forall -p_1:P_1,\ldots,\forall p_r:P_r,\forall a_1:A_1, \ldots \forall a_n:A_n, -(I~p_1~\ldots p_r~t_1\ldots t_q)\] -with $I$ one of the inductive definitions in $\Gamma_I$. -We say that $q$ is the number of real arguments of the constructor -$c$. -\paragraph{Context of parameters.} -If an inductive definition $\NInd{\Gamma}{\Gamma_I}{\Gamma_C}$ admits -$r$ inductive parameters, then there exists a context $\Gamma_P$ of -size $r$, such that $\Gamma_P=[p_1:P_1;\ldots;p_r:P_r]$ and -if $(t:A) \in \Gamma_I,\Gamma_C$ then $A$ can be written as -$\forall p_1:P_1,\ldots \forall p_r:P_r,A'$. -We call $\Gamma_P$ the context of parameters of the inductive -definition and use the notation $\forall \Gamma_P,A'$ for the term $A$. -\paragraph{Remark.} -If we have a term $t$ in an instance of an -inductive definition $I$ which starts with a constructor $c$, then the -$r$ first arguments of $c$ (the parameters) can be deduced from the -type $T$ of $t$: these are exactly the $r$ first arguments of $I$ in -the head normal form of $T$. -\paragraph{Examples.} -The \List{} definition has $1$ parameter: -\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A), - \cons : (\forall A:\Set, A \ra \List~A \ra \List~A)}\] -This is also the case for this more complex definition where there is -a recursive argument on a different instance of \List: -\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A), - \cons : (\forall A:\Set, A \ra \List~(A \ra A) \ra \List~A)}\] -But the following definition has $0$ parameters: -\[\NInd{}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set, \List~A), - \cons : (\forall A:\Set, A \ra \List~A \ra \List~(A*A))}\] - -%\footnote{ -%The interested reader may compare the above definition with the two -%following ones which have very different logical meaning:\\ -%$\NInd{}{\List:\Set}{\Nil:\List,\cons : (A:\Set)A -% \ra \List \ra \List}$ \\ -%$\NInd{}{\List:\Set\ra\Set}{\Nil:(A:\Set)(\List~A),\cons : (A:\Set)A -% \ra (\List~A\ra A) \ra (\List~A)}$.} -\paragraph{Concrete syntax.} -In the Coq system, the context of parameters is given explicitly -after the name of the inductive definitions and is shared between the -arities and the type of constructors. -% The vernacular declaration of polymorphic trees and forests will be:\\ -% \begin{coq_example*} -% Inductive Tree (A:Set) : Set := -% Node : A -> Forest A -> Tree A -% with Forest (A : Set) : Set := -% Empty : Forest A -% | Cons : Tree A -> Forest A -> Forest A -% \end{coq_example*} -% will correspond in our formalism to: -% \[\NInd{}{{\tt Tree}:\Set\ra\Set;{\tt Forest}:\Set\ra \Set} -% {{\tt Node} : \forall A:\Set, A \ra {\tt Forest}~A \ra {\tt Tree}~A, -% {\tt Empty} : \forall A:\Set, {\tt Forest}~A, -% {\tt Cons} : \forall A:\Set, {\tt Tree}~A \ra {\tt Forest}~A \ra -% {\tt Forest}~A}\] -We keep track in the syntax of the number of -parameters. - -Formally the representation of an inductive declaration -will be -\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} for an inductive -definition valid in a context $\Gamma$ with $p$ parameters, a -context of definitions $\Gamma_I$ and a context of constructors -$\Gamma_C$. - -The definition \Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} will be -well-formed exactly when \NInd{\Gamma}{\Gamma_I}{\Gamma_C} is and -when $p$ is (less or equal than) the number of parameters in -\NInd{\Gamma}{\Gamma_I}{\Gamma_C}. - -\paragraph{Examples} -The declaration for parameterized lists is: -\[\Ind{}{1}{\List:\Set\ra\Set}{\Nil:(\forall A:\Set,\List~A),\cons : - (\forall A:\Set, A \ra \List~A \ra \List~A)}\] - -The declaration for the length of lists is: -\[\Ind{}{1}{\Length:\forall A:\Set, (\List~A)\ra \nat\ra\Prop} - {\LNil:\forall A:\Set, \Length~A~(\Nil~A)~\nO,\\ - \LCons :\forall A:\Set,\forall a:A, \forall l:(\List~A),\forall n:\nat, (\Length~A~l~n)\ra (\Length~A~(\cons~A~a~l)~(\nS~n))}\] - -The declaration for a mutual inductive definition of forests and trees is: -\[\NInd{}{\tree:\Set,\forest:\Set} - {\\~~\node:\forest \ra \tree, - \emptyf:\forest,\consf:\tree \ra \forest \ra \forest\-}\] - -These representations are the ones obtained as the result of the \Coq\ -declaration: -\begin{coq_example*} -Inductive nat : Set := - | O : nat - | S : nat -> nat. -Inductive list (A:Set) : Set := - | nil : list A - | cons : A -> list A -> list A. -\end{coq_example*} -\begin{coq_example*} -Inductive Length (A:Set) : list A -> nat -> Prop := - | Lnil : Length A (nil A) O - | Lcons : - forall (a:A) (l:list A) (n:nat), - Length A l n -> Length A (cons A a l) (S n). -Inductive tree : Set := - node : forest -> tree -with forest : Set := - | emptyf : forest - | consf : tree -> forest -> forest. -\end{coq_example*} -% The inductive declaration in \Coq\ is slightly different from the one -% we described theoretically. The difference is that in the type of -% constructors the inductive definition is explicitly applied to the -% parameters variables. -The \Coq\ type-checker verifies that all -parameters are applied in the correct manner in the conclusion of the -type of each constructors~: - -In particular, the following definition will not be accepted because -there is an occurrence of \List\ which is not applied to the parameter -variable in the conclusion of the type of {\tt cons'}: -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(********* Error: The 1st argument of list' must be A in ... *********) -\end{coq_eval} -\begin{coq_example} -Inductive list' (A:Set) : Set := - | nil' : list' A - | cons' : A -> list' A -> list' (A*A). -\end{coq_example} -Since \Coq{} version 8.1, there is no restriction about parameters in -the types of arguments of constructors. The following definition is -valid: -\begin{coq_example} -Inductive list' (A:Set) : Set := - | nil' : list' A - | cons' : A -> list' (A->A) -> list' A. -\end{coq_example} - - -\subsection{Types of inductive objects} -We have to give the type of constants in an environment $E$ which -contains an inductive declaration. - -\begin{description} -\item[Ind-Const] Assuming - $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is - $[c_1:C_1;\ldots;c_n:C_n]$, - -\inference{\frac{\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E - ~~j=1\ldots k}{(I_j:A_j) \in E}} - -\inference{\frac{\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E - ~~~~i=1.. n} - {(c_i:C_i) \in E}} -\end{description} - -\paragraph{Example.} -We have $(\List:\Set \ra \Set), (\cons:\forall~A:\Set,A\ra(\List~A)\ra -(\List~A))$, \\ -$(\Length:\forall~A:\Set, (\List~A)\ra\nat\ra\Prop)$, $\tree:\Set$ and $\forest:\Set$. - -From now on, we write $\ListA$ instead of $(\List~A)$ and $\LengthA$ -for $(\Length~A)$. - -%\paragraph{Parameters.} -%%The parameters introduce a distortion between the inside specification -%%of the inductive declaration where parameters are supposed to be -%%instantiated (this representation is appropriate for checking the -%%correctness or deriving the destructor principle) and the outside -%%typing rules where the inductive objects are seen as objects -%%abstracted with respect to the parameters. - -%In the definition of \List\ or \Length\, $A$ is a parameter because -%what is effectively inductively defined is $\ListA$ or $\LengthA$ for -%a given $A$ which is constant in the type of constructors. But when -%we define $(\LengthA~l~n)$, $l$ and $n$ are not parameters because the -%constructors manipulate different instances of this family. - -\subsection{Well-formed inductive definitions} -We cannot accept any inductive declaration because some of them lead -to inconsistent systems. We restrict ourselves to definitions which -satisfy a syntactic criterion of positivity. Before giving the formal -rules, we need a few definitions: - -\paragraph[Definitions]{Definitions\index{Positivity}\label{Positivity}} - -A type $T$ is an {\em arity of sort $s$}\index{Arity} if it converts -to the sort $s$ or to a product $\forall~x:T,U$ with $U$ an arity -of sort $s$. (For instance $A\ra \Set$ or $\forall~A:\Prop,A\ra -\Prop$ are arities of sort respectively \Set\ and \Prop). A {\em type - of constructor of $I$}\index{Type of constructor} is either a term -$(I~t_1\ldots ~t_n)$ or $\fa x:T,C$ with $C$ recursively -a {\em type of constructor of $I$}. - -\smallskip - -The type of constructor $T$ will be said to {\em satisfy the positivity -condition} for a constant $X$ in the following cases: - -\begin{itemize} -\item $T=(X~t_1\ldots ~t_n)$ and $X$ does not occur free in -any $t_i$ -\item $T=\forall~x:U,V$ and $X$ occurs only strictly positively in $U$ and -the type $V$ satisfies the positivity condition for $X$ -\end{itemize} - -The constant $X$ {\em occurs strictly positively} in $T$ in the -following cases: - -\begin{itemize} -\item $X$ does not occur in $T$ -\item $T$ converts to $(X~t_1 \ldots ~t_n)$ and $X$ does not occur in - any of $t_i$ -\item $T$ converts to $\forall~x:U,V$ and $X$ does not occur in - type $U$ but occurs strictly positively in type $V$ -\item $T$ converts to $(I~a_1 \ldots ~a_m ~ t_1 \ldots ~t_p)$ where - $I$ is the name of an inductive declaration of the form - $\Ind{\Gamma}{m}{I:A}{c_1:\forall p_1:P_1,\ldots \forall - p_m:P_m,C_1;\ldots;c_n:\forall p_1:P_1,\ldots \forall - p_m:P_m,C_n}$ - (in particular, it is not mutually defined and it has $m$ - parameters) and $X$ does not occur in any of the $t_i$, and the - (instantiated) types of constructor $C_i\{p_j/a_j\}_{j=1\ldots m}$ - of $I$ satisfy - the nested positivity condition for $X$ -%\item more generally, when $T$ is not a type, $X$ occurs strictly -%positively in $T[x:U]u$ if $X$ does not occur in $U$ but occurs -%strictly positively in $u$ -\end{itemize} - -The type of constructor $T$ of $I$ {\em satisfies the nested -positivity condition} for a constant $X$ in the following -cases: - -\begin{itemize} -\item $T=(I~b_1\ldots b_m~u_1\ldots ~u_{p})$, $I$ is an inductive - definition with $m$ parameters and $X$ does not occur in -any $u_i$ -\item $T=\forall~x:U,V$ and $X$ occurs only strictly positively in $U$ and -the type $V$ satisfies the nested positivity condition for $X$ -\end{itemize} - -\paragraph{Example} - -$X$ occurs strictly positively in $A\ra X$ or $X*A$ or $({\tt list}~ -X)$ but not in $X \ra A$ or $(X \ra A)\ra A$ nor $({\tt neg}~X)$ -assuming the notion of product and lists were already defined and {\tt - neg} is an inductive definition with declaration \Ind{}{A:\Set}{{\tt - neg}:\Set}{{\tt neg}:(A\ra{\tt False}) \ra {\tt neg}}. Assuming -$X$ has arity ${\tt nat \ra Prop}$ and {\tt ex} is the inductively -defined existential quantifier, the occurrence of $X$ in ${\tt (ex~ - nat~ \lb~n:nat\mto (X~ n))}$ is also strictly positive. - -\paragraph{Correctness rules.} -We shall now describe the rules allowing the introduction of a new -inductive definition. - -\begin{description} -\item[W-Ind] Let $E$ be an environment and - $\Gamma,\Gamma_P,\Gamma_I,\Gamma_C$ are contexts such that - $\Gamma_I$ is $[I_1:\forall \Gamma_P,A_1;\ldots;I_k:\forall - \Gamma_P,A_k]$ and $\Gamma_C$ is - $[c_1:\forall \Gamma_P,C_1;\ldots;c_n:\forall \Gamma_P,C_n]$. -\inference{ - \frac{ - (\WTE{\Gamma;\Gamma_P}{A_j}{s'_j})_{j=1\ldots k} - ~~ (\WTE{\Gamma;\Gamma_I;\Gamma_P}{C_i}{s_{q_i}})_{i=1\ldots n} -} - {\WF{E;\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}}{\Gamma}}} -provided that the following side conditions hold: -\begin{itemize} -\item $k>0$ and all of $I_j$ and $c_i$ are distinct names for $j=1\ldots k$ and $i=1\ldots n$, -\item $p$ is the number of parameters of \NInd{\Gamma}{\Gamma_I}{\Gamma_C} - and $\Gamma_P$ is the context of parameters, -\item for $j=1\ldots k$ we have that $A_j$ is an arity of sort $s_j$ and $I_j - \notin \Gamma \cup E$, -\item for $i=1\ldots n$ we have that $C_i$ is a type of constructor of - $I_{q_i}$ which satisfies the positivity condition for $I_1 \ldots I_k$ - and $c_i \notin \Gamma \cup E$. -\end{itemize} -\end{description} -One can remark that there is a constraint between the sort of the -arity of the inductive type and the sort of the type of its -constructors which will always be satisfied for the impredicative sort -(\Prop) but may fail to define inductive definition -on sort \Set{} and generate constraints between universes for -inductive definitions in the {\Type} hierarchy. - -\paragraph{Examples.} -It is well known that existential quantifier can be encoded as an -inductive definition. -The following declaration introduces the second-order existential -quantifier $\exists X.P(X)$. -\begin{coq_example*} -Inductive exProp (P:Prop->Prop) : Prop - := exP_intro : forall X:Prop, P X -> exProp P. -\end{coq_example*} -The same definition on \Set{} is not allowed and fails~: -\begin{coq_eval} -(********** The following is not correct and should produce **********) -(*** Error: Large non-propositional inductive types must be in Type***) -\end{coq_eval} -\begin{coq_example} -Inductive exSet (P:Set->Prop) : Set - := exS_intro : forall X:Set, P X -> exSet P. -\end{coq_example} -It is possible to declare the same inductive definition in the -universe \Type. -The \texttt{exType} inductive definition has type $(\Type_i \ra\Prop)\ra -\Type_j$ with the constraint that the parameter \texttt{X} of \texttt{exT\_intro} has type $\Type_k$ with $k<j$ and $k\leq i$. -\begin{coq_example*} -Inductive exType (P:Type->Prop) : Type - := exT_intro : forall X:Type, P X -> exType P. -\end{coq_example*} -%We shall assume for the following definitions that, if necessary, we -%annotated the type of constructors such that we know if the argument -%is recursive or not. We shall write the type $(x:_R T)C$ if it is -%a recursive argument and $(x:_P T)C$ if the argument is not recursive. - -\paragraph[Sort-polymorphism of inductive families.]{Sort-polymorphism of inductive families.\index{Sort-polymorphism of inductive families}} - -From {\Coq} version 8.1, inductive families declared in {\Type} are -polymorphic over their arguments in {\Type}. - -If $A$ is an arity and $s$ a sort, we write $A_{/s}$ for the arity -obtained from $A$ by replacing its sort with $s$. Especially, if $A$ -is well-typed in some environment and context, then $A_{/s}$ is typable -by typability of all products in the Calculus of Inductive Constructions. -The following typing rule is added to the theory. - -\begin{description} -\item[Ind-Family] Let $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ be an - inductive definition. Let $\Gamma_P = [p_1:P_1;\ldots;p_{p}:P_{p}]$ - be its context of parameters, $\Gamma_I = [I_1:\forall - \Gamma_P,A_1;\ldots;I_k:\forall \Gamma_P,A_k]$ its context of - definitions and $\Gamma_C = [c_1:\forall - \Gamma_P,C_1;\ldots;c_n:\forall \Gamma_P,C_n]$ its context of - constructors, with $c_i$ a constructor of $I_{q_i}$. - - Let $m \leq p$ be the length of the longest prefix of parameters - such that the $m$ first arguments of all occurrences of all $I_j$ in - all $C_k$ (even the occurrences in the hypotheses of $C_k$) are - exactly applied to $p_1~\ldots~p_m$ ($m$ is the number of {\em - recursively uniform parameters} and the $p-m$ remaining parameters - are the {\em recursively non-uniform parameters}). Let $q_1$, - \ldots, $q_r$, with $0\leq r\leq m$, be a (possibly) partial - instantiation of the recursively uniform parameters of - $\Gamma_P$. We have: - -\inference{\frac -{\left\{\begin{array}{l} -\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C} \in E\\ -(E[\Gamma] \vdash q_l : P'_l)_{l=1\ldots r}\\ -(\WTEGLECONV{P'_l}{\subst{P_l}{p_u}{q_u}_{u=1\ldots l-1}})_{l=1\ldots r}\\ -1 \leq j \leq k -\end{array} -\right.} -{E[\Gamma] \vdash (I_j\,q_1\,\ldots\,q_r:\forall [p_{r+1}:P_{r+1};\ldots;p_{p}:P_{p}], (A_j)_{/s_j})} -} - -provided that the following side conditions hold: - -\begin{itemize} -\item $\Gamma_{P'}$ is the context obtained from $\Gamma_P$ by -replacing each $P_l$ that is an arity with $P'_l$ for $1\leq l \leq r$ (notice that -$P_l$ arity implies $P'_l$ arity since $\WTEGLECONV{P'_l}{ \subst{P_l}{p_u}{q_u}_{u=1\ldots l-1}}$); -\item there are sorts $s_i$, for $1 \leq i \leq k$ such that, for - $\Gamma_{I'} = [I_1:\forall - \Gamma_{P'},(A_1)_{/s_1};\ldots;I_k:\forall \Gamma_{P'},(A_k)_{/s_k}]$ -we have $(\WTE{\Gamma;\Gamma_{I'};\Gamma_{P'}}{C_i}{s_{q_i}})_{i=1\ldots n}$; -\item the sorts are such that all eliminations, to {\Prop}, {\Set} and - $\Type(j)$, are allowed (see section~\ref{elimdep}). -\end{itemize} -\end{description} - -Notice that if $I_j\,q_1\,\ldots\,q_r$ is typable using the rules {\bf -Ind-Const} and {\bf App}, then it is typable using the rule {\bf -Ind-Family}. Conversely, the extended theory is not stronger than the -theory without {\bf Ind-Family}. We get an equiconsistency result by -mapping each $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ occurring into a -given derivation into as many different inductive types and constructors -as the number of different (partial) replacements of sorts, needed for -this derivation, in the parameters that are arities (this is possible -because $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$ well-formed implies -that $\Ind{\Gamma}{p}{\Gamma_{I'}}{\Gamma_{C'}}$ is well-formed and -has the same allowed eliminations, where -$\Gamma_{I'}$ is defined as above and $\Gamma_{C'} = [c_1:\forall -\Gamma_{P'},C_1;\ldots;c_n:\forall \Gamma_{P'},C_n]$). That is, -the changes in the types of each partial instance -$q_1\,\ldots\,q_r$ can be characterized by the ordered sets of arity -sorts among the types of parameters, and to each signature is -associated a new inductive definition with fresh names. Conversion is -preserved as any (partial) instance $I_j\,q_1\,\ldots\,q_r$ or -$C_i\,q_1\,\ldots\,q_r$ is mapped to the names chosen in the specific -instance of $\Ind{\Gamma}{p}{\Gamma_I}{\Gamma_C}$. - -\newcommand{\Single}{\mbox{\textsf{Set}}} - -In practice, the rule {\bf Ind-Family} is used by {\Coq} only when all the -inductive types of the inductive definition are declared with an arity whose -sort is in the $\Type$ -hierarchy. Then, the polymorphism is over the parameters whose -type is an arity of sort in the {\Type} hierarchy. -The sort $s_j$ are -chosen canonically so that each $s_j$ is minimal with respect to the -hierarchy ${\Prop}\subset{\Set_p}\subset\Type$ where $\Set_p$ is -predicative {\Set}. -%and ${\Prop_u}$ is the sort of small singleton -%inductive types (i.e. of inductive types with one single constructor -%and that contains either proofs or inhabitants of singleton types -%only). -More precisely, an empty or small singleton inductive definition -(i.e. an inductive definition of which all inductive types are -singleton -- see paragraph~\ref{singleton}) is set in -{\Prop}, a small non-singleton inductive family is set in {\Set} (even -in case {\Set} is impredicative -- see Section~\ref{impredicativity}), -and otherwise in the {\Type} hierarchy. -% TODO: clarify the case of a partial application ?? - -Note that the side-condition about allowed elimination sorts in the -rule~{\bf Ind-Family} is just to avoid to recompute the allowed -elimination sorts at each instance of a pattern-matching (see -section~\ref{elimdep}). - -As an example, let us consider the following definition: -\begin{coq_example*} -Inductive option (A:Type) : Type := -| None : option A -| Some : A -> option A. -\end{coq_example*} - -As the definition is set in the {\Type} hierarchy, it is used -polymorphically over its parameters whose types are arities of a sort -in the {\Type} hierarchy. Here, the parameter $A$ has this property, -hence, if \texttt{option} is applied to a type in {\Set}, the result is -in {\Set}. Note that if \texttt{option} is applied to a type in {\Prop}, -then, the result is not set in \texttt{Prop} but in \texttt{Set} -still. This is because \texttt{option} is not a singleton type (see -section~\ref{singleton}) and it would loose the elimination to {\Set} and -{\Type} if set in {\Prop}. - -\begin{coq_example} -Check (fun A:Set => option A). -Check (fun A:Prop => option A). -\end{coq_example} - -Here is another example. - -\begin{coq_example*} -Inductive prod (A B:Type) : Type := pair : A -> B -> prod A B. -\end{coq_example*} - -As \texttt{prod} is a singleton type, it will be in {\Prop} if applied -twice to propositions, in {\Set} if applied twice to at least one type -in {\Set} and none in {\Type}, and in {\Type} otherwise. In all cases, -the three kind of eliminations schemes are allowed. - -\begin{coq_example} -Check (fun A:Set => prod A). -Check (fun A:Prop => prod A A). -Check (fun (A:Prop) (B:Set) => prod A B). -Check (fun (A:Type) (B:Prop) => prod A B). -\end{coq_example} - -\subsection{Destructors} -The specification of inductive definitions with arities and -constructors is quite natural. But we still have to say how to use an -object in an inductive type. - -This problem is rather delicate. There are actually several different -ways to do that. Some of them are logically equivalent but not always -equivalent from the computational point of view or from the user point -of view. - -From the computational point of view, we want to be able to define a -function whose domain is an inductively defined type by using a -combination of case analysis over the possible constructors of the -object and recursion. - -Because we need to keep a consistent theory and also we prefer to keep -a strongly normalizing reduction, we cannot accept any sort of -recursion (even terminating). So the basic idea is to restrict -ourselves to primitive recursive functions and functionals. - -For instance, assuming a parameter $A:\Set$ exists in the context, we -want to build a function \length\ of type $\ListA\ra \nat$ which -computes the length of the list, so such that $(\length~(\Nil~A)) = \nO$ -and $(\length~(\cons~A~a~l)) = (\nS~(\length~l))$. We want these -equalities to be recognized implicitly and taken into account in the -conversion rule. - -From the logical point of view, we have built a type family by giving -a set of constructors. We want to capture the fact that we do not -have any other way to build an object in this type. So when trying to -prove a property $(P~m)$ for $m$ in an inductive definition it is -enough to enumerate all the cases where $m$ starts with a different -constructor. - -In case the inductive definition is effectively a recursive one, we -want to capture the extra property that we have built the smallest -fixed point of this recursive equation. This says that we are only -manipulating finite objects. This analysis provides induction -principles. - -For instance, in order to prove $\forall l:\ListA,(\LengthA~l~(\length~l))$ -it is enough to prove: - -\noindent $(\LengthA~(\Nil~A)~(\length~(\Nil~A)))$ and - -\smallskip -$\forall a:A, \forall l:\ListA, (\LengthA~l~(\length~l)) \ra -(\LengthA~(\cons~A~a~l)~(\length~(\cons~A~a~l)))$. -\smallskip - -\noindent which given the conversion equalities satisfied by \length\ is the -same as proving: -$(\LengthA~(\Nil~A)~\nO)$ and $\forall a:A, \forall l:\ListA, -(\LengthA~l~(\length~l)) \ra -(\LengthA~(\cons~A~a~l)~(\nS~(\length~l)))$. - -One conceptually simple way to do that, following the basic scheme -proposed by Martin-L\"of in his Intuitionistic Type Theory, is to -introduce for each inductive definition an elimination operator. At -the logical level it is a proof of the usual induction principle and -at the computational level it implements a generic operator for doing -primitive recursion over the structure. - -But this operator is rather tedious to implement and use. We choose in -this version of Coq to factorize the operator for primitive recursion -into two more primitive operations as was first suggested by Th. Coquand -in~\cite{Coq92}. One is the definition by pattern-matching. The second one is a definition by guarded fixpoints. - -\subsubsection[The {\tt match\ldots with \ldots end} construction.]{The {\tt match\ldots with \ldots end} construction.\label{Caseexpr} -\index{match@{\tt match\ldots with\ldots end}}} - -The basic idea of this destructor operation is that we have an object -$m$ in an inductive type $I$ and we want to prove a property $(P~m)$ -which in general depends on $m$. For this, it is enough to prove the -property for $m = (c_i~u_1\ldots u_{p_i})$ for each constructor of $I$. - -The \Coq{} term for this proof will be written~: -\[\kw{match}~m~\kw{with}~ (c_1~x_{11}~...~x_{1p_1}) \Ra f_1 ~|~\ldots~|~ - (c_n~x_{n1}...x_{np_n}) \Ra f_n~ \kw{end}\] -In this expression, if -$m$ is a term built from a constructor $(c_i~u_1\ldots u_{p_i})$ then -the expression will behave as it is specified with $i$-th branch and -will reduce to $f_i$ where the $x_{i1}$\ldots $x_{ip_i}$ are replaced -by the $u_1\ldots u_p$ according to the $\iota$-reduction. - -Actually, for type-checking a \kw{match\ldots with\ldots end} -expression we also need to know the predicate $P$ to be proved by case -analysis. In the general case where $I$ is an inductively defined -$n$-ary relation, $P$ is a $n+1$-ary relation: the $n$ first arguments -correspond to the arguments of $I$ (parameters excluded), and the last -one corresponds to object $m$. \Coq{} can sometimes infer this -predicate but sometimes not. The concrete syntax for describing this -predicate uses the \kw{as\ldots in\ldots return} construction. For -instance, let us assume that $I$ is an unary predicate with one -parameter. The predicate is made explicit using the syntax~: -\[\kw{match}~m~\kw{as}~ x~ \kw{in}~ I~\verb!_!~a~ \kw{return}~ (P~ x) - ~\kw{with}~ (c_1~x_{11}~...~x_{1p_1}) \Ra f_1 ~|~\ldots~|~ - (c_n~x_{n1}...x_{np_n}) \Ra f_n \kw{end}\] -The \kw{as} part can be omitted if either the result type does not -depend on $m$ (non-dependent elimination) or $m$ is a variable (in -this case, the result type can depend on $m$). The \kw{in} part can be -omitted if the result type does not depend on the arguments of -$I$. Note that the arguments of $I$ corresponding to parameters -\emph{must} be \verb!_!, because the result type is not generalized to -all possible values of the parameters. The expression after \kw{in} -must be seen as an \emph{inductive type pattern}. As a final remark, -expansion of implicit arguments and notations apply to this pattern. - -For the purpose of presenting the inference rules, we use a more -compact notation~: -\[ \Case{(\lb a x \mto P)}{m}{ \lb x_{11}~...~x_{1p_1} \mto f_1 ~|~\ldots~|~ - \lb x_{n1}...x_{np_n} \mto f_n}\] - -%% CP 06/06 Obsolete avec la nouvelle syntaxe et incompatible avec la -%% presentation theorique qui suit -% \paragraph{Non-dependent elimination.} -% -% When defining a function of codomain $C$ by case analysis over an -% object in an inductive type $I$, we build an object of type $I -% \ra C$. The minimality principle on an inductively defined logical -% predicate $I$ of type $A \ra \Prop$ is often used to prove a property -% $\forall x:A,(I~x)\ra (C~x)$. These are particular cases of the dependent -% principle that we stated before with a predicate which does not depend -% explicitly on the object in the inductive definition. - -% For instance, a function testing whether a list is empty -% can be -% defined as: -% \[\kw{fun} l:\ListA \Ra \kw{match}~l~\kw{with}~ \Nil \Ra \true~ -% |~(\cons~a~m) \Ra \false \kw{end}\] -% represented by -% \[\lb~l:\ListA \mto\Case{\bool}{l}{\true~ |~ \lb a~m,~\false}\] -%\noindent {\bf Remark. } - -% In the system \Coq\ the expression above, can be -% written without mentioning -% the dummy abstraction: -% \Case{\bool}{l}{\Nil~ \mbox{\tt =>}~\true~ |~ (\cons~a~m)~ -% \mbox{\tt =>}~ \false} - -\paragraph[Allowed elimination sorts.]{Allowed elimination sorts.\index{Elimination sorts}} - -An important question for building the typing rule for \kw{match} is -what can be the type of $P$ with respect to the type of the inductive -definitions. - -We define now a relation \compat{I:A}{B} between an inductive -definition $I$ of type $A$ and an arity $B$. This relation states that -an object in the inductive definition $I$ can be eliminated for -proving a property $P$ of type $B$. - -The case of inductive definitions in sorts \Set\ or \Type{} is simple. -There is no restriction on the sort of the predicate to be -eliminated. - -\paragraph{Notations.} -The \compat{I:A}{B} is defined as the smallest relation satisfying the -following rules: -We write \compat{I}{B} for \compat{I:A}{B} where $A$ is the type of -$I$. - -\begin{description} -\item[Prod] \inference{\frac{\compat{(I~x):A'}{B'}} - {\compat{I:\forall x:A, A'}{\forall x:A, B'}}} -\item[{\Set} \& \Type] \inference{\frac{ - s_1 \in \{\Set,\Type(j)\}, - s_2 \in \Sort}{\compat{I:s_1}{I\ra s_2}}} -\end{description} - -The case of Inductive definitions of sort \Prop{} is a bit more -complicated, because of our interpretation of this sort. The only -harmless allowed elimination, is the one when predicate $P$ is also of -sort \Prop. -\begin{description} -\item[\Prop] \inference{\compat{I:\Prop}{I\ra\Prop}} -\end{description} -\Prop{} is the type of logical propositions, the proofs of properties -$P$ in \Prop{} could not be used for computation and are consequently -ignored by the extraction mechanism. -Assume $A$ and $B$ are two propositions, and the logical disjunction -$A\vee B$ is defined inductively by~: -\begin{coq_example*} -Inductive or (A B:Prop) : Prop := - lintro : A -> or A B | rintro : B -> or A B. -\end{coq_example*} -The following definition which computes a boolean value by case over -the proof of \texttt{or A B} is not accepted~: -\begin{coq_eval} -(***************************************************************) -(*** This example should fail with ``Incorrect elimination'' ***) -\end{coq_eval} -\begin{coq_example} -Definition choice (A B: Prop) (x:or A B) := - match x with lintro a => true | rintro b => false end. -\end{coq_example} -From the computational point of view, the structure of the proof of -\texttt{(or A B)} in this term is needed for computing the boolean -value. - -In general, if $I$ has type \Prop\ then $P$ cannot have type $I\ra -\Set$, because it will mean to build an informative proof of type -$(P~m)$ doing a case analysis over a non-computational object that -will disappear in the extracted program. But the other way is safe -with respect to our interpretation we can have $I$ a computational -object and $P$ a non-computational one, it just corresponds to proving -a logical property of a computational object. - -% Also if $I$ is in one of the sorts \{\Prop, \Set\}, one cannot in -% general allow an elimination over a bigger sort such as \Type. But -% this operation is safe whenever $I$ is a {\em small inductive} type, -% which means that all the types of constructors of -% $I$ are small with the following definition:\\ -% $(I~t_1\ldots t_s)$ is a {\em small type of constructor} and -% $\forall~x:T,C$ is a small type of constructor if $C$ is and if $T$ -% has type \Prop\ or \Set. \index{Small inductive type} - -% We call this particular elimination which gives the possibility to -% compute a type by induction on the structure of a term, a {\em strong -% elimination}\index{Strong elimination}. - -In the same spirit, elimination on $P$ of type $I\ra -\Type$ cannot be allowed because it trivially implies the elimination -on $P$ of type $I\ra \Set$ by cumulativity. It also implies that there -is two proofs of the same property which are provably different, -contradicting the proof-irrelevance property which is sometimes a -useful axiom~: -\begin{coq_example} -Axiom proof_irrelevance : forall (P : Prop) (x y : P), x=y. -\end{coq_example} -\begin{coq_eval} -Reset proof_irrelevance. -\end{coq_eval} -The elimination of an inductive definition of type \Prop\ on a -predicate $P$ of type $I\ra \Type$ leads to a paradox when applied to -impredicative inductive definition like the second-order existential -quantifier \texttt{exProp} defined above, because it give access to -the two projections on this type. - -%\paragraph{Warning: strong elimination} -%\index{Elimination!Strong elimination} -%In previous versions of Coq, for a small inductive definition, only the -%non-informative strong elimination on \Type\ was allowed, because -%strong elimination on \Typeset\ was not compatible with the current -%extraction procedure. In this version, strong elimination on \Typeset\ -%is accepted but a dummy element is extracted from it and may generate -%problems if extracted terms are explicitly used such as in the -%{\tt Program} tactic or when extracting ML programs. - -\paragraph[Empty and singleton elimination]{Empty and singleton elimination\label{singleton} -\index{Elimination!Singleton elimination} -\index{Elimination!Empty elimination}} - -There are special inductive definitions in \Prop\ for which more -eliminations are allowed. -\begin{description} -\item[\Prop-extended] -\inference{ - \frac{I \mbox{~is an empty or singleton - definition}~~~s \in \Sort}{\compat{I:\Prop}{I\ra s}} -} -\end{description} - -% A {\em singleton definition} has always an informative content, -% even if it is a proposition. - -A {\em singleton -definition} has only one constructor and all the arguments of this -constructor have type \Prop. In that case, there is a canonical -way to interpret the informative extraction on an object in that type, -such that the elimination on any sort $s$ is legal. Typical examples are -the conjunction of non-informative propositions and the equality. -If there is an hypothesis $h:a=b$ in the context, it can be used for -rewriting not only in logical propositions but also in any type. -% In that case, the term \verb!eq_rec! which was defined as an axiom, is -% now a term of the calculus. -\begin{coq_example} -Print eq_rec. -Extraction eq_rec. -\end{coq_example} -An empty definition has no constructors, in that case also, -elimination on any sort is allowed. - -\paragraph{Type of branches.} -Let $c$ be a term of type $C$, we assume $C$ is a type of constructor -for an inductive definition $I$. Let $P$ be a term that represents the -property to be proved. -We assume $r$ is the number of parameters. - -We define a new type \CI{c:C}{P} which represents the type of the -branch corresponding to the $c:C$ constructor. -\[ -\begin{array}{ll} -\CI{c:(I_i~p_1\ldots p_r\ t_1 \ldots t_p)}{P} &\equiv (P~t_1\ldots ~t_p~c) \\[2mm] -\CI{c:\forall~x:T,C}{P} &\equiv \forall~x:T,\CI{(c~x):C}{P} -\end{array} -\] -We write \CI{c}{P} for \CI{c:C}{P} with $C$ the type of $c$. - -\paragraph{Examples.} -For $\ListA$ the type of $P$ will be $\ListA\ra s$ for $s \in \Sort$. \\ -$ \CI{(\cons~A)}{P} \equiv -\forall a:A, \forall l:\ListA,(P~(\cons~A~a~l))$. - -For $\LengthA$, the type of $P$ will be -$\forall l:\ListA,\forall n:\nat, (\LengthA~l~n)\ra \Prop$ and the expression -\CI{(\LCons~A)}{P} is defined as:\\ -$\forall a:A, \forall l:\ListA, \forall n:\nat, \forall -h:(\LengthA~l~n), (P~(\cons~A~a~l)~(\nS~n)~(\LCons~A~a~l~n~l))$.\\ -If $P$ does not depend on its third argument, we find the more natural -expression:\\ -$\forall a:A, \forall l:\ListA, \forall n:\nat, -(\LengthA~l~n)\ra(P~(\cons~A~a~l)~(\nS~n))$. - -\paragraph{Typing rule.} - -Our very general destructor for inductive definition enjoys the -following typing rule -% , where we write -% \[ -% \Case{P}{c}{[x_{11}:T_{11}]\ldots[x_{1p_1}:T_{1p_1}]g_1\ldots -% [x_{n1}:T_{n1}]\ldots[x_{np_n}:T_{np_n}]g_n} -% \] -% for -% \[ -% \Case{P}{c}{(c_1~x_{11}~...~x_{1p_1}) \Ra g_1 ~|~\ldots~|~ -% (c_n~x_{n1}...x_{np_n}) \Ra g_n } -% \] - -\begin{description} -\item[match] \label{elimdep} \index{Typing rules!match} -\inference{ -\frac{\WTEG{c}{(I~q_1\ldots q_r~t_1\ldots t_s)}~~ - \WTEG{P}{B}~~\compat{(I~q_1\ldots q_r)}{B} - ~~ -(\WTEG{f_i}{\CI{(c_{p_i}~q_1\ldots q_r)}{P}})_{i=1\ldots l}} -{\WTEG{\Case{P}{c}{f_1|\ldots |f_l}}{(P\ t_1\ldots t_s\ c)}}}%\\[3mm] - -provided $I$ is an inductive type in a declaration -\Ind{\Delta}{r}{\Gamma_I}{\Gamma_C} with -$\Gamma_C = [c_1:C_1;\ldots;c_n:C_n]$ and $c_{p_1}\ldots c_{p_l}$ are the -only constructors of $I$. -\end{description} - -\paragraph{Example.} -For \List\ and \Length\ the typing rules for the {\tt match} expression -are (writing just $t:M$ instead of \WTEG{t}{M}, the environment and -context being the same in all the judgments). - -\[\frac{l:\ListA~~P:\ListA\ra s~~~f_1:(P~(\Nil~A))~~ - f_2:\forall a:A, \forall l:\ListA, (P~(\cons~A~a~l))} - {\Case{P}{l}{f_1~|~f_2}:(P~l)}\] - -\[\frac{ - \begin{array}[b]{@{}c@{}} -H:(\LengthA~L~N) \\ P:\forall l:\ListA, \forall n:\nat, (\LengthA~l~n)\ra - \Prop\\ - f_1:(P~(\Nil~A)~\nO~\LNil) \\ - f_2:\forall a:A, \forall l:\ListA, \forall n:\nat, \forall - h:(\LengthA~l~n), (P~(\cons~A~a~n)~(\nS~n)~(\LCons~A~a~l~n~h)) - \end{array}} - {\Case{P}{H}{f_1~|~f_2}:(P~L~N~H)}\] - -\paragraph[Definition of $\iota$-reduction.]{Definition of $\iota$-reduction.\label{iotared} -\index{iota-reduction@$\iota$-reduction}} -We still have to define the $\iota$-reduction in the general case. - -A $\iota$-redex is a term of the following form: -\[\Case{P}{(c_{p_i}~q_1\ldots q_r~a_1\ldots a_m)}{f_1|\ldots | - f_l}\] -with $c_{p_i}$ the $i$-th constructor of the inductive type $I$ with $r$ -parameters. - -The $\iota$-contraction of this term is $(f_i~a_1\ldots a_m)$ leading -to the general reduction rule: -\[ \Case{P}{(c_{p_i}~q_1\ldots q_r~a_1\ldots a_m)}{f_1|\ldots | - f_n} \triangleright_{\iota} (f_i~a_1\ldots a_m) \] - -\subsection[Fixpoint definitions]{Fixpoint definitions\label{Fix-term} \index{Fix@{\tt Fix}}} -The second operator for elimination is fixpoint definition. -This fixpoint may involve several mutually recursive definitions. -The basic concrete syntax for a recursive set of mutually recursive -declarations is (with $\Gamma_i$ contexts)~: -\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with}~ f_n -(\Gamma_n) :A_n:=t_n\] -The terms are obtained by projections from this set of declarations -and are written -\[\kw{fix}~f_1 (\Gamma_1) :A_1:=t_1~\kw{with} \ldots \kw{with}~ f_n -(\Gamma_n) :A_n:=t_n~\kw{for}~f_i\] -In the inference rules, we represent such a -term by -\[\Fix{f_i}{f_1:A_1':=t_1' \ldots f_n:A_n':=t_n'}\] -with $t_i'$ (resp. $A_i'$) representing the term $t_i$ abstracted -(resp. generalized) with -respect to the bindings in the context $\Gamma_i$, namely -$t_i'=\lb \Gamma_i \mto t_i$ and $A_i'=\forall \Gamma_i, A_i$. - -\subsubsection{Typing rule} -The typing rule is the expected one for a fixpoint. - -\begin{description} -\item[Fix] \index{Typing rules!Fix} -\inference{\frac{(\WTEG{A_i}{s_i})_{i=1\ldots n}~~~~ - (\WTE{\Gamma,f_1:A_1,\ldots,f_n:A_n}{t_i}{A_i})_{i=1\ldots n}} - {\WTEG{\Fix{f_i}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}}{A_i}}} -\end{description} - -Any fixpoint definition cannot be accepted because non-normalizing terms -will lead to proofs of absurdity. - -The basic scheme of recursion that should be allowed is the one needed for -defining primitive -recursive functionals. In that case the fixpoint enjoys a special -syntactic restriction, namely one of the arguments belongs to an -inductive type, the function starts with a case analysis and recursive -calls are done on variables coming from patterns and representing subterms. - -For instance in the case of natural numbers, a proof of the induction -principle of type -\[\forall P:\nat\ra\Prop, (P~\nO)\ra(\forall n:\nat, (P~n)\ra(P~(\nS~n)))\ra -\forall n:\nat, (P~n)\] -can be represented by the term: -\[\begin{array}{l} -\lb P:\nat\ra\Prop\mto\lb f:(P~\nO)\mto \lb g:(\forall n:\nat, -(P~n)\ra(P~(\nS~n))) \mto\\ -\Fix{h}{h:\forall n:\nat, (P~n):=\lb n:\nat\mto \Case{P}{n}{f~|~\lb - p:\nat\mto (g~p~(h~p))}} -\end{array} -\] - -Before accepting a fixpoint definition as being correctly typed, we -check that the definition is ``guarded''. A precise analysis of this -notion can be found in~\cite{Gim94}. - -The first stage is to precise on which argument the fixpoint will be -decreasing. The type of this argument should be an inductive -definition. - -For doing this the syntax of fixpoints is extended and becomes - \[\Fix{f_i}{f_1/k_1:A_1:=t_1 \ldots f_n/k_n:A_n:=t_n}\] -where $k_i$ are positive integers. -Each $A_i$ should be a type (reducible to a term) starting with at least -$k_i$ products $\forall y_1:B_1,\ldots \forall y_{k_i}:B_{k_i}, A'_i$ -and $B_{k_i}$ -being an instance of an inductive definition. - -Now in the definition $t_i$, if $f_j$ occurs then it should be applied -to at least $k_j$ arguments and the $k_j$-th argument should be -syntactically recognized as structurally smaller than $y_{k_i}$ - - -The definition of being structurally smaller is a bit technical. -One needs first to define the notion of -{\em recursive arguments of a constructor}\index{Recursive arguments}. -For an inductive definition \Ind{\Gamma}{r}{\Gamma_I}{\Gamma_C}, -the type of a constructor $c$ has the form -$\forall p_1:P_1,\ldots \forall p_r:P_r, -\forall x_1:T_1, \ldots \forall x_r:T_r, (I_j~p_1\ldots -p_r~t_1\ldots t_s)$ the recursive arguments will correspond to $T_i$ in -which one of the $I_l$ occurs. - - -The main rules for being structurally smaller are the following:\\ -Given a variable $y$ of type an inductive -definition in a declaration -\Ind{\Gamma}{r}{\Gamma_I}{\Gamma_C} -where $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is - $[c_1:C_1;\ldots;c_n:C_n]$. -The terms structurally smaller than $y$ are: -\begin{itemize} -\item $(t~u), \lb x:u \mto t$ when $t$ is structurally smaller than $y$ . -\item \Case{P}{c}{f_1\ldots f_n} when each $f_i$ is structurally - smaller than $y$. \\ - If $c$ is $y$ or is structurally smaller than $y$, its type is an inductive - definition $I_p$ part of the inductive - declaration corresponding to $y$. - Each $f_i$ corresponds to a type of constructor $C_q \equiv - \forall p_1:P_1,\ldots,\forall p_r:P_r, \forall y_1:B_1, \ldots \forall y_k:B_k, (I~a_1\ldots a_k)$ - and can consequently be - written $\lb y_1:B'_1\mto \ldots \lb y_k:B'_k\mto g_i$. - ($B'_i$ is obtained from $B_i$ by substituting parameters variables) - the variables $y_j$ occurring - in $g_i$ corresponding to recursive arguments $B_i$ (the ones in - which one of the $I_l$ occurs) are structurally smaller than $y$. -\end{itemize} -The following definitions are correct, we enter them using the -{\tt Fixpoint} command as described in Section~\ref{Fixpoint} and show -the internal representation. -\begin{coq_example} -Fixpoint plus (n m:nat) {struct n} : nat := - match n with - | O => m - | S p => S (plus p m) - end. -Print plus. -Fixpoint lgth (A:Set) (l:list A) {struct l} : nat := - match l with - | nil => O - | cons a l' => S (lgth A l') - end. -Print lgth. -Fixpoint sizet (t:tree) : nat := let (f) := t in S (sizef f) - with sizef (f:forest) : nat := - match f with - | emptyf => O - | consf t f => plus (sizet t) (sizef f) - end. -Print sizet. -\end{coq_example} - - -\subsubsection[Reduction rule]{Reduction rule\index{iota-reduction@$\iota$-reduction}} -Let $F$ be the set of declarations: $f_1/k_1:A_1:=t_1 \ldots -f_n/k_n:A_n:=t_n$. -The reduction for fixpoints is: -\[ (\Fix{f_i}{F}~a_1\ldots -a_{k_i}) \triangleright_{\iota} \substs{t_i}{f_k}{\Fix{f_k}{F}}{k=1\ldots n} -~a_1\ldots a_{k_i}\] -when $a_{k_i}$ starts with a constructor. -This last restriction is needed in order to keep strong normalization -and corresponds to the reduction for primitive recursive operators. - -We can illustrate this behavior on examples. -\begin{coq_example} -Goal forall n m:nat, plus (S n) m = S (plus n m). -reflexivity. -Abort. -Goal forall f:forest, sizet (node f) = S (sizef f). -reflexivity. -Abort. -\end{coq_example} -But assuming the definition of a son function from \tree\ to \forest: -\begin{coq_example} -Definition sont (t:tree) : forest - := let (f) := t in f. -\end{coq_example} -The following is not a conversion but can be proved after a case analysis. -\begin{coq_eval} -(******************************************************************) -(** Error: Impossible to unify .... **) -\end{coq_eval} -\begin{coq_example} -Goal forall t:tree, sizet t = S (sizef (sont t)). -reflexivity. (** this one fails **) -destruct t. -reflexivity. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -% La disparition de Program devrait rendre la construction Match obsolete -% \subsubsection{The {\tt Match \ldots with \ldots end} expression} -% \label{Matchexpr} -% %\paragraph{A unary {\tt Match\ldots with \ldots end}.} -% \index{Match...with...end@{\tt Match \ldots with \ldots end}} -% The {\tt Match} operator which was a primitive notion in older -% presentations of the Calculus of Inductive Constructions is now just a -% macro definition which generates the good combination of {\tt Case} -% and {\tt Fix} operators in order to generate an operator for primitive -% recursive definitions. It always considers an inductive definition as -% a single inductive definition. - -% The following examples illustrates this feature. -% \begin{coq_example} -% Definition nat_pr : (C:Set)C->(nat->C->C)->nat->C -% :=[C,x,g,n]Match n with x g end. -% Print nat_pr. -% \end{coq_example} -% \begin{coq_example} -% Definition forest_pr -% : (C:Set)C->(tree->forest->C->C)->forest->C -% := [C,x,g,n]Match n with x g end. -% \end{coq_example} - -% Cet exemple faisait error (HH le 12/12/96), j'ai change pour une -% version plus simple -%\begin{coq_example} -%Definition forest_pr -% : (P:forest->Set)(P emptyf)->((t:tree)(f:forest)(P f)->(P (consf t f))) -% ->(f:forest)(P f) -% := [C,x,g,n]Match n with x g end. -%\end{coq_example} - -\subsubsection{Mutual induction} - -The principles of mutual induction can be automatically generated -using the {\tt Scheme} command described in Section~\ref{Scheme}. - -\section{Co-inductive types} -The implementation contains also co-inductive definitions, which are -types inhabited by infinite objects. -More information on co-inductive definitions can be found -in~\cite{Gimenez95b,Gim98,GimCas05}. -%They are described in Chapter~\ref{Co-inductives}. - -\section[\iCIC : the Calculus of Inductive Construction with - impredicative \Set]{\iCIC : the Calculus of Inductive Construction with - impredicative \Set\label{impredicativity}} - -\Coq{} can be used as a type-checker for \iCIC{}, the original -Calculus of Inductive Constructions with an impredicative sort \Set{} -by using the compiler option \texttt{-impredicative-set}. - -For example, using the ordinary \texttt{coqtop} command, the following -is rejected. -\begin{coq_eval} -(** This example should fail ******************************* - Error: The term forall X:Set, X -> X has type Type - while it is expected to have type Set -***) -\end{coq_eval} -\begin{coq_example} -Definition id: Set := forall X:Set,X->X. -\end{coq_example} -while it will type-check, if one use instead the \texttt{coqtop - -impredicative-set} command. - -The major change in the theory concerns the rule for product formation -in the sort \Set, which is extended to a domain in any sort~: -\begin{description} -\item [Prod] \index{Typing rules!Prod (impredicative Set)} -\inference{\frac{\WTEG{T}{s}~~~~s \in \Sort~~~~~~ - \WTE{\Gamma::(x:T)}{U}{\Set}} - { \WTEG{\forall~x:T,U}{\Set}}} -\end{description} -This extension has consequences on the inductive definitions which are -allowed. -In the impredicative system, one can build so-called {\em large inductive - definitions} like the example of second-order existential -quantifier (\texttt{exSet}). - -There should be restrictions on the eliminations which can be -performed on such definitions. The eliminations rules in the -impredicative system for sort \Set{} become~: -\begin{description} -\item[\Set] \inference{\frac{s \in - \{\Prop, \Set\}}{\compat{I:\Set}{I\ra s}} -~~~~\frac{I \mbox{~is a small inductive definition}~~~~s \in - \{\Type(i)\}} - {\compat{I:\Set}{I\ra s}}} -\end{description} - - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: - - diff --git a/doc/refman/RefMan-coi.tex b/doc/refman/RefMan-coi.tex deleted file mode 100644 index e609fce8..00000000 --- a/doc/refman/RefMan-coi.tex +++ /dev/null @@ -1,405 +0,0 @@ -%\documentstyle[11pt,../tools/coq-tex/coq]{article} -%\input{title} - -%\include{macros} -%\begin{document} - -%\coverpage{Co-inductive types in Coq}{Eduardo Gim\'enez} -\chapter[Co-inductive types in Coq]{Co-inductive types in Coq\label{Co-inductives}} - -%\begin{abstract} -{\it Co-inductive} types are types whose elements may not be well-founded. -A formal study of the Calculus of Constructions extended by -co-inductive types has been presented -in \cite{Gim94}. It is based on the notion of -{\it guarded definitions} introduced by Th. Coquand -in \cite{Coquand93}. The implementation is by E. Gim\'enez. -%\end{abstract} - -\section{A short introduction to co-inductive types} - -We assume that the reader is rather familiar with inductive types. -These types are characterized by their {\it constructors}, which can be -regarded as the basic methods from which the elements -of the type can be built up. It is implicit in the definition -of an inductive type that -its elements are the result of a {\it finite} number of -applications of its constructors. Co-inductive types arise from -relaxing this implicit condition and admitting that an element of -the type can also be introduced by a non-ending (but effective) process -of construction defined in terms of the basic methods which characterize the -type. So we could think in the wider notion of types defined by -constructors (let us call them {\it recursive types}) and classify -them into inductive and co-inductive ones, depending on whether or not -we consider non-ending methods as admissible for constructing elements -of the type. Note that in both cases we obtain a ``closed type'', all whose -elements are pre-determined in advance (by the constructors). When we -know that $a$ is an element of a recursive type (no matter if it is -inductive or co-inductive) what we know is that it is the result of applying -one of the basic forms of construction allowed for the type. -So the more primitive way of eliminating an element of a recursive type is -by case analysis, i.e. by considering through which constructor it could have -been introduced. In the case of inductive sets, the additional knowledge that -constructors can be applied only a finite number of times provide -us with a more powerful way of eliminating their elements, say, -the principle of -induction. This principle is obviously not valid for co-inductive types, -since it is just the expression of this extra knowledge attached to inductive -types. - - -An example of a co-inductive type is the type of infinite sequences formed with -elements of type $A$, or streams for shorter. In Coq, -it can be introduced using the \verb!CoInductive! command~: -\begin{coq_example} -CoInductive Stream (A:Set) : Set := - cons : A -> Stream A -> Stream A. -\end{coq_example} - -The syntax of this command is the same as the -command \verb!Inductive! (cf. section -\ref{gal_Inductive_Definitions}). -Definition of mutually co-inductive types are possible. - -As was already said, there are not principles of -induction for co-inductive sets, the only way of eliminating these -elements is by case analysis. -In the example of streams, this elimination principle can be -used for instance to define the well known -destructors on streams $\hd : (\Str\;A)\rightarrow A$ -and $\tl: (\Str\;A)\rightarrow (\Str\;A)$ : -\begin{coq_example} -Section Destructors. -Variable A : Set. -Definition hd (x:Stream A) := match x with - | cons a s => a - end. -Definition tl (x:Stream A) := match x with - | cons a s => s - end. -\end{coq_example} -\begin{coq_example*} -End Destructors. -\end{coq_example*} - -\subsection{Non-ending methods of construction} - -At this point the reader should have realized that we have left unexplained -what is a ``non-ending but effective process of -construction'' of a stream. In the widest sense, a -method is a non-ending process of construction if we can eliminate the -stream that it introduces, in other words, if we can reduce -any case analysis on it. In this sense, the following ways of -introducing a stream are not acceptable. -\begin{center} -$\zeros = (\cons\;\nat\;\nO\;(\tl\;\zeros))\;\;:\;\;(\Str\;\nat)$\\[12pt] -$\filter\;(\cons\;A\;a\;s) = \si\;\;(P\;a)\;\;\alors\;\;(\cons\;A\;a\;(\filter\;s))\;\;\sinon\;\;(\filter\;s) )\;\;:\;\;(\Str\;A)$ -\end{center} -\noindent The former it is not valid since the stream can not be eliminated -to obtain its tail. In the latter, a stream is naively defined as -the result of erasing from another (arbitrary) stream -all the elements which does not verify a certain property $P$. This -does not always makes sense, for example it does not when all the elements -of the stream verify $P$, in which case we can not eliminate it to -obtain its head\footnote{Note that there is no notion of ``the empty -stream'', a stream is always infinite and build by a \texttt{cons}.}. -On the contrary, the following definitions are acceptable methods for -constructing a stream~: -\begin{center} -$\zeros = (\cons\;\nat\;\nO\;\zeros)\;\;:\;\;(\Str\;\nat)\;\;\;(*)$\\[12pt] -$(\from\;n) = (\cons\;\nat\;n\;(\from\;(\nS\;n)))\;:\;(\Str\;\nat)$\\[12pt] -$\alter = (\cons\;\bool\;\true\;(\cons\;\bool\;\false\;\alter))\;:\;(\Str\;\bool)$. -\end{center} -\noindent The first one introduces a stream containing all the natural numbers -greater than a given one, and the second the stream which infinitely -alternates the booleans true and false. - -In general it is not evident to realise when a definition can -be accepted or not. However, there is a class of definitions that -can be easily recognised as being valid : those -where (1) all the recursive calls of the method are done -after having explicitly mentioned which is (at least) the first constructor -to start building the element, and (2) no other -functions apart from constructors are applied to recursive calls. -This class of definitions is usually -referred as {\it guarded-by-constructors} -definitions \cite{Coquand93,Gim94}. -The methods $\from$ -and $\alter$ are examples of definitions which are guarded by constructors. -The definition of function $\filter$ is not, because there is no -constructor to guard -the recursive call in the {\it else} branch. Neither is the one of -$\zeros$, since there is function applied to the recursive call -which is not a constructor. However, there is a difference between -the definition of $\zeros$ and $\filter$. The former may be seen as a -wrong way of characterising an object which makes sense, and it can -be reformulated in an admissible way using the equation (*). On the contrary, -the definition of -$\filter$ can not be patched, since is the idea itself -of traversing an infinite -construction searching for an element whose existence is not ensured -which does not make sense. - - - -Guarded definitions are exactly the kind of non-ending process of -construction which are allowed in Coq. The way of introducing -a guarded definition in Coq is using the special command -{\tt CoFixpoint}. This command verifies that the definition introduces an -element of a co-inductive type, and checks if it is guarded by constructors. -If we try to -introduce the definitions above, $\from$ and $\alter$ will be accepted, -while $\zeros$ and $\filter$ will be rejected giving some explanation -about why. -\begin{coq_example} -CoFixpoint zeros : Stream nat := cons nat 0%N (tl nat zeros). -CoFixpoint zeros : Stream nat := cons nat 0%N zeros. -CoFixpoint from (n:nat) : Stream nat := cons nat n (from (S n)). -\end{coq_example} - -As in the \verb!Fixpoint! command (see Section~\ref{Fixpoint}), it is possible -to introduce a block of mutually dependent methods. The general syntax -for this case is : - -{\tt CoFixpoint {\ident$_1$} :{\term$_1$} := {\term$_1'$}\\ - with\\ - \mbox{}\hspace{0.1cm} $\ldots$ \\ - with {\ident$_m$} : {\term$_m$} := {\term$_m'$}} - - -\subsection{Non-ending methods and reduction} - -The elimination of a stream introduced by a \verb!CoFixpoint! definition -is done lazily, i.e. its definition can be expanded only when it occurs -at the head of an application which is the argument of a case expression. -Isolately it is considered as a canonical expression which -is completely evaluated. We can test this using the command \verb!compute! -to calculate the normal forms of some terms~: -\begin{coq_example} -Eval compute in (from 0). -Eval compute in (hd nat (from 0)). -Eval compute in (tl nat (from 0)). -\end{coq_example} -\noindent Thus, the equality -$(\from\;n)\equiv(\cons\;\nat\;n\;(\from \; (\S\;n)))$ -does not hold as definitional one. Nevertheless, it can be proved -as a propositional equality, in the sense of Leibniz's equality. -The version {\it à la Leibniz} of the equality above follows from -a general lemma stating that eliminating and then re-introducing a stream -yields the same stream. -\begin{coq_example} -Lemma unfold_Stream : - forall x:Stream nat, x = match x with - | cons a s => cons nat a s - end. -\end{coq_example} - -\noindent The proof is immediate from the analysis of -the possible cases for $x$, which transforms -the equality in a trivial one. - -\begin{coq_example} -olddestruct x. -trivial. -\end{coq_example} -\begin{coq_eval} -Qed. -\end{coq_eval} -The application of this lemma to $(\from\;n)$ puts this -constant at the head of an application which is an argument -of a case analysis, forcing its expansion. -We can test the type of this application using Coq's command \verb!Check!, -which infers the type of a given term. -\begin{coq_example} -Check (fun n:nat => unfold_Stream (from n)). -\end{coq_example} - \noindent Actually, The elimination of $(\from\;n)$ has actually -no effect, because it is followed by a re-introduction, -so the type of this application is in fact -definitionally equal to the -desired proposition. We can test this computing -the normal form of the application above to see its type. -\begin{coq_example} -Transparent unfold_Stream. -Eval compute in (fun n:nat => unfold_Stream (from n)). -\end{coq_example} - - -\section{Reasoning about infinite objects} - -At a first sight, it might seem that -case analysis does not provide a very powerful way -of reasoning about infinite objects. In fact, what we can prove about -an infinite object using -only case analysis is just what we can prove unfolding its method -of construction a finite number of times, which is not always -enough. Consider for example the following method for appending -two streams~: -\begin{coq_example} -Variable A : Set. -CoFixpoint conc (s1 s2:Stream A) : Stream A := - cons A (hd A s1) (conc (tl A s1) s2). -\end{coq_example} - -Informally speaking, we expect that for all pair of streams $s_1$ and $s_2$, -$(\conc\;s_1\;s_2)$ -defines the ``the same'' stream as $s_1$, -in the sense that if we would be able to unfold the definition -``up to the infinite'', we would obtain definitionally equal normal forms. -However, no finite unfolding of the definitions gives definitionally -equal terms. Their equality can not be proved just using case analysis. - - -The weakness of the elimination principle proposed for infinite objects -contrast with the power provided by the inductive -elimination principles, but it is not actually surprising. It just means -that we can not expect to prove very interesting things about infinite -objects doing finite proofs. To take advantage of infinite objects we -have to consider infinite proofs as well. For example, -if we want to catch up the equality between $(\conc\;s_1\;s_2)$ and -$s_1$ we have to introduce first the type of the infinite proofs -of equality between streams. This is a -co-inductive type, whose elements are build up from a -unique constructor, requiring a proof of the equality of the -heads of the streams, and an (infinite) proof of the equality -of their tails. - -\begin{coq_example} -CoInductive EqSt : Stream A -> Stream A -> Prop := - eqst : - forall s1 s2:Stream A, - hd A s1 = hd A s2 -> EqSt (tl A s1) (tl A s2) -> EqSt s1 s2. -\end{coq_example} -\noindent Now the equality of both streams can be proved introducing -an infinite object of type - -\noindent $(\EqSt\;s_1\;(\conc\;s_1\;s_2))$ by a \verb!CoFixpoint! -definition. -\begin{coq_example} -CoFixpoint eqproof (s1 s2:Stream A) : EqSt s1 (conc s1 s2) := - eqst s1 (conc s1 s2) (refl_equal (hd A (conc s1 s2))) - (eqproof (tl A s1) s2). -\end{coq_example} -\begin{coq_eval} -Reset eqproof. -\end{coq_eval} -\noindent Instead of giving an explicit definition, -we can use the proof editor of Coq to help us in -the construction of the proof. -A tactic \verb!Cofix! allows to place a \verb!CoFixpoint! definition -inside a proof. -This tactic introduces a variable in the context which has -the same type as the current goal, and its application stands -for a recursive call in the construction of the proof. If no name is -specified for this variable, the name of the lemma is chosen by -default. -%\pagebreak - -\begin{coq_example} -Lemma eqproof : forall s1 s2:Stream A, EqSt s1 (conc s1 s2). -cofix. -\end{coq_example} - -\noindent An easy (and wrong!) way of finishing the proof is just to apply the -variable \verb!eqproof!, which has the same type as the goal. - -\begin{coq_example} -intros. -apply eqproof. -\end{coq_example} - -\noindent The ``proof'' constructed in this way -would correspond to the \verb!CoFixpoint! definition -\begin{coq_example*} -CoFixpoint eqproof : forall s1 s2:Stream A, EqSt s1 (conc s1 s2) := - eqproof. -\end{coq_example*} - -\noindent which is obviously non-guarded. This means that -we can use the proof editor to -define a method of construction which does not make sense. However, -the system will never accept to include it as part of the theory, -because the guard condition is always verified before saving the proof. - -\begin{coq_example} -Qed. -\end{coq_example} - -\noindent Thus, the user must be careful in the -construction of infinite proofs -with the tactic \verb!Cofix!. Remark that once it has been used -the application of tactics performing automatic proof search in -the environment (like for example \verb!Auto!) -could introduce unguarded recursive calls in the proof. -The command \verb!Guarded! allows to verify -if the guarded condition has been violated -during the construction of the proof. This command can be -applied even if the proof term is not complete. - - - -\begin{coq_example} -Restart. -cofix. -auto. -Guarded. -Undo. -Guarded. -\end{coq_example} - -\noindent To finish with this example, let us restart from the -beginning and show how to construct an admissible proof~: - -\begin{coq_example} -Restart. - cofix. -\end{coq_example} - -%\pagebreak - -\begin{coq_example} -intros. -apply eqst. -trivial. -simpl. -apply eqproof. -Qed. -\end{coq_example} - - -\section{Experiments with co-inductive types} - -Some examples involving co-inductive types are available with -the distributed system, in the theories library and in the contributions -of the Lyon site. Here we present a short description of their contents~: -\begin{itemize} -\item Directory \verb!theories/LISTS! : - \begin{itemize} - \item File \verb!Streams.v! : The type of streams and the -extensional equality between streams. - \end{itemize} - -\item Directory \verb!contrib/Lyon/COINDUCTIVES! : - \begin{itemize} - \item Directory \verb!ARITH! : An arithmetic where $\infty$ -is an explicit constant of the language instead of a metatheoretical notion. - \item Directory \verb!STREAM! : - \begin{itemize} - \item File \verb!Examples! : -Several examples of guarded definitions, as well as -of frequent errors in the introduction of a stream. A different -way of defining the extensional equality of two streams, -and the proofs showing that it is equivalent to the one in \verb!theories!. - \item File \verb!Alter.v! : An example showing how -an infinite proof introduced by a guarded definition can be also described -using an operator of co-recursion \cite{Gimenez95b}. - \end{itemize} -\item Directory \verb!PROCESSES! : A proof of the alternating -bit protocol based on Pra\-sad's Calculus of Broadcasting Systems \cite{Prasad93}, -and the verification of an interpreter for this calculus. -See \cite{Gimenez95b} for a complete description about this development. - \end{itemize} -\end{itemize} - -%\end{document} - diff --git a/doc/refman/RefMan-com.tex b/doc/refman/RefMan-com.tex deleted file mode 100644 index bcc68c78..00000000 --- a/doc/refman/RefMan-com.tex +++ /dev/null @@ -1,358 +0,0 @@ -\chapter[The \Coq~commands]{The \Coq~commands\label{Addoc-coqc} -\ttindex{coqtop} -\ttindex{coqc}} - -There are three \Coq~commands: -\begin{itemize} -\item {\tt coqtop}: The \Coq\ toplevel (interactive mode) ; -\item {\tt coqc} : The \Coq\ compiler (batch compilation). -\item {\tt coqchk} : The \Coq\ checker (validation of compiled libraries) -\end{itemize} -The options are (basically) the same for the first two commands, and -roughly described below. You can also look at the \verb!man! pages of -\verb!coqtop! and \verb!coqc! for more details. - - -\section{Interactive use ({\tt coqtop})} - -In the interactive mode, also known as the \Coq~toplevel, the user can -develop his theories and proofs step by step. The \Coq~toplevel is -run by the command {\tt coqtop}. - -\index{byte-code} -\index{native code} -\label{binary-images} -They are two different binary images of \Coq: the byte-code one and -the native-code one (if Objective Caml provides a native-code compiler -for your platform, which is supposed in the following). When invoking -\verb!coqtop! or \verb!coqc!, the native-code version of the system is -used. The command-line options \verb!-byte! and \verb!-opt! explicitly -select the byte-code and the native-code versions, respectively. - -The byte-code toplevel is based on a Caml -toplevel (to allow the dynamic link of tactics). You can switch to -the Caml toplevel with the command \verb!Drop.!, and come back to the -\Coq~toplevel with the command \verb!Toplevel.loop();;!. - -\section{Batch compilation ({\tt coqc})} -The {\tt coqc} command takes a name {\em file} as argument. Then it -looks for a vernacular file named {\em file}{\tt .v}, and tries to -compile it into a {\em file}{\tt .vo} file (See ~\ref{compiled}). - -\Warning The name {\em file} must be a regular {\Coq} identifier, as -defined in the Section~\ref{lexical}. It -must only contain letters, digits or underscores -(\_). Thus it can be \verb+/bar/foo/toto.v+ but cannot be -\verb+/bar/foo/to-to.v+ . - -Notice that the \verb!-byte! and \verb!-opt! options are still -available with \verb!coqc! and allow you to select the byte-code or -native-code versions of the system. - -\section[Customization]{Customization at launch time} - -\subsection{By resource file\index{Resource file}} - -When \Coq\ is launched, with either {\tt coqtop} or {\tt coqc}, the -resource file \verb:$XDG_CONFIG_HOME/coq/coqrc.xxx: is loaded, where -\verb:$XDG_CONFIG_HOME: is the configuration directory of the user (by -default its home directory \verb!/.config! and \verb:xxx: is the version -number (e.g. 8.3). If this file is not found, then the file -\verb:$XDG_CONFIG_HOME/coqrc: is searched. You can also specify an -arbitrary name for the resource file (see option \verb:-init-file: -below). - - -This file may contain, for instance, \verb:Add LoadPath: commands to add -directories to the load path of \Coq. -It is possible to skip the loading of the resource file with the -option \verb:-q:. - -\section{By environment variables\label{EnvVariables} -\index{Environment variables}\label{envars}} - -Load path can be specified to the \Coq\ system by setting up -\verb:$COQPATH: environment variable. It is a list of directories separated by \verb|:| -(\verb|;| on windows). - -\Coq will also honour \verb:$XDG_DATA_HOME: and \verb:$XDG_DATA_DIRS: (see -\url{http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html}). -\Coq adds \verb:${XDG_DATA_HOME}/coq: and \verb:${XDG_DATA_DIRS}/coq: to its -search path. - -\subsection{By command line options\index{Options of the command line} -\label{vmoption} -\label{coqoptions}} - -The following command-line options are recognized by the commands {\tt - coqc} and {\tt coqtop}, unless stated otherwise: - -\begin{description} -\item[{\tt -I} {\em directory}, {\tt -include} {\em directory}[ {\tt -as} {\em dirpath}]]\ - -Add physical path {\em directory} to the list of directories where to look for a -file and bind it to the empty logical directory/the logical directory {\em - dirpath}. The sub-directory structure of {\em directory} is recursively available -from {\Coq} using absolute names (extending the {\dirpath} prefix) (see -Section~\ref{LongNames}). - - \SeeAlso {\tt Add LoadPath} in Section~\ref{AddLoadPath} and logical - paths in Section~\ref{Libraries}. - -\item[{\tt -R} {\em directory} {\dirpath}, {\tt -R} {\em directory} [{\tt -as} {\dirpath}]]\ - - Do as {\tt -I} {\em directory} {\tt -as} {\dirpath} but make the - sub-directory structure of {\em directory} recursively visible so - that the recursive contents of physical {\em directory} is available - from {\Coq} using short or partially qualified names. - - \SeeAlso {\tt Add Rec LoadPath} in Section~\ref{AddRecLoadPath} and logical - paths in Section~\ref{Libraries}. - -\item[{\tt -top} {\dirpath}, {\tt -notop}]\ - - This sets the toplevel module name to {\dirpath}/the empty logical path instead - of {\tt Top}. Not valid for {\tt coqc}. - -\item[{\tt -exclude-dir} {\em subdirectory}]\ - - This tells to exclude any sub-directory named {\em subdirectory} - while processing option {\tt -R}. Without this option only the - conventional version control management sub-directories named {\tt - CVS} and {\tt \_darcs} are excluded. - -\item[{\tt -is} {\em file}, {\tt -inputstate} {\em file}, {\tt -outputstate} {\em file}]\ - - Load at the beginning/Dump at the end a \Coq{} state from the file {\em file}. - - Incompatible with some not purely functional aspect of the code - -\item[{\tt -nois}]\ - - Cause \Coq~to begin with an empty state. - -\item[{\tt -init-file} {\em file}, {\tt -q}]\ - - Take {\em file} as the resource file. / - Cause \Coq~not to load the resource file. - -\item[{\tt -load-ml-source} {\em file}]\ - - Load the Caml source file {\em file}. - -\item[{\tt -load-ml-object} {\em file}]\ - - Load the Caml object file {\em file}. - -\item[{\tt -l[v]} {\em file}, {\tt -load-vernac-source[-verbose]} {\em file}]\ - - Load \Coq~file {\em file}{\tt .v} optionally with copy it contents on the - standard input. - -\item[{\tt -load-vernac-object} {\em file}]\ - - Load \Coq~compiled file {\em file}{\tt .vo} - -\item[{\tt -require} {\em file}]\ - - Load \Coq~compiled file {\em file}{\tt .vo} and import it ({\tt - Require} {\em file}). - -\item[{\tt -compile} {\em file},{\tt -compile-verbose} {\em file}, {\tt -batch}]\ - - {\tt coqtop} options only used internally by {\tt coqc}. - - This compiles file {\em file}{\tt .v} into {\em file}{\tt .vo} without/with a - copy of the contents of the file on standard input. This option implies options - {\tt -batch} (exit just after arguments parsing). It is only - available for {\tt coqtop}. - -\item[{\tt -verbose}]\ - - This option is only for {\tt coqc}. It tells to compile the file with - a copy of its contents on standard input. - -%Mostly unused in the code -%\item[{\tt -debug}]\ -% -% Switch on the debug flag. - -\item[{\tt -xml}]\ - - This option is for use with {\tt coqc}. It tells \Coq\ to export on - the standard output the content of the compiled file into XML format. - -\item[{\tt -with-geoproof} (yes|no)]\ - - Activate or not special functions for Geoproof within Coqide (default is yes). - -\item[{\tt -beautify}]\ - - While compiling {\em file}, pretty prints each command just after having parsing - it in {\em file}{\tt .beautified} in order to get old-fashion - syntax/definitions/notations. - -\item[{\tt -quality}] - - Improve the legibility of the proof terms produced by some tactics. - -\item[{\tt -emacs}, {\tt -ide-slave}]\ - - Start a special main loop to communicate with ide. - -\item[{\tt -impredicative-set}]\ - - Change the logical theory of {\Coq} by declaring the sort {\tt Set} - impredicative; warning: this is known to be inconsistent with - some standard axioms of classical mathematics such as the functional - axiom of choice or the principle of description - -\item[{\tt -compat} {\em version}] \null - - Attempt to maintain some of the incompatible changes in their {\em version} - behavior. - -\item[{\tt -dump-glob} {\em file}]\ - - This dumps references for global names in file {\em file} - (to be used by coqdoc, see~\ref{coqdoc}) - -\item[{\tt -dont-load-proofs}]\ - - Warning: this is an unsafe mode. - Instead of loading in memory the proofs of opaque theorems, they are - treated as axioms. This results in smaller memory requirement and - faster compilation, but the behavior of the system might slightly change - (for instance during module subtyping), and some features won't be - available (for example {\tt Print Assumptions}). - -\item[{\tt -lazy-load-proofs}]\ - - This is the default behavior. Proofs of opaque theorems aren't - loaded immediately in memory, but only when necessary, for instance - during some module subtyping or {\tt Print Assumptions}. This should be - almost as fast and efficient as {\tt -dont-load-proofs}, with none - of its drawbacks. - -\item[{\tt -force-load-proofs}]\ - - Proofs of opaque theorems are loaded in memory as soon as the - corresponding {\tt Require} is done. This used to be Coq's default behavior. - -\item[{\tt -no-hash-consing}] \null - -\item[{\tt -vm}]\ - - This activates the use of the bytecode-based conversion algorithm - for the current session (see Section~\ref{SetVirtualMachine}). - -\item[{\tt -image} {\em file}]\ - - This option sets the binary image to be used by {\tt coqc} to be {\em file} - instead of the standard one. Not of general use. - -\item[{\tt -bindir} {\em directory}]\ - - Set for {\tt coqc} the directory containing \Coq\ binaries. - It is equivalent to do \texttt{export COQBIN=}{\em directory} - before launching {\tt coqc}. - -\item[{\tt -where}, {\tt -config}, {\tt -filteropts}]\ - - Print the \Coq's standard library location or \Coq's binaries, dependencies, - libraries locations or the list of command line arguments that {\tt coqtop} has - recognize as options and exit. - -\item[{\tt -v}]\ - - Print the \Coq's version and exit. - -\item[{\tt -h}, {\tt --help}]\ - - Print a short usage and exit. - -\end{description} - - -\section{Compiled libraries checker ({\tt coqchk})} - -The {\tt coqchk} command takes a list of library paths as argument. -The corresponding compiled libraries (.vo files) are searched in the -path, recursively processing the libraries they depend on. The content -of all these libraries is then type-checked. The effect of {\tt - coqchk} is only to return with normal exit code in case of success, -and with positive exit code if an error has been found. Error messages -are not deemed to help the user understand what is wrong. In the -current version, it does not modify the compiled libraries to mark -them as successfully checked. - -Note that non-logical information is not checked. By logical -information, we mean the type and optional body associated to names. -It excludes for instance anything related to the concrete syntax of -objects (customized syntax rules, association between short and long -names), implicit arguments, etc. - -This tool can be used for several purposes. One is to check that a -compiled library provided by a third-party has not been forged and -that loading it cannot introduce inconsistencies.\footnote{Ill-formed - non-logical information might for instance bind {\tt - Coq.Init.Logic.True} to short name {\tt False}, so apparently {\tt - False} is inhabited, but using fully qualified names, {\tt - Coq.Init.Logic.False} will always refer to the absurd proposition, - what we guarantee is that there is no proof of this latter - constant.} -Another point is to get an even higher level of security. Since {\tt - coqtop} can be extended with custom tactics, possibly ill-typed -code, it cannot be guaranteed that the produced compiled libraries are -correct. {\tt coqchk} is a standalone verifier, and thus it cannot be -tainted by such malicious code. - -Command-line options {\tt -I}, {\tt -R}, {\tt -where} and -{\tt -impredicative-set} are supported by {\tt coqchk} and have the -same meaning as for {\tt coqtop}. Extra options are: -\begin{description} -\item[{\tt -norec} $module$]\ - - Check $module$ but do not force check of its dependencies. -\item[{\tt -admit} $module$] \ - - Do not check $module$ and any of its dependencies, unless - explicitly required. -\item[{\tt -o}]\ - - At exit, print a summary about the context. List the names of all - assumptions and variables (constants without body). -\item[{\tt -silent}]\ - - Do not write progress information in standard output. -\end{description} - -Environment variable \verb:$COQLIB: can be set to override the -location of the standard library. - -The algorithm for deciding which modules are checked or admitted is -the following: assuming that {\tt coqchk} is called with argument $M$, -option {\tt -norec} $N$, and {\tt -admit} $A$. Let us write -$\overline{S}$ the set of reflexive transitive dependencies of set -$S$. Then: -\begin{itemize} -\item Modules $C=\overline{M}\backslash\overline{A}\cup M\cup N$ are - loaded and type-checked before being added to the context. -\item And $\overline{M}\cup\overline{N}\backslash C$ is the set of - modules that are loaded and added to the context without - type-checking. Basic integrity checks (checksums) are nonetheless - performed. -\end{itemize} - -As a rule of thumb, the {\tt -admit} can be used to tell that some -libraries have already been checked. So {\tt coqchk A B} can be split -in {\tt coqchk A \&\& coqchk B -admit A} without type-checking any -definition twice. Of course, the latter is slightly slower since it -makes more disk access. It is also less secure since an attacker might -have replaced the compiled library $A$ after it has been read by the -first command, but before it has been read by the second command. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-decl.tex b/doc/refman/RefMan-decl.tex deleted file mode 100644 index ba8a5ac6..00000000 --- a/doc/refman/RefMan-decl.tex +++ /dev/null @@ -1,808 +0,0 @@ -\newcommand{\DPL}{Mathematical Proof Language} - -\chapter{The \DPL\label{DPL}\index{DPL}} - -\section{Introduction} - -\subsection{Foreword} - -In this chapter, we describe an alternative language that may be used -to do proofs using the Coq proof assistant. The language described -here uses the same objects (proof-terms) as Coq, but it differs in the -way proofs are described. This language was created by Pierre -Corbineau at the Radboud University of Nijmegen, The Netherlands. - -The intent is to provide language where proofs are less formalism-{} -and implementation-{}sensitive, and in the process to ease a bit the -learning of computer-{}aided proof verification. - -\subsection{What is a declarative proof ?{}} -In vanilla Coq, proofs are written in the imperative style: the user -issues commands that transform a so called proof state until it -reaches a state where the proof is completed. In the process, the user -mostly described the transitions of this system rather than the -intermediate states it goes through. - -The purpose of a declarative proof language is to take the opposite -approach where intermediate states are always given by the user, but -the transitions of the system are automated as much as possible. - -\subsection{Well-formedness and Completeness} - -The \DPL{} introduces a notion of well-formed -proofs which are weaker than correct (and complete) -proofs. Well-formed proofs are actually proof script where only the -reasoning is incomplete. All the other aspects of the proof are -correct: -\begin{itemize} -\item All objects referred to exist where they are used -\item Conclusion steps actually prove something related to the - conclusion of the theorem (the {\tt thesis}. -\item Hypothesis introduction steps are done when the goal is an - implication with a corresponding assumption. -\item Sub-objects in the elimination steps for tuples are correct - sub-objects of the tuple being decomposed. -\item Patterns in case analysis are type-correct, and induction is well guarded. -\end{itemize} - -\subsection{Note for tactics users} - -This section explain what differences the casual Coq user will -experience using the \DPL . -\begin{enumerate} -\item The focusing mechanism is constrained so that only one goal at - a time is visible. -\item Giving a statement that Coq cannot prove does not produce an - error, only a warning: this allows to go on with the proof and fill - the gap later. -\item Tactics can still be used for justifications and after -{\texttt{escape}}. -\end{enumerate} - -\subsection{Compatibility} - -The \DPL{} is available for all Coq interfaces that use -text-based interaction, including: -\begin{itemize} -\item the command-{}line toplevel {\texttt{coqtop}} -\item the native GUI {\texttt{coqide}} -\item the Proof-{}General emacs mode -\item Cezary Kaliszyk'{}s Web interface -\item L.E. Mamane'{}s tmEgg TeXmacs plugin -\end{itemize} - -However it is not supported by structured editors such as PCoq. - - - -\section{Syntax} - -Here is a complete formal description of the syntax for DPL commands. - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl@{\qquad}r} - instruction & ::= & {\tt proof} \\ - & $|$ & {\tt assume } \nelist{statement}{\tt and} - \zeroone{[{\tt and } \{{\tt we have}\}-clause]} \\ - & $|$ & \{{\tt let},{\tt be}\}-clause \\ - & $|$ & \{{\tt given}\}-clause \\ - & $|$ & \{{\tt consider}\}-clause {\tt from} term \\ - & $|$ & ({\tt have} $|$ {\tt then} $|$ {\tt thus} $|$ {\tt hence}]) statement - justification \\ - & $|$ & \zeroone{\tt thus} ($\sim${\tt =}|{\tt =}$\sim$) \zeroone{\ident{\tt :}}\term\relax justification \\ & $|$ & {\tt suffices} (\{{\tt to have}\}-clause $|$ - \nelist{statement}{\tt and } \zeroone{{\tt and} \{{\tt to have}\}-clause})\\ - & & {\tt to show} statement justification \\ - & $|$ & ({\tt claim} $|$ {\tt focus on}) statement \\ - & $|$ & {\tt take} \term \\ - & $|$ & {\tt define} \ident \sequence{var}{,} {\tt as} \term\\ - & $|$ & {\tt reconsider} (\ident $|$ {\tt thesis}) {\tt as} type\\ - & $|$ & - {\tt per} ({\tt cases}$|${\tt induction}) {\tt on} \term \\ - & $|$ & {\tt per cases of} type justification \\ - & $|$ & {\tt suppose} \zeroone{\nelist{ident}{,} {\tt and}}~ - {\tt it is }pattern\\ - & & \zeroone{{\tt such that} \nelist{statement} {\tt and} \zeroone{{\tt and} \{{\tt we have}\}-clause}} \\ - & $|$ & {\tt end} - ({\tt proof} $|$ {\tt claim} $|$ {\tt focus} $|$ {\tt cases} $|$ {\tt induction}) \\ - & $|$ & {\tt escape} \\ - & $|$ & {\tt return} \medskip \\ - \{$\alpha,\beta$\}-clause & ::=& $\alpha$ \nelist{var}{,}~ - $\beta$ {\tt such that} \nelist{statement}{\tt and } \\ - & & \zeroone{{\tt and } \{$\alpha,\beta$\}-clause} \medskip\\ - statement & ::= & \zeroone{\ident {\tt :}} type \\ - & $|$ & {\tt thesis} \\ - & $|$ & {\tt thesis for} \ident \medskip \\ - var & ::= & \ident \zeroone{{\tt :} type} \medskip \\ - justification & ::= & - \zeroone{{\tt by} ({\tt *} | \nelist{\term}{,})} - ~\zeroone{{\tt using} tactic} \\ -\end{tabular} -\end{centerframe} -\caption{Syntax of mathematical proof commands} -\end{figure} - -The lexical conventions used here follows those of section \ref{lexical}. - - -Conventions:\begin{itemize} - - \item {\texttt{<{}tactic>{}}} stands for an Coq tactic. - - \end{itemize} - -\subsection{Temporary names} - -In proof commands where an optional name is asked for, omitting the -name will trigger the creation of a fresh temporary name (e.g. for a -hypothesis). Temporary names always start with an undescore '\_' -character (e.g. {\tt \_hyp0}). Temporary names have a lifespan of one -command: they get erased after the next command. They can however be safely in the step after their creation. - -\section{Language description} - -\subsection{Starting and Ending a mathematical proof} - - The standard way to use the \DPL is to first state a {\texttt{Lemma/Theorem/Definition}} and then use the {\texttt{proof}} command to switch the current subgoal to mathematical mode. After the proof is completed, the {\texttt{end proof}} command will close the mathematical proof. If any subgoal remains to be proved, they will be displayed using the usual Coq display. - -\begin{coq_example} -Theorem this_is_trivial: True. -proof. - thus thesis. -end proof. -Qed. -\end{coq_example} - -The {\texttt{proof}} command only applies to \emph{one subgoal}, thus -if several sub-goals are already present, the {\texttt{proof .. end - proof}} sequence has to be used several times. - -\begin{coq_eval} -Theorem T: (True /\ True) /\ True. - split. split. -\end{coq_eval} -\begin{coq_example} - Show. - proof. (* first subgoal *) - thus thesis. - end proof. - trivial. (* second subgoal *) - proof. (* third subgoal *) - thus thesis. - end proof. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -As with all other block structures, the {\texttt{end proof}} command -assumes that your proof is complete. If not, executing it will be -equivalent to admitting that the statement is proved: A warning will -be issued and you will not be able to run the {\texttt{Qed}} -command. Instead, you can run {\texttt{Admitted}} if you wish to start -another theorem and come back -later. - -\begin{coq_example} -Theorem this_is_not_so_trivial: False. -proof. -end proof. (* here a warning is issued *) -Qed. (* fails : the proof in incomplete *) -Admitted. (* Oops! *) -\end{coq_example} -\begin{coq_eval} -Reset this_is_not_so_trivial. -\end{coq_eval} - -\subsection{Switching modes} - -When writing a mathematical proof, you may wish to use procedural -tactics at some point. One way to do so is to write a using-{}phrase -in a deduction step (see section~\ref{justifications}). The other way -is to use an {\texttt{escape...return}} block. - -\begin{coq_eval} -Theorem T: True. -proof. -\end{coq_eval} -\begin{coq_example} - Show. - escape. - auto. - return. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -The return statement expects all subgoals to be closed, otherwise a -warning is issued and the proof cannot be saved anymore. - -It is possible to use the {\texttt{proof}} command inside an -{\texttt{escape...return}} block, thus nesting a mathematical proof -inside a procedural proof inside a mathematical proof ... - -\subsection{Computation steps} - -The {\tt reconsider ... as} command allows to change the type of a hypothesis or of {\tt thesis} to a convertible one. - -\begin{coq_eval} -Theorem T: let a:=false in let b:= true in ( if a then True else False -> if b then True else False). -intros a b. -proof. -assume H:(if a then True else False). -\end{coq_eval} -\begin{coq_example} - Show. - reconsider H as False. - reconsider thesis as True. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - - -\subsection{Deduction steps} - -The most common instruction in a mathematical proof is the deduction step: - it asserts a new statement (a formula/type of the \CIC) and tries to prove it using a user-provided indication : the justification. The asserted statement is then added as a hypothesis to the proof context. - -\begin{coq_eval} -Theorem T: forall x, x=2 -> 2+x=4. -proof. -let x be such that H:(x=2). -\end{coq_eval} -\begin{coq_example} - Show. - have H':(2+x=2+2) by H. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -It is very often the case that the justifications uses the last hypothesis introduced in the context, so the {\tt then} keyword can be used as a shortcut, e.g. if we want to do the same as the last example : - -\begin{coq_eval} -Theorem T: forall x, x=2 -> 2+x=4. -proof. -let x be such that H:(x=2). -\end{coq_eval} -\begin{coq_example} - Show. - then (2+x=2+2). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In this example, you can also see the creation of a temporary name {\tt \_fact}. - -\subsection{Iterated equalities} - -A common proof pattern when doing a chain of deductions, is to do -multiple rewriting steps over the same term, thus proving the -corresponding equalities. The iterated equalities are a syntactic -support for this kind of reasoning: - -\begin{coq_eval} -Theorem T: forall x, x=2 -> x + x = x * x. -proof. -let x be such that H:(x=2). -\end{coq_eval} -\begin{coq_example} - Show. - have (4 = 4). - ~= (2 * 2). - ~= (x * x) by H. - =~ (2 + 2). - =~ H':(x + x) by H. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Notice that here we use temporary names heavily. - -\subsection{Subproofs} - -When an intermediate step in a proof gets too complicated or involves a well contained set of intermediate deductions, it can be useful to insert its proof as a subproof of the current proof. this is done by using the {\tt claim ... end claim} pair of commands. - -\begin{coq_eval} -Theorem T: forall x, x + x = x * x -> x = 0 \/ x = 2. -proof. -let x be such that H:(x + x = x * x). -\end{coq_eval} -\begin{coq_example} -Show. -claim H':((x - 2) * x = 0). -\end{coq_example} - -A few steps later ... - -\begin{coq_example} -thus thesis. -end claim. -\end{coq_example} - -Now the rest of the proof can happen. - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Conclusion steps} - -The commands described above have a conclusion counterpart, where the -new hypothesis is used to refine the conclusion. - -\begin{figure}[b] - \centering -\begin{tabular}{c|c|c|c|c|} - X & \,simple\, & \,with previous step\, & - \,opens sub-proof\, & \,iterated equality\, \\ -\hline -intermediate step & {\tt have} & {\tt then} & - {\tt claim} & {\tt $\sim$=/=$\sim$}\\ -conclusion step & {\tt thus} & {\tt hence} & - {\tt focus on} & {\tt thus $\sim$=/=$\sim$}\\ -\hline -\end{tabular} -\caption{Correspondence between basic forward steps and conclusion steps} -\end{figure} - -Let us begin with simple examples : - -\begin{coq_eval} -Theorem T: forall (A B:Prop), A -> B -> A /\ B. -intros A B HA HB. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -hence B. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In the next example, we have to use {\tt thus} because {\tt HB} is no longer -the last hypothesis. - -\begin{coq_eval} -Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B /\ C. -intros A B C HA HB HC. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -thus B by HB. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -The command fails the refinement process cannot find a place to fit -the object in a proof of the conclusion. - - -\begin{coq_eval} -Theorem T: forall (A B C:Prop), A -> B -> C -> A /\ B. -intros A B C HA HB HC. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -hence C. (* fails *) -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -The refinement process may induce non -reversible choices, e.g. when proving a disjunction it may {\it - choose} one side of the disjunction. - -\begin{coq_eval} -Theorem T: forall (A B:Prop), B -> A \/ B. -intros A B HB. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -hence B. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In this example you can see that the right branch was chosen since {\tt D} remains to be proved. - -\begin{coq_eval} -Theorem T: forall (A B C D:Prop), C -> D -> (A /\ B) \/ (C /\ D). -intros A B C D HC HD. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -thus C by HC. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Now for existential statements, we can use the {\tt take} command to -choose {\tt 2} as an explicit witness of existence. - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. -intros P HP. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -take 2. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -It is also possible to prove the existence directly. - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), P 2 -> exists x,P x. -intros P HP. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -hence (P 2). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Here a more involved example where the choice of {\tt P 2} propagates -the choice of {\tt 2} to another part of the formula. - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop) (R:nat -> nat -> Prop), P 2 -> R 0 2 -> exists x, exists y, P y /\ R x y. -intros P R HP HR. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -thus (P 2) by HP. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Now, an example with the {\tt suffices} command. {\tt suffices} -is a sort of dual for {\tt have}: it allows to replace the conclusion -(or part of it) by a sufficient condition. - -\begin{coq_eval} -Theorem T: forall (A B:Prop) (P:nat -> Prop), (forall x, P x -> B) -> A -> A /\ B. -intros A B P HP HA. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -suffices to have x such that HP':(P x) to show B by HP,HP'. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Finally, an example where {\tt focus} is handy : local assumptions. - -\begin{coq_eval} -Theorem T: forall (A:Prop) (P:nat -> Prop), P 2 -> A -> A /\ (forall x, x = 2 -> P x). -intros A P HP HA. -proof. -\end{coq_eval} -\begin{coq_example} -Show. -focus on (forall x, x = 2 -> P x). -let x be such that (x = 2). -hence thesis by HP. -end focus. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Declaring an Abbreviation} - -In order to shorten long expressions, it is possible to use the {\tt - define ... as ...} command to give a name to recurring expressions. - -\begin{coq_eval} -Theorem T: forall x, x = 0 -> x + x = x * x . -proof. -let x be such that H:(x = 0). -\end{coq_eval} -\begin{coq_example} -Show. -define sqr x as (x * x). -reconsider thesis as (x + x = sqr x). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Introduction steps} - -When the {\tt thesis} consists of a hypothetical formula (implication -or universal quantification (e.g. \verb+A -> B+) , it is possible to -assume the hypothetical part {\tt A} and then prove {\tt B}. In the -\DPL{}, this comes in two syntactic flavors that are semantically -equivalent : {\tt let} and {\tt assume}. Their syntax is designed so that {\tt let} works better for universal quantifiers and {\tt assume} for implications. - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. -proof. -let P:(nat -> Prop). -\end{coq_eval} -\begin{coq_example} -Show. -let x:nat. -assume HP:(P x). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In the {\tt let} variant, the type of the assumed object is optional -provided it can be deduced from the command. The objects introduced by -let can be followed by assumptions using {\tt such that}. - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. -proof. -let P:(nat -> Prop). -\end{coq_eval} -\begin{coq_example} -Show. -let x. (* fails because x's type is not clear *) -let x be such that HP:(P x). (* here x's type is inferred from (P x) *) -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In the {\tt assume } variant, the type of the assumed object is mandatory but the name is optional : - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), forall x, P x -> P x -> P x. -proof. -let P:(nat -> Prop). -let x:nat. -\end{coq_eval} -\begin{coq_example} -Show. -assume (P x). (* temporary name created *) -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -After {\tt such that}, it is also the case : - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop), forall x, P x -> P x. -proof. -let P:(nat -> Prop). -\end{coq_eval} -\begin{coq_example} -Show. -let x be such that (P x). (* temporary name created *) -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Tuple elimination steps} - -In the \CIC, many objects dealt with in simple proofs are tuples : -pairs , records, existentially quantified formulas. These are so -common that the \DPL{} provides a mechanism to extract members of -those tuples, and also objects in tuples within tuples within -tuples... - -\begin{coq_eval} -Theorem T: forall (P:nat -> Prop) (A:Prop), (exists x, (P x /\ A)) -> A. -proof. -let P:(nat -> Prop),A:Prop be such that H:(exists x, P x /\ A) . -\end{coq_eval} -\begin{coq_example} -Show. -consider x such that HP:(P x) and HA:A from H. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Here is an example with pairs: - -\begin{coq_eval} -Theorem T: forall p:(nat * nat)%type, (fst p >= snd p) \/ (fst p < snd p). -proof. -let p:(nat * nat)%type. -\end{coq_eval} -\begin{coq_example} -Show. -consider x:nat,y:nat from p. -reconsider thesis as (x >= y \/ x < y). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -It is sometimes desirable to combine assumption and tuple -decomposition. This can be done using the {\tt given} command. - -\begin{coq_eval} -Theorem T: forall P:(nat -> Prop), (forall n , P n -> P (n - 1)) -> -(exists m, P m) -> P 0. -proof. -let P:(nat -> Prop) be such that HP:(forall n , P n -> P (n - 1)). -\end{coq_eval} -\begin{coq_example} -Show. -given m such that Hm:(P m). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Disjunctive reasoning} - -In some proofs (most of them usually) one has to consider several -cases and prove that the {\tt thesis} holds in all the cases. This is -done by first specifying which object will be subject to case -distinction (usually a disjunction) using {\tt per cases}, and then specifying which case is being proved by using {\tt suppose}. - - -\begin{coq_eval} -Theorem T: forall (A B C:Prop), (A -> C) -> (B -> C) -> (A \/ B) -> C. -proof. -let A:Prop,B:Prop,C:Prop be such that HAC:(A -> C) and HBC:(B -> C). -assume HAB:(A \/ B). -\end{coq_eval} -\begin{coq_example} -per cases on HAB. -suppose A. - hence thesis by HAC. -suppose HB:B. - thus thesis by HB,HBC. -end cases. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -The proof is well formed (but incomplete) even if you type {\tt end - cases} or the next {\tt suppose} before the previous case is proved. - -If the disjunction is derived from a more general principle, e.g. the -excluded middle axiom), it is desirable to just specify which instance -of it is being used : - -\begin{coq_eval} -Section Coq. -\end{coq_eval} -\begin{coq_example} -Hypothesis EM : forall P:Prop, P \/ ~ P. -\end{coq_example} -\begin{coq_eval} -Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. -proof. -let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). -\end{coq_eval} -\begin{coq_example} -per cases of (A \/ ~A) by EM. -suppose (~A). - hence thesis by HNAC. -suppose A. - hence thesis by HAC. -end cases. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Proofs per cases} - -If the case analysis is to be made on a particular object, the script -is very similar: it starts with {\tt per cases on }\emph{object} instead. - -\begin{coq_eval} -Theorem T: forall (A C:Prop), (A -> C) -> (~A -> C) -> C. -proof. -let A:Prop,C:Prop be such that HAC:(A -> C) and HNAC:(~A -> C). -\end{coq_eval} -\begin{coq_example} -per cases on (EM A). -suppose (~A). -\end{coq_example} -\begin{coq_eval} -Abort. -End Coq. -\end{coq_eval} - -If the object on which a case analysis occurs in the statement to be -proved, the command {\tt suppose it is }\emph{pattern} is better -suited than {\tt suppose}. \emph{pattern} may contain nested patterns -with {\tt as} clauses. A detailed description of patterns is to be -found in figure \ref{term-syntax-aux}. here is an example. - -\begin{coq_eval} -Theorem T: forall (A B:Prop) (x:bool), (if x then A else B) -> A \/ B. -proof. -let A:Prop,B:Prop,x:bool. -\end{coq_eval} -\begin{coq_example} -per cases on x. -suppose it is true. - assume A. - hence A. -suppose it is false. - assume B. - hence B. -end cases. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Proofs by induction} - -Proofs by induction are very similar to proofs per cases: they start -with {\tt per induction on }{\tt object} and proceed with {\tt suppose - it is }\emph{pattern}{\tt and }\emph{induction hypothesis}. The -induction hypothesis can be given explicitly or identified by the -sub-object $m$ it refers to using {\tt thesis for }\emph{m}. - -\begin{coq_eval} -Theorem T: forall (n:nat), n + 0 = n. -proof. -let n:nat. -\end{coq_eval} -\begin{coq_example} -per induction on n. -suppose it is 0. - thus (0 + 0 = 0). -suppose it is (S m) and H:thesis for m. - then (S (m + 0) = S m). - thus =~ (S m + 0). -end induction. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection{Justifications}\label{justifications} - - -Intuitively, justifications are hints for the system to understand how -to prove the statements the user types in. In the case of this -language justifications are made of two components: - -Justification objects : {\texttt{by}} followed by a comma-{}separated -list of objects that will be used by a selected tactic to prove the -statement. This defaults to the empty list (the statement should then -be tautological). The * wildcard provides the usual tactics behavior: -use all statements in local context. However, this wildcard should be -avoided since it reduces the robustness of the script. - -Justification tactic : {\texttt{using}} followed by a Coq tactic that -is executed to prove the statement. The default is a solver for -(intuitionistic) first-{}order with equality. - -\section{More details and Formal Semantics} - -I suggest the users looking for more information have a look at the -paper \cite{corbineau08types}. They will find in that paper a formal -semantics of the proof state transition induces by mathematical -commands. diff --git a/doc/refman/RefMan-ext.tex b/doc/refman/RefMan-ext.tex deleted file mode 100644 index 2c4985c1..00000000 --- a/doc/refman/RefMan-ext.tex +++ /dev/null @@ -1,1860 +0,0 @@ -\chapter[Extensions of \Gallina{}]{Extensions of \Gallina{}\label{Gallina-extension}\index{Gallina}} - -{\gallina} is the kernel language of {\Coq}. We describe here extensions of -the Gallina's syntax. - -\section{Record types -\comindex{Record} -\comindex{Inductive} -\comindex{CoInductive} -\label{Record}} - -The \verb+Record+ construction is a macro allowing the definition of -records as is done in many programming languages. Its syntax is -described on Figure~\ref{record-syntax}. In fact, the \verb+Record+ -macro is more general than the usual record types, since it allows -also for ``manifest'' expressions. In this sense, the \verb+Record+ -construction allows to define ``signatures''. - -\begin{figure}[h] -\begin{centerframe} -\begin{tabular}{lcl} -{\sentence} & ++= & {\record}\\ - & & \\ -{\record} & ::= & - {\recordkw} {\ident} \zeroone{\binders} \zeroone{{\tt :} {\sort}} \verb.:=. \\ -&& ~~~~\zeroone{\ident} - \verb!{! \zeroone{\nelist{\field}{;}} \verb!}! \verb:.:\\ - & & \\ -{\recordkw} & ::= & - {\tt Record} $|$ {\tt Inductive} $|$ {\tt CoInductive}\\ - & & \\ -{\field} & ::= & {\name} \zeroone{\binders} : {\type} [ {\tt where} {\it notation} ] \\ - & $|$ & {\name} \zeroone{\binders} {\typecstr} := {\term} -\end{tabular} -\end{centerframe} -\caption{Syntax for the definition of {\tt Record}} -\label{record-syntax} -\end{figure} - -\noindent In the expression - -\smallskip -{\tt Record} {\ident} {\params} \texttt{:} - {\sort} := {\ident$_0$} \verb+{+ - {\ident$_1$} \binders$_1$ \texttt{:} {\term$_1$}; - \dots - {\ident$_n$} \binders$_n$ \texttt{:} {\term$_n$} \verb+}+. -\smallskip - -\noindent the identifier {\ident} is the name of the defined record -and {\sort} is its type. The identifier {\ident$_0$} is the name of -its constructor. If {\ident$_0$} is omitted, the default name {\tt -Build\_{\ident}} is used. If {\sort} is omitted, the default sort is ``{\Type}''. -The identifiers {\ident$_1$}, .., -{\ident$_n$} are the names of fields and {\tt forall} \binders$_1${\tt ,} {\term$_1$}, ..., {\tt forall} \binders$_n${\tt ,} {\term$_n$} -their respective types. Remark that the type of {\ident$_i$} may -depend on the previous {\ident$_j$} (for $j<i$). Thus the order of the -fields is important. Finally, {\params} are the parameters of the -record. - -More generally, a record may have explicitly defined (a.k.a. -manifest) fields. For instance, {\tt Record} {\ident} {\tt [} -{\params} {\tt ]} \texttt{:} {\sort} := \verb+{+ {\ident$_1$} -\texttt{:} {\type$_1$} \verb+;+ {\ident$_2$} \texttt{:=} {\term$_2$} -\verb+;+ {\ident$_3$} \texttt{:} {\type$_3$} \verb+}+ in which case -the correctness of {\type$_3$} may rely on the instance {\term$_2$} of -{\ident$_2$} and {\term$_2$} in turn may depend on {\ident$_1$}. - - -\Example -The set of rational numbers may be defined as: -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Record Rat : Set := mkRat - {sign : bool; - top : nat; - bottom : nat; - Rat_bottom_cond : 0 <> bottom; - Rat_irred_cond : - forall x y z:nat, (x * y) = top /\ (x * z) = bottom -> x = 1}. -\end{coq_example} - -Remark here that the field -\verb+Rat_cond+ depends on the field \verb+bottom+. - -%Let us now see the work done by the {\tt Record} macro. -%First the macro generates an inductive definition -%with just one constructor: -% -%\medskip -%\noindent -%{\tt Inductive {\ident} \zeroone{\binders} : {\sort} := \\ -%\mbox{}\hspace{0.4cm} {\ident$_0$} : forall ({\ident$_1$}:{\term$_1$}) .. -%({\ident$_n$}:{\term$_n$}), {\ident} {\rm\sl params}.} -%\medskip - -Let us now see the work done by the {\tt Record} macro. First the -macro generates an inductive definition with just one constructor: -\begin{quote} -{\tt Inductive {\ident} {\params} :{\sort} :=} \\ -\qquad {\tt - {\ident$_0$} ({\ident$_1$}:{\term$_1$}) .. ({\ident$_n$}:{\term$_n$}).} -\end{quote} -To build an object of type {\ident}, one should provide the -constructor {\ident$_0$} with $n$ terms filling the fields of -the record. - -As an example, let us define the rational $1/2$: -\begin{coq_example*} -Require Import Arith. -Theorem one_two_irred : - forall x y z:nat, x * y = 1 /\ x * z = 2 -> x = 1. -\end{coq_example*} -\begin{coq_eval} -Lemma mult_m_n_eq_m_1 : forall m n:nat, m * n = 1 -> m = 1. -destruct m; trivial. -intros; apply f_equal with (f := S). -destruct m; trivial. -destruct n; simpl in H. - rewrite <- mult_n_O in H. - discriminate. - rewrite <- plus_n_Sm in H. - discriminate. -Qed. - -intros x y z [H1 H2]. - apply mult_m_n_eq_m_1 with (n := y); trivial. -\end{coq_eval} -\ldots -\begin{coq_example*} -Qed. -\end{coq_example*} -\begin{coq_example} -Definition half := mkRat true 1 2 (O_S 1) one_two_irred. -\end{coq_example} -\begin{coq_example} -Check half. -\end{coq_example} - -The macro generates also, when it is possible, the projection -functions for destructuring an object of type {\ident}. These -projection functions have the same name that the corresponding -fields. If a field is named ``\verb=_='' then no projection is built -for it. In our example: - -\begin{coq_example} -Eval compute in half.(top). -Eval compute in half.(bottom). -Eval compute in half.(Rat_bottom_cond). -\end{coq_example} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -Records defined with the {\tt Record} keyword are not allowed to be -recursive (references to the record's name in the type of its field -raises an error). To define recursive records, one can use the {\tt - Inductive} and {\tt CoInductive} keywords, resulting in an inductive -or co-inductive record. A \emph{caveat}, however, is that records -cannot appear in mutually inductive (or co-inductive) definitions. - -\begin{Warnings} -\item {\tt Warning: {\ident$_i$} cannot be defined.} - - It can happen that the definition of a projection is impossible. - This message is followed by an explanation of this impossibility. - There may be three reasons: - \begin{enumerate} - \item The name {\ident$_i$} already exists in the environment (see - Section~\ref{Axiom}). - \item The body of {\ident$_i$} uses an incorrect elimination for - {\ident} (see Sections~\ref{Fixpoint} and~\ref{Caseexpr}). - \item The type of the projections {\ident$_i$} depends on previous - projections which themselves could not be defined. - \end{enumerate} -\end{Warnings} - -\begin{ErrMsgs} - -\item \errindex{Records declared with the keyword Record or Structure cannot be recursive.} - - The record name {\ident} appears in the type of its fields, but uses - the keyword {\tt Record}. Use the keyword {\tt Inductive} or {\tt - CoInductive} instead. -\item \errindex{Cannot handle mutually (co)inductive records.} - - Records cannot be defined as part of mutually inductive (or - co-inductive) definitions, whether with records only or mixed with - standard definitions. -\item During the definition of the one-constructor inductive - definition, all the errors of inductive definitions, as described in - Section~\ref{gal_Inductive_Definitions}, may also occur. - -\end{ErrMsgs} - -\SeeAlso Coercions and records in Section~\ref{Coercions-and-records} -of the chapter devoted to coercions. - -\Rem {\tt Structure} is a synonym of the keyword {\tt Record}. - -\Rem Creation of an object of record type can be done by calling {\ident$_0$} -and passing arguments in the correct order. - -\begin{coq_example} -Record point := { x : nat; y : nat }. -Definition a := Build_point 5 3. -\end{coq_example} - -The following syntax allows to create objects by using named fields. The -fields do not have to be in any particular order, nor do they have to be all -present if the missing ones can be inferred or prompted for (see -Section~\ref{Program}). - -\begin{coq_example} -Definition b := {| x := 5; y := 3 |}. -Definition c := {| y := 3; x := 5 |}. -\end{coq_example} - -This syntax can be disabled globally for printing by -\begin{quote} -{\tt Unset Printing Records.} -\end{quote} -For a given type, one can override this using either -\begin{quote} -{\tt Add Printing Record {\ident}.} -\end{quote} -to get record syntax or -\begin{quote} -{\tt Add Printing Constructor {\ident}.} -\end{quote} -to get constructor syntax. - -This syntax can also be used for pattern matching. - -\begin{coq_example} -Eval compute in ( - match b with - | {| y := S n |} => n - | _ => 0 - end). -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\Rem An experimental syntax for projections based on a dot notation is -available. The command to activate it is -\begin{quote} -{\tt Set Printing Projections.} -\end{quote} - -\begin{figure}[t] -\begin{centerframe} -\begin{tabular}{lcl} -{\term} & ++= & {\term} {\tt .(} {\qualid} {\tt )}\\ - & $|$ & {\term} {\tt .(} {\qualid} \nelist{\termarg}{} {\tt )}\\ - & $|$ & {\term} {\tt .(} {@}{\qualid} \nelist{\term}{} {\tt )} -\end{tabular} -\end{centerframe} -\caption{Syntax of \texttt{Record} projections} -\label{fig:projsyntax} -\end{figure} - -The corresponding grammar rules are given Figure~\ref{fig:projsyntax}. -When {\qualid} denotes a projection, the syntax {\tt - {\term}.({\qualid})} is equivalent to {\qualid~\term}, the syntax -{\tt {\term}.({\qualid}~{\termarg}$_1$~ \ldots~ {\termarg}$_n$)} to -{\qualid~{\termarg}$_1$ \ldots {\termarg}$_n$~\term}, and the syntax -{\tt {\term}.(@{\qualid}~{\term}$_1$~\ldots~{\term}$_n$)} to -{@\qualid~{\term}$_1$ \ldots {\term}$_n$~\term}. In each case, {\term} -is the object projected and the other arguments are the parameters of -the inductive type. - -To deactivate the printing of projections, use -{\tt Unset Printing Projections}. - - -\section{Variants and extensions of {\mbox{\tt match}} -\label{Extensions-of-match} -\index{match@{\tt match\ldots with\ldots end}}} - -\subsection{Multiple and nested pattern-matching -\index{ML-like patterns} -\label{Mult-match}} - -The basic version of \verb+match+ allows pattern-matching on simple -patterns. As an extension, multiple nested patterns or disjunction of -patterns are allowed, as in ML-like languages. - -The extension just acts as a macro that is expanded during parsing -into a sequence of {\tt match} on simple patterns. Especially, a -construction defined using the extended {\tt match} is generally -printed under its expanded form (see~\texttt{Set Printing Matching} in -section~\ref{SetPrintingMatching}). - -\SeeAlso Chapter~\ref{Mult-match-full}. - -\subsection{Pattern-matching on boolean values: the {\tt if} expression -\label{if-then-else} -\index{if@{\tt if ... then ... else}}} - -For inductive types with exactly two constructors and for -pattern-matchings expressions which do not depend on the arguments of -the constructors, it is possible to use a {\tt if ... then ... else} -notation. For instance, the definition - -\begin{coq_example} -Definition not (b:bool) := - match b with - | true => false - | false => true - end. -\end{coq_example} - -\noindent can be alternatively written - -\begin{coq_eval} -Reset not. -\end{coq_eval} -\begin{coq_example} -Definition not (b:bool) := if b then false else true. -\end{coq_example} - -More generally, for an inductive type with constructors {\tt C$_1$} -and {\tt C$_2$}, we have the following equivalence - -\smallskip - -{\tt if {\term} \zeroone{\ifitem} then {\term}$_1$ else {\term}$_2$} $\equiv$ -\begin{tabular}[c]{l} -{\tt match {\term} \zeroone{\ifitem} with}\\ -{\tt \verb!|! C$_1$ \_ {\ldots} \_ \verb!=>! {\term}$_1$} \\ -{\tt \verb!|! C$_2$ \_ {\ldots} \_ \verb!=>! {\term}$_2$} \\ -{\tt end} -\end{tabular} - -Here is an example. - -\begin{coq_example} -Check (fun x (H:{x=0}+{x<>0}) => - match H with - | left _ => true - | right _ => false - end). -\end{coq_example} - -Notice that the printing uses the {\tt if} syntax because {\tt sumbool} is -declared as such (see Section~\ref{printing-options}). - -\subsection{Irrefutable patterns: the destructuring {\tt let} variants -\index{let in@{\tt let ... in}} -\label{Letin}} - -Pattern-matching on terms inhabiting inductive type having only one -constructor can be alternatively written using {\tt let ... in ...} -constructions. There are two variants of them. - -\subsubsection{First destructuring {\tt let} syntax} -The expression {\tt let -(}~{\ident$_1$},\ldots,{\ident$_n$}~{\tt ) :=}~{\term$_0$}~{\tt -in}~{\term$_1$} performs case analysis on a {\term$_0$} which must be in -an inductive type with one constructor having itself $n$ arguments. Variables -{\ident$_1$}\ldots{\ident$_n$} are bound to the $n$ arguments of the -constructor in expression {\term$_1$}. For instance, the definition - -\begin{coq_example} -Definition fst (A B:Set) (H:A * B) := match H with - | pair x y => x - end. -\end{coq_example} - -can be alternatively written - -\begin{coq_eval} -Reset fst. -\end{coq_eval} -\begin{coq_example} -Definition fst (A B:Set) (p:A * B) := let (x, _) := p in x. -\end{coq_example} -Notice that reduction is different from regular {\tt let ... in ...} -construction since it happens only if {\term$_0$} is in constructor -form. Otherwise, the reduction is blocked. - -The pretty-printing of a definition by matching on a -irrefutable pattern can either be done using {\tt match} or the {\tt -let} construction (see Section~\ref{printing-options}). - -If {\term} inhabits an inductive type with one constructor {\tt C}, -we have an equivalence between - -{\tt let ({\ident}$_1$,\ldots,{\ident}$_n$) \zeroone{\ifitem} := {\term} in {\term}'} - -\noindent and - -{\tt match {\term} \zeroone{\ifitem} with C {\ident}$_1$ {\ldots} {\ident}$_n$ \verb!=>! {\term}' end} - - -\subsubsection{Second destructuring {\tt let} syntax\index{let '... in}} - -Another destructuring {\tt let} syntax is available for inductive types with -one constructor by giving an arbitrary pattern instead of just a tuple -for all the arguments. For example, the preceding example can be written: -\begin{coq_eval} -Reset fst. -\end{coq_eval} -\begin{coq_example} -Definition fst (A B:Set) (p:A*B) := let 'pair x _ := p in x. -\end{coq_example} - -This is useful to match deeper inside tuples and also to use notations -for the pattern, as the syntax {\tt let 'p := t in b} allows arbitrary -patterns to do the deconstruction. For example: - -\begin{coq_example} -Definition deep_tuple (A:Set) (x:(A*A)*(A*A)) : A*A*A*A := - let '((a,b), (c, d)) := x in (a,b,c,d). -Notation " x 'with' p " := (exist _ x p) (at level 20). -Definition proj1_sig' (A:Set) (P:A->Prop) (t:{ x:A | P x }) : A := - let 'x with p := t in x. -\end{coq_example} - -When printing definitions which are written using this construct it -takes precedence over {\tt let} printing directives for the datatype -under consideration (see Section~\ref{printing-options}). - -\subsection{Controlling pretty-printing of {\tt match} expressions -\label{printing-options}} - -The following commands give some control over the pretty-printing of -{\tt match} expressions. - -\subsubsection{Printing nested patterns -\label{SetPrintingMatching} -\comindex{Set Printing Matching} -\comindex{Unset Printing Matching} -\comindex{Test Printing Matching}} - -The Calculus of Inductive Constructions knows pattern-matching only -over simple patterns. It is however convenient to re-factorize nested -pattern-matching into a single pattern-matching over a nested pattern. -{\Coq}'s printer try to do such limited re-factorization. - -\begin{quote} -{\tt Set Printing Matching.} -\end{quote} -This tells {\Coq} to try to use nested patterns. This is the default -behavior. - -\begin{quote} -{\tt Unset Printing Matching.} -\end{quote} -This tells {\Coq} to print only simple pattern-matching problems in -the same way as the {\Coq} kernel handles them. - -\begin{quote} -{\tt Test Printing Matching.} -\end{quote} -This tells if the printing matching mode is on or off. The default is -on. - -\subsubsection{Printing of wildcard pattern -\comindex{Set Printing Wildcard} -\comindex{Unset Printing Wildcard} -\comindex{Test Printing Wildcard}} - -Some variables in a pattern may not occur in the right-hand side of -the pattern-matching clause. There are options to control the -display of these variables. - -\begin{quote} -{\tt Set Printing Wildcard.} -\end{quote} -The variables having no occurrences in the right-hand side of the -pattern-matching clause are just printed using the wildcard symbol -``{\tt \_}''. - -\begin{quote} -{\tt Unset Printing Wildcard.} -\end{quote} -The variables, even useless, are printed using their usual name. But some -non dependent variables have no name. These ones are still printed -using a ``{\tt \_}''. - -\begin{quote} -{\tt Test Printing Wildcard.} -\end{quote} -This tells if the wildcard printing mode is on or off. The default is -to print wildcard for useless variables. - -\subsubsection{Printing of the elimination predicate -\comindex{Set Printing Synth} -\comindex{Unset Printing Synth} -\comindex{Test Printing Synth}} - -In most of the cases, the type of the result of a matched term is -mechanically synthesizable. Especially, if the result type does not -depend of the matched term. - -\begin{quote} -{\tt Set Printing Synth.} -\end{quote} -The result type is not printed when {\Coq} knows that it can -re-synthesize it. - -\begin{quote} -{\tt Unset Printing Synth.} -\end{quote} -This forces the result type to be always printed. - -\begin{quote} -{\tt Test Printing Synth.} -\end{quote} -This tells if the non-printing of synthesizable types is on or off. -The default is to not print synthesizable types. - -\subsubsection{Printing matching on irrefutable pattern -\comindex{Add Printing Let {\ident}} -\comindex{Remove Printing Let {\ident}} -\comindex{Test Printing Let for {\ident}} -\comindex{Print Table Printing Let}} - -If an inductive type has just one constructor, -pattern-matching can be written using {\tt let} ... {\tt :=} -... {\tt in}~... - -\begin{quote} -{\tt Add Printing Let {\ident}.} -\end{quote} -This adds {\ident} to the list of inductive types for which -pattern-matching is written using a {\tt let} expression. - -\begin{quote} -{\tt Remove Printing Let {\ident}.} -\end{quote} -This removes {\ident} from this list. - -\begin{quote} -{\tt Test Printing Let for {\ident}.} -\end{quote} -This tells if {\ident} belongs to the list. - -\begin{quote} -{\tt Print Table Printing Let.} -\end{quote} -This prints the list of inductive types for which pattern-matching is -written using a {\tt let} expression. - -The list of inductive types for which pattern-matching is written -using a {\tt let} expression is managed synchronously. This means that -it is sensible to the command {\tt Reset}. - -\subsubsection{Printing matching on booleans -\comindex{Add Printing If {\ident}} -\comindex{Remove Printing If {\ident}} -\comindex{Test Printing If for {\ident}} -\comindex{Print Table Printing If}} - -If an inductive type is isomorphic to the boolean type, -pattern-matching can be written using {\tt if} ... {\tt then} ... {\tt - else} ... - -\begin{quote} -{\tt Add Printing If {\ident}.} -\end{quote} -This adds {\ident} to the list of inductive types for which -pattern-matching is written using an {\tt if} expression. - -\begin{quote} -{\tt Remove Printing If {\ident}.} -\end{quote} -This removes {\ident} from this list. - -\begin{quote} -{\tt Test Printing If for {\ident}.} -\end{quote} -This tells if {\ident} belongs to the list. - -\begin{quote} -{\tt Print Table Printing If.} -\end{quote} -This prints the list of inductive types for which pattern-matching is -written using an {\tt if} expression. - -The list of inductive types for which pattern-matching is written -using an {\tt if} expression is managed synchronously. This means that -it is sensible to the command {\tt Reset}. - -\subsubsection{Example} - -This example emphasizes what the printing options offer. - -\begin{coq_example} -Test Printing Let for prod. -Print fst. -Remove Printing Let prod. -Unset Printing Synth. -Unset Printing Wildcard. -Print fst. -\end{coq_example} - -% \subsection{Still not dead old notations} - -% The following variant of {\tt match} is inherited from older version -% of {\Coq}. - -% \medskip -% \begin{tabular}{lcl} -% {\term} & ::= & {\annotation} {\tt Match} {\term} {\tt with} {\terms} {\tt end}\\ -% \end{tabular} -% \medskip - -% This syntax is a macro generating a combination of {\tt match} with {\tt -% Fix} implementing a combinator for primitive recursion equivalent to -% the {\tt Match} construction of \Coq\ V5.8. It is provided only for -% sake of compatibility with \Coq\ V5.8. It is recommended to avoid it. -% (see Section~\ref{Matchexpr}). - -% There is also a notation \texttt{Case} that is the -% ancestor of \texttt{match}. Again, it is still in the code for -% compatibility with old versions but the user should not use it. - -% Explained in RefMan-gal.tex -%% \section{Forced type} - -%% In some cases, one may wish to assign a particular type to a term. The -%% syntax to force the type of a term is the following: - -%% \medskip -%% \begin{tabular}{lcl} -%% {\term} & ++= & {\term} {\tt :} {\term}\\ -%% \end{tabular} -%% \medskip - -%% It forces the first term to be of type the second term. The -%% type must be compatible with -%% the term. More precisely it must be either a type convertible to -%% the automatically inferred type (see Chapter~\ref{Cic}) or a type -%% coercible to it, (see \ref{Coercions}). When the type of a -%% whole expression is forced, it is usually not necessary to give the types of -%% the variables involved in the term. - -%% Example: - -%% \begin{coq_example} -%% Definition ID := forall X:Set, X -> X. -%% Definition id := (fun X x => x):ID. -%% Check id. -%% \end{coq_example} - -\section{Advanced recursive functions} - -The \emph{experimental} command -\begin{center} - \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} - \{decrease\_annot\} : type$_0$ := \term$_0$} - \comindex{Function} - \label{Function} -\end{center} -can be seen as a generalization of {\tt Fixpoint}. It is actually a -wrapper for several ways of defining a function \emph{and other useful - related objects}, namely: an induction principle that reflects the -recursive structure of the function (see \ref{FunInduction}), and its -fixpoint equality. The meaning of this -declaration is to define a function {\it ident}, similarly to {\tt - Fixpoint}. Like in {\tt Fixpoint}, the decreasing argument must be -given (unless the function is not recursive), but it must not -necessary be \emph{structurally} decreasing. The point of the {\tt - \{\}} annotation is to name the decreasing argument \emph{and} to -describe which kind of decreasing criteria must be used to ensure -termination of recursive calls. - -The {\tt Function} construction enjoys also the {\tt with} extension -to define mutually recursive definitions. However, this feature does -not work for non structural recursive functions. % VRAI?? - -See the documentation of {\tt functional induction} -(see Section~\ref{FunInduction}) and {\tt Functional Scheme} -(see Section~\ref{FunScheme} and \ref{FunScheme-examples}) for how to use the -induction principle to easily reason about the function. - -\noindent {\bf Remark: } To obtain the right principle, it is better -to put rigid parameters of the function as first arguments. For -example it is better to define plus like this: - -\begin{coq_example*} -Function plus (m n : nat) {struct n} : nat := - match n with - | 0 => m - | S p => S (plus m p) - end. -\end{coq_example*} -\noindent than like this: -\begin{coq_eval} -Reset plus. -\end{coq_eval} -\begin{coq_example*} -Function plus (n m : nat) {struct n} : nat := - match n with - | 0 => m - | S p => S (plus p m) - end. -\end{coq_example*} - -\paragraph[Limitations]{Limitations\label{sec:Function-limitations}} -\term$_0$ must be build as a \emph{pure pattern-matching tree} -(\texttt{match...with}) with applications only \emph{at the end} of -each branch. - -Function does not support partial application of the function being defined. Thus, the following example cannot be accepted due to the presence of partial application of \ident{wrong} into the body of \ident{wrong}~: -\begin{coq_example*} - Function wrong (C:nat) {\ldots} : nat := - List.hd(List.map wrong (C::nil)). -\end{coq_example*} - -For now dependent cases are not treated for non structurally terminating functions. - - - -\begin{ErrMsgs} -\item \errindex{The recursive argument must be specified} -\item \errindex{No argument name \ident} -\item \errindex{Cannot use mutual definition with well-founded - recursion or measure} - -\item \errindex{Cannot define graph for \ident\dots} (warning) - - The generation of the graph relation \texttt{(R\_\ident)} used to - compute the induction scheme of \ident\ raised a typing error. Only - the ident is defined, the induction scheme will not be generated. - - This error happens generally when: - - \begin{itemize} - \item the definition uses pattern matching on dependent types, which - \texttt{Function} cannot deal with yet. - \item the definition is not a \emph{pattern-matching tree} as - explained above. - \end{itemize} - -\item \errindex{Cannot define principle(s) for \ident\dots} (warning) - - The generation of the graph relation \texttt{(R\_\ident)} succeeded - but the induction principle could not be built. Only the ident is - defined. Please report. - -\item \errindex{Cannot build functional inversion principle} (warning) - - \texttt{functional inversion} will not be available for the - function. -\end{ErrMsgs} - - -\SeeAlso{\ref{FunScheme}, \ref{FunScheme-examples}, \ref{FunInduction}} - -Depending on the {\tt \{$\ldots$\}} annotation, different definition -mechanisms are used by {\tt Function}. More precise description -given below. - -\begin{Variants} -\item \texttt{ Function {\ident} {\binder$_1$}\ldots{\binder$_n$} - : type$_0$ := \term$_0$} - - Defines the not recursive function \ident\ as if declared with - \texttt{Definition}. Moreover the following are defined: - - \begin{itemize} - \item {\tt\ident\_rect}, {\tt\ident\_rec} and {\tt\ident\_ind}, - which reflect the pattern matching structure of \term$_0$ (see the - documentation of {\tt Inductive} \ref{Inductive}); - \item The inductive \texttt{R\_\ident} corresponding to the graph of - \ident\ (silently); - \item \texttt{\ident\_complete} and \texttt{\ident\_correct} which are - inversion information linking the function and its graph. - \end{itemize} -\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} - {\tt \{}{\tt struct} \ident$_0${\tt\}} : type$_0$ := \term$_0$} - - Defines the structural recursive function \ident\ as if declared - with \texttt{Fixpoint}. Moreover the following are defined: - - \begin{itemize} - \item The same objects as above; - \item The fixpoint equation of \ident: \texttt{\ident\_equation}. - \end{itemize} - -\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} {\tt - \{}{\tt measure \term$_1$} \ident$_0${\tt\}} : type$_0$ := - \term$_0$} -\item \texttt{Function {\ident} {\binder$_1$}\ldots{\binder$_n$} - {\tt \{}{\tt wf \term$_1$} \ident$_0${\tt\}} : type$_0$ := \term$_0$} - -Defines a recursive function by well founded recursion. \textbf{The -module \texttt{Recdef} of the standard library must be loaded for this -feature}. The {\tt \{\}} annotation is mandatory and must be one of -the following: -\begin{itemize} -\item {\tt \{measure} \term$_1$ \ident$_0${\tt\}} with \ident$_0$ - being the decreasing argument and \term$_1$ being a function - from type of \ident$_0$ to \texttt{nat} for which value on the - decreasing argument decreases (for the {\tt lt} order on {\tt - nat}) at each recursive call of \term$_0$, parameters of the - function are bound in \term$_0$; -\item {\tt \{wf} \term$_1$ \ident$_0${\tt\}} with \ident$_0$ being - the decreasing argument and \term$_1$ an ordering relation on - the type of \ident$_0$ (i.e. of type T$_{\ident_0}$ - $\to$ T$_{\ident_0}$ $\to$ {\tt Prop}) for which - the decreasing argument decreases at each recursive call of - \term$_0$. The order must be well founded. parameters of the - function are bound in \term$_0$. -\end{itemize} - -Depending on the annotation, the user is left with some proof -obligations that will be used to define the function. These proofs -are: proofs that each recursive call is actually decreasing with -respect to the given criteria, and (if the criteria is \texttt{wf}) a -proof that the ordering relation is well founded. - -%Completer sur measure et wf - -Once proof obligations are discharged, the following objects are -defined: - -\begin{itemize} -\item The same objects as with the \texttt{struct}; -\item The lemma \texttt{\ident\_tcc} which collects all proof - obligations in one property; -\item The lemmas \texttt{\ident\_terminate} and \texttt{\ident\_F} - which is needed to be inlined during extraction of \ident. -\end{itemize} - - - -%Complete!! -The way this recursive function is defined is the subject of several -papers by Yves Bertot and Antonia Balaa on the one hand, and Gilles Barthe, -Julien Forest, David Pichardie, and Vlad Rusu on the other hand. - -%Exemples ok ici - -\bigskip - -\noindent {\bf Remark: } Proof obligations are presented as several -subgoals belonging to a Lemma {\ident}{\tt\_tcc}. % These subgoals are independent which means that in order to -% abort them you will have to abort each separately. - - - -%The decreasing argument cannot be dependent of another?? - -%Exemples faux ici -\end{Variants} - - -\section{Section mechanism -\index{Sections} -\label{Section}} - -The sectioning mechanism allows to organize a proof in structured -sections. Then local declarations become available (see -Section~\ref{Basic-definitions}). - -\subsection{\tt Section {\ident}\comindex{Section}} - -This command is used to open a section named {\ident}. - -%% Discontinued ? -%% \begin{Variants} -%% \comindex{Chapter} -%% \item{\tt Chapter {\ident}}\\ -%% Same as {\tt Section {\ident}} -%% \end{Variants} - -\subsection{\tt End {\ident} -\comindex{End}} - -This command closes the section named {\ident}. After closing of the -section, the local declarations (variables and local definitions) get -{\em discharged}, meaning that they stop being visible and that all -global objects defined in the section are generalized with respect to -the variables and local definitions they each depended on in the -section. - - -Here is an example : -\begin{coq_example} -Section s1. -Variables x y : nat. -Let y' := y. -Definition x' := S x. -Definition x'' := x' + y'. -Print x'. -End s1. -Print x'. -Print x''. -\end{coq_example} -Notice the difference between the value of {\tt x'} and {\tt x''} -inside section {\tt s1} and outside. - -\begin{ErrMsgs} -\item \errindex{This is not the last opened section} -\end{ErrMsgs} - -\begin{Remarks} -\item Most commands, like {\tt Hint}, {\tt Notation}, option management, ... -which appear inside a section are canceled when the -section is closed. -% see Section~\ref{LongNames} -%\item Usually all identifiers must be distinct. -%However, a name already used in a closed section (see \ref{Section}) -%can be reused. In this case, the old name is no longer accessible. - -% Obsolète -%\item A module implicitly open a section. Be careful not to name a -%module with an identifier already used in the module (see \ref{compiled}). -\end{Remarks} - -\input{RefMan-mod.v} - -\section{Libraries and qualified names} - -\subsection{Names of libraries and files -\label{Libraries} -\index{Libraries} -\index{Physical paths} -\index{Logical paths}} - -\paragraph{Libraries} - -The theories developed in {\Coq} are stored in {\em library files} -which are hierarchically classified into {\em libraries} and {\em -sublibraries}. To express this hierarchy, library names are -represented by qualified identifiers {\qualid}, i.e. as list of -identifiers separated by dots (see Section~\ref{qualid}). For -instance, the library file {\tt Mult} of the standard {\Coq} library -{\tt Arith} has name {\tt Coq.Arith.Mult}. The identifier -that starts the name of a library is called a {\em library root}. -All library files of the standard library of {\Coq} have reserved root -{\tt Coq} but library file names based on other roots can be obtained -by using {\tt coqc} options {\tt -I} or {\tt -R} (see -Section~\ref{coqoptions}). Also, when an interactive {\Coq} session -starts, a library of root {\tt Top} is started, unless option {\tt --top} or {\tt -notop} is set (see Section~\ref{coqoptions}). - -As library files are stored on the file system of the underlying -operating system, a translation from file-system names to {\Coq} names -is needed. In this translation, names in the file system are called -{\em physical} paths while {\Coq} names are contrastingly called {\em -logical} names. Logical names are mapped to physical paths using the -commands {\tt Add LoadPath} or {\tt Add Rec LoadPath} (see -Sections~\ref{AddLoadPath} and~\ref{AddRecLoadPath}). - -\subsection{Qualified names -\label{LongNames} -\index{Qualified identifiers} -\index{Absolute names}} - -Library files are modules which possibly contain submodules which -eventually contain constructions (axioms, parameters, definitions, -lemmas, theorems, remarks or facts). The {\em absolute name}, or {\em -full name}, of a construction in some library file is a qualified -identifier starting with the logical name of the library file, -followed by the sequence of submodules names encapsulating the -construction and ended by the proper name of the construction. -Typically, the absolute name {\tt Coq.Init.Logic.eq} denotes Leibniz' -equality defined in the module {\tt Logic} in the sublibrary {\tt -Init} of the standard library of \Coq. - -The proper name that ends the name of a construction is the {\it short -name} (or sometimes {\it base name}) of the construction (for -instance, the short name of {\tt Coq.Init.Logic.eq} is {\tt eq}). Any -partial suffix of the absolute name is a {\em partially qualified name} -(e.g. {\tt Logic.eq} is a partially qualified name for {\tt -Coq.Init.Logic.eq}). Especially, the short name of a construction is -its shortest partially qualified name. - -{\Coq} does not accept two constructions (definition, theorem, ...) -with the same absolute name but different constructions can have the -same short name (or even same partially qualified names as soon as the -full names are different). - -Notice that the notion of absolute, partially qualified and -short names also applies to library file names. - -\paragraph{Visibility} - -{\Coq} maintains a table called {\it name table} which maps partially -qualified names of constructions to absolute names. This table is -updated by the commands {\tt Require} (see \ref{Require}), {\tt -Import} and {\tt Export} (see \ref{Import}) and also each time a new -declaration is added to the context. An absolute name is called {\it -visible} from a given short or partially qualified name when this -latter name is enough to denote it. This means that the short or -partially qualified name is mapped to the absolute name in {\Coq} name -table. - -A similar table exists for library file names. It is updated by the -vernacular commands {\tt Add LoadPath} and {\tt Add Rec LoadPath} (or -their equivalent as options of the {\Coq} executables, {\tt -I} and -{\tt -R}). - -It may happen that a visible name is hidden by the short name or a -qualified name of another construction. In this case, the name that -has been hidden must be referred to using one more level of -qualification. To ensure that a construction always remains -accessible, absolute names can never be hidden. - -Examples: -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Check 0. -Definition nat := bool. -Check 0. -Check Datatypes.nat. -Locate nat. -\end{coq_example} - -\SeeAlso Command {\tt Locate} in Section~\ref{Locate} and {\tt Locate -Library} in Section~\ref{Locate Library}. - -%% \paragraph{The special case of remarks and facts} -%% -%% In contrast with definitions, lemmas, theorems, axioms and parameters, -%% the absolute name of remarks includes the segment of sections in which -%% it is defined. Concretely, if a remark {\tt R} is defined in -%% subsection {\tt S2} of section {\tt S1} in module {\tt M}, then its -%% absolute name is {\tt M.S1.S2.R}. The same for facts, except that the -%% name of the innermost section is dropped from the full name. Then, if -%% a fact {\tt F} is defined in subsection {\tt S2} of section {\tt S1} -%% in module {\tt M}, then its absolute name is {\tt M.S1.F}. - -\section{Implicit arguments -\index{Implicit arguments} -\label{Implicit Arguments}} - -An implicit argument of a function is an argument which can be -inferred from contextual knowledge. There are different kinds of -implicit arguments that can be considered implicit in different -ways. There are also various commands to control the setting or the -inference of implicit arguments. - -\subsection{The different kinds of implicit arguments} - -\subsubsection{Implicit arguments inferable from the knowledge of other -arguments of a function} - -The first kind of implicit arguments covers the arguments that are -inferable from the knowledge of the type of other arguments of the -function, or of the type of the surrounding context of the -application. Especially, such implicit arguments correspond to -parameters dependent in the type of the function. Typical implicit -arguments are the type arguments in polymorphic functions. -There are several kinds of such implicit arguments. - -\paragraph{Strict Implicit Arguments.} -An implicit argument can be either strict or non strict. An implicit -argument is said {\em strict} if, whatever the other arguments of the -function are, it is still inferable from the type of some other -argument. Technically, an implicit argument is strict if it -corresponds to a parameter which is not applied to a variable which -itself is another parameter of the function (since this parameter -may erase its arguments), not in the body of a {\tt match}, and not -itself applied or matched against patterns (since the original -form of the argument can be lost by reduction). - -For instance, the first argument of -\begin{quote} -\verb|cons: forall A:Set, A -> list A -> list A| -\end{quote} -in module {\tt List.v} is strict because {\tt list} is an inductive -type and {\tt A} will always be inferable from the type {\tt -list A} of the third argument of {\tt cons}. -On the contrary, the second argument of a term of type -\begin{quote} -\verb|forall P:nat->Prop, forall n:nat, P n -> ex nat P| -\end{quote} -is implicit but not strict, since it can only be inferred from the -type {\tt P n} of the third argument and if {\tt P} is, e.g., {\tt -fun \_ => True}, it reduces to an expression where {\tt n} does not -occur any longer. The first argument {\tt P} is implicit but not -strict either because it can only be inferred from {\tt P n} and {\tt -P} is not canonically inferable from an arbitrary {\tt n} and the -normal form of {\tt P n} (consider e.g. that {\tt n} is {\tt 0} and -the third argument has type {\tt True}, then any {\tt P} of the form -{\tt fun n => match n with 0 => True | \_ => \mbox{\em anything} end} would -be a solution of the inference problem). - -\paragraph{Contextual Implicit Arguments.} -An implicit argument can be {\em contextual} or not. An implicit -argument is said {\em contextual} if it can be inferred only from the -knowledge of the type of the context of the current expression. For -instance, the only argument of -\begin{quote} -\verb|nil : forall A:Set, list A| -\end{quote} -is contextual. Similarly, both arguments of a term of type -\begin{quote} -\verb|forall P:nat->Prop, forall n:nat, P n \/ n = 0| -\end{quote} -are contextual (moreover, {\tt n} is strict and {\tt P} is not). - -\paragraph{Reversible-Pattern Implicit Arguments.} -There is another class of implicit arguments that can be reinferred -unambiguously if all the types of the remaining arguments are -known. This is the class of implicit arguments occurring in the type -of another argument in position of reversible pattern, which means it -is at the head of an application but applied only to uninstantiated -distinct variables. Such an implicit argument is called {\em -reversible-pattern implicit argument}. A typical example is the -argument {\tt P} of {\tt nat\_rec} in -\begin{quote} -{\tt nat\_rec : forall P : nat -> Set, - P 0 -> (forall n : nat, P n -> P (S n)) -> forall x : nat, P x}. -\end{quote} -({\tt P} is reinferable by abstracting over {\tt n} in the type {\tt P n}). - -See Section~\ref{SetReversiblePatternImplicit} for the automatic declaration -of reversible-pattern implicit arguments. - -\subsubsection{Implicit arguments inferable by resolution} - -This corresponds to a class of non dependent implicit arguments that -are solved based on the structure of their type only. - -\subsection{Maximal or non maximal insertion of implicit arguments} - -In case a function is partially applied, and the next argument to be -applied is an implicit argument, two disciplines are applicable. In the -first case, the function is considered to have no arguments furtherly: -one says that the implicit argument is not maximally inserted. In -the second case, the function is considered to be implicitly applied -to the implicit arguments it is waiting for: one says that the -implicit argument is maximally inserted. - -Each implicit argument can be declared to have to be inserted -maximally or non maximally. This can be governed argument per argument -by the command {\tt Implicit Arguments} (see~\ref{ImplicitArguments}) -or globally by the command {\tt Set Maximal Implicit Insertion} -(see~\ref{SetMaximalImplicitInsertion}). See also -Section~\ref{PrintImplicit}. - -\subsection{Casual use of implicit arguments} - -In a given expression, if it is clear that some argument of a function -can be inferred from the type of the other arguments, the user can -force the given argument to be guessed by replacing it by ``{\tt \_}''. If -possible, the correct argument will be automatically generated. - -\begin{ErrMsgs} - -\item \errindex{Cannot infer a term for this placeholder} - - {\Coq} was not able to deduce an instantiation of a ``{\tt \_}''. - -\end{ErrMsgs} - -\subsection{Declaration of implicit arguments for a constant -\comindex{Arguments}} -\label{ImplicitArguments} - -In case one wants that some arguments of a given object (constant, -inductive types, constructors, assumptions, local or not) are always -inferred by Coq, one may declare once and for all which are the expected -implicit arguments of this object. There are two ways to do this, -a priori and a posteriori. - -\subsubsection{Implicit Argument Binders} - -In the first setting, one wants to explicitly give the implicit -arguments of a constant as part of its definition. To do this, one has -to surround the bindings of implicit arguments by curly braces: -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Definition id {A : Type} (x : A) : A := x. -\end{coq_example} - -This automatically declares the argument {\tt A} of {\tt id} as a -maximally inserted implicit argument. One can then do as-if the argument -was absent in every situation but still be able to specify it if needed: -\begin{coq_example} -Definition compose {A B C} (g : B -> C) (f : A -> B) := - fun x => g (f x). -Goal forall A, compose id id = id (A:=A). -\end{coq_example} - -The syntax is supported in all top-level definitions: {\tt Definition}, -{\tt Fixpoint}, {\tt Lemma} and so on. For (co-)inductive datatype -declarations, the semantics are the following: an inductive parameter -declared as an implicit argument need not be repeated in the inductive -definition but will become implicit for the constructors of the -inductive only, not the inductive type itself. For example: - -\begin{coq_example} -Inductive list {A : Type} : Type := -| nil : list -| cons : A -> list -> list. -Print list. -\end{coq_example} - -One can always specify the parameter if it is not uniform using the -usual implicit arguments disambiguation syntax. - -\subsubsection{Declaring Implicit Arguments} - -To set implicit arguments for a constant a posteriori, one can use the -command: -\begin{quote} -\tt Arguments {\qualid} \nelist{\possiblybracketedident}{} -\end{quote} -where the list of {\possiblybracketedident} is the list of all arguments of -{\qualid} where the ones to be declared implicit are surrounded by -square brackets and the ones to be declared as maximally inserted implicits -are surrounded by curly braces. - -After the above declaration is issued, implicit arguments can just (and -have to) be skipped in any expression involving an application of -{\qualid}. - -\begin{Variants} -\item {\tt Global Arguments {\qualid} \nelist{\possiblybracketedident}{} -\comindex{Global Arguments}} - -Tell to recompute the implicit arguments of {\qualid} after ending of -the current section if any, enforcing the implicit arguments known -from inside the section to be the ones declared by the command. - -\item {\tt Local Arguments {\qualid} \nelist{\possiblybracketedident}{} -\comindex{Local Arguments}} - -When in a module, tell not to activate the implicit arguments of -{\qualid} declared by this command to contexts that require the -module. - -\item {\tt \zeroone{Global {\sl |} Local} Arguments {\qualid} \sequence{\nelist{\possiblybracketedident}{}}{,}} - -For names of constants, inductive types, constructors, lemmas which -can only be applied to a fixed number of arguments (this excludes for -instance constants whose type is polymorphic), multiple -implicit arguments decflarations can be given. -Depending on the number of arguments {\qualid} is applied -to in practice, the longest applicable list of implicit arguments is -used to select which implicit arguments are inserted. - -For printing, the omitted arguments are the ones of the longest list -of implicit arguments of the sequence. - -\end{Variants} - -\Example -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Inductive list (A:Type) : Type := - | nil : list A - | cons : A -> list A -> list A. -\end{coq_example*} -\begin{coq_example} -Check (cons nat 3 (nil nat)). -Arguments cons [A] _ _. -Arguments nil [A]. -Check (cons 3 nil). -Fixpoint map (A B:Type) (f:A->B) (l:list A) : list B := - match l with nil => nil | cons a t => cons (f a) (map A B f t) end. -Fixpoint length (A:Type) (l:list A) : nat := - match l with nil => 0 | cons _ m => S (length A m) end. -Arguments map [A B] f l. -Arguments length {A} l. (* A has to be maximally inserted *) -Check (fun l:list (list nat) => map length l). -Arguments map [A B] f l, [A] B f l, A B f l. -Check (fun l => map length l = map (list nat) nat length l). -\end{coq_example} - -\Rem To know which are the implicit arguments of an object, use the command -{\tt Print Implicit} (see \ref{PrintImplicit}). - -\Rem If the list of arguments is empty, the command removes the -implicit arguments of {\qualid}. - -\subsection{Automatic declaration of implicit arguments for a constant} - -{\Coq} can also automatically detect what are the implicit arguments -of a defined object. The command is just -\begin{quote} -{\tt Arguments {\qualid} : default implicits -\comindex{Arguments}} -\end{quote} -The auto-detection is governed by options telling if strict, -contextual, or reversible-pattern implicit arguments must be -considered or not (see -Sections~\ref{SetStrictImplicit},~\ref{SetContextualImplicit},~\ref{SetReversiblePatternImplicit} -and also~\ref{SetMaximalImplicitInsertion}). - -\begin{Variants} -\item {\tt Global Arguments {\qualid} : default implicits -\comindex{Global Arguments}} - -Tell to recompute the implicit arguments of {\qualid} after ending of -the current section if any. - -\item {\tt Local Arguments {\qualid} : default implicits -\comindex{Local Arguments}} - -When in a module, tell not to activate the implicit arguments of -{\qualid} computed by this declaration to contexts that requires the -module. - -\end{Variants} - -\Example -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Inductive list (A:Set) : Set := - | nil : list A - | cons : A -> list A -> list A. -\end{coq_example*} -\begin{coq_example} -Arguments cons : default implicits. -Print Implicit cons. -Arguments nil : default implicits. -Print Implicit nil. -Set Contextual Implicit. -Arguments nil : default implicits. -Print Implicit nil. -\end{coq_example} - -The computation of implicit arguments takes account of the -unfolding of constants. For instance, the variable {\tt p} below has -type {\tt (Transitivity R)} which is reducible to {\tt forall x,y:U, R x -y -> forall z:U, R y z -> R x z}. As the variables {\tt x}, {\tt y} and -{\tt z} appear strictly in body of the type, they are implicit. - -\begin{coq_example*} -Variable X : Type. -Definition Relation := X -> X -> Prop. -Definition Transitivity (R:Relation) := - forall x y:X, R x y -> forall z:X, R y z -> R x z. -Variables (R : Relation) (p : Transitivity R). -Arguments p : default implicits. -\end{coq_example*} -\begin{coq_example} -Print p. -Print Implicit p. -\end{coq_example} -\begin{coq_example*} -Variables (a b c : X) (r1 : R a b) (r2 : R b c). -\end{coq_example*} -\begin{coq_example} -Check (p r1 r2). -\end{coq_example} - -Implicit arguments can be cleared with the following syntax: - -\begin{quote} -{\tt Arguments {\qualid} : clear implicits -\comindex{Arguments}} -\end{quote} - -In the following example implict arguments declarations for the {\tt nil} -constant are cleared: -\begin{coq_example} -Arguments cons : clear implicits. -Print Implicit cons. -\end{coq_example} - - -\subsection{Mode for automatic declaration of implicit arguments -\label{Auto-implicit} -\comindex{Set Implicit Arguments} -\comindex{Unset Implicit Arguments}} - -In case one wants to systematically declare implicit the arguments -detectable as such, one may switch to the automatic declaration of -implicit arguments mode by using the command -\begin{quote} -\tt Set Implicit Arguments. -\end{quote} -Conversely, one may unset the mode by using {\tt Unset Implicit -Arguments}. The mode is off by default. Auto-detection of implicit -arguments is governed by options controlling whether strict and -contextual implicit arguments have to be considered or not. - -\subsection{Controlling strict implicit arguments -\comindex{Set Strict Implicit} -\comindex{Unset Strict Implicit} -\label{SetStrictImplicit}} - -When the mode for automatic declaration of implicit arguments is on, -the default is to automatically set implicit only the strict implicit -arguments plus, for historical reasons, a small subset of the non -strict implicit arguments. To relax this constraint and to -set implicit all non strict implicit arguments by default, use the command -\begin{quote} -\tt Unset Strict Implicit. -\end{quote} -Conversely, use the command {\tt Set Strict Implicit} to -restore the original mode that declares implicit only the strict implicit arguments plus a small subset of the non strict implicit arguments. - -In the other way round, to capture exactly the strict implicit arguments and no more than the strict implicit arguments, use the command: -\comindex{Set Strongly Strict Implicit} -\comindex{Unset Strongly Strict Implicit} -\begin{quote} -\tt Set Strongly Strict Implicit. -\end{quote} -Conversely, use the command {\tt Unset Strongly Strict Implicit} to -let the option ``{\tt Strict Implicit}'' decide what to do. - -\Rem In versions of {\Coq} prior to version 8.0, the default was to -declare the strict implicit arguments as implicit. - -\subsection{Controlling contextual implicit arguments -\comindex{Set Contextual Implicit} -\comindex{Unset Contextual Implicit} -\label{SetContextualImplicit}} - -By default, {\Coq} does not automatically set implicit the contextual -implicit arguments. To tell {\Coq} to infer also contextual implicit -argument, use command -\begin{quote} -\tt Set Contextual Implicit. -\end{quote} -Conversely, use command {\tt Unset Contextual Implicit} to -unset the contextual implicit mode. - -\subsection{Controlling reversible-pattern implicit arguments -\comindex{Set Reversible Pattern Implicit} -\comindex{Unset Reversible Pattern Implicit} -\label{SetReversiblePatternImplicit}} - -By default, {\Coq} does not automatically set implicit the reversible-pattern -implicit arguments. To tell {\Coq} to infer also reversible-pattern implicit -argument, use command -\begin{quote} -\tt Set Reversible Pattern Implicit. -\end{quote} -Conversely, use command {\tt Unset Reversible Pattern Implicit} to -unset the reversible-pattern implicit mode. - -\subsection{Controlling the insertion of implicit arguments not followed by explicit arguments -\comindex{Set Maximal Implicit Insertion} -\comindex{Unset Maximal Implicit Insertion} -\label{SetMaximalImplicitInsertion}} - -Implicit arguments can be declared to be automatically inserted when a -function is partially applied and the next argument of the function is -an implicit one. In case the implicit arguments are automatically -declared (with the command {\tt Set Implicit Arguments}), the command -\begin{quote} -\tt Set Maximal Implicit Insertion. -\end{quote} -is used to tell to declare the implicit arguments with a maximal -insertion status. By default, automatically declared implicit -arguments are not declared to be insertable maximally. To restore the -default mode for maximal insertion, use command {\tt Unset Maximal -Implicit Insertion}. - -\subsection{Explicit applications -\index{Explicitly given implicit arguments} -\label{Implicits-explicitation} -\index{qualid@{\qualid}} \index{\symbol{64}}} - -In presence of non strict or contextual argument, or in presence of -partial applications, the synthesis of implicit arguments may fail, so -one may have to give explicitly certain implicit arguments of an -application. The syntax for this is {\tt (\ident:=\term)} where {\ident} -is the name of the implicit argument and {\term} is its corresponding -explicit term. Alternatively, one can locally deactivate the hiding of -implicit arguments of a function by using the notation -{\tt @{\qualid}~{\term}$_1$..{\term}$_n$}. This syntax extension is -given Figure~\ref{fig:explicitations}. -\begin{figure} -\begin{centerframe} -\begin{tabular}{lcl} -{\term} & ++= & @ {\qualid} \nelist{\term}{}\\ -& $|$ & @ {\qualid}\\ -& $|$ & {\qualid} \nelist{\textrm{\textsl{argument}}}{}\\ -\\ -{\textrm{\textsl{argument}}} & ::= & {\term} \\ -& $|$ & {\tt ({\ident}:={\term})}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax for explicitly giving implicit arguments} -\label{fig:explicitations} -\end{figure} - -\noindent {\bf Example (continued): } -\begin{coq_example} -Check (p r1 (z:=c)). -Check (p (x:=a) (y:=b) r1 (z:=c) r2). -\end{coq_example} - -\subsection{Renaming implicit arguments -\comindex{Arguments} -} - -Implicit arguments names can be redefined using the following syntax: -\begin{quote} -{\tt Arguments {\qualid} \nelist{\name}{} : rename} -\end{quote} - -Without the {\tt rename} flag, {\tt Arguments} can be used to assert -that a given constant has the expected number of arguments and that -these arguments are named as expected. - -\noindent {\bf Example (continued): } -\begin{coq_example} -Arguments p [s t] _ [u] _: rename. -Check (p r1 (u:=c)). -Check (p (s:=a) (t:=b) r1 (u:=c) r2). -Fail Arguments p [s t] _ [w] _. -\end{coq_example} - - -\subsection{Displaying what the implicit arguments are -\comindex{Print Implicit} -\label{PrintImplicit}} - -To display the implicit arguments associated to an object, and to know -if each of them is to be used maximally or not, use the command -\begin{quote} -\tt Print Implicit {\qualid}. -\end{quote} - -\subsection{Explicit displaying of implicit arguments for pretty-printing -\comindex{Set Printing Implicit} -\comindex{Unset Printing Implicit} -\comindex{Set Printing Implicit Defensive} -\comindex{Unset Printing Implicit Defensive}} - -By default the basic pretty-printing rules hide the inferable implicit -arguments of an application. To force printing all implicit arguments, -use command -\begin{quote} -{\tt Set Printing Implicit.} -\end{quote} -Conversely, to restore the hiding of implicit arguments, use command -\begin{quote} -{\tt Unset Printing Implicit.} -\end{quote} - -By default the basic pretty-printing rules display the implicit arguments that are not detected as strict implicit arguments. This ``defensive'' mode can quickly make the display cumbersome so this can be deactivated by using the command -\begin{quote} -{\tt Unset Printing Implicit Defensive.} -\end{quote} -Conversely, to force the display of non strict arguments, use command -\begin{quote} -{\tt Set Printing Implicit Defensive.} -\end{quote} - -\SeeAlso {\tt Set Printing All} in Section~\ref{SetPrintingAll}. - -\subsection{Interaction with subtyping} - -When an implicit argument can be inferred from the type of more than -one of the other arguments, then only the type of the first of these -arguments is taken into account, and not an upper type of all of -them. As a consequence, the inference of the implicit argument of -``='' fails in - -\begin{coq_example*} -Check nat = Prop. -\end{coq_example*} - -but succeeds in - -\begin{coq_example*} -Check Prop = nat. -\end{coq_example*} - -\subsection{Deactivation of implicit arguments for parsing} -\comindex{Set Parsing Explicit} -\comindex{Unset Parsing Explicit} - -Use of implicit arguments can be deactivated by issuing the command: -\begin{quote} -{\tt Set Parsing Explicit.} -\end{quote} - -In this case, all arguments of constants, inductive types, -constructors, etc, including the arguments declared as implicit, have -to be given as if none arguments were implicit. By symmetry, this also -affects printing. To restore parsing and normal printing of implicit -arguments, use: -\begin{quote} -{\tt Set Parsing Explicit.} -\end{quote} - -\subsection{Canonical structures -\comindex{Canonical Structure}} - -A canonical structure is an instance of a record/structure type that -can be used to solve equations involving implicit arguments. Assume -that {\qualid} denotes an object $(Build\_struc~ c_1~ \ldots~ c_n)$ in the -structure {\em struct} of which the fields are $x_1$, ..., -$x_n$. Assume that {\qualid} is declared as a canonical structure -using the command -\begin{quote} -{\tt Canonical Structure {\qualid}.} -\end{quote} -Then, each time an equation of the form $(x_i~ -\_)=_{\beta\delta\iota\zeta}c_i$ has to be solved during the -type-checking process, {\qualid} is used as a solution. Otherwise -said, {\qualid} is canonically used to extend the field $c_i$ into a -complete structure built on $c_i$. - -Canonical structures are particularly useful when mixed with -coercions and strict implicit arguments. Here is an example. -\begin{coq_example*} -Require Import Relations. -Require Import EqNat. -Set Implicit Arguments. -Unset Strict Implicit. -Structure Setoid : Type := - {Carrier :> Set; - Equal : relation Carrier; - Prf_equiv : equivalence Carrier Equal}. -Definition is_law (A B:Setoid) (f:A -> B) := - forall x y:A, Equal x y -> Equal (f x) (f y). -Axiom eq_nat_equiv : equivalence nat eq_nat. -Definition nat_setoid : Setoid := Build_Setoid eq_nat_equiv. -Canonical Structure nat_setoid. -\end{coq_example*} - -Thanks to \texttt{nat\_setoid} declared as canonical, the implicit -arguments {\tt A} and {\tt B} can be synthesized in the next statement. -\begin{coq_example} -Lemma is_law_S : is_law S. -\end{coq_example} - -\Rem If a same field occurs in several canonical structure, then -only the structure declared first as canonical is considered. - -\begin{Variants} -\item {\tt Canonical Structure {\ident} := {\term} : {\type}.}\\ - {\tt Canonical Structure {\ident} := {\term}.}\\ - {\tt Canonical Structure {\ident} : {\type} := {\term}.} - -These are equivalent to a regular definition of {\ident} followed by -the declaration - -{\tt Canonical Structure {\ident}}. -\end{Variants} - -\SeeAlso more examples in user contribution \texttt{category} -(\texttt{Rocq/ALGEBRA}). - -\subsubsection{Print Canonical Projections. -\comindex{Print Canonical Projections}} - -This displays the list of global names that are components of some -canonical structure. For each of them, the canonical structure of -which it is a projection is indicated. For instance, the above example -gives the following output: - -\begin{coq_example} -Print Canonical Projections. -\end{coq_example} - -\subsection{Implicit types of variables} -\comindex{Implicit Types} - -It is possible to bind variable names to a given type (e.g. in a -development using arithmetic, it may be convenient to bind the names -{\tt n} or {\tt m} to the type {\tt nat} of natural numbers). The -command for that is -\begin{quote} -\tt Implicit Types \nelist{\ident}{} : {\type} -\end{quote} -The effect of the command is to automatically set the type of bound -variables starting with {\ident} (either {\ident} itself or -{\ident} followed by one or more single quotes, underscore or digits) -to be {\type} (unless the bound variable is already declared with an -explicit type in which case, this latter type is considered). - -\Example -\begin{coq_example} -Require Import List. -Implicit Types m n : nat. -Lemma cons_inj_nat : forall m n l, n :: l = m :: l -> n = m. -intros m n. -Lemma cons_inj_bool : forall (m n:bool) l, n :: l = m :: l -> n = m. -\end{coq_example} - -\begin{Variants} -\item {\tt Implicit Type {\ident} : {\type}}\\ -This is useful for declaring the implicit type of a single variable. -\item - {\tt Implicit Types\,% -(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,% -\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,% -{\term$_n$} {\tt )}.}\\ - Adds $n$ blocks of implicit types with different specifications. -\end{Variants} - - -\subsection{Implicit generalization -\label{implicit-generalization} -\comindex{Generalizable Variables}} - -Implicit generalization is an automatic elaboration of a statement with -free variables into a closed statement where these variables are -quantified explicitly. Implicit generalization is done inside binders -starting with a \verb|`| and terms delimited by \verb|`{ }| and -\verb|`( )|, always introducing maximally inserted implicit arguments for -the generalized variables. Inside implicit generalization -delimiters, free variables in the current context are automatically -quantified using a product or a lambda abstraction to generate a closed -term. In the following statement for example, the variables \texttt{n} -and \texttt{m} are autamatically generalized and become explicit -arguments of the lemma as we are using \verb|`( )|: - -\begin{coq_example} -Generalizable All Variables. -Lemma nat_comm : `(n = n + 0). -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} -One can control the set of generalizable identifiers with the -\texttt{Generalizable} vernacular command to avoid unexpected -generalizations when mistyping identifiers. There are three variants of -the command: - -\begin{quote} -{\tt Generalizable (All|No) Variable(s)? ({\ident$_1$ \ident$_n$})?.} -\end{quote} - -\begin{Variants} -\item {\tt Generalizable All Variables.} All variables are candidate for - generalization if they appear free in the context under a - generalization delimiter. This may result in confusing errors in - case of typos. In such cases, the context will probably contain some - unexpected generalized variable. - -\item {\tt Generalizable No Variables.} Disable implicit generalization - entirely. This is the default behavior. - -\item {\tt Generalizable Variable(s)? {\ident$_1$ \ident$_n$}.} - Allow generalization of the given identifiers only. Calling this - command multiple times adds to the allowed identifiers. - -\item {\tt Global Generalizable} Allows to export the choice of - generalizable variables. -\end{Variants} - -One can also use implicit generalization for binders, in which case the -generalized variables are added as binders and set maximally implicit. -\begin{coq_example*} -Definition id `(x : A) : A := x. -\end{coq_example*} -\begin{coq_example} -Print id. -\end{coq_example} - -The generalizing binders \verb|`{ }| and \verb|`( )| work similarly to -their explicit counterparts, only binding the generalized variables -implicitly, as maximally-inserted arguments. In these binders, the -binding name for the bound object is optional, whereas the type is -mandatory, dually to regular binders. - -\section{Coercions -\label{Coercions} -\index{Coercions}} - -Coercions can be used to implicitly inject terms from one {\em class} in -which they reside into another one. A {\em class} is either a sort -(denoted by the keyword {\tt Sortclass}), a product type (denoted by the -keyword {\tt Funclass}), or a type constructor (denoted by its name), -e.g. an inductive type or any constant with a type of the form -\texttt{forall} $(x_1:A_1) .. (x_n:A_n),~s$ where $s$ is a sort. - -Then the user is able to apply an -object that is not a function, but can be coerced to a function, and -more generally to consider that a term of type A is of type B provided -that there is a declared coercion between A and B. The main command is -\comindex{Coercion} -\begin{quote} -\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}. -\end{quote} -which declares the construction denoted by {\qualid} as a -coercion between {\class$_1$} and {\class$_2$}. - -More details and examples, and a description of the commands related -to coercions are provided in Chapter~\ref{Coercions-full}. - -\section[Printing constructions in full]{Printing constructions in full\label{SetPrintingAll} -\comindex{Set Printing All} -\comindex{Unset Printing All}} - -Coercions, implicit arguments, the type of pattern-matching, but also -notations (see Chapter~\ref{Addoc-syntax}) can obfuscate the behavior -of some tactics (typically the tactics applying to occurrences of -subterms are sensitive to the implicit arguments). The command -\begin{quote} -{\tt Set Printing All.} -\end{quote} -deactivates all high-level printing features such as coercions, -implicit arguments, returned type of pattern-matching, notations and -various syntactic sugar for pattern-matching or record projections. -Otherwise said, {\tt Set Printing All} includes the effects -of the commands {\tt Set Printing Implicit}, {\tt Set Printing -Coercions}, {\tt Set Printing Synth}, {\tt Unset Printing Projections} -and {\tt Unset Printing Notations}. To reactivate the high-level -printing features, use the command -\begin{quote} -{\tt Unset Printing All.} -\end{quote} - -\section[Printing universes]{Printing universes\label{PrintingUniverses} -\comindex{Set Printing Universes} -\comindex{Unset Printing Universes}} - -The following command: -\begin{quote} -{\tt Set Printing Universes} -\end{quote} -activates the display of the actual level of each occurrence of -{\Type}. See Section~\ref{Sorts} for details. This wizard option, in -combination with \texttt{Set Printing All} (see -section~\ref{SetPrintingAll}) can help to diagnose failures to unify -terms apparently identical but internally different in the Calculus of -Inductive Constructions. To reactivate the display of the actual level -of the occurrences of {\Type}, use -\begin{quote} -{\tt Unset Printing Universes.} -\end{quote} - -\comindex{Print Universes} -\comindex{Print Sorted Universes} - -The constraints on the internal level of the occurrences of {\Type} -(see Section~\ref{Sorts}) can be printed using the command -\begin{quote} -{\tt Print \zeroone{Sorted} Universes.} -\end{quote} -If the optional {\tt Sorted} option is given, each universe will be -made equivalent to a numbered label reflecting its level (with a -linear ordering) in the universe hierarchy. - -This command also accepts an optional output filename: -\begin{quote} -\tt Print \zeroone{Sorted} Universes {\str}. -\end{quote} -If {\str} ends in \texttt{.dot} or \texttt{.gv}, the constraints are -printed in the DOT language, and can be processed by Graphviz -tools. The format is unspecified if {\str} doesn't end in -\texttt{.dot} or \texttt{.gv}. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-gal.tex b/doc/refman/RefMan-gal.tex deleted file mode 100644 index 7e4be79d..00000000 --- a/doc/refman/RefMan-gal.tex +++ /dev/null @@ -1,1705 +0,0 @@ -\chapter{The \gallina{} specification language -\label{Gallina}\index{Gallina}} -\label{BNF-syntax} % Used referred to as a chapter label - -This chapter describes \gallina, the specification language of {\Coq}. -It allows to develop mathematical theories and to prove specifications -of programs. The theories are built from axioms, hypotheses, -parameters, lemmas, theorems and definitions of constants, functions, -predicates and sets. The syntax of logical objects involved in -theories is described in Section~\ref{term}. The language of -commands, called {\em The Vernacular} is described in section -\ref{Vernacular}. - -In {\Coq}, logical objects are typed to ensure their logical -correctness. The rules implemented by the typing algorithm are described in -Chapter \ref{Cic}. - -\subsection*{About the grammars in the manual -\index{BNF metasyntax}} - -Grammars are presented in Backus-Naur form (BNF). Terminal symbols are -set in {\tt typewriter font}. In addition, there are special -notations for regular expressions. - -An expression enclosed in square brackets \zeroone{\ldots} means at -most one occurrence of this expression (this corresponds to an -optional component). - -The notation ``\nelist{\entry}{sep}'' stands for a non empty -sequence of expressions parsed by {\entry} and -separated by the literal ``{\tt sep}''\footnote{This is similar to the -expression ``{\entry} $\{$ {\tt sep} {\entry} $\}$'' in -standard BNF, or ``{\entry}~{$($} {\tt sep} {\entry} {$)$*}'' in -the syntax of regular expressions.}. - -Similarly, the notation ``\nelist{\entry}{}'' stands for a non -empty sequence of expressions parsed by the ``{\entry}'' entry, -without any separator between. - -At the end, the notation ``\sequence{\entry}{\tt sep}'' stands for a -possibly empty sequence of expressions parsed by the ``{\entry}'' entry, -separated by the literal ``{\tt sep}''. - -\section{Lexical conventions -\label{lexical}\index{Lexical conventions}} - -\paragraph{Blanks} -Space, newline and horizontal tabulation are considered as blanks. -Blanks are ignored but they separate tokens. - -\paragraph{Comments} - -Comments in {\Coq} are enclosed between {\tt (*} and {\tt - *)}\index{Comments}, and can be nested. They can contain any -character. However, string literals must be correctly closed. Comments -are treated as blanks. - -\paragraph{Identifiers and access identifiers} - -Identifiers, written {\ident}, are sequences of letters, digits, -\verb!_! and \verb!'!, that do not start with a digit or \verb!'!. -That is, they are recognized by the following lexical class: - -\index{ident@\ident} -\begin{center} -\begin{tabular}{rcl} -{\firstletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt \_} -$\mid$ {\tt unicode-letter} -\\ -{\subsequentletter} & ::= & {\tt a..z} $\mid$ {\tt A..Z} $\mid$ {\tt 0..9} -$\mid$ {\tt \_} % $\mid$ {\tt \$} -$\mid$ {\tt '} -$\mid$ {\tt unicode-letter} -$\mid$ {\tt unicode-id-part} \\ -{\ident} & ::= & {\firstletter} \sequencewithoutblank{\subsequentletter}{} -\end{tabular} -\end{center} -All characters are meaningful. In particular, identifiers are -case-sensitive. The entry {\tt unicode-letter} non-exhaustively -includes Latin, Greek, Gothic, Cyrillic, Arabic, Hebrew, Georgian, -Hangul, Hiragana and Katakana characters, CJK ideographs, mathematical -letter-like symbols, hyphens, non-breaking space, {\ldots} The entry -{\tt unicode-id-part} non-exhaustively includes symbols for prime -letters and subscripts. - -Access identifiers, written {\accessident}, are identifiers prefixed -by \verb!.! (dot) without blank. They are used in the syntax of qualified -identifiers. - -\paragraph{Natural numbers and integers} -Numerals are sequences of digits. Integers are numerals optionally preceded by a minus sign. - -\index{num@{\num}} -\index{integer@{\integer}} -\begin{center} -\begin{tabular}{r@{\quad::=\quad}l} -{\digit} & {\tt 0..9} \\ -{\num} & \nelistwithoutblank{\digit}{} \\ -{\integer} & \zeroone{\tt -}{\num} \\ -\end{tabular} -\end{center} - -\paragraph[Strings]{Strings\label{strings} -\index{string@{\qstring}}} -Strings are delimited by \verb!"! (double quote), and enclose a -sequence of any characters different from \verb!"! or the sequence -\verb!""! to denote the double quote character. In grammars, the -entry for quoted strings is {\qstring}. - -\paragraph{Keywords} -The following identifiers are reserved keywords, and cannot be -employed otherwise: -\begin{center} -\begin{tabular}{llllll} -\verb!_! & -\verb!as! & -\verb!at! & -\verb!cofix! & -\verb!else! & -\verb!end! \\ -% -\verb!exists! & -\verb!exists2! & -\verb!fix! & -\verb!for! & -\verb!forall! & -\verb!fun! \\ -% -\verb!if! & -\verb!IF! & -\verb!in! & -\verb!let! & -\verb!match! & -\verb!mod! \\ -% -\verb!Prop! & -\verb!return! & -\verb!Set! & -\verb!then! & -\verb!Type! & -\verb!using! \\ -% -\verb!where! & -\verb!with! & -\end{tabular} -\end{center} - - -\paragraph{Special tokens} -The following sequences of characters are special tokens: -\begin{center} -\begin{tabular}{lllllll} -\verb/!/ & -\verb!%! & -\verb!&! & -\verb!&&! & -\verb!(! & -\verb!()! & -\verb!)! \\ -% -\verb!*! & -\verb!+! & -\verb!++! & -\verb!,! & -\verb!-! & -\verb!->! & -\verb!.! \\ -% -\verb!.(! & -\verb!..! & -\verb!/! & -\verb!/\! & -\verb!:! & -\verb!::! & -\verb!:<! \\ -% -\verb!:=! & -\verb!:>! & -\verb!;! & -\verb!<! & -\verb!<-! & -\verb!<->! & -\verb!<:! \\ -% -\verb!<=! & -\verb!<>! & -\verb!=! & -\verb!=>! & -\verb!=_D! & -\verb!>! & -\verb!>->! \\ -% -\verb!>=! & -\verb!?! & -\verb!?=! & -\verb!@! & -\verb![! & -\verb!\/! & -\verb!]! \\ -% -\verb!^! & -\verb!{! & -\verb!|! & -\verb!|-! & -\verb!||! & -\verb!}! & -\verb!~! \\ -\end{tabular} -\end{center} - -Lexical ambiguities are resolved according to the ``longest match'' -rule: when a sequence of non alphanumerical characters can be decomposed -into several different ways, then the first token is the longest -possible one (among all tokens defined at this moment), and so on. - -\section{Terms \label{term}\index{Terms}} - -\subsection{Syntax of terms} - -Figures \ref{term-syntax} and \ref{term-syntax-aux} describe the basic syntax of -the terms of the {\em Calculus of Inductive Constructions} (also -called \CIC). The formal presentation of {\CIC} is given in Chapter -\ref{Cic}. Extensions of this syntax are given in chapter -\ref{Gallina-extension}. How to customize the syntax is described in Chapter -\ref{Addoc-syntax}. - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl@{\quad~}r} % warning: page width exceeded with \qquad -{\term} & ::= & - {\tt forall} {\binders} {\tt ,} {\term} &(\ref{products})\\ - & $|$ & {\tt fun} {\binders} {\tt =>} {\term} &(\ref{abstractions})\\ - & $|$ & {\tt fix} {\fixpointbodies} &(\ref{fixpoints})\\ - & $|$ & {\tt cofix} {\cofixpointbodies} &(\ref{fixpoints})\\ - & $|$ & {\tt let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} - {\tt in} {\term} &(\ref{let-in})\\ - & $|$ & {\tt let fix} {\fixpointbody} {\tt in} {\term} &(\ref{fixpoints})\\ - & $|$ & {\tt let cofix} {\cofixpointbody} - {\tt in} {\term} &(\ref{fixpoints})\\ - & $|$ & {\tt let} {\tt (} \sequence{\name}{,} {\tt )} \zeroone{\ifitem} - {\tt :=} {\term} - {\tt in} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\tt let '} {\pattern} \zeroone{{\tt in} {\term}} {\tt :=} {\term} - \zeroone{\returntype} {\tt in} {\term} & (\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\tt if} {\term} \zeroone{\ifitem} {\tt then} {\term} - {\tt else} {\term} &(\ref{caseanalysis}, \ref{Mult-match})\\ - & $|$ & {\term} {\tt :} {\term} &(\ref{typecast})\\ - & $|$ & {\term} {\tt <:} {\term} &(\ref{typecast})\\ - & $|$ & {\term} {\tt :>} &(\ref{ProgramSyntax})\\ - & $|$ & {\term} {\tt ->} {\term} &(\ref{products})\\ - & $|$ & {\term} \nelist{\termarg}{}&(\ref{applications})\\ - & $|$ & {\tt @} {\qualid} \sequence{\term}{} - &(\ref{Implicits-explicitation})\\ - & $|$ & {\term} {\tt \%} {\ident} &(\ref{scopechange})\\ - & $|$ & {\tt match} \nelist{\caseitem}{\tt ,} - \zeroone{\returntype} {\tt with} &\\ - && ~~~\zeroone{\zeroone{\tt |} \nelist{\eqn}{|}} {\tt end} - &(\ref{caseanalysis})\\ - & $|$ & {\qualid} &(\ref{qualid})\\ - & $|$ & {\sort} &(\ref{Gallina-sorts})\\ - & $|$ & {\num} &(\ref{numerals})\\ - & $|$ & {\_} &(\ref{hole})\\ - & $|$ & {\tt (} {\term} {\tt )} & \\ - & & &\\ -{\termarg} & ::= & {\term} &\\ - & $|$ & {\tt (} {\ident} {\tt :=} {\term} {\tt )} - &(\ref{Implicits-explicitation})\\ -%% & $|$ & {\tt (} {\num} {\tt :=} {\term} {\tt )} -%% &(\ref{Implicits-explicitation})\\ -&&&\\ -{\binders} & ::= & \nelist{\binder}{} \\ -&&&\\ -{\binder} & ::= & {\name} & (\ref{Binders}) \\ - & $|$ & {\tt (} \nelist{\name}{} {\tt :} {\term} {\tt )} &\\ - & $|$ & {\tt (} {\name} {\typecstr} {\tt :=} {\term} {\tt )} &\\ -& & &\\ -{\name} & ::= & {\ident} &\\ - & $|$ & {\tt \_} &\\ -&&&\\ -{\qualid} & ::= & {\ident} & \\ - & $|$ & {\qualid} {\accessident} &\\ - & & &\\ -{\sort} & ::= & {\tt Prop} ~$|$~ {\tt Set} ~$|$~ {\tt Type} & -\end{tabular} -\end{centerframe} -\caption{Syntax of terms} -\label{term-syntax} -\index{term@{\term}} -\index{sort@{\sort}} -\end{figure} - - - -\begin{figure}[htb] -\begin{centerframe} -\begin{tabular}{lcl} -{\fixpointbodies} & ::= & - {\fixpointbody} \\ - & $|$ & {\fixpointbody} {\tt with} \nelist{\fixpointbody}{{\tt with}} - {\tt for} {\ident} \\ -{\cofixpointbodies} & ::= & - {\cofixpointbody} \\ - & $|$ & {\cofixpointbody} {\tt with} \nelist{\cofixpointbody}{{\tt with}} - {\tt for} {\ident} \\ -&&\\ -{\fixpointbody} & ::= & - {\ident} {\binders} \zeroone{\annotation} {\typecstr} - {\tt :=} {\term} \\ -{\cofixpointbody} & ::= & {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} \\ - & &\\ -{\annotation} & ::= & {\tt \{ struct} {\ident} {\tt \}} \\ -&&\\ -{\caseitem} & ::= & {\term} \zeroone{{\tt as} \name} - \zeroone{{\tt in} \term} \\ -&&\\ -{\ifitem} & ::= & \zeroone{{\tt as} {\name}} {\returntype} \\ -&&\\ -{\returntype} & ::= & {\tt return} {\term} \\ -&&\\ -{\eqn} & ::= & \nelist{\multpattern}{\tt |} {\tt =>} {\term}\\ -&&\\ -{\multpattern} & ::= & \nelist{\pattern}{\tt ,}\\ -&&\\ -{\pattern} & ::= & {\qualid} \nelist{\pattern}{} \\ - & $|$ & {\pattern} {\tt as} {\ident} \\ - & $|$ & {\pattern} {\tt \%} {\ident} \\ - & $|$ & {\qualid} \\ - & $|$ & {\tt \_} \\ - & $|$ & {\num} \\ - & $|$ & {\tt (} \nelist{\orpattern}{,} {\tt )} \\ -\\ -{\orpattern} & ::= & \nelist{\pattern}{\tt |}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax of terms (continued)} -\label{term-syntax-aux} -\end{figure} - - -%%%%%%% - -\subsection{Types} - -{\Coq} terms are typed. {\Coq} types are recognized by the same -syntactic class as {\term}. We denote by {\type} the semantic subclass -of types inside the syntactic class {\term}. -\index{type@{\type}} - - -\subsection{Qualified identifiers and simple identifiers -\label{qualid} -\label{ident}} - -{\em Qualified identifiers} ({\qualid}) denote {\em global constants} -(definitions, lemmas, theorems, remarks or facts), {\em global -variables} (parameters or axioms), {\em inductive -types} or {\em constructors of inductive types}. -{\em Simple identifiers} (or shortly {\ident}) are a -syntactic subset of qualified identifiers. Identifiers may also -denote local {\em variables}, what qualified identifiers do not. - -\subsection{Numerals -\label{numerals}} - -Numerals have no definite semantics in the calculus. They are mere -notations that can be bound to objects through the notation mechanism -(see Chapter~\ref{Addoc-syntax} for details). Initially, numerals are -bound to Peano's representation of natural numbers -(see~\ref{libnats}). - -Note: negative integers are not at the same level as {\num}, for this -would make precedence unnatural. - -\subsection{Sorts -\index{Sorts} -\index{Type@{\Type}} -\index{Set@{\Set}} -\index{Prop@{\Prop}} -\index{Sorts} -\label{Gallina-sorts}} - -There are three sorts \Set, \Prop\ and \Type. -\begin{itemize} -\item \Prop\ is the universe of {\em logical propositions}. -The logical propositions themselves are typing the proofs. -We denote propositions by {\form}. This constitutes a semantic -subclass of the syntactic class {\term}. -\index{form@{\form}} -\item \Set\ is is the universe of {\em program -types} or {\em specifications}. -The specifications themselves are typing the programs. -We denote specifications by {\specif}. This constitutes a semantic -subclass of the syntactic class {\term}. -\index{specif@{\specif}} -\item {\Type} is the type of {\Set} and {\Prop} -\end{itemize} -\noindent More on sorts can be found in Section~\ref{Sorts}. - -\bigskip - -{\Coq} terms are typed. {\Coq} types are recognized by the same -syntactic class as {\term}. We denote by {\type} the semantic subclass -of types inside the syntactic class {\term}. -\index{type@{\type}} - -\subsection{Binders -\label{Binders} -\index{binders}} - -Various constructions such as {\tt fun}, {\tt forall}, {\tt fix} and -{\tt cofix} {\em bind} variables. A binding is represented by an -identifier. If the binding variable is not used in the expression, the -identifier can be replaced by the symbol {\tt \_}. When the type of a -bound variable cannot be synthesized by the system, it can be -specified with the notation {\tt (}\,{\ident}\,{\tt :}\,{\type}\,{\tt -)}. There is also a notation for a sequence of binding variables -sharing the same type: {\tt (}\,{\ident$_1$}\ldots{\ident$_n$}\,{\tt -:}\,{\type}\,{\tt )}. - -Some constructions allow the binding of a variable to value. This is -called a ``let-binder''. The entry {\binder} of the grammar accepts -either an assumption binder as defined above or a let-binder. -The notation in the -latter case is {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )}. In a -let-binder, only one variable can be introduced at the same -time. It is also possible to give the type of the variable as follows: -{\tt (}\,{\ident}\,{\tt :}\,{\term}\,{\tt :=}\,{\term}\,{\tt )}. - -Lists of {\binder} are allowed. In the case of {\tt fun} and {\tt - forall}, it is intended that at least one binder of the list is an -assumption otherwise {\tt fun} and {\tt forall} gets identical. Moreover, -parentheses can be omitted in the case of a single sequence of -bindings sharing the same type (e.g.: {\tt fun~(x~y~z~:~A)~=>~t} can -be shortened in {\tt fun~x~y~z~:~A~=>~t}). - -\subsection{Abstractions -\label{abstractions} -\index{abstractions}} - -The expression ``{\tt fun} {\ident} {\tt :} {\type} {\tt =>}~{\term}'' -defines the {\em abstraction} of the variable {\ident}, of type -{\type}, over the term {\term}. It denotes a function of the variable -{\ident} that evaluates to the expression {\term} (e.g. {\tt fun x:$A$ -=> x} denotes the identity function on type $A$). -% The variable {\ident} is called the {\em parameter} of the function -% (we sometimes say the {\em formal parameter}). -The keyword {\tt fun} can be followed by several binders as given in -Section~\ref{Binders}. Functions over several variables are -equivalent to an iteration of one-variable functions. For instance the -expression ``{\tt fun}~{\ident$_{1}$}~{\ldots}~{\ident$_{n}$}~{\tt -:}~\type~{\tt =>}~{\term}'' denotes the same function as ``{\tt -fun}~{\ident$_{1}$}~{\tt :}~\type~{\tt =>}~{\ldots}~{\tt -fun}~{\ident$_{n}$}~{\tt :}~\type~{\tt =>}~{\term}''. If a let-binder -occurs in the list of binders, it is expanded to a local definition -(see Section~\ref{let-in}). - -\subsection{Products -\label{products} -\index{products}} - -The expression ``{\tt forall}~{\ident}~{\tt :}~{\type}{\tt -,}~{\term}'' denotes the {\em product} of the variable {\ident} of -type {\type}, over the term {\term}. As for abstractions, {\tt forall} -is followed by a binder list, and products over several variables are -equivalent to an iteration of one-variable products. -Note that {\term} is intended to be a type. - -If the variable {\ident} occurs in {\term}, the product is called {\em -dependent product}. The intention behind a dependent product {\tt -forall}~$x$~{\tt :}~{$A$}{\tt ,}~{$B$} is twofold. It denotes either -the universal quantification of the variable $x$ of type $A$ in the -proposition $B$ or the functional dependent product from $A$ to $B$ (a -construction usually written $\Pi_{x:A}.B$ in set theory). - -Non dependent product types have a special notation: ``$A$ {\tt ->} -$B$'' stands for ``{\tt forall \_:}$A${\tt ,}~$B$''. The non dependent -product is used both to denote the propositional implication and -function types. - -\subsection{Applications -\label{applications} -\index{applications}} - -The expression \term$_0$ \term$_1$ denotes the application of -\term$_0$ to \term$_1$. - -The expression {\tt }\term$_0$ \term$_1$ ... \term$_n${\tt} -denotes the application of the term \term$_0$ to the arguments -\term$_1$ ... then \term$_n$. It is equivalent to {\tt (} {\ldots} -{\tt (} {\term$_0$} {\term$_1$} {\tt )} {\ldots} {\tt )} {\term$_n$} {\tt }: -associativity is to the left. - -The notation {\tt (}\,{\ident}\,{\tt :=}\,{\term}\,{\tt )} for -arguments is used for making explicit the value of implicit arguments -(see Section~\ref{Implicits-explicitation}). - -\subsection{Type cast -\label{typecast} -\index{Cast}} - -The expression ``{\term}~{\tt :}~{\type}'' is a type cast -expression. It enforces the type of {\term} to be {\type}. - -``{\term}~{\tt <:}~{\type}'' locally sets up the virtual machine (as if option -{\tt Virtual Machine} were on, see \ref{SetVirtualMachine}) for checking that -{\term} has type {\type}. - -\subsection{Inferable subterms -\label{hole} -\index{\_}} - -Expressions often contain redundant pieces of information. Subterms that -can be automatically inferred by {\Coq} can be replaced by the -symbol ``\_'' and {\Coq} will guess the missing piece of information. - -\subsection{Local definitions (let-in) -\label{let-in} -\index{Local definitions} -\index{let-in}} - - -{\tt let}~{\ident}~{\tt :=}~{\term$_1$}~{\tt in}~{\term$_2$} denotes -the local binding of \term$_1$ to the variable $\ident$ in -\term$_2$. -There is a syntactic sugar for local definition of functions: {\tt -let} {\ident} {\binder$_1$} {\ldots} {\binder$_n$} {\tt :=} {\term$_1$} -{\tt in} {\term$_2$} stands for {\tt let} {\ident} {\tt := fun} -{\binder$_1$} {\ldots} {\binder$_n$} {\tt =>} {\term$_2$} {\tt in} -{\term$_2$}. - -\subsection{Definition by case analysis -\label{caseanalysis} -\index{match@{\tt match\ldots with\ldots end}}} - -Objects of inductive types can be destructurated by a case-analysis -construction called {\em pattern-matching} expression. A -pattern-matching expression is used to analyze the structure of an -inductive objects and to apply specific treatments accordingly. - -This paragraph describes the basic form of pattern-matching. See -Section~\ref{Mult-match} and Chapter~\ref{Mult-match-full} for the -description of the general form. The basic form of pattern-matching is -characterized by a single {\caseitem} expression, a {\multpattern} -restricted to a single {\pattern} and {\pattern} restricted to the -form {\qualid} \nelist{\ident}{}. - -The expression {\tt match} {\term$_0$} {\returntype} {\tt with} -{\pattern$_1$} {\tt =>} {\term$_1$} {\tt $|$} {\ldots} {\tt $|$} -{\pattern$_n$} {\tt =>} {\term$_n$} {\tt end}, denotes a {\em -pattern-matching} over the term {\term$_0$} (expected to be of an -inductive type $I$). The terms {\term$_1$}\ldots{\term$_n$} are the -{\em branches} of the pattern-matching expression. Each of -{\pattern$_i$} has a form \qualid~\nelist{\ident}{} where {\qualid} -must denote a constructor. There should be exactly one branch for -every constructor of $I$. - -The {\returntype} expresses the type returned by the whole {\tt match} -expression. There are several cases. In the {\em non dependent} case, -all branches have the same type, and the {\returntype} is the common -type of branches. In this case, {\returntype} can usually be omitted -as it can be inferred from the type of the branches\footnote{Except if -the inductive type is empty in which case there is no equation that can be -used to infer the return type.}. - -In the {\em dependent} case, there are three subcases. In the first -subcase, the type in each branch may depend on the exact value being -matched in the branch. In this case, the whole pattern-matching itself -depends on the term being matched. This dependency of the term being -matched in the return type is expressed with an ``{\tt as {\ident}}'' -clause where {\ident} is dependent in the return type. -For instance, in the following example: -\begin{coq_example*} -Inductive bool : Type := true : bool | false : bool. -Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : eq A x x. -Inductive or (A:Prop) (B:Prop) : Prop := -| or_introl : A -> or A B -| or_intror : B -> or A B. -Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) -:= match b as x return or (eq bool x true) (eq bool x false) with - | true => or_introl (eq bool true true) (eq bool true false) - (refl_equal bool true) - | false => or_intror (eq bool false true) (eq bool false false) - (refl_equal bool false) - end. -\end{coq_example*} -the branches have respective types {\tt or (eq bool true true) (eq -bool true false)} and {\tt or (eq bool false true) (eq bool false -false)} while the whole pattern-matching expression has type {\tt or -(eq bool b true) (eq bool b false)}, the identifier {\tt x} being used -to represent the dependency. Remark that when the term being matched -is a variable, the {\tt as} clause can be omitted and the term being -matched can serve itself as binding name in the return type. For -instance, the following alternative definition is accepted and has the -same meaning as the previous one. -\begin{coq_example*} -Definition bool_case (b:bool) : or (eq bool b true) (eq bool b false) -:= match b return or (eq bool b true) (eq bool b false) with - | true => or_introl (eq bool true true) (eq bool true false) - (refl_equal bool true) - | false => or_intror (eq bool false true) (eq bool false false) - (refl_equal bool false) - end. -\end{coq_example*} - -The second subcase is only relevant for annotated inductive types such -as the equality predicate (see Section~\ref{Equality}), the order -predicate on natural numbers % (see Section~\ref{le}) % undefined reference -or the type of -lists of a given length (see Section~\ref{listn}). In this configuration, -the type of each branch can depend on the type dependencies specific -to the branch and the whole pattern-matching expression has a type -determined by the specific dependencies in the type of the term being -matched. This dependency of the return type in the annotations of the -inductive type is expressed using a {\tt -``in~I~\_~$\ldots$~\_~\ident$_1$~$\ldots$~\ident$_n$}'' clause, where -\begin{itemize} -\item $I$ is the inductive type of the term being matched; - -\item the names \ident$_i$'s correspond to the arguments of the -inductive type that carry the annotations: the return type is dependent -on them; - -\item the {\_}'s denote the family parameters of the inductive type: -the return type is not dependent on them. -\end{itemize} - -For instance, in the following example: -\begin{coq_example*} -Definition sym_equal (A:Type) (x y:A) (H:eq A x y) : eq A y x := - match H in eq _ _ z return eq A z x with - | refl_equal => refl_equal A x - end. -\end{coq_example*} -the type of the branch has type {\tt eq~A~x~x} because the third -argument of {\tt eq} is {\tt x} in the type of the pattern {\tt -refl\_equal}. On the contrary, the type of the whole pattern-matching -expression has type {\tt eq~A~y~x} because the third argument of {\tt -eq} is {\tt y} in the type of {\tt H}. This dependency of the case -analysis in the third argument of {\tt eq} is expressed by the -identifier {\tt z} in the return type. - -Finally, the third subcase is a combination of the first and second -subcase. In particular, it only applies to pattern-matching on terms -in a type with annotations. For this third subcase, both -the clauses {\tt as} and {\tt in} are available. - -There are specific notations for case analysis on types with one or -two constructors: ``{\tt if {\ldots} then {\ldots} else {\ldots}}'' -and ``{\tt let (}\nelist{\ldots}{,}{\tt ) := } {\ldots} {\tt in} -{\ldots}'' (see Sections~\ref{if-then-else} and~\ref{Letin}). - -%\SeeAlso Section~\ref{Mult-match} for convenient extensions of pattern-matching. - -\subsection{Recursive functions -\label{fixpoints} -\index{fix@{fix \ident$_i$\{\dots\}}}} - -The expression ``{\tt fix} \ident$_1$ \binder$_1$ {\tt :} {\type$_1$} -\texttt{:=} \term$_1$ {\tt with} {\ldots} {\tt with} \ident$_n$ -\binder$_n$~{\tt :} {\type$_n$} \texttt{:=} \term$_n$ {\tt for} -{\ident$_i$}'' denotes the $i$\nth component of a block of functions -defined by mutual well-founded recursion. It is the local counterpart -of the {\tt Fixpoint} command. See Section~\ref{Fixpoint} for more -details. When $n=1$, the ``{\tt for}~{\ident$_i$}'' clause is omitted. - -The expression ``{\tt cofix} \ident$_1$~\binder$_1$ {\tt :} -{\type$_1$} {\tt with} {\ldots} {\tt with} \ident$_n$ \binder$_n$ {\tt -:} {\type$_n$}~{\tt for} {\ident$_i$}'' denotes the $i$\nth component of -a block of terms defined by a mutual guarded co-recursion. It is the -local counterpart of the {\tt CoFixpoint} command. See -Section~\ref{CoFixpoint} for more details. When $n=1$, the ``{\tt -for}~{\ident$_i$}'' clause is omitted. - -The association of a single fixpoint and a local -definition have a special syntax: ``{\tt let fix}~$f$~{\ldots}~{\tt - :=}~{\ldots}~{\tt in}~{\ldots}'' stands for ``{\tt let}~$f$~{\tt := - fix}~$f$~\ldots~{\tt :=}~{\ldots}~{\tt in}~{\ldots}''. The same - applies for co-fixpoints. - - -\section{The Vernacular -\label{Vernacular}} - -\begin{figure}[tbp] -\begin{centerframe} -\begin{tabular}{lcl} -{\sentence} & ::= & {\assumption} \\ - & $|$ & {\definition} \\ - & $|$ & {\inductive} \\ - & $|$ & {\fixpoint} \\ - & $|$ & {\assertion} {\proof} \\ -&&\\ -%% Assumptions -{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\ -&&\\ -{\assumptionkeyword} & $\!\!$ ::= & {\tt Axiom} $|$ {\tt Conjecture} \\ - & $|$ & {\tt Parameter} $|$ {\tt Parameters} \\ - & $|$ & {\tt Variable} $|$ {\tt Variables} \\ - & $|$ & {\tt Hypothesis} $|$ {\tt Hypotheses}\\ -&&\\ -{\assums} & ::= & \nelist{\ident}{} {\tt :} {\term} \\ - & $|$ & \nelist{{\tt (} \nelist{\ident}{} {\tt :} {\term} {\tt )}}{} \\ -&&\\ -%% Definitions -{\definition} & ::= & - {\tt Definition} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\ - & $|$ & {\tt Let} {\ident} \zeroone{\binders} {\typecstr} {\tt :=} {\term} {\tt .} \\ -&&\\ -%% Inductives -{\inductive} & ::= & - {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\ - & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\ - & & \\ -{\inductivebody} & ::= & - {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\ - && ~~\zeroone{\zeroone{\tt |} \nelist{$\!${\ident}$\!$ \zeroone{\binders} {\typecstrwithoutblank}}{|}} \\ - & & \\ %% TODO: where ... -%% Fixpoints -{\fixpoint} & ::= & {\tt Fixpoint} \nelist{\fixpointbody}{with} {\tt .} \\ - & $|$ & {\tt CoFixpoint} \nelist{\cofixpointbody}{with} {\tt .} \\ -&&\\ -%% Lemmas & proofs -{\assertion} & ::= & - {\statkwd} {\ident} \zeroone{\binders} {\tt :} {\term} {\tt .} \\ -&&\\ - {\statkwd} & ::= & {\tt Theorem} $|$ {\tt Lemma} \\ - & $|$ & {\tt Remark} $|$ {\tt Fact}\\ - & $|$ & {\tt Corollary} $|$ {\tt Proposition} \\ - & $|$ & {\tt Definition} $|$ {\tt Example} \\\\ -&&\\ -{\proof} & ::= & {\tt Proof} {\tt .} {\dots} {\tt Qed} {\tt .}\\ - & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Defined} {\tt .}\\ - & $|$ & {\tt Proof} {\tt .} {\dots} {\tt Admitted} {\tt .}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax of sentences} -\label{sentences-syntax} -\end{figure} - -Figure \ref{sentences-syntax} describes {\em The Vernacular} which is the -language of commands of \gallina. A sentence of the vernacular -language, like in many natural languages, begins with a capital letter -and ends with a dot. - -The different kinds of command are described hereafter. They all suppose -that the terms occurring in the sentences are well-typed. - -%% -%% Axioms and Parameters -%% -\subsection{Assumptions -\index{Declarations} -\label{Declarations}} - -Assumptions extend the environment\index{Environment} with axioms, -parameters, hypotheses or variables. An assumption binds an {\ident} -to a {\type}. It is accepted by {\Coq} if and only if this {\type} is -a correct type in the environment preexisting the declaration and if -{\ident} was not previously defined in the same module. This {\type} -is considered to be the type (or specification, or statement) assumed -by {\ident} and we say that {\ident} has type {\type}. - -\subsubsection{{\tt Axiom {\ident} :{\term} .} -\comindex{Axiom} -\label{Axiom}} - -This command links {\term} to the name {\ident} as its specification -in the global context. The fact asserted by {\term} is thus assumed as -a postulate. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item \comindex{Parameter}\comindex{Parameters} - {\tt Parameter {\ident} :{\term}.} \\ - Is equivalent to {\tt Axiom {\ident} : {\term}} - -\item {\tt Parameter {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\ - Adds $n$ parameters with specification {\term} - -\item - {\tt Parameter\,% -(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,% -\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,% -{\term$_n$} {\tt )}.}\\ - Adds $n$ blocks of parameters with different specifications. - -\item \comindex{Conjecture} - {\tt Conjecture {\ident} :{\term}.}\\ - Is equivalent to {\tt Axiom {\ident} : {\term}}. -\end{Variants} - -\noindent {\bf Remark: } It is possible to replace {\tt Parameter} by -{\tt Parameters}. - - -\subsubsection{{\tt Variable {\ident} :{\term}}. -\comindex{Variable} -\comindex{Variables} -\label{Variable}} - -This command links {\term} to the name {\ident} in the context of the -current section (see Section~\ref{Section} for a description of the section -mechanism). When the current section is closed, name {\ident} will be -unknown and every object using this variable will be explicitly -parametrized (the variable is {\em discharged}). Using the {\tt -Variable} command out of any section is equivalent to using {\tt Parameter}. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Variable {\ident$_1$}\ldots{\ident$_n$} {\tt :}{\term}.}\\ - Links {\term} to names {\ident$_1$}\ldots{\ident$_n$}. -\item - {\tt Variable\,% -(\,{\ident$_{1,1}$}\ldots{\ident$_{1,k_1}$}\,{\tt :}\,{\term$_1$} {\tt )}\,% -\ldots\,{\tt (}\,{\ident$_{n,1}$}\ldots{\ident$_{n,k_n}$}\,{\tt :}\,% -{\term$_n$} {\tt )}.}\\ - Adds $n$ blocks of variables with different specifications. -\item \comindex{Hypothesis} - \comindex{Hypotheses} - {\tt Hypothesis {\ident} {\tt :}{\term}.} \\ - \texttt{Hypothesis} is a synonymous of \texttt{Variable} -\end{Variants} - -\noindent {\bf Remark: } It is possible to replace {\tt Variable} by -{\tt Variables} and {\tt Hypothesis} by {\tt Hypotheses}. - -It is advised to use the keywords \verb:Axiom: and \verb:Hypothesis: -for logical postulates (i.e. when the assertion {\term} is of sort -\verb:Prop:), and to use the keywords \verb:Parameter: and -\verb:Variable: in other cases (corresponding to the declaration of an -abstract mathematical entity). - -%% -%% Definitions -%% -\subsection{Definitions -\index{Definitions} -\label{Basic-definitions}} - -Definitions extend the environment\index{Environment} with -associations of names to terms. A definition can be seen as a way to -give a meaning to a name or as a way to abbreviate a term. In any -case, the name can later be replaced at any time by its definition. - -The operation of unfolding a name into its definition is called -$\delta$-conversion\index{delta-reduction@$\delta$-reduction} (see -Section~\ref{delta}). A definition is accepted by the system if and -only if the defined term is well-typed in the current context of the -definition and if the name is not already used. The name defined by -the definition is called a {\em constant}\index{Constant} and the term -it refers to is its {\em body}. A definition has a type which is the -type of its body. - -A formal presentation of constants and environments is given in -Section~\ref{Typed-terms}. - -\subsubsection{\tt Definition {\ident} := {\term}. -\comindex{Definition}} - -This command binds {\term} to the name {\ident} in the -environment, provided that {\term} is well-typed. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Definition {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\ - It checks that the type of {\term$_2$} is definitionally equal to - {\term$_1$}, and registers {\ident} as being of type {\term$_1$}, - and bound to value {\term$_2$}. -\item {\tt Definition {\ident} {\binder$_1$}\ldots{\binder$_n$} - {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\ - This is equivalent to \\ - {\tt Definition\,{\ident}\,{\tt :\,forall}\,% - {\binder$_1$}\ldots{\binder$_n$}{\tt ,}\,\term$_1$\,{\tt :=}}\,% - {\tt fun}\,{\binder$_1$}\ldots{\binder$_n$}\,{\tt =>}\,{\term$_2$}\,% - {\tt .} - -\item {\tt Example {\ident} := {\term}.}\\ -{\tt Example {\ident} {\tt :}{\term$_1$} := {\term$_2$}.}\\ -{\tt Example {\ident} {\binder$_1$}\ldots{\binder$_n$} - {\tt :}\term$_1$ {\tt :=} {\term$_2$}.}\\ -\comindex{Example} -These are synonyms of the {\tt Definition} forms. -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{Error: The term {\term} has type {\type} while it is expected to have type {\type}} -\end{ErrMsgs} - -\SeeAlso Sections \ref{Opaque}, \ref{Transparent}, \ref{unfold}. - -\subsubsection{\tt Let {\ident} := {\term}. -\comindex{Let}} - -This command binds the value {\term} to the name {\ident} in the -environment of the current section. The name {\ident} disappears -when the current section is eventually closed, and, all -persistent objects (such as theorems) defined within the -section and depending on {\ident} are prefixed by the local definition -{\tt let {\ident} := {\term} in}. - -\begin{ErrMsgs} -\item \errindex{{\ident} already exists} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Let {\ident} : {\term$_1$} := {\term$_2$}.} -\end{Variants} - -\SeeAlso Sections \ref{Section} (section mechanism), \ref{Opaque}, -\ref{Transparent} (opaque/transparent constants), \ref{unfold} (tactic - {\tt unfold}). - -%% -%% Inductive Types -%% -\subsection{Inductive definitions -\index{Inductive definitions} -\label{gal_Inductive_Definitions} -\comindex{Inductive} -\label{Inductive}} - -We gradually explain simple inductive types, simple -annotated inductive types, simple parametric inductive types, -mutually inductive types. We explain also co-inductive types. - -\subsubsection{Simple inductive types} - -The definition of a simple inductive type has the following form: - -\medskip -{\tt -\begin{tabular}{l} -Inductive {\ident} : {\sort} := \\ -\begin{tabular}{clcl} - & {\ident$_1$} &:& {\type$_1$} \\ - | & {\ldots} && \\ - | & {\ident$_n$} &:& {\type$_n$} -\end{tabular} -\end{tabular} -} -\medskip - -The name {\ident} is the name of the inductively defined type and -{\sort} is the universes where it lives. -The names {\ident$_1$}, {\ldots}, {\ident$_n$} -are the names of its constructors and {\type$_1$}, {\ldots}, -{\type$_n$} their respective types. The types of the constructors have -to satisfy a {\em positivity condition} (see Section~\ref{Positivity}) -for {\ident}. This condition ensures the soundness of the inductive -definition. If this is the case, the constants {\ident}, -{\ident$_1$}, {\ldots}, {\ident$_n$} are added to the environment with -their respective types. Accordingly to the universe where -the inductive type lives ({\it e.g.} its type {\sort}), {\Coq} provides a -number of destructors for {\ident}. Destructors are named -{\ident}{\tt\_ind}, {\ident}{\tt \_rec} or {\ident}{\tt \_rect} which -respectively correspond to elimination principles on {\tt Prop}, {\tt -Set} and {\tt Type}. The type of the destructors expresses structural -induction/recursion principles over objects of {\ident}. We give below -two examples of the use of the {\tt Inductive} definitions. - -The set of natural numbers is defined as: -\begin{coq_example} -Inductive nat : Set := - | O : nat - | S : nat -> nat. -\end{coq_example} - -The type {\tt nat} is defined as the least \verb:Set: containing {\tt - O} and closed by the {\tt S} constructor. The constants {\tt nat}, -{\tt O} and {\tt S} are added to the environment. - -Now let us have a look at the elimination principles. They are three -of them: -{\tt nat\_ind}, {\tt nat\_rec} and {\tt nat\_rect}. The type of {\tt - nat\_ind} is: -\begin{coq_example} -Check nat_ind. -\end{coq_example} - -This is the well known structural induction principle over natural -numbers, i.e. the second-order form of Peano's induction principle. -It allows to prove some universal property of natural numbers ({\tt -forall n:nat, P n}) by induction on {\tt n}. - -The types of {\tt nat\_rec} and {\tt nat\_rect} are similar, except -that they pertain to {\tt (P:nat->Set)} and {\tt (P:nat->Type)} -respectively . They correspond to primitive induction principles -(allowing dependent types) respectively over sorts \verb:Set: and -\verb:Type:. The constant {\ident}{\tt \_ind} is always provided, -whereas {\ident}{\tt \_rec} and {\ident}{\tt \_rect} can be impossible -to derive (for example, when {\ident} is a proposition). - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{Variants} -\item -\begin{coq_example*} -Inductive nat : Set := O | S (_:nat). -\end{coq_example*} -In the case where inductive types have no annotations (next section -gives an example of such annotations), -%the positivity condition implies that -a constructor can be defined by only giving the type of -its arguments. -\end{Variants} - -\subsubsection{Simple annotated inductive types} - -In an annotated inductive types, the universe where the inductive -type is defined is no longer a simple sort, but what is called an -arity, which is a type whose conclusion is a sort. - -As an example of annotated inductive types, let us define the -$even$ predicate: - -\begin{coq_example} -Inductive even : nat -> Prop := - | even_0 : even O - | even_SS : forall n:nat, even n -> even (S (S n)). -\end{coq_example} - -The type {\tt nat->Prop} means that {\tt even} is a unary predicate -(inductively defined) over natural numbers. The type of its two -constructors are the defining clauses of the predicate {\tt even}. The -type of {\tt even\_ind} is: - -\begin{coq_example} -Check even_ind. -\end{coq_example} - -From a mathematical point of view it asserts that the natural numbers -satisfying the predicate {\tt even} are exactly in the smallest set of -naturals satisfying the clauses {\tt even\_0} or {\tt even\_SS}. This -is why, when we want to prove any predicate {\tt P} over elements of -{\tt even}, it is enough to prove it for {\tt O} and to prove that if -any natural number {\tt n} satisfies {\tt P} its double successor {\tt - (S (S n))} satisfies also {\tt P}. This is indeed analogous to the -structural induction principle we got for {\tt nat}. - -\begin{ErrMsgs} -\item \errindex{Non strictly positive occurrence of {\ident} in {\type}} -\item \errindex{The conclusion of {\type} is not valid; it must be -built from {\ident}} -\end{ErrMsgs} - -\subsubsection{Parametrized inductive types} -In the previous example, each constructor introduces a -different instance of the predicate {\tt even}. In some cases, -all the constructors introduces the same generic instance of the -inductive definition, in which case, instead of an annotation, we use -a context of parameters which are binders shared by all the -constructors of the definition. - -% Inductive types may be parameterized. Parameters differ from inductive -% type annotations in the fact that recursive invokations of inductive -% types must always be done with the same values of parameters as its -% specification. - -The general scheme is: -\begin{center} -{\tt Inductive} {\ident} {\binder$_1$}\ldots{\binder$_k$} : {\term} := - {\ident$_1$}: {\term$_1$} | {\ldots} | {\ident$_n$}: \term$_n$ -{\tt .} -\end{center} -Parameters differ from inductive type annotations in the fact that the -conclusion of each type of constructor {\term$_i$} invoke the inductive -type with the same values of parameters as its specification. - - - -A typical example is the definition of polymorphic lists: -\begin{coq_example*} -Inductive list (A:Set) : Set := - | nil : list A - | cons : A -> list A -> list A. -\end{coq_example*} - -Note that in the type of {\tt nil} and {\tt cons}, we write {\tt - (list A)} and not just {\tt list}.\\ The constants {\tt nil} and -{\tt cons} will have respectively types: - -\begin{coq_example} -Check nil. -Check cons. -\end{coq_example} - -Types of destructors are also quantified with {\tt (A:Set)}. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{Variants} -\item -\begin{coq_example*} -Inductive list (A:Set) : Set := nil | cons (_:A) (_:list A). -\end{coq_example*} -This is an alternative definition of lists where we specify the -arguments of the constructors rather than their full type. -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{The {\num}th argument of {\ident} must be {\ident'} in -{\type}} -\end{ErrMsgs} - -\paragraph{New from \Coq{} V8.1} The condition on parameters for -inductive definitions has been relaxed since \Coq{} V8.1. It is now -possible in the type of a constructor, to invoke recursively the -inductive definition on an argument which is not the parameter itself. - -One can define~: -\begin{coq_example} -Inductive list2 (A:Set) : Set := - | nil2 : list2 A - | cons2 : A -> list2 (A*A) -> list2 A. -\end{coq_example} -\begin{coq_eval} -Reset list2. -\end{coq_eval} -that can also be written by specifying only the type of the arguments: -\begin{coq_example*} -Inductive list2 (A:Set) : Set := nil2 | cons2 (_:A) (_:list2 (A*A)). -\end{coq_example*} -But the following definition will give an error: -\begin{coq_example} -Inductive listw (A:Set) : Set := - | nilw : listw (A*A) - | consw : A -> listw (A*A) -> listw (A*A). -\end{coq_example} -Because the conclusion of the type of constructors should be {\tt - listw A} in both cases. - -A parametrized inductive definition can be defined using -annotations instead of parameters but it will sometimes give a -different (bigger) sort for the inductive definition and will produce -a less convenient rule for case elimination. - -\SeeAlso Sections~\ref{Cic-inductive-definitions} and~\ref{Tac-induction}. - - -\subsubsection{Mutually defined inductive types -\comindex{Inductive} -\label{Mutual-Inductive}} - -The definition of a block of mutually inductive types has the form: - -\medskip -{\tt -\begin{tabular}{l} -Inductive {\ident$_1$} : {\type$_1$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^1$} &:& {\type$_1^1$} \\ - | & {\ldots} && \\ - | & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$} -\end{tabular} \\ -with\\ -~{\ldots} \\ -with {\ident$_m$} : {\type$_m$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^m$} &:& {\type$_1^m$} \\ - | & {\ldots} \\ - | & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}. -\end{tabular} -\end{tabular} -} -\medskip - -\noindent It has the same semantics as the above {\tt Inductive} -definition for each \ident$_1$, {\ldots}, \ident$_m$. All names -\ident$_1$, {\ldots}, \ident$_m$ and \ident$_1^1$, \dots, -\ident$_{n_m}^m$ are simultaneously added to the environment. Then -well-typing of constructors can be checked. Each one of the -\ident$_1$, {\ldots}, \ident$_m$ can be used on its own. - -It is also possible to parametrize these inductive definitions. -However, parameters correspond to a local -context in which the whole set of inductive declarations is done. For -this reason, the parameters must be strictly the same for each -inductive types The extended syntax is: - -\medskip -{\tt -\begin{tabular}{l} -Inductive {\ident$_1$} {\params} : {\type$_1$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^1$} &:& {\type$_1^1$} \\ - | & {\ldots} && \\ - | & {\ident$_{n_1}^1$} &:& {\type$_{n_1}^1$} -\end{tabular} \\ -with\\ -~{\ldots} \\ -with {\ident$_m$} {\params} : {\type$_m$} := \\ -\begin{tabular}{clcl} - & {\ident$_1^m$} &:& {\type$_1^m$} \\ - | & {\ldots} \\ - | & {\ident$_{n_m}^m$} &:& {\type$_{n_m}^m$}. -\end{tabular} -\end{tabular} -} -\medskip - -\Example -The typical example of a mutual inductive data type is the one for -trees and forests. We assume given two types $A$ and $B$ as variables. -It can be declared the following way. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_example*} - -This declaration generates automatically six induction -principles. They are respectively -called {\tt tree\_rec}, {\tt tree\_ind}, {\tt - tree\_rect}, {\tt forest\_rec}, {\tt forest\_ind}, {\tt - forest\_rect}. These ones are not the most general ones but are -just the induction principles corresponding to each inductive part -seen as a single inductive definition. - -To illustrate this point on our example, we give the types of {\tt - tree\_rec} and {\tt forest\_rec}. - -\begin{coq_example} -Check tree_rec. -Check forest_rec. -\end{coq_example} - -Assume we want to parametrize our mutual inductive definitions with -the two type variables $A$ and $B$, the declaration should be done the -following way: - -\begin{coq_eval} -Reset tree. -\end{coq_eval} -\begin{coq_example*} -Inductive tree (A B:Set) : Set := - node : A -> forest A B -> tree A B -with forest (A B:Set) : Set := - | leaf : B -> forest A B - | cons : tree A B -> forest A B -> forest A B. -\end{coq_example*} - -Assume we define an inductive definition inside a section. When the -section is closed, the variables declared in the section and occurring -free in the declaration are added as parameters to the inductive -definition. - -\SeeAlso Section~\ref{Section}. - -\subsubsection{Co-inductive types -\label{CoInductiveTypes} -\comindex{CoInductive}} - -The objects of an inductive type are well-founded with respect to the -constructors of the type. In other words, such objects contain only a -{\it finite} number of constructors. Co-inductive types arise from -relaxing this condition, and admitting types whose objects contain an -infinity of constructors. Infinite objects are introduced by a -non-ending (but effective) process of construction, defined in terms -of the constructors of the type. - -An example of a co-inductive type is the type of infinite sequences of -natural numbers, usually called streams. It can be introduced in \Coq\ -using the \texttt{CoInductive} command: -\begin{coq_example} -CoInductive Stream : Set := - Seq : nat -> Stream -> Stream. -\end{coq_example} - -The syntax of this command is the same as the command \texttt{Inductive} -(see Section~\ref{gal_Inductive_Definitions}). Notice that no -principle of induction is derived from the definition of a -co-inductive type, since such principles only make sense for inductive -ones. For co-inductive ones, the only elimination principle is case -analysis. For example, the usual destructors on streams -\texttt{hd:Stream->nat} and \texttt{tl:Str->Str} can be defined as -follows: -\begin{coq_example} -Definition hd (x:Stream) := let (a,s) := x in a. -Definition tl (x:Stream) := let (a,s) := x in s. -\end{coq_example} - -Definition of co-inductive predicates and blocks of mutually -co-inductive definitions are also allowed. An example of a -co-inductive predicate is the extensional equality on streams: - -\begin{coq_example} -CoInductive EqSt : Stream -> Stream -> Prop := - eqst : - forall s1 s2:Stream, - hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2. -\end{coq_example} - -In order to prove the extensionally equality of two streams $s_1$ and -$s_2$ we have to construct an infinite proof of equality, that is, -an infinite object of type $(\texttt{EqSt}\;s_1\;s_2)$. We will see -how to introduce infinite objects in Section~\ref{CoFixpoint}. - -%% -%% (Co-)Fixpoints -%% -\subsection{Definition of recursive functions} - -\subsubsection{Definition of functions by recursion over inductive objects} - -This section describes the primitive form of definition by recursion -over inductive objects. See Section~\ref{Function} for more advanced -constructions. The command: -\begin{center} - \texttt{Fixpoint {\ident} {\params} {\tt \{struct} - \ident$_0$ {\tt \}} : type$_0$ := \term$_0$ - \comindex{Fixpoint}\label{Fixpoint}} -\end{center} -allows to define functions by pattern-matching over inductive objects -using a fixed point construction. -The meaning of this declaration is to define {\it ident} a recursive -function with arguments specified by the binders in {\params} such -that {\it ident} applied to arguments corresponding to these binders -has type \type$_0$, and is equivalent to the expression \term$_0$. The -type of the {\ident} is consequently {\tt forall {\params} {\tt,} - \type$_0$} and the value is equivalent to {\tt fun {\params} {\tt - =>} \term$_0$}. - -To be accepted, a {\tt Fixpoint} definition has to satisfy some -syntactical constraints on a special argument called the decreasing -argument. They are needed to ensure that the {\tt Fixpoint} definition -always terminates. The point of the {\tt \{struct \ident {\tt \}}} -annotation is to let the user tell the system which argument decreases -along the recursive calls. For instance, one can define the addition -function as : - -\begin{coq_example} -Fixpoint add (n m:nat) {struct n} : nat := - match n with - | O => m - | S p => S (add p m) - end. -\end{coq_example} - -The {\tt \{struct \ident {\tt \}}} annotation may be left implicit, in -this case the system try successively arguments from left to right -until it finds one that satisfies the decreasing condition. Note that -some fixpoints may have several arguments that fit as decreasing -arguments, and this choice influences the reduction of the -fixpoint. Hence an explicit annotation must be used if the leftmost -decreasing argument is not the desired one. Writing explicit -annotations can also speed up type-checking of large mutual fixpoints. - -The {\tt match} operator matches a value (here \verb:n:) with the -various constructors of its (inductive) type. The remaining arguments -give the respective values to be returned, as functions of the -parameters of the corresponding constructor. Thus here when \verb:n: -equals \verb:O: we return \verb:m:, and when \verb:n: equals -\verb:(S p): we return \verb:(S (add p m)):. - -The {\tt match} operator is formally described -in detail in Section~\ref{Caseexpr}. The system recognizes that in -the inductive call {\tt (add p m)} the first argument actually -decreases because it is a {\em pattern variable} coming from {\tt match - n with}. - -\Example The following definition is not correct and generates an -error message: - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(********* Error: Recursive call to wrongplus ... **********) -\end{coq_eval} -\begin{coq_example} -Fixpoint wrongplus (n m:nat) {struct n} : nat := - match m with - | O => n - | S p => S (wrongplus n p) - end. -\end{coq_example} - -because the declared decreasing argument {\tt n} actually does not -decrease in the recursive call. The function computing the addition -over the second argument should rather be written: - -\begin{coq_example*} -Fixpoint plus (n m:nat) {struct m} : nat := - match m with - | O => n - | S p => S (plus n p) - end. -\end{coq_example*} - -The ordinary match operation on natural numbers can be mimicked in the -following way. -\begin{coq_example*} -Fixpoint nat_match - (C:Set) (f0:C) (fS:nat -> C -> C) (n:nat) {struct n} : C := - match n with - | O => f0 - | S p => fS p (nat_match C f0 fS p) - end. -\end{coq_example*} -The recursive call may not only be on direct subterms of the recursive -variable {\tt n} but also on a deeper subterm and we can directly -write the function {\tt mod2} which gives the remainder modulo 2 of a -natural number. -\begin{coq_example*} -Fixpoint mod2 (n:nat) : nat := - match n with - | O => O - | S p => match p with - | O => S O - | S q => mod2 q - end - end. -\end{coq_example*} -In order to keep the strong normalization property, the fixed point -reduction will only be performed when the argument in position of the -decreasing argument (which type should be in an inductive definition) -starts with a constructor. - -The {\tt Fixpoint} construction enjoys also the {\tt with} extension -to define functions over mutually defined inductive types or more -generally any mutually recursive definitions. - -\begin{Variants} -\item {\tt Fixpoint {\ident$_1$} {\params$_1$} :{\type$_1$} := {\term$_1$}\\ - with {\ldots} \\ - with {\ident$_m$} {\params$_m$} :{\type$_m$} := {\term$_m$}}\\ - Allows to define simultaneously {\ident$_1$}, {\ldots}, - {\ident$_m$}. -\end{Variants} - -\Example -The size of trees and forests can be defined the following way: -\begin{coq_eval} -Reset Initial. -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_eval} -\begin{coq_example*} -Fixpoint tree_size (t:tree) : nat := - match t with - | node a f => S (forest_size f) - end - with forest_size (f:forest) : nat := - match f with - | leaf b => 1 - | cons t f' => (tree_size t + forest_size f') - end. -\end{coq_example*} -A generic command {\tt Scheme} is useful to build automatically various -mutual induction principles. It is described in Section~\ref{Scheme}. - -\subsubsection{Definitions of recursive objects in co-inductive types} - -The command: -\begin{center} - \texttt{CoFixpoint {\ident} : \type$_0$ := \term$_0$} - \comindex{CoFixpoint}\label{CoFixpoint} -\end{center} -introduces a method for constructing an infinite object of a -coinduc\-tive type. For example, the stream containing all natural -numbers can be introduced applying the following method to the number -\texttt{O} (see Section~\ref{CoInductiveTypes} for the definition of -{\tt Stream}, {\tt hd} and {\tt tl}): -\begin{coq_eval} -Reset Initial. -CoInductive Stream : Set := - Seq : nat -> Stream -> Stream. -Definition hd (x:Stream) := match x with - | Seq a s => a - end. -Definition tl (x:Stream) := match x with - | Seq a s => s - end. -\end{coq_eval} -\begin{coq_example} -CoFixpoint from (n:nat) : Stream := Seq n (from (S n)). -\end{coq_example} - -Oppositely to recursive ones, there is no decreasing argument in a -co-recursive definition. To be admissible, a method of construction -must provide at least one extra constructor of the infinite object for -each iteration. A syntactical guard condition is imposed on -co-recursive definitions in order to ensure this: each recursive call -in the definition must be protected by at least one constructor, and -only by constructors. That is the case in the former definition, where -the single recursive call of \texttt{from} is guarded by an -application of \texttt{Seq}. On the contrary, the following recursive -function does not satisfy the guard condition: - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(***************** Error: Unguarded recursive call *******************) -\end{coq_eval} -\begin{coq_example} -CoFixpoint filter (p:nat -> bool) (s:Stream) : Stream := - if p (hd s) then Seq (hd s) (filter p (tl s)) else filter p (tl s). -\end{coq_example} - -The elimination of co-recursive definition is done lazily, i.e. the -definition is expanded only when it occurs at the head of an -application which is the argument of a case analysis expression. In -any other context, it is considered as a canonical expression which is -completely evaluated. We can test this using the command -\texttt{Eval}, which computes the normal forms of a term: - -\begin{coq_example} -Eval compute in (from 0). -Eval compute in (hd (from 0)). -Eval compute in (tl (from 0)). -\end{coq_example} - -\begin{Variants} -\item{\tt CoFixpoint {\ident$_1$} {\params} :{\type$_1$} := - {\term$_1$}}\\ As for most constructions, arguments of co-fixpoints - expressions can be introduced before the {\tt :=} sign. -\item{\tt CoFixpoint {\ident$_1$} :{\type$_1$} := {\term$_1$}\\ - with\\ - \mbox{}\hspace{0.1cm} $\ldots$ \\ - with {\ident$_m$} : {\type$_m$} := {\term$_m$}}\\ -As in the \texttt{Fixpoint} command (see Section~\ref{Fixpoint}), it -is possible to introduce a block of mutually dependent methods. -\end{Variants} - -%% -%% Theorems & Lemmas -%% -\subsection{Assertions and proofs} -\label{Assertions} - -An assertion states a proposition (or a type) of which the proof (or -an inhabitant of the type) is interactively built using tactics. The -interactive proof mode is described in -Chapter~\ref{Proof-handling} and the tactics in Chapter~\ref{Tactics}. -The basic assertion command is: - -\subsubsection{\tt Theorem {\ident} \zeroone{\binders} : {\type}. -\comindex{Theorem}} - -After the statement is asserted, {\Coq} needs a proof. Once a proof of -{\type} under the assumptions represented by {\binders} is given and -validated, the proof is generalized into a proof of {\tt forall - \zeroone{\binders}, {\type}} and the theorem is bound to the name -{\ident} in the environment. - -\begin{ErrMsgs} - -\item \errindex{The term {\form} has type {\ldots} which should be Set, - Prop or Type} - -\item \errindexbis{{\ident} already exists}{already exists} - - The name you provided is already defined. You have then to choose - another name. - -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Lemma {\ident} \zeroone{\binders} : {\type}.}\comindex{Lemma}\\ - {\tt Remark {\ident} \zeroone{\binders} : {\type}.}\comindex{Remark}\\ - {\tt Fact {\ident} \zeroone{\binders} : {\type}.}\comindex{Fact}\\ - {\tt Corollary {\ident} \zeroone{\binders} : {\type}.}\comindex{Corollary}\\ - {\tt Proposition {\ident} \zeroone{\binders} : {\type}.}\comindex{Proposition} - -These commands are synonyms of \texttt{Theorem {\ident} \zeroone{\binders} : {\type}}. - -\item {\tt Theorem \nelist{{\ident} \zeroone{\binders}: {\type}}{with}.} - -This command is useful for theorems that are proved by simultaneous -induction over a mutually inductive assumption, or that assert mutually -dependent statements in some mutual co-inductive type. It is equivalent -to {\tt Fixpoint} or {\tt CoFixpoint} -(see Section~\ref{CoFixpoint}) but using tactics to build the proof of -the statements (or the body of the specification, depending on the -point of view). The inductive or co-inductive types on which the -induction or coinduction has to be done is assumed to be non ambiguous -and is guessed by the system. - -Like in a {\tt Fixpoint} or {\tt CoFixpoint} definition, the induction -hypotheses have to be used on {\em structurally smaller} arguments -(for a {\tt Fixpoint}) or be {\em guarded by a constructor} (for a {\tt - CoFixpoint}). The verification that recursive proof arguments are -correct is done only at the time of registering the lemma in the -environment. To know if the use of induction hypotheses is correct at -some time of the interactive development of a proof, use the command -{\tt Guarded} (see Section~\ref{Guarded}). - -The command can be used also with {\tt Lemma}, -{\tt Remark}, etc. instead of {\tt Theorem}. - -\item {\tt Definition {\ident} \zeroone{\binders} : {\type}.} - -This allows to define a term of type {\type} using the proof editing mode. It -behaves as {\tt Theorem} but is intended to be used in conjunction with - {\tt Defined} (see \ref{Defined}) in order to define a - constant of which the computational behavior is relevant. - -The command can be used also with {\tt Example} instead -of {\tt Definition}. - -\SeeAlso Sections~\ref{Opaque} and~\ref{Transparent} ({\tt Opaque} -and {\tt Transparent}) and~\ref{unfold} (tactic {\tt unfold}). - -\item {\tt Let {\ident} \zeroone{\binders} : {\type}.} - -Like {\tt Definition {\ident} \zeroone{\binders} : {\type}.} except -that the definition is turned into a local definition generalized over -the declarations depending on it after closing the current section. - -\item {\tt Fixpoint \nelist{{\ident} {\binders} \zeroone{\annotation} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.} -\comindex{Fixpoint} - -This generalizes the syntax of {\tt Fixpoint} so that one or more -bodies can be defined interactively using the proof editing mode (when -a body is omitted, its type is mandatory in the syntax). When the -block of proofs is completed, it is intended to be ended by {\tt - Defined}. - -\item {\tt CoFixpoint \nelist{{\ident} \zeroone{\binders} {\typecstr} \zeroone{{\tt :=} {\term}}}{with}.} -\comindex{CoFixpoint} - -This generalizes the syntax of {\tt CoFixpoint} so that one or more bodies -can be defined interactively using the proof editing mode. - -\end{Variants} - -\subsubsection{{\tt Proof.} {\dots} {\tt Qed.} -\comindex{Proof} -\comindex{Qed}} - -A proof starts by the keyword {\tt Proof}. Then {\Coq} enters the -proof editing mode until the proof is completed. The proof editing -mode essentially contains tactics that are described in chapter -\ref{Tactics}. Besides tactics, there are commands to manage the proof -editing mode. They are described in Chapter~\ref{Proof-handling}. When -the proof is completed it should be validated and put in the -environment using the keyword {\tt Qed}. -\medskip - -\ErrMsg -\begin{enumerate} -\item \errindex{{\ident} already exists} -\end{enumerate} - -\begin{Remarks} -\item Several statements can be simultaneously asserted. -\item Not only other assertions but any vernacular command can be given -while in the process of proving a given assertion. In this case, the command is -understood as if it would have been given before the statements still to be -proved. -\item {\tt Proof} is recommended but can currently be omitted. On the -opposite side, {\tt Qed} (or {\tt Defined}, see below) is mandatory to -validate a proof. -\item Proofs ended by {\tt Qed} are declared opaque. Their content - cannot be unfolded (see \ref{Conversion-tactics}), thus realizing - some form of {\em proof-irrelevance}. To be able to unfold a proof, - the proof should be ended by {\tt Defined} (see below). -\end{Remarks} - -\begin{Variants} -\item \comindex{Defined} - {\tt Proof.} {\dots} {\tt Defined.}\\ - Same as {\tt Proof.} {\dots} {\tt Qed.} but the proof is - then declared transparent, which means that its - content can be explicitly used for type-checking and that it - can be unfolded in conversion tactics (see - \ref{Conversion-tactics}, \ref{Opaque}, \ref{Transparent}). -%Not claimed to be part of Gallina... -%\item {\tt Proof.} {\dots} {\tt Save.}\\ -% Same as {\tt Proof.} {\dots} {\tt Qed.} -%\item {\tt Goal} \type {\dots} {\tt Save} \ident \\ -% Same as {\tt Lemma} \ident {\tt :} \type \dots {\tt Save.} -% This is intended to be used in the interactive mode. -\item \comindex{Admitted} - {\tt Proof.} {\dots} {\tt Admitted.}\\ - Turns the current asserted statement into an axiom and exits the - proof mode. -\end{Variants} - -% Local Variables: -% mode: LaTeX -% TeX-master: "Reference-Manual" -% End: - diff --git a/doc/refman/RefMan-ide.tex b/doc/refman/RefMan-ide.tex deleted file mode 100644 index f061ef18..00000000 --- a/doc/refman/RefMan-ide.tex +++ /dev/null @@ -1,305 +0,0 @@ -\chapter[\Coq{} Integrated Development Environment]{\Coq{} Integrated Development Environment\label{Addoc-coqide} -\ttindex{coqide}} - -The \Coq{} Integrated Development Environment is a graphical tool, to -be used as a user-friendly replacement to \texttt{coqtop}. Its main -purpose is to allow the user to navigate forward and backward into a -\Coq{} vernacular file, executing corresponding commands or undoing -them respectively. % CREDITS ? Proof general, lablgtk, ... - -\CoqIDE{} is run by typing the command \verb|coqide| on the command -line. Without argument, the main screen is displayed with an ``unnamed -buffer'', and with a file name as argument, another buffer displaying -the contents of that file. Additionally, \verb|coqide| accepts the same -options as \verb|coqtop|, given in Chapter~\ref{Addoc-coqc}, the ones having -obviously no meaning for \CoqIDE{} being ignored. Additionally, \verb|coqide| accepts the option \verb|-enable-geoproof| to enable the support for \emph{GeoProof} \footnote{\emph{GeoProof} is dynamic geometry software which can be used in conjunction with \CoqIDE{} to interactively build a Coq statement corresponding to a geometric figure. More information about \emph{GeoProof} can be found here: \url{http://home.gna.org/geoproof/} }. - - -\begin{figure}[t] -\begin{center} -%HEVEA\imgsrc{coqide.png} -%BEGIN LATEX -\ifpdf % si on est en pdflatex -\includegraphics[width=1.0\textwidth]{coqide.png} -\else -\includegraphics[width=1.0\textwidth]{coqide.eps} -\fi -%END LATEX -\end{center} -\caption{\CoqIDE{} main screen} -\label{fig:coqide} -\end{figure} - -A sample \CoqIDE{} main screen, while navigating into a file -\verb|Fermat.v|, is shown on Figure~\ref{fig:coqide}. At -the top is a menu bar, and a tool bar below it. The large window on -the left is displaying the various \emph{script buffers}. The upper right -window is the \emph{goal window}, where goals to -prove are displayed. The lower right window is the \emph{message window}, -where various messages resulting from commands are displayed. At the -bottom is the status bar. - -\section{Managing files and buffers, basic edition} - -In the script window, you may open arbitrarily many buffers to -edit. The \emph{File} menu allows you to open files or create some, -save them, print or export them into various formats. Among all these -buffers, there is always one which is the current \emph{running - buffer}, whose name is displayed on a green background, which is the -one where Coq commands are currently executed. - -Buffers may be edited as in any text editor, and classical basic -editing commands (Copy/Paste, \ldots) are available in the \emph{Edit} -menu. \CoqIDE{} offers only basic editing commands, so if you need -more complex editing commands, you may launch your favorite text -editor on the current buffer, using the \emph{Edit/External Editor} -menu. - -\section{Interactive navigation into \Coq{} scripts} - -The running buffer is the one where navigation takes place. The -toolbar proposes five basic commands for this. The first one, -represented by a down arrow icon, is for going forward executing one -command. If that command is successful, the part of the script that -has been executed is displayed on a green background. If that command -fails, the error message is displayed in the message window, and the -location of the error is emphasized by a red underline. - -On Figure~\ref{fig:coqide}, the running buffer is \verb|Fermat.v|, all -commands until the \verb|Theorem| have been already executed, and the -user tried to go forward executing \verb|Induction n|. That command -failed because no such tactic exist (tactics are now in -lowercase\ldots), and the wrong word is underlined. - -Notice that the green part of the running buffer is not editable. If -you ever want to modify something you have to go backward using the up -arrow tool, or even better, put the cursor where you want to go back -and use the \textsf{goto} button. Unlike with \verb|coqtop|, you -should never use \verb|Undo| to go backward. - -Two additional tool buttons exist, one to go directly to the end and -one to go back to the beginning. If you try to go to the end, or in -general to run several commands using the \textsf{goto} button, the - execution will stop whenever an error is found. - -If you ever try to execute a command which happens to run during a -long time, and would like to abort it before its -termination, you may use the interrupt button (the white cross on a red circle). - -Finally, notice that these navigation buttons are also available in -the menu, where their keyboard shortcuts are given. - -\section[Try tactics automatically]{Try tactics automatically\label{sec:trytactics}} - -The menu \texttt{Try Tactics} provides some features for automatically -trying to solve the current goal using simple tactics. If such a -tactic succeeds in solving the goal, then its text is automatically -inserted into the script. There is finally a combination of these -tactics, called the \emph{proof wizard} which will try each of them in -turn. This wizard is also available as a tool button (the light -bulb). The set of tactics tried by the wizard is customizable in -the preferences. - -These tactics are general ones, in particular they do not refer to -particular hypotheses. You may also try specific tactics related to -the goal or one of the hypotheses, by clicking with the right mouse -button on the goal or the considered hypothesis. This is the -``contextual menu on goals'' feature, that may be disabled in the -preferences if undesirable. - -\section{Proof folding} - -As your script grows bigger and bigger, it might be useful to hide the proofs -of your theorems and lemmas. - -This feature is toggled via the \texttt{Hide} entry of the \texttt{Navigation} -menu. The proof shall be enclosed between \texttt{Proof.} and \texttt{Qed.}, -both with their final dots. The proof that shall be hidden or revealed is the -first one whose beginning statement (such as \texttt{Theorem}) precedes the -insertion cursor. - -\section{Vernacular commands, templates} - -The \texttt{Templates} menu allows to use shortcuts to insert -vernacular commands. This is a nice way to proceed if you are not sure -of the spelling of the command you want. - -Moreover, this menu offers some \emph{templates} which will automatic -insert a complex command like Fixpoint with a convenient shape for its -arguments. - -\section{Queries} - -\begin{figure}[t] -\begin{center} -%HEVEA\imgsrc{coqide-queries.png} -%BEGIN LATEX -\ifpdf % si on est en pdflatex -\includegraphics[width=1.0\textwidth]{coqide-queries.png} -\else -\includegraphics[width=1.0\textwidth]{coqide-queries.eps} -\fi -%END LATEX -\end{center} -\caption{\CoqIDE{}: the query window} -\label{fig:querywindow} -\end{figure} - - -We call \emph{query} any vernacular command that do not change the -current state, such as \verb|Check|, \verb|SearchAbout|, etc. Those -commands are of course useless during compilation of a file, hence -should not be included in scripts. To run such commands without -writing them in the script, \CoqIDE{} offers another input window -called the \emph{query window}. This window can be displayed on -demand, either by using the \texttt{Window} menu, or directly using -shortcuts given in the \texttt{Queries} menu. Indeed, with \CoqIDE{} -the simplest way to perform a \texttt{SearchAbout} on some identifier -is to select it using the mouse, and pressing \verb|F2|. This will -both make appear the query window and run the \texttt{SearchAbout} in -it, displaying the result. Shortcuts \verb|F3| and \verb|F4| are for -\verb|Check| and \verb|Print| respectively. -Figure~\ref{fig:querywindow} displays the query window after selection -of the word ``mult'' in the script windows, and pressing \verb|F4| to -print its definition. - -\section{Compilation} - -The \verb|Compile| menu offers direct commands to: -\begin{itemize} -\item compile the current buffer -\item run a compilation using \verb|make| -\item go to the last compilation error -\item create a \verb|makefile| using \verb|coq_makefile|. -\end{itemize} - -\section{Customizations} - -You may customize your environment using menu -\texttt{Edit/Preferences}. A new window will be displayed, with -several customization sections presented as a notebook. - -The first section is for selecting the text font used for scripts, goal -and message windows. - -The second section is devoted to file management: you may -configure automatic saving of files, by periodically saving the -contents into files named \verb|#f#| for each opened file -\verb|f|. You may also activate the \emph{revert} feature: in case a -opened file is modified on the disk by a third party, \CoqIDE{} may read -it again for you. Note that in the case you edited that same file, you -will be prompt to choose to either discard your changes or not. The -\texttt{File charset encoding} choice is described below in -Section~\ref{sec:coqidecharencoding} - - -The \verb|Externals| section allows to customize the external commands -for compilation, printing, web browsing. In the browser command, you -may use \verb|%s| to denote the URL to open, for example: % -\verb|mozilla -remote "OpenURL(%s)"|. - -The \verb|Tactics Wizard| section allows to defined the set of tactics -that should be tried, in sequence, to solve the current goal. - -The last section is for miscellaneous boolean settings, such as the -``contextual menu on goals'' feature presented in -Section~\ref{sec:trytactics}. - -Notice that these settings are saved in the file \verb|.coqiderc| of -your home directory. - -A gtk2 accelerator keymap is saved under the name \verb|.coqide.keys|. -This file should not be edited manually: to modify a given menu -shortcut, go to the corresponding menu item without releasing the -mouse button, press the key you want for the new shortcut, and release -the mouse button afterwards. - -For experts: it is also possible to set up a specific gtk resource -file, under the name \verb|.coqide-gtk2rc|, following the gtk2 -resources syntax -\url{http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html}. -Such a default resource file can be found in the subdirectory -\verb=lib/coq/ide= of the root installation directory of \Coq{} -(alternatively, it can be found in the subdirectory \verb=ide= of the -source archive of \Coq{}). You may -copy this file into your home directory, and edit it using any text -editor, \CoqIDE{} itself for example. - -\section{Using unicode symbols} - -\CoqIDE{} supports unicode character encoding in its text windows, -consequently a large set of symbols is available for notations. - -\subsection{Displaying unicode symbols} - -You just need to define suitable notations as described in -Chapter~\ref{Addoc-syntax}. For example, to use the mathematical symbols -$\forall$ and $\exists$, you may define -\begin{quote}\tt -Notation "$\forall$ x : t, P" := \\ -\qquad (forall x:t, P) (at level 200, x ident).\\ -Notation "$\exists$ x : t, P" := \\ -\qquad (exists x:t, P) (at level 200, x ident). -\end{quote} -There exists a small set of such notations already defined, in the -file \verb|utf8.v| of \Coq{} library, so you may enable them just by -\verb|Require utf8| inside \CoqIDE{}, or equivalently, by starting -\CoqIDE{} with \verb|coqide -l utf8|. - -However, there are some issues when using such unicode symbols: you of -course need to use a character font which supports them. In the Fonts -section of the preferences, the Preview line displays some unicode symbols, so -you could figure out if the selected font is OK. Related to this, one -thing you may need to do is choose whether Gtk should use antialiased -fonts or not, by setting the environment variable \verb|GDK_USE_XFT| -to 1 or 0 respectively. - -\subsection{Defining an input method for non ASCII symbols} - -To input an Unicode symbol, a general method is to press both the -CONTROL and the SHIFT keys, and type the hexadecimal code of the -symbol required, for example \verb|2200| for the $\forall$ symbol. -A list of symbol codes is available at \url{http://www.unicode.org}. - -This method obviously doesn't scale, that's why the preferred alternative is to -use an Input Method Editor. On POSIX systems (Linux distros, BSD variants and -MacOS X), you can use \texttt{uim} version 1.6 or later which provides a \LaTeX{}-style -input method. - -To configure \texttt{uim}, execute \texttt{uim-pref-gtk} as your regular user. -In the "Global Settings" group set the default Input Method to "ELatin" (don't -forget to tick the checkbox "Specify default IM"). In the "ELatin" group set the -layout to "TeX", and remember the content of the "[ELatin] on" field (by default -"<Control>\textbackslash"). You can now execute CoqIDE with the following commands (assuming -you use a Bourne-style shell): - -\begin{verbatim} -$ export GTK_IM_MODULE=uim -$ coqide -\end{verbatim} - -Activate the ELatin Input Method with Ctrl-\textbackslash, then type the -sequence "\verb=\Gamma=". You will see the sequence being -replaced by $\Gamma$ as soon as you type the second "a". - -\subsection[Character encoding for saved files]{Character encoding for saved files\label{sec:coqidecharencoding}} - -In the \texttt{Files} section of the preferences, the encoding option -is related to the way files are saved. - -If you have no need to exchange files with non UTF-8 aware -applications, it is better to choose the UTF-8 encoding, since it -guarantees that your files will be read again without problems. (This -is because when \CoqIDE{} reads a file, it tries to automatically -detect its character encoding.) - -If you choose something else than UTF-8, then missing characters will -be written encoded by \verb|\x{....}| or \verb|\x{........}| where -each dot is an hexadecimal digit: the number between braces is the -hexadecimal UNICODE index for the missing character. - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-ind.tex b/doc/refman/RefMan-ind.tex deleted file mode 100644 index 95944240..00000000 --- a/doc/refman/RefMan-ind.tex +++ /dev/null @@ -1,510 +0,0 @@ - -%\documentstyle[11pt]{article} -%\input{title} - -%\include{macros} -%\makeindex - -%\begin{document} -%\coverpage{The module {\tt Equality}}{Cristina CORNES} - -%\tableofcontents - -\chapter[Tactics for inductive types and families]{Tactics for inductive types and families\label{Addoc-equality}} - -This chapter details a few special tactics useful for inferring facts -from inductive hypotheses. They can be considered as tools that -macro-generate complicated uses of the basic elimination tactics for -inductive types. - -Sections \ref{inversion_introduction} to \ref{inversion_using} present -inversion tactics and Section~\ref{scheme} describes -a command {\tt Scheme} for automatic generation of induction schemes -for mutual inductive types. - -%\end{document} -%\documentstyle[11pt]{article} -%\input{title} - -%\begin{document} -%\coverpage{Module Inv: Inversion Tactics}{Cristina CORNES} - -\section[Generalities about inversion]{Generalities about inversion\label{inversion_introduction}} -When working with (co)inductive predicates, we are very often faced to -some of these situations: -\begin{itemize} -\item we have an inconsistent instance of an inductive predicate in the - local context of hypotheses. Thus, the current goal can be trivially - proved by absurdity. - -\item we have a hypothesis that is an instance of an inductive - predicate, and the instance has some variables whose constraints we - would like to derive. -\end{itemize} - -The inversion tactics are very useful to simplify the work in these -cases. Inversion tools can be classified in three groups: -\begin{enumerate} -\item tactics for inverting an instance without stocking the inversion - lemma in the context: - (\texttt{Dependent}) \texttt{Inversion} and - (\texttt{Dependent}) \texttt{Inversion\_clear}. -\item commands for generating and stocking in the context the inversion - lemma corresponding to an instance: \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion}, \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion\_clear}. -\item tactics for inverting an instance using an already defined - inversion lemma: \texttt{Inversion \ldots using}. -\end{enumerate} - -These tactics work for inductive types of arity $(\vec{x}:\vec{T})s$ -where $s \in \{Prop,Set,Type\}$. Sections \ref{inversion_primitive}, -\ref{inversion_derivation} and \ref{inversion_using} -describe respectively each group of tools. - -As inversion proofs may be large in size, we recommend the user to -stock the lemmas whenever the same instance needs to be inverted -several times.\\ - -Let's consider the relation \texttt{Le} over natural numbers and the -following variables: - -\begin{coq_eval} -Restore State "Initial". -\end{coq_eval} - -\begin{coq_example*} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0%N n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_example*} - -For example purposes we defined \verb+Le: nat->nat->Set+ - but we may have defined -it \texttt{Le} of type \verb+nat->nat->Prop+ or \verb+nat->nat->Type+. - - -\section[Inverting an instance]{Inverting an instance\label{inversion_primitive}} -\subsection{The non dependent case} -\begin{itemize} - -\item \texttt{Inversion\_clear} \ident~\\ -\index{Inversion-clear@{\tt Inversion\_clear}} - Let the type of \ident~ in the local context be $(I~\vec{t})$, - where $I$ is a (co)inductive predicate. Then, - \texttt{Inversion} applied to \ident~ derives for each possible - constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary - conditions that should hold for the instance $(I~\vec{t})$ to be - proved by $c_i$. Finally it erases \ident~ from the context. - - - -For example, consider the goal: -\begin{coq_eval} -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -To prove the goal we may need to reason by cases on \texttt{H} and to - derive that \texttt{m} is necessarily of -the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$. -Deriving these conditions corresponds to prove that the -only possible constructor of \texttt{(Le (S n) m)} is -\texttt{LeS} and that we can invert the -\texttt{->} in the type of \texttt{LeS}. -This inversion is possible because \texttt{Le} is the smallest set closed by -the constructors \texttt{LeO} and \texttt{LeS}. - - -\begin{coq_example} -inversion_clear H. -\end{coq_example} - -Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)} -and that the hypothesis \texttt{(Le n m0)} has been added to the -context. - -\item \texttt{Inversion} \ident~\\ -\index{Inversion@{\tt Inversion}} - This tactic differs from {\tt Inversion\_clear} in the fact that - it adds the equality constraints in the context and - it does not erase the hypothesis \ident. - - -In the previous example, {\tt Inversion\_clear} -has substituted \texttt{m} by \texttt{(S m0)}. Sometimes it is -interesting to have the equality \texttt{m=(S m0)} in the -context to use it after. In that case we can use \texttt{Inversion} that -does not clear the equalities: - -\begin{coq_example*} -Undo. -\end{coq_example*} -\begin{coq_example} -inversion H. -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -Note that the hypothesis \texttt{(S m0)=m} has been deduced and -\texttt{H} has not been cleared from the context. - -\end{itemize} - -\begin{Variants} - -\item \texttt{Inversion\_clear } \ident~ \texttt{in} \ident$_1$ \ldots - \ident$_n$\\ -\index{Inversion_clear...in@{\tt Inversion\_clear...in}} - Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing - {\tt Inversion\_clear}. - -\item \texttt{Inversion } \ident~ \texttt{in} \ident$_1$ \ldots \ident$_n$\\ -\index{Inversion ... in@{\tt Inversion ... in}} - Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing - \texttt{Inversion}. - - -\item \texttt{Simple Inversion} \ident~ \\ -\index{Simple Inversion@{\tt Simple Inversion}} - It is a very primitive inversion tactic that derives all the necessary - equalities but it does not simplify - the constraints as \texttt{Inversion} and - {\tt Inversion\_clear} do. - -\end{Variants} - - -\subsection{The dependent case} -\begin{itemize} -\item \texttt{Dependent Inversion\_clear} \ident~\\ -\index{Dependent Inversion-clear@{\tt Dependent Inversion\_clear}} - Let the type of \ident~ in the local context be $(I~\vec{t})$, - where $I$ is a (co)inductive predicate, and let the goal depend both on - $\vec{t}$ and \ident. Then, - \texttt{Dependent Inversion\_clear} applied to \ident~ derives - for each possible constructor $c_i$ of $(I~\vec{t})$, {\bf all} the - necessary conditions that should hold for the instance $(I~\vec{t})$ to be - proved by $c_i$. It also substitutes \ident~ for the corresponding - term in the goal and it erases \ident~ from the context. - - -For example, consider the goal: -\begin{coq_eval} -Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -As \texttt{H} occurs in the goal, we may want to reason by cases on its -structure and so, we would like inversion tactics to -substitute \texttt{H} by the corresponding term in constructor form. -Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a -substitution. To have such a behavior we use the dependent inversion tactics: - -\begin{coq_example} -dependent inversion_clear H. -\end{coq_example} - -Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and -\texttt{m} by \texttt{(S m0)}. - - -\end{itemize} - -\begin{Variants} - -\item \texttt{Dependent Inversion\_clear } \ident~ \texttt{ with } \term\\ -\index{Dependent Inversion_clear...with@{\tt Dependent Inversion\_clear...with}} - \noindent Behaves as \texttt{Dependent Inversion\_clear} but allows to give - explicitly the good generalization of the goal. It is useful when - the system fails to generalize the goal automatically. If - \ident~ has type $(I~\vec{t})$ and $I$ has type - $(\vec{x}:\vec{T})s$, then \term~ must be of type - $I:(\vec{x}:\vec{T})(I~\vec{x})\rightarrow s'$ where $s'$ is the - type of the goal. - - - -\item \texttt{Dependent Inversion} \ident~\\ -\index{Dependent Inversion@{\tt Dependent Inversion}} - This tactic differs from \texttt{Dependent Inversion\_clear} in the fact that - it also adds the equality constraints in the context and - it does not erase the hypothesis \ident~. - -\item \texttt{Dependent Inversion } \ident~ \texttt{ with } \term \\ -\index{Dependent Inversion...with@{\tt Dependent Inversion...with}} - Analogous to \texttt{Dependent Inversion\_clear .. with..} above. -\end{Variants} - - - -\section[Deriving the inversion lemmas]{Deriving the inversion lemmas\label{inversion_derivation}} -\subsection{The non dependent case} - -The tactics (\texttt{Dependent}) \texttt{Inversion} and (\texttt{Dependent}) -{\tt Inversion\_clear} work on a -certain instance $(I~\vec{t})$ of an inductive predicate. At each -application, they inspect the given instance and derive the -corresponding inversion lemma. If we have to invert the same -instance several times it is recommended to stock the lemma in the -context and to reuse it whenever we need it. - -The families of commands \texttt{Derive Inversion}, \texttt{Derive -Dependent Inversion}, \texttt{Derive} \\ {\tt Inversion\_clear} and \texttt{Derive Dependent Inversion\_clear} -allow to generate inversion lemmas for given instances and sorts. Next -section describes the tactic \texttt{Inversion}$\ldots$\texttt{using} that refines the -goal with a specified inversion lemma. - -\begin{itemize} - -\item \texttt{Derive Inversion\_clear} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Inversion_clear...with@{\tt Derive Inversion\_clear...with}} - Let $I$ be an inductive predicate and $\vec{x}$ the variables - occurring in $\vec{t}$. This command generates and stocks - the inversion lemma for the sort \sort~ corresponding to the instance - $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf - global} environment. When applied it is equivalent to have - inverted the instance with the tactic {\tt Inversion\_clear}. - - - For example, to generate the inversion lemma for the instance - \texttt{(Le (S n) m)} and the sort \texttt{Prop} we do: -\begin{coq_example} -Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort - Prop. -\end{coq_example} - -Let us inspect the type of the generated lemma: -\begin{coq_example} -Check leminv. -\end{coq_example} - - - -\end{itemize} - -%\variants -%\begin{enumerate} -%\item \verb+Derive Inversion_clear+ \ident$_1$ \ident$_2$ \\ -%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}} -% Let \ident$_1$ have type $(I~\vec{t})$ in the local context ($I$ -% an inductive predicate). Then, this command has the same semantics -% as \verb+Derive Inversion_clear+ \ident$_2$~ \verb+with+ -% $(\vec{x}:\vec{T})(I~\vec{t})$ \verb+Sort Prop+ where $\vec{x}$ are the free -% variables of $(I~\vec{t})$ declared in the local context (variables -% of the global context are considered as constants). -%\item \verb+Derive Inversion+ \ident$_1$~ \ident$_2$~\\ -%\index{Derive Inversion@{\tt Derive Inversion}} -% Analogous to the previous command. -%\item \verb+Derive Inversion+ $num$ \ident~ \ident~ \\ -%\index{Derive Inversion@{\tt Derive Inversion}} -% This command behaves as \verb+Derive Inversion+ \ident~ {\it -% namehyp} performed on the goal number $num$. -% -%\item \verb+Derive Inversion_clear+ $num$ \ident~ \ident~ \\ -%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}} -% This command behaves as \verb+Derive Inversion_clear+ \ident~ -% \ident~ performed on the goal number $num$. -%\end{enumerate} - - - -A derived inversion lemma is adequate for inverting the instance -with which it was generated, \texttt{Derive} applied to -different instances yields different lemmas. In general, if we generate -the inversion lemma with -an instance $(\vec{x}:\vec{T})(I~\vec{t})$ and a sort $s$, the inversion lemma will -expect a predicate of type $(\vec{x}:\vec{T})s$ as first argument. \\ - -\begin{Variant} -\item \texttt{Derive Inversion} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort\\ -\index{Derive Inversion...with@{\tt Derive Inversion...with}} - Analogous of \texttt{Derive Inversion\_clear .. with ..} but - when applied it is equivalent to having - inverted the instance with the tactic \texttt{Inversion}. -\end{Variant} - -\subsection{The dependent case} -\begin{itemize} -\item \texttt{Derive Dependent Inversion\_clear} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Dependent Inversion\_clear...with@{\tt Derive Dependent Inversion\_clear...with}} - Let $I$ be an inductive predicate. This command generates and stocks - the dependent inversion lemma for the sort \sort~ corresponding to the instance - $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf - global} environment. When applied it is equivalent to having - inverted the instance with the tactic \texttt{Dependent Inversion\_clear}. -\end{itemize} - -\begin{coq_example} -Derive Dependent Inversion_clear leminv_dep with - (forall n m:nat, Le (S n) m) Sort Prop. -\end{coq_example} - -\begin{coq_example} -Check leminv_dep. -\end{coq_example} - -\begin{Variants} -\item \texttt{Derive Dependent Inversion} \ident~ \texttt{with} - $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\ -\index{Derive Dependent Inversion...with@{\tt Derive Dependent Inversion...with}} - Analogous to \texttt{Derive Dependent Inversion\_clear}, but when - applied it is equivalent to having - inverted the instance with the tactic \texttt{Dependent Inversion}. - -\end{Variants} - -\section[Using already defined inversion lemmas]{Using already defined inversion lemmas\label{inversion_using}} -\begin{itemize} -\item \texttt{Inversion} \ident \texttt{ using} \ident$'$ \\ -\index{Inversion...using@{\tt Inversion...using}} - Let \ident~ have type $(I~\vec{t})$ ($I$ an inductive - predicate) in the local context, and \ident$'$ be a (dependent) inversion - lemma. Then, this tactic refines the current goal with the specified - lemma. - - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} -\begin{coq_example} -inversion H using leminv. -\end{coq_example} - - -\end{itemize} -\variant -\begin{enumerate} -\item \texttt{Inversion} \ident~ \texttt{using} \ident$'$ \texttt{in} \ident$_1$\ldots \ident$_n$\\ -\index{Inversion...using...in@{\tt Inversion...using...in}} -This tactic behaves as generalizing \ident$_1$\ldots \ident$_n$, -then doing \texttt{Use Inversion} \ident~\ident$'$. -\end{enumerate} - -\section[\tt Scheme ...]{\tt Scheme ...\index{Scheme@{\tt Scheme}}\label{Scheme} -\label{scheme}} -The {\tt Scheme} command is a high-level tool for generating -automatically (possibly mutual) induction principles for given types -and sorts. Its syntax follows the schema : - -\noindent -{\tt Scheme {\ident$_1$} := Induction for \term$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} .. \\ - with {\ident$_m$} := Induction for {\term$_m$} Sort - {\sort$_m$}}\\ -\term$_1$ \ldots \term$_m$ are different inductive types belonging to -the same package of mutual inductive definitions. This command -generates {\ident$_1$}\ldots{\ident$_m$} to be mutually recursive -definitions. Each term {\ident$_i$} proves a general principle -of mutual induction for objects in type {\term$_i$}. - -\Example -The definition of principle of mutual induction for {\tt tree} and -{\tt forest} over the sort {\tt Set} is defined by the command: -\begin{coq_eval} -Restore State "Initial". -Variables A B : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. -\end{coq_eval} -\begin{coq_example*} -Scheme tree_forest_rec := Induction for tree - Sort Set - with forest_tree_rec := Induction for forest Sort Set. -\end{coq_example*} -You may now look at the type of {\tt tree\_forest\_rec} : -\begin{coq_example} -Check tree_forest_rec. -\end{coq_example} -This principle involves two different predicates for {\tt trees} and -{\tt forests}; it also has three premises each one corresponding to a -constructor of one of the inductive definitions. - -The principle {\tt tree\_forest\_rec} shares exactly the same -premises, only the conclusion now refers to the property of forests. -\begin{coq_example} -Check forest_tree_rec. -\end{coq_example} - -\begin{Variant} -\item {\tt Scheme {\ident$_1$} := Minimality for \term$_1$ Sort {\sort$_1$} \\ - with\\ - \mbox{}\hspace{0.1cm} .. \\ - with {\ident$_m$} := Minimality for {\term$_m$} Sort - {\sort$_m$}}\\ -Same as before but defines a non-dependent elimination principle more -natural in case of inductively defined relations. -\end{Variant} - -\Example -With the predicates {\tt odd} and {\tt even} inductively defined as: -% \begin{coq_eval} -% Restore State "Initial". -% \end{coq_eval} -\begin{coq_example*} -Inductive odd : nat -> Prop := - oddS : forall n:nat, even n -> odd (S n) -with even : nat -> Prop := - | evenO : even 0%N - | evenS : forall n:nat, odd n -> even (S n). -\end{coq_example*} -The following command generates a powerful elimination -principle: -\begin{coq_example*} -Scheme odd_even := Minimality for odd Sort Prop - with even_odd := Minimality for even Sort Prop. -\end{coq_example*} -The type of {\tt odd\_even} for instance will be: -\begin{coq_example} -Check odd_even. -\end{coq_example} -The type of {\tt even\_odd} shares the same premises but the -conclusion is {\tt (n:nat)(even n)->(Q n)}. - -\subsection[\tt Combined Scheme ...]{\tt Combined Scheme ...\index{CombinedScheme@{\tt Combined Scheme}}\label{CombinedScheme} -\label{combinedscheme}} -The {\tt Combined Scheme} command is a tool for combining -induction principles generated by the {\tt Scheme} command. -Its syntax follows the schema : - -\noindent -{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}\\ -\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to -the same package of mutual inductive principle definitions. This command -generates {\ident$_0$} to be the conjunction of the principles: it is -build from the common premises of the principles and concluded by the -conjunction of their conclusions. For exemple, we can combine the -induction principles for trees and forests: - -\begin{coq_example*} -Combined Scheme tree_forest_mutind from tree_ind, forest_ind. -Check tree_forest_mutind. -\end{coq_example*} - -%\end{document} - diff --git a/doc/refman/RefMan-int.tex b/doc/refman/RefMan-int.tex deleted file mode 100644 index 6d2c37f7..00000000 --- a/doc/refman/RefMan-int.tex +++ /dev/null @@ -1,146 +0,0 @@ -%BEGIN LATEX -\setheaders{Introduction} -%END LATEX -\chapter*{Introduction} - -This document is the Reference Manual of version \coqversion{} of the \Coq\ -proof assistant. A companion volume, the \Coq\ Tutorial, is provided -for the beginners. It is advised to read the Tutorial first. -A book~\cite{CoqArt} on practical uses of the \Coq{} system was published in 2004 and is a good support for both the beginner and -the advanced user. - -%The system \Coq\ is designed to develop mathematical proofs. It can be -%used by mathematicians to develop mathematical theories and by -%computer scientists to write formal specifications, -The \Coq{} system is designed to develop mathematical proofs, and -especially to write formal specifications, programs and to verify that -programs are correct with respect to their specification. It provides -a specification language named \gallina. Terms of \gallina\ can -represent programs as well as properties of these programs and proofs -of these properties. Using the so-called \textit{Curry-Howard - isomorphism}, programs, properties and proofs are formalized in the -same language called \textit{Calculus of Inductive Constructions}, -that is a $\lambda$-calculus with a rich type system. All logical -judgments in \Coq\ are typing judgments. The very heart of the Coq -system is the type-checking algorithm that checks the correctness of -proofs, in other words that checks that a program complies to its -specification. \Coq\ also provides an interactive proof assistant to -build proofs using specific programs called \textit{tactics}. - -All services of the \Coq\ proof assistant are accessible by -interpretation of a command language called \textit{the vernacular}. - -\Coq\ has an interactive mode in which commands are interpreted as the -user types them in from the keyboard and a compiled mode where -commands are processed from a file. - -\begin{itemize} -\item The interactive mode may be used as a debugging mode in which - the user can develop his theories and proofs step by step, - backtracking if needed and so on. The interactive mode is run with - the {\tt coqtop} command from the operating system (which we shall - assume to be some variety of UNIX in the rest of this document). -\item The compiled mode acts as a proof checker taking a file - containing a whole development in order to ensure its correctness. - Moreover, \Coq's compiler provides an output file containing a - compact representation of its input. The compiled mode is run with - the {\tt coqc} command from the operating system. - -\end{itemize} -These two modes are documented in Chapter~\ref{Addoc-coqc}. - -Other modes of interaction with \Coq{} are possible: through an emacs -shell window, an emacs generic user-interface for proof assistant -(ProofGeneral~\cite{ProofGeneral}) or through a customized interface -(PCoq~\cite{Pcoq}). These facilities are not documented here. There -is also a \Coq{} Integrated Development Environment described in -Chapter~\ref{Addoc-coqide}. - -\section*{How to read this book} - -This is a Reference Manual, not a User Manual, then it is not made for a -continuous reading. However, it has some structure that is explained -below. - -\begin{itemize} -\item The first part describes the specification language, - Gallina. Chapters~\ref{Gallina} and~\ref{Gallina-extension} - describe the concrete syntax as well as the meaning of programs, - theorems and proofs in the Calculus of Inductive - Constructions. Chapter~\ref{Theories} describes the standard library - of \Coq. Chapter~\ref{Cic} is a mathematical description of the - formalism. Chapter~\ref{chapter:Modules} describes the module system. - -\item The second part describes the proof engine. It is divided in - five chapters. Chapter~\ref{Vernacular-commands} presents all - commands (we call them \emph{vernacular commands}) that are not - directly related to interactive proving: requests to the - environment, complete or partial evaluation, loading and compiling - files. How to start and stop proofs, do multiple proofs in parallel - is explained in Chapter~\ref{Proof-handling}. In - Chapter~\ref{Tactics}, all commands that realize one or more steps - of the proof are presented: we call them \emph{tactics}. The - language to combine these tactics into complex proof strategies is - given in Chapter~\ref{TacticLanguage}. Examples of tactics are - described in Chapter~\ref{Tactics-examples}. - -%\item The third part describes how to extend the system in two ways: -% adding parsing and pretty-printing rules -% (Chapter~\ref{Addoc-syntax}) and writing new tactics -% (Chapter~\ref{TacticLanguage}). - -\item The third part describes how to extend the syntax of \Coq. It -corresponds to the Chapter~\ref{Addoc-syntax}. - -\item In the fourth part more practical tools are documented. First in - Chapter~\ref{Addoc-coqc}, the usage of \texttt{coqc} (batch mode) - and \texttt{coqtop} (interactive mode) with their options is - described. Then, in Chapter~\ref{Utilities}, - various utilities that come with the \Coq\ distribution are - presented. - Finally, Chapter~\ref{Addoc-coqide} describes the \Coq{} integrated - development environment. -\end{itemize} - -At the end of the document, after the global index, the user can find -specific indexes for tactics, vernacular commands, and error -messages. - -\section*{List of additional documentation} - -This manual does not contain all the documentation the user may need -about \Coq{}. Various informations can be found in the following -documents: -\begin{description} - -\item[Tutorial] - A companion volume to this reference manual, the \Coq{} Tutorial, is - aimed at gently introducing new users to developing proofs in \Coq{} - without assuming prior knowledge of type theory. In a second step, the - user can read also the tutorial on recursive types (document {\tt - RecTutorial.ps}). - -\item[Addendum] The fifth part (the Addendum) of the Reference Manual - is distributed as a separate document. It contains more - detailed documentation and examples about some specific aspects of the - system that may interest only certain users. It shares the indexes, - the page numbers and - the bibliography with the Reference Manual. If you see in one of the - indexes a page number that is outside the Reference Manual, it refers - to the Addendum. - -\item[Installation] A text file INSTALL that comes with the sources - explains how to install \Coq{}. - -\item[The \Coq{} standard library] -A commented version of sources of the \Coq{} standard library -(including only the specifications, the proofs are removed) -is given in the additional document {\tt Library.ps}. - -\end{description} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-lib.tex b/doc/refman/RefMan-lib.tex deleted file mode 100644 index 31c6fef4..00000000 --- a/doc/refman/RefMan-lib.tex +++ /dev/null @@ -1,1101 +0,0 @@ -\chapter[The {\Coq} library]{The {\Coq} library\index{Theories}\label{Theories}} - -The \Coq\ library is structured into two parts: - -\begin{description} -\item[The initial library:] it contains - elementary logical notions and data-types. It constitutes the - basic state of the system directly available when running - \Coq; - -\item[The standard library:] general-purpose libraries containing - various developments of \Coq\ axiomatizations about sets, lists, - sorting, arithmetic, etc. This library comes with the system and its - modules are directly accessible through the \verb!Require! command - (see Section~\ref{Require}); -\end{description} - -In addition, user-provided libraries or developments are provided by -\Coq\ users' community. These libraries and developments are available -for download at \texttt{http://coq.inria.fr} (see -Section~\ref{Contributions}). - -The chapter briefly reviews the \Coq\ libraries. - -\section[The basic library]{The basic library\label{Prelude}} - -This section lists the basic notions and results which are directly -available in the standard \Coq\ system\footnote{Most -of these constructions are defined in the -{\tt Prelude} module in directory {\tt theories/Init} at the {\Coq} -root directory; this includes the modules -{\tt Notations}, -{\tt Logic}, -{\tt Datatypes}, -{\tt Specif}, -{\tt Peano}, -{\tt Wf} and -{\tt Tactics}. -Module {\tt Logic\_Type} also makes it in the initial state}. - -\subsection[Notations]{Notations\label{Notations}} - -This module defines the parsing and pretty-printing of many symbols -(infixes, prefixes, etc.). However, it does not assign a meaning to -these notations. The purpose of this is to define and fix once for all -the precedence and associativity of very common notations. The main -notations fixed in the initial state are listed on -Figure~\ref{init-notations}. - -\begin{figure} -\begin{center} -\begin{tabular}{|cll|} -\hline -Notation & Precedence & Associativity \\ -\hline -\verb!_ <-> _! & 95 & no \\ -\verb!_ \/ _! & 85 & right \\ -\verb!_ /\ _! & 80 & right \\ -\verb!~ _! & 75 & right \\ -\verb!_ = _! & 70 & no \\ -\verb!_ = _ = _! & 70 & no \\ -\verb!_ = _ :> _! & 70 & no \\ -\verb!_ <> _! & 70 & no \\ -\verb!_ <> _ :> _! & 70 & no \\ -\verb!_ < _! & 70 & no \\ -\verb!_ > _! & 70 & no \\ -\verb!_ <= _! & 70 & no \\ -\verb!_ >= _! & 70 & no \\ -\verb!_ < _ < _! & 70 & no \\ -\verb!_ < _ <= _! & 70 & no \\ -\verb!_ <= _ < _! & 70 & no \\ -\verb!_ <= _ <= _! & 70 & no \\ -\verb!_ + _! & 50 & left \\ -\verb!_ || _! & 50 & left \\ -\verb!_ - _! & 50 & left \\ -\verb!_ * _! & 40 & left \\ -\verb!_ && _! & 40 & left \\ -\verb!_ / _! & 40 & left \\ -\verb!- _! & 35 & right \\ -\verb!/ _! & 35 & right \\ -\verb!_ ^ _! & 30 & right \\ -\hline -\end{tabular} -\end{center} -\caption{Notations in the initial state} -\label{init-notations} -\end{figure} - -\subsection[Logic]{Logic\label{Logic}} - -\begin{figure} -\begin{centerframe} -\begin{tabular}{lclr} -{\form} & ::= & {\tt True} & ({\tt True})\\ - & $|$ & {\tt False} & ({\tt False})\\ - & $|$ & {\tt\char'176} {\form} & ({\tt not})\\ - & $|$ & {\form} {\tt /$\backslash$} {\form} & ({\tt and})\\ - & $|$ & {\form} {\tt $\backslash$/} {\form} & ({\tt or})\\ - & $|$ & {\form} {\tt ->} {\form} & (\em{primitive implication})\\ - & $|$ & {\form} {\tt <->} {\form} & ({\tt iff})\\ - & $|$ & {\tt forall} {\ident} {\tt :} {\type} {\tt ,} - {\form} & (\em{primitive for all})\\ - & $|$ & {\tt exists} {\ident} \zeroone{{\tt :} {\specif}} {\tt - ,} {\form} & ({\tt ex})\\ - & $|$ & {\tt exists2} {\ident} \zeroone{{\tt :} {\specif}} {\tt - ,} {\form} {\tt \&} {\form} & ({\tt ex2})\\ - & $|$ & {\term} {\tt =} {\term} & ({\tt eq})\\ - & $|$ & {\term} {\tt =} {\term} {\tt :>} {\specif} & ({\tt eq}) -\end{tabular} -\end{centerframe} -\caption{Syntax of formulas} -\label{formulas-syntax} -\end{figure} - -The basic library of {\Coq} comes with the definitions of standard -(intuitionistic) logical connectives (they are defined as inductive -constructions). They are equipped with an appealing syntax enriching the -(subclass {\form}) of the syntactic class {\term}. The syntax -extension is shown on Figure~\ref{formulas-syntax}. - -% The basic library of {\Coq} comes with the definitions of standard -% (intuitionistic) logical connectives (they are defined as inductive -% constructions). They are equipped with an appealing syntax enriching -% the (subclass {\form}) of the syntactic class {\term}. The syntax -% extension \footnote{This syntax is defined in module {\tt -% LogicSyntax}} is shown on Figure~\ref{formulas-syntax}. - -\Rem Implication is not defined but primitive (it is a non-dependent -product of a proposition over another proposition). There is also a -primitive universal quantification (it is a dependent product over a -proposition). The primitive universal quantification allows both -first-order and higher-order quantification. - -\subsubsection[Propositional Connectives]{Propositional Connectives\label{Connectives} -\index{Connectives}} - -First, we find propositional calculus connectives: -\ttindex{True} -\ttindex{I} -\ttindex{False} -\ttindex{not} -\ttindex{and} -\ttindex{conj} -\ttindex{proj1} -\ttindex{proj2} - -\begin{coq_eval} -Set Printing Depth 50. -\end{coq_eval} -\begin{coq_example*} -Inductive True : Prop := I. -Inductive False : Prop := . -Definition not (A: Prop) := A -> False. -Inductive and (A B:Prop) : Prop := conj (_:A) (_:B). -Section Projections. -Variables A B : Prop. -Theorem proj1 : A /\ B -> A. -Theorem proj2 : A /\ B -> B. -End Projections. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\ttindex{or} -\ttindex{or\_introl} -\ttindex{or\_intror} -\ttindex{iff} -\ttindex{IF\_then\_else} -\begin{coq_example*} -Inductive or (A B:Prop) : Prop := - | or_introl (_:A) - | or_intror (_:B). -Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P). -Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R. -\end{coq_example*} - -\subsubsection[Quantifiers]{Quantifiers\label{Quantifiers} -\index{Quantifiers}} - -Then we find first-order quantifiers: -\ttindex{all} -\ttindex{ex} -\ttindex{exists} -\ttindex{ex\_intro} -\ttindex{ex2} -\ttindex{exists2} -\ttindex{ex\_intro2} - -\begin{coq_example*} -Definition all (A:Set) (P:A -> Prop) := forall x:A, P x. -Inductive ex (A: Set) (P:A -> Prop) : Prop := - ex_intro (x:A) (_:P x). -Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop := - ex_intro2 (x:A) (_:P x) (_:Q x). -\end{coq_example*} - -The following abbreviations are allowed: -\begin{center} - \begin{tabular}[h]{|l|l|} - \hline - \verb+exists x:A, P+ & \verb+ex A (fun x:A => P)+ \\ - \verb+exists x, P+ & \verb+ex _ (fun x => P)+ \\ - \verb+exists2 x:A, P & Q+ & \verb+ex2 A (fun x:A => P) (fun x:A => Q)+ \\ - \verb+exists2 x, P & Q+ & \verb+ex2 _ (fun x => P) (fun x => Q)+ \\ - \hline - \end{tabular} -\end{center} - -The type annotation ``\texttt{:A}'' can be omitted when \texttt{A} can be -synthesized by the system. - -\subsubsection[Equality]{Equality\label{Equality} -\index{Equality}} - -Then, we find equality, defined as an inductive relation. That is, -given a type \verb:A: and an \verb:x: of type \verb:A:, the -predicate \verb:(eq A x): is the smallest one which contains \verb:x:. -This definition, due to Christine Paulin-Mohring, is equivalent to -define \verb:eq: as the smallest reflexive relation, and it is also -equivalent to Leibniz' equality. - -\ttindex{eq} -\ttindex{refl\_equal} - -\begin{coq_example*} -Inductive eq (A:Type) (x:A) : A -> Prop := - refl_equal : eq A x x. -\end{coq_example*} - -\subsubsection[Lemmas]{Lemmas\label{PreludeLemmas}} - -Finally, a few easy lemmas are provided. - -\ttindex{absurd} - -\begin{coq_example*} -Theorem absurd : forall A C:Prop, A -> ~ A -> C. -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} -\ttindex{sym\_eq} -\ttindex{trans\_eq} -\ttindex{f\_equal} -\ttindex{sym\_not\_eq} -\begin{coq_example*} -Section equality. -Variables A B : Type. -Variable f : A -> B. -Variables x y z : A. -Theorem sym_eq : x = y -> y = x. -Theorem trans_eq : x = y -> y = z -> x = z. -Theorem f_equal : x = y -> f x = f y. -Theorem sym_not_eq : x <> y -> y <> x. -\end{coq_example*} -\begin{coq_eval} -Abort. -Abort. -Abort. -Abort. -\end{coq_eval} -\ttindex{eq\_ind\_r} -\ttindex{eq\_rec\_r} -\ttindex{eq\_rect} -\ttindex{eq\_rect\_r} -%Definition eq_rect: (A:Set)(x:A)(P:A->Type)(P x)->(y:A)(x=y)->(P y). -\begin{coq_example*} -End equality. -Definition eq_ind_r : - forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y. -Definition eq_rec_r : - forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y. -Definition eq_rect_r : - forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y. -\end{coq_example*} -\begin{coq_eval} -Abort. -Abort. -Abort. -\end{coq_eval} -%Abort (for now predefined eq_rect) -\begin{coq_example*} -Hint Immediate sym_eq sym_not_eq : core. -\end{coq_example*} -\ttindex{f\_equal$i$} - -The theorem {\tt f\_equal} is extended to functions with two to five -arguments. The theorem are names {\tt f\_equal2}, {\tt f\_equal3}, -{\tt f\_equal4} and {\tt f\_equal5}. -For instance {\tt f\_equal3} is defined the following way. -\begin{coq_example*} -Theorem f_equal3 : - forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) - (x1 y1:A1) (x2 y2:A2) (x3 y3:A3), - x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3. -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\subsection[Datatypes]{Datatypes\label{Datatypes} -\index{Datatypes}} - -\begin{figure} -\begin{centerframe} -\begin{tabular}{rclr} -{\specif} & ::= & {\specif} {\tt *} {\specif} & ({\tt prod})\\ - & $|$ & {\specif} {\tt +} {\specif} & ({\tt sum})\\ - & $|$ & {\specif} {\tt + \{} {\specif} {\tt \}} & ({\tt sumor})\\ - & $|$ & {\tt \{} {\specif} {\tt \} + \{} {\specif} {\tt \}} & - ({\tt sumbool})\\ - & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt |} {\form} {\tt \}} - & ({\tt sig})\\ - & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt |} {\form} {\tt \&} - {\form} {\tt \}} & ({\tt sig2})\\ - & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt \&} {\specif} {\tt - \}} & ({\tt sigT})\\ - & $|$ & {\tt \{} {\ident} {\tt :} {\specif} {\tt \&} {\specif} {\tt - \&} {\specif} {\tt \}} & ({\tt sigT2})\\ - & & & \\ -{\term} & ::= & {\tt (} {\term} {\tt ,} {\term} {\tt )} & ({\tt pair}) -\end{tabular} -\end{centerframe} -\caption{Syntax of data-types and specifications} -\label{specif-syntax} -\end{figure} - - -In the basic library, we find the definition\footnote{They are in {\tt - Datatypes.v}} of the basic data-types of programming, again -defined as inductive constructions over the sort \verb:Set:. Some of -them come with a special syntax shown on Figure~\ref{specif-syntax}. - -\subsubsection[Programming]{Programming\label{Programming} -\index{Programming} -\label{libnats} -\ttindex{unit} -\ttindex{tt} -\ttindex{bool} -\ttindex{true} -\ttindex{false} -\ttindex{nat} -\ttindex{O} -\ttindex{S} -\ttindex{option} -\ttindex{Some} -\ttindex{None} -\ttindex{identity} -\ttindex{refl\_identity}} - -\begin{coq_example*} -Inductive unit : Set := tt. -Inductive bool : Set := true | false. -Inductive nat : Set := O | S (n:nat). -Inductive option (A:Set) : Set := Some (_:A) | None. -Inductive identity (A:Type) (a:A) : A -> Type := - refl_identity : identity A a a. -\end{coq_example*} - -Note that zero is the letter \verb:O:, and {\sl not} the numeral -\verb:0:. - -The predicate {\tt identity} is logically -equivalent to equality but it lives in sort {\tt - Type}. It is mainly maintained for compatibility. - -We then define the disjoint sum of \verb:A+B: of two sets \verb:A: and -\verb:B:, and their product \verb:A*B:. -\ttindex{sum} -\ttindex{A+B} -\ttindex{+} -\ttindex{inl} -\ttindex{inr} -\ttindex{prod} -\ttindex{A*B} -\ttindex{*} -\ttindex{pair} -\ttindex{fst} -\ttindex{snd} - -\begin{coq_example*} -Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B). -Inductive prod (A B:Set) : Set := pair (_:A) (_:B). -Section projections. -Variables A B : Set. -Definition fst (H: prod A B) := match H with - | pair x y => x - end. -Definition snd (H: prod A B) := match H with - | pair x y => y - end. -End projections. -\end{coq_example*} - -Some operations on {\tt bool} are also provided: {\tt andb} (with -infix notation {\tt \&\&}), {\tt orb} (with -infix notation {\tt ||}), {\tt xorb}, {\tt implb} and {\tt negb}. - -\subsection{Specification} - -The following notions\footnote{They are defined in module {\tt -Specif.v}} allow to build new data-types and specifications. -They are available with the syntax shown on -Figure~\ref{specif-syntax}. - -For instance, given \verb|A:Type| and \verb|P:A->Prop|, the construct -\verb+{x:A | P x}+ (in abstract syntax \verb+(sig A P)+) is a -\verb:Type:. We may build elements of this set as \verb:(exist x p): -whenever we have a witness \verb|x:A| with its justification -\verb|p:P x|. - -From such a \verb:(exist x p): we may in turn extract its witness -\verb|x:A| (using an elimination construct such as \verb:match:) but -{\sl not} its justification, which stays hidden, like in an abstract -data-type. In technical terms, one says that \verb:sig: is a ``weak -(dependent) sum''. A variant \verb:sig2: with two predicates is also -provided. - -\ttindex{\{x:A $\mid$ (P x)\}} -\ttindex{sig} -\ttindex{exist} -\ttindex{sig2} -\ttindex{exist2} - -\begin{coq_example*} -Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x). -Inductive sig2 (A:Set) (P Q:A -> Prop) : Set := - exist2 (x:A) (_:P x) (_:Q x). -\end{coq_example*} - -A ``strong (dependent) sum'' \verb+{x:A & P x}+ may be also defined, -when the predicate \verb:P: is now defined as a -constructor of types in \verb:Type:. - -\ttindex{\{x:A \& (P x)\}} -\ttindex{\&} -\ttindex{sigT} -\ttindex{existT} -\ttindex{projT1} -\ttindex{projT2} -\ttindex{sigT2} -\ttindex{existT2} - -\begin{coq_example*} -Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x). -Section Projections. -Variable A : Type. -Variable P : A -> Type. -Definition projT1 (H:sigT A P) := let (x, h) := H in x. -Definition projT2 (H:sigT A P) := - match H return P (projT1 H) with - existT x h => h - end. -End Projections. -Inductive sigT2 (A: Type) (P Q:A -> Type) : Type := - existT2 (x:A) (_:P x) (_:Q x). -\end{coq_example*} - -A related non-dependent construct is the constructive sum -\verb"{A}+{B}" of two propositions \verb:A: and \verb:B:. -\label{sumbool} -\ttindex{sumbool} -\ttindex{left} -\ttindex{right} -\ttindex{\{A\}+\{B\}} - -\begin{coq_example*} -Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B). -\end{coq_example*} - -This \verb"sumbool" construct may be used as a kind of indexed boolean -data-type. An intermediate between \verb"sumbool" and \verb"sum" is -the mixed \verb"sumor" which combines \verb"A:Set" and \verb"B:Prop" -in the \verb"Set" \verb"A+{B}". -\ttindex{sumor} -\ttindex{inleft} -\ttindex{inright} -\ttindex{A+\{B\}} - -\begin{coq_example*} -Inductive sumor (A:Set) (B:Prop) : Set := -| inleft (_:A) -| inright (_:B). -\end{coq_example*} - -We may define variants of the axiom of choice, like in Martin-Löf's -Intuitionistic Type Theory. -\ttindex{Choice} -\ttindex{Choice2} -\ttindex{bool\_choice} - -\begin{coq_example*} -Lemma Choice : - forall (S S':Set) (R:S -> S' -> Prop), - (forall x:S, {y : S' | R x y}) -> - {f : S -> S' | forall z:S, R z (f z)}. -Lemma Choice2 : - forall (S S':Set) (R:S -> S' -> Set), - (forall x:S, {y : S' & R x y}) -> - {f : S -> S' & forall z:S, R z (f z)}. -Lemma bool_choice : - forall (S:Set) (R1 R2:S -> Prop), - (forall x:S, {R1 x} + {R2 x}) -> - {f : S -> bool | - forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}. -\end{coq_example*} -\begin{coq_eval} -Abort. -Abort. -Abort. -\end{coq_eval} - -The next construct builds a sum between a data-type \verb|A:Type| and -an exceptional value encoding errors: - -\ttindex{Exc} -\ttindex{value} -\ttindex{error} - -\begin{coq_example*} -Definition Exc := option. -Definition value := Some. -Definition error := None. -\end{coq_example*} - - -This module ends with theorems, -relating the sorts \verb:Set: or \verb:Type: and -\verb:Prop: in a way which is consistent with the realizability -interpretation. -\ttindex{False\_rect} -\ttindex{False\_rec} -\ttindex{eq\_rect} -\ttindex{absurd\_set} -\ttindex{and\_rect} - -\begin{coq_example*} -Definition except := False_rec. -Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C. -Theorem and_rect : - forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P. -\end{coq_example*} -%\begin{coq_eval} -%Abort. -%Abort. -%\end{coq_eval} - -\subsection{Basic Arithmetics} - -The basic library includes a few elementary properties of natural -numbers, together with the definitions of predecessor, addition and -multiplication\footnote{This is in module {\tt Peano.v}}. It also -provides a scope {\tt nat\_scope} gathering standard notations for -common operations (+, *) and a decimal notation for numbers. That is he -can write \texttt{3} for \texttt{(S (S (S O)))}. This also works on -the left hand side of a \texttt{match} expression (see for example -section~\ref{refine-example}). This scope is opened by default. - -%Remove the redefinition of nat -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -The following example is not part of the standard library, but it -shows the usage of the notations: - -\begin{coq_example*} -Fixpoint even (n:nat) : bool := - match n with - | 0 => true - | 1 => false - | S (S n) => even n - end. -\end{coq_example*} - - -\ttindex{eq\_S} -\ttindex{pred} -\ttindex{pred\_Sn} -\ttindex{eq\_add\_S} -\ttindex{not\_eq\_S} -\ttindex{IsSucc} -\ttindex{O\_S} -\ttindex{n\_Sn} -\ttindex{plus} -\ttindex{plus\_n\_O} -\ttindex{plus\_n\_Sm} -\ttindex{mult} -\ttindex{mult\_n\_O} -\ttindex{mult\_n\_Sm} - -\begin{coq_example*} -Theorem eq_S : forall x y:nat, x = y -> S x = S y. -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} -\begin{coq_example*} -Definition pred (n:nat) : nat := - match n with - | 0 => 0 - | S u => u - end. -Theorem pred_Sn : forall m:nat, m = pred (S m). -Theorem eq_add_S : forall n m:nat, S n = S m -> n = m. -Hint Immediate eq_add_S : core. -Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\begin{coq_example*} -Definition IsSucc (n:nat) : Prop := - match n with - | 0 => False - | S p => True - end. -Theorem O_S : forall n:nat, 0 <> S n. -Theorem n_Sn : forall n:nat, n <> S n. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\begin{coq_example*} -Fixpoint plus (n m:nat) {struct n} : nat := - match n with - | 0 => m - | S p => S (p + m) - end. -where "n + m" := (plus n m) : nat_scope. -Lemma plus_n_O : forall n:nat, n = n + 0. -Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\begin{coq_example*} -Fixpoint mult (n m:nat) {struct n} : nat := - match n with - | 0 => 0 - | S p => m + p * m - end. -where "n * m" := (mult n m) : nat_scope. -Lemma mult_n_O : forall n:nat, 0 = n * 0. -Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m). -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} - -Finally, it gives the definition of the usual orderings \verb:le:, -\verb:lt:, \verb:ge:, and \verb:gt:. -\ttindex{le} -\ttindex{le\_n} -\ttindex{le\_S} -\ttindex{lt} -\ttindex{ge} -\ttindex{gt} - -\begin{coq_example*} -Inductive le (n:nat) : nat -> Prop := - | le_n : le n n - | le_S : forall m:nat, n <= m -> n <= (S m). -where "n <= m" := (le n m) : nat_scope. -Definition lt (n m:nat) := S n <= m. -Definition ge (n m:nat) := m <= n. -Definition gt (n m:nat) := m < n. -\end{coq_example*} - -Properties of these relations are not initially known, but may be -required by the user from modules \verb:Le: and \verb:Lt:. Finally, -\verb:Peano: gives some lemmas allowing pattern-matching, and a double -induction principle. - -\ttindex{nat\_case} -\ttindex{nat\_double\_ind} - -\begin{coq_example*} -Theorem nat_case : - forall (n:nat) (P:nat -> Prop), - P 0 -> (forall m:nat, P (S m)) -> P n. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\begin{coq_example*} -Theorem nat_double_ind : - forall R:nat -> nat -> Prop, - (forall n:nat, R 0 n) -> - (forall n:nat, R (S n) 0) -> - (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} - -\subsection{Well-founded recursion} - -The basic library contains the basics of well-founded recursion and -well-founded induction\footnote{This is defined in module {\tt Wf.v}}. -\index{Well foundedness} -\index{Recursion} -\index{Well founded induction} -\ttindex{Acc} -\ttindex{Acc\_inv} -\ttindex{Acc\_rect} -\ttindex{well\_founded} - -\begin{coq_example*} -Section Well_founded. -Variable A : Type. -Variable R : A -> A -> Prop. -Inductive Acc (x:A) : Prop := - Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x. -Lemma Acc_inv : Acc x -> forall y:A, R y x -> Acc y. -\end{coq_example*} -\begin{coq_eval} -destruct 1; trivial. -Defined. -\end{coq_eval} -%% Acc_rect now primitively defined -%% Section AccRec. -%% Variable P : A -> Set. -%% Variable F : -%% forall x:A, -%% (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x. -%% Fixpoint Acc_rec (x:A) (a:Acc x) {struct a} : P x := -%% F x (Acc_inv x a) -%% (fun (y:A) (h:R y x) => Acc_rec y (Acc_inv x a y h)). -%% End AccRec. -\begin{coq_example*} -Definition well_founded := forall a:A, Acc a. -Hypothesis Rwf : well_founded. -Theorem well_founded_induction : - forall P:A -> Set, - (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a. -Theorem well_founded_ind : - forall P:A -> Prop, - (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a. -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -The automatically generated scheme {\tt Acc\_rect} -can be used to define functions by fixpoints using -well-founded relations to justify termination. Assuming -extensionality of the functional used for the recursive call, the -fixpoint equation can be proved. -\ttindex{Fix\_F} -\ttindex{fix\_eq} -\ttindex{Fix\_F\_inv} -\ttindex{Fix\_F\_eq} -\begin{coq_example*} -Section FixPoint. -Variable P : A -> Type. -Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x. -Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x := - F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)). -Definition Fix (x:A) := Fix_F x (Rwf x). -Hypothesis F_ext : - forall (x:A) (f g:forall y:A, R y x -> P y), - (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g. -Lemma Fix_F_eq : - forall (x:A) (r:Acc x), - F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r. -Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s. -Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y). -\end{coq_example*} -\begin{coq_eval} -Abort All. -\end{coq_eval} -\begin{coq_example*} -End FixPoint. -End Well_founded. -\end{coq_example*} - -\subsection{Accessing the {\Type} level} - -The basic library includes the definitions\footnote{This is in module -{\tt Logic\_Type.v}} of the counterparts of some data-types and logical -quantifiers at the \verb:Type: level: negation, pair, and properties -of {\tt identity}. - -\ttindex{notT} -\ttindex{prodT} -\ttindex{pairT} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Definition notT (A:Type) := A -> False. -Inductive prodT (A B:Type) : Type := pairT (_:A) (_:B). -\end{coq_example*} - -At the end, it defines data-types at the {\Type} level. - -\subsection{Tactics} - -A few tactics defined at the user level are provided in the initial -state\footnote{This is in module {\tt Tactics.v}}. - -\section{The standard library} - -\subsection{Survey} - -The rest of the standard library is structured into the following -subdirectories: - -\begin{tabular}{lp{12cm}} - {\bf Logic} & Classical logic and dependent equality \\ - {\bf Arith} & Basic Peano arithmetic \\ - {\bf PArith} & Basic positive integer arithmetic \\ - {\bf NArith} & Basic binary natural number arithmetic \\ - {\bf ZArith} & Basic relative integer arithmetic \\ - {\bf Numbers} & Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2$^{31}$ binary words) \\ - {\bf Bool} & Booleans (basic functions and results) \\ - {\bf Lists} & Monomorphic and polymorphic lists (basic functions and - results), Streams (infinite sequences defined with co-inductive - types) \\ - {\bf Sets} & Sets (classical, constructive, finite, infinite, power set, - etc.) \\ - {\bf FSets} & Specification and implementations of finite sets and finite - maps (by lists and by AVL trees)\\ - {\bf Reals} & Axiomatization of real numbers (classical, basic functions, - integer part, fractional part, limit, derivative, Cauchy - series, power series and results,...)\\ - {\bf Relations} & Relations (definitions and basic results) \\ - {\bf Sorting} & Sorted list (basic definitions and heapsort correctness) \\ - {\bf Strings} & 8-bits characters and strings\\ - {\bf Wellfounded} & Well-founded relations (basic results) \\ - -\end{tabular} -\medskip - -These directories belong to the initial load path of the system, and -the modules they provide are compiled at installation time. So they -are directly accessible with the command \verb!Require! (see -Chapter~\ref{Other-commands}). - -The different modules of the \Coq\ standard library are described in the -additional document \verb!Library.dvi!. They are also accessible on the WWW -through the \Coq\ homepage -\footnote{\texttt{http://coq.inria.fr}}. - -\subsection[Notations for integer arithmetics]{Notations for integer arithmetics\index{Arithmetical notations}} - -On Figure~\ref{zarith-syntax} is described the syntax of expressions -for integer arithmetics. It is provided by requiring and opening the -module {\tt ZArith} and opening scope {\tt Z\_scope}. - -\ttindex{+} -\ttindex{*} -\ttindex{-} -\ttindex{/} -\ttindex{<=} -\ttindex{>=} -\ttindex{<} -\ttindex{>} -\ttindex{?=} -\ttindex{mod} - -\begin{figure} -\begin{center} -\begin{tabular}{l|l|l|l} -Notation & Interpretation & Precedence & Associativity\\ -\hline -\verb!_ < _! & {\tt Zlt} &&\\ -\verb!x <= y! & {\tt Zle} &&\\ -\verb!_ > _! & {\tt Zgt} &&\\ -\verb!x >= y! & {\tt Zge} &&\\ -\verb!x < y < z! & {\tt x < y \verb!/\! y < z} &&\\ -\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} &&\\ -\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} &&\\ -\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} &&\\ -\verb!_ ?= _! & {\tt Zcompare} & 70 & no\\ -\verb!_ + _! & {\tt Zplus} &&\\ -\verb!_ - _! & {\tt Zminus} &&\\ -\verb!_ * _! & {\tt Zmult} &&\\ -\verb!_ / _! & {\tt Zdiv} &&\\ -\verb!_ mod _! & {\tt Zmod} & 40 & no \\ -\verb!- _! & {\tt Zopp} &&\\ -\verb!_ ^ _! & {\tt Zpower} &&\\ -\end{tabular} -\end{center} -\caption{Definition of the scope for integer arithmetics ({\tt Z\_scope})} -\label{zarith-syntax} -\end{figure} - -Figure~\ref{zarith-syntax} shows the notations provided by {\tt -Z\_scope}. It specifies how notations are interpreted and, when not -already reserved, the precedence and associativity. - -\begin{coq_example} -Require Import ZArith. -Check (2 + 3)%Z. -Open Scope Z_scope. -Check 2 + 3. -\end{coq_example} - -\subsection[Peano's arithmetic (\texttt{nat})]{Peano's arithmetic (\texttt{nat})\index{Peano's arithmetic} -\ttindex{nat\_scope}} - -While in the initial state, many operations and predicates of Peano's -arithmetic are defined, further operations and results belong to other -modules. For instance, the decidability of the basic predicates are -defined here. This is provided by requiring the module {\tt Arith}. - -Figure~\ref{nat-syntax} describes notation available in scope {\tt -nat\_scope}. - -\begin{figure} -\begin{center} -\begin{tabular}{l|l} -Notation & Interpretation \\ -\hline -\verb!_ < _! & {\tt lt} \\ -\verb!x <= y! & {\tt le} \\ -\verb!_ > _! & {\tt gt} \\ -\verb!x >= y! & {\tt ge} \\ -\verb!x < y < z! & {\tt x < y \verb!/\! y < z} \\ -\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} \\ -\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} \\ -\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} \\ -\verb!_ + _! & {\tt plus} \\ -\verb!_ - _! & {\tt minus} \\ -\verb!_ * _! & {\tt mult} \\ -\end{tabular} -\end{center} -\caption{Definition of the scope for natural numbers ({\tt nat\_scope})} -\label{nat-syntax} -\end{figure} - -\subsection{Real numbers library} - -\subsubsection[Notations for real numbers]{Notations for real numbers\index{Notations for real numbers}} - -This is provided by requiring and opening the module {\tt Reals} and -opening scope {\tt R\_scope}. This set of notations is very similar to -the notation for integer arithmetics. The inverse function was added. -\begin{figure} -\begin{center} -\begin{tabular}{l|l} -Notation & Interpretation \\ -\hline -\verb!_ < _! & {\tt Rlt} \\ -\verb!x <= y! & {\tt Rle} \\ -\verb!_ > _! & {\tt Rgt} \\ -\verb!x >= y! & {\tt Rge} \\ -\verb!x < y < z! & {\tt x < y \verb!/\! y < z} \\ -\verb!x < y <= z! & {\tt x < y \verb!/\! y <= z} \\ -\verb!x <= y < z! & {\tt x <= y \verb!/\! y < z} \\ -\verb!x <= y <= z! & {\tt x <= y \verb!/\! y <= z} \\ -\verb!_ + _! & {\tt Rplus} \\ -\verb!_ - _! & {\tt Rminus} \\ -\verb!_ * _! & {\tt Rmult} \\ -\verb!_ / _! & {\tt Rdiv} \\ -\verb!- _! & {\tt Ropp} \\ -\verb!/ _! & {\tt Rinv} \\ -\verb!_ ^ _! & {\tt pow} \\ -\end{tabular} -\end{center} -\label{reals-syntax} -\caption{Definition of the scope for real arithmetics ({\tt R\_scope})} -\end{figure} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Require Import Reals. -Check (2 + 3)%R. -Open Scope R_scope. -Check 2 + 3. -\end{coq_example} - -\subsubsection{Some tactics} - -In addition to the \verb|ring|, \verb|field| and \verb|fourier| -tactics (see Chapter~\ref{Tactics}) there are: -\begin{itemize} -\item {\tt discrR} \tacindex{discrR} - - Proves that a real integer constant $c_1$ is different from another - real integer constant $c_2$. - -\begin{coq_example*} -Require Import DiscrR. -Goal 5 <> 0. -\end{coq_example*} - -\begin{coq_example} -discrR. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\item {\tt split\_Rabs} allows to unfold {\tt Rabs} constant and splits -corresponding conjunctions. -\tacindex{split\_Rabs} - -\begin{coq_example*} -Require Import SplitAbsolu. -Goal forall x:R, x <= Rabs x. -\end{coq_example*} - -\begin{coq_example} -intro; split_Rabs. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\item {\tt split\_Rmult} allows to split a condition that a product is - non null into subgoals corresponding to the condition on each - operand of the product. -\tacindex{split\_Rmult} - -\begin{coq_example*} -Require Import SplitRmult. -Goal forall x y z:R, x * y * z <> 0. -\end{coq_example*} - -\begin{coq_example} -intros; split_Rmult. -\end{coq_example} - -\end{itemize} - -All this tactics has been written with the tactic language Ltac -described in Chapter~\ref{TacticLanguage}. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\subsection[List library]{List library\index{Notations for lists} -\ttindex{length} -\ttindex{head} -\ttindex{tail} -\ttindex{app} -\ttindex{rev} -\ttindex{nth} -\ttindex{map} -\ttindex{flat\_map} -\ttindex{fold\_left} -\ttindex{fold\_right}} - -Some elementary operations on polymorphic lists are defined here. They -can be accessed by requiring module {\tt List}. - -It defines the following notions: -\begin{center} -\begin{tabular}{l|l} -\hline -{\tt length} & length \\ -{\tt head} & first element (with default) \\ -{\tt tail} & all but first element \\ -{\tt app} & concatenation \\ -{\tt rev} & reverse \\ -{\tt nth} & accessing $n$-th element (with default) \\ -{\tt map} & applying a function \\ -{\tt flat\_map} & applying a function returning lists \\ -{\tt fold\_left} & iterator (from head to tail) \\ -{\tt fold\_right} & iterator (from tail to head) \\ -\hline -\end{tabular} -\end{center} - -Table show notations available when opening scope {\tt list\_scope}. - -\begin{figure} -\begin{center} -\begin{tabular}{l|l|l|l} -Notation & Interpretation & Precedence & Associativity\\ -\hline -\verb!_ ++ _! & {\tt app} & 60 & right \\ -\verb!_ :: _! & {\tt cons} & 60 & right \\ -\end{tabular} -\end{center} -\label{list-syntax} -\caption{Definition of the scope for lists ({\tt list\_scope})} -\end{figure} - - -\section[Users' contributions]{Users' contributions\index{Contributions} -\label{Contributions}} - -Numerous users' contributions have been collected and are available at -URL \url{http://coq.inria.fr/contribs/}. On this web page, you have a list -of all contributions with informations (author, institution, quick -description, etc.) and the possibility to download them one by one. -You will also find informations on how to submit a new -contribution. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-ltac.tex b/doc/refman/RefMan-ltac.tex deleted file mode 100644 index d7f00584..00000000 --- a/doc/refman/RefMan-ltac.tex +++ /dev/null @@ -1,1331 +0,0 @@ -\chapter[The tactic language]{The tactic language\label{TacticLanguage}} - -%\geometry{a4paper,body={5in,8in}} - -This chapter gives a compact documentation of Ltac, the tactic -language available in {\Coq}. We start by giving the syntax, and next, -we present the informal semantics. If you want to know more regarding -this language and especially about its foundations, you can refer -to~\cite{Del00}. Chapter~\ref{Tactics-examples} is devoted to giving -examples of use of this language on small but also with non-trivial -problems. - - -\section{Syntax} - -\def\tacexpr{\textrm{\textsl{expr}}} -\def\tacexprlow{\textrm{\textsl{tacexpr$_1$}}} -\def\tacexprinf{\textrm{\textsl{tacexpr$_2$}}} -\def\tacexprpref{\textrm{\textsl{tacexpr$_3$}}} -\def\atom{\textrm{\textsl{atom}}} -%%\def\recclause{\textrm{\textsl{rec\_clause}}} -\def\letclause{\textrm{\textsl{let\_clause}}} -\def\matchrule{\textrm{\textsl{match\_rule}}} -\def\contextrule{\textrm{\textsl{context\_rule}}} -\def\contexthyp{\textrm{\textsl{context\_hyp}}} -\def\tacarg{\nterm{tacarg}} -\def\cpattern{\nterm{cpattern}} - -The syntax of the tactic language is given Figures~\ref{ltac} -and~\ref{ltac_aux}. See Chapter~\ref{BNF-syntax} for a description of -the BNF metasyntax used in these grammar rules. Various already -defined entries will be used in this chapter: entries -{\naturalnumber}, {\integer}, {\ident}, {\qualid}, {\term}, -{\cpattern} and {\atomictac} represent respectively the natural and -integer numbers, the authorized identificators and qualified names, -{\Coq}'s terms and patterns and all the atomic tactics described in -Chapter~\ref{Tactics}. The syntax of {\cpattern} is the same as that -of terms, but it is extended with pattern matching metavariables. In -{\cpattern}, a pattern-matching metavariable is represented with the -syntax {\tt ?id} where {\tt id} is an {\ident}. The notation {\tt \_} -can also be used to denote metavariable whose instance is -irrelevant. In the notation {\tt ?id}, the identifier allows us to -keep instantiations and to make constraints whereas {\tt \_} shows -that we are not interested in what will be matched. On the right hand -side of pattern-matching clauses, the named metavariable are used -without the question mark prefix. There is also a special notation for -second-order pattern-matching problems: in an applicative pattern of -the form {\tt @?id id$_1$ \ldots id$_n$}, the variable {\tt id} -matches any complex expression with (possible) dependencies in the -variables {\tt id$_1$ \ldots id$_n$} and returns a functional term of -the form {\tt fun id$_1$ \ldots id$_n$ => {\term}}. - - -The main entry of the grammar is {\tacexpr}. This language is used in -proof mode but it can also be used in toplevel definitions as shown in -Figure~\ref{ltactop}. - -\begin{Remarks} -\item The infix tacticals ``\dots\ {\tt ||} \dots'' and ``\dots\ {\tt - ;} \dots'' are associative. - -\item In {\tacarg}, there is an overlap between {\qualid} as a -direct tactic argument and {\qualid} as a particular case of -{\term}. The resolution is done by first looking for a reference of -the tactic language and if it fails, for a reference to a term. To -force the resolution as a reference of the tactic language, use the -form {\tt ltac :} {\qualid}. To force the resolution as a reference to -a term, use the syntax {\tt ({\qualid})}. - -\item As shown by the figure, tactical {\tt ||} binds more than the -prefix tacticals {\tt try}, {\tt repeat}, {\tt do}, {\tt info} and -{\tt abstract} which themselves bind more than the postfix tactical -``{\tt \dots\ ;[ \dots\ ]}'' which binds more than ``\dots\ {\tt ;} -\dots''. - -For instance -\begin{quote} -{\tt try repeat \tac$_1$ || - \tac$_2$;\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$];\tac$_4$.} -\end{quote} -is understood as -\begin{quote} -{\tt (try (repeat (\tac$_1$ || \tac$_2$)));} \\ -{\tt ((\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$]);\tac$_4$).} -\end{quote} -\end{Remarks} - - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl} -{\tacexpr} & ::= & - {\tacexpr} {\tt ;} {\tacexpr}\\ -& | & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\ -& | & {\tacexprpref}\\ -\\ -{\tacexprpref} & ::= & - {\tt do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\ -& | & {\tt info} {\tacexprpref}\\ -& | & {\tt progress} {\tacexprpref}\\ -& | & {\tt repeat} {\tacexprpref}\\ -& | & {\tt try} {\tacexprpref}\\ -& | & {\tt timeout} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\ -& | & {\tacexprinf} \\ -\\ -{\tacexprinf} & ::= & - {\tacexprlow} {\tt ||} {\tacexprpref}\\ -& | & {\tacexprlow}\\ -\\ -{\tacexprlow} & ::= & -{\tt fun} \nelist{\name}{} {\tt =>} {\atom}\\ -& | & -{\tt let} \zeroone{\tt rec} \nelist{\letclause}{\tt with} {\tt in} -{\atom}\\ -& | & -{\tt match goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt match reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt match} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\ -& | & -{\tt lazymatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\ -& | & {\tt abstract} {\atom}\\ -& | & {\tt abstract} {\atom} {\tt using} {\ident} \\ -& | & {\tt first [} \nelist{\tacexpr}{\tt |} {\tt ]}\\ -& | & {\tt solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\ -& | & {\tt idtac} \sequence{\messagetoken}{}\\ -& | & {\tt fail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\ -& | & {\tt fresh} ~|~ {\tt fresh} {\qstring}\\ -& | & {\tt context} {\ident} {\tt [} {\term} {\tt ]}\\ -& | & {\tt eval} {\nterm{redexpr}} {\tt in} {\term}\\ -& | & {\tt type of} {\term}\\ -& | & {\tt external} {\qstring} {\qstring} \nelist{\tacarg}{}\\ -& | & {\tt constr :} {\term}\\ -& | & \atomictac\\ -& | & {\qualid} \nelist{\tacarg}{}\\ -& | & {\atom}\\ -\\ -{\atom} & ::= & - {\qualid} \\ -& | & ()\\ -& | & {\integer}\\ -& | & {\tt (} {\tacexpr} {\tt )}\\ -\\ -{\messagetoken}\!\!\!\!\!\! & ::= & {\qstring} ~|~ {\ident} ~|~ {\integer} \\ -\end{tabular} -\end{centerframe} -\caption{Syntax of the tactic language} -\label{ltac} -\end{figure} - - - -\begin{figure}[htbp] -\begin{centerframe} -\begin{tabular}{lcl} -\tacarg & ::= & - {\qualid}\\ -& $|$ & {\tt ()} \\ -& $|$ & {\tt ltac :} {\atom}\\ -& $|$ & {\term}\\ -\\ -\letclause & ::= & {\ident} \sequence{\name}{} {\tt :=} {\tacexpr}\\ -\\ -\contextrule & ::= & - \nelist{\contexthyp}{\tt ,} {\tt |-}{\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt |-} {\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt \_ =>} {\tacexpr}\\ -\\ -\contexthyp & ::= & {\name} {\tt :} {\cpattern}\\ - & $|$ & {\name} {\tt :=} {\cpattern} \zeroone{{\tt :} {\cpattern}}\\ -\\ -\matchrule & ::= & - {\cpattern} {\tt =>} {\tacexpr}\\ -& $|$ & {\tt context} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]} - {\tt =>} {\tacexpr}\\ -& $|$ & {\tt appcontext} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]} - {\tt =>} {\tacexpr}\\ -& $|$ & {\tt \_ =>} {\tacexpr}\\ -\end{tabular} -\end{centerframe} -\caption{Syntax of the tactic language (continued)} -\label{ltac_aux} -\end{figure} - -\begin{figure}[ht] -\begin{centerframe} -\begin{tabular}{lcl} -\nterm{top} & ::= & \zeroone{\tt Local} {\tt Ltac} \nelist{\nterm{ltac\_def}} {\tt with} \\ -\\ -\nterm{ltac\_def} & ::= & {\ident} \sequence{\ident}{} {\tt :=} -{\tacexpr}\\ -& $|$ &{\qualid} \sequence{\ident}{} {\tt ::=}{\tacexpr} -\end{tabular} -\end{centerframe} -\caption{Tactic toplevel definitions} -\label{ltactop} -\end{figure} - - -%% -%% Semantics -%% -\section{Semantics} -%\index[tactic]{Tacticals} -\index{Tacticals} -%\label{Tacticals} - -Tactic expressions can only be applied in the context of a goal. The -evaluation yields either a term, an integer or a tactic. Intermediary -results can be terms or integers but the final result must be a tactic -which is then applied to the current goal. - -There is a special case for {\tt match goal} expressions of which -the clauses evaluate to tactics. Such expressions can only be used as -end result of a tactic expression (never as argument of a non recursive local -definition or of an application). - -The rest of this section explains the semantics of every construction -of Ltac. - - -%% \subsection{Values} - -%% Values are given by Figure~\ref{ltacval}. All these values are tactic values, -%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values. - -%% \begin{figure}[ht] -%% \noindent{}\framebox[6in][l] -%% {\parbox{6in} -%% {\begin{center} -%% \begin{tabular}{lp{0.1in}l} -%% $vexpr$ & ::= & $vexpr$ {\tt ;} $vexpr$\\ -%% & | & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt -%% ]}\\ -%% & | & $vatom$\\ -%% \\ -%% $vatom$ & ::= & {\tt Fun} \nelist{\inputfun}{} {\tt ->} {\tacexpr}\\ -%% %& | & {\tt Rec} \recclause\\ -%% & | & -%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In} -%% {\tacexpr}\\ -%% & | & -%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$ -%% $context\_rule$\\ -%% & | & {\tt (} $vexpr$ {\tt )}\\ -%% & | & $vatom$ {\tt Orelse} $vatom$\\ -%% & | & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\ -%% & | & {\tt Repeat} $vatom$\\ -%% & | & {\tt Try} $vatom$\\ -%% & | & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\ -%% & | & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\ -%% & | & {\tt Idtac}\\ -%% & | & {\tt Fail}\\ -%% & | & {\primitivetactic}\\ -%% & | & $arg$ -%% \end{tabular} -%% \end{center}}} -%% \caption{Values of ${\cal L}_{tac}$} -%% \label{ltacval} -%% \end{figure} - -%% \subsection{Evaluation} - -\subsubsection[Sequence]{Sequence\tacindex{;} -\index{Tacticals!;@{\tt {\tac$_1$};\tac$_2$}}} - -A sequence is an expression of the following form: -\begin{quote} -{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$ -\end{quote} -The expressions {\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated -to $v_1$ and $v_2$ which have to be tactic values. The tactic $v_1$ is -then applied and $v_2$ is applied to every subgoal generated by the -application of $v_1$. Sequence is left-associative. - -\subsubsection[General sequence]{General sequence\tacindex{;[\ldots$\mid$\ldots$\mid$\ldots]}} -%\tacindex{; [ | ]} -%\index{; [ | ]@{\tt ;[\ldots$\mid$\ldots$\mid$\ldots]}} -\index{Tacticals!; [ \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}} - -A general sequence has the following form: -\begin{quote} -{\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} -{\tacexpr}$_n$ {\tt ]} -\end{quote} -The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=0,...,n$ -and all have to be tactics. The tactic $v_0$ is applied and $v_i$ is -applied to the $i$-th generated subgoal by the application of $v_0$, -for $=1,...,n$. It fails if the application of $v_0$ does not generate -exactly $n$ subgoals. - -\begin{Variants} - \item If no tactic is given for the $i$-th generated subgoal, it -behaves as if the tactic {\tt idtac} were given. For instance, {\tt -split ; [ | auto ]} is a shortcut for -{\tt split ; [ idtac | auto ]}. - - \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} - {\tacexpr}$_i$ {\tt |} {\tt ..} {\tt |} {\tacexpr}$_{i+1+j}$ {\tt |} - $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} - - In this variant, {\tt idtac} is used for the subgoals numbered from - $i+1$ to $i+j$ (assuming $n$ is the number of subgoals). - - Note that {\tt ..} is part of the syntax, while $...$ is the meta-symbol used - to describe a list of {\tacexpr} of arbitrary length. - - \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} - {\tacexpr}$_i$ {\tt |} {\tacexpr} {\tt ..} {\tt |} - {\tacexpr}$_{i+1+j}$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} - - In this variant, {\tacexpr} is used instead of {\tt idtac} for the - subgoals numbered from $i+1$ to $i+j$. - -\end{Variants} - - - -\subsubsection[For loop]{For loop\tacindex{do} -\index{Tacticals!do@{\tt do}}} - -There is a for loop that repeats a tactic {\num} times: -\begin{quote} -{\tt do} {\num} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is -applied {\num} times. Supposing ${\num}>1$, after the first -application of $v$, $v$ is applied, at least once, to the generated -subgoals and so on. It fails if the application of $v$ fails before -the {\num} applications have been completed. - -\subsubsection[Repeat loop]{Repeat loop\tacindex{repeat} -\index{Tacticals!repeat@{\tt repeat}}} - -We have a repeat loop with: -\begin{quote} -{\tt repeat} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. If $v$ denotes a tactic, this tactic -is applied to the goal. If the application fails, the tactic is -applied recursively to all the generated subgoals until it eventually -fails. The recursion stops in a subgoal when the tactic has failed. -The tactic {\tt repeat {\tacexpr}} itself never fails. - -\subsubsection[Error catching]{Error catching\tacindex{try} -\index{Tacticals!try@{\tt try}}} - -We can catch the tactic errors with: -\begin{quote} -{\tt try} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is -applied. If the application of $v$ fails, it catches the error and -leaves the goal unchanged. If the level of the exception is positive, -then the exception is re-raised with its level decremented. - -\subsubsection[Detecting progress]{Detecting progress\tacindex{progress}} - -We can check if a tactic made progress with: -\begin{quote} -{\tt progress} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is -applied. If the application of $v$ produced one subgoal equal to the -initial goal (up to syntactical equality), then an error of level 0 is -raised. - -\ErrMsg \errindex{Failed to progress} - -\subsubsection[Branching]{Branching\tacindex{$\mid\mid$} -\index{Tacticals!orelse@{\tt $\mid\mid$}}} - -We can easily branch with the following structure: -\begin{quote} -{\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$ -\end{quote} -{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and -$v_2$. $v_1$ and $v_2$ must be tactic values. $v_1$ is applied and if -it fails to progress then $v_2$ is applied. Branching is left-associative. - -\subsubsection[First tactic to work]{First tactic to work\tacindex{first} -\index{Tacticals!first@{\tt first}}} - -We may consider the first tactic to work (i.e. which does not fail) among a -panel of tactics: -\begin{quote} -{\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} -\end{quote} -{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for -$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it works, it stops else it -tries to apply $v_2$ and so on. It fails when there is no applicable tactic. - -\ErrMsg \errindex{No applicable tactic} - -\subsubsection[Solving]{Solving\tacindex{solve} -\index{Tacticals!solve@{\tt solve}}} - -We may consider the first to solve (i.e. which generates no subgoal) among a -panel of tactics: -\begin{quote} -{\tt solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]} -\end{quote} -{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for -$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it solves, it stops else it -tries to apply $v_2$ and so on. It fails if there is no solving tactic. - -\ErrMsg \errindex{Cannot solve the goal} - -\subsubsection[Identity]{Identity\tacindex{idtac} -\index{Tacticals!idtac@{\tt idtac}}} - -The constant {\tt idtac} is the identity tactic: it leaves any goal -unchanged but it appears in the proof script. - -\variant {\tt idtac \nelist{\messagetoken}{}} - -This prints the given tokens. Strings and integers are printed -literally. If a (term) variable is given, its contents are printed. - - -\subsubsection[Failing]{Failing\tacindex{fail} -\index{Tacticals!fail@{\tt fail}}} - -The tactic {\tt fail} is the always-failing tactic: it does not solve -any goal. It is useful for defining other tacticals since it can be -catched by {\tt try} or {\tt match goal}. - -\begin{Variants} -\item {\tt fail $n$}\\ -The number $n$ is the failure level. If no level is specified, it -defaults to $0$. The level is used by {\tt try} and {\tt match goal}. -If $0$, it makes {\tt match goal} considering the next clause -(backtracking). If non zero, the current {\tt match goal} block or -{\tt try} command is aborted and the level is decremented. - -\item {\tt fail \nelist{\messagetoken}{}}\\ -The given tokens are used for printing the failure message. - -\item {\tt fail $n$ \nelist{\messagetoken}{}}\\ -This is a combination of the previous variants. -\end{Variants} - -\ErrMsg \errindex{Tactic Failure {\it message} (level $n$)}. - -\subsubsection[Timeout]{Timeout\tacindex{timeout} -\index{Tacticals!timeout@{\tt timeout}}} - -We can force a tactic to stop if it has not finished after a certain -amount of time: -\begin{quote} -{\tt timeout} {\num} {\tacexpr} -\end{quote} -{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is -normally applied, except that it is interrupted after ${\num}$ seconds -if it is still running. In this case the outcome is a failure. - -Warning: For the moment, {\tt timeout} is based on elapsed time in -seconds, which is very -machine-dependent: a script that works on a quick machine may fail -on a slow one. The converse is even possible if you combine a -{\tt timeout} with some other tacticals. This tactical is hence -proposed only for convenience during debug or other development -phases, we strongly advise you to not leave any {\tt timeout} in -final scripts. Note also that this tactical isn't available on -the native Windows port of Coq. - -\subsubsection[Local definitions]{Local definitions\index{Ltac!let} -\index{Ltac!let rec} -\index{let!in Ltac} -\index{let rec!in Ltac}} - -Local definitions can be done as follows: -\begin{quote} -{\tt let} {\ident}$_1$ {\tt :=} {\tacexpr}$_1$\\ -{\tt with} {\ident}$_2$ {\tt :=} {\tacexpr}$_2$\\ -...\\ -{\tt with} {\ident}$_n$ {\tt :=} {\tacexpr}$_n$ {\tt in}\\ -{\tacexpr} -\end{quote} -each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is -evaluated by substituting $v_i$ to each occurrence of {\ident}$_i$, -for $i=1,...,n$. There is no dependencies between the {\tacexpr}$_i$ -and the {\ident}$_i$. - -Local definitions can be recursive by using {\tt let rec} instead of -{\tt let}. In this latter case, the definitions are evaluated lazily -so that the {\tt rec} keyword can be used also in non recursive cases -so as to avoid the eager evaluation of local definitions. - -\subsubsection{Application} - -An application is an expression of the following form: -\begin{quote} -{\qualid} {\tacarg}$_1$ ... {\tacarg}$_n$ -\end{quote} -The reference {\qualid} must be bound to some defined tactic -definition expecting at least $n$ arguments. The expressions -{\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$. -%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by -%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive -%clauses, the bodies are lazily substituted (when an identifier to be evaluated -%is the name of a recursive clause). - -%\subsection{Application of tactic values} - -\subsubsection[Function construction]{Function construction\index{fun!in Ltac} -\index{Ltac!fun}} - -A parameterized tactic can be built anonymously (without resorting to -local definitions) with: -\begin{quote} -{\tt fun} {\ident${}_1$} ... {\ident${}_n$} {\tt =>} {\tacexpr} -\end{quote} -Indeed, local definitions of functions are a syntactic sugar for -binding a {\tt fun} tactic to an identifier. - -\subsubsection[Pattern matching on terms]{Pattern matching on terms\index{Ltac!match} -\index{match!in Ltac}} - -We can carry out pattern matching on terms with: -\begin{quote} -{\tt match} {\tacexpr} {\tt with}\\ -~~~{\cpattern}$_1$ {\tt =>} {\tacexpr}$_1$\\ -~{\tt |} {\cpattern}$_2$ {\tt =>} {\tacexpr}$_2$\\ -~...\\ -~{\tt |} {\cpattern}$_n$ {\tt =>} {\tacexpr}$_n$\\ -~{\tt |} {\tt \_} {\tt =>} {\tacexpr}$_{n+1}$\\ -{\tt end} -\end{quote} -The expression {\tacexpr} is evaluated and should yield a term which -is matched against {\cpattern}$_1$. The matching is non-linear: if a -metavariable occurs more than once, it should match the same -expression every time. It is first-order except on the -variables of the form {\tt @?id} that occur in head position of an -application. For these variables, the matching is second-order and -returns a functional term. - -If the matching with {\cpattern}$_1$ succeeds, then {\tacexpr}$_1$ is -evaluated into some value by substituting the pattern matching -instantiations to the metavariables. If {\tacexpr}$_1$ evaluates to a -tactic and the {\tt match} expression is in position to be applied to -a goal (e.g. it is not bound to a variable by a {\tt let in}), then -this tactic is applied. If the tactic succeeds, the list of resulting -subgoals is the result of the {\tt match} expression. If -{\tacexpr}$_1$ does not evaluate to a tactic or if the {\tt match} -expression is not in position to be applied to a goal, then the result -of the evaluation of {\tacexpr}$_1$ is the result of the {\tt match} -expression. - -If the matching with {\cpattern}$_1$ fails, or if it succeeds but the -evaluation of {\tacexpr}$_1$ fails, or if the evaluation of -{\tacexpr}$_1$ succeeds but returns a tactic in execution position -whose execution fails, then {\cpattern}$_2$ is used and so on. The -pattern {\_} matches any term and shunts all remaining patterns if -any. If all clauses fail (in particular, there is no pattern {\_}) -then a no-matching-clause error is raised. - -\begin{ErrMsgs} - -\item \errindex{No matching clauses for match} - - No pattern can be used and, in particular, there is no {\tt \_} pattern. - -\item \errindex{Argument of match does not evaluate to a term} - - This happens when {\tacexpr} does not denote a term. - -\end{ErrMsgs} - -\begin{Variants} - -\item \index{lazymatch!in Ltac} -\index{Ltac!lazymatch} -Using {\tt lazymatch} instead of {\tt match} has an effect if the -right-hand-side of a clause returns a tactic. With {\tt match}, the -tactic is applied to the current goal (and the next clause is tried if -it fails). With {\tt lazymatch}, the tactic is directly returned as -the result of the whole {\tt lazymatch} block without being first -tried to be applied to the goal. Typically, if the {\tt lazymatch} -block is bound to some variable $x$ in a {\tt let in}, then tactic -expression gets bound to the variable $x$. - -\item \index{context!in pattern} -There is a special form of patterns to match a subterm against the -pattern: -\begin{quote} -{\tt context} {\ident} {\tt [} {\cpattern} {\tt ]} -\end{quote} -It matches any term with a subterm matching {\cpattern}. If there is -a match, the optional {\ident} is assigned the ``matched context'', i.e. -the initial term where the matched subterm is replaced by a -hole. The example below will show how to use such term contexts. - -If the evaluation of the right-hand-side of a valid match fails, the -next matching subterm is tried. If no further subterm matches, the -next clause is tried. Matching subterms are considered top-bottom and -from left to right (with respect to the raw printing obtained by -setting option {\tt Printing All}, see Section~\ref{SetPrintingAll}). - -\begin{coq_example} -Ltac f x := - match x with - context f [S ?X] => - idtac X; (* To display the evaluation order *) - assert (p := refl_equal 1 : X=1); (* To filter the case X=1 *) - let x:= context f[O] in assert (x=O) (* To observe the context *) - end. -Goal True. -f (3+4). -\end{coq_example} - -\item \index{appcontext!in pattern} -For historical reasons, {\tt context} considers $n$-ary applications -such as {\tt (f 1 2)} as a whole, and not as a sequence of unary -applications {\tt ((f 1) 2)}. Hence {\tt context [f ?x]} will fail -to find a matching subterm in {\tt (f 1 2)}: if the pattern is a partial -application, the matched subterms will be necessarily be -applications with exactly the same number of arguments. -Alternatively, one may now use the following variant of {\tt context}: -\begin{quote} -{\tt appcontext} {\ident} {\tt [} {\cpattern} {\tt ]} -\end{quote} -The behavior of {\tt appcontext} is the same as the one of {\tt - context}, except that a matching subterm could be a partial -part of a longer application. For instance, in {\tt (f 1 2)}, -an {\tt appcontext [f ?x]} will find the matching subterm {\tt (f 1)}. - -\end{Variants} - -\subsubsection[Pattern matching on goals]{Pattern matching on goals\index{Ltac!match goal} -\index{Ltac!match reverse goal} -\index{match goal!in Ltac} -\index{match reverse goal!in Ltac}} - -We can make pattern matching on goals using the following expression: -\begin{quote} -\begin{tabbing} -{\tt match goal with}\\ -~~\={\tt |} $hyp_{1,1}${\tt ,}...{\tt ,}$hyp_{1,m_1}$ - ~~{\tt |-}{\cpattern}$_1${\tt =>} {\tacexpr}$_1$\\ - \>{\tt |} $hyp_{2,1}${\tt ,}...{\tt ,}$hyp_{2,m_2}$ - ~~{\tt |-}{\cpattern}$_2${\tt =>} {\tacexpr}$_2$\\ -~~...\\ - \>{\tt |} $hyp_{n,1}${\tt ,}...{\tt ,}$hyp_{n,m_n}$ - ~~{\tt |-}{\cpattern}$_n${\tt =>} {\tacexpr}$_n$\\ - \>{\tt |\_}~~~~{\tt =>} {\tacexpr}$_{n+1}$\\ -{\tt end} -\end{tabbing} -\end{quote} - -If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$ -is matched (non-linear first-order unification) by an hypothesis of -the goal and if {\cpattern}$_1$ is matched by the conclusion of the -goal, then {\tacexpr}$_1$ is evaluated to $v_1$ by substituting the -pattern matching to the metavariables and the real hypothesis names -bound to the possible hypothesis names occurring in the hypothesis -patterns. If $v_1$ is a tactic value, then it is applied to the -goal. If this application fails, then another combination of -hypotheses is tried with the same proof context pattern. If there is -no other combination of hypotheses then the second proof context -pattern is tried and so on. If the next to last proof context pattern -fails then {\tacexpr}$_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$ -is applied. Note also that matching against subterms (using the {\tt -context} {\ident} {\tt [} {\cpattern} {\tt ]}) is available and may -itself induce extra backtrackings. - -\ErrMsg \errindex{No matching clauses for match goal} - -No clause succeeds, i.e. all matching patterns, if any, -fail at the application of the right-hand-side. - -\medskip - -It is important to know that each hypothesis of the goal can be -matched by at most one hypothesis pattern. The order of matching is -the following: hypothesis patterns are examined from the right to the -left (i.e. $hyp_{i,m_i}$ before $hyp_{i,1}$). For each hypothesis -pattern, the goal hypothesis are matched in order (fresher hypothesis -first), but it possible to reverse this order (older first) with -the {\tt match reverse goal with} variant. - -\variant -\index{lazymatch goal!in Ltac} -\index{Ltac!lazymatch goal} -\index{lazymatch reverse goal!in Ltac} -\index{Ltac!lazymatch reverse goal} -Using {\tt lazymatch} instead of {\tt match} has an effect if the -right-hand-side of a clause returns a tactic. With {\tt match}, the -tactic is applied to the current goal (and the next clause is tried if -it fails). With {\tt lazymatch}, the tactic is directly returned as -the result of the whole {\tt lazymatch} block without being first -tried to be applied to the goal. Typically, if the {\tt lazymatch} -block is bound to some variable $x$ in a {\tt let in}, then tactic -expression gets bound to the variable $x$. - -\begin{coq_example} -Ltac test_lazy := - lazymatch goal with - | _ => idtac "here"; fail - | _ => idtac "wasn't lazy"; trivial - end. -Ltac test_eager := - match goal with - | _ => idtac "here"; fail - | _ => idtac "wasn't lazy"; trivial - end. -Goal True. -test_lazy || idtac "was lazy". -test_eager || idtac "was lazy". -\end{coq_example} - -\subsubsection[Filling a term context]{Filling a term context\index{context!in expression}} - -The following expression is not a tactic in the sense that it does not -produce subgoals but generates a term to be used in tactic -expressions: -\begin{quote} -{\tt context} {\ident} {\tt [} {\tacexpr} {\tt ]} -\end{quote} -{\ident} must denote a context variable bound by a {\tt context} -pattern of a {\tt match} expression. This expression evaluates -replaces the hole of the value of {\ident} by the value of -{\tacexpr}. - -\ErrMsg \errindex{not a context variable} - - -\subsubsection[Generating fresh hypothesis names]{Generating fresh hypothesis names\index{Ltac!fresh} -\index{fresh!in Ltac}} - -Tactics sometimes have to generate new names for hypothesis. Letting -the system decide a name with the {\tt intro} tactic is not so good -since it is very awkward to retrieve the name the system gave. -The following expression returns an identifier: -\begin{quote} -{\tt fresh} \nelist{\textrm{\textsl{component}}}{} -\end{quote} -It evaluates to an identifier unbound in the goal. This fresh -identifier is obtained by concatenating the value of the -\textrm{\textsl{component}}'s (each of them is, either an {\ident} which -has to refer to a name, or directly a name denoted by a -{\qstring}). If the resulting name is already used, it is padded -with a number so that it becomes fresh. If no component is -given, the name is a fresh derivative of the name {\tt H}. - -\subsubsection[Computing in a constr]{Computing in a constr\index{Ltac!eval} -\index{eval!in Ltac}} - -Evaluation of a term can be performed with: -\begin{quote} -{\tt eval} {\nterm{redexpr}} {\tt in} {\term} -\end{quote} -where \nterm{redexpr} is a reduction tactic among {\tt red}, {\tt -hnf}, {\tt compute}, {\tt simpl}, {\tt cbv}, {\tt lazy}, {\tt unfold}, -{\tt fold}, {\tt pattern}. - -\subsubsection{Type-checking a term} -%\tacindex{type of} -\index{Ltac!type of} -\index{type of!in Ltac} - -The following returns the type of {\term}: - -\begin{quote} -{\tt type of} {\term} -\end{quote} - -\subsubsection[Accessing tactic decomposition]{Accessing tactic decomposition\tacindex{info} -\index{Tacticals!info@{\tt info}}} - -Tactical ``{\tt info} {\tacexpr}'' is not really a tactical. For -elementary tactics, this is equivalent to \tacexpr. For complex tactic -like \texttt{auto}, it displays the operations performed by the -tactic. - -\subsubsection[Proving a subgoal as a separate lemma]{Proving a subgoal as a separate lemma\tacindex{abstract} -\index{Tacticals!abstract@{\tt abstract}}} - -From the outside ``\texttt{abstract \tacexpr}'' is the same as -{\tt solve \tacexpr}. Internally it saves an auxiliary lemma called -{\ident}\texttt{\_subproof}\textit{n} where {\ident} is the name of the -current goal and \textit{n} is chosen so that this is a fresh name. - -This tactical is useful with tactics such as \texttt{omega} or -\texttt{discriminate} that generate huge proof terms. With that tool -the user can avoid the explosion at time of the \texttt{Save} command -without having to cut manually the proof in smaller lemmas. - -\begin{Variants} -\item \texttt{abstract {\tacexpr} using {\ident}}.\\ - Give explicitly the name of the auxiliary lemma. -\end{Variants} - -\ErrMsg \errindex{Proof is not complete} - -\subsubsection[Calling an external tactic]{Calling an external tactic\index{Ltac!external}} - -The tactic {\tt external} allows to run an executable outside the -{\Coq} executable. The communication is done via an XML encoding of -constructions. The syntax of the command is - -\begin{quote} -{\tt external} "\textsl{command}" "\textsl{request}" \nelist{\tacarg}{} -\end{quote} - -The string \textsl{command}, to be interpreted in the default -execution path of the operating system, is the name of the external -command. The string \textsl{request} is the name of a request to be -sent to the external command. Finally the list of tactic arguments -have to evaluate to terms. An XML tree of the following form is sent -to the standard input of the external command. -\medskip - -\begin{tabular}{l} -\texttt{<REQUEST req="}\textsl{request}\texttt{">}\\ -the XML tree of the first argument\\ -{\ldots}\\ -the XML tree of the last argument\\ -\texttt{</REQUEST>}\\ -\end{tabular} -\medskip - -Conversely, the external command must send on its standard output an -XML tree of the following forms: - -\medskip -\begin{tabular}{l} -\texttt{<TERM>}\\ -the XML tree of a term\\ -\texttt{</TERM>}\\ -\end{tabular} -\medskip - -\noindent or - -\medskip -\begin{tabular}{l} -\texttt{<CALL uri="}\textsl{ltac\_qualified\_ident}\texttt{">}\\ -the XML tree of a first argument\\ -{\ldots}\\ -the XML tree of a last argument\\ -\texttt{</CALL>}\\ -\end{tabular} - -\medskip -\noindent where \textsl{ltac\_qualified\_ident} is the name of a -defined {\ltac} function and each subsequent XML tree is recursively a -\texttt{CALL} or a \texttt{TERM} node. - -The Document Type Definition (DTD) for terms of the Calculus of -Inductive Constructions is the one developed as part of the MoWGLI -European project. It can be found in the file {\tt dev/doc/cic.dtd} of -the {\Coq} source archive. - -An example of parser for this DTD, written in the Objective Caml - -Camlp4 language, can be found in the file {\tt parsing/g\_xml.ml4} of -the {\Coq} source archive. - -\section[Tactic toplevel definitions]{Tactic toplevel definitions\comindex{Ltac}} - -\subsection{Defining {\ltac} functions} - -Basically, {\ltac} toplevel definitions are made as follows: -%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\ -% -%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every -%script is evaluated by substituting $v$ to {\ident}. -% -%We can define functional definitions by:\\ -\begin{quote} -{\tt Ltac} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=} -{\tacexpr} -\end{quote} -This defines a new {\ltac} function that can be used in any tactic -script or new {\ltac} toplevel definition. - -\Rem The preceding definition can equivalently be written: -\begin{quote} -{\tt Ltac} {\ident} {\tt := fun} {\ident}$_1$ ... {\ident}$_n$ -{\tt =>} {\tacexpr} -\end{quote} -Recursive and mutual recursive function definitions are also -possible with the syntax: -\begin{quote} -{\tt Ltac} {\ident}$_1$ {\ident}$_{1,1}$ ... -{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\ -{\tt with} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=} -{\tacexpr}$_2$\\ -...\\ -{\tt with} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=} -{\tacexpr}$_n$ -\end{quote} -\medskip -It is also possible to \emph{redefine} an existing user-defined tactic -using the syntax: -\begin{quote} -{\tt Ltac} {\qualid} {\ident}$_1$ ... {\ident}$_n$ {\tt ::=} -{\tacexpr} -\end{quote} -A previous definition of \qualid must exist in the environment. -The new definition will always be used instead of the old one and -it goes accross module boundaries. - -If preceded by the keyword {\tt Local} the tactic definition will not -be exported outside the current module. - -\subsection[Printing {\ltac} tactics]{Printing {\ltac} tactics\comindex{Print Ltac}} - -Defined {\ltac} functions can be displayed using the command - -\begin{quote} -{\tt Print Ltac {\qualid}.} -\end{quote} - -\section[Debugging {\ltac} tactics]{Debugging {\ltac} tactics\comindex{Set Ltac Debug} -\comindex{Unset Ltac Debug} -\comindex{Test Ltac Debug}} - -The {\ltac} interpreter comes with a step-by-step debugger. The -debugger can be activated using the command - -\begin{quote} -{\tt Set Ltac Debug.} -\end{quote} - -\noindent and deactivated using the command - -\begin{quote} -{\tt Unset Ltac Debug.} -\end{quote} - -To know if the debugger is on, use the command \texttt{Test Ltac Debug}. -When the debugger is activated, it stops at every step of the -evaluation of the current {\ltac} expression and it prints information -on what it is doing. The debugger stops, prompting for a command which -can be one of the following: - -\medskip -\begin{tabular}{ll} -simple newline: & go to the next step\\ -h: & get help\\ -x: & exit current evaluation\\ -s: & continue current evaluation without stopping\\ -r $n$: & advance $n$ steps further\\ -r {\qstring}: & advance up to the next call to ``{\tt idtac} {\qstring}''\\ -\end{tabular} -\endinput - -\subsection{Permutation on closed lists} - -\begin{figure}[b] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Require Import List. -Section Sort. -Variable A : Set. -Inductive permut : list A -> list A -> Prop := - | permut_refl : forall l, permut l l - | permut_cons : - forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1) - | permut_append : forall a l, permut (a :: l) (l ++ a :: nil) - | permut_trans : - forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2. -End Sort. -\end{coq_example*} -\end{center} -\caption{Definition of the permutation predicate} -\label{permutpred} -\end{figure} - - -Another more complex example is the problem of permutation on closed -lists. The aim is to show that a closed list is a permutation of -another one. First, we define the permutation predicate as shown on -Figure~\ref{permutpred}. - -\begin{figure}[p] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac Permut n := - match goal with - | |- (permut _ ?l ?l) => apply permut_refl - | |- (permut _ (?a :: ?l1) (?a :: ?l2)) => - let newn := eval compute in (length l1) in - (apply permut_cons; Permut newn) - | |- (permut ?A (?a :: ?l1) ?l2) => - match eval compute in n with - | 1 => fail - | _ => - let l1' := constr:(l1 ++ a :: nil) in - (apply (permut_trans A (a :: l1) l1' l2); - [ apply permut_append | compute; Permut (pred n) ]) - end - end. -Ltac PermutProve := - match goal with - | |- (permut _ ?l1 ?l2) => - match eval compute in (length l1 = length l2) with - | (?n = ?n) => Permut n - end - end. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Permutation tactic} -\label{permutltac} -\end{figure} - -\begin{figure}[p] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma permut_ex1 : - permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil). -Proof. -PermutProve. -Qed. - -Lemma permut_ex2 : - permut nat - (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil) - (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil). -Proof. -PermutProve. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Examples of {\tt PermutProve} use} -\label{permutlem} -\end{figure} - -Next, we can write naturally the tactic and the result can be seen on -Figure~\ref{permutltac}. We can notice that we use two toplevel -definitions {\tt PermutProve} and {\tt Permut}. The function to be -called is {\tt PermutProve} which computes the lengths of the two -lists and calls {\tt Permut} with the length if the two lists have the -same length. {\tt Permut} works as expected. If the two lists are -equal, it concludes. Otherwise, if the lists have identical first -elements, it applies {\tt Permut} on the tail of the lists. Finally, -if the lists have different first elements, it puts the first element -of one of the lists (here the second one which appears in the {\tt - permut} predicate) at the end if that is possible, i.e., if the new -first element has been at this place previously. To verify that all -rotations have been done for a list, we use the length of the list as -an argument for {\tt Permut} and this length is decremented for each -rotation down to, but not including, 1 because for a list of length -$n$, we can make exactly $n-1$ rotations to generate at most $n$ -distinct lists. Here, it must be noticed that we use the natural -numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we -can see that it is possible to use usual natural numbers but they are -only used as arguments for primitive tactics and they cannot be -handled, in particular, we cannot make computations with them. So, a -natural choice is to use {\Coq} data structures so that {\Coq} makes -the computations (reductions) by {\tt eval compute in} and we can get -the terms back by {\tt match}. - -With {\tt PermutProve}, we can now prove lemmas such those shown on -Figure~\ref{permutlem}. - - -\subsection{Deciding intuitionistic propositional logic} - -\begin{figure}[tbp] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac Axioms := - match goal with - | |- True => trivial - | _:False |- _ => elimtype False; assumption - | _:?A |- ?A => auto - end. -Ltac DSimplif := - repeat - (intros; - match goal with - | id:(~ _) |- _ => red in id - | id:(_ /\ _) |- _ => - elim id; do 2 intro; clear id - | id:(_ \/ _) |- _ => - elim id; intro; clear id - | id:(?A /\ ?B -> ?C) |- _ => - cut (A -> B -> C); - [ intro | intros; apply id; split; assumption ] - | id:(?A \/ ?B -> ?C) |- _ => - cut (B -> C); - [ cut (A -> C); - [ intros; clear id - | intro; apply id; left; assumption ] - | intro; apply id; right; assumption ] - | id0:(?A -> ?B),id1:?A |- _ => - cut B; [ intro; clear id0 | apply id0; assumption ] - | |- (_ /\ _) => split - | |- (~ _) => red - end). -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Deciding intuitionistic propositions (1)} -\label{tautoltaca} -\end{figure} - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac TautoProp := - DSimplif; - Axioms || - match goal with - | id:((?A -> ?B) -> ?C) |- _ => - cut (B -> C); - [ intro; cut (A -> B); - [ intro; cut C; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; intro; assumption ]; TautoProp - | id:(~ ?A -> ?B) |- _ => - cut (False -> B); - [ intro; cut (A -> False); - [ intro; cut B; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; red; intro; assumption ]; TautoProp - | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp) - end. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Deciding intuitionistic propositions (2)} -\label{tautoltacb} -\end{figure} - -The pattern matching on goals allows a complete and so a powerful -backtracking when returning tactic values. An interesting application -is the problem of deciding intuitionistic propositional logic. -Considering the contraction-free sequent calculi {\tt LJT*} of -Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic -using the tactic language. On Figure~\ref{tautoltaca}, the tactic {\tt - Axioms} tries to conclude using usual axioms. The {\tt DSimplif} -tactic applies all the reversible rules of Dyckhoff's system. -Finally, on Figure~\ref{tautoltacb}, the {\tt TautoProp} tactic (the -main tactic to be called) simplifies with {\tt DSimplif}, tries to -conclude with {\tt Axioms} and tries several paths using the -backtracking rules (one of the four Dyckhoff's rules for the left -implication to get rid of the contraction and the right or). - -\begin{figure}[tb] -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B. -Proof. -TautoProp. -Qed. - -Lemma tauto_ex2 : - forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B. -Proof. -TautoProp. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Proofs of tautologies with {\tt TautoProp}} -\label{tautolem} -\end{figure} - -For example, with {\tt TautoProp}, we can prove tautologies like those of -Figure~\ref{tautolem}. - - -\subsection{Deciding type isomorphisms} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given by -Figure~\ref{isosax}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Open Scope type_scope. -Section Iso_axioms. -Variables A B C : Set. -Axiom Com : A * B = B * A. -Axiom Ass : A * (B * C) = A * B * C. -Axiom Cur : (A * B -> C) = (A -> B -> C). -Axiom Dis : (A -> B * C) = (A -> B) * (A -> C). -Axiom P_unit : A * unit = A. -Axiom AR_unit : (A -> unit) = unit. -Axiom AL_unit : (unit -> A) = A. -Lemma Cons : B = C -> A * B = A * C. -Proof. -intro Heq; rewrite Heq; apply refl_equal. -Qed. -End Iso_axioms. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Type isomorphism axioms} -\label{isosax} -\end{figure} - -The tactic to judge equalities modulo this axiomatization can be written as -shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite -simple. Types are reduced using axioms that can be oriented (this done by {\tt -MainSimplif}). The normal forms are sequences of Cartesian -products without Cartesian product in the left component. These normal forms -are then compared modulo permutation of the components (this is done by {\tt -CompareStruct}). The main tactic to be called and realizing this algorithm is -{\tt IsoProve}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac DSimplif trm := - match trm with - | (?A * ?B * ?C) => - rewrite <- (Ass A B C); try MainSimplif - | (?A * ?B -> ?C) => - rewrite (Cur A B C); try MainSimplif - | (?A -> ?B * ?C) => - rewrite (Dis A B C); try MainSimplif - | (?A * unit) => - rewrite (P_unit A); try MainSimplif - | (unit * ?B) => - rewrite (Com unit B); try MainSimplif - | (?A -> unit) => - rewrite (AR_unit A); try MainSimplif - | (unit -> ?B) => - rewrite (AL_unit B); try MainSimplif - | (?A * ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - | (?A -> ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - end - with MainSimplif := - match goal with - | |- (?A = ?B) => try DSimplif A; try DSimplif B - end. -Ltac Length trm := - match trm with - | (_ * ?B) => let succ := Length B in constr:(S succ) - | _ => constr:1 - end. -Ltac assoc := repeat rewrite <- Ass. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Type isomorphism tactic (1)} -\label{isosltac1} -\end{figure} - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example} -Ltac DoCompare n := - match goal with - | [ |- (?A = ?A) ] => apply refl_equal - | [ |- (?A * ?B = ?A * ?C) ] => - apply Cons; let newn := Length B in DoCompare newn - | [ |- (?A * ?B = ?C) ] => - match eval compute in n with - | 1 => fail - | _ => - pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n) - end - end. -Ltac CompareStruct := - match goal with - | [ |- (?A = ?B) ] => - let l1 := Length A - with l2 := Length B in - match eval compute in (l1 = l2) with - | (?n = ?n) => DoCompare n - end - end. -Ltac IsoProve := MainSimplif; CompareStruct. -\end{coq_example} -\end{minipage}} -\end{center} -\caption{Type isomorphism tactic (2)} -\label{isosltac2} -\end{figure} - -Figure~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}. - -\begin{figure} -\begin{center} -\fbox{\begin{minipage}{0.95\textwidth} -\begin{coq_example*} -Lemma isos_ex1 : - forall A B:Set, A * unit * B = B * (unit * A). -Proof. -intros; IsoProve. -Qed. - -Lemma isos_ex2 : - forall A B C:Set, - (A * unit -> B * (C * unit)) = - (A * unit -> (C -> unit) * C) * (unit -> A -> B). -Proof. -intros; IsoProve. -Qed. -\end{coq_example*} -\end{minipage}} -\end{center} -\caption{Type equalities solved by {\tt IsoProve}} -\label{isoslem} -\end{figure} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-mod.tex b/doc/refman/RefMan-mod.tex deleted file mode 100644 index 68d57226..00000000 --- a/doc/refman/RefMan-mod.tex +++ /dev/null @@ -1,411 +0,0 @@ -\section{Module system -\index{Modules} -\label{section:Modules}} - -The module system provides a way of packaging related elements -together, as well as a mean of massive abstraction. - -\begin{figure}[t] -\begin{centerframe} -\begin{tabular}{rcl} -{\modtype} & ::= & {\qualid} \\ - & $|$ & {\modtype} \texttt{ with Definition }{\qualid} := {\term} \\ - & $|$ & {\modtype} \texttt{ with Module }{\qualid} := {\qualid} \\ - & $|$ & {\qualid} \nelist{\qualid}{}\\ - & $|$ & $!${\qualid} \nelist{\qualid}{}\\ - &&\\ - -{\onemodbinding} & ::= & {\tt ( [Import|Export] \nelist{\ident}{} : {\modtype} )}\\ - &&\\ - -{\modbindings} & ::= & \nelist{\onemodbinding}{}\\ - &&\\ - -{\modexpr} & ::= & \nelist{\qualid}{} \\ - & $|$ & $!$\nelist{\qualid}{} -\end{tabular} -\end{centerframe} -\caption{Syntax of modules} -\end{figure} - -In the syntax of module application, the $!$ prefix indicates that -any {\tt Inline} directive in the type of the functor arguments -will be ignored (see \ref{Inline} below). - -\subsection{\tt Module {\ident} -\comindex{Module}} - -This command is used to start an interactive module named {\ident}. - -\begin{Variants} - -\item{\tt Module {\ident} {\modbindings}} - - Starts an interactive functor with parameters given by {\modbindings}. - -\item{\tt Module {\ident} \verb.:. {\modtype}} - - Starts an interactive module specifying its module type. - -\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype}} - - Starts an interactive functor with parameters given by - {\modbindings}, and output module type {\modtype}. - -\item{\tt Module {\ident} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:.{ \modtype$_n$}} - - Starts an interactive module satisfying each {\modtype$_i$}. - -\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}} - - Starts an interactive functor with parameters given by - {\modbindings}. The output module type is verified against each - module type {\modtype$_i$}. - -\item\texttt{Module [Import|Export]} - - Behaves like \texttt{Module}, but automatically imports or exports - the module. - -\end{Variants} -\subsubsection{Reserved commands inside an interactive module: -\comindex{Include}} -\begin{enumerate} -\item {\tt Include {\module}} - - Includes the content of {\module} in the current interactive - module. Here {\module} can be a module expresssion or a module type - expression. If {\module} is a high-order module or module type - expression then the system tries to instanciate {\module} - by the current interactive module. - -\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}} - -is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}} -\end{enumerate} -\subsection{\tt End {\ident} -\comindex{End}} - -This command closes the interactive module {\ident}. If the module type -was given the content of the module is matched against it and an error -is signaled if the matching fails. If the module is basic (is not a -functor) its components (constants, inductive types, submodules etc) are -now available through the dot notation. - -\begin{ErrMsgs} -\item \errindex{No such label {\ident}} -\item \errindex{Signature components for label {\ident} do not match} -\item \errindex{This is not the last opened module} -\end{ErrMsgs} - - -\subsection{\tt Module {\ident} := {\modexpr} -\comindex{Module}} - -This command defines the module identifier {\ident} to be equal to -{\modexpr}. - -\begin{Variants} -\item{\tt Module {\ident} {\modbindings} := {\modexpr}} - - Defines a functor with parameters given by {\modbindings} and body {\modexpr}. - -% Particular cases of the next 2 items -%\item{\tt Module {\ident} \verb.:. {\modtype} := {\modexpr}} -% -% Defines a module with body {\modexpr} and interface {\modtype}. -%\item{\tt Module {\ident} \verb.<:. {\modtype} := {\modexpr}} -% -% Defines a module with body {\modexpr}, satisfying {\modtype}. - -\item{\tt Module {\ident} {\modbindings} \verb.:. {\modtype} := - {\modexpr}} - - Defines a functor with parameters given by {\modbindings} (possibly none), - and output module type {\modtype}, with body {\modexpr}. - -\item{\tt Module {\ident} {\modbindings} \verb.<:. {\modtype$_1$} \verb.<:. $\ldots$ \verb.<:. {\modtype$_n$}:= - {\modexpr}} - - Defines a functor with parameters given by {\modbindings} (possibly none) - with body {\modexpr}. The body is checked against each {\modtype$_i$}. - -\item{\tt Module {\ident} {\modbindings} := {\modexpr$_1$} \verb.<+. $\ldots$ \verb.<+. {\modexpr$_n$}} - - is equivalent to an interactive module where each {\modexpr$_i$} are included. - -\end{Variants} - -\subsection{\tt Module Type {\ident} -\comindex{Module Type}} - -This command is used to start an interactive module type {\ident}. - -\begin{Variants} - -\item{\tt Module Type {\ident} {\modbindings}} - - Starts an interactive functor type with parameters given by {\modbindings}. - -\end{Variants} -\subsubsection{Reserved commands inside an interactive module type: -\comindex{Include}\comindex{Inline}} -\label{Inline} -\begin{enumerate} -\item {\tt Include {\module}} - - Same as {\tt Include} inside a module. - -\item {\tt Include {\module$_1$} \verb.<+. $\ldots$ \verb.<+. {\module$_n$}} - -is a shortcut for {\tt Include {\module$_1$}} $\ldots$ {\tt Include {\module$_n$}} - -\item {\tt {\assumptionkeyword} Inline {\assums} } - - The instance of this assumption will be automatically expanded at functor - application, except when this functor application is prefixed by a $!$ annotation. -\end{enumerate} -\subsection{\tt End {\ident} -\comindex{End}} - -This command closes the interactive module type {\ident}. - -\begin{ErrMsgs} -\item \errindex{This is not the last opened module type} -\end{ErrMsgs} - -\subsection{\tt Module Type {\ident} := {\modtype}} - -Defines a module type {\ident} equal to {\modtype}. - -\begin{Variants} -\item {\tt Module Type {\ident} {\modbindings} := {\modtype}} - - Defines a functor type {\ident} specifying functors taking arguments - {\modbindings} and returning {\modtype}. - -\item{\tt Module Type {\ident} {\modbindings} := {\modtype$_1$} \verb.<+. $\ldots$ \verb.<+. {\modtype$_n$}} - - is equivalent to an interactive module type were each {\modtype$_i$} are included. - -\end{Variants} - -\subsection{\tt Declare Module {\ident} : {\modtype}} - -Declares a module {\ident} of type {\modtype}. - -\begin{Variants} - -\item{\tt Declare Module {\ident} {\modbindings} \verb.:. {\modtype}} - - Declares a functor with parameters {\modbindings} and output module - type {\modtype}. - - -\end{Variants} - - -\subsubsection{Example} - -Let us define a simple module. -\begin{coq_example} -Module M. - Definition T := nat. - Definition x := 0. - Definition y : bool. - exact true. - Defined. -End M. -\end{coq_example} -Inside a module one can define constants, prove theorems and do any -other things that can be done in the toplevel. Components of a closed -module can be accessed using the dot notation: -\begin{coq_example} -Print M.x. -\end{coq_example} -A simple module type: -\begin{coq_example} -Module Type SIG. - Parameter T : Set. - Parameter x : T. -End SIG. -\end{coq_example} - -Now we can create a new module from \texttt{M}, giving it a less -precise specification: the \texttt{y} component is dropped as well -as the body of \texttt{x}. - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(***************** Error: N.y not a defined object *******************) -\end{coq_eval} -\begin{coq_example} -Module N : SIG with Definition T := nat := M. -Print N.T. -Print N.x. -Print N.y. -\end{coq_example} -\begin{coq_eval} -Reset N. -\end{coq_eval} - -\noindent -The definition of \texttt{N} using the module type expression -\texttt{SIG with Definition T:=nat} is equivalent to the following -one: - -\begin{coq_example*} -Module Type SIG'. - Definition T : Set := nat. - Parameter x : T. -End SIG'. -Module N : SIG' := M. -\end{coq_example*} -If we just want to be sure that the our implementation satisfies a -given module type without restricting the interface, we can use a -transparent constraint -\begin{coq_example} -Module P <: SIG := M. -Print P.y. -\end{coq_example} -Now let us create a functor, i.e. a parametric module -\begin{coq_example} -Module Two (X Y: SIG). -\end{coq_example} -\begin{coq_example*} - Definition T := (X.T * Y.T)%type. - Definition x := (X.x, Y.x). -\end{coq_example*} -\begin{coq_example} -End Two. -\end{coq_example} -and apply it to our modules and do some computations -\begin{coq_example} -Module Q := Two M N. -Eval compute in (fst Q.x + snd Q.x). -\end{coq_example} -In the end, let us define a module type with two sub-modules, sharing -some of the fields and give one of its possible implementations: -\begin{coq_example} -Module Type SIG2. - Declare Module M1 : SIG. - Module M2 <: SIG. - Definition T := M1.T. - Parameter x : T. - End M2. -End SIG2. -\end{coq_example} -\begin{coq_example*} -Module Mod <: SIG2. - Module M1. - Definition T := nat. - Definition x := 1. - End M1. - Module M2 := M. -\end{coq_example*} -\begin{coq_example} -End Mod. -\end{coq_example} -Notice that \texttt{M} is a correct body for the component \texttt{M2} -since its \texttt{T} component is equal \texttt{nat} and hence -\texttt{M1.T} as specified. -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{Remarks} -\item Modules and module types can be nested components of each other. -\item One can have sections inside a module or a module type, but - not a module or a module type inside a section. -\item Commands like \texttt{Hint} or \texttt{Notation} can - also appear inside modules and module types. Note that in case of a - module definition like: - - \smallskip - \noindent - {\tt Module N : SIG := M.} - \smallskip - - or - - \smallskip - {\tt Module N : SIG.\\ - \ \ \dots\\ - End N.} - \smallskip - - hints and the like valid for \texttt{N} are not those defined in - \texttt{M} (or the module body) but the ones defined in - \texttt{SIG}. - -\end{Remarks} - -\subsection{\tt Import {\qualid} -\comindex{Import} -\label{Import}} - -If {\qualid} denotes a valid basic module (i.e. its module type is a -signature), makes its components available by their short names. - -Example: - -\begin{coq_example} -Module Mod. -\end{coq_example} -\begin{coq_example} - Definition T:=nat. - Check T. -\end{coq_example} -\begin{coq_example} -End Mod. -Check Mod.T. -Check T. (* Incorrect ! *) -Import Mod. -Check T. (* Now correct *) -\end{coq_example} -\begin{coq_eval} -Reset Mod. -\end{coq_eval} - -Some features defined in modules are activated only when a module is -imported. This is for instance the case of notations (see -Section~\ref{Notation}). - -\begin{Variants} -\item{\tt Export {\qualid}}\comindex{Export} - - When the module containing the command {\tt Export {\qualid}} is - imported, {\qualid} is imported as well. -\end{Variants} - -\begin{ErrMsgs} - \item \errindexbis{{\qualid} is not a module}{is not a module} -% this error is impossible in the import command -% \item \errindex{Cannot mask the absolute name {\qualid} !} -\end{ErrMsgs} - -\begin{Warnings} - \item Warning: Trying to mask the absolute name {\qualid} ! -\end{Warnings} - -\subsection{\tt Print Module {\ident} -\comindex{Print Module}} - -Prints the module type and (optionally) the body of the module {\ident}. - -\subsection{\tt Print Module Type {\ident} -\comindex{Print Module Type}} - -Prints the module type corresponding to {\ident}. - -\subsection{\tt Locate Module {\qualid} -\comindex{Locate Module}} - -Prints the full name of the module {\qualid}. - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-modr.tex b/doc/refman/RefMan-modr.tex deleted file mode 100644 index 9ab8aded..00000000 --- a/doc/refman/RefMan-modr.tex +++ /dev/null @@ -1,563 +0,0 @@ -\chapter[The Module System]{The Module System\label{chapter:Modules}} - -The module system extends the Calculus of Inductive Constructions -providing a convenient way to structure large developments as well as -a mean of massive abstraction. -%It is described in details in Judicael's thesis and Jacek's thesis - -\section{Modules and module types} - -\paragraph{Access path.} It is denoted by $p$, it can be either a module -variable $X$ or, if $p'$ is an access path and $id$ an identifier, then -$p'.id$ is an access path. - -\paragraph{Structure element.} It is denoted by \elem\ and is either a -definition of a constant, an assumption, a definition of an inductive, - a definition of a module, an alias of module or a module type abbreviation. - -\paragraph{Structure expression.} It is denoted by $S$ and can be: -\begin{itemize} -\item an access path $p$ -\item a plain structure $\struct{\nelist{\elem}{;}}$ -\item a functor $\functor{X}{S}{S'}$, where $X$ is a module variable, - $S$ and $S'$ are structure expression -\item an application $S\,p$, where $S$ is a structure expression and $p$ -an access path -\item a refined structure $\with{S}{p}{p'}$ or $\with{S}{p}{t:T}$ where $S$ -is a structure expression, $p$ and $p'$ are access paths, $t$ is a term -and $T$ is the type of $t$. -\end{itemize} - -\paragraph{Module definition,} is written $\Mod{X}{S}{S'}$ and - consists of a module variable $X$, a module type -$S$ which can be any structure expression and optionally a module implementation $S'$ - which can be any structure expression except a refined structure. - -\paragraph{Module alias,} is written $\ModA{X}{p}$ and - consists of a module variable $X$ and a module path $p$. - -\paragraph{Module type abbreviation,} is written $\ModType{Y}{S}$, where -$Y$ is an identifier and $S$ is any structure expression . - - -\section{Typing Modules} - -In order to introduce the typing system we first slightly extend -the syntactic class of terms and environments given in -section~\ref{Terms}. The environments, apart from definitions of -constants and inductive types now also hold any other structure elements. -Terms, apart from variables, constants and complex terms, -include also access paths. - -We also need additional typing judgments: -\begin{itemize} -\item \WFT{E}{S}, denoting that a structure $S$ is well-formed, - -\item \WTM{E}{p}{S}, denoting that the module pointed by $p$ has type $S$ in -environment $E$. - -\item \WEV{E}{S}{\overline{S}}, denoting that a structure $S$ is evaluated to -a structure $\overline{S}$ in weak head normal form. - -\item \WS{E}{S_1}{S_2}, denoting that a structure $S_1$ is a subtype of a -structure $S_2$. - -\item \WS{E}{\elem_1}{\elem_2}, denoting that a structure element - $\elem_1$ is more precise that a structure element $\elem_2$. -\end{itemize} -The rules for forming structures are the following: -\begin{description} -\item[WF-STR] -\inference{% - \frac{ - \WF{E;E'}{} - }{%%%%%%%%%%%%%%%%%%%%% - \WFT{E}{\struct{E'}} - } -} -\item[WF-FUN] -\inference{% - \frac{ - \WFT{E;\ModS{X}{S}}{\overline{S'}} - }{%%%%%%%%%%%%%%%%%%%%%%%%%% - \WFT{E}{\functor{X}{S}{S'}} - } -} -\end{description} -Evaluation of structures to weak head normal form: -\begin{description} -\item[WEVAL-APP] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{S}{\functor{X}{S_1}{S_2}}~~~~~\WEV{E}{S_1}{\overline{S_1}}\\ - \WTM{E}{p}{S_3}\qquad \WS{E}{S_3}{\overline{S_1}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{S\,p}{S_2\{p/X,t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}} - } -} -\end{description} -In the last rule, $\{t_1/p_1.c_1,\ldots,t_n/p_n.c_n\}$ is the resulting - substitution from the inlining mechanism. We substitute in $S$ the - inlined fields $p_i.c_i$ form $\ModS{X}{S_1}$ by the corresponding delta-reduced term $t_i$ in $p$. -\begin{description} -\item[WEVAL-WITH-MOD] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{S}{\structe{\ModS{X}{S_1}}}~~~~~\WEV{E;\elem_1;\ldots;\elem_i}{S_1}{\overline{S_1}}\\ - \WTM{E}{p}{S_2}\qquad \WS{E;\elem_1;\ldots;\elem_i}{S_2}{\overline{S_1}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \begin{array}{c} - \WEVT{E}{\with{S}{x}{p}}{\structes{\ModA{X}{p}}{p/X}} - \end{array} - } -} -\item[WEVAL-WITH-MOD-REC] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\ - \WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \begin{array}{c} - \WEVT{E}{\with{S}{X_1.p}{p_1}}{\structes{\ModS{X}{\overline{S_2}}}{p_1/X_1.p}} - \end{array} - } -} -\item[WEVAL-WITH-DEF] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{S}{\structe{\Assum{}{c}{T_1}}}\\ - \WS{E;\elem_1;\ldots;\elem_i}{\Def{}{c}{t}{T}}{\Assum{}{c}{T_1}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \begin{array}{c} - \WEVT{E}{\with{S}{c}{t:T}}{\structe{\Def{}{c}{t}{T}}} - \end{array} - } -} -\item[WEVAL-WITH-DEF-REC] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{S}{\structe{\ModS{X_1}{S_1}}}\\ - \WEV{E;\elem_1;\ldots;\elem_i}{\with{S_1}{p}{p_1}}{\overline{S_2}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \begin{array}{c} - \WEVT{E}{\with{S}{X_1.p}{t:T}}{\structe{\ModS{X}{\overline{S_2}}}} - \end{array} - } -} - -\item[WEVAL-PATH-MOD] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{p}{\structe{ \Mod{X}{S}{S_1}}}\\ - \WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{p.X}{\overline{S}} - } -} -\inference{% - \frac{ - \begin{array}{c} - \WF{E}{}~~~~~~\Mod{X}{S}{S_1}\in E\\ - \WEV{E}{S}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{X}{\overline{S}} - } -} -\item[WEVAL-PATH-ALIAS] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{p}{\structe{\ModA{X}{p_1}}}\\ - \WEV{E;\elem_1;\ldots;\elem_i}{p_1}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{p.X}{\overline{S}} - } -} -\inference{% - \frac{ - \begin{array}{c} - \WF{E}{}~~~~~~~\ModA{X}{p_1}\in E\\ - \WEV{E}{p_1}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{X}{\overline{S}} - } -} -\item[WEVAL-PATH-TYPE] -\inference{% - \frac{ - \begin{array}{c} - \WEV{E}{p}{\structe{\ModType{Y}{S}}}\\ - \WEV{E;\elem_1;\ldots;\elem_i}{S}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{p.Y}{\overline{S}} - } -} -\item[WEVAL-PATH-TYPE] -\inference{% - \frac{ - \begin{array}{c} - \WF{E}{}~~~~~~~\ModType{Y}{S}\in E\\ - \WEV{E}{S}{\overline{S}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WEV{E}{Y}{\overline{S}} - } -} -\end{description} - Rules for typing module: -\begin{description} -\item[MT-EVAL] -\inference{% - \frac{ - \WEV{E}{p}{\overline{S}} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WTM{E}{p}{\overline{S}} - } -} -\item[MT-STR] -\inference{% - \frac{ - \WTM{E}{p}{S} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WTM{E}{p}{S/p} - } -} -\end{description} -The last rule, called strengthening is used to make all module fields -manifestly equal to themselves. The notation $S/p$ has the following -meaning: -\begin{itemize} -\item if $S\lra\struct{\elem_1;\dots;\elem_n}$ then - $S/p=\struct{\elem_1/p;\dots;\elem_n/p}$ where $\elem/p$ is defined as - follows: - \begin{itemize} - \item $\Def{}{c}{t}{T}/p\footnote{Opaque definitions are processed as assumptions.} ~=~ \Def{}{c}{t}{T}$ - \item $\Assum{}{c}{U}/p ~=~ \Def{}{c}{p.c}{U}$ - \item $\ModS{X}{S}/p ~=~ \ModA{X}{p.X}$ - \item $\ModA{X}{p'}/p ~=~ \ModA{X}{p'}$ - \item $\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}/p ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ - \item $\Indpstr{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}{p} ~=~ \Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'}$ - \end{itemize} -\item if $S\lra\functor{X}{S'}{S''}$ then $S/p=S$ -\end{itemize} -The notation $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ denotes an -inductive definition that is definitionally equal to the inductive -definition in the module denoted by the path $p$. All rules which have -$\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}$ as premises are also valid for -$\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$. We give the formation rule -for $\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}$ below as well as -the equality rules on inductive types and constructors. \\ - -The module subtyping rules: -\begin{description} -\item[MSUB-STR] -\inference{% - \frac{ - \begin{array}{c} - \WS{E;\elem_1;\dots;\elem_n}{\elem_{\sigma(i)}}{\elem'_i} - \textrm{ \ for } i=1..m \\ - \sigma : \{1\dots m\} \ra \{1\dots n\} \textrm{ \ injective} - \end{array} - }{ - \WS{E}{\struct{\elem_1;\dots;\elem_n}}{\struct{\elem'_1;\dots;\elem'_m}} - } -} -\item[MSUB-FUN] -\inference{% T_1 -> T_2 <: T_1' -> T_2' - \frac{ - \WS{E}{\overline{S_1'}}{\overline{S_1}}~~~~~~~~~~\WS{E;\ModS{X}{S_1'}}{\overline{S_2}}{\overline{S_2'}} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WS{E}{\functor{X}{S_1}{S_2}}{\functor{X}{S_1'}{S_2'}} - } -} -% these are derived rules -% \item[MSUB-EQ] -% \inference{% -% \frac{ -% \WS{E}{T_1}{T_2}~~~~~~~~~~\WTERED{}{T_1}{=}{T_1'}~~~~~~~~~~\WTERED{}{T_2}{=}{T_2'} -% }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% \WS{E}{T_1'}{T_2'} -% } -% } -% \item[MSUB-REFL] -% \inference{% -% \frac{ -% \WFT{E}{T} -% }{ -% \WS{E}{T}{T} -% } -% } -\end{description} -Structure element subtyping rules: -\begin{description} -\item[ASSUM-ASSUM] -\inference{% - \frac{ - \WTELECONV{}{T_1}{T_2} - }{ - \WSE{\Assum{}{c}{T_1}}{\Assum{}{c}{T_2}} - } -} -\item[DEF-ASSUM] -\inference{% - \frac{ - \WTELECONV{}{T_1}{T_2} - }{ - \WSE{\Def{}{c}{t}{T_1}}{\Assum{}{c}{T_2}} - } -} -\item[ASSUM-DEF] -\inference{% - \frac{ - \WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{c}{t_2} - }{ - \WSE{\Assum{}{c}{T_1}}{\Def{}{c}{t_2}{T_2}} - } -} -\item[DEF-DEF] -\inference{% - \frac{ - \WTELECONV{}{T_1}{T_2}~~~~~~~~\WTECONV{}{t_1}{t_2} - }{ - \WSE{\Def{}{c}{t_1}{T_1}}{\Def{}{c}{t_2}{T_2}} - } -} -\item[IND-IND] -\inference{% - \frac{ - \WTECONV{}{\Gamma_P}{\Gamma_P'}% - ~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}% - ~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}% - }{ - \WSE{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}% - {\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}} - } -} -\item[INDP-IND] -\inference{% - \frac{ - \WTECONV{}{\Gamma_P}{\Gamma_P'}% - ~~~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}% - ~~~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}% - }{ - \WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}% - {\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}} - } -} -\item[INDP-INDP] -\inference{% - \frac{ - \WTECONV{}{\Gamma_P}{\Gamma_P'}% - ~~~~~~\WTECONV{\Gamma_P}{\Gamma_C}{\Gamma_C'}% - ~~~~~~\WTECONV{\Gamma_P;\Gamma_C}{\Gamma_I}{\Gamma_I'}% - ~~~~~~\WTECONV{}{p}{p'} - }{ - \WSE{\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}% - {\Indp{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}{p'}} - } -} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\item[MOD-MOD] -\inference{% - \frac{ - \WSE{S_1}{S_2} - }{ - \WSE{\ModS{X}{S_1}}{\ModS{X}{S_2}} - } -} -\item[ALIAS-MOD] -\inference{% - \frac{ - \WTM{E}{p}{S_1}~~~~~~~~\WSE{S_1}{S_2} - }{ - \WSE{\ModA{X}{p}}{\ModS{X}{S_2}} - } -} -\item[MOD-ALIAS] -\inference{% - \frac{ - \WTM{E}{p}{S_2}~~~~~~~~ - \WSE{S_1}{S_2}~~~~~~~~\WTECONV{}{X}{p} - }{ - \WSE{\ModS{X}{S_1}}{\ModA{X}{p}} - } -} -\item[ALIAS-ALIAS] -\inference{% - \frac{ - \WTECONV{}{p_1}{p_2} - }{ - \WSE{\ModA{X}{p_1}}{\ModA{X}{p_2}} - } -} -\item[MODTYPE-MODTYPE] -\inference{% - \frac{ - \WSE{S_1}{S_2}~~~~~~~~\WSE{S_2}{S_1} - }{ - \WSE{\ModType{Y}{S_1}}{\ModType{Y}{S_2}} - } -} -\end{description} -New environment formation rules -\begin{description} -\item[WF-MOD] -\inference{% - \frac{ - \WF{E}{}~~~~~~~~\WFT{E}{S} - }{ - \WF{E;\ModS{X}{S}}{} - } -} -\item[WF-MOD] -\inference{% - \frac{ -\begin{array}{c} - \WS{E}{S_2}{S_1}\\ - \WF{E}{}~~~~~\WFT{E}{S_1}~~~~~\WFT{E}{S_2} -\end{array} - }{ - \WF{E;\Mod{X}{S_1}{S_2}}{} - } -} - -\item[WF-ALIAS] -\inference{% - \frac{ - \WF{E}{}~~~~~~~~~~~\WTE{}{p}{S} - }{ - \WF{E,\ModA{X}{p}}{} - } -} -\item[WF-MODTYPE] -\inference{% - \frac{ - \WF{E}{}~~~~~~~~~~~\WFT{E}{S} - }{ - \WF{E,\ModType{Y}{S}}{} - } -} -\item[WF-IND] -\inference{% - \frac{ - \begin{array}{c} - \WF{E;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}}{}\\ - \WT{E}{}{p:\struct{\elem_1;\dots;\elem_n;\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'};\dots}}\\ - \WS{E}{\Ind{}{\Gamma_P'}{\Gamma_C'}{\Gamma_I'}}{\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I}} - \end{array} - }{%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \WF{E;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p}}{} - } -} -\end{description} -Component access rules -\begin{description} -\item[ACC-TYPE] -\inference{% - \frac{ - \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Assum{}{c}{T};\dots}} - }{ - \WTEG{p.c}{T} - } -} -\\ -\inference{% - \frac{ - \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{T};\dots}} - }{ - \WTEG{p.c}{T} - } -} -\item[ACC-DELTA] -Notice that the following rule extends the delta rule defined in -section~\ref{delta} -\inference{% - \frac{ - \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Def{}{c}{t}{U};\dots}} - }{ - \WTEGRED{p.c}{\triangleright_\delta}{t} - } -} -\\ -In the rules below we assume $\Gamma_P$ is $[p_1:P_1;\ldots;p_r:P_r]$, - $\Gamma_I$ is $[I_1:A_1;\ldots;I_k:A_k]$, and $\Gamma_C$ is - $[c_1:C_1;\ldots;c_n:C_n]$ -\item[ACC-IND] -\inference{% - \frac{ - \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}} - }{ - \WTEG{p.I_j}{(p_1:P_1)\ldots(p_r:P_r)A_j} - } -} -\inference{% - \frac{ - \WTEG{p}{\struct{\elem_1;\dots;\elem_i;\Ind{}{\Gamma_P}{\Gamma_C}{\Gamma_I};\dots}} - }{ - \WTEG{p.c_m}{(p_1:P_1)\ldots(p_r:P_r){C_m}{I_j}{(I_j~p_1\ldots - p_r)}_{j=1\ldots k}} - } -} -\item[ACC-INDP] -\inference{% - \frac{ - \WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}} - }{ - \WTRED{E}{}{p.I_i}{\triangleright_\delta}{p'.I_i} - } -} -\inference{% - \frac{ - \WT{E}{}{p}{\struct{\elem_1;\dots;\elem_i;\Indp{}{\Gamma_P}{\Gamma_C}{\Gamma_I}{p'};\dots}} - }{ - \WTRED{E}{}{p.c_i}{\triangleright_\delta}{p'.c_i} - } -} - -\end{description} - -% %%% replaced by \triangle_\delta -% Module path equality is a transitive and reflexive closure of the -% relation generated by ACC-MODEQ and ENV-MODEQ. -% \begin{itemize} -% \item []MP-EQ-REFL -% \inference{% -% \frac{ -% \WTEG{p}{T} -% }{ -% \WTEG{p}{p} -% } -% } -% \item []MP-EQ-TRANS -% \inference{% -% \frac{ -% \WTEGRED{p}{=}{p'}~~~~~~\WTEGRED{p'}{=}{p''} -% }{ -% \WTEGRED{p'}{=}{p''} -% } -% } - -% \end{itemize} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: - diff --git a/doc/refman/RefMan-oth.tex b/doc/refman/RefMan-oth.tex deleted file mode 100644 index f8181143..00000000 --- a/doc/refman/RefMan-oth.tex +++ /dev/null @@ -1,1156 +0,0 @@ -\chapter[Vernacular commands]{Vernacular commands\label{Vernacular-commands} -\label{Other-commands}} - -\section{Displaying} - -\subsection[\tt Print {\qualid}.]{\tt Print {\qualid}.\comindex{Print}} -This command displays on the screen informations about the declared or -defined object referred by {\qualid}. - -\begin{ErrMsgs} -\item {\qualid} \errindex{not a defined object} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt Print Term {\qualid}.} -\comindex{Print Term}\\ -This is a synonym to {\tt Print {\qualid}} when {\qualid} denotes a -global constant. - -\item {\tt About {\qualid}.} -\label{About} -\comindex{About}\\ -This displays various informations about the object denoted by {\qualid}: -its kind (module, constant, assumption, inductive, -constructor, abbreviation\ldots), long name, type, implicit -arguments and argument scopes. It does not print the body of -definitions or proofs. - -%\item {\tt Print Proof {\qualid}.}\comindex{Print Proof}\\ -%In case \qualid\ denotes an opaque theorem defined in a section, -%it is stored on a special unprintable form and displayed as -%{\tt <recipe>}. {\tt Print Proof} forces the printable form of \qualid\ -%to be computed and displays it. -\end{Variants} - -\subsection[\tt Print All.]{\tt Print All.\comindex{Print All}} -This command displays informations about the current state of the -environment, including sections and modules. - -\begin{Variants} -\item {\tt Inspect \num.}\comindex{Inspect}\\ -This command displays the {\num} last objects of the current -environment, including sections and modules. -\item {\tt Print Section {\ident}.}\comindex{Print Section}\\ -should correspond to a currently open section, this command -displays the objects defined since the beginning of this section. -% Discontinued -%% \item {\tt Print.}\comindex{Print}\\ -%% This command displays the axioms and variables declarations in the -%% environment as well as the constants defined since the last variable -%% was introduced. -\end{Variants} - -\section{Options and Flags} -\subsection[\tt Set {\rm\sl option} {\rm\sl value}.]{\tt Set {\rm\sl option} {\rm\sl value}.\comindex{Set}} -This command sets {\rm\sl option} to {\rm\sl value}. The original value of -{\rm\sl option} is restored when the current module ends. - -\begin{Variants} -\item {\tt Set {\rm\sl flag}.}\\ -This command switches {\rm\sl flag} on. The original state of -{\rm\sl flag} is restored when the current module ends. -\item {\tt Local Set {\rm\sl option} {\rm\sl value}.\comindex{Local Set}} -This command sets {\rm\sl option} to {\rm\sl value}. The original value of -{\rm\sl option} is restored when the current \emph{section} ends. -\item {\tt Local Set {\rm\sl flag}.}\\ -This command switches {\rm\sl flag} on. The original state of -{\rm\sl flag} is restored when the current \emph{section} ends. -\item {\tt Global Set {\rm\sl option} {\rm\sl value}.\comindex{Global Set}} -This command sets {\rm\sl option} to {\rm\sl value}. The original value of -{\rm\sl option} is \emph{not} restored at the end of the module. Additionally, -if set in a file, {\rm\sl option} is set to {\rm\sl value} when the file is -{\tt Require}-d. -\item {\tt Global Set {\rm\sl flag}.}\\ -This command switches {\rm\sl flag} on. The original state of -{\rm\sl flag} is \emph{not} restored at the end of the module. Additionally, -if set in a file, {\rm\sl flag} is switched on when the file is -{\tt Require}-d. -\end{Variants} - -\subsection[\tt Unset {\rm\sl flag}.]{\tt Unset {\rm\sl flag}.\comindex{Unset}} -This command switches {\rm\sl flag} off. The original state of {\rm\sl flag} -is restored when the current module ends. - -\begin{Variants} -\item {\tt Local Unset {\rm\sl flag}.\comindex{Local Unset}}\\ -This command switches {\rm\sl flag} off. The original state of {\rm\sl flag} -is restored when the current \emph{section} ends. -\item {\tt Global Unset {\rm\sl flag}.\comindex{Global Unset}}\\ -This command switches {\rm\sl flag} off. The original state of -{\rm\sl flag} is \emph{not} restored at the end of the module. Additionally, -if set in a file, {\rm\sl flag} is switched on when the file is -{\tt Require}-d. -\end{Variants} - -\subsection[\tt Test {\rm\sl option}.]{\tt Test {\rm\sl option}.\comindex{Test}} -This command prints the current value of {\rm\sl option}. - -\begin{Variants} -\item {\tt Test {\rm\sl flag}.}\\ -This command prints whether {\rm\sl flag} is on or off. -\end{Variants} - -\section{Requests to the environment} - -\subsection[\tt Check {\term}.]{\tt Check {\term}.\label{Check} -\comindex{Check}} -This command displays the type of {\term}. When called in proof mode, -the term is checked in the local context of the current subgoal. - -\subsection[\tt Eval {\rm\sl convtactic} in {\term}.]{\tt Eval {\rm\sl convtactic} in {\term}.\comindex{Eval}} - -This command performs the specified reduction on {\term}, and displays -the resulting term with its type. The term to be reduced may depend on -hypothesis introduced in the first subgoal (if a proof is in -progress). - -\SeeAlso Section~\ref{Conversion-tactics}. - -\subsection[\tt Compute {\term}.]{\tt Compute {\term}.\comindex{Compute}} - -This command performs a call-by-value evaluation of {\term} by using -the bytecode-based virtual machine. It is a shortcut for -{\tt Eval vm\_compute in {\term}}. - -\SeeAlso Section~\ref{Conversion-tactics}. - -\subsection[\tt Extraction \term.]{\tt Extraction \term.\label{ExtractionTerm} -\comindex{Extraction}} -This command displays the extracted term from -{\term}. The extraction is processed according to the distinction -between {\Set} and {\Prop}; that is to say, between logical and -computational content (see Section~\ref{Sorts}). The extracted term is -displayed in Objective Caml syntax, where global identifiers are still -displayed as in \Coq\ terms. - -\begin{Variants} -\item \texttt{Recursive Extraction {\qualid$_1$} \ldots{} {\qualid$_n$}.}\\ - Recursively extracts all the material needed for the extraction of - globals {\qualid$_1$} \ldots{} {\qualid$_n$}. -\end{Variants} - -\SeeAlso Chapter~\ref{Extraction}. - -\subsection[\tt Print Assumptions {\qualid}.]{\tt Print Assumptions {\qualid}.\comindex{Print Assumptions}} -\label{PrintAssumptions} - -This commands display all the assumptions (axioms, parameters and -variables) a theorem or definition depends on. Especially, it informs -on the assumptions with respect to which the validity of a theorem -relies. - -\begin{Variants} -\item \texttt{\tt Print Opaque Dependencies {\qualid}. - \comindex{Print Opaque Dependencies}}\\ - Displays the set of opaque constants {\qualid} relies on in addition - to the assumptions. -\end{Variants} - -\subsection[\tt Search {\term}.]{\tt Search {\term}.\comindex{Search}} -This command displays the name and type of all theorems of the current -context whose statement's conclusion has the form {\tt ({\term} t1 .. - tn)}. This command is useful to remind the user of the name of -library lemmas. - -\begin{coq_example} -Search le. -Search (@eq bool). -\end{coq_example} - -\begin{Variants} -\item -{\tt Search {\term} inside {\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\item {\tt Search {\term} outside {\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions not defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\begin{ErrMsgs} -\item \errindex{Module/section \module{} not found} -No module \module{} has been required (see Section~\ref{Require}). -\end{ErrMsgs} - -\end{Variants} - -\subsection[\tt SearchAbout {\qualid}.]{\tt SearchAbout {\qualid}.\comindex{SearchAbout}} -This command displays the name and type of all objects (theorems, -axioms, etc) of the current context whose statement contains \qualid. -This command is useful to remind the user of the name of library -lemmas. - -\begin{ErrMsgs} -\item \errindex{The reference \qualid\ was not found in the current -environment}\\ - There is no constant in the environment named \qualid. -\end{ErrMsgs} - -\newcommand{\termpatternorstr}{{\termpattern}\textrm{\textsl{-}}{\str}} - -\begin{Variants} -\item {\tt SearchAbout {\str}.} - -If {\str} is a valid identifier, this command displays the name and type -of all objects (theorems, axioms, etc) of the current context whose -name contains {\str}. If {\str} is a notation's string denoting some -reference {\qualid} (referred to by its main symbol as in \verb="+"= -or by its notation's string as in \verb="_ + _"= or \verb="_ 'U' _"=, see -Section~\ref{Notation}), the command works like {\tt SearchAbout -{\qualid}}. - -\item {\tt SearchAbout {\str}\%{\delimkey}.} - -The string {\str} must be a notation or the main symbol of a notation -which is then interpreted in the scope bound to the delimiting key -{\delimkey} (see Section~\ref{scopechange}). - -\item {\tt SearchAbout {\termpattern}.} - -This searches for all statements or types of definition that contains -a subterm that matches the pattern {\termpattern} (holes of the -pattern are either denoted by ``{\texttt \_}'' or -by ``{\texttt ?{\ident}}'' when non linear patterns are expected). - -\item {\tt SearchAbout \nelist{\zeroone{-}{\termpatternorstr}}{}.}\\ - -\noindent where {\termpatternorstr} is a -{\termpattern} or a {\str}, or a {\str} followed by a scope -delimiting key {\tt \%{\delimkey}}. - -This generalization of {\tt SearchAbout} searches for all objects -whose statement or type contains a subterm matching {\termpattern} (or -{\qualid} if {\str} is the notation for a reference {\qualid}) and -whose name contains all {\str} of the request that correspond to valid -identifiers. If a {\termpattern} or a {\str} is prefixed by ``-'', the -search excludes the objects that mention that {\termpattern} or that -{\str}. - -\item - {\tt SearchAbout \nelist{{\termpatternorstr}}{} - inside {\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\item - {\tt SearchAbout \nelist{{\termpatternorstr}}{} - outside {\module$_1$}...{\module$_n$}.} - -This restricts the search to constructions not defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\item {\tt SearchAbout [ ... ]. } - -For compatibility with older versions, the list of objects to search -may be enclosed by optional {\tt [ ]} delimiters. - -\end{Variants} - -\examples - -\begin{coq_example*} -Require Import ZArith. -\end{coq_example*} -\begin{coq_example} -SearchAbout Zmult Zplus "distr". -SearchAbout "+"%Z "*"%Z "distr" -positive -Prop. -SearchAbout (?x * _ + ?x * _)%Z outside OmegaLemmas. -\end{coq_example} - -\subsection[\tt SearchPattern {\termpattern}.]{\tt SearchPattern {\term}.\comindex{SearchPattern}} - -This command displays the name and type of all theorems of the current -context whose statement's conclusion or last hypothesis and conclusion -matches the expression {\term} where holes in the latter are denoted -by ``{\texttt \_}''. It is a variant of {\tt SearchAbout - {\termpattern}} that does not look for subterms but searches for -statements whose conclusion has exactly the expected form, or whose -statement finishes by the given series of hypothesis/conclusion. - -\begin{coq_example} -Require Import Arith. -SearchPattern (_ + _ = _ + _). -SearchPattern (nat -> bool). -SearchPattern (forall l : list _, _ l l). -\end{coq_example} - -Patterns need not be linear: you can express that the same expression -must occur in two places by using pattern variables `{\texttt -?{\ident}}''. - -\begin{coq_example} -Require Import Arith. -SearchPattern (?X1 + _ = _ + ?X1). -\end{coq_example} - -\begin{Variants} -\item {\tt SearchPattern {\term} inside -{\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\item {\tt SearchPattern {\term} outside {\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions not defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\end{Variants} - -\subsection[\tt SearchRewrite {\term}.]{\tt SearchRewrite {\term}.\comindex{SearchRewrite}} - -This command displays the name and type of all theorems of the current -context whose statement's conclusion is an equality of which one side matches -the expression {\term}. Holes in {\term} are denoted by ``{\texttt \_}''. - -\begin{coq_example} -Require Import Arith. -SearchRewrite (_ + _ + _). -\end{coq_example} - -\begin{Variants} -\item {\tt SearchRewrite {\term} inside -{\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\item {\tt SearchRewrite {\term} outside {\module$_1$} \ldots{} {\module$_n$}.} - -This restricts the search to constructions not defined in modules -{\module$_1$} \ldots{} {\module$_n$}. - -\end{Variants} - - -% \begin{tabbing} -% \ \ \ \ \=11.\ \=\kill -% \>1.\>$A=B\mx{ if }A\stackrel{\bt{}\io{}}{\lra{}}B$\\ -% \>2.\>$\sa{}x:A.B=\sa{}y:A.B[x\la{}y]\mx{ if }y\not\in{}FV(\sa{}x:A.B)$\\ -% \>3.\>$\Pi{}x:A.B=\Pi{}y:A.B[x\la{}y]\mx{ if }y\not\in{}FV(\Pi{}x:A.B)$\\ -% \>4.\>$\sa{}x:A.B=\sa{}x:B.A\mx{ if }x\not\in{}FV(A,B)$\\ -% \>5.\>$\sa{}x:(\sa{}y:A.B).C=\sa{}x:A.\sa{}y:B[y\la{}x].C[x\la{}(x,y)]$\\ -% \>6.\>$\Pi{}x:(\sa{}y:A.B).C=\Pi{}x:A.\Pi{}y:B[y\la{}x].C[x\la{}(x,y)]$\\ -% \>7.\>$\Pi{}x:A.\sa{}y:B.C=\sa{}y:(\Pi{}x:A.B).(\Pi{}x:A.C[y\la{}(y\sm{}x)]$\\ -% \>8.\>$\sa{}x:A.unit=A$\\ -% \>9.\>$\sa{}x:unit.A=A[x\la{}tt]$\\ -% \>10.\>$\Pi{}x:A.unit=unit$\\ -% \>11.\>$\Pi{}x:unit.A=A[x\la{}tt]$ -% \end{tabbing} - -% For more informations about the exact working of this command, see -% \cite{Del97}. - -\subsection[\tt Locate {\qualid}.]{\tt Locate {\qualid}.\comindex{Locate} -\label{Locate}} -This command displays the full name of the qualified identifier {\qualid} -and consequently the \Coq\ module in which it is defined. - -\begin{coq_eval} -(*************** The last line should produce **************************) -(*********** Error: I.Dont.Exist not a defined object ******************) -\end{coq_eval} -\begin{coq_eval} -Set Printing Depth 50. -\end{coq_eval} -\begin{coq_example} -Locate nat. -Locate Datatypes.O. -Locate Init.Datatypes.O. -Locate Coq.Init.Datatypes.O. -Locate I.Dont.Exist. -\end{coq_example} - -\SeeAlso Section \ref{LocateSymbol} - -\subsection{The {\sc Whelp} searching tool -\label{Whelp}} - -{\sc Whelp} is an experimental searching and browsing tool for the -whole {\Coq} library and the whole set of {\Coq} user contributions. -{\sc Whelp} requires a browser to work. {\sc Whelp} has been developed -at the University of Bologna as part of the HELM\footnote{Hypertextual -Electronic Library of Mathematics} and MoWGLI\footnote{Mathematics on -the Web, Get it by Logics and Interfaces} projects. It can be invoked -directly from the {\Coq} toplevel or from {\CoqIDE}, assuming a -graphical environment is also running. The browser to use can be -selected by setting the environment variable {\tt -COQREMOTEBROWSER}. If not explicitly set, it defaults to -\verb!firefox -remote \"OpenURL(%s,new-tab)\" || firefox %s &"! or -\verb!C:\\PROGRA~1\\INTERN~1\\IEXPLORE %s!, depending on the -underlying operating system (in the command, the string \verb!%s! -serves as metavariable for the url to open). -The Whelp tool relies on a dedicated Whelp server and on another server -called Getter that retrieves formal documents. The default Whelp server name -can be obtained using the command {\tt Test Whelp Server} -\comindex{Test Whelp Server} and the default Getter can be obtained -using the command: {\tt Test Whelp Getter} \comindex{Test Whelp -Getter}. The Whelp server name can be changed using the command: - -\smallskip -\noindent {\tt Set Whelp Server {\str}}.\\ -where {\str} is a URL (e.g. {\tt http://mowgli.cs.unibo.it:58080}). -\comindex{Set Whelp Server} -\smallskip - -\noindent The Getter can be changed using the command: -\smallskip - -\noindent {\tt Set Whelp Getter {\str}}.\\ -where {\str} is a URL (e.g. {\tt http://mowgli.cs.unibo.it:58081}). -\comindex{Set Whelp Getter} - -\bigskip - -The {\sc Whelp} commands are: - -\subsubsection{\tt Whelp Locate "{\sl reg\_expr}". -\comindex{Whelp Locate}} - -This command opens a browser window and displays the result of seeking -for all names that match the regular expression {\sl reg\_expr} in the -{\Coq} library and user contributions. The regular expression can -contain the special operators are * and ? that respectively stand for -an arbitrary substring and for exactly one character. - -\variant {\tt Whelp Locate {\ident}.}\\ -This is equivalent to {\tt Whelp Locate "{\ident}"}. - -\subsubsection{\tt Whelp Match {\pattern}. -\comindex{Whelp Match}} - -This command opens a browser window and displays the result of seeking -for all statements that match the pattern {\pattern}. Holes in the -pattern are represented by the wildcard character ``\_''. - -\subsubsection[\tt Whelp Instance {\pattern}.]{\tt Whelp Instance {\pattern}.\comindex{Whelp Instance}} - -This command opens a browser window and displays the result of seeking -for all statements that are instances of the pattern {\pattern}. The -pattern is here assumed to be an universally quantified expression. - -\subsubsection[\tt Whelp Elim {\qualid}.]{\tt Whelp Elim {\qualid}.\comindex{Whelp Elim}} - -This command opens a browser window and displays the result of seeking -for all statements that have the ``form'' of an elimination scheme -over the type denoted by {\qualid}. - -\subsubsection[\tt Whelp Hint {\term}.]{\tt Whelp Hint {\term}.\comindex{Whelp Hint}} - -This command opens a browser window and displays the result of seeking -for all statements that can be instantiated so that to prove the -statement {\term}. - -\variant {\tt Whelp Hint.}\\ This is equivalent to {\tt Whelp Hint -{\sl goal}} where {\sl goal} is the current goal to prove. Notice that -{\Coq} does not send the local environment of definitions to the {\sc -Whelp} tool so that it only works on requests strictly based on, only, -definitions of the standard library and user contributions. - -\section{Loading files} - -\Coq\ offers the possibility of loading different -parts of a whole development stored in separate files. Their contents -will be loaded as if they were entered from the keyboard. This means -that the loaded files are ASCII files containing sequences of commands -for \Coq's toplevel. This kind of file is called a {\em script} for -\Coq\index{Script file}. The standard (and default) extension of -\Coq's script files is {\tt .v}. - -\subsection[\tt Load {\ident}.]{\tt Load {\ident}.\comindex{Load}\label{Load}} -This command loads the file named {\ident}{\tt .v}, searching -successively in each of the directories specified in the {\em - loadpath}. (see Section~\ref{loadpath}) - -\begin{Variants} -\item {\tt Load {\str}.}\label{Load-str}\\ - Loads the file denoted by the string {\str}, where {\str} is any - complete filename. Then the \verb.~. and {\tt ..} - abbreviations are allowed as well as shell variables. If no - extension is specified, \Coq\ will use the default extension {\tt - .v} -\item {\tt Load Verbose {\ident}.}, - {\tt Load Verbose {\str}}\\ - \comindex{Load Verbose} - Display, while loading, the answers of \Coq\ to each command - (including tactics) contained in the loaded file - \SeeAlso Section~\ref{Begin-Silent} -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{Can't find file {\ident} on loadpath} -\end{ErrMsgs} - -\section[Compiled files]{Compiled files\label{compiled}\index{Compiled files}} - -This section describes the commands used to load compiled files (see -Chapter~\ref{Addoc-coqc} for documentation on how to compile a file). -A compiled file is a particular case of module called {\em library file}. - -%%%%%%%%%%%% -% Import and Export described in RefMan-mod.tex -% the minor difference (to avoid multiple Exporting of libraries) in -% the treatment of normal modules and libraries by Export omitted - -\subsection[\tt Require {\qualid}.]{\tt Require {\qualid}.\label{Require} -\comindex{Require}} - -This command looks in the loadpath for a file containing -module {\qualid} and adds the corresponding module to the environment -of {\Coq}. As library files have dependencies in other library files, -the command {\tt Require {\qualid}} recursively requires all library -files the module {\qualid} depends on and adds the corresponding modules to the -environment of {\Coq} too. {\Coq} assumes that the compiled files have -been produced by a valid {\Coq} compiler and their contents are then not -replayed nor rechecked. - -To locate the file in the file system, {\qualid} is decomposed under -the form {\dirpath}{\tt .}{\textsl{ident}} and the file {\ident}{\tt -.vo} is searched in the physical directory of the file system that is -mapped in {\Coq} loadpath to the logical path {\dirpath} (see -Section~\ref{loadpath}). The mapping between physical directories and -logical names at the time of requiring the file must be consistent -with the mapping used to compile the file. - -\begin{Variants} -\item {\tt Require Import {\qualid}.} \comindex{Require} - - This loads and declares the module {\qualid} and its dependencies - then imports the contents of {\qualid} as described in - Section~\ref{Import}. - - It does not import the modules on which {\qualid} depends unless - these modules were itself required in module {\qualid} using {\tt - Require Export}, as described below, or recursively required through - a sequence of {\tt Require Export}. - - If the module required has already been loaded, {\tt Require Import - {\qualid}} simply imports it, as {\tt Import {\qualid}} would. - -\item {\tt Require Export {\qualid}.} - \comindex{Require Export} - - This command acts as {\tt Require Import} {\qualid}, but if a - further module, say {\it A}, contains a command {\tt Require - Export} {\it B}, then the command {\tt Require Import} {\it A} - also imports the module {\it B}. - -\item {\tt Require \zeroone{Import {\sl |} Export} {\qualid}$_1$ \ldots {\qualid}$_n$.} - - This loads the modules {\qualid}$_1$, \ldots, {\qualid}$_n$ and - their recursive dependencies. If {\tt Import} or {\tt Export} is - given, it also imports {\qualid}$_1$, \ldots, {\qualid}$_n$ and all - the recursive dependencies that were marked or transitively marked - as {\tt Export}. - -\item {\tt Require \zeroone{Import {\sl |} Export} {\str}.} - - This shortcuts the resolution of the qualified name into a library - file name by directly requiring the module to be found in file - {\str}.vo. -\end{Variants} - -\begin{ErrMsgs} - -\item \errindex{Cannot load {\qualid}: no physical path bound to {\dirpath}} - -\item \errindex{Cannot find library foo in loadpath} - - The command did not find the file {\tt foo.vo}. Either {\tt - foo.v} exists but is not compiled or {\tt foo.vo} is in a directory - which is not in your {\tt LoadPath} (see Section~\ref{loadpath}). - -\item \errindex{Compiled library {\ident}.vo makes inconsistent assumptions over library {\qualid}} - - The command tried to load library file {\ident}.vo that depends on - some specific version of library {\qualid} which is not the one - already loaded in the current {\Coq} session. Probably {\ident}.v - was not properly recompiled with the last version of the file - containing module {\qualid}. - -\item \errindex{Bad magic number} - - \index{Bad-magic-number@{\tt Bad Magic Number}} - The file {\tt{\ident}.vo} was found but either it is not a \Coq\ - compiled module, or it was compiled with an older and incompatible - version of \Coq. - -\item \errindex{The file {\ident}.vo contains library {\dirpath} and not - library {\dirpath'}} - - The library file {\dirpath'} is indirectly required by the {\tt - Require} command but it is bound in the current loadpath to the file - {\ident}.vo which was bound to a different library name {\dirpath} - at the time it was compiled. - -\end{ErrMsgs} - -\SeeAlso Chapter~\ref{Addoc-coqc} - -\subsection[\tt Print Libraries.]{\tt Print Libraries.\comindex{Print Libraries}} - -This command displays the list of library files loaded in the current -{\Coq} session. For each of these libraries, it also tells if it is -imported. - -\subsection[\tt Declare ML Module {\str$_1$} .. {\str$_n$}.]{\tt Declare ML Module {\str$_1$} .. {\str$_n$}.\comindex{Declare ML Module}} -This commands loads the Objective Caml compiled files {\str$_1$} {\dots} -{\str$_n$} (dynamic link). It is mainly used to load tactics -dynamically. -% (see Chapter~\ref{WritingTactics}). - The files are -searched into the current Objective Caml loadpath (see the command {\tt -Add ML Path} in the Section~\ref{loadpath}). Loading of Objective Caml -files is only possible under the bytecode version of {\tt coqtop} -(i.e. {\tt coqtop} called with options {\tt -byte}, see chapter -\ref{Addoc-coqc}), or when Coq has been compiled with a version of -Objective Caml that supports native {\tt Dynlink} ($\ge$ 3.11). - -\begin{Variants} -\item {\tt Local Declare ML Module {\str$_1$} .. {\str$_n$}.}\\ - This variant is not exported to the modules that import the module - where they occur, even if outside a section. -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{File not found on loadpath : \str} -\item \errindex{Loading of ML object file forbidden in a native Coq} -\end{ErrMsgs} - -\subsection[\tt Print ML Modules.]{\tt Print ML Modules.\comindex{Print ML Modules}} -This print the name of all \ocaml{} modules loaded with \texttt{Declare - ML Module}. To know from where these module were loaded, the user -should use the command \texttt{Locate File} (see Section~\ref{Locate File}) - -\section[Loadpath]{Loadpath\label{loadpath}\index{Loadpath}} - -There are currently two loadpaths in \Coq. A loadpath where seeking -{\Coq} files (extensions {\tt .v} or {\tt .vo} or {\tt .vi}) and one where -seeking Objective Caml files. The default loadpath contains the -directory ``\texttt{.}'' denoting the current directory and mapped to the empty logical path (see Section~\ref{LongNames}). - -\subsection[\tt Pwd.]{\tt Pwd.\comindex{Pwd}\label{Pwd}} -This command displays the current working directory. - -\subsection[\tt Cd {\str}.]{\tt Cd {\str}.\comindex{Cd}} -This command changes the current directory according to {\str} -which can be any valid path. - -\begin{Variants} -\item {\tt Cd.}\\ - Is equivalent to {\tt Pwd.} -\end{Variants} - -\subsection[\tt Add LoadPath {\str} as {\dirpath}.]{\tt Add LoadPath {\str} as {\dirpath}.\comindex{Add LoadPath}\label{AddLoadPath}} - -This command adds the physical directory {\str} to the current {\Coq} -loadpath and maps it to the logical directory {\dirpath}, which means -that every file \textrm{\textsl{dirname}}/\textrm{\textsl{basename.v}} -physically lying in subdirectory {\str}/\textrm{\textsl{dirname}} -becomes accessible in {\Coq} through absolute logical name -{\dirpath}{\tt .}\textrm{\textsl{dirname}}{\tt -.}\textrm{\textsl{basename}}. - -\Rem {\tt Add LoadPath} also adds {\str} to the current ML loadpath. - -\begin{Variants} -\item {\tt Add LoadPath {\str}.}\\ -Performs as {\tt Add LoadPath {\str} as {\dirpath}} but for the empty directory path. -\end{Variants} - -\subsection[\tt Add Rec LoadPath {\str} as {\dirpath}.]{\tt Add Rec LoadPath {\str} as {\dirpath}.\comindex{Add Rec LoadPath}\label{AddRecLoadPath}} -This command adds the physical directory {\str} and all its subdirectories to -the current \Coq\ loadpath. The top directory {\str} is mapped to the -logical directory {\dirpath} and any subdirectory {\textsl{pdir}} of it is -mapped to logical name {\dirpath}{\tt .}\textsl{pdir} and -recursively. Subdirectories corresponding to invalid {\Coq} -identifiers are skipped, and, by convention, subdirectories named {\tt -CVS} or {\tt \_darcs} are skipped too. - -Otherwise, said, {\tt Add Rec LoadPath {\str} as {\dirpath}} behaves -as {\tt Add LoadPath {\str} as {\dirpath}} excepts that files lying in -validly named subdirectories of {\str} need not be qualified to be -found. - -In case of files with identical base name, files lying in most recently -declared {\dirpath} are found first and explicit qualification is -required to refer to the other files of same base name. - -If several files with identical base name are present in different -subdirectories of a recursive loadpath declared via a single instance of -{\tt Add Rec LoadPath}, which of these files is found first is -system-dependent and explicit qualification is recommended. - -\Rem {\tt Add Rec LoadPath} also recursively adds {\str} to the current ML loadpath. - -\begin{Variants} -\item {\tt Add Rec LoadPath {\str}.}\\ -Works as {\tt Add Rec LoadPath {\str} as {\dirpath}} but for the empty logical directory path. -\end{Variants} - -\subsection[\tt Remove LoadPath {\str}.]{\tt Remove LoadPath {\str}.\comindex{Remove LoadPath}} -This command removes the path {\str} from the current \Coq\ loadpath. - -\subsection[\tt Print LoadPath.]{\tt Print LoadPath.\comindex{Print LoadPath}} -This command displays the current \Coq\ loadpath. - -\begin{Variants} -\item {\tt Print LoadPath {\dirpath}.}\\ -Works as {\tt Print LoadPath} but displays only the paths that extend the {\dirpath} prefix. -\end{Variants} - -\subsection[\tt Add ML Path {\str}.]{\tt Add ML Path {\str}.\comindex{Add ML Path}} -This command adds the path {\str} to the current Objective Caml loadpath (see -the command {\tt Declare ML Module} in the Section~\ref{compiled}). - -\Rem This command is implied by {\tt Add LoadPath {\str} as {\dirpath}}. - -\subsection[\tt Add Rec ML Path {\str}.]{\tt Add Rec ML Path {\str}.\comindex{Add Rec ML Path}} -This command adds the directory {\str} and all its subdirectories -to the current Objective Caml loadpath (see -the command {\tt Declare ML Module} in the Section~\ref{compiled}). - -\Rem This command is implied by {\tt Add Rec LoadPath {\str} as {\dirpath}}. - -\subsection[\tt Print ML Path {\str}.]{\tt Print ML Path {\str}.\comindex{Print ML Path}} -This command displays the current Objective Caml loadpath. -This command makes sense only under the bytecode version of {\tt -coqtop}, i.e. using option {\tt -byte} (see the -command {\tt Declare ML Module} in the section -\ref{compiled}). - -\subsection[\tt Locate File {\str}.]{\tt Locate File {\str}.\comindex{Locate - File}\label{Locate File}} -This command displays the location of file {\str} in the current loadpath. -Typically, {\str} is a \texttt{.cmo} or \texttt{.vo} or \texttt{.v} file. - -\subsection[\tt Locate Library {\dirpath}.]{\tt Locate Library {\dirpath}.\comindex{Locate Library}\label{Locate Library}} -This command gives the status of the \Coq\ module {\dirpath}. It tells if the -module is loaded and if not searches in the load path for a module -of logical name {\dirpath}. - -\section{Backtracking} - -The backtracking commands described in this section can only be used -interactively, they cannot be part of a vernacular file loaded via -{\tt Load} or compiled by {\tt coqc}. - -\subsection[\tt Reset \ident.]{\tt Reset \ident.\comindex{Reset}} -This command removes all the objects in the environment since \ident\ -was introduced, including \ident. \ident\ may be the name of a defined -or declared object as well as the name of a section. One cannot reset -over the name of a module or of an object inside a module. - -\begin{ErrMsgs} -\item \ident: \errindex{no such entry} -\end{ErrMsgs} - -\begin{Variants} - \item {\tt Reset Initial.}\comindex{Reset Initial}\\ - Goes back to the initial state, just after the start of the - interactive session. -\end{Variants} - -\subsection[\tt Back.]{\tt Back.\comindex{Back}} - -This commands undoes all the effects of the last vernacular -command. Commands read from a vernacular file via a {\tt Load} are -considered as a single command. Proof managment commands -are also handled by this command (see Chapter~\ref{Proof-handling}). -For that, {\tt Back} may have to undo more than one command in order -to reach a state where the proof managment information is available. -For instance, when the last command is a {\tt Qed}, the managment -information about the closed proof has been discarded. In this case, -{\tt Back} will then undo all the proof steps up to the statement of -this proof. - -\begin{Variants} -\item {\tt Back $n$} \\ - Undoes $n$ vernacular commands. As for {\tt Back}, some extra - commands may be undone in order to reach an adequate state. - For instance {\tt Back n} will not re-enter a closed proof, - but rather go just before that proof. -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{Invalid backtrack} \\ - The user wants to undo more commands than available in the history. -\end{ErrMsgs} - -\subsection[\tt BackTo $\num$.]{\tt BackTo $\num$.\comindex{BackTo}} -\label{sec:statenums} - -This command brings back the system to the state labelled $\num$, -forgetting the effect of all commands executed after this state. -The state label is an integer which grows after each successful command. -It is displayed in the prompt when in \texttt{-emacs} mode. -Just as {\tt Back} (see above), the {\tt BackTo} command now handles -proof states. For that, it may have to undo some -extra commands and end on a state $\num' \leq \num$ if necessary. - -\begin{Variants} -\item {\tt Backtrack $\num_1$ $\num_2$ $\num_3$}.\comindex{Backtrack}\\ - {\tt Backtrack} is a \emph{deprecated} form of {\tt BackTo} which - allows to explicitely manipulate the proof environment. The three - numbers $\num_1$, $\num_2$ and $\num_3$ represent the following: -\begin{itemize} -\item $\num_3$: Number of \texttt{Abort} to perform, i.e. the number - of currently opened nested proofs that must be canceled (see - Chapter~\ref{Proof-handling}). -\item $\num_2$: \emph{Proof state number} to unbury once aborts have - been done. Coq will compute the number of \texttt{Undo} to perform - (see Chapter~\ref{Proof-handling}). -\item $\num_1$: State label to reach, as for {\tt BackTo}. -\end{itemize} -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{Invalid backtrack} \\ - The destination state label is unknown. -\end{ErrMsgs} - -\section{State files} - -\subsection[\tt Write State \str.]{\tt Write State \str.\comindex{Write State}} -Writes the current state into a file \str{} for -use in a further session. This file can be given as the {\tt - inputstate} argument of the commands {\tt coqtop} and {\tt coqc}. - -\begin{Variants} -\item {\tt Write State \ident}\\ - Equivalent to {\tt Write State "}{\ident}{\tt .coq"}. - The state is saved in the current directory (see Section~\ref{Pwd}). -\end{Variants} - -\subsection[\tt Restore State \str.]{\tt Restore State \str.\comindex{Restore State}} - Restores the state contained in the file \str. - -\begin{Variants} -\item {\tt Restore State \ident}\\ - Equivalent to {\tt Restore State "}{\ident}{\tt .coq"}. -\end{Variants} - -\section{Quitting and debugging} - -\subsection[\tt Quit.]{\tt Quit.\comindex{Quit}} -This command permits to quit \Coq. - -\subsection[\tt Drop.]{\tt Drop.\comindex{Drop}\label{Drop}} - -This is used mostly as a debug facility by \Coq's implementors -and does not concern the casual user. -This command permits to leave {\Coq} temporarily and enter the -Objective Caml toplevel. The Objective Caml command: - -\begin{flushleft} -\begin{verbatim} -#use "include";; -\end{verbatim} -\end{flushleft} - -\noindent add the right loadpaths and loads some toplevel printers for -all abstract types of \Coq - section\_path, identifiers, terms, judgments, -\dots. You can also use the file \texttt{base\_include} instead, -that loads only the pretty-printers for section\_paths and -identifiers. -% See Section~\ref{test-and-debug} more information on the -% usage of the toplevel. -You can return back to \Coq{} with the command: - -\begin{flushleft} -\begin{verbatim} -go();; -\end{verbatim} -\end{flushleft} - -\begin{Warnings} -\item It only works with the bytecode version of {\Coq} (i.e. {\tt coqtop} called with option {\tt -byte}, see the contents of Section~\ref{binary-images}). -\item You must have compiled {\Coq} from the source package and set the - environment variable \texttt{COQTOP} to the root of your copy of the sources (see Section~\ref{EnvVariables}). -\end{Warnings} - -\subsection[\tt Time \textrm{\textsl{command}}.]{\tt Time \textrm{\textsl{command}}.\comindex{Time} -\label{time}} -This command executes the vernacular command \textrm{\textsl{command}} -and display the time needed to execute it. - - -\subsection[\tt Timeout \textrm{\textsl{int}} \textrm{\textsl{command}}.]{\tt Timeout \textrm{\textsl{int}} \textrm{\textsl{command}}.\comindex{Timeout} -\label{timeout}} - -This command executes the vernacular command \textrm{\textsl{command}}. If -the command has not terminated after the time specified by the integer -(time expressed in seconds), then it is interrupted and an error message -is displayed. - -\subsection[\tt Set Default Timeout \textrm{\textsl{int}}.]{\tt Set - Default Timeout \textrm{\textsl{int}}.\comindex{Set Default Timeout}} - -After using this command, all subsequent commands behave as if they -were passed to a {\tt Timeout} command. Commands already starting by -a {\tt Timeout} are unaffected. - -\subsection[\tt Unset Default Timeout.]{\tt Unset Default Timeout.\comindex{Unset Default Timeout}} - -This command turns off the use of a default timeout. - -\subsection[\tt Test Default Timeout.]{\tt Test Default Timeout.\comindex{Test Default Timeout}} - -This command displays whether some default timeout has be set or not. - -\section{Controlling display} - -\subsection[\tt Set Silent.]{\tt Set Silent.\comindex{Set Silent} -\label{Begin-Silent} -\index{Silent mode}} -This command turns off the normal displaying. - -\subsection[\tt Unset Silent.]{\tt Unset Silent.\comindex{Unset Silent}} -This command turns the normal display on. - -\subsection[\tt Set Printing Width {\integer}.]{\tt Set Printing Width {\integer}.\comindex{Set Printing Width}} -This command sets which left-aligned part of the width of the screen -is used for display. - -\subsection[\tt Unset Printing Width.]{\tt Unset Printing Width.\comindex{Unset Printing Width}} -This command resets the width of the screen used for display to its -default value (which is 78 at the time of writing this documentation). - -\subsection[\tt Test Printing Width.]{\tt Test Printing Width.\comindex{Test Printing Width}} -This command displays the current screen width used for display. - -\subsection[\tt Set Printing Depth {\integer}.]{\tt Set Printing Depth {\integer}.\comindex{Set Printing Depth}} -This command sets the nesting depth of the formatter used for -pretty-printing. Beyond this depth, display of subterms is replaced by -dots. - -\subsection[\tt Unset Printing Depth.]{\tt Unset Printing Depth.\comindex{Unset Printing Depth}} -This command resets the nesting depth of the formatter used for -pretty-printing to its default value (at the -time of writing this documentation, the default value is 50). - -\subsection[\tt Test Printing Depth.]{\tt Test Printing Depth.\comindex{Test Printing Depth}} -This command displays the current nesting depth used for display. - -%\subsection{\tt Abstraction ...} -%Not yet documented. - -\section{Controlling the reduction strategies and the conversion algorithm} -\label{Controlling reduction strategy} - -{\Coq} provides reduction strategies that the tactics can invoke and -two different algorithms to check the convertibility of types. -The first conversion algorithm lazily -compares applicative terms while the other is a brute-force but efficient -algorithm that first normalizes the terms before comparing them. The -second algorithm is based on a bytecode representation of terms -similar to the bytecode representation used in the ZINC virtual -machine~\cite{Leroy90}. It is especially useful for intensive -computation of algebraic values, such as numbers, and for reflexion-based -tactics. The commands to fine-tune the reduction strategies and the -lazy conversion algorithm are described first. - -\subsection[\tt Opaque \qualid$_1$ {\dots} \qualid$_n$.]{\tt Opaque \qualid$_1$ {\dots} \qualid$_n$.\comindex{Opaque}\label{Opaque}} -This command has an effect on unfoldable constants, i.e. -on constants defined by {\tt Definition} or {\tt Let} (with an explicit -body), or by a command assimilated to a definition such as {\tt -Fixpoint}, {\tt Program Definition}, etc, or by a proof ended by {\tt -Defined}. The command tells not to unfold -the constants {\qualid$_1$} {\dots} {\qualid$_n$} in tactics using -$\delta$-conversion (unfolding a constant is replacing it by its -definition). - -{\tt Opaque} has also on effect on the conversion algorithm of {\Coq}, -telling to delay the unfolding of a constant as later as possible in -case {\Coq} has to check the conversion (see Section~\ref{conv-rules}) -of two distinct applied constants. - -The scope of {\tt Opaque} is limited to the current section, or -current file, unless the variant {\tt Global Opaque \qualid$_1$ {\dots} -\qualid$_n$} is used. - -\SeeAlso sections \ref{Conversion-tactics}, \ref{Automatizing}, -\ref{Theorem} - -\begin{ErrMsgs} -\item \errindex{The reference \qualid\ was not found in the current -environment}\\ - There is no constant referred by {\qualid} in the environment. - Nevertheless, if you asked \texttt{Opaque foo bar} - and if \texttt{bar} does not exist, \texttt{foo} is set opaque. -\end{ErrMsgs} - -\subsection[\tt Transparent \qualid$_1$ {\dots} \qualid$_n$.]{\tt Transparent \qualid$_1$ {\dots} \qualid$_n$.\comindex{Transparent}\label{Transparent}} -This command is the converse of {\tt Opaque} and it applies on -unfoldable constants to restore their unfoldability after an {\tt -Opaque} command. - -Note in particular that constants defined by a proof ended by {\tt -Qed} are not unfoldable and {\tt Transparent} has no effect on -them. This is to keep with the usual mathematical practice of {\em -proof irrelevance}: what matters in a mathematical development is the -sequence of lemma statements, not their actual proofs. This -distinguishes lemmas from the usual defined constants, whose actual -values are of course relevant in general. - -The scope of {\tt Transparent} is limited to the current section, or -current file, unless the variant {\tt Global Transparent \qualid$_1$ -\dots \qualid$_n$} is used. - -\begin{ErrMsgs} -% \item \errindex{Can not set transparent.}\\ -% It is a constant from a required module or a parameter. -\item \errindex{The reference \qualid\ was not found in the current -environment}\\ - There is no constant referred by {\qualid} in the environment. -\end{ErrMsgs} - -\SeeAlso sections \ref{Conversion-tactics}, \ref{Automatizing}, -\ref{Theorem} - -\subsection{\tt Strategy {\it level} [ \qualid$_1$ {\dots} \qualid$_n$ - ].\comindex{Strategy}\comindex{Local Strategy}\label{Strategy}} -This command generalizes the behavior of {\tt Opaque} and {\tt - Transparent} commands. It is used to fine-tune the strategy for -unfolding constants, both at the tactic level and at the kernel -level. This command associates a level to \qualid$_1$ {\dots} -\qualid$_n$. Whenever two expressions with two distinct head -constants are compared (for instance, this comparison can be triggered -by a type cast), the one with lower level is expanded first. In case -of a tie, the second one (appearing in the cast type) is expanded. - -Levels can be one of the following (higher to lower): -\begin{description} -\item[opaque]: level of opaque constants. They cannot be expanded by - tactics (behaves like $+\infty$, see next item). -\item[\num]: levels indexed by an integer. Level $0$ corresponds - to the default behavior, which corresponds to transparent - constants. This level can also be referred to as {\bf transparent}. - Negative levels correspond to constants to be expanded before normal - transparent constants, while positive levels correspond to constants - to be expanded after normal transparent constants. -\item[expand]: level of constants that should be expanded first - (behaves like $-\infty$) -\end{description} - -These directives survive section and module closure, unless the -command is prefixed by {\tt Local}. In the latter case, the behavior -regarding sections and modules is the same as for the {\tt - Transparent} and {\tt Opaque} commands. - -\subsection{\tt Declare Reduction \ident\ := {\rm\sl convtactic}.} - -This command allows to give a short name to a reduction expression, -for instance {\tt lazy beta delta [foo bar]}. This short name can -then be used in {\tt Eval \ident\ in ...} or {\tt eval} directives. -This command accepts the {\tt Local} modifier, for discarding -this reduction name at the end of the file or module. For the moment -the name cannot be qualified. In particular declaring the same name -in several modules or in several functor applications will be refused -if these declarations are not local. The name \ident\ cannot be used -directly as an Ltac tactic, but nothing prevent the user to also -perform a {\tt Ltac \ident\ := {\rm\sl convtactic}}. - -\SeeAlso sections \ref{Conversion-tactics} - -\subsection{\tt Set Virtual Machine -\label{SetVirtualMachine} -\comindex{Set Virtual Machine}} - -This activates the bytecode-based conversion algorithm. - -\subsection{\tt Unset Virtual Machine -\comindex{Unset Virtual Machine}} - -This deactivates the bytecode-based conversion algorithm. - -\subsection{\tt Test Virtual Machine -\comindex{Test Virtual Machine}} - -This tells if the bytecode-based conversion algorithm is -activated. The default behavior is to have the bytecode-based -conversion algorithm deactivated. - -\SeeAlso sections~\ref{vmcompute} and~\ref{vmoption}. - -\section{Controlling the locality of commands} - -\subsection{{\tt Local}, {\tt Global} -\comindex{Local} -\comindex{Global} -} - -Some commands support a {\tt Local} or {\tt Global} prefix modifier to -control the scope of their effect. There are four kinds of commands: - -\begin{itemize} -\item Commands whose default is to extend their effect both outside the - section and the module or library file they occur in. - - For these commands, the {\tt Local} modifier limits the effect of - the command to the current section or module it occurs in. - - As an example, the {\tt Coercion} (see Section~\ref{Coercions}) - and {\tt Strategy} (see Section~\ref{Strategy}) - commands belong to this category. - -\item Commands whose default behavior is to stop their effect at the - end of the section they occur in but to extent their effect outside - the module or library file they occur in. - - For these commands, the {\tt Local} modifier limits the effect of - the command to the current module if the command does not occur in a - section and the {\tt Global} modifier extends the effect outside the - current sections and current module if the command occurs in a - section. - - As an example, the {\tt Implicit Arguments} (see - Section~\ref{Implicit Arguments}), {\tt Ltac} (see - Chapter~\ref{TacticLanguage}) or {\tt Notation} (see - Section~\ref{Notation}) commands belong to this category. - - Notice that a subclass of these commands do not support extension of - their scope outside sections at all and the {\tt Global} is not - applicable to them. - -\item Commands whose default behavior is to stop their effect at the - end of the section or module they occur in. - - For these commands, the {\tt Global} modifier extends their effect - outside the sections and modules they occurs in. - - The {\tt Transparent} and {\tt Opaque} (see - Section~\ref{Controlling reduction strategy}) commands belong to - this category. - -\item Commands whose default behavior is to extend their effect - outside sections but not outside modules when they occur in a - section and to extend their effect outside the module or library - file they occur in when no section contains them. - - For these commands, the {\tt Local} modifier limits the effect to - the current section or module while the {\tt Global} modifier extends - the effect outside the module even when the command occurs in a section. - - The {\tt Set} and {\tt Unset} commands belong to this category. -\end{itemize} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-pre.tex b/doc/refman/RefMan-pre.tex deleted file mode 100644 index 29de89d8..00000000 --- a/doc/refman/RefMan-pre.tex +++ /dev/null @@ -1,927 +0,0 @@ -%BEGIN LATEX -\setheaders{Credits} -%END LATEX -\chapter*{Credits} -%\addcontentsline{toc}{section}{Credits} - -\Coq{}~ is a proof assistant for higher-order logic, allowing the -development of computer programs consistent with their formal -specification. It is the result of about ten years of research of the -Coq project. We shall briefly survey here three main aspects: the -\emph{logical language} in which we write our axiomatizations and -specifications, the \emph{proof assistant} which allows the development -of verified mathematical proofs, and the \emph{program extractor} which -synthesizes computer programs obeying their formal specifications, -written as logical assertions in the language. - -The logical language used by {\Coq} is a variety of type theory, -called the \emph{Calculus of Inductive Constructions}. Without going -back to Leibniz and Boole, we can date the creation of what is now -called mathematical logic to the work of Frege and Peano at the turn -of the century. The discovery of antinomies in the free use of -predicates or comprehension principles prompted Russell to restrict -predicate calculus with a stratification of \emph{types}. This effort -culminated with \emph{Principia Mathematica}, the first systematic -attempt at a formal foundation of mathematics. A simplification of -this system along the lines of simply typed $\lambda$-calculus -occurred with Church's \emph{Simple Theory of Types}. The -$\lambda$-calculus notation, originally used for expressing -functionality, could also be used as an encoding of natural deduction -proofs. This Curry-Howard isomorphism was used by N. de Bruijn in the -\emph{Automath} project, the first full-scale attempt to develop and -mechanically verify mathematical proofs. This effort culminated with -Jutting's verification of Landau's \emph{Grundlagen} in the 1970's. -Exploiting this Curry-Howard isomorphism, notable achievements in -proof theory saw the emergence of two type-theoretic frameworks; the -first one, Martin-L\"of's \emph{Intuitionistic Theory of Types}, -attempts a new foundation of mathematics on constructive principles. -The second one, Girard's polymorphic $\lambda$-calculus $F_\omega$, is -a very strong functional system in which we may represent higher-order -logic proof structures. Combining both systems in a higher-order -extension of the Automath languages, T. Coquand presented in 1985 the -first version of the \emph{Calculus of Constructions}, CoC. This strong -logical system allowed powerful axiomatizations, but direct inductive -definitions were not possible, and inductive notions had to be defined -indirectly through functional encodings, which introduced -inefficiencies and awkwardness. The formalism was extended in 1989 by -T. Coquand and C. Paulin with primitive inductive definitions, leading -to the current \emph{Calculus of Inductive Constructions}. This -extended formalism is not rigorously defined here. Rather, numerous -concrete examples are discussed. We refer the interested reader to -relevant research papers for more information about the formalism, its -meta-theoretic properties, and semantics. However, it should not be -necessary to understand this theoretical material in order to write -specifications. It is possible to understand the Calculus of Inductive -Constructions at a higher level, as a mixture of predicate calculus, -inductive predicate definitions presented as typed PROLOG, and -recursive function definitions close to the language ML. - -Automated theorem-proving was pioneered in the 1960's by Davis and -Putnam in propositional calculus. A complete mechanization (in the -sense of a semi-decision procedure) of classical first-order logic was -proposed in 1965 by J.A. Robinson, with a single uniform inference -rule called \emph{resolution}. Resolution relies on solving equations -in free algebras (i.e. term structures), using the \emph{unification - algorithm}. Many refinements of resolution were studied in the -1970's, but few convincing implementations were realized, except of -course that PROLOG is in some sense issued from this effort. A less -ambitious approach to proof development is computer-aided -proof-checking. The most notable proof-checkers developed in the -1970's were LCF, designed by R. Milner and his colleagues at U. -Edinburgh, specialized in proving properties about denotational -semantics recursion equations, and the Boyer and Moore theorem-prover, -an automation of primitive recursion over inductive data types. While -the Boyer-Moore theorem-prover attempted to synthesize proofs by a -combination of automated methods, LCF constructed its proofs through -the programming of \emph{tactics}, written in a high-level functional -meta-language, ML. - -The salient feature which clearly distinguishes our proof assistant -from say LCF or Boyer and Moore's, is its possibility to extract -programs from the constructive contents of proofs. This computational -interpretation of proof objects, in the tradition of Bishop's -constructive mathematics, is based on a realizability interpretation, -in the sense of Kleene, due to C. Paulin. The user must just mark his -intention by separating in the logical statements the assertions -stating the existence of a computational object from the logical -assertions which specify its properties, but which may be considered -as just comments in the corresponding program. Given this information, -the system automatically extracts a functional term from a consistency -proof of its specifications. This functional term may be in turn -compiled into an actual computer program. This methodology of -extracting programs from proofs is a revolutionary paradigm for -software engineering. Program synthesis has long been a theme of -research in artificial intelligence, pioneered by R. Waldinger. The -Tablog system of Z. Manna and R. Waldinger allows the deductive -synthesis of functional programs from proofs in tableau form of their -specifications, written in a variety of first-order logic. Development -of a systematic \emph{programming logic}, based on extensions of -Martin-L\"of's type theory, was undertaken at Cornell U. by the Nuprl -team, headed by R. Constable. The first actual program extractor, PX, -was designed and implemented around 1985 by S. Hayashi from Kyoto -University. It allows the extraction of a LISP program from a proof -in a logical system inspired by the logical formalisms of S. Feferman. -Interest in this methodology is growing in the theoretical computer -science community. We can foresee the day when actual computer systems -used in applications will contain certified modules, automatically -generated from a consistency proof of their formal specifications. We -are however still far from being able to use this methodology in a -smooth interaction with the standard tools from software engineering, -i.e. compilers, linkers, run-time systems taking advantage of special -hardware, debuggers, and the like. We hope that {\Coq} can be of use -to researchers interested in experimenting with this new methodology. - -A first implementation of CoC was started in 1984 by G. Huet and T. -Coquand. Its implementation language was CAML, a functional -programming language from the ML family designed at INRIA in -Rocquencourt. The core of this system was a proof-checker for CoC seen -as a typed $\lambda$-calculus, called the \emph{Constructive Engine}. -This engine was operated through a high-level notation permitting the -declaration of axioms and parameters, the definition of mathematical -types and objects, and the explicit construction of proof objects -encoded as $\lambda$-terms. A section mechanism, designed and -implemented by G. Dowek, allowed hierarchical developments of -mathematical theories. This high-level language was called the -\emph{Mathematical Vernacular}. Furthermore, an interactive -\emph{Theorem Prover} permitted the incremental construction of proof -trees in a top-down manner, subgoaling recursively and backtracking -from dead-alleys. The theorem prover executed tactics written in CAML, -in the LCF fashion. A basic set of tactics was predefined, which the -user could extend by his own specific tactics. This system (Version -4.10) was released in 1989. Then, the system was extended to deal -with the new calculus with inductive types by C. Paulin, with -corresponding new tactics for proofs by induction. A new standard set -of tactics was streamlined, and the vernacular extended for tactics -execution. A package to compile programs extracted from proofs to -actual computer programs in CAML or some other functional language was -designed and implemented by B. Werner. A new user-interface, relying -on a CAML-X interface by D. de Rauglaudre, was designed and -implemented by A. Felty. It allowed operation of the theorem-prover -through the manipulation of windows, menus, mouse-sensitive buttons, -and other widgets. This system (Version 5.6) was released in 1991. - -\Coq{} was ported to the new implementation Caml-light of X. Leroy and -D. Doligez by D. de Rauglaudre (Version 5.7) in 1992. A new version -of \Coq{} was then coordinated by C. Murthy, with new tools designed -by C. Parent to prove properties of ML programs (this methodology is -dual to program extraction) and a new user-interaction loop. This -system (Version 5.8) was released in May 1993. A Centaur interface -\textsc{CTCoq} was then developed by Y. Bertot from the Croap project -from INRIA-Sophia-Antipolis. - -In parallel, G. Dowek and H. Herbelin developed a new proof engine, -allowing the general manipulation of existential variables -consistently with dependent types in an experimental version of \Coq{} -(V5.9). - -The version V5.10 of \Coq{} is based on a generic system for -manipulating terms with binding operators due to Chet Murthy. A new -proof engine allows the parallel development of partial proofs for -independent subgoals. The structure of these proof trees is a mixed -representation of derivation trees for the Calculus of Inductive -Constructions with abstract syntax trees for the tactics scripts, -allowing the navigation in a proof at various levels of details. The -proof engine allows generic environment items managed in an -object-oriented way. This new architecture, due to C. Murthy, -supports several new facilities which make the system easier to extend -and to scale up: - -\begin{itemize} -\item User-programmable tactics are allowed -\item It is possible to separately verify development modules, and to - load their compiled images without verifying them again - a quick - relocation process allows their fast loading -\item A generic parsing scheme allows user-definable notations, with a - symmetric table-driven pretty-printer -\item Syntactic definitions allow convenient abbreviations -\item A limited facility of meta-variables allows the automatic - synthesis of certain type expressions, allowing generic notations - for e.g. equality, pairing, and existential quantification. -\end{itemize} - -In the Fall of 1994, C. Paulin-Mohring replaced the structure of -inductively defined types and families by a new structure, allowing -the mutually recursive definitions. P. Manoury implemented a -translation of recursive definitions into the primitive recursive -style imposed by the internal recursion operators, in the style of the -ProPre system. C. Mu{\~n}oz implemented a decision procedure for -intuitionistic propositional logic, based on results of R. Dyckhoff. -J.C. Filli{\^a}tre implemented a decision procedure for first-order -logic without contraction, based on results of J. Ketonen and R. -Weyhrauch. Finally C. Murthy implemented a library of inversion -tactics, relieving the user from tedious definitions of ``inversion -predicates''. - -\begin{flushright} -Rocquencourt, Feb. 1st 1995\\ -Gérard Huet -\end{flushright} - -\section*{Credits: addendum for version 6.1} -%\addcontentsline{toc}{section}{Credits: addendum for version V6.1} - -The present version 6.1 of \Coq{} is based on the V5.10 architecture. It -was ported to the new language Objective Caml by Bruno Barras. The -underlying framework has slightly changed and allows more conversions -between sorts. - -The new version provides powerful tools for easier developments. - -Cristina Cornes designed an extension of the \Coq{} syntax to allow -definition of terms using a powerful pattern-matching analysis in the -style of ML programs. - -Amokrane Saïbi wrote a mechanism to simulate -inheritance between types families extending a proposal by Peter -Aczel. He also developed a mechanism to automatically compute which -arguments of a constant may be inferred by the system and consequently -do not need to be explicitly written. - -Yann Coscoy designed a command which explains a proof term using -natural language. Pierre Cr{\'e}gut built a new tactic which solves -problems in quantifier-free Presburger Arithmetic. Both -functionalities have been integrated to the \Coq{} system by Hugo -Herbelin. - -Samuel Boutin designed a tactic for simplification of commutative -rings using a canonical set of rewriting rules and equality modulo -associativity and commutativity. - -Finally the organisation of the \Coq{} distribution has been supervised -by Jean-Christophe Filliâtre with the help of Judicaël Courant -and Bruno Barras. - -\begin{flushright} -Lyon, Nov. 18th 1996\\ -Christine Paulin -\end{flushright} - -\section*{Credits: addendum for version 6.2} -%\addcontentsline{toc}{section}{Credits: addendum for version V6.2} - -In version 6.2 of \Coq{}, the parsing is done using camlp4, a -preprocessor and pretty-printer for CAML designed by Daniel de -Rauglaudre at INRIA. Daniel de Rauglaudre made the first adaptation -of \Coq{} for camlp4, this work was continued by Bruno Barras who also -changed the structure of \Coq{} abstract syntax trees and the primitives -to manipulate them. The result of -these changes is a faster parsing procedure with greatly improved -syntax-error messages. The user-interface to introduce grammar or -pretty-printing rules has also changed. - -Eduardo Giménez redesigned the internal -tactic libraries, giving uniform names -to Caml functions corresponding to \Coq{} tactic names. - -Bruno Barras wrote new more efficient reductions functions. - -Hugo Herbelin introduced more uniform notations in the \Coq{} -specification language: the definitions by fixpoints and -pattern-matching have a more readable syntax. Patrick Loiseleur -introduced user-friendly notations for arithmetic expressions. - -New tactics were introduced: Eduardo Giménez improved a mechanism to -introduce macros for tactics, and designed special tactics for -(co)inductive definitions; Patrick Loiseleur designed a tactic to -simplify polynomial expressions in an arbitrary commutative ring which -generalizes the previous tactic implemented by Samuel Boutin. -Jean-Christophe Filli\^atre introduced a tactic for refining a goal, -using a proof term with holes as a proof scheme. - -David Delahaye designed the \textsf{SearchIsos} tool to search an -object in the library given its type (up to isomorphism). - -Henri Laulhère produced the \Coq{} distribution for the Windows environment. - -Finally, Hugo Herbelin was the main coordinator of the \Coq{} -documentation with principal contributions by Bruno Barras, David Delahaye, -Jean-Christophe Filli\^atre, Eduardo -Giménez, Hugo Herbelin and Patrick Loiseleur. - -\begin{flushright} -Orsay, May 4th 1998\\ -Christine Paulin -\end{flushright} - -\section*{Credits: addendum for version 6.3} -The main changes in version V6.3 was the introduction of a few new tactics -and the extension of the guard condition for fixpoint definitions. - - -B. Barras extended the unification algorithm to complete partial terms -and solved various tricky bugs related to universes.\\ -D. Delahaye developed the \texttt{AutoRewrite} tactic. He also designed the new -behavior of \texttt{Intro} and provided the tacticals \texttt{First} and -\texttt{Solve}.\\ -J.-C. Filli\^atre developed the \texttt{Correctness} tactic.\\ -E. Gim\'enez extended the guard condition in fixpoints.\\ -H. Herbelin designed the new syntax for definitions and extended the -\texttt{Induction} tactic.\\ -P. Loiseleur developed the \texttt{Quote} tactic and -the new design of the \texttt{Auto} -tactic, he also introduced the index of -errors in the documentation.\\ -C. Paulin wrote the \texttt{Focus} command and introduced -the reduction functions in definitions, this last feature -was proposed by J.-F. Monin from CNET Lannion. - -\begin{flushright} -Orsay, Dec. 1999\\ -Christine Paulin -\end{flushright} - -%\newpage - -\section*{Credits: versions 7} - -The version V7 is a new implementation started in September 1999 by -Jean-Christophe Filliâtre. This is a major revision with respect to -the internal architecture of the system. The \Coq{} version 7.0 was -distributed in March 2001, version 7.1 in September 2001, version -7.2 in January 2002, version 7.3 in May 2002 and version 7.4 in -February 2003. - -Jean-Christophe Filliâtre designed the architecture of the new system, he -introduced a new representation for environments and wrote a new kernel -for type-checking terms. His approach was to use functional -data-structures in order to get more sharing, to prepare the addition -of modules and also to get closer to a certified kernel. - -Hugo Herbelin introduced a new structure of terms with local -definitions. He introduced ``qualified'' names, wrote a new -pattern-matching compilation algorithm and designed a more compact -algorithm for checking the logical consistency of universes. He -contributed to the simplification of {\Coq} internal structures and the -optimisation of the system. He added basic tactics for forward -reasoning and coercions in patterns. - -David Delahaye introduced a new language for tactics. General tactics -using pattern-matching on goals and context can directly be written -from the {\Coq} toplevel. He also provided primitives for the design -of user-defined tactics in \textsc{Caml}. - -Micaela Mayero contributed the library on real numbers. -Olivier Desmettre extended this library with axiomatic -trigonometric functions, square, square roots, finite sums, Chasles -property and basic plane geometry. - -Jean-Christophe Filliâtre and Pierre Letouzey redesigned a new -extraction procedure from \Coq{} terms to \textsc{Caml} or -\textsc{Haskell} programs. This new -extraction procedure, unlike the one implemented in previous version -of \Coq{} is able to handle all terms in the Calculus of Inductive -Constructions, even involving universes and strong elimination. P. -Letouzey adapted user contributions to extract ML programs when it was -sensible. -Jean-Christophe Filliâtre wrote \verb=coqdoc=, a documentation -tool for {\Coq} libraries usable from version 7.2. - -Bruno Barras improved the reduction algorithms efficiency and -the confidence level in the correctness of {\Coq} critical type-checking -algorithm. - -Yves Bertot designed the \texttt{SearchPattern} and -\texttt{SearchRewrite} tools and the support for the \textsc{pcoq} interface -(\url{http://www-sop.inria.fr/lemme/pcoq/}). - -Micaela Mayero and David Delahaye introduced {\tt Field}, a decision tactic for commutative fields. - -Christine Paulin changed the elimination rules for empty and singleton -propositional inductive types. - -Loïc Pottier developed {\tt Fourier}, a tactic solving linear inequalities on real numbers. - -Pierre Crégut developed a new version based on reflexion of the {\tt Omega} -decision tactic. - -Claudio Sacerdoti Coen designed an XML output for the {\Coq} -modules to be used in the Hypertextual Electronic Library of -Mathematics (HELM cf \url{http://www.cs.unibo.it/helm}). - -A library for efficient representation of finite maps using binary trees -contributed by Jean Goubault was integrated in the basic theories. - -Pierre Courtieu developed a command and a tactic to reason on the -inductive structure of recursively defined functions. - -Jacek Chrz\k{a}szcz designed and implemented the module system of -{\Coq} whose foundations are in Judicaël Courant's PhD thesis. - -\bigskip - -The development was coordinated by C. Paulin. - -Many discussions within the Démons team and the LogiCal project -influenced significantly the design of {\Coq} especially with -%J. Chrz\k{a}szcz, P. Courtieu, -J. Courant, J. Duprat, J. Goubault, A. Miquel, -C. Marché, B. Monate and B. Werner. - -Intensive users suggested improvements of the system : -Y. Bertot, L. Pottier, L. Théry, P. Zimmerman from INRIA, -C. Alvarado, P. Crégut, J.-F. Monin from France Telecom R \& D. -\begin{flushright} -Orsay, May. 2002\\ -Hugo Herbelin \& Christine Paulin -\end{flushright} - -\section*{Credits: version 8.0} - -{\Coq} version 8 is a major revision of the {\Coq} proof assistant. -First, the underlying logic is slightly different. The so-called {\em -impredicativity} of the sort {\tt Set} has been dropped. The main -reason is that it is inconsistent with the principle of description -which is quite a useful principle for formalizing %classical -mathematics within classical logic. Moreover, even in an constructive -setting, the impredicativity of {\tt Set} does not add so much in -practice and is even subject of criticism from a large part of the -intuitionistic mathematician community. Nevertheless, the -impredicativity of {\tt Set} remains optional for users interested in -investigating mathematical developments which rely on it. - -Secondly, the concrete syntax of terms has been completely -revised. The main motivations were - -\begin{itemize} -\item a more uniform, purified style: all constructions are now lowercase, - with a functional programming perfume (e.g. abstraction is now - written {\tt fun}), and more directly accessible to the novice - (e.g. dependent product is now written {\tt forall} and allows - omission of types). Also, parentheses and are no longer mandatory - for function application. -\item extensibility: some standard notations (e.g. ``<'' and ``>'') were - incompatible with the previous syntax. Now all standard arithmetic - notations (=, +, *, /, <, <=, ... and more) are directly part of the - syntax. -\end{itemize} - -Together with the revision of the concrete syntax, a new mechanism of -{\em interpretation scopes} permits to reuse the same symbols -(typically +, -, *, /, <, <=) in various mathematical theories without -any ambiguities for {\Coq}, leading to a largely improved readability of -{\Coq} scripts. New commands to easily add new symbols are also -provided. - -Coming with the new syntax of terms, a slight reform of the tactic -language and of the language of commands has been carried out. The -purpose here is a better uniformity making the tactics and commands -easier to use and to remember. - -Thirdly, a restructuration and uniformisation of the standard library -of {\Coq} has been performed. There is now just one Leibniz' equality -usable for all the different kinds of {\Coq} objects. Also, the set of -real numbers now lies at the same level as the sets of natural and -integer numbers. Finally, the names of the standard properties of -numbers now follow a standard pattern and the symbolic -notations for the standard definitions as well. - -The fourth point is the release of \CoqIDE{}, a new graphical -gtk2-based interface fully integrated to {\Coq}. Close in style from -the Proof General Emacs interface, it is faster and its integration -with {\Coq} makes interactive developments more friendly. All -mathematical Unicode symbols are usable within \CoqIDE{}. - -Finally, the module system of {\Coq} completes the picture of {\Coq} -version 8.0. Though released with an experimental status in the previous -version 7.4, it should be considered as a salient feature of the new -version. - -Besides, {\Coq} comes with its load of novelties and improvements: new -or improved tactics (including a new tactic for solving first-order -statements), new management commands, extended libraries. - -\bigskip - -Bruno Barras and Hugo Herbelin have been the main contributors of the -reflexion and the implementation of the new syntax. The smart -automatic translator from old to new syntax released with {\Coq} is also -their work with contributions by Olivier Desmettre. - -Hugo Herbelin is the main designer and implementor of the notion of -interpretation scopes and of the commands for easily adding new notations. - -Hugo Herbelin is the main implementor of the restructuration of the -standard library. - -Pierre Corbineau is the main designer and implementor of the new -tactic for solving first-order statements in presence of inductive -types. He is also the maintainer of the non-domain specific automation -tactics. - -Benjamin Monate is the developer of the \CoqIDE{} graphical -interface with contributions by Jean-Christophe Filliâtre, Pierre -Letouzey, Claude Marché and Bruno Barras. - -Claude Marché coordinated the edition of the Reference Manual for - \Coq{} V8.0. - -Pierre Letouzey and Jacek Chrz\k{a}szcz respectively maintained the -extraction tool and module system of {\Coq}. - -Jean-Christophe Filliâtre, Pierre Letouzey, Hugo Herbelin and -contributors from Sophia-Antipolis and Nijmegen participated to the -extension of the library. - -Julien Narboux built a NSIS-based automatic {\Coq} installation tool for -the Windows platform. - -Hugo Herbelin and Christine Paulin coordinated the development which -was under the responsability of Christine Paulin. - -\begin{flushright} -Palaiseau \& Orsay, Apr. 2004\\ -Hugo Herbelin \& Christine Paulin\\ -(updated Apr. 2006) -\end{flushright} - -\section*{Credits: version 8.1} - -{\Coq} version 8.1 adds various new functionalities. - -Benjamin Grégoire implemented an alternative algorithm to check the -convertibility of terms in the {\Coq} type-checker. This alternative -algorithm works by compilation to an efficient bytecode that is -interpreted in an abstract machine similar to Xavier Leroy's ZINC -machine. Convertibility is performed by comparing the normal -forms. This alternative algorithm is specifically interesting for -proofs by reflection. More generally, it is convenient in case of -intensive computations. - -Christine Paulin implemented an extension of inductive types allowing -recursively non uniform parameters. Hugo Herbelin implemented -sort-polymorphism for inductive types. - -Claudio Sacerdoti Coen improved the tactics for rewriting on arbitrary -compatible equivalence relations. He also generalized rewriting to -arbitrary transition systems. - -Claudio Sacerdoti Coen added new features to the module system. - -Benjamin Grégoire, Assia Mahboubi and Bruno Barras developed a new -more efficient and more general simplification algorithm on rings and -semi-rings. - -Laurent Théry and Bruno Barras developed a new significantly more efficient -simplification algorithm on fields. - -Hugo Herbelin, Pierre Letouzey, Julien Forest, Julien Narboux and -Claudio Sacerdoti Coen added new tactic features. - -Hugo Herbelin implemented matching on disjunctive patterns. - -New mechanisms made easier the communication between {\Coq} and external -provers. Nicolas Ayache and Jean-Christophe Filliâtre implemented -connections with the provers {\sc cvcl}, {\sc Simplify} and {\sc -zenon}. Hugo Herbelin implemented an experimental protocol for calling -external tools from the tactic language. - -Matthieu Sozeau developed \textsc{Russell}, an experimental language -to specify the behavior of programs with subtypes. - -A mechanism to automatically use some specific tactic to solve -unresolved implicit has been implemented by Hugo Herbelin. - -Laurent Théry's contribution on strings and Pierre Letouzey and -Jean-Christophe Filliâtre's contribution on finite maps have been -integrated to the {\Coq} standard library. Pierre Letouzey developed a -library about finite sets ``à la Objective Caml''. With Jean-Marc -Notin, he extended the library on lists. Pierre Letouzey's -contribution on rational numbers has been integrated and extended.. - -Pierre Corbineau extended his tactic for solving first-order -statements. He wrote a reflection-based intuitionistic tautology -solver. - -Pierre Courtieu, Julien Forest and Yves Bertot added extra support to -reason on the inductive structure of recursively defined functions. - -Jean-Marc Notin significantly contributed to the general maintenance -of the system. He also took care of {\textsf{coqdoc}}. - -Pierre Castéran contributed to the documentation of (co-)inductive -types and suggested improvements to the libraries. - -Pierre Corbineau implemented a declarative mathematical proof -language, usable in combination with the tactic-based style of proof. - -Finally, many users suggested improvements of the system through the -Coq-Club mailing list and bug-tracker systems, especially user groups -from INRIA Rocquencourt, Radbout University, University of -Pennsylvania and Yale University. - -\enlargethispage{\baselineskip} -\begin{flushright} -Palaiseau, July 2006\\ -Hugo Herbelin -\end{flushright} - -\section*{Credits: version 8.2} - -{\Coq} version 8.2 adds new features, new libraries and -improves on many various aspects. - -Regarding the language of Coq, the main novelty is the introduction by -Matthieu Sozeau of a package of commands providing Haskell-style -type classes. Type classes, that come with a few convenient features -such as type-based resolution of implicit arguments, plays a new role -of landmark in the architecture of Coq with respect to automatization. -For instance, thanks to type classes support, Matthieu Sozeau could -implement a new resolution-based version of the tactics dedicated to -rewriting on arbitrary transitive relations. - -Another major improvement of Coq 8.2 is the evolution of the -arithmetic libraries and of the tools associated to them. Benjamin -Grégoire and Laurent Théry contributed a modular library for building -arbitrarily large integers from bounded integers while Evgeny Makarov -contributed a modular library of abstract natural and integer -arithmetics together with a few convenient tactics. On his side, -Pierre Letouzey made numerous extensions to the arithmetic libraries on -$\mathbb{Z}$ and $\mathbb{Q}$, including extra support for -automatization in presence of various number-theory concepts. - -Frédéric Besson contributed a reflexive tactic based on -Krivine-Stengle Positivstellensatz (the easy way) for validating -provability of systems of inequalities. The platform is flexible enough -to support the validation of any algorithm able to produce a -``certificate'' for the Positivstellensatz and this covers the case of -Fourier-Motzkin (for linear systems in $\mathbb{Q}$ and $\mathbb{R}$), -Fourier-Motzkin with cutting planes (for linear systems in -$\mathbb{Z}$) and sum-of-squares (for non-linear systems). Evgeny -Makarov made the platform generic over arbitrary ordered rings. - -Arnaud Spiwack developed a library of 31-bits machine integers and, -relying on Benjamin Grégoire and Laurent Théry's library, delivered a -library of unbounded integers in base $2^{31}$. As importantly, he -developed a notion of ``retro-knowledge'' so as to safely extend the -kernel-located bytecode-based efficient evaluation algorithm of Coq -version 8.1 to use 31-bits machine arithmetics for efficiently -computing with the library of integers he developed. - -Beside the libraries, various improvements contributed to provide a -more comfortable end-user language and more expressive tactic -language. Hugo Herbelin and Matthieu Sozeau improved the -pattern-matching compilation algorithm (detection of impossible -clauses in pattern-matching, automatic inference of the return -type). Hugo Herbelin, Pierre Letouzey and Matthieu Sozeau contributed -various new convenient syntactic constructs and new tactics or tactic -features: more inference of redundant information, better unification, -better support for proof or definition by fixpoint, more expressive -rewriting tactics, better support for meta-variables, more convenient -notations, ... - -Élie Soubiran improved the module system, adding new features (such as -an ``include'' command) and making it more flexible and more -general. He and Pierre Letouzey improved the support for modules in -the extraction mechanism. - -Matthieu Sozeau extended the \textsc{Russell} language, ending in an -convenient way to write programs of given specifications, Pierre -Corbineau extended the Mathematical Proof Language and the -automatization tools that accompany it, Pierre Letouzey supervised and -extended various parts the standard library, Stéphane Glondu -contributed a few tactics and improvements, Jean-Marc Notin provided -help in debugging, general maintenance and {\tt coqdoc} support, -Vincent Siles contributed extensions of the {\tt Scheme} command and -of {\tt injection}. - -Bruno Barras implemented the {\tt coqchk} tool: this is a stand-alone -type-checker that can be used to certify {\tt .vo} files. Especially, -as this verifier runs in a separate process, it is granted not to be -``hijacked'' by virtually malicious extensions added to {\Coq}. - -Yves Bertot, Jean-Christophe Filliâtre, Pierre Courtieu and -Julien Forest acted as maintainers of features they implemented in -previous versions of Coq. - -Julien Narboux contributed to {\CoqIDE}. -Nicolas Tabareau made the adaptation of the interface of the old -``setoid rewrite'' tactic to the new version. Lionel Mamane worked on -the interaction between Coq and its external interfaces. With Samuel -Mimram, he also helped making Coq compatible with recent software -tools. Russell O'Connor, Cezary Kaliscyk, Milad Niqui contributed to -improved the libraries of integers, rational, and real numbers. We -also thank many users and partners for suggestions and feedback, in -particular Pierre Castéran and Arthur Charguéraud, the INRIA Marelle -team, Georges Gonthier and the INRIA-Microsoft Mathematical Components team, -the Foundations group at Radbout university in Nijmegen, reporters of bugs -and participants to the Coq-Club mailing list. - -\begin{flushright} -Palaiseau, June 2008\\ -Hugo Herbelin\\ -\end{flushright} - -\section*{Credits: version 8.3} - -{\Coq} version 8.3 is before all a transition version with refinements -or extensions of the existing features and libraries and a new tactic -{\tt nsatz} based on Hilbert's Nullstellensatz for deciding systems of -equations over rings. - -With respect to libraries, the main evolutions are due to Pierre -Letouzey with a rewriting of the library of finite sets {\tt FSets} -and a new round of evolutions in the modular development of arithmetic -(library {\tt Numbers}). The reason for making {\tt FSets} evolve is -that the computational and logical contents were quite intertwined in -the original implementation, leading in some cases to longer -computations than expected and this problem is solved in the new {\tt - MSets} implementation. As for the modular arithmetic library, it was -only dealing with the basic arithmetic operators in the former version -and its current extension adds the standard theory of the division, -min and max functions, all made available for free to any -implementation of $\mathbb{N}$, $\mathbb{Z}$ or -$\mathbb{Z}/n\mathbb{Z}$. - -The main other evolutions of the library are due to Hugo Herbelin who -made a revision of the sorting library (includingh a certified -merge-sort) and to Guillaume Melquiond who slightly revised and -cleaned up the library of reals. - -The module system evolved significantly. Besides the resolution of -some efficiency issues and a more flexible construction of module -types, Élie Soubiran brought a new model of name equivalence, the -$\Delta$-equivalence, which respects as much as possible the names -given by the users. He also designed with Pierre Letouzey a new -convenient operator \verb!<+! for nesting functor application, what -provides a light notation for inheriting the properties of cascading -modules. - -The new tactic {\tt nsatz} is due to Loïc Pottier. It works by -computing Gr\"obner bases. Regarding the existing tactics, various -improvements have been done by Matthieu Sozeau, Hugo Herbelin and -Pierre Letouzey. - -Matthieu Sozeau extended and refined the type classes and {\tt - Program} features (the {\sc Russell} language). Pierre Letouzey -maintained and improved the extraction mechanism. Bruno Barras and -\'Elie Soubiran maintained the Coq checker, Julien Forest maintained -the {\tt Function} mechanism for reasoning over recursively defined -functions. Matthieu Sozeau, Hugo Herbelin and Jean-Marc Notin -maintained {\tt coqdoc}. Frédéric Besson maintained the {\sc - Micromega} plateform for deciding systems of inequalities. Pierre -Courtieu maintained the support for the Proof General Emacs -interface. Claude Marché maintained the plugin for calling external -provers ({\tt dp}). Yves Bertot made some improvements to the -libraries of lists and integers. Matthias Puech improved the search -functions. Guillaume Melquiond usefully contributed here and -there. Yann Régis-Gianas grounded the support for Unicode on a more -standard and more robust basis. - -Though invisible from outside, Arnaud Spiwack improved the general -process of management of existential variables. Pierre Letouzey and -Stéphane Glondu improved the compilation scheme of the Coq archive. -Vincent Gross provided support to {\CoqIDE}. Jean-Marc Notin provided -support for benchmarking and archiving. - -Many users helped by reporting problems, providing patches, suggesting -improvements or making useful comments, either on the bug tracker or -on the Coq-club mailing list. This includes but not exhaustively -Cédric Auger, Arthur Charguéraud, François Garillot, Georges Gonthier, -Robin Green, Stéphane Lescuyer, Eelis van der Weegen,~... - -Though not directly related to the implementation, special thanks are -going to Yves Bertot, Pierre Castéran, Adam Chlipala, and Benjamin -Pierce for the excellent teaching materials they provided. - -\begin{flushright} -Paris, April 2010\\ -Hugo Herbelin\\ -\end{flushright} - -\section*{Credits: version 8.4} - -{\Coq} version 8.4 contains the result of three long-term projects: a -new modular library of arithmetic by Pierre Letouzey, a new proof -engine by Arnaud Spiwack and a new communication protocol for {\CoqIDE} -by Vincent Gross. - -The new modular library of arithmetic extends, generalizes and -unifies the existing libraries on Peano arithmetic (types {\tt nat}, -{\tt N} and {\tt BigN}), positive arithmetic (type {\tt positive}), -integer arithmetic ({\tt Z} and {\tt BigZ}) and machine word -arithmetic (type {\tt Int31}). It provides with unified notations -(e.g. systematic use of {\tt add} and {\tt mul} for denoting the -addition and multiplication operators), systematic and generic -development of operators and properties of these operators for all the -types mentioned above, including gcd, pcm, power, square root, base 2 -logarithm, division, modulo, bitwise operations, logical shifts, -comparisons, iterators, ... - -The most visible feature of the new proof engine is the support for -structured scripts (bullets and proof brackets) but, even if yet not -user-available, the new engine also provides the basis for refining -existential variables using tactics, for applying tactics to several -goals simultaneously, for reordering goals, all features which are -planned for the next release. - -Before version 8.4, {\CoqIDE} was linked to {\Coq} with the graphical -interface living in a separate thread. From version 8.4, {\CoqIDE} is a -separate process communicating with {\Coq} through a textual -channel. This allows for a more robust interfacing, the ability to -interrupt {\Coq} without interrupting the interface, and the ability to -manage several sessions in parallel. Relying on the infrastructure -work made by Vincent Gross, Pierre Letouzey, Pierre Boutillier and -Pierre-Marie P\'edrot contributed many various refinements of {\CoqIDE}. - -{\Coq} 8.4 also comes with a bunch of many various smaller-scale changes -and improvements regarding the different components of the system. - -The underlying logic has been extended with $\eta$-conversion thanks -to Hugo Herbelin, St\'ephane Glondu and Benjamin Gr\'egoire. The -addition of $\eta$-conversion is justified by the confidence that the -formulation of the Calculus of Inductive Constructions based on typed -equality (such as the one considered in Lee and Werner to build a -set-theoretic model of CIC~\cite{LeeWerner11}) is applicable to the -concrete implementation of {\Coq}. - -The underlying logic benefited also from a refinement of the guard -condition for fixpoints by Pierre Boutillier, the point being that it -is safe to propagate the information about structurally smaller -arguments through $\beta$-redexes that are blocked by the -``match'' construction (blocked commutative cuts). - -Relying on the added permissiveness of the guard condition, Hugo -Herbelin could extend the pattern-matching compilation algorithm -so that matching over a sequence of terms involving -dependencies of a term or of the indices of the type of a term in the -type of other terms is systematically supported. - -Regarding the high-level specification language, Pierre Boutillier -introduced the ability to give implicit arguments to anonymous -functions, Hugo Herbelin introduced the ability to define notations -with several binders (e.g. \verb=exists x y z, P=), Matthieu Sozeau -made the type classes inference mechanism more robust and predictable, -Enrico Tassi introduced a command {\tt Arguments} that generalizes -{\tt Implicit Arguments} and {\tt Arguments Scope} for assigning -various properties to arguments of constants. Various improvements in -the type inference algorithm were provided by Matthieu Sozeau and Hugo -Herbelin with contributions from Enrico Tassi. - -Regarding tactics, Hugo Herbelin introduced support for referring to -expressions occurring in the goal by pattern in tactics such as {\tt - set} or {\tt destruct}. Hugo Herbelin also relied on ideas from -Chung-Kil Hur's {\tt Heq} plugin to introduce automatic computation of -occurrences to generalize when using {\tt destruct} and {\tt - induction} on types with indices. St\'ephane Glondu introduced new -tactics {\tt constr\_eq}, {\tt is\_evar} and {\tt has\_evar} to be -used when writing complex tactics. Enrico Tassi added support to -fine-tuning the behavior of {\tt simpl}. Enrico Tassi added the -ability to specify over which variables of a section a lemma has -to be exactly generalized. Pierre Letouzey added a tactic {\tt - timeout} and the interruptibility of {\tt vm\_compute}. Bug fixes -and miscellaneous improvements of the tactic language came from Hugo -Herbelin, Pierre Letouzey and Matthieu Sozeau. - -Regarding decision tactics, Lo\"ic Pottier maintained {\tt Nsatz}, -moving in particular to a type-class based reification of goals while -Fr\'ed\'eric Besson maintained {\tt Micromega}, adding in particular -support for division. - -Regarding vernacular commands, St\'ephane Glondu provided new commands -to analyze the structure of type universes. - -Regarding libraries, a new library about lists of a given length -(called vectors) has been provided by Pierre Boutillier. - -Pierre Corbineau maintained the C-zar proof mode. - -Bruno Barras and Benjamin Gr\'egoire maintained the call-by-value -reduction machines. - -The extraction mechanism benefited from several improvements provided by -Pierre Letouzey. - -Pierre Letouzey maintained the module system, with contributions from -\'Elie Soubiran. - -Julien Forest maintained the {\tt Function} command. - -Matthieu Sozeau maintained the setoid rewriting mechanism. - -{\Coq} related tools have been upgraded too. In particular, {\tt - coq\_makefile} has been largely revised by Pierre Boutillier. - -Bruno Barras and Pierre Letouzey maintained the {\tt coqchk} checker. - -Pierre Courtieu and Arnaud Spiwack contributed new features for using -{\Coq} through Proof General. - -Under the hood, the {\Coq} architecture benefited from improvements in -terms of efficiency and robustness thanks to Pierre Letouzey and Yann -R\'egis-Gianas with contributions from St\'ephane Glondu and Matthias -Puech. The build system is maintained by Pierre Letouzey with -contributions from St\'ephane Glondu and Pierre Boutillier. - -The general maintenance was done by Hugo Herbelin, Pierre Letouzey, -Pierre Boutillier and St\'ephane Glondu with local contributions from -Guillaume Melquiond and Julien Narboux. - -Packaging tools were provided by Pierre Letouzey (Windows), Pierre -Boutillier (MacOS), St\'ephane Glondu (Debian). Releasing, testing and -benchmarking support was provided by Jean-Marc Notin. - -Many suggestions for improvements were motivated by feedback from -users, on either the bug tracker or the coq-club mailing list. Special -thanks are going to the users who contributed patches, starting with -Tom Prince. Other patch contributors include C\'edric Auger, David -Baelde, Dan Grayson, Paolo Herms, Robbert Krebbers, Marc Lasson, -Hendrik Tews and Eelis van der Weegen. - -\begin{flushright} -Paris, December 2011\\ -Hugo Herbelin\\ -\end{flushright} - -%new Makefile - -%\newpage - -% Integration of ZArith lemmas from Sophia and Nijmegen. - - -% $Id: RefMan-pre.tex 14853 2011-12-23 19:59:48Z herbelin $ - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-pro.tex b/doc/refman/RefMan-pro.tex deleted file mode 100644 index ca3a9cc9..00000000 --- a/doc/refman/RefMan-pro.tex +++ /dev/null @@ -1,401 +0,0 @@ -\chapter[Proof handling]{Proof handling\index{Proof editing} -\label{Proof-handling}} - -In \Coq's proof editing mode all top-level commands documented in -Chapter~\ref{Vernacular-commands} remain available -and the user has access to specialized commands dealing with proof -development pragmas documented in this section. He can also use some -other specialized commands called {\em tactics}. They are the very -tools allowing the user to deal with logical reasoning. They are -documented in Chapter~\ref{Tactics}.\\ -When switching in editing proof mode, the prompt -\index{Prompt} -{\tt Coq <} is changed into {\tt {\ident} <} where {\ident} is the -declared name of the theorem currently edited. - -At each stage of a proof development, one has a list of goals to -prove. Initially, the list consists only in the theorem itself. After -having applied some tactics, the list of goals contains the subgoals -generated by the tactics. - -To each subgoal is associated a number of -hypotheses called the {\em \index*{local context}} of the goal. -Initially, the local context contains the local variables and -hypotheses of the current section (see Section~\ref{Variable}) and the -local variables and hypotheses of the theorem statement. It is -enriched by the use of certain tactics (see e.g. {\tt intro} in -Section~\ref{intro}). - -When a proof is completed, the message {\tt Proof completed} is -displayed. One can then register this proof as a defined constant in the -environment. Because there exists a correspondence between proofs and -terms of $\lambda$-calculus, known as the {\em Curry-Howard -isomorphism} \cite{How80,Bar91,Gir89,Hue89}, \Coq~ stores proofs as -terms of {\sc Cic}. Those terms are called {\em proof - terms}\index{Proof term}. - -\ErrMsg When one attempts to use a proof editing command out of the -proof editing mode, \Coq~ raises the error message : \errindex{No focused - proof}. - -\section{Switching on/off the proof editing mode} - -The proof editing mode is entered by asserting a statement, which -typically is the assertion of a theorem: - -\begin{quote} -{\tt Theorem {\ident} \zeroone{\binders} : {\form}.\comindex{Theorem} -\label{Theorem}} -\end{quote} - -The list of assertion commands is given in -Section~\ref{Assertions}. The command {\tt Goal} can also be used. - -\subsection[Goal {\form}.]{\tt Goal {\form}.\comindex{Goal}\label{Goal}} - -This is intended for quick assertion of statements, without knowing in -advance which name to give to the assertion, typically for quick -testing of the provability of a statement. If the proof of the -statement is eventually completed and validated, the statement is then -bound to the name {\tt Unnamed\_thm} (or a variant of this name not -already used for another statement). - -\subsection[\tt Qed.]{\tt Qed.\comindex{Qed}\label{Qed}} -This command is available in interactive editing proof mode when the -proof is completed. Then {\tt Qed} extracts a proof term from the -proof script, switches back to {\Coq} top-level and attaches the -extracted proof term to the declared name of the original goal. This -name is added to the environment as an {\tt Opaque} constant. - -\begin{ErrMsgs} -\item \errindex{Attempt to save an incomplete proof} -%\item \ident\ \errindex{already exists}\\ -% The implicit name is already defined. You have then to provide -% explicitly a new name (see variant 3 below). -\item Sometimes an error occurs when building the proof term, -because tactics do not enforce completely the term construction -constraints. - -The user should also be aware of the fact that since the proof term is -completely rechecked at this point, one may have to wait a while when -the proof is large. In some exceptional cases one may even incur a -memory overflow. -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt Defined.} -\comindex{Defined} -\label{Defined} - - Defines the proved term as a transparent constant. - -\item {\tt Save.} -\comindex{Save} - - This is a deprecated equivalent to {\tt Qed}. - -\item {\tt Save {\ident}.} - - Forces the name of the original goal to be {\ident}. This command - (and the following ones) can only be used if the original goal has - been opened using the {\tt Goal} command. - -\item {\tt Save Theorem {\ident}.} \\ - {\tt Save Lemma {\ident}.} \\ - {\tt Save Remark {\ident}.}\\ - {\tt Save Fact {\ident}.} - {\tt Save Corollary {\ident}.} - {\tt Save Proposition {\ident}.} - - Are equivalent to {\tt Save {\ident}.} -\end{Variants} - -\subsection[\tt Admitted.]{\tt Admitted.\comindex{Admitted}\label{Admitted}} -This command is available in interactive editing proof mode to give up -the current proof and declare the initial goal as an axiom. - -\subsection[\tt Proof {\term}.]{\tt Proof {\term}.\comindex{Proof} -\label{BeginProof}} -This command applies in proof editing mode. It is equivalent to {\tt - exact {\term}; Save.} That is, you have to give the full proof in -one gulp, as a proof term (see Section~\ref{exact}). - -\variant {\tt Proof.} - - Is a noop which is useful to delimit the sequence of tactic commands - which start a proof, after a {\tt Theorem} command. It is a good - practice to use {\tt Proof.} as an opening parenthesis, closed in - the script with a closing {\tt Qed.} - -\SeeAlso {\tt Proof with {\tac}.} in Section~\ref{ProofWith}. - -\subsection[\tt Proof using {\ident$_1$ \dots {\ident$_n$}}.] -{\tt Proof using {\ident$_1$ \dots {\ident$_n$}}. -\comindex{Proof using} \label{ProofUsing}} - -This command applies in proof editing mode. -It declares the set of section variables (see~\ref{Variable}) -used by the proof. At {\tt Qed} time, the system will assert that -the set of section variables actually used in the proof is a subset of -the declared one. - -The set of declared variables is closed under type dependency. -For example if {\tt T} is variable and {\tt a} is a variable of -type {\tt T}, the commands {\tt Proof using a} and -{\tt Proof using T a} are actually equivalent. - -\variant {\tt Proof using {\ident$_1$ \dots {\ident$_n$}} with {\tac}.} -in Section~\ref{ProofWith}. - -\subsection[\tt Abort.]{\tt Abort.\comindex{Abort}} - -This command cancels the current proof development, switching back to -the previous proof development, or to the \Coq\ toplevel if no other -proof was edited. - -\begin{ErrMsgs} -\item \errindex{No focused proof (No proof-editing in progress)} -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt Abort {\ident}.} - - Aborts the editing of the proof named {\ident}. - -\item {\tt Abort All.} - - Aborts all current goals, switching back to the \Coq\ toplevel. - -\end{Variants} - -%%%% -\subsection[\tt Existential {\num} := {\term}.]{\tt Existential {\num} := {\term}.\comindex{Existential} -\label{Existential}} - -This command allows to instantiate an existential variable. {\tt \num} -is an index in the list of uninstantiated existential variables -displayed by {\tt Show Existentials.} (described in Section~\ref{Show}) - -This command is intended to be used to instantiate existential -variables when the proof is completed but some uninstantiated -existential variables remain. To instantiate existential variables -during proof edition, you should use the tactic {\tt instantiate}. - -\SeeAlso {\tt instantiate (\num:= \term).} in Section~\ref{instantiate}. -\SeeAlso {\tt Grab Existential Variables.} below. - -\subsection[\tt Grab Existential Variables.]{\tt Grab Existential Variables.\comindex{Grab Existential Variables} -\label{GrabEvars}} - -This command can be run when a proof has no more goal to be solved but has remaining -uninstantiated existential variables. It takes every uninstantiated existential variable -and turns it into a goal. - -%%%%%%%% -\section{Navigation in the proof tree} -%%%%%%%% - -\subsection[\tt Undo.]{\tt Undo.\comindex{Undo}} - -This command cancels the effect of the last tactic command. Thus, it -backtracks one step. - -\begin{ErrMsgs} -\item \errindex{No focused proof (No proof-editing in progress)} -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt Undo {\num}.} - - Repeats {\tt Undo} {\num} times. - -\end{Variants} - -\subsection[\tt Restart.]{\tt Restart.\comindex{Restart}} -This command restores the proof editing process to the original goal. - -\begin{ErrMsgs} -\item \errindex{No focused proof to restart} -\end{ErrMsgs} - -\subsection[\tt Focus.]{\tt Focus.\comindex{Focus}} -This focuses the attention on the first subgoal to prove and the printing -of the other subgoals is suspended until the focused subgoal is -solved or unfocused. This is useful when there are many current -subgoals which clutter your screen. - -\begin{Variant} -\item {\tt Focus {\num}.}\\ -This focuses the attention on the $\num^{th}$ subgoal to prove. - -\end{Variant} - -\subsection[\tt Unfocus.]{\tt Unfocus.\comindex{Unfocus}} -This command restores to focus the goal that were suspended by the -last {\tt Focus} command. - -\subsection[\tt Unfocused.]{\tt Unfocused.\comindex{Unfocused}} -Succeeds in the proof is fully unfocused, fails is there are some -goals out of focus. - -\subsection[\tt \{ \textrm{and} \}]{\tt \{ \textrm{and} \}\comindex{\{}\comindex{\}}} -The command {\tt \{} (without a terminating period) focuses on the -first goal, much like {\tt Focus.} does, however, the subproof can -only be unfocused when it has been fully solved (\emph{i.e.} when -there is no focused goal left). Unfocusing is then handled by {\tt \}} -(again, without a terminating period). See also example in next section. - -\subsection[Bullets]{Bullets\comindex{+ (command)}\comindex{- (command)}\comindex{* (command)}\index{Bullets}} -Alternatively to {\tt \{} and {\tt \}}, proofs can be structured with -bullets. The use of a bullet for the first time focuses on the first -goal, the same bullet cannot be used again until the subproof in -completed, then it focuses on the next goal. Different bullets can be -used to nest levels. The scope of bullet does not go beyond enclosing -{\tt \{} and {\tt \}}, so bullets can be reused as further nesting -level provided they are delimited by these. Available bullets are -{\tt -}, {\tt +} and {\tt *} (without a terminating period). - -The following example script illustrates all these features: -\begin{coq_example*} -Goal (((True/\True)/\True)/\True)/\True. -Proof. - split. - - split. - + split. - * { split. - - trivial. - - trivial. - } - * trivial. - + trivial. - - trivial. -\end{coq_example*} - - -\section{Requesting information} - -\subsection[\tt Show.]{\tt Show.\comindex{Show}\label{Show}} -This command displays the current goals. - -\begin{Variants} -\item {\tt Show {\num}.}\\ - Displays only the {\num}-th subgoal.\\ -\begin{ErrMsgs} -\item \errindex{No such goal} -\item \errindex{No focused proof} -\end{ErrMsgs} - -\item {\tt Show Implicits.}\comindex{Show Implicits}\\ - Displays the current goals, printing the implicit arguments of - constants. - -\item {\tt Show Implicits {\num}.}\\ - Same as above, only displaying the {\num}-th subgoal. - -\item {\tt Show Script.}\comindex{Show Script}\\ - Displays the whole list of tactics applied from the beginning - of the current proof. - This tactics script may contain some holes (subgoals not yet proved). - They are printed under the form \verb!<Your Tactic Text here>!. - -\item {\tt Show Tree.}\comindex{Show Tree}\\ -This command can be seen as a more structured way of -displaying the state of the proof than that -provided by {\tt Show Script}. Instead of just giving -the list of tactics that have been applied, it -shows the derivation tree constructed by then. -Each node of the tree contains the conclusion -of the corresponding sub-derivation (i.e. a -goal with its corresponding local context) and -the tactic that has generated all the -sub-derivations. The leaves of this tree are -the goals which still remain to be proved. - -%\item {\tt Show Node}\comindex{Show Node}\\ -% Not yet documented - -\item {\tt Show Proof.}\comindex{Show Proof}\\ -It displays the proof term generated by the -tactics that have been applied. -If the proof is not completed, this term contain holes, -which correspond to the sub-terms which are still to be -constructed. These holes appear as a question mark indexed -by an integer, and applied to the list of variables in -the context, since it may depend on them. -The types obtained by abstracting away the context from the -type of each hole-placer are also printed. - -\item {\tt Show Conjectures.}\comindex{Show Conjectures}\\ -It prints the list of the names of all the theorems that -are currently being proved. -As it is possible to start proving a previous lemma during -the proof of a theorem, this list may contain several -names. - -\item{\tt Show Intro.}\comindex{Show Intro}\\ -If the current goal begins by at least one product, this command -prints the name of the first product, as it would be generated by -an anonymous {\tt Intro}. The aim of this command is to ease the -writing of more robust scripts. For example, with an appropriate -Proof General macro, it is possible to transform any anonymous {\tt - Intro} into a qualified one such as {\tt Intro y13}. -In the case of a non-product goal, it prints nothing. - -\item{\tt Show Intros.}\comindex{Show Intros}\\ -This command is similar to the previous one, it simulates the naming -process of an {\tt Intros}. - -\item{\tt Show Existentials}\comindex{Show Existentials}\\ It displays -the set of all uninstantiated existential variables in the current proof tree, -along with the type and the context of each variable. - -\end{Variants} - - -\subsection[\tt Guarded.]{\tt Guarded.\comindex{Guarded}\label{Guarded}} - -Some tactics (e.g. refine \ref{refine}) allow to build proofs using -fixpoint or co-fixpoint constructions. Due to the incremental nature -of interactive proof construction, the check of the termination (or -guardedness) of the recursive calls in the fixpoint or cofixpoint -constructions is postponed to the time of the completion of the proof. - -The command \verb!Guarded! allows to verify if the guard condition for -fixpoint and cofixpoint is violated at some time of the construction -of the proof without having to wait the completion of the proof." - - -\section{Controlling the effect of proof editing commands} - -\subsection[\tt Set Hyps Limit {\num}.]{\tt Set Hyps Limit {\num}.\comindex{Set Hyps Limit}} -This command sets the maximum number of hypotheses displayed in -goals after the application of a tactic. -All the hypotheses remains usable in the proof development. - - -\subsection[\tt Unset Hyps Limit.]{\tt Unset Hyps Limit.\comindex{Unset Hyps Limit}} -This command goes back to the default mode which is to print all -available hypotheses. - - -\subsection[\tt Set Automatic Introduction.]{\tt Set Automatic Introduction.\comindex{Set Automatic Introduction}\comindex{Unset Automatic Introduction}\label{Set Automatic Introduction}} - -The option {\tt Automatic Introduction} controls the way binders are -handled in assertion commands such as {\tt Theorem {\ident} - \zeroone{\binders} : {\form}}. When the option is set, which is the -default, {\binders} are automatically put in the local context of the -goal to prove. - -The option can be unset by issuing {\tt Unset Automatic Introduction}. -When the option is unset, {\binders} are discharged on the statement -to be proved and a tactic such as {\tt intro} (see -Section~\ref{intro}) has to be used to move the assumptions to the -local context. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-syn.tex b/doc/refman/RefMan-syn.tex deleted file mode 100644 index fd608f06..00000000 --- a/doc/refman/RefMan-syn.tex +++ /dev/null @@ -1,1172 +0,0 @@ -\chapter[Syntax extensions and interpretation scopes]{Syntax extensions and interpretation scopes\label{Addoc-syntax}} - -In this chapter, we introduce advanced commands to modify the way -{\Coq} parses and prints objects, i.e. the translations between the -concrete and internal representations of terms and commands. The main -commands are {\tt Notation} and {\tt Infix} which are described in -section \ref{Notation}. It also happens that the same symbolic -notation is expected in different contexts. To achieve this form of -overloading, {\Coq} offers a notion of interpretation scope. This is -described in Section~\ref{scopes}. - -\Rem The commands {\tt Grammar}, {\tt Syntax} and {\tt Distfix} which -were present for a while in {\Coq} are no longer available from {\Coq} -version 8.0. The underlying AST structure is also no longer available. -The functionalities of the command {\tt Syntactic Definition} are -still available, see Section~\ref{Abbreviations}. - -\section[Notations]{Notations\label{Notation} -\comindex{Notation}} - -\subsection{Basic notations} - -A {\em notation} is a symbolic abbreviation denoting some term -or term pattern. - -A typical notation is the use of the infix symbol \verb=/\= to denote -the logical conjunction (\texttt{and}). Such a notation is declared -by - -\begin{coq_example*} -Notation "A /\ B" := (and A B). -\end{coq_example*} - -The expression \texttt{(and A B)} is the abbreviated term and the -string \verb="A /\ B"= (called a {\em notation}) tells how it is -symbolically written. - -A notation is always surrounded by double quotes (excepted when the -abbreviation is a single identifier, see \ref{Abbreviations}). The -notation is composed of {\em tokens} separated by spaces. Identifiers -in the string (such as \texttt{A} and \texttt{B}) are the {\em -parameters} of the notation. They must occur at least once each in the -denoted term. The other elements of the string (such as \verb=/\=) are -the {\em symbols}. - -An identifier can be used as a symbol but it must be surrounded by -simple quotes to avoid the confusion with a parameter. Similarly, -every symbol of at least 3 characters and starting with a simple quote -must be quoted (then it starts by two single quotes). Here is an example. - -\begin{coq_example*} -Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3). -\end{coq_example*} - -%TODO quote the identifier when not in front, not a keyword, as in "x 'U' y" ? - -A notation binds a syntactic expression to a term. Unless the parser -and pretty-printer of {\Coq} already know how to deal with the -syntactic expression (see \ref{ReservedNotation}), explicit precedences and -associativity rules have to be given. - -\subsection[Precedences and associativity]{Precedences and associativity\index{Precedences} -\index{Associativity}} - -Mixing different symbolic notations in a same text may cause serious -parsing ambiguity. To deal with the ambiguity of notations, {\Coq} -uses precedence levels ranging from 0 to 100 (plus one extra level -numbered 200) and associativity rules. - -Consider for example the new notation - -\begin{coq_example*} -Notation "A \/ B" := (or A B). -\end{coq_example*} - -Clearly, an expression such as {\tt forall A:Prop, True \verb=/\= A \verb=\/= -A \verb=\/= False} is ambiguous. To tell the {\Coq} parser how to -interpret the expression, a priority between the symbols \verb=/\= and -\verb=\/= has to be given. Assume for instance that we want conjunction -to bind more than disjunction. This is expressed by assigning a -precedence level to each notation, knowing that a lower level binds -more than a higher level. Hence the level for disjunction must be -higher than the level for conjunction. - -Since connectives are the less tight articulation points of a text, it -is reasonable to choose levels not so far from the higher level which -is 100, for example 85 for disjunction and 80 for -conjunction\footnote{which are the levels effectively chosen in the -current implementation of {\Coq}}. - -Similarly, an associativity is needed to decide whether {\tt True \verb=/\= -False \verb=/\= False} defaults to {\tt True \verb=/\= (False -\verb=/\= False)} (right associativity) or to {\tt (True -\verb=/\= False) \verb=/\= False} (left associativity). We may -even consider that the expression is not well-formed and that -parentheses are mandatory (this is a ``no associativity'')\footnote{ -{\Coq} accepts notations declared as no associative but the parser on -which {\Coq} is built, namely {\camlpppp}, currently does not implement the -no-associativity and replace it by a left associativity; hence it is -the same for {\Coq}: no-associativity is in fact left associativity}. -We don't know of a special convention of the associativity of -disjunction and conjunction, let's apply for instance a right -associativity (which is the choice of {\Coq}). - -Precedence levels and associativity rules of notations have to be -given between parentheses in a list of modifiers that the -\texttt{Notation} command understands. Here is how the previous -examples refine. - -\begin{coq_example*} -Notation "A /\ B" := (and A B) (at level 80, right associativity). -Notation "A \/ B" := (or A B) (at level 85, right associativity). -\end{coq_example*} - -By default, a notation is considered non associative, but the -precedence level is mandatory (except for special cases whose level is -canonical). The level is either a number or the mention {\tt next -level} whose meaning is obvious. The list of levels already assigned -is on Figure~\ref{init-notations}. - -\subsection{Complex notations} - -Notations can be made from arbitraly complex symbols. One can for -instance define prefix notations. - -\begin{coq_example*} -Notation "~ x" := (not x) (at level 75, right associativity). -\end{coq_example*} - -One can also define notations for incomplete terms, with the hole -expected to be inferred at typing time. - -\begin{coq_example*} -Notation "x = y" := (@eq _ x y) (at level 70, no associativity). -\end{coq_example*} - -One can define {\em closed} notations whose both sides are symbols. In -this case, the default precedence level for inner subexpression is 200. - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is correct but produces **********) -(**** an incompatibility with the reserved notation ********) -\end{coq_eval} -\begin{coq_example*} -Notation "( x , y )" := (@pair _ _ x y) (at level 0). -\end{coq_example*} - -One can also define notations for binders. - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is correct but produces **********) -(**** an incompatibility with the reserved notation ********) -\end{coq_eval} -\begin{coq_example*} -Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0). -\end{coq_example*} - -In the last case though, there is a conflict with the notation for -type casts. This last notation, as shown by the command {\tt Print Grammar -constr} is at level 100. To avoid \verb=x : A= being parsed as a type cast, -it is necessary to put {\tt x} at a level below 100, typically 99. Hence, a -correct definition is - -\begin{coq_example*} -Notation "{ x : A | P }" := (sig A (fun x => P)) (at level 0, x at level 99). -\end{coq_example*} - -%This change has retrospectively an effect on the notation for notation -%{\tt "{ A } + { B }"}. For the sake of factorization, {\tt A} must be -%put at level 99 too, which gives -% -%\begin{coq_example*} -%Notation "{ A } + { B }" := (sumbool A B) (at level 0, A at level 99). -%\end{coq_example*} - -See the next section for more about factorization. - -\subsection{Simple factorization rules} - -{\Coq} extensible parsing is performed by Camlp5 which is essentially a -LL1 parser. Hence, some care has to be taken not to hide already -existing rules by new rules. Some simple left factorization work has -to be done. Here is an example. - -\begin{coq_eval} -(********** The next rule for notation _ < _ < _ produces **********) -(*** Error: Notation _ < _ < _ is already defined at level 70 ... ***) -\end{coq_eval} -\begin{coq_example*} -Notation "x < y" := (lt x y) (at level 70). -Notation "x < y < z" := (x < y /\ y < z) (at level 70). -\end{coq_example*} - -In order to factorize the left part of the rules, the subexpression -referred by {\tt y} has to be at the same level in both rules. However -the default behavior puts {\tt y} at the next level below 70 -in the first rule (no associativity is the default), and at the level -200 in the second rule (level 200 is the default for inner expressions). -To fix this, we need to force the parsing level of {\tt y}, -as follows. - -\begin{coq_example*} -Notation "x < y" := (lt x y) (at level 70). -Notation "x < y < z" := (x < y /\ y < z) (at level 70, y at next level). -\end{coq_example*} - -For the sake of factorization with {\Coq} predefined rules, simple -rules have to be observed for notations starting with a symbol: -e.g. rules starting with ``\{'' or ``('' should be put at level 0. The -list of {\Coq} predefined notations can be found in Chapter~\ref{Theories}. - -The command to display the current state of the {\Coq} term parser is -\comindex{Print Grammar constr} - -\begin{quote} -\tt Print Grammar constr. -\end{quote} - -\variant - -\comindex{Print Grammar pattern} -{\tt Print Grammar pattern.}\\ - -This displays the state of the subparser of patterns (the parser -used in the grammar of the {\tt match} {\tt with} constructions). - -\subsection{Displaying symbolic notations} - -The command \texttt{Notation} has an effect both on the {\Coq} parser and -on the {\Coq} printer. For example: - -\begin{coq_example} -Check (and True True). -\end{coq_example} - -However, printing, especially pretty-printing, requires -more care than parsing. We may want specific indentations, -line breaks, alignment if on several lines, etc. - -The default printing of notations is very rudimentary. For printing a -notation, a {\em formatting box} is opened in such a way that if the -notation and its arguments cannot fit on a single line, a line break -is inserted before the symbols of the notation and the arguments on -the next lines are aligned with the argument on the first line. - -A first, simple control that a user can have on the printing of a -notation is the insertion of spaces at some places of the -notation. This is performed by adding extra spaces between the symbols -and parameters: each extra space (other than the single space needed -to separate the components) is interpreted as a space to be inserted -by the printer. Here is an example showing how to add spaces around -the bar of the notation. - -\begin{coq_example} -Notation "{{ x : A | P }}" := (sig (fun x : A => P)) - (at level 0, x at level 99). -Check (sig (fun x : nat => x=x)). -\end{coq_example} - -The second, more powerful control on printing is by using the {\tt -format} modifier. Here is an example - -\begin{small} -\begin{coq_example} -Notation "'If' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3) -(at level 200, right associativity, format -"'[v ' 'If' c1 '/' '[' 'then' c2 ']' '/' '[' 'else' c3 ']' ']'"). -\end{coq_example} -\end{small} - -A {\em format} is an extension of the string denoting the notation with -the possible following elements delimited by single quotes: - -\begin{itemize} -\item extra spaces are translated into simple spaces -\item tokens of the form \verb='/ '= are translated into breaking point, - in case a line break occurs, an indentation of the number of spaces - after the ``\verb=/='' is applied (2 spaces in the given example) -\item token of the form \verb='//'= force writing on a new line -\item well-bracketed pairs of tokens of the form \verb='[ '= and \verb=']'= - are translated into printing boxes; in case a line break occurs, - an extra indentation of the number of spaces given after the ``\verb=[='' - is applied (4 spaces in the example) -\item well-bracketed pairs of tokens of the form \verb='[hv '= and \verb=']'= - are translated into horizontal-orelse-vertical printing boxes; - if the content of the box does not fit on a single line, then every breaking - point forces a newline and an extra indentation of the number of spaces - given after the ``\verb=[='' is applied at the beginning of each newline - (3 spaces in the example) -\item well-bracketed pairs of tokens of the form \verb='[v '= and - \verb=']'= are translated into vertical printing boxes; every - breaking point forces a newline, even if the line is large enough to - display the whole content of the box, and an extra indentation of the - number of spaces given after the ``\verb=[='' is applied at the beginning - of each newline -\end{itemize} - -Thus, for the previous example, we get -%\footnote{The ``@'' is here to shunt -%the notation "'IF' A 'then' B 'else' C" which is defined in {\Coq} -%initial state}: - -Notations do not survive the end of sections. No typing of the denoted -expression is performed at definition time. Type-checking is done only -at the time of use of the notation. - -\begin{coq_example} -Check - (IF_then_else (IF_then_else True False True) - (IF_then_else True False True) - (IF_then_else True False True)). -\end{coq_example} - -\Rem -Sometimes, a notation is expected only for the parser. -%(e.g. because -%the underlying parser of {\Coq}, namely {\camlpppp}, is LL1 and some extra -%rules are needed to circumvent the absence of factorization). -To do so, the option {\em only parsing} is allowed in the list of modifiers of -\texttt{Notation}. - -\subsection{The \texttt{Infix} command -\comindex{Infix}} - -The \texttt{Infix} command is a shortening for declaring notations of -infix symbols. Its syntax is - -\begin{quote} -\noindent\texttt{Infix "{\symbolentry}" :=} {\qualid} {\tt (} \nelist{\em modifier}{,} {\tt )}. -\end{quote} - -and it is equivalent to - -\begin{quote} -\noindent\texttt{Notation "x {\symbolentry} y" := ({\qualid} x y) (} \nelist{\em modifier}{,} {\tt )}. -\end{quote} - -where {\tt x} and {\tt y} are fresh names distinct from {\qualid}. Here is an example. - -\begin{coq_example*} -Infix "/\" := and (at level 80, right associativity). -\end{coq_example*} - -\subsection{Reserving notations -\label{ReservedNotation} -\comindex{Reserved Notation}} - -A given notation may be used in different contexts. {\Coq} expects all -uses of the notation to be defined at the same precedence and with the -same associativity. To avoid giving the precedence and associativity -every time, it is possible to declare a parsing rule in advance -without giving its interpretation. Here is an example from the initial -state of {\Coq}. - -\begin{coq_example} -Reserved Notation "x = y" (at level 70, no associativity). -\end{coq_example} - -Reserving a notation is also useful for simultaneously defined an -inductive type or a recursive constant and a notation for it. - -\Rem The notations mentioned on Figure~\ref{init-notations} are -reserved. Hence their precedence and associativity cannot be changed. - -\subsection{Simultaneous definition of terms and notations -\comindex{Fixpoint {\ldots} where {\ldots}} -\comindex{CoFixpoint {\ldots} where {\ldots}} -\comindex{Inductive {\ldots} where {\ldots}}} - -Thanks to reserved notations, the inductive, co-inductive, recursive -and corecursive definitions can benefit of customized notations. To do -this, insert a {\tt where} notation clause after the definition of the -(co)inductive type or (co)recursive term (or after the definition of -each of them in case of mutual definitions). The exact syntax is given -on Figure~\ref{notation-syntax}. Here are examples: - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is correct but produces an error **********) -(********** because the symbol /\ is already bound **********) -(**** Error: The conclusion of A -> B -> A /\ B is not valid *****) -\end{coq_eval} - -\begin{coq_example*} -Inductive and (A B:Prop) : Prop := conj : A -> B -> A /\ B -where "A /\ B" := (and A B). -\end{coq_example*} - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is correct but produces an error **********) -(********** because the symbol + is already bound **********) -(**** Error: no recursive definition *****) -\end{coq_eval} - -\begin{coq_example*} -Fixpoint plus (n m:nat) {struct n} : nat := - match n with - | O => m - | S p => S (p+m) - end -where "n + m" := (plus n m). -\end{coq_example*} - -\subsection{Displaying informations about notations -\comindex{Set Printing Notations} -\comindex{Unset Printing Notations}} - -To deactivate the printing of all notations, use the command -\begin{quote} -\tt Unset Printing Notations. -\end{quote} -To reactivate it, use the command -\begin{quote} -\tt Set Printing Notations. -\end{quote} -The default is to use notations for printing terms wherever possible. - -\SeeAlso {\tt Set Printing All} in Section~\ref{SetPrintingAll}. - -\subsection{Locating notations -\comindex{Locate} -\label{LocateSymbol}} - -To know to which notations a given symbol belongs to, use the command -\begin{quote} -\tt Locate {\symbolentry} -\end{quote} -where symbol is any (composite) symbol surrounded by quotes. To locate -a particular notation, use a string where the variables of the -notation are replaced by ``\_''. - -\Example -\begin{coq_example} -Locate "exists". -Locate "'exists' _ , _". -\end{coq_example} - -\SeeAlso Section \ref{Locate}. - -\begin{figure} -\begin{small} -\begin{centerframe} -\begin{tabular}{lcl} -{\sentence} & ::= & - \zeroone{\tt Local} \texttt{Notation} {\str} \texttt{:=} {\term} - \zeroone{\modifiers} \zeroone{:{\scope}} .\\ - & $|$ & - \zeroone{\tt Local} \texttt{Infix} {\str} \texttt{:=} {\qualid} - \zeroone{\modifiers} \zeroone{:{\scope}} .\\ - & $|$ & - \zeroone{\tt Local} \texttt{Reserved Notation} {\str} - \zeroone{\modifiers} .\\ - & $|$ & {\tt Inductive} - \nelist{{\inductivebody} \zeroone{\declnotation}}{with}{\tt .}\\ - & $|$ & {\tt CoInductive} - \nelist{{\inductivebody} \zeroone{\declnotation}}{with}{\tt .}\\ - & $|$ & {\tt Fixpoint} - \nelist{{\fixpointbody} \zeroone{\declnotation}}{with} {\tt .} \\ - & $|$ & {\tt CoFixpoint} - \nelist{{\cofixpointbody} \zeroone{\declnotation}}{with} {\tt .} \\ -\\ -{\declnotation} & ::= & - \zeroone{{\tt where} \nelist{{\str} {\tt :=} {\term} \zeroone{:{\scope}}}{\tt and}}. -\\ -\\ -{\modifiers} - & ::= & \nelist{\ident}{,} {\tt at level} {\naturalnumber} \\ - & $|$ & \nelist{\ident}{,} {\tt at next level} \\ - & $|$ & {\tt at level} {\naturalnumber} \\ - & $|$ & {\tt left associativity} \\ - & $|$ & {\tt right associativity} \\ - & $|$ & {\tt no associativity} \\ - & $|$ & {\ident} {\tt ident} \\ - & $|$ & {\ident} {\tt binder} \\ - & $|$ & {\ident} {\tt closed binder} \\ - & $|$ & {\ident} {\tt global} \\ - & $|$ & {\ident} {\tt bigint} \\ - & $|$ & {\tt only parsing} \\ - & $|$ & {\tt format} {\str} -\end{tabular} -\end{centerframe} -\end{small} -\caption{Syntax of the variants of {\tt Notation}} -\label{notation-syntax} -\end{figure} - -\subsection{Notations and simple binders} - -Notations can be defined for binders as in the example: - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is correct but produces **********) -(**** an incompatibility with the reserved notation ********) -\end{coq_eval} -\begin{coq_example*} -Notation "{ x : A | P }" := (sig (fun x : A => P)) (at level 0). -\end{coq_example*} - -The binding variables in the left-hand-side that occur as a parameter -of the notation naturally bind all their occurrences appearing in -their respective scope after instantiation of the parameters of the -notation. - -Contrastingly, the binding variables that are not a parameter of the -notation do not capture the variables of same name that -could appear in their scope after instantiation of the -notation. E.g., for the notation - -\begin{coq_example*} -Notation "'exists_different' n" := (exists p:nat, p<>n) (at level 200). -\end{coq_example*} -the next command fails because {\tt p} does not bind in -the instance of {\tt n}. -\begin{coq_eval} -Set Printing Depth 50. -(********** The following produces **********) -(**** The reference p was not found in the current environment ********) -\end{coq_eval} -\begin{coq_example} -Check (exists_different p). -\end{coq_example} - -\Rem Binding variables must not necessarily be parsed using the -{\tt ident} entry. For factorization purposes, they can be said to be -parsed at another level (e.g. {\tt x} in \verb="{ x : A | P }"= must be -parsed at level 99 to be factorized with the notation -\verb="{ A } + { B }"= for which {\tt A} can be any term). -However, even if parsed as a term, this term must at the end be effectively -a single identifier. - -\subsection{Notations with recursive patterns} -\label{RecursiveNotations} - -A mechanism is provided for declaring elementary notations with -recursive patterns. The basic example is: - -\begin{coq_example*} -Notation "[ x ; .. ; y ]" := (cons x .. (cons y nil) ..). -\end{coq_example*} - -On the right-hand side, an extra construction of the form {\tt ..} $t$ -{\tt ..} can be used. Notice that {\tt ..} is part of the {\Coq} -syntax and it must not be confused with the three-dots notation -$\ldots$ used in this manual to denote a sequence of arbitrary size. - -On the left-hand side, the part ``$x$ $s$ {\tt ..} $s$ $y$'' of the -notation parses any number of time (but at least one time) a sequence -of expressions separated by the sequence of tokens $s$ (in the -example, $s$ is just ``{\tt ;}''). - -In the right-hand side, the term enclosed within {\tt ..} must be a -pattern with two holes of the form $\phi([~]_E,[~]_I)$ where the first -hole is occupied either by $x$ or by $y$ and the second hole is -occupied by an arbitrary term $t$ called the {\it terminating} -expression of the recursive notation. The subterm {\tt ..} $\phi(x,t)$ -{\tt ..} (or {\tt ..} $\phi(y,t)$ {\tt ..}) must itself occur at -second position of the same pattern where the first hole is occupied -by the other variable, $y$ or $x$. Otherwise said, the right-hand side -must contain a subterm of the form either $\phi(x,${\tt ..} -$\phi(y,t)$ {\tt ..}$)$ or $\phi(y,${\tt ..} $\phi(x,t)$ {\tt ..}$)$. -The pattern $\phi$ is the {\em iterator} of the recursive notation -and, of course, the name $x$ and $y$ can be chosen arbitrarily. - -The parsing phase produces a list of expressions which are used to -fill in order the first hole of the iterating pattern which is -repeatedly nested as many times as the length of the list, the second -hole being the nesting point. In the innermost occurrence of the -nested iterating pattern, the second hole is finally filled with the -terminating expression. - -In the example above, the iterator $\phi([~]_E,[~]_I)$ is {\tt cons - $[~]_E$ $[~]_I$} and the terminating expression is {\tt nil}. Here are -other examples: -\begin{coq_example*} -Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) (at level 0). -Notation "[| t * ( x , y , .. , z ) ; ( a , b , .. , c ) * u |]" := - (pair (pair .. (pair (pair t x) (pair t y)) .. (pair t z)) - (pair .. (pair (pair a u) (pair b u)) .. (pair c u))) - (t at level 39). -\end{coq_example*} - -Notations with recursive patterns can be reserved like standard -notations, they can also be declared within interpretation scopes (see -section \ref{scopes}). - -\subsection{Notations with recursive patterns involving binders} - -Recursive notations can also be used with binders. The basic example is: - -\begin{coq_example*} -Notation "'exists' x .. y , p" := (ex (fun x => .. (ex (fun y => p)) ..)) - (at level 200, x binder, y binder, right associativity). -\end{coq_example*} - -The principle is the same as in Section~\ref{RecursiveNotations} -except that in the iterator $\phi([~]_E,[~]_I)$, the first hole is a -placeholder occurring at the position of the binding variable of a {\tt - fun} or a {\tt forall}. - -To specify that the part ``$x$ {\tt ..} $y$'' of the notation -parses a sequence of binders, $x$ and $y$ must be marked as {\tt - binder} in the list of modifiers of the notation. Then, the list of -binders produced at the parsing phase are used to fill in the first -hole of the iterating pattern which is repeatedly nested as many times -as the number of binders generated. If ever the generalization -operator {\tt `} (see Section~\ref{implicit-generalization}) is used -in the binding list, the added binders are taken into account too. - -Binders parsing exist in two flavors. If $x$ and $y$ are marked as -{\tt binder}, then a sequence such as {\tt a b c : T} will be accepted -and interpreted as the sequence of binders {\tt (a:T) (b:T) - (c:T)}. For instance, in the notation above, the syntax {\tt exists - a b : nat, a = b} is provided. - -The variables $x$ and $y$ can also be marked as {\tt closed binder} in -which case only well-bracketed binders of the form {\tt (a b c:T)} or -{\tt \{a b c:T\}} etc. are accepted. - -With closed binders, the recursive sequence in the left-hand side can -be of the general form $x$ $s$ {\tt ..} $s$ $y$ where $s$ is an -arbitrary sequence of tokens. With open binders though, $s$ has to be -empty. Here is an example of recursive notation with closed binders: - -\begin{coq_example*} -Notation "'mylet' f x .. y := t 'in' u":= - (let f := fun x => .. (fun y => t) .. in u) - (x closed binder, y closed binder, at level 200, right associativity). -\end{coq_example*} - -\subsection{Summary} - -\paragraph{Syntax of notations} - -The different syntactic variants of the command \texttt{Notation} are -given on Figure~\ref{notation-syntax}. The optional {\tt :{\scope}} is -described in the Section~\ref{scopes}. - -\Rem No typing of the denoted expression is performed at definition -time. Type-checking is done only at the time of use of the notation. - -\Rem Many examples of {\tt Notation} may be found in the files -composing the initial state of {\Coq} (see directory {\tt -\$COQLIB/theories/Init}). - -\Rem The notation \verb="{ x }"= has a special status in such a way -that complex notations of the form \verb="x + { y }"= or -\verb="x * { y }"= can be nested with correct precedences. Especially, -every notation involving a pattern of the form \verb="{ x }"= is -parsed as a notation where the pattern \verb="{ x }"= has been simply -replaced by \verb="x"= and the curly brackets are parsed separately. -E.g. \verb="y + { z }"= is not parsed as a term of the given form but -as a term of the form \verb="y + z"= where \verb=z= has been parsed -using the rule parsing \verb="{ x }"=. Especially, level and -precedences for a rule including patterns of the form \verb="{ x }"= -are relative not to the textual notation but to the notation where the -curly brackets have been removed (e.g. the level and the associativity -given to some notation, say \verb="{ y } & { z }"= in fact applies to -the underlying \verb="{ x }"=-free rule which is \verb="y & z"=). - -\paragraph{Persistence of notations} - -Notations do not survive the end of sections. They survive modules -unless the command {\tt Local Notation} is used instead of {\tt -Notation}. - -\section[Interpretation scopes]{Interpretation scopes\index{Interpretation scopes} -\label{scopes}} -% Introduction - -An {\em interpretation scope} is a set of notations for terms with -their interpretation. Interpretation scopes provides with a weak, -purely syntactical form of notations overloading: a same notation, for -instance the infix symbol \verb=+= can be used to denote distinct -definitions of an additive operator. Depending on which interpretation -scopes is currently open, the interpretation is different. -Interpretation scopes can include an interpretation for -numerals and strings. However, this is only made possible at the -{\ocaml} level. - -See Figure \ref{notation-syntax} for the syntax of notations including -the possibility to declare them in a given scope. Here is a typical -example which declares the notation for conjunction in the scope {\tt -type\_scope}. - -\begin{verbatim} -Notation "A /\ B" := (and A B) : type_scope. -\end{verbatim} - -\Rem A notation not defined in a scope is called a {\em lonely} notation. - -\subsection{Global interpretation rules for notations} - -At any time, the interpretation of a notation for term is done within -a {\em stack} of interpretation scopes and lonely notations. In case a -notation has several interpretations, the actual interpretation is the -one defined by (or in) the more recently declared (or open) lonely -notation (or interpretation scope) which defines this notation. -Typically if a given notation is defined in some scope {\scope} but -has also an interpretation not assigned to a scope, then, if {\scope} -is open before the lonely interpretation is declared, then the lonely -interpretation is used (and this is the case even if the -interpretation of the notation in {\scope} is given after the lonely -interpretation: otherwise said, only the order of lonely -interpretations and opening of scopes matters, and not the declaration -of interpretations within a scope). - -The initial state of {\Coq} declares three interpretation scopes and -no lonely notations. These scopes, in opening order, are {\tt -core\_scope}, {\tt type\_scope} and {\tt nat\_scope}. - -The command to add a scope to the interpretation scope stack is -\comindex{Open Scope} -\comindex{Close Scope} -\begin{quote} -{\tt Open Scope} {\scope}. -\end{quote} -It is also possible to remove a scope from the interpretation scope -stack by using the command -\begin{quote} -{\tt Close Scope} {\scope}. -\end{quote} -Notice that this command does not only cancel the last {\tt Open Scope -{\scope}} but all the invocation of it. - -\Rem {\tt Open Scope} and {\tt Close Scope} do not survive the end of -sections where they occur. When defined outside of a section, they are -exported to the modules that import the module where they occur. - -\begin{Variants} - -\item {\tt Local Open Scope} {\scope}. - -\item {\tt Local Close Scope} {\scope}. - -These variants are not exported to the modules that import the module -where they occur, even if outside a section. - -\item {\tt Global Open Scope} {\scope}. - -\item {\tt Global Close Scope} {\scope}. - -These variants survive sections. They behave as if {\tt Global} were -absent when not inside a section. - -\end{Variants} - -\subsection{Local interpretation rules for notations} - -In addition to the global rules of interpretation of notations, some -ways to change the interpretation of subterms are available. - -\subsubsection{Local opening of an interpretation scope -\label{scopechange} -\index{\%} -\comindex{Delimit Scope}} - -It is possible to locally extend the interpretation scope stack using -the syntax ({\term})\%{\delimkey} (or simply {\term}\%{\delimkey} -for atomic terms), where {\delimkey} is a special identifier called -{\em delimiting key} and bound to a given scope. - -In such a situation, the term {\term}, and all its subterms, are -interpreted in the scope stack extended with the scope bound to -{\delimkey}. - -To bind a delimiting key to a scope, use the command - -\begin{quote} -\texttt{Delimit Scope} {\scope} \texttt{with} {\ident} -\end{quote} - -\subsubsection{Binding arguments of a constant to an interpretation scope -\comindex{Arguments}} - -It is possible to set in advance that some arguments of a given -constant have to be interpreted in a given scope. The command is -\begin{quote} -{\tt Arguments} {\qualid} \nelist{\name {\tt \%}\scope}{} -\end{quote} -where the list is the list of the arguments of {\qualid} eventually -annotated with their {\scope}. Grouping round parentheses can -be used to decorate multiple arguments with the same scope. -{\scope} can be either a scope name or its delimiting key. For example -the following command puts the first two arguments of {\tt plus\_fct} -in the scope delimited by the key {\tt F} ({\tt Rfun\_scope}) and the -last argument in the scope delimited by the key {\tt R} ({\tt R\_scope}). - -\begin{coq_example*} -Arguments plus_fct (f1 f2)%F x%R. -\end{coq_example*} - -The {\tt Arguments} command accepts scopes decoration to all grouping -parentheses. In the following example arguments {\tt A} and {\tt B} -are marked as maximally inserted implicit arguments and are -put into the {\tt type\_scope} scope. - -\begin{coq_example*} -Arguments respectful {A B}%type (R R')%signature _ _. -\end{coq_example*} - -When interpreting a term, if some of the -arguments of {\qualid} are built from a notation, then this notation -is interpreted in the scope stack extended by the scopes bound (if any) -to these arguments. - -Arguments scopes can be cleared with the following command: - -\begin{quote} -{\tt Arguments {\qualid} : clear scopes} -\end{quote} - -\begin{Variants} -\item {\tt Global Arguments} {\qualid} \nelist{\name {\tt \%}\scope}{} - -This behaves like {\tt Arguments} {\qualid} \nelist{\name {\tt \%}\scope}{} -but survives when a section is closed instead -of stopping working at section closing. Without the {\tt Global} modifier, -the effect of the command stops when the section it belongs to ends. - -\item {\tt Local Arguments} {\qualid} \nelist{\name {\tt \%}\scope}{} - -This behaves like {\tt Arguments} {\qualid} \nelist{\name {\tt \%}\scope}{} -but does not survive modules and files. -Without the {\tt Local} modifier, the effect of the command is -visible from within other modules or files. - -\end{Variants} - - -\SeeAlso The command to show the scopes bound to the arguments of a -function is described in Section~\ref{About}. - -\subsubsection{Binding types of arguments to an interpretation scope} - -When an interpretation scope is naturally associated to a type -(e.g. the scope of operations on the natural numbers), it may be -convenient to bind it to this type. The effect of this is that any -argument of a function that syntactically expects a parameter of this -type is interpreted using scope. More precisely, it applies only if -this argument is built from a notation, and if so, this notation is -interpreted in the scope stack extended by this particular scope. It -does not apply to the subterms of this notation (unless the -interpretation of the notation itself expects arguments of the same -type that would trigger the same scope). - -\comindex{Bind Scope} -More generally, any {\class} (see Chapter~\ref{Coercions-full}) can be -bound to an interpretation scope. The command to do it is -\begin{quote} -{\tt Bind Scope} {\scope} \texttt{with} {\class} -\end{quote} - -\Example -\begin{coq_example} -Parameter U : Set. -Bind Scope U_scope with U. -Parameter Uplus : U -> U -> U. -Parameter P : forall T:Set, T -> U -> Prop. -Parameter f : forall T:Set, T -> U. -Infix "+" := Uplus : U_scope. -Unset Printing Notations. -Open Scope nat_scope. (* Define + on the nat as the default for + *) -Check (fun x y1 y2 z t => P _ (x + t) ((f _ (y1 + y2) + z))). -\end{coq_example} - -\Rem The scope {\tt type\_scope} has also a local effect on -interpretation. See the next section. - -\SeeAlso The command to show the scopes bound to the arguments of a -function is described in Section~\ref{About}. - -\subsection[The {\tt type\_scope} interpretation scope]{The {\tt type\_scope} interpretation scope\index{type\_scope}} - -The scope {\tt type\_scope} has a special status. It is a primitive -interpretation scope which is temporarily activated each time a -subterm of an expression is expected to be a type. This includes goals -and statements, types of binders, domain and codomain of implication, -codomain of products, and more generally any type argument of a -declared or defined constant. - -\subsection{Interpretation scopes used in the standard library of {\Coq}} - -We give an overview of the scopes used in the standard library of -{\Coq}. For a complete list of notations in each scope, use the -commands {\tt Print Scopes} or {\tt Print Scope {\scope}}. - -\subsubsection{\tt type\_scope} - -This includes infix {\tt *} for product types and infix {\tt +} for -sum types. It is delimited by key {\tt type}. - -\subsubsection{\tt nat\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt nat}. Positive numerals in this scope are mapped to their -canonical representent built from {\tt O} and {\tt S}. The scope is -delimited by key {\tt nat}. - -\subsubsection{\tt N\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt N} (binary natural numbers). It is delimited by key {\tt N} -and comes with an interpretation for numerals as closed term of type {\tt Z}. - -\subsubsection{\tt Z\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt Z} (binary integer numbers). It is delimited by key {\tt Z} -and comes with an interpretation for numerals as closed term of type {\tt Z}. - -\subsubsection{\tt positive\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt positive} (binary strictly positive numbers). It is -delimited by key {\tt positive} and comes with an interpretation for -numerals as closed term of type {\tt positive}. - -\subsubsection{\tt Q\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt Q} (rational numbers defined as fractions of an integer and -a strictly positive integer modulo the equality of the -numerator-denominator cross-product). As for numerals, only $0$ and -$1$ have an interpretation in scope {\tt Q\_scope} (their -interpretations are $\frac{0}{1}$ and $\frac{1}{1}$ respectively). - -\subsubsection{\tt Qc\_scope} - -This includes the standard arithmetical operators and relations on the -type {\tt Qc} of rational numbers defined as the type of irreducible -fractions of an integer and a strictly positive integer. - -\subsubsection{\tt real\_scope} - -This includes the standard arithmetical operators and relations on -type {\tt R} (axiomatic real numbers). It is delimited by key {\tt R} -and comes with an interpretation for numerals as term of type {\tt -R}. The interpretation is based on the binary decomposition. The -numeral 2 is represented by $1+1$. The interpretation $\phi(n)$ of an -odd positive numerals greater $n$ than 3 is {\tt 1+(1+1)*$\phi((n-1)/2)$}. -The interpretation $\phi(n)$ of an even positive numerals greater $n$ -than 4 is {\tt (1+1)*$\phi(n/2)$}. Negative numerals are represented as the -opposite of the interpretation of their absolute value. E.g. the -syntactic object {\tt -11} is interpreted as {\tt --(1+(1+1)*((1+1)*(1+(1+1))))} where the unit $1$ and all the operations are -those of {\tt R}. - -\subsubsection{\tt bool\_scope} - -This includes notations for the boolean operators. It is -delimited by key {\tt bool}. - -\subsubsection{\tt list\_scope} - -This includes notations for the list operators. It is -delimited by key {\tt list}. - -\subsubsection{\tt core\_scope} - -This includes the notation for pairs. It is delimited by key {\tt core}. - -\subsubsection{\tt string\_scope} - -This includes notation for strings as elements of the type {\tt -string}. Special characters and escaping follow {\Coq} conventions -on strings (see Section~\ref{strings}). Especially, there is no -convention to visualize non printable characters of a string. The -file {\tt String.v} shows an example that contains quotes, a newline -and a beep (i.e. the ascii character of code 7). - -\subsubsection{\tt char\_scope} - -This includes interpretation for all strings of the form -\verb!"!$c$\verb!"! where $c$ is an ascii character, or of the form -\verb!"!$nnn$\verb!"! where $nnn$ is a three-digits number (possibly -with leading 0's), or of the form \verb!""""!. Their respective -denotations are the ascii code of $c$, the decimal ascii code $nnn$, -or the ascii code of the character \verb!"! (i.e. the ascii code -34), all of them being represented in the type {\tt ascii}. - -\subsection{Displaying informations about scopes} - -\subsubsection{\tt Print Visibility\comindex{Print Visibility}} - -This displays the current stack of notations in scopes and lonely -notations that is used to interpret a notation. The top of the stack -is displayed last. Notations in scopes whose interpretation is hidden -by the same notation in a more recently open scope are not -displayed. Hence each notation is displayed only once. - -\variant - -{\tt Print Visibility {\scope}}\\ - -This displays the current stack of notations in scopes and lonely -notations assuming that {\scope} is pushed on top of the stack. This -is useful to know how a subterm locally occurring in the scope of -{\scope} is interpreted. - -\subsubsection{\tt Print Scope {\scope}\comindex{Print Scope}} - -This displays all the notations defined in interpretation scope -{\scope}. It also displays the delimiting key if any and the class to -which the scope is bound, if any. - -\subsubsection{\tt Print Scopes\comindex{Print Scopes}} - -This displays all the notations, delimiting keys and corresponding -class of all the existing interpretation scopes. -It also displays the lonely notations. - -\section[Abbreviations]{Abbreviations\index{Abbreviations} -\label{Abbreviations} -\comindex{Notation}} - -An {\em abbreviation} is a name, possibly applied to arguments, that -denotes a (presumably) more complex expression. Here are examples: - -\begin{coq_eval} -Require Import List. -Require Import Relations. -Set Printing Notations. -\end{coq_eval} -\begin{coq_example} -Notation Nlist := (list nat). -Check 1 :: 2 :: 3 :: nil. -Notation reflexive R := (forall x, R x x). -Check forall A:Prop, A <-> A. -Check reflexive iff. -\end{coq_example} - -An abbreviation expects no precedence nor associativity, since it -follows the usual syntax of application. Abbreviations are used as -much as possible by the {\Coq} printers unless the modifier -\verb=(only parsing)= is given. - -Abbreviations are bound to an absolute name as an ordinary -definition is, and they can be referred by qualified names too. - -Abbreviations are syntactic in the sense that they are bound to -expressions which are not typed at the time of the definition of the -abbreviation but at the time it is used. Especially, abbreviations can -be bound to terms with holes (i.e. with ``\_''). The general syntax -for abbreviations is -\begin{quote} -\zeroone{{\tt Local}} \texttt{Notation} {\ident} \sequence{\ident} {\ident} \texttt{:=} {\term} - \zeroone{{\tt (only parsing)}}~\verb=.= -\end{quote} - -\Example -\begin{coq_eval} -Set Strict Implicit. -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Definition explicit_id (A:Set) (a:A) := a. -Notation id := (explicit_id _). -Check (id 0). -\end{coq_example} - -Abbreviations do not survive the end of sections. No typing of the denoted -expression is performed at definition time. Type-checking is done only -at the time of use of the abbreviation. - -%\Rem \index{Syntactic Definition} % -%Abbreviations are similar to the {\em syntactic -%definitions} available in versions of {\Coq} prior to version 8.0, -%except that abbreviations are used for printing (unless the modifier -%\verb=(only parsing)= is given) while syntactic definitions were not. - -\section{Tactic Notations -\comindex{Tactic Notation}} - -Tactic notations allow to customize the syntax of the tactics of the -tactic language\footnote{Tactic notations are just a simplification of -the {\tt Grammar tactic simple\_tactic} command that existed in -versions prior to version 8.0.}. Tactic notations obey the following -syntax -\medskip - -\noindent -\begin{tabular}{lcl} -{\sentence} & ::= & \texttt{Tactic Notation} \zeroone{\taclevel} \nelist{\proditem}{} \\ -& & \texttt{:= {\tac} .}\\ -{\proditem} & ::= & {\str} $|$ {\tacargtype}{\tt ({\ident})} \\ -{\taclevel} & ::= & {\tt (at level} {\naturalnumber}{\tt )} \\ -{\tacargtype} & ::= & -%{\tt preident} $|$ -{\tt ident} $|$ -{\tt simple\_intropattern} $|$ -{\tt reference} \\ & $|$ & -{\tt hyp} $|$ -{\tt hyp\_list} $|$ -{\tt ne\_hyp\_list} \\ & $|$ & -% {\tt quantified\_hypothesis} \\ & $|$ & -{\tt constr} $|$ -{\tt constr\_list} $|$ -{\tt ne\_constr\_list} \\ & $|$ & -%{\tt castedopenconstr} $|$ -{\tt integer} $|$ -{\tt integer\_list} $|$ -{\tt ne\_integer\_list} \\ & $|$ & -{\tt int\_or\_var} $|$ -{\tt int\_or\_var\_list} $|$ -{\tt ne\_int\_or\_var\_list} \\ & $|$ & -{\tt tactic} $|$ {\tt tactic$n$} \qquad\mbox{(for $0\leq n\leq 5$)} - -\end{tabular} -\medskip - -A tactic notation {\tt Tactic Notation {\taclevel} -{\sequence{\proditem}{}} := {\tac}} extends the parser and -pretty-printer of tactics with a new rule made of the list of -production items. It then evaluates into the tactic expression -{\tac}. For simple tactics, it is recommended to use a terminal -symbol, i.e. a {\str}, for the first production item. The tactic -level indicates the parsing precedence of the tactic notation. This -information is particularly relevant for notations of tacticals. -Levels 0 to 5 are available (default is 0). -To know the parsing precedences of the -existing tacticals, use the command {\tt Print Grammar tactic.} - -Each type of tactic argument has a specific semantic regarding how it -is parsed and how it is interpreted. The semantic is described in the -following table. The last command gives examples of tactics which -use the corresponding kind of argument. - -\medskip -\noindent -\begin{tabular}{l|l|l|l} -Tactic argument type & parsed as & interpreted as & as in tactic \\ -\hline & & & \\ -{\tt\small ident} & identifier & a user-given name & {\tt intro} \\ -{\tt\small simple\_intropattern} & intro\_pattern & an intro\_pattern & {\tt intros}\\ -{\tt\small hyp} & identifier & an hypothesis defined in context & {\tt clear}\\ -%% quantified_hypothesis actually not supported -%%{\tt\small quantified\_hypothesis} & identifier or integer & a named or non dep. hyp. of the goal & {\tt intros until}\\ -{\tt\small reference} & qualified identifier & a global reference of term & {\tt unfold}\\ -{\tt\small constr} & term & a term & {\tt exact} \\ -%% castedopenconstr actually not supported -%%{\tt\small castedopenconstr} & term & a term with its sign. of exist. var. & {\tt refine}\\ -{\tt\small integer} & integer & an integer & \\ -{\tt\small int\_or\_var} & identifier or integer & an integer & {\tt do} \\ -{\tt\small tactic} & tactic at level 5 & a tactic & \\ -{\tt\small tactic$n$} & tactic at level $n$ & a tactic & \\ -{\tt\small {\nterm{entry}}\_list} & list of {\nterm{entry}} & a list of how {\nterm{entry}} is interpreted & \\ -{\tt\small ne\_{\nterm{entry}}\_list} & non-empty list of {\nterm{entry}} & a list of how {\nterm{entry}} is interpreted& \\ -\end{tabular} - -\Rem In order to be bound in tactic definitions, each syntactic entry -for argument type must include the case of simple {\ltac} identifier -as part of what it parses. This is naturally the case for {\tt ident}, -{\tt simple\_intropattern}, {\tt reference}, {\tt constr}, ... but not -for {\tt integer}. This is the reason for introducing a special entry -{\tt int\_or\_var} which evaluates to integers only but which -syntactically includes identifiers in order to be usable in tactic -definitions. - -\Rem The {\tt {\nterm{entry}}\_list} and {\tt ne\_{\nterm{entry}}\_list} -entries can be used in primitive tactics or in other notations at -places where a list of the underlying entry can be used: {\nterm{entry}} is -either {\tt\small constr}, {\tt\small hyp}, {\tt\small integer} or -{\tt\small int\_or\_var}. - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-tac.tex b/doc/refman/RefMan-tac.tex deleted file mode 100644 index b630772b..00000000 --- a/doc/refman/RefMan-tac.tex +++ /dev/null @@ -1,4527 +0,0 @@ -% TODO: unify the use of \form and \type to mean a type -% or use \form specifically for a type of type Prop -\chapter{Tactics -\index{Tactics} -\label{Tactics}} - -A deduction rule is a link between some (unique) formula, that we call -the {\em conclusion} and (several) formulas that we call the {\em -premises}. A deduction rule can be read in two ways. The first -one says: {\it ``if I know this and this then I can deduce -this''}. For instance, if I have a proof of $A$ and a proof of $B$ -then I have a proof of $A \land B$. This is forward reasoning from -premises to conclusion. The other way says: {\it ``to prove this I -have to prove this and this''}. For instance, to prove $A \land B$, I -have to prove $A$ and I have to prove $B$. This is backward reasoning -from conclusion to premises. We say that the conclusion -is the {\em goal}\index{goal} to prove and premises are the {\em -subgoals}\index{subgoal}. The tactics implement {\em backward -reasoning}. When applied to a goal, a tactic replaces this goal with -the subgoals it generates. We say that a tactic reduces a goal to its -subgoal(s). - -Each (sub)goal is denoted with a number. The current goal is numbered -1. By default, a tactic is applied to the current goal, but one can -address a particular goal in the list by writing {\sl n:\tac} which -means {\it ``apply tactic {\tac} to goal number {\sl n}''}. -We can show the list of subgoals by typing {\tt Show} (see -Section~\ref{Show}). - -Since not every rule applies to a given statement, every tactic cannot be -used to reduce any goal. In other words, before applying a tactic to a -given goal, the system checks that some {\em preconditions} are -satisfied. If it is not the case, the tactic raises an error message. - -Tactics are built from atomic tactics and tactic expressions (which -extends the folklore notion of tactical) to combine those atomic -tactics. This chapter is devoted to atomic tactics. The tactic -language will be described in Chapter~\ref{TacticLanguage}. - -\section{Invocation of tactics -\label{tactic-syntax} -\index{tactic@{\tac}}} - -A tactic is applied as an ordinary command. If the tactic is not meant to -address the first subgoal, the command may be preceded by the wished -subgoal number as shown below: - -\begin{tabular}{lcl} -{\commandtac} & ::= & {\num} {\tt :} {\tac} {\tt .}\\ - & $|$ & {\tac} {\tt .} -\end{tabular} - -\subsection{Bindings list -\index{Binding list} -\label{Binding-list}} - -Tactics that take a term as argument may also support a bindings list, so -as to instantiate some parameters of the term by name or position. -The general form of a term equipped with a bindings list is {\tt -{\term} with {\bindinglist}} where {\bindinglist} may be of two -different forms: - -\begin{itemize} -\item In a bindings list of the form {\tt (\vref$_1$ := \term$_1$) - \dots\ (\vref$_n$ := \term$_n$)}, {\vref} is either an {\ident} or a - {\num}. The references are determined according to the type of - {\term}. If \vref$_i$ is an identifier, this identifier has to be - bound in the type of {\term} and the binding provides the tactic - with an instance for the parameter of this name. If \vref$_i$ is - some number $n$, this number denotes the $n$-th non dependent - premise of the {\term}, as determined by the type of {\term}. - - \ErrMsg \errindex{No such binder} - -\item A bindings list can also be a simple list of terms {\tt - \term$_1$ \dots\ \term$_n$}. In that case the references to - which these terms correspond are determined by the tactic. In case - of {\tt induction}, {\tt destruct}, {\tt elim} and {\tt case} (see - Section~\ref{elim}) the terms have to provide instances for all the - dependent products in the type of \term\ while in the case of {\tt - apply}, or of {\tt constructor} and its variants, only instances for - the dependent products that are not bound in the conclusion of the - type are required. - - \ErrMsg \errindex{Not the right number of missing arguments} -\end{itemize} - -\subsection{Occurrences sets and occurrences clauses} -\label{Occurrences clauses} -\index{Occurrences clauses} - -An occurrences clause is a modifier to some tactics that obeys the -following syntax: - -\begin{tabular}{lcl} -{\occclause} & ::= & {\tt in} {\occgoalset} \\ -{\occgoalset} & ::= & - \zeroone{{\ident$_1$} \zeroone{\atoccurrences} {\tt ,} \\ -& & {\dots} {\tt ,}\\ -& & {\ident$_m$} \zeroone{\atoccurrences}}\\ -& & \zeroone{{\tt |-} \zeroone{{\tt *} \zeroone{\atoccurrences}}}\\ -& | & - {\tt *} {\tt |-} \zeroone{{\tt *} \zeroone{\atoccurrences}}\\ -& | & - {\tt *}\\ -{\atoccurrences} & ::= & {\tt at} {\occlist}\\ -{\occlist} & ::= & \zeroone{{\tt -}} {\num$_1$} \dots\ {\num$_n$} -\end{tabular} - -The role of an occurrence clause is to select a set of occurrences of -a {\term} in a goal. In the first case, the {{\ident$_i$} -\zeroone{{\tt at} {\num$_1^i$} \dots\ {\num$_{n_i}^i$}}} parts -indicate that occurrences have to be selected in the hypotheses named -{\ident$_i$}. If no numbers are given for hypothesis {\ident$_i$}, -then all the occurrences of {\term} in the hypothesis are selected. If -numbers are given, they refer to occurrences of {\term} when the term -is printed using option {\tt Set Printing All} (see -Section~\ref{SetPrintingAll}), counting from left to right. In -particular, occurrences of {\term} in implicit arguments (see -Section~\ref{Implicit Arguments}) or coercions (see -Section~\ref{Coercions}) are counted. - -If a minus sign is given between {\tt at} and the list of occurrences, -it negates the condition so that the clause denotes all the occurrences except -the ones explicitly mentioned after the minus sign. - -As an exception to the left-to-right order, the occurrences in the -{\tt return} subexpression of a {\tt match} are considered {\em -before} the occurrences in the matched term. - -In the second case, the {\tt *} on the left of {\tt |-} means that -all occurrences of {\term} are selected in every hypothesis. - -In the first and second case, if {\tt *} is mentioned on the right of -{\tt |-}, the occurrences of the conclusion of the goal have to be -selected. If some numbers are given, then only the occurrences denoted -by these numbers are selected. In no numbers are given, all -occurrences of {\term} in the goal are selected. - -Finally, the last notation is an abbreviation for {\tt * |- *}. Note -also that {\tt |-} is optional in the first case when no {\tt *} is -given. - -Here are some tactics that understand occurrences clauses: -{\tt set}, {\tt remember}, {\tt induction}, {\tt destruct}. - -\SeeAlso~Sections~\ref{tactic:set}, \ref{Tac-induction}, \ref{SetPrintingAll}. - -\section{Applying theorems} - -\subsection{\tt exact \term} -\tacindex{exact} -\label{exact} - -This tactic applies to any goal. It gives directly the exact proof -term of the goal. Let {\T} be our goal, let {\tt p} be a term of type -{\tt U} then {\tt exact p} succeeds iff {\tt T} and {\tt U} are -convertible (see Section~\ref{conv-rules}). - -\begin{ErrMsgs} -\item \errindex{Not an exact proof} -\end{ErrMsgs} - -\begin{Variants} - \item \texttt{eexact \term}\tacindex{eexact} - - This tactic behaves like \texttt{exact} but is able to handle terms - and goals with meta-variables. - -\end{Variants} - -\subsection{\tt assumption} -\tacindex{assumption} - -This tactic looks in the local context for an -hypothesis which type is equal to the goal. If it is the case, the -subgoal is proved. Otherwise, it fails. - -\begin{ErrMsgs} -\item \errindex{No such assumption} -\end{ErrMsgs} - -\begin{Variants} -\tacindex{eassumption} - \item \texttt{eassumption} - - This tactic behaves like \texttt{assumption} but is able to handle - goals with meta-variables. - -\end{Variants} - -\subsection{\tt refine \term} -\tacindex{refine} -\label{refine} -\label{refine-example} -\index{?@{\texttt{?}}} - -This tactic applies to any goal. It behaves like {\tt exact} with a big -difference: the user can leave some holes (denoted by \texttt{\_} or -{\tt (\_:\type)}) in the term. {\tt refine} will generate as -many subgoals as there are holes in the term. The type of holes must be -either synthesized by the system or declared by an -explicit cast like \verb|(_:nat->Prop)|. This low-level -tactic can be useful to advanced users. - -\Example - -\begin{coq_example*} -Inductive Option : Set := - | Fail : Option - | Ok : bool -> Option. -\end{coq_example} -\begin{coq_example} -Definition get : forall x:Option, x <> Fail -> bool. -refine - (fun x:Option => - match x return x <> Fail -> bool with - | Fail => _ - | Ok b => fun _ => b - end). -intros; absurd (Fail = Fail); trivial. -\end{coq_example} -\begin{coq_example*} -Defined. -\end{coq_example*} - -\begin{ErrMsgs} -\item \errindex{invalid argument}: - the tactic \texttt{refine} does not know what to do - with the term you gave. -\item \texttt{Refine passed ill-formed term}: the term you gave is not - a valid proof (not easy to debug in general). - This message may also occur in higher-level tactics that call - \texttt{refine} internally. -\item \errindex{Cannot infer a term for this placeholder}: - there is a hole in the term you gave - which type cannot be inferred. Put a cast around it. -\end{ErrMsgs} - -\subsection{\tt apply \term} -\tacindex{apply} -\label{apply} - -This tactic applies to any goal. The argument {\term} is a term -well-formed in the local context. The tactic {\tt apply} tries to -match the current goal against the conclusion of the type of {\term}. -If it succeeds, then the tactic returns as many subgoals as the number -of non-dependent premises of the type of {\term}. If the conclusion of -the type of {\term} does not match the goal {\em and} the conclusion -is an inductive type isomorphic to a tuple type, then each component -of the tuple is recursively matched to the goal in the left-to-right -order. - -The tactic {\tt apply} relies on first-order unification with -dependent types unless the conclusion of the type of {\term} is of the -form {\tt ($P$ $t_1$ \dots\ $t_n$)} with $P$ to be instantiated. In -the latter case, the behavior depends on the form of the goal. If the -goal is of the form {\tt (fun $x$ => $Q$)~$u_1$~\ldots~$u_n$} and the -$t_i$ and $u_i$ unifies, then $P$ is taken to be {\tt (fun $x$ => $Q$)}. -Otherwise, {\tt apply} tries to define $P$ by abstracting over -$t_1$~\ldots ~$t_n$ in the goal. See {\tt pattern} in -Section~\ref{pattern} to transform the goal so that it gets the form -{\tt (fun $x$ => $Q$)~$u_1$~\ldots~$u_n$}. - -\begin{ErrMsgs} -\item \errindex{Impossible to unify \dots\ with \dots} - - The {\tt apply} - tactic failed to match the conclusion of {\term} and the current goal. - You can help the {\tt apply} tactic by transforming your - goal with the {\tt change} or {\tt pattern} tactics (see - sections~\ref{pattern},~\ref{change}). - -\item \errindex{Unable to find an instance for the variables -{\ident} \dots\ {\ident}} - - This occurs when some instantiations of the premises of {\term} are not - deducible from the unification. This is the case, for instance, when - you want to apply a transitivity property. In this case, you have to - use one of the variants below: - -\end{ErrMsgs} - -\begin{Variants} - -\item{\tt apply {\term} with {\term$_1$} \dots\ {\term$_n$}} - \tacindex{apply \dots\ with} - - Provides {\tt apply} with explicit instantiations for all dependent - premises of the type of {\term} which do not occur in the conclusion - and consequently cannot be found by unification. Notice that - {\term$_1$} \dots\ {\term$_n$} must be given according to the order - of these dependent premises of the type of {\term}. - - \ErrMsg \errindex{Not the right number of missing arguments} - -\item{\tt apply {\term} with ({\vref$_1$} := {\term$_1$}) \dots\ ({\vref$_n$} - := {\term$_n$})} - - This also provides {\tt apply} with values for instantiating - premises. Here, variables are referred by names and non-dependent - products by increasing numbers (see syntax in Section~\ref{Binding-list}). - -\item {\tt apply} {\term$_1$} {\tt ,} \ldots {\tt ,} {\term$_n$} - - This is a shortcut for {\tt apply} {\term$_1$} {\tt ; [ ..~|} - \ldots~{\tt ; [ ..~| {\tt apply} {\term$_n$} ]} \ldots~{\tt ]}, i.e. for the - successive applications of {\term$_{i+1}$} on the last subgoal - generated by {\tt apply} {\term$_i$}, starting from the application - of {\term$_1$}. - -\item {\tt eapply \term}\tacindex{eapply}\label{eapply} - - The tactic {\tt eapply} behaves like {\tt apply} but it does not fail - when no instantiations are deducible for some variables in the - premises. Rather, it turns these variables into so-called - existential variables which are variables still to instantiate. An - existential variable is identified by a name of the form {\tt ?$n$} - where $n$ is a number. The instantiation is intended to be found - later in the proof. - -\item {\tt simple apply {\term}} \tacindex{simple apply} - - This behaves like {\tt apply} but it reasons modulo conversion only - on subterms that contain no variables to instantiate. For instance, - the following example does not succeed because it would require the - conversion of {\tt id ?1234} and {\tt O}. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Definition id (x : nat) := x. -Hypothesis H : forall y, id y = y. -Goal O = O. -\end{coq_example*} -\begin{coq_example} -simple apply H. -\end{coq_example} - - Because it reasons modulo a limited amount of conversion, {\tt - simple apply} fails quicker than {\tt apply} and it is then - well-suited for uses in used-defined tactics that backtrack often. - Moreover, it does not traverse tuples as {\tt apply} does. - -\item \zeroone{{\tt simple}} {\tt apply} {\term$_1$} \zeroone{{\tt with} - {\bindinglist$_1$}} {\tt ,} \ldots {\tt ,} {\term$_n$} \zeroone{{\tt with} - {\bindinglist$_n$}}\\ - \zeroone{{\tt simple}} {\tt eapply} {\term$_1$} \zeroone{{\tt with} - {\bindinglist$_1$}} {\tt ,} \ldots {\tt ,} {\term$_n$} \zeroone{{\tt with} - {\bindinglist$_n$}} - - This summarizes the different syntaxes for {\tt apply} and {\tt eapply}. - -\item {\tt lapply {\term}} \tacindex{lapply} - - This tactic applies to any goal, say {\tt G}. The argument {\term} - has to be well-formed in the current context, its type being - reducible to a non-dependent product {\tt A -> B} with {\tt B} - possibly containing products. Then it generates two subgoals {\tt - B->G} and {\tt A}. Applying {\tt lapply H} (where {\tt H} has type - {\tt A->B} and {\tt B} does not start with a product) does the same - as giving the sequence {\tt cut B. 2:apply H.} where {\tt cut} is - described below. - - \Warning When {\term} contains more than one non - dependent product the tactic {\tt lapply} only takes into account the - first product. - -\end{Variants} - -\Example -Assume we have a transitive relation {\tt R} on {\tt nat}: -\label{eapply-example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Variable R : nat -> nat -> Prop. -Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z. -Variables n m p : nat. -Hypothesis Rnm : R n m. -Hypothesis Rmp : R m p. -\end{coq_example*} - -Consider the goal {\tt (R n p)} provable using the transitivity of -{\tt R}: - -\begin{coq_example*} -Goal R n p. -\end{coq_example*} - -The direct application of {\tt Rtrans} with {\tt apply} fails because -no value for {\tt y} in {\tt Rtrans} is found by {\tt apply}: - -%\begin{coq_eval} -%Set Printing Depth 50. -%(********** The following is not correct and should produce **********) -%(**** Error: generated subgoal (R n ?17) has metavariables in it *****) -%\end{coq_eval} -\begin{coq_example} -apply Rtrans. -\end{coq_example} - -A solution is to apply {\tt (Rtrans n m p)} or {\tt (Rtrans n m)}. - -\begin{coq_example} -apply (Rtrans n m p). -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -Note that {\tt n} can be inferred from the goal, so the following would -work too. - -\begin{coq_example*} -apply (Rtrans _ m). -\end{coq_example*} -\begin{coq_eval} -Undo. -\end{coq_eval} - -More elegantly, {\tt apply Rtrans with (y:=m)} allows to only mention -the unknown {\tt m}: - -\begin{coq_example*} -apply Rtrans with (y := m). -\end{coq_example*} -\begin{coq_eval} -Undo. -\end{coq_eval} - -Another solution is to mention the proof of {\tt (R x y)} in {\tt -Rtrans} \ldots - -\begin{coq_example} -apply Rtrans with (1 := Rnm). -\end{coq_example} -\begin{coq_eval} -Undo. -\end{coq_eval} - -\ldots or the proof of {\tt (R y z)}. - -\begin{coq_example} -apply Rtrans with (2 := Rmp). -\end{coq_example} -\begin{coq_eval} -Undo. -\end{coq_eval} - -On the opposite, one can use {\tt eapply} which postpone the problem -of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt -Rmp}. This instantiates the existential variable and completes the proof. - -\begin{coq_example} -eapply Rtrans. -apply Rnm. -apply Rmp. -\end{coq_example} - -\begin{coq_eval} -Reset R. -\end{coq_eval} - -\subsection{\tt apply {\term} in {\ident}} -\tacindex{apply \dots\ in} - -This tactic applies to any goal. The argument {\term} is a term -well-formed in the local context and the argument {\ident} is an -hypothesis of the context. The tactic {\tt apply {\term} in {\ident}} -tries to match the conclusion of the type of {\ident} against a -non-dependent premise of the type of {\term}, trying them from right to -left. If it succeeds, the statement of hypothesis {\ident} is -replaced by the conclusion of the type of {\term}. The tactic also -returns as many subgoals as the number of other non-dependent premises -in the type of {\term} and of the non-dependent premises of the type -of {\ident}. If the conclusion of the type of {\term} does not match -the goal {\em and} the conclusion is an inductive type isomorphic to a -tuple type, then the tuple is (recursively) decomposed and the first -component of the tuple of which a non-dependent premise matches the -conclusion of the type of {\ident}. Tuples are decomposed in a -width-first left-to-right order (for instance if the type of {\tt H1} -is a \verb=A <-> B= statement, and the type of {\tt H2} is \verb=A= -then {\tt apply H1 in H2} transforms the type of {\tt H2} into {\tt - B}). The tactic {\tt apply} relies on first-order pattern-matching -with dependent types. - -\begin{ErrMsgs} -\item \errindex{Statement without assumptions} - -This happens if the type of {\term} has no non dependent premise. - -\item \errindex{Unable to apply} - -This happens if the conclusion of {\ident} does not match any of the -non dependent premises of the type of {\term}. -\end{ErrMsgs} - -\begin{Variants} -\item {\tt apply \nelist{\term}{,} in {\ident}} - -This applies each of {\term} in sequence in {\ident}. - -\item {\tt apply \nelist{{\term} with {\bindinglist}}{,} in {\ident}} - -This does the same but uses the bindings in each {\bindinglist} to -instantiate the parameters of the corresponding type of {\term} -(see syntax of bindings in Section~\ref{Binding-list}). - -\item {\tt eapply \nelist{{\term} with {\bindinglist}}{,} in {\ident}} -\tacindex{eapply \dots\ in} - -This works as {\tt apply \nelist{{\term} with {\bindinglist}}{,} in -{\ident}} but turns unresolved bindings into existential variables, if -any, instead of failing. - -\item {\tt apply \nelist{{\term}{,} with {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}} - -This works as {\tt apply \nelist{{\term}{,} with {\bindinglist}}{,} in -{\ident}} then destructs the hypothesis {\ident} along -{\disjconjintropattern} as {\tt destruct {\ident} as -{\disjconjintropattern}} would. - -\item {\tt eapply \nelist{{\term}{,} with {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}} - -This works as {\tt apply \nelist{{\term}{,} with {\bindinglist}}{,} in {\ident} as {\disjconjintropattern}} but using {\tt eapply}. - -\item {\tt simple apply {\term} in {\ident}} -\tacindex{simple apply \dots\ in} -\tacindex{simple eapply \dots\ in} - -This behaves like {\tt apply {\term} in {\ident}} but it reasons -modulo conversion only on subterms that contain no variables to -instantiate. For instance, if {\tt id := fun x:nat => x} and {\tt H : - forall y, id y = y -> True} and {\tt H0 :\ O = O} then {\tt simple - apply H in H0} does not succeed because it would require the -conversion of {\tt id ?1234} and {\tt O} where {\tt ?1234} is a variable to -instantiate. Tactic {\tt simple apply {\term} in {\ident}} does not -either traverse tuples as {\tt apply {\term} in {\ident}} does. - -\item {\tt \zeroone{simple} apply \nelist{{\term} \zeroone{with {\bindinglist}}}{,} in {\ident} \zeroone{as {\disjconjintropattern}}}\\ -{\tt \zeroone{simple} eapply \nelist{{\term} \zeroone{with {\bindinglist}}}{,} in {\ident} \zeroone{as {\disjconjintropattern}}} - -This summarizes the different syntactic variants of {\tt apply {\term} - in {\ident}} and {\tt eapply {\term} in {\ident}}. -\end{Variants} - -\subsection{\tt constructor \num} -\label{constructor} -\tacindex{constructor} - -This tactic applies to a goal such that its conclusion is -an inductive type (say {\tt I}). The argument {\num} must be less -or equal to the numbers of constructor(s) of {\tt I}. Let {\tt ci} be -the {\tt i}-th constructor of {\tt I}, then {\tt constructor i} is -equivalent to {\tt intros; apply ci}. - -\begin{ErrMsgs} -\item \errindex{Not an inductive product} -\item \errindex{Not enough constructors} -\end{ErrMsgs} - -\begin{Variants} -\item \texttt{constructor} - - This tries \texttt{constructor 1} then \texttt{constructor 2}, - \dots\ , then \texttt{constructor} \textit{n} where \textit{n} is - the number of constructors of the head of the goal. - -\item {\tt constructor \num~with} {\bindinglist} - - Let {\tt ci} be the {\tt i}-th constructor of {\tt I}, then {\tt - constructor i with \bindinglist} is equivalent to {\tt intros; - apply ci with \bindinglist}. - - \Warning the terms in the \bindinglist\ are checked - in the context where {\tt constructor} is executed and not in the - context where {\tt apply} is executed (the introductions are not - taken into account). - -% To document? -% \item {\tt constructor {\tactic}} - -\item {\tt split}\tacindex{split} - - This applies only if {\tt I} has a single constructor. It is then - equivalent to {\tt constructor 1}. It is typically used in the case - of a conjunction $A\land B$. - - \ErrMsg \errindex{Not an inductive goal with 1 constructor} - -\item {\tt exists {\bindinglist}}\tacindex{exists} - - This applies only if {\tt I} has a single constructor. It is then - equivalent to {\tt intros; constructor 1 with \bindinglist}. It is - typically used in the case of an existential quantification $\exists - x, P(x)$. - - \ErrMsg \errindex{Not an inductive goal with 1 constructor} - -\item {\tt exists \nelist{\bindinglist}{,}} - - This iteratively applies {\tt exists {\bindinglist}}. - -\item {\tt left}\tacindex{left}\\ - {\tt right}\tacindex{right} - - These tactics apply only if {\tt I} has two constructors, for instance - in the case of a - disjunction $A\lor B$. Then, they are respectively equivalent to {\tt - constructor 1} and {\tt constructor 2}. - - \ErrMsg \errindex{Not an inductive goal with 2 constructors} - -\item {\tt left with \bindinglist}\\ - {\tt right with \bindinglist}\\ - {\tt split with \bindinglist} - - As soon as the inductive type has the right number of constructors, - these expressions are equivalent to calling {\tt - constructor $i$ with \bindinglist} for the appropriate $i$. - -\item \texttt{econstructor}\tacindex{econstructor}\\ - \texttt{eexists}\tacindex{eexists}\\ - \texttt{esplit}\tacindex{esplit}\\ - \texttt{eleft}\tacindex{eleft}\\ - \texttt{eright}\tacindex{eright} - - These tactics and their variants behave like \texttt{constructor}, - \texttt{exists}, \texttt{split}, \texttt{left}, \texttt{right} and - their variants but they introduce existential variables instead of - failing when the instantiation of a variable cannot be found (cf - \texttt{eapply} and Section~\ref{eapply-example}). - -\end{Variants} - -\section{Managing the local context} - -\subsection{\tt intro} -\tacindex{intro} -\label{intro} - -This tactic applies to a goal that is either a product or starts with -a let binder. If the goal is a product, the tactic implements the -``Lam''\index{Typing rules!Lam} rule given in -Section~\ref{Typed-terms}\footnote{Actually, only the second subgoal will be -generated since the other one can be automatically checked.}. If the -goal starts with a let binder, then the tactic implements a mix of the -``Let''\index{Typing rules!Let} and ``Conv''\index{Typing rules!Conv}. - -If the current goal is a dependent product $\forall x:T,~U$ (resp {\tt -let $x$:=$t$ in $U$}) then {\tt intro} puts {\tt $x$:$T$} (resp {\tt $x$:=$t$}) - in the local context. -% Obsolete (quantified names already avoid hypotheses names): -% Otherwise, it puts -% {\tt x}{\it n}{\tt :T} where {\it n} is such that {\tt x}{\it n} is a -%fresh name. -The new subgoal is $U$. -% If the {\tt x} has been renamed {\tt x}{\it n} then it is replaced -% by {\tt x}{\it n} in {\tt U}. - -If the goal is a non-dependent product $T \to U$, then it puts -in the local context either {\tt H}{\it n}{\tt :$T$} (if $T$ is of -type {\tt Set} or {\tt Prop}) or {\tt X}{\it n}{\tt :$T$} (if the type -of $T$ is {\tt Type}). The optional index {\it n} is such that {\tt -H}{\it n} or {\tt X}{\it n} is a fresh identifier. -In both cases, the new subgoal is $U$. - -If the goal is neither a product nor starting with a let definition, -the tactic {\tt intro} applies the tactic {\tt red} until the tactic -{\tt intro} can be applied or the goal is not reducible. - -\begin{ErrMsgs} -\item \errindex{No product even after head-reduction} -\item \errindexbis{{\ident} is already used}{is already used} -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt intros}\tacindex{intros} - - This repeats {\tt intro} until it meets the head-constant. It never reduces - head-constants and it never fails. - -\item {\tt intro {\ident}} - - This applies {\tt intro} but forces {\ident} to be the name of the - introduced hypothesis. - - \ErrMsg \errindex{name {\ident} is already used} - - \Rem If a name used by {\tt intro} hides the base name of a global - constant then the latter can still be referred to by a qualified name - (see \ref{LongNames}). - -\item {\tt intros \ident$_1$ \dots\ \ident$_n$} - - This is equivalent to the composed tactic {\tt intro \ident$_1$; \dots\ ; - intro \ident$_n$}. - - More generally, the \texttt{intros} tactic takes a pattern as - argument in order to introduce names for components of an inductive - definition or to clear introduced hypotheses. This is explained - in~\ref{intros-pattern}. - -\item {\tt intros until {\ident}} \tacindex{intros until} - - This repeats {\tt intro} until it meets a premise of the goal having form - {\tt (} {\ident}~{\tt :}~{\term} {\tt )} and discharges the variable - named {\ident} of the current goal. - - \ErrMsg \errindex{No such hypothesis in current goal} - -\item {\tt intros until {\num}} \tacindex{intros until} - - This repeats {\tt intro} until the {\num}-th non-dependent product. For - instance, on the subgoal % - \verb+forall x y:nat, x=y -> y=x+ the tactic \texttt{intros until 1} - is equivalent to \texttt{intros x y H}, as \verb+x=y -> y=x+ is the - first non-dependent product. And on the subgoal % - \verb+forall x y z:nat, x=y -> y=x+ the tactic \texttt{intros until 1} - is equivalent to \texttt{intros x y z} as the product on \texttt{z} - can be rewritten as a non-dependent product: % - \verb+forall x y:nat, nat -> x=y -> y=x+ - - - \ErrMsg \errindex{No such hypothesis in current goal} - - This happens when {\num} is 0 or is greater than the number of non-dependent - products of the goal. - -\item {\tt intro after \ident} \tacindex{intro after}\\ - {\tt intro before \ident} \tacindex{intro before}\\ - {\tt intro at top} \tacindex{intro at top}\\ - {\tt intro at bottom} \tacindex{intro at bottom} - - These tactics apply {\tt intro} and move the freshly introduced hypothesis - respectively after the hypothesis \ident{}, before the hypothesis - \ident{}, at the top of the local context, or at the bottom of the - local context. All hypotheses on which the new hypothesis depends - are moved too so as to respect the order of dependencies between - hypotheses. Note that {\tt intro at bottom} is a synonym for {\tt - intro} with no argument. - - \ErrMsg \errindex{No such hypothesis} : {\ident} - -\item {\tt intro \ident$_1$ after \ident$_2$}\\ - {\tt intro \ident$_1$ before \ident$_2$}\\ - {\tt intro \ident$_1$ at top}\\ - {\tt intro \ident$_1$ at bottom} - - These tactics behave as previously but naming the introduced hypothesis - \ident$_1$. It is equivalent to {\tt intro \ident$_1$} followed by - the appropriate call to {\tt move}~(see Section~\ref{move}). - -\end{Variants} - -\subsection{\tt intros {\intropattern} {\ldots} {\intropattern}} -\label{intros-pattern} -\tacindex{intros \intropattern} -\index{Introduction patterns} -\index{Naming introduction patterns} -\index{Disjunctive/conjunctive introduction patterns} - -This extension of the tactic {\tt intros} combines introduction of -variables or hypotheses and case analysis. An {\em introduction pattern} is -either: -\begin{itemize} -\item a {\em naming introduction pattern}, i.e. either one of: - \begin{itemize} - \item the pattern \texttt{?} - \item the pattern \texttt{?\ident} - \item an identifier - \end{itemize} -\item a {\em disjunctive/conjunctive introduction pattern}, i.e. either one of: - \begin{itemize} - \item a disjunction of lists of patterns: - {\tt [$p_{11}$ \dots\ $p_{1m_1}$ | \dots\ | $p_{11}$ \dots\ $p_{nm_n}$]} - \item a conjunction of patterns: {\tt ($p_1$ , \dots\ , $p_n$)} - \item a list of patterns {\tt ($p_1$ \&\ \dots\ \&\ $p_n$)} - for sequence of right-associative binary constructs - \end{itemize} -\item the wildcard: {\tt \_} -\item the rewriting orientations: {\tt ->} or {\tt <-} -\end{itemize} - -Assuming a goal of type $Q \to P$ (non-dependent product), or -of type $\forall x:T,~P$ (dependent product), the behavior of -{\tt intros $p$} is defined inductively over the structure of the -introduction pattern~$p$: -\begin{itemize} -\item introduction on \texttt{?} performs the introduction, and lets {\Coq} - choose a fresh name for the variable; -\item introduction on \texttt{?\ident} performs the introduction, and - lets {\Coq} choose a fresh name for the variable based on {\ident}; -\item introduction on \texttt{\ident} behaves as described in - Section~\ref{intro}; -\item introduction over a disjunction of list of patterns {\tt - [$p_{11}$ \dots\ $p_{1m_1}$ | \dots\ | $p_{11}$ \dots\ $p_{nm_n}$]} - expects the product to be over an inductive type - whose number of constructors is $n$ (or more generally over a type - of conclusion an inductive type built from $n$ constructors, - e.g. {\tt C -> A\textbackslash/B if $n=2$}): it destructs the introduced - hypothesis as {\tt destruct} (see Section~\ref{destruct}) would and - applies on each generated subgoal the corresponding tactic; - \texttt{intros}~$p_{i1}$ {\ldots} $p_{im_i}$; if the disjunctive - pattern is part of a sequence of patterns and is not the last - pattern of the sequence, then {\Coq} completes the pattern so that all - the argument of the constructors of the inductive type are - introduced (for instance, the list of patterns {\tt [$\;$|$\;$] H} - applied on goal {\tt forall x:nat, x=0 -> 0=x} behaves the same as - the list of patterns {\tt [$\,$|$\,$?$\,$] H}); -\item introduction over a conjunction of patterns {\tt ($p_1$, \ldots, - $p_n$)} expects the goal to be a product over an inductive type $I$ with a - single constructor that itself has at least $n$ arguments: it - performs a case analysis over the hypothesis, as {\tt destruct} - would, and applies the patterns $p_1$~\ldots~$p_n$ to the arguments - of the constructor of $I$ (observe that {\tt ($p_1$, {\ldots}, - $p_n$)} is an alternative notation for {\tt [$p_1$ {\ldots} - $p_n$]}); -\item introduction via {\tt ($p_1$ \& \dots\ \& $p_n$)} - is a shortcut for introduction via - {\tt ($p_1$,(\ldots,(\dots,$p_n$)\ldots))}; it expects the - hypothesis to be a sequence of right-associative binary inductive - constructors such as {\tt conj} or {\tt ex\_intro}; for instance, an - hypothesis with type {\tt A\verb|/\|exists x, B\verb|/\|C\verb|/\|D} can be - introduced via pattern {\tt (a \& x \& b \& c \& d)}; -\item introduction on the wildcard depends on whether the product is - dependent or not: in the non-dependent case, it erases the - corresponding hypothesis (i.e. it behaves as an {\tt intro} followed - by a {\tt clear}, cf Section~\ref{clear}) while in the dependent - case, it succeeds and erases the variable only if the wildcard is - part of a more complex list of introduction patterns that also - erases the hypotheses depending on this variable; -\item introduction over {\tt ->} (respectively {\tt <-}) expects the - hypothesis to be an equality and the right-hand-side (respectively - the left-hand-side) is replaced by the left-hand-side (respectively - the right-hand-side) in both the conclusion and the context of the goal; - if moreover the term to substitute is a variable, the hypothesis is - removed. -\end{itemize} - -\Example - -\begin{coq_example} -Goal forall A B C:Prop, A \/ B /\ C -> (A -> C) -> C. -intros A B C [a| [_ c]] f. -apply (f a). -exact c. -Qed. -\end{coq_example} - -\Rem {\tt intros $p_1~\ldots~p_n$} is not equivalent to \texttt{intros - $p_1$;\ldots; intros $p_n$} for the following reasons: -\begin{itemize} -\item A wildcard pattern never succeeds when applied isolated on a - dependent product, while it succeeds as part of a list of - introduction patterns if the hypotheses that depends on it are - erased too. -\item A disjunctive or conjunctive pattern followed by an introduction - pattern forces the introduction in the context of all arguments of - the constructors before applying the next pattern while a terminal - disjunctive or conjunctive pattern does not. Here is an example - -\begin{coq_example} -Goal forall n:nat, n = 0 -> n = 0. -intros [ | ] H. -Show 2. -Undo. -intros [ | ]; intros H. -Show 2. -\end{coq_example} - -\end{itemize} - -\subsection{\tt clear \ident} -\tacindex{clear} -\label{clear} - -This tactic erases the hypothesis named {\ident} in the local context -of the current goal. As a consequence, {\ident} is no more displayed and no more -usable in the proof development. - -\begin{ErrMsgs} -\item \errindex{No such hypothesis} -\item \errindexbis{{\ident} is used in the conclusion}{is used in the - conclusion} -\item \errindexbis{{\ident} is used in the hypothesis {\ident'}}{is - used in the hypothesis} -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt clear {\ident$_1$} \dots\ {\ident$_n$}} - - This is equivalent to {\tt clear {\ident$_1$}. {\ldots} clear - {\ident$_n$}.} - -\item {\tt clearbody {\ident}}\tacindex{clearbody} - - This tactic expects {\ident} to be a local definition then clears - its body. Otherwise said, this tactic turns a definition into an - assumption. - - \ErrMsg \errindexbis{{\ident} is not a local definition}{is not a local definition} - -\item \texttt{clear - {\ident$_1$} \dots\ {\ident$_n$}} - - This tactic clears all the hypotheses except the ones depending in - the hypotheses named {\ident$_1$} {\ldots} {\ident$_n$} and in the - goal. - -\item \texttt{clear} - - This tactic clears all the hypotheses except the ones the goal depends on. - -\item {\tt clear dependent \ident \tacindex{clear dependent}} - - This clears the hypothesis \ident\ and all the hypotheses - that depend on it. - -\end{Variants} - -\subsection{\tt revert \ident$_1$ \dots\ \ident$_n$} -\tacindex{revert} -\label{revert} - -This applies to any goal with variables \ident$_1$ \dots\ \ident$_n$. -It moves the hypotheses (possibly defined) to the goal, if this respects -dependencies. This tactic is the inverse of {\tt intro}. - -\begin{ErrMsgs} -\item \errindex{No such hypothesis} -\item \errindexbis{{\ident} is used in the hypothesis {\ident'}}{is - used in the hypothesis} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt revert dependent \ident \tacindex{revert dependent}} - - This moves to the goal the hypothesis \ident\ and all hypotheses - which depend on it. - -\end{Variants} - -\subsection{\tt move {\ident$_1$} after {\ident$_2$}} -\tacindex{move} -\label{move} - -This moves the hypothesis named {\ident$_1$} in the local context -after the hypothesis named {\ident$_2$}. The proof term is not changed. - -If {\ident$_1$} comes before {\ident$_2$} in the order of dependences, -then all hypotheses between {\ident$_1$} and {\ident$_2$} that -(possibly indirectly) depend on {\ident$_1$} are moved also. - -If {\ident$_1$} comes after {\ident$_2$} in the order of dependences, -then all hypotheses between {\ident$_1$} and {\ident$_2$} that -(possibly indirectly) occur in {\ident$_1$} are moved also. - -\begin{Variants} - -\item {\tt move {\ident$_1$} before {\ident$_2$}} - -This moves {\ident$_1$} towards and just before the hypothesis named {\ident$_2$}. - -\item {\tt move {\ident} at top} - -This moves {\ident} at the top of the local context (at the beginning of the context). - -\item {\tt move {\ident} at bottom} - -This moves {\ident} at the bottom of the local context (at the end of the context). - -\end{Variants} - -\begin{ErrMsgs} - -\item \errindex{No such hypothesis} - -\item \errindex{Cannot move {\ident$_1$} after {\ident$_2$}: - it occurs in {\ident$_2$}} - -\item \errindex{Cannot move {\ident$_1$} after {\ident$_2$}: - it depends on {\ident$_2$}} - -\end{ErrMsgs} - -\subsection{\tt rename {\ident$_1$} into {\ident$_2$}} -\tacindex{rename} - -This renames hypothesis {\ident$_1$} into {\ident$_2$} in the current -context. The name of the hypothesis in the proof-term, however, is left -unchanged. - -\begin{Variants} - -\item {\tt rename {\ident$_1$} into {\ident$_2$}, \ldots, - {\ident$_{2k-1}$} into {\ident$_{2k}$}} - -This is equivalent to the sequence of the corresponding atomic {\tt rename}. - -\end{Variants} - -\begin{ErrMsgs} -\item \errindex{No such hypothesis} -\item \errindexbis{{\ident$_2$} is already used}{is already used} -\end{ErrMsgs} - -\subsection{\tt set ( {\ident} := {\term} )} -\label{tactic:set} -\tacindex{set} - -This replaces {\term} by {\ident} in the conclusion of the current goal -and adds the new definition {\tt {\ident} := \term} to the local context. - -If {\term} has holes (i.e. subexpressions of the form ``\_''), the -tactic first checks that all subterms matching the pattern are -compatible before doing the replacement using the leftmost subterm -matching the pattern. - -\begin{ErrMsgs} -\item \errindex{The variable {\ident} is already defined} -\end{ErrMsgs} - -\begin{Variants} - -\item {\tt set ( {\ident} := {\term} ) in {\occgoalset}} - -This notation allows to specify which occurrences of {\term} have to -be substituted in the context. The {\tt in {\occgoalset}} clause is an -occurrence clause whose syntax and behavior are described in -Section~\ref{Occurrences clauses}. - -\item {\tt set ( {\ident} \nelist{\binder}{} := {\term} )} - - This is equivalent to {\tt set ( {\ident} := fun - \nelist{\binder}{} => {\term} )}. - -\item {\tt set \term} - - This behaves as {\tt set (} {\ident} := {\term} {\tt )} but {\ident} - is generated by {\Coq}. This variant also supports an occurrence clause. - -\item {\tt set ( {\ident$_0$} \nelist{\binder}{} := {\term} ) in {\occgoalset}}\\ - {\tt set {\term} in {\occgoalset}} - - These are the general forms which combine the previous possibilities. - -\item {\tt remember {\term} as {\ident}}\tacindex{remember} - - This behaves as {\tt set ( {\ident} := {\term} ) in *} and using a - logical (Leibniz's) equality instead of a local definition. - -\item {\tt remember {\term} as {\ident} in {\occgoalset}} - - This is a more general form of {\tt remember} that remembers the - occurrences of {\term} specified by an occurrences set. - -\item {\tt pose ( {\ident} := {\term} )}\tacindex{pose} - - This adds the local definition {\ident} := {\term} to the current - context without performing any replacement in the goal or in the - hypotheses. It is equivalent to {\tt set ( {\ident} {\tt :=} - {\term} {\tt ) in |-}}. - -\item {\tt pose ( {\ident} \nelist{\binder}{} := {\term} )} - - This is equivalent to {\tt pose (} {\ident} {\tt :=} {\tt fun} - \nelist{\binder}{} {\tt =>} {\term} {\tt )}. - -\item{\tt pose {\term}} - - This behaves as {\tt pose ( {\ident} := {\term} )} but - {\ident} is generated by {\Coq}. - -\end{Variants} - -\subsection{\tt decompose [ {\qualid$_1$} \dots\ {\qualid$_n$} ] \term} -\label{decompose} -\tacindex{decompose} - -This tactic allows to recursively decompose a -complex proposition in order to obtain atomic ones. - -\Example - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Goal forall A B C:Prop, A /\ B /\ C \/ B /\ C \/ C /\ A -> C. -intros A B C H; decompose [and or] H; assumption. -\end{coq_example} -\begin{coq_example*} -Qed. -\end{coq_example*} - -{\tt decompose} does not work on right-hand sides of implications or products. - -\begin{Variants} - -\item {\tt decompose sum \term}\tacindex{decompose sum} - - This decomposes sum types (like \texttt{or}). - -\item {\tt decompose record \term}\tacindex{decompose record} - - This decomposes record types (inductive types with one constructor, - like \texttt{and} and \texttt{exists} and those defined with the - \texttt{Record} macro, see Section~\ref{Record}). - -\end{Variants} - -\section{Controlling the proof flow} - -\subsection{\tt assert ( {\ident} :\ {\form} )} -\tacindex{assert} - -This tactic applies to any goal. {\tt assert (H : U)} adds a new -hypothesis of name \texttt{H} asserting \texttt{U} to the current goal -and opens a new subgoal \texttt{U}\footnote{This corresponds to the - cut rule of sequent calculus.}. The subgoal {\texttt U} comes first -in the list of subgoals remaining to prove. - -\begin{ErrMsgs} -\item \errindex{Not a proposition or a type} - - Arises when the argument {\form} is neither of type {\tt Prop}, {\tt - Set} nor {\tt Type}. - -\end{ErrMsgs} - -\begin{Variants} - -\item{\tt assert {\form}} - - This behaves as {\tt assert ( {\ident} :\ {\form} )} but - {\ident} is generated by {\Coq}. - -\item{\tt assert ( {\ident} := {\term} )} - - This behaves as {\tt assert ({\ident} :\ {\type});[exact - {\term}|idtac]} where {\type} is the type of {\term}. - - \ErrMsg \errindex{Variable {\ident} is already declared} - -\item {\tt cut {\form}}\tacindex{cut} - - This tactic applies to any goal. It implements the non-dependent - case of the ``App''\index{Typing rules!App} rule given in - Section~\ref{Typed-terms}. (This is Modus Ponens inference rule.) - {\tt cut U} transforms the current goal \texttt{T} into the two - following subgoals: {\tt U -> T} and \texttt{U}. The subgoal {\tt U - -> T} comes first in the list of remaining subgoal to prove. - -\item \texttt{assert {\form} by {\tac}}\tacindex{assert by} - - This tactic behaves like \texttt{assert} but applies {\tac} - to solve the subgoals generated by \texttt{assert}. - - \ErrMsg \errindex{Proof is not complete} - -\item \texttt{assert {\form} as {\intropattern}\tacindex{assert as}} - - If {\intropattern} is a naming introduction pattern (see - Section~\ref{intros-pattern}), the hypothesis is named after this - introduction pattern (in particular, if {\intropattern} is {\ident}, - the tactic behaves like \texttt{assert ({\ident} :\ {\form})}). - - If {\intropattern} is a disjunctive/conjunctive introduction - pattern, the tactic behaves like \texttt{assert {\form}} then destructing the - resulting hypothesis using the given introduction pattern. - -\item \texttt{assert {\form} as {\intropattern} by {\tac}} - - This combines the two previous variants of {\tt assert}. - -\item \texttt{pose proof {\term} as {\intropattern}\tacindex{pose proof}} - - This tactic behaves like \texttt{assert T as {\intropattern} by - exact {\term}} where \texttt{T} is the type of {\term}. - - In particular, \texttt{pose proof {\term} as {\ident}} behaves as - \texttt{assert ({\ident} := {\term})} and \texttt{pose proof {\term} as - {\disjconjintropattern}\tacindex{pose proof}} behaves - like \texttt{destruct {\term} as {\disjconjintropattern}}. - -\item {\tt specialize ({\ident} \term$_1$ \dots\ \term$_n$)\tacindex{specialize}} \\ - {\tt specialize {\ident} with \bindinglist} - - The tactic {\tt specialize} works on local hypothesis \ident. - The premises of this hypothesis (either universal - quantifications or non-dependent implications) are instantiated - by concrete terms coming either from arguments \term$_1$ - $\ldots$ \term$_n$ or from a bindings list (see - Section~\ref{Binding-list} for more about bindings lists). In the - second form, all instantiation elements must be given, whereas - in the first form the application to \term$_1$ {\ldots} - \term$_n$ can be partial. The first form is equivalent to - {\tt assert (\ident' := {\ident} {\term$_1$} \dots\ \term$_n$); - clear \ident; rename \ident' into \ident}. - - The name {\ident} can also refer to a global lemma or - hypothesis. In this case, for compatibility reasons, the - behavior of {\tt specialize} is close to that of {\tt - generalize}: the instantiated statement becomes an additional - premise of the goal. - - \begin{ErrMsgs} - \item \errindexbis{{\ident} is used in hypothesis \ident'}{is used in hypothesis} - \item \errindexbis{{\ident} is used in conclusion}{is used in conclusion} - \end{ErrMsgs} - -%% Moreover, the old syntax allows the use of a number after {\tt specialize} -%% for controlling the number of premises to instantiate. Giving this -%% number should not be mandatory anymore (automatic detection of how -%% many premises can be eaten without leaving meta-variables). Hence -%% no documentation for this integer optional argument of specialize - -\end{Variants} - -\subsection{\tt generalize \term} -\tacindex{generalize} -\label{generalize} - -This tactic applies to any goal. It generalizes the conclusion with -respect to one of its subterms. - -\Example - -\begin{coq_eval} -Goal forall x y:nat, (0 <= x + y + y). -intros. -\end{coq_eval} -\begin{coq_example} -Show. -generalize (x + y + y). -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -If the goal is $G$ and $t$ is a subterm of type $T$ in the goal, then -{\tt generalize} \textit{t} replaces the goal by {\tt forall (x:$T$), $G'$} -where $G'$ is obtained from $G$ by replacing all occurrences of $t$ by -{\tt x}. The name of the variable (here {\tt n}) is chosen based on $T$. - -\begin{Variants} -\item {\tt generalize {\term$_1$ , \dots\ , \term$_n$}} - - This is equivalent to {\tt generalize \term$_n$; \dots\ ; generalize - \term$_1$}. Note that the sequence of \term$_i$'s are processed - from $n$ to $1$. - -\item {\tt generalize {\term} at {\num$_1$ \dots\ \num$_i$}} - - This is equivalent to {\tt generalize \term} but it generalizes only over - the specified occurrences of {\term} (counting from left to right on the - expression printed using option {\tt Set Printing All}). - -\item {\tt generalize {\term} as {\ident}} - - This is equivalent to {\tt generalize \term} but it uses {\ident} to name the - generalized hypothesis. - -\item {\tt generalize {\term$_1$} at {\num$_{11}$ \dots\ \num$_{1i_1}$} - as {\ident$_1$} - , {\ldots} , - {\term$_n$} at {\num$_{n1}$ \dots\ \num$_{ni_n}$} - as {\ident$_2$}} - - This is the most general form of {\tt generalize} that combines the - previous behaviors. - -\item {\tt generalize dependent \term} \tacindex{generalize dependent} - - This generalizes {\term} but also {\em all} hypotheses that depend - on {\term}. It clears the generalized hypotheses. - -\end{Variants} - -\subsection{\tt evar ( {\ident} :\ {\term} )} -\tacindex{evar} -\label{evar} - -The {\tt evar} tactic creates a new local definition named \ident\ with -type \term\ in the context. The body of this binding is a fresh -existential variable. - -\subsection{\tt instantiate ( {\num} := {\term} )} -\tacindex{instantiate} -\label{instantiate} - -The {\tt instantiate} tactic allows to refine (see Section~\ref{refine}) -an existential variable -with the term \term. The \num\ argument is the position of the -existential variable from right to left in the conclusion. This cannot be -the number of the existential variable since this number is different -in every session. - -\begin{Variants} - \item {\tt instantiate ( {\num} := {\term} ) in \ident} - - \item {\tt instantiate ( {\num} := {\term} ) in ( Value of {\ident} )} - - \item {\tt instantiate ( {\num} := {\term} ) in ( Type of {\ident} )} - -These allow to refer respectively to existential variables occurring in -a hypothesis or in the body or the type of a local definition. - - \item {\tt instantiate} - - Without argument, the {\tt instantiate} tactic tries to solve as - many existential variables as possible, using information gathered - from other tactics in the same tactical. This is automatically - done after each complete tactic (i.e. after a dot in proof mode), - but not, for example, between each tactic when they are sequenced - by semicolons. - -\end{Variants} - -\subsection{\tt admit} -\tacindex{admit} -\label{admit} - -The {\tt admit} tactic ``solves'' the current subgoal by an -axiom. This typically allows to temporarily skip a subgoal so as to -progress further in the rest of the proof. To know if some proof still -relies on unproved subgoals, one can use the command {\tt Print -Assumptions} (see Section~\ref{PrintAssumptions}). Admitted subgoals -have names of the form {\ident}\texttt{\_admitted} possibly followed -by a number. - -\subsection{\tt absurd \term} -\tacindex{absurd} -\label{absurd} - -This tactic applies to any goal. The argument {\term} is any -proposition {\tt P} of type {\tt Prop}. This tactic applies {\tt - False} elimination, that is it deduces the current goal from {\tt - False}, and generates as subgoals {\tt $\sim$P} and {\tt P}. It is -very useful in proofs by cases, where some cases are impossible. In -most cases, \texttt{P} or $\sim$\texttt{P} is one of the hypotheses of -the local context. - -\subsection{\tt contradiction} -\label{contradiction} -\tacindex{contradiction} - -This tactic applies to any goal. The {\tt contradiction} tactic -attempts to find in the current context (after all {\tt intros}) one -hypothesis that is equivalent to {\tt False}. It permits to prune -irrelevant cases. This tactic is a macro for the tactics sequence -{\tt intros; elimtype False; assumption}. - -\begin{ErrMsgs} -\item \errindex{No such assumption} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt contradiction \ident} - -The proof of {\tt False} is searched in the hypothesis named \ident. -\end{Variants} - -\subsection{\tt contradict \ident} -\label{contradict} -\tacindex{contradict} - -This tactic allows to manipulate negated hypothesis and goals. The -name \ident\ should correspond to a hypothesis. With -{\tt contradict H}, the current goal and context is transformed in -the following way: -\begin{itemize} -\item {\tt H:$\neg$A $\vd$ B} \ becomes \ {\tt $\vd$ A} -\item {\tt H:$\neg$A $\vd$ $\neg$B} \ becomes \ {\tt H: B $\vd$ A } -\item {\tt H: A $\vd$ B} \ becomes \ {\tt $\vd$ $\neg$A} -\item {\tt H: A $\vd$ $\neg$B} \ becomes \ {\tt H: B $\vd$ $\neg$A} -\end{itemize} - -\subsection{\tt exfalso} -\label{exfalso} -\tacindex{exfalso} - -This tactic implements the ``ex falso quodlibet'' logical principle: -an elimination of {\tt False} is performed on the current goal, and the -user is then required to prove that {\tt False} is indeed provable in -the current context. This tactic is a macro for {\tt elimtype False}. - -\section{Case analysis and induction} - -The tactics presented in this section implement induction or case -analysis on inductive or co-inductive objects (see -Section~\ref{Cic-inductive-definitions}). - -\subsection{\tt destruct \term} -\tacindex{destruct} -\label{destruct} - -This tactic applies to any goal. The argument {\term} must be of -inductive or co-inductive type and the tactic generates subgoals, one -for each possible form of {\term}, i.e. one for each constructor of -the inductive or co-inductive type. Unlike {\tt induction}, no -induction hypothesis is generated by {\tt destruct}. - -If the argument is dependent in either the conclusion or some -hypotheses of the goal, the argument is replaced by the appropriate -constructor form in each of the resulting subgoals, thus performing -case analysis. If non-dependent, the tactic simply exposes the -inductive or co-inductive structure of the argument. - -There are special cases: - -\begin{itemize} - -\item If {\term} is an identifier {\ident} denoting a quantified -variable of the conclusion of the goal, then {\tt destruct {\ident}} -behaves as {\tt intros until {\ident}; destruct {\ident}}. - -\item If {\term} is a {\num}, then {\tt destruct {\num}} behaves as -{\tt intros until {\num}} followed by {\tt destruct} applied to the -last introduced hypothesis. Remark: For destruction of a numeral, use -syntax {\tt destruct ({\num})} (not very interesting anyway). - -\item The argument {\term} can also be a pattern of which holes are - denoted by ``\_''. In this case, the tactic checks that all subterms - matching the pattern in the conclusion and the hypotheses are - compatible and performs case analysis using this subterm. - -\end{itemize} - -\begin{Variants} -\item{\tt destruct {\term} as {\disjconjintropattern}} - - This behaves as {\tt destruct {\term}} but uses the names in - {\intropattern} to name the variables introduced in the context. - The {\intropattern} must have the form {\tt [} $p_{11}$ \ldots - $p_{1n_1}$ {\tt |} {\ldots} {\tt |} $p_{m1}$ \ldots $p_{mn_m}$ {\tt - ]} with $m$ being the number of constructors of the type of - {\term}. Each variable introduced by {\tt destruct} in the context - of the $i^{th}$ goal gets its name from the list $p_{i1}$ \ldots - $p_{in_i}$ in order. If there are not enough names, {\tt destruct} - invents names for the remaining variables to introduce. More - generally, the $p_{ij}$ can be any disjunctive/conjunctive - introduction pattern (see Section~\ref{intros-pattern}). This - provides a concise notation for nested destruction. - -% It is recommended to use this variant of {\tt destruct} for -% robust proof scripts. - -\item{\tt destruct {\term} as {\disjconjintropattern} \_eqn} - - This behaves as {\tt destruct {\term}} but adds an equation between - {\term} and the value that {\term} takes in each of the possible - cases. The name of the equation is chosen by Coq. If - {\disjconjintropattern} is simply {\tt []}, it is automatically considered - as a disjunctive pattern of the appropriate size. - -\item{\tt destruct {\term} as {\disjconjintropattern} \_eqn:~{\namingintropattern}} - - This behaves as {\tt destruct {\term} as - {\disjconjintropattern} \_eqn} but use {\namingintropattern} to - name the equation (see Section~\ref{intros-pattern}). Note that spaces - can generally be removed around {\tt \_eqn}. - -\item{\tt destruct {\term} with \bindinglist} - - This behaves like \texttt{destruct {\term}} providing explicit - instances for the dependent premises of the type of {\term} (see - syntax of bindings in Section~\ref{Binding-list}). - -\item{\tt edestruct {\term}\tacindex{edestruct}} - - This tactic behaves like \texttt{destruct {\term}} except that it - does not fail if the instance of a dependent premises of the type of - {\term} is not inferable. Instead, the unresolved instances are left - as existential variables to be inferred later, in the same way as - {\tt eapply} does (see Section~\ref{eapply-example}). - -\item{\tt destruct {\term$_1$} using {\term$_2$}}\\ - {\tt destruct {\term$_1$} using {\term$_2$} with {\bindinglist}} - - These are synonyms of {\tt induction {\term$_1$} using {\term$_2$}} and - {\tt induction {\term$_1$} using {\term$_2$} with {\bindinglist}}. - -\item \texttt{destruct {\term} in {\occgoalset}} - - This syntax is used for selecting which occurrences of {\term} the - case analysis has to be done on. The {\tt in {\occgoalset}} clause is an - occurrence clause whose syntax and behavior is described in - Section~\ref{Occurrences clauses}. - -% When an occurrence clause is given, an equation between {\term} and -% the value it gets in each case of the analysis is added to the -% context of the subgoals corresponding to the cases (even -% if no clause {\tt as {\namingintropattern}} is given). - -\item{\tt destruct {\term$_1$} with {\bindinglist$_1$} as {\disjconjintropattern} \_eqn:~{\namingintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}\\ - {\tt edestruct {\term$_1$} with {\bindinglist$_1$} as {\disjconjintropattern} \_eqn:~{\namingintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}} - - These are the general forms of {\tt destruct} and {\tt edestruct}. - They combine the effects of the {\tt with}, {\tt as}, {\tt using}, - and {\tt in} clauses. - -\item{\tt case \term}\label{case}\tacindex{case} - - The tactic {\tt case} is a more basic tactic to perform case - analysis without recursion. It behaves as {\tt elim \term} but using - a case-analysis elimination principle and not a recursive one. - -\item {\tt case {\term} with {\bindinglist}} - - Analogous to {\tt elim {\term} with {\bindinglist}} above. - -\item{\tt ecase {\term}\tacindex{ecase}}\\ - {\tt ecase {\term} with {\bindinglist}} - - In case the type of {\term} has dependent premises, or dependent - premises whose values are not inferable from the {\tt with - {\bindinglist}} clause, {\tt ecase} turns them into existential - variables to be resolved later on. - -\item {\tt simple destruct \ident}\tacindex{simple destruct} - - This tactic behaves as {\tt intros until - {\ident}; case {\tt {\ident}}} when {\ident} is a quantified - variable of the goal. - -\item {\tt simple destruct {\num}} - - This tactic behaves as {\tt intros until - {\num}; case {\tt {\ident}}} where {\ident} is the name given by - {\tt intros until {\num}} to the {\num}-th non-dependent premise of - the goal. - -\item{\tt case\_eq \term}\label{case_eq}\tacindex{case\_eq} - - The tactic {\tt case\_eq} is a variant of the {\tt case} tactic that - allow to perform case analysis on a term without completely - forgetting its original form. This is done by generating equalities - between the original form of the term and the outcomes of the case - analysis. - -% The effect of this tactic is similar to the effect of {\tt -% destruct {\term} in |- *} with the exception that no new hypotheses -% are introduced in the context. - -\end{Variants} - -\subsection{\tt induction \term} -\tacindex{induction} -\label{Tac-induction} - -This tactic applies to any goal. The argument {\term} must be of -inductive type and the tactic {\tt induction} generates subgoals, -one for each possible form of {\term}, i.e. one for each constructor -of the inductive type. - -If the argument is dependent in either the conclusion or some -hypotheses of the goal, the argument is replaced by the appropriate -constructor form in each of the resulting subgoals and induction -hypotheses are added to the local context using names whose prefix is -{\tt IH}. - -There are particular cases: - -\begin{itemize} - -\item If {\term} is an identifier {\ident} denoting a quantified -variable of the conclusion of the goal, then {\tt induction {\ident}} -behaves as {\tt intros until {\ident}; induction {\ident}}. - -\item If {\term} is a {\num}, then {\tt induction {\num}} behaves as -{\tt intros until {\num}} followed by {\tt induction} applied to the -last introduced hypothesis. Remark: For simple induction on a numeral, -use syntax {\tt induction ({\num})} (not very interesting anyway). - -\item The argument {\term} can also be a pattern of which holes are - denoted by ``\_''. In this case, the tactic checks that all subterms - matching the pattern in the conclusion and the hypotheses are - compatible and performs induction using this subterm. - -\end{itemize} - -\Example - -\begin{coq_example} -Lemma induction_test : forall n:nat, n = n -> n <= n. -intros n H. -induction n. -\end{coq_example} - -\begin{ErrMsgs} -\item \errindex{Not an inductive product} -\item \errindex{Unable to find an instance for the variables -{\ident} \ldots {\ident}} - - Use in this case - the variant {\tt elim \dots\ with \dots} below. -\end{ErrMsgs} - -\begin{Variants} -\item{\tt induction {\term} as {\disjconjintropattern}} - - This behaves as {\tt induction {\term}} but uses the names in - {\disjconjintropattern} to name the variables introduced in the context. - The {\disjconjintropattern} must typically be of the form - {\tt [} $p_{11}$ \ldots - $p_{1n_1}$ {\tt |} {\ldots} {\tt |} $p_{m1}$ \ldots $p_{mn_m}$ {\tt - ]} with $m$ being the number of constructors of the type of - {\term}. Each variable introduced by {\tt induction} in the context - of the $i^{th}$ goal gets its name from the list $p_{i1}$ \ldots - $p_{in_i}$ in order. If there are not enough names, {\tt induction} - invents names for the remaining variables to introduce. More - generally, the $p_{ij}$ can be any disjunctive/conjunctive - introduction pattern (see Section~\ref{intros-pattern}). For instance, - for an inductive type with one constructor, the pattern notation - {\tt ($p_{1}$,\ldots,$p_{n}$)} can be used instead of - {\tt [} $p_{1}$ \ldots $p_{n}$ {\tt ]}. - -%\item{\tt induction {\term} as {\namingintropattern}} - -% This behaves as {\tt induction {\term}} but adds an equation between -% {\term} and the value that {\term} takes in each of the induction -% case. The name of the equation is built according to -% {\namingintropattern} which can be an identifier, a ``?'', etc, as -% indicated in Section~\ref{intros-pattern}. - -%\item{\tt induction {\term} as {\namingintropattern} {\disjconjintropattern}} - -% This combines the two previous forms. - -\item{\tt induction {\term} with \bindinglist} - - This behaves like \texttt{induction {\term}} providing explicit - instances for the premises of the type of {\term} (see the syntax of - bindings in Section~\ref{Binding-list}). - -\item{\tt einduction {\term}\tacindex{einduction}} - - This tactic behaves like \texttt{induction {\term}} excepts that it - does not fail if some dependent premise of the type of {\term} is - not inferable. Instead, the unresolved premises are posed as - existential variables to be inferred later, in the same way as {\tt - eapply} does (see Section~\ref{eapply-example}). - -\item {\tt induction {\term$_1$} using {\term$_2$}} - - This behaves as {\tt induction {\term$_1$}} but using {\term$_2$} as - induction scheme. It does not expect the conclusion of the type of - {\term$_1$} to be inductive. - -\item {\tt induction {\term$_1$} using {\term$_2$} with {\bindinglist}} - - This behaves as {\tt induction {\term$_1$} using {\term$_2$}} but - also providing instances for the premises of the type of {\term$_2$}. - -\item \texttt{induction {\term}$_1$ $\ldots$ {\term}$_n$ using {\qualid}} - - This syntax is used for the case {\qualid} denotes an induction principle - with complex predicates as the induction principles generated by - {\tt Function} or {\tt Functional Scheme} may be. - -\item \texttt{induction {\term} in {\occgoalset}} - - This syntax is used for selecting which occurrences of {\term} the - induction has to be carried on. The {\tt in \occgoalset} clause is an - occurrence clause whose syntax and behavior is described in - Section~\ref{Occurrences clauses}. - -% When an occurrence clause is given, an equation between {\term} and -% the value it gets in each case of the induction is added to the -% context of the subgoals corresponding to the induction cases (even -% if no clause {\tt as {\namingintropattern}} is given). - -\item {\tt induction {\term$_1$} with {\bindinglist$_1$} as {\namingintropattern} {\disjconjintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}}\\ - {\tt einduction {\term$_1$} with {\bindinglist$_1$} as {\namingintropattern} {\disjconjintropattern} using {\term$_2$} with {\bindinglist$_2$} in {\occgoalset}} - - These are the most general forms of {\tt induction} and {\tt - einduction}. It combines the effects of the {\tt with}, {\tt as}, - {\tt using}, and {\tt in} clauses. - -\item {\tt elim \term}\label{elim} - - This is a more basic induction tactic. Again, the type of the - argument {\term} must be an inductive type. Then, according to - the type of the goal, the tactic {\tt elim} chooses the appropriate - destructor and applies it as the tactic {\tt apply} - would do. For instance, if the proof context contains {\tt - n:nat} and the current goal is {\tt T} of type {\tt - Prop}, then {\tt elim n} is equivalent to {\tt apply nat\_ind with - (n:=n)}. The tactic {\tt elim} does not modify the context of - the goal, neither introduces the induction loading into the context - of hypotheses. - - More generally, {\tt elim \term} also works when the type of {\term} - is a statement with premises and whose conclusion is inductive. In - that case the tactic performs induction on the conclusion of the - type of {\term} and leaves the non-dependent premises of the type as - subgoals. In the case of dependent products, the tactic tries to - find an instance for which the elimination lemma applies and fails - otherwise. - -\item {\tt elim {\term} with {\bindinglist}} - - Allows to give explicit instances to the premises of the type - of {\term} (see Section~\ref{Binding-list}). - -\item{\tt eelim {\term}\tacindex{eelim}} - - In case the type of {\term} has dependent premises, this turns them into - existential variables to be resolved later on. - -\item{\tt elim {\term$_1$} using {\term$_2$}}\\ - {\tt elim {\term$_1$} using {\term$_2$} with {\bindinglist}\tacindex{elim \dots\ using}} - -Allows the user to give explicitly an elimination predicate -{\term$_2$} which is not the standard one for the underlying inductive -type of {\term$_1$}. The {\bindinglist} clause allows to -instantiate premises of the type of {\term$_2$}. - -\item{\tt elim {\term$_1$} with {\bindinglist$_1$} using {\term$_2$} with {\bindinglist$_2$}}\\ - {\tt eelim {\term$_1$} with {\bindinglist$_1$} using {\term$_2$} with {\bindinglist$_2$}} - - These are the most general forms of {\tt elim} and {\tt eelim}. It - combines the effects of the {\tt using} clause and of the two uses - of the {\tt with} clause. - -\item {\tt elimtype \form}\tacindex{elimtype} - - The argument {\form} must be inductively defined. {\tt elimtype I} - is equivalent to {\tt cut I. intro H{\rm\sl n}; elim H{\rm\sl n}; - clear H{\rm\sl n}}. Therefore the hypothesis {\tt H{\rm\sl n}} will - not appear in the context(s) of the subgoal(s). Conversely, if {\tt - t} is a term of (inductive) type {\tt I} and which does not occur - in the goal then {\tt elim t} is equivalent to {\tt elimtype I; 2: - exact t.} - -\item {\tt simple induction \ident}\tacindex{simple induction} - - This tactic behaves as {\tt intros until - {\ident}; elim {\tt {\ident}}} when {\ident} is a quantified - variable of the goal. - -\item {\tt simple induction {\num}} - - This tactic behaves as {\tt intros until - {\num}; elim {\tt {\ident}}} where {\ident} is the name given by - {\tt intros until {\num}} to the {\num}-th non-dependent premise of - the goal. - -%% \item {\tt simple induction {\term}}\tacindex{simple induction} - -%% If {\term} is an {\ident} corresponding to a quantified variable of -%% the goal then the tactic behaves as {\tt intros until {\ident}; elim -%% {\tt {\ident}}}. If {\term} is a {\num} then the tactic behaves as -%% {\tt intros until {\ident}; elim {\tt {\ident}}}. Otherwise, it is -%% a synonym for {\tt elim {\term}}. - -%% \Rem For simple induction on a numeral, use syntax {\tt simple -%% induction ({\num})}. - -\end{Variants} - -%\subsection[\tt FixPoint \dots]{\tt FixPoint \dots\tacindex{Fixpoint}} -%Not yet documented. - -\subsection{\tt double induction \ident$_1$ \ident$_2$} -\tacindex{double induction} - -This tactic is deprecated and should be replaced by {\tt induction \ident$_1$; induction \ident$_2$} (or {\tt induction \ident$_1$; destruct \ident$_2$} depending on the exact needs). - -%% This tactic applies to any goal. If the variables {\ident$_1$} and -%% {\ident$_2$} of the goal have an inductive type, then this tactic -%% performs double induction on these variables. For instance, if the -%% current goal is \verb+forall n m:nat, P n m+ then, {\tt double induction n -%% m} yields the four cases with their respective inductive hypotheses. - -%% In particular, for proving \verb+(P (S n) (S m))+, the generated induction -%% hypotheses are \verb+(P (S n) m)+ and \verb+(m:nat)(P n m)+ (of the latter, -%% \verb+(P n m)+ and \verb+(P n (S m))+ are derivable). - -%% \Rem When the induction hypothesis \verb+(P (S n) m)+ is not -%% needed, {\tt induction \ident$_1$; destruct \ident$_2$} produces -%% more concise subgoals. - -\begin{Variant} - -\item {\tt double induction \num$_1$ \num$_2$} - -This tactic is deprecated and should be replaced by {\tt induction - \num$_1$; induction \num$_3$} where \num$_3$ is the result of -\num$_2$-\num$_1$. - -%% This tactic applies to any goal. If the variables {\ident$_1$} and - -%% This applies double induction on the \num$_1^{th}$ and \num$_2^{th}$ {\it -%% non dependent} premises of the goal. More generally, any combination of an -%% {\ident} and a {\num} is valid. - -\end{Variant} - -\subsection{\tt dependent induction \ident} -\tacindex{dependent induction} -\label{DepInduction} - -The \emph{experimental} tactic \texttt{dependent induction} performs -induction-inversion on an instantiated inductive predicate. -One needs to first require the {\tt Coq.Program.Equality} module to use -this tactic. The tactic is based on the BasicElim tactic by Conor -McBride \cite{DBLP:conf/types/McBride00} and the work of Cristina Cornes -around inversion \cite{DBLP:conf/types/CornesT95}. From an instantiated -inductive predicate and a goal, it generates an equivalent goal where the -hypothesis has been generalized over its indexes which are then -constrained by equalities to be the right instances. This permits to -state lemmas without resorting to manually adding these equalities and -still get enough information in the proofs. - -\Example - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Lemma le_minus : forall n:nat, n < 1 -> n = 0. -intros n H ; induction H. -\end{coq_example} - -Here we did not get any information on the indexes to help fulfill this -proof. The problem is that, when we use the \texttt{induction} tactic, -we lose information on the hypothesis instance, notably that the second -argument is \texttt{1} here. Dependent induction solves this problem by -adding the corresponding equality to the context. - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Require Import Coq.Program.Equality. -Lemma le_minus : forall n:nat, n < 1 -> n = 0. -intros n H ; dependent induction H. -\end{coq_example} - -The subgoal is cleaned up as the tactic tries to automatically -simplify the subgoals with respect to the generated equalities. -In this enriched context, it becomes possible to solve this subgoal. -\begin{coq_example} -reflexivity. -\end{coq_example} - -Now we are in a contradictory context and the proof can be solved. -\begin{coq_example} -inversion H. -\end{coq_example} - -This technique works with any inductive predicate. -In fact, the \texttt{dependent induction} tactic is just a wrapper around -the \texttt{induction} tactic. One can make its own variant by just -writing a new tactic based on the definition found in -\texttt{Coq.Program.Equality}. - -\begin{Variants} -\item {\tt dependent induction {\ident} generalizing {\ident$_1$} \dots - {\ident$_n$}}\tacindex{dependent induction \dots\ generalizing} - - This performs dependent induction on the hypothesis {\ident} but first - generalizes the goal by the given variables so that they are - universally quantified in the goal. This is generally what one wants - to do with the variables that are inside some constructors in the - induction hypothesis. The other ones need not be further generalized. - -\item {\tt dependent destruction {\ident}}\tacindex{dependent destruction} - - This performs the generalization of the instance {\ident} but uses {\tt destruct} - instead of {\tt induction} on the generalized hypothesis. This gives - results equivalent to {\tt inversion} or {\tt dependent inversion} if - the hypothesis is dependent. -\end{Variants} - -\SeeAlso \ref{dependent-induction-example} for a larger example of -dependent induction and an explanation of the underlying technique. - -\subsection{\tt functional induction (\qualid\ \term$_1$ \dots\ \term$_n$)} -\tacindex{functional induction} -\label{FunInduction} - -The \emph{experimental} tactic \texttt{functional induction} performs -case analysis and induction following the definition of a function. It -makes use of a principle generated by \texttt{Function} -(see Section~\ref{Function}) or \texttt{Functional Scheme} -(see Section~\ref{FunScheme}). - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example} -Functional Scheme minus_ind := Induction for minus Sort Prop. -Check minus_ind. -Lemma le_minus (n m:nat) : n - m <= n. -functional induction (minus n m); simpl; auto. -\end{coq_example} -\begin{coq_example*} -Qed. -\end{coq_example*} - -\Rem \texttt{(\qualid\ \term$_1$ \dots\ \term$_n$)} must be a correct -full application of \qualid. In particular, the rules for implicit -arguments are the same as usual. For example use \texttt{@\qualid} if -you want to write implicit arguments explicitly. - -\Rem Parentheses over \qualid \dots \term$_n$ are mandatory. - -\Rem \texttt{functional induction (f x1 x2 x3)} is actually a wrapper -for \texttt{induction x1 x2 x3 (f x1 x2 x3) using \qualid} followed by -a cleaning phase, where {\qualid} is the induction principle -registered for $f$ (by the \texttt{Function} (see Section~\ref{Function}) -or \texttt{Functional Scheme} (see Section~\ref{FunScheme}) command) -corresponding to the sort of the goal. Therefore \texttt{functional - induction} may fail if the induction scheme {\qualid} is -not defined. See also Section~\ref{Function} for the function terms -accepted by \texttt{Function}. - -\Rem There is a difference between obtaining an induction scheme for a -function by using \texttt{Function} (see Section~\ref{Function}) and by -using \texttt{Functional Scheme} after a normal definition using -\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for -details. - -\SeeAlso{\ref{Function},\ref{FunScheme},\ref{FunScheme-examples}, - \ref{sec:functional-inversion}} - -\begin{ErrMsgs} -\item \errindex{Cannot find induction information on \qualid} -\item \errindex{Not the right number of induction arguments} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt functional induction (\qualid\ \term$_1$ \dots\ \term$_n$) - as {\disjconjintropattern} using \term$_{m+1}$ with \bindinglist} - - Similarly to \texttt{Induction} and \texttt{elim} - (see Section~\ref{Tac-induction}), this allows to give explicitly the - name of the introduced variables, the - induction principle, and the values of dependent premises of the - elimination scheme, including \emph{predicates} for mutual induction - when {\qualid} is part of a mutually recursive definition. - -\end{Variants} - -\subsection{\tt discriminate \term} -\label{discriminate} -\tacindex{discriminate} - - -This tactic proves any goal from an assumption stating that two -structurally different terms of an inductive set are equal. For -example, from {\tt (S (S O))=(S O)} we can derive by absurdity any -proposition. - -The argument {\term} is assumed to be a proof of a statement -of conclusion {\tt{\term$_1$} = {\term$_2$}} with {\term$_1$} and -{\term$_2$} being elements of an inductive set. To build the proof, -the tactic traverses the normal forms\footnote{Reminder: opaque - constants will not be expanded by $\delta$ reductions.} of -{\term$_1$} and {\term$_2$} looking for a couple of subterms {\tt u} -and {\tt w} ({\tt u} subterm of the normal form of {\term$_1$} and -{\tt w} subterm of the normal form of {\term$_2$}), placed at the same -positions and whose head symbols are two different constructors. If -such a couple of subterms exists, then the proof of the current goal -is completed, otherwise the tactic fails. - -\Rem The syntax {\tt discriminate {\ident}} can be used to refer to a -hypothesis quantified in the goal. In this case, the quantified -hypothesis whose name is {\ident} is first introduced in the local -context using \texttt{intros until \ident}. - -\begin{ErrMsgs} -\item \errindex{No primitive equality found} -\item \errindex{Not a discriminable equality} -\end{ErrMsgs} - -\begin{Variants} -\item \texttt{discriminate \num} - - This does the same thing as \texttt{intros until \num} followed by - \texttt{discriminate \ident} where {\ident} is the identifier for - the last introduced hypothesis. - -\item \texttt{discriminate {\term} with \bindinglist} - - This does the same thing as \texttt{discriminate {\term}} but using -the given bindings to instantiate parameters or hypotheses of {\term}. - -\item \texttt{ediscriminate \num}\tacindex{ediscriminate}\\ - \texttt{ediscriminate {\term} \zeroone{with \bindinglist}} - - This works the same as {\tt discriminate} but if the type of {\term}, - or the type of the hypothesis referred to by {\num}, has uninstantiated - parameters, these parameters are left as existential variables. - -\item \texttt{discriminate} - - This behaves like {\tt discriminate {\ident}} if {\ident} is the - name of an hypothesis to which {\tt discriminate} is applicable; if - the current goal is of the form {\term$_1$} {\tt <>} {\term$_2$}, - this behaves as {\tt intro {\ident}; injection {\ident}}. - - \ErrMsg \errindex{No discriminable equalities} -\end{Variants} - -\subsection{\tt injection \term} -\label{injection} -\tacindex{injection} - -The {\tt injection} tactic is based on the fact that constructors of -inductive sets are injections. That means that if $c$ is a constructor -of an inductive set, and if $(c~\vec{t_1})$ and $(c~\vec{t_2})$ are two -terms that are equal then $~\vec{t_1}$ and $~\vec{t_2}$ are equal -too. - -If {\term} is a proof of a statement of conclusion - {\tt {\term$_1$} = {\term$_2$}}, -then {\tt injection} applies injectivity as deep as possible to -derive the equality of all the subterms of {\term$_1$} and {\term$_2$} -placed in the same positions. For example, from {\tt (S - (S n))=(S (S (S m)))} we may derive {\tt n=(S m)}. To use this -tactic {\term$_1$} and {\term$_2$} should be elements of an inductive -set and they should be neither explicitly equal, nor structurally -different. We mean by this that, if {\tt n$_1$} and {\tt n$_2$} are -their respective normal forms, then: -\begin{itemize} -\item {\tt n$_1$} and {\tt n$_2$} should not be syntactically equal, -\item there must not exist any pair of subterms {\tt u} and {\tt w}, - {\tt u} subterm of {\tt n$_1$} and {\tt w} subterm of {\tt n$_2$} , - placed in the same positions and having different constructors as - head symbols. -\end{itemize} -If these conditions are satisfied, then, the tactic derives the -equality of all the subterms of {\term$_1$} and {\term$_2$} placed in -the same positions and puts them as antecedents of the current goal. - -\Example Consider the following goal: - -\begin{coq_example*} -Inductive list : Set := - | nil : list - | cons : nat -> list -> list. -Variable P : list -> Prop. -\end{coq_example*} -\begin{coq_eval} -Lemma ex : - forall (l:list) (n:nat), P nil -> cons n l = cons 0 nil -> P l. -intros l n H H0. -\end{coq_eval} -\begin{coq_example} -Show. -injection H0. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Beware that \texttt{injection} yields always an equality in a sigma type -whenever the injected object has a dependent type. - -\Rem There is a special case for dependent pairs. If we have a decidable -equality over the type of the first argument, then it is safe to do -the projection on the second one, and so {\tt injection} will work fine. -To define such an equality, you have to use the {\tt Scheme} command -(see \ref{Scheme}). - -\Rem If some quantified hypothesis of the goal is named {\ident}, then -{\tt injection {\ident}} first introduces the hypothesis in the local -context using \texttt{intros until \ident}. - -\begin{ErrMsgs} -\item \errindex{Not a projectable equality but a discriminable one} -\item \errindex{Nothing to do, it is an equality between convertible terms} -\item \errindex{Not a primitive equality} -\end{ErrMsgs} - -\begin{Variants} -\item \texttt{injection \num} - - This does the same thing as \texttt{intros until \num} followed by -\texttt{injection \ident} where {\ident} is the identifier for the last -introduced hypothesis. - -\item \texttt{injection {\term} with \bindinglist} - - This does the same as \texttt{injection {\term}} but using - the given bindings to instantiate parameters or hypotheses of {\term}. - -\item \texttt{einjection \num}\tacindex{einjection}\\ - \texttt{einjection {\term} \zeroone{with \bindinglist}} - - This works the same as {\tt injection} but if the type of {\term}, - or the type of the hypothesis referred to by {\num}, has uninstantiated - parameters, these parameters are left as existential variables. - -\item{\tt injection} - - If the current goal is of the form {\term$_1$} {\tt <>} {\term$_2$}, - this behaves as {\tt intro {\ident}; injection {\ident}}. - - \ErrMsg \errindex{goal does not satisfy the expected preconditions} - -\item \texttt{injection {\term} \zeroone{with \bindinglist} as \nelist{\intropattern}{}}\\ -\texttt{injection {\num} as {\intropattern} \dots\ \intropattern}\\ -\texttt{injection as {\intropattern} \dots\ \intropattern}\\ -\texttt{einjection {\term} \zeroone{with \bindinglist} as \nelist{\intropattern}{}}\\ -\texttt{einjection {\num} as {\intropattern} \dots\ \intropattern}\\ -\texttt{einjection as {\intropattern} \dots\ \intropattern} -\tacindex{injection \dots\ as} - -These variants apply \texttt{intros} \nelist{\intropattern}{} after -the call to \texttt{injection} or \texttt{einjection}. - -\end{Variants} - -\subsection{\tt inversion \ident} -\tacindex{inversion} - -Let the type of {\ident} in the local context be $(I~\vec{t})$, -where $I$ is a (co)inductive predicate. Then, -\texttt{inversion} applied to \ident~ derives for each possible -constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary -conditions that should hold for the instance $(I~\vec{t})$ to be -proved by $c_i$. - -\Rem If {\ident} does not denote a hypothesis in the local context -but refers to a hypothesis quantified in the goal, then the -latter is first introduced in the local context using -\texttt{intros until \ident}. - -\Rem As inversion proofs may be large in size, we recommend the user to -stock the lemmas whenever the same instance needs to be inverted -several times. See Section~\ref{Derive-Inversion}. - -\begin{Variants} -\item \texttt{inversion \num} - - This does the same thing as \texttt{intros until \num} then - \texttt{inversion \ident} where {\ident} is the identifier for the - last introduced hypothesis. - -\item \tacindex{inversion\_clear} \texttt{inversion\_clear \ident} - - This behaves as \texttt{inversion} and then erases \ident~ from the - context. - -\item \tacindex{inversion \dots\ as} \texttt{inversion {\ident} as \intropattern} - - This behaves as \texttt{inversion} but using names in - {\intropattern} for naming hypotheses. The {\intropattern} must have - the form {\tt [} $p_{11}$ \ldots $p_{1n_1}$ {\tt |} {\ldots} {\tt |} - $p_{m1}$ \ldots $p_{mn_m}$ {\tt ]} with $m$ being the number of - constructors of the type of {\ident}. Be careful that the list must - be of length $m$ even if {\tt inversion} discards some cases (which - is precisely one of its roles): for the discarded cases, just use an - empty list (i.e. $n_i=0$). - - The arguments of the $i^{th}$ constructor and the - equalities that {\tt inversion} introduces in the context of the - goal corresponding to the $i^{th}$ constructor, if it exists, get - their names from the list $p_{i1}$ \ldots $p_{in_i}$ in order. If - there are not enough names, {\tt induction} invents names for the - remaining variables to introduce. In case an equation splits into - several equations (because {\tt inversion} applies {\tt injection} - on the equalities it generates), the corresponding name $p_{ij}$ in - the list must be replaced by a sublist of the form {\tt [$p_{ij1}$ - \ldots $p_{ijq}$]} (or, equivalently, {\tt ($p_{ij1}$, - \ldots, $p_{ijq}$)}) where $q$ is the number of subequalities - obtained from splitting the original equation. Here is an example. - -\begin{coq_eval} -Require Import List. -\end{coq_eval} - -\begin{coq_example} -Inductive contains0 : list nat -> Prop := - | in_hd : forall l, contains0 (0 :: l) - | in_tl : forall l b, contains0 l -> contains0 (b :: l). -Goal forall l:list nat, contains0 (1 :: l) -> contains0 l. -intros l H; inversion H as [ | l' p Hl' [Heqp Heql'] ]. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\item \texttt{inversion {\num} as \intropattern} - - This allows to name the hypotheses introduced by - \texttt{inversion \num} in the context. - -\item \tacindex{inversion\_clear \dots\ as} \texttt{inversion\_clear - {\ident} as \intropattern} - - This allows to name the hypotheses introduced by - \texttt{inversion\_clear} in the context. - -\item \tacindex{inversion \dots\ in} \texttt{inversion {\ident} - in \ident$_1$ \dots\ \ident$_n$} - - Let \ident$_1$ \dots\ \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \dots\ \ident$_n$, and - then performing \texttt{inversion}. - -\item \tacindex{inversion \dots\ as \dots\ in} \texttt{inversion - {\ident} as {\intropattern} in \ident$_1$ \dots\ - \ident$_n$} - - This allows to name the hypotheses introduced in the context by - \texttt{inversion {\ident} in \ident$_1$ \dots\ \ident$_n$}. - -\item \tacindex{inversion\_clear \dots\ in} \texttt{inversion\_clear - {\ident} in \ident$_1$ \dots\ \ident$_n$} - - Let \ident$_1$ \dots\ \ident$_n$, be identifiers in the local context. This - tactic behaves as generalizing \ident$_1$ \dots\ \ident$_n$, and - then performing {\tt inversion\_clear}. - -\item \tacindex{inversion\_clear \dots\ as \dots\ in} - \texttt{inversion\_clear {\ident} as {\intropattern} - in \ident$_1$ \dots\ \ident$_n$} - - This allows to name the hypotheses introduced in the context by - \texttt{inversion\_clear {\ident} in \ident$_1$ \dots\ \ident$_n$}. - -\item \tacindex{dependent inversion} \texttt{dependent inversion \ident} - - That must be used when \ident\ appears in the current goal. It acts - like \texttt{inversion} and then substitutes \ident\ for the - corresponding term in the goal. - -\item \tacindex{dependent inversion \dots\ as } \texttt{dependent - inversion {\ident} as \intropattern} - - This allows to name the hypotheses introduced in the context by - \texttt{dependent inversion} {\ident}. - -\item \tacindex{dependent inversion\_clear} \texttt{dependent - inversion\_clear \ident} - - Like \texttt{dependent inversion}, except that {\ident} is cleared - from the local context. - -\item \tacindex{dependent inversion\_clear \dots\ as} - \texttt{dependent inversion\_clear {\ident} as \intropattern} - - This allows to name the hypotheses introduced in the context by - \texttt{dependent inversion\_clear} {\ident}. - -\item \tacindex{dependent inversion \dots\ with} \texttt{dependent - inversion {\ident} with \term} - - This variant allows you to specify the generalization of the goal. It - is useful when the system fails to generalize the goal automatically. If - {\ident} has type $(I~\vec{t})$ and $I$ has type - $\forall (\vec{x}:\vec{T}), s$, then \term~ must be of type - $I:\forall (\vec{x}:\vec{T}), I~\vec{x}\to s'$ where $s'$ is the - type of the goal. - -\item \tacindex{dependent inversion \dots\ as \dots\ with} - \texttt{dependent inversion {\ident} as {\intropattern} - with \term} - - This allows to name the hypotheses introduced in the context by - \texttt{dependent inversion {\ident} with \term}. - -\item \tacindex{dependent inversion\_clear \dots\ with} - \texttt{dependent inversion\_clear {\ident} with \term} - - Like \texttt{dependent inversion \dots\ with} but clears {\ident} from - the local context. - -\item \tacindex{dependent inversion\_clear \dots\ as \dots\ with} - \texttt{dependent inversion\_clear {\ident} as - {\intropattern} with \term} - - This allows to name the hypotheses introduced in the context by - \texttt{dependent inversion\_clear {\ident} with \term}. - -\item \tacindex{simple inversion} \texttt{simple inversion \ident} - - It is a very primitive inversion tactic that derives all the necessary - equalities but it does not simplify the constraints as - \texttt{inversion} does. - -\item \tacindex{simple inversion \dots\ as} \texttt{simple inversion - {\ident} as \intropattern} - - This allows to name the hypotheses introduced in the context by - \texttt{simple inversion}. - -\item \tacindex{inversion \dots\ using} \texttt{inversion {\ident} - using \ident$'$} - - Let {\ident} have type $(I~\vec{t})$ ($I$ an inductive - predicate) in the local context, and \ident$'$ be a (dependent) inversion - lemma. Then, this tactic refines the current goal with the specified - lemma. - -\item \tacindex{inversion \dots\ using \dots\ in} \texttt{inversion - {\ident} using \ident$'$ in \ident$_1$\dots\ \ident$_n$} - - This tactic behaves as generalizing \ident$_1$\dots\ \ident$_n$, - then doing \texttt{inversion {\ident} using \ident$'$}. - -\end{Variants} - -\firstexample -\example{Non-dependent inversion} -\label{inversion-examples} - -Let us consider the relation \texttt{Le} over natural numbers and the -following variables: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{coq_example*} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0 n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_example*} - -Let us consider the following goal: - -\begin{coq_eval} -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -To prove the goal, we may need to reason by cases on \texttt{H} and to -derive that \texttt{m} is necessarily of -the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$. -Deriving these conditions corresponds to prove that the -only possible constructor of \texttt{(Le (S n) m)} is -\texttt{LeS} and that we can invert the -\texttt{->} in the type of \texttt{LeS}. -This inversion is possible because \texttt{Le} is the smallest set closed by -the constructors \texttt{LeO} and \texttt{LeS}. - -\begin{coq_example} -inversion_clear H. -\end{coq_example} - -Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)} -and that the hypothesis \texttt{(Le n m0)} has been added to the -context. - -Sometimes it is -interesting to have the equality \texttt{m=(S m0)} in the -context to use it after. In that case we can use \texttt{inversion} that -does not clear the equalities: - -\begin{coq_eval} -Undo. -\end{coq_eval} - -\begin{coq_example} -inversion H. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\example{Dependent inversion} - -Let us consider the following goal: - -\begin{coq_eval} -Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -As \texttt{H} occurs in the goal, we may want to reason by cases on its -structure and so, we would like inversion tactics to -substitute \texttt{H} by the corresponding term in constructor form. -Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a -substitution. -To have such a behavior we use the dependent inversion tactics: - -\begin{coq_example} -dependent inversion_clear H. -\end{coq_example} - -Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and -\texttt{m} by \texttt{(S m0)}. - -\subsection{\tt fix {\ident} {\num}} -\tacindex{fix} -\label{tactic:fix} - -This tactic is a primitive tactic to start a proof by induction. In -general, it is easier to rely on higher-level induction tactics such -as the ones described in Section~\ref{Tac-induction}. - -In the syntax of the tactic, the identifier {\ident} is the name given -to the induction hypothesis. The natural number {\num} tells on which -premise of the current goal the induction acts, starting -from 1 and counting both dependent and non dependent -products. Especially, the current lemma must be composed of at least -{\num} products. - -Like in a {\tt fix} expression, the induction -hypotheses have to be used on structurally smaller arguments. -The verification that inductive proof arguments are correct is done -only at the time of registering the lemma in the environment. To know -if the use of induction hypotheses is correct at some -time of the interactive development of a proof, use the command {\tt - Guarded} (see Section~\ref{Guarded}). - -\begin{Variants} - \item {\tt fix \ident$_1$ {\num} with ( \ident$_2$ - \nelist{\binder$_2$}{} \zeroone{\{ struct \ident$'_2$ - \}} :~\type$_2$ ) \dots\ ( \ident$_n$ - \nelist{\binder$_n$}{} \zeroone{\{ struct \ident$'_n$ \}} :~\type$_n$ )} - -This starts a proof by mutual induction. The statements to be -simultaneously proved are respectively {\tt forall} - \nelist{{\binder}$_2$}{}{\tt ,} {\type}$_2$, {\ldots}, {\tt forall} - \nelist{{\binder}$_n$}{}{\tt ,} {\type}$_n$. The identifiers -{\ident}$_1$ {\ldots} {\ident}$_n$ are the names of the induction -hypotheses. The identifiers {\ident}$'_2$ {\ldots} {\ident}$'_n$ are the -respective names of the premises on which the induction is performed -in the statements to be simultaneously proved (if not given, the -system tries to guess itself what they are). - -\end{Variants} - -\subsection{\tt cofix \ident} -\tacindex{cofix} -\label{tactic:cofix} - -This tactic starts a proof by coinduction. The identifier {\ident} is -the name given to the coinduction hypothesis. Like in a {\tt cofix} -expression, the use of induction hypotheses have to guarded by a -constructor. The verification that the use of co-inductive hypotheses -is correct is done only at the time of registering the lemma in the -environment. To know if the use of coinduction hypotheses is correct -at some time of the interactive development of a proof, use the -command {\tt Guarded} (see Section~\ref{Guarded}). - - -\begin{Variants} - \item {\tt cofix \ident$_1$ with ( \ident$_2$ - \nelist{\binder$_2$}{} :~\type$_2$ ) \dots\ ( - \ident$_n$ \nelist{\binder$_n$}{} :~\type$_n$ )} - -This starts a proof by mutual coinduction. The statements to be -simultaneously proved are respectively {\tt forall} -\nelist{{\binder}$_2$}{}{\tt ,} {\type}$_2$, {\ldots}, {\tt forall} - \nelist{{\binder}$_n$}{}{\tt ,} {\type}$_n$. The identifiers - {\ident}$_1$ {\ldots} {\ident}$_n$ are the names of the - coinduction hypotheses. - -\end{Variants} - -\section{Rewriting expressions} - - -These tactics use the equality {\tt eq:forall A:Type, A->A->Prop} -defined in file {\tt Logic.v} (see Section~\ref{Equality}). The -notation for {\tt eq}~$T~t~u$ is simply {\tt $t$=$u$} dropping the -implicit type of $t$ and $u$. - -\subsection{\tt rewrite \term -\label{rewrite} -\tacindex{rewrite}} - -This tactic applies to any goal. The type of {\term} -must have the form - -\texttt{forall (x$_1$:A$_1$) \dots\ (x$_n$:A$_n$)}\texttt{eq} \term$_1$ \term$_2$. - -\noindent where \texttt{eq} is the Leibniz equality or a registered -setoid equality. - -\noindent Then {\tt rewrite \term} finds the first subterm matching -\term$_1$ in the goal, resulting in instances \term$_1'$ and \term$_2'$ -and then replaces every occurrence of \term$_1'$ by \term$_2'$. -Hence, some of the variables x$_i$ are -solved by unification, and some of the types \texttt{A}$_1$, \dots, -\texttt{A}$_n$ become new subgoals. - -% \Rem In case the type of -% \term$_1$ contains occurrences of variables bound in the -% type of \term, the tactic tries first to find a subterm of the goal -% which matches this term in order to find a closed instance \term$'_1$ -% of \term$_1$, and then all instances of \term$'_1$ will be replaced. - -\begin{ErrMsgs} -\item \errindex{The term provided does not end with an equation} - -\item \errindex{Tactic generated a subgoal identical to the original goal}\\ -This happens if \term$_1$ does not occur in the goal. -\end{ErrMsgs} - -\begin{Variants} -\item {\tt rewrite -> {\term}}\tacindex{rewrite ->}\\ - Is equivalent to {\tt rewrite \term} - -\item {\tt rewrite <- {\term}}\tacindex{rewrite <-}\\ - Uses the equality \term$_1${\tt=}\term$_2$ from right to left - -\item {\tt rewrite {\term} in \textit{clause}} - \tacindex{rewrite \dots\ in}\\ - Analogous to {\tt rewrite {\term}} but rewriting is done following - \textit{clause} (similarly to \ref{Conversion-tactics}). For - instance: - \begin{itemize} - \item \texttt{rewrite H in H1} will rewrite \texttt{H} in the hypothesis - \texttt{H1} instead of the current goal. - \item \texttt{rewrite H in H1 at 1, H2 at - 2 |- *} means \texttt{rewrite H; rewrite H in H1 at 1; - rewrite H in H2 at - 2}. In particular a failure will happen if any of - these three simpler tactics fails. - \item \texttt{rewrite H in * |- } will do \texttt{rewrite H in - H$_i$} for all hypothesis \texttt{H$_i$ <> H}. A success will happen - as soon as at least one of these simpler tactics succeeds. - \item \texttt{rewrite H in *} is a combination of \texttt{rewrite H} - and \texttt{rewrite H in * |-} that succeeds if at - least one of these two tactics succeeds. - \end{itemize} - Orientation {\tt ->} or {\tt <-} can be - inserted before the term to rewrite. - -\item {\tt rewrite {\term} at {\occlist}} - \tacindex{rewrite \dots\ at} - - Rewrite only the given occurrences of \term$_1'$. Occurrences are - specified from left to right as for \texttt{pattern} (\S - \ref{pattern}). The rewrite is always performed using setoid - rewriting, even for Leibniz's equality, so one has to - \texttt{Import Setoid} to use this variant. - -\item {\tt rewrite {\term} by {\tac}} - \tacindex{rewrite \dots\ by} - - Use {\tac} to completely solve the side-conditions arising from the - rewrite. - -\item {\tt rewrite $\term_1$, \ldots, $\term_n$}\\ - Is equivalent to the $n$ successive tactics {\tt rewrite $\term_1$} - up to {\tt rewrite $\term_n$}, each one working on the first subgoal - generated by the previous one. - Orientation {\tt ->} or {\tt <-} can be - inserted before each term to rewrite. One unique \textit{clause} - can be added at the end after the keyword {\tt in}; it will - then affect all rewrite operations. - -\item In all forms of {\tt rewrite} described above, a term to rewrite - can be immediately prefixed by one of the following modifiers: - \begin{itemize} - \item {\tt ?} : the tactic {\tt rewrite ?$\term$} performs the - rewrite of $\term$ as many times as possible (perhaps zero time). - This form never fails. - \item {\tt $n$?} : works similarly, except that it will do at most - $n$ rewrites. - \item {\tt !} : works as {\tt ?}, except that at least one rewrite - should succeed, otherwise the tactic fails. - \item {\tt $n$!} (or simply {\tt $n$}) : precisely $n$ rewrites - of $\term$ will be done, leading to failure if these $n$ rewrites are not possible. - \end{itemize} - -\item {\tt erewrite {\term}\tacindex{erewrite}} - -This tactic works as {\tt rewrite {\term}} but turning unresolved -bindings into existential variables, if any, instead of failing. It has -the same variants as {\tt rewrite} has. - -\end{Variants} - - -\subsection{\tt cutrewrite -> \term$_1$ = \term$_2$ -\label{cutrewrite} -\tacindex{cutrewrite}} - -This tactic acts like {\tt replace {\term$_1$} with {\term$_2$}} -(see below). - -\subsection{\tt replace {\term$_1$} with {\term$_2$} -\label{tactic:replace} -\tacindex{replace \dots\ with}} - -This tactic applies to any goal. It replaces all free occurrences of -{\term$_1$} in the current goal with {\term$_2$} and generates the -equality {\term$_2$}{\tt =}{\term$_1$} as a subgoal. This equality is -automatically solved if it occurs amongst the assumption, or if its -symmetric form occurs. It is equivalent to {\tt cut -\term$_2$=\term$_1$; [intro H{\sl n}; rewrite <- H{\sl n}; clear H{\sl -n}| assumption || symmetry; try assumption]}. - -\begin{ErrMsgs} -\item \errindex{terms do not have convertible types} -\end{ErrMsgs} - -\begin{Variants} -\item {\tt replace {\term$_1$} with {\term$_2$} by \tac}\\ This acts - as {\tt replace {\term$_1$} with {\term$_2$}} but applies {\tt \tac} - to solve the generated subgoal {\tt \term$_2$=\term$_1$}. -\item {\tt replace {\term}}\\ Replace {\term} with {\term'} using the - first assumption whose type has the form {\tt \term=\term'} or {\tt - \term'=\term} -\item {\tt replace -> {\term}}\\ Replace {\term} with {\term'} using the - first assumption whose type has the form {\tt \term=\term'} -\item {\tt replace <- {\term}}\\ Replace {\term} with {\term'} using the - first assumption whose type has the form {\tt \term'=\term} -\item {\tt replace {\term$_1$} with {\term$_2$} \textit{clause} }\\ - {\tt replace {\term$_1$} with {\term$_2$} \textit{clause} by \tac }\\ - {\tt replace {\term} \textit{clause}}\\ - {\tt replace -> {\term} \textit{clause}}\\ - {\tt replace <- {\term} \textit{clause}}\\ - Act as before but the replacements take place in - \textit{clause}~(see Section~\ref{Conversion-tactics}) and not only - in the conclusion of the goal.\\ - The \textit{clause} argument must not contain any \texttt{type of} nor \texttt{value of}. -\end{Variants} - -\subsection{\tt reflexivity -\label{reflexivity} -\tacindex{reflexivity}} - -This tactic applies to a goal which has the form {\tt t=u}. It checks -that {\tt t} and {\tt u} are convertible and then solves the goal. -It is equivalent to {\tt apply refl\_equal}. - -\begin{ErrMsgs} -\item \errindex{The conclusion is not a substitutive equation} -\item \errindex{Impossible to unify \dots\ with \dots.} -\end{ErrMsgs} - -\subsection{\tt symmetry -\tacindex{symmetry} -\tacindex{symmetry in}} -This tactic applies to a goal which has the form {\tt t=u} and changes it -into {\tt u=t}. - -\variant {\tt symmetry in {\ident}}\\ -If the statement of the hypothesis {\ident} has the form {\tt t=u}, -the tactic changes it to {\tt u=t}. - -\subsection{\tt transitivity \term -\tacindex{transitivity}} -This tactic applies to a goal which has the form {\tt t=u} -and transforms it into the two subgoals -{\tt t={\term}} and {\tt {\term}=u}. - -\subsection{\tt subst {\ident} -\tacindex{subst}} - -This tactic applies to a goal which has \ident\ in its context and -(at least) one hypothesis, say {\tt H}, of type {\tt - \ident=t} or {\tt t=\ident}. Then it replaces -\ident\ by {\tt t} everywhere in the goal (in the hypotheses -and in the conclusion) and clears \ident\ and {\tt H} from the context. - -\Rem -When several hypotheses have the form {\tt \ident=t} or {\tt - t=\ident}, the first one is used. - -\begin{Variants} - \item {\tt subst \ident$_1$ \dots \ident$_n$} \\ - Is equivalent to {\tt subst \ident$_1$; \dots; subst \ident$_n$}. - \item {\tt subst} \\ - Applies {\tt subst} repeatedly to all identifiers from the context - for which an equality exists. -\end{Variants} - -\subsection[{\tt stepl {\term}}]{{\tt stepl {\term}}\tacindex{stepl}} - -This tactic is for chaining rewriting steps. It assumes a goal of the -form ``$R$ {\term}$_1$ {\term}$_2$'' where $R$ is a binary relation -and relies on a database of lemmas of the form {\tt forall} $x$ $y$ -$z$, $R$ $x$ $y$ {\tt ->} $eq$ $x$ $z$ {\tt ->} $R$ $z$ $y$ where $eq$ -is typically a setoid equality. The application of {\tt stepl {\term}} -then replaces the goal by ``$R$ {\term} {\term}$_2$'' and adds a new -goal stating ``$eq$ {\term} {\term}$_1$''. - -Lemmas are added to the database using the command -\comindex{Declare Left Step} -\begin{quote} -{\tt Declare Left Step {\term}.} -\end{quote} - -The tactic is especially useful for parametric setoids which are not -accepted as regular setoids for {\tt rewrite} and {\tt - setoid\_replace} (see Chapter~\ref{setoid_replace}). - -\tacindex{stepr} -\comindex{Declare Right Step} -\begin{Variants} -\item{\tt stepl {\term} by {\tac}}\\ -This applies {\tt stepl {\term}} then applies {\tac} to the second goal. - -\item{\tt stepr {\term}}\\ - {\tt stepr {\term} by {\tac}}\\ -This behaves as {\tt stepl} but on the right-hand-side of the binary relation. -Lemmas are expected to be of the form -``{\tt forall} $x$ $y$ -$z$, $R$ $x$ $y$ {\tt ->} $eq$ $y$ $z$ {\tt ->} $R$ $x$ $z$'' -and are registered using the command -\begin{quote} -{\tt Declare Right Step {\term}.} -\end{quote} -\end{Variants} - -\subsection{\tt change \term -\tacindex{change} -\label{change}} - -This tactic applies to any goal. It implements the rule -``Conv''\index{Typing rules!Conv} given in Section~\ref{Conv}. {\tt - change U} replaces the current goal \T\ with \U\ providing that -\U\ is well-formed and that \T\ and \U\ are convertible. - -\begin{ErrMsgs} -\item \errindex{Not convertible} -\end{ErrMsgs} - -\tacindex{change \dots\ in} -\begin{Variants} -\item {\tt change \term$_1$ with \term$_2$} - - This replaces the occurrences of \term$_1$ by \term$_2$ in the - current goal. The terms \term$_1$ and \term$_2$ must be - convertible. - -\item {\tt change \term$_1$ at \num$_1$ \dots\ \num$_i$ with \term$_2$} - - This replaces the occurrences numbered \num$_1$ \dots\ \num$_i$ of - \term$_1$ by \term$_2$ in the current goal. - The terms \term$_1$ and \term$_2$ must be convertible. - - \ErrMsg {\tt Too few occurrences} - -\item {\tt change {\term} in {\ident}} - -\item {\tt change \term$_1$ with \term$_2$ in {\ident}} - -\item {\tt change \term$_1$ at \num$_1$ \dots\ \num$_i$ with \term$_2$ in - {\ident}} - - This applies the {\tt change} tactic not to the goal but to the - hypothesis {\ident}. - -\end{Variants} - -\SeeAlso \ref{Conversion-tactics} - - -\section{Performing computations -\index{Conversion tactics} -\label{Conversion-tactics}} - -This set of tactics implements different specialized usages of the -tactic \texttt{change}. - -All conversion tactics (including \texttt{change}) can be -parameterized by the parts of the goal where the conversion can -occur. This is done using \emph{goal clauses} which consists in a list -of hypotheses and, optionally, of a reference to the conclusion of the -goal. For defined hypothesis it is possible to specify if the -conversion should occur on the type part, the body part or both -(default). - -\index{Clauses} -\index{Goal clauses} -Goal clauses are written after a conversion tactic (tactics -\texttt{set}~\ref{tactic:set}, \texttt{rewrite}~\ref{rewrite}, -\texttt{replace}~\ref{tactic:replace} and -\texttt{autorewrite}~\ref{tactic:autorewrite} also use goal clauses) and -are introduced by the keyword \texttt{in}. If no goal clause is provided, -the default is to perform the conversion only in the conclusion. - -The syntax and description of the various goal clauses is the following: -\begin{description} -\item[]\texttt{in {\ident}$_1$ $\ldots$ {\ident}$_n$ |- } only in hypotheses {\ident}$_1$ - \ldots {\ident}$_n$ -\item[]\texttt{in {\ident}$_1$ $\ldots$ {\ident}$_n$ |- *} in hypotheses {\ident}$_1$ \ldots - {\ident}$_n$ and in the conclusion -\item[]\texttt{in * |-} in every hypothesis -\item[]\texttt{in *} (equivalent to \texttt{in * |- *}) everywhere -\item[]\texttt{in (type of {\ident}$_1$) (value of {\ident}$_2$) $\ldots$ |-} in - type part of {\ident}$_1$, in the value part of {\ident}$_2$, etc. -\end{description} - -For backward compatibility, the notation \texttt{in}~{\ident}$_1$\ldots {\ident}$_n$ -performs the conversion in hypotheses {\ident}$_1$\ldots {\ident}$_n$. - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%voir reduction__conv_x : histoires d'univers. -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\subsection[{\tt cbv \flag$_1$ \dots\ \flag$_n$}, {\tt lazy \flag$_1$ -\dots\ \flag$_n$} and {\tt compute}] -{{\tt cbv \flag$_1$ \dots\ \flag$_n$}, {\tt lazy \flag$_1$ -\dots\ \flag$_n$} and {\tt compute} -\tacindex{cbv} -\tacindex{lazy} -\tacindex{compute} -\tacindex{vm\_compute}\label{vmcompute}} - -These parameterized reduction tactics apply to any goal and perform -the normalization of the goal according to the specified flags. In -correspondence with the kinds of reduction considered in \Coq\, namely -$\beta$ (reduction of functional application), $\delta$ (unfolding of -transparent constants, see \ref{Transparent}), $\iota$ (reduction of -pattern-matching over a constructed term, and unfolding of {\tt fix} -and {\tt cofix} expressions) and $\zeta$ (contraction of local -definitions), the flag are either {\tt beta}, {\tt delta}, {\tt iota} -or {\tt zeta}. The {\tt delta} flag itself can be refined into {\tt -delta [\qualid$_1$\ldots\qualid$_k$]} or {\tt delta --[\qualid$_1$\ldots\qualid$_k$]}, restricting in the first case the -constants to unfold to the constants listed, and restricting in the -second case the constant to unfold to all but the ones explicitly -mentioned. Notice that the {\tt delta} flag does not apply to -variables bound by a let-in construction inside the term itself (use -here the {\tt zeta} flag). In any cases, opaque constants are not -unfolded (see Section~\ref{Opaque}). - -The goal may be normalized with two strategies: {\em lazy} ({\tt lazy} -tactic), or {\em call-by-value} ({\tt cbv} tactic). The lazy strategy -is a call-by-need strategy, with sharing of reductions: the arguments of a -function call are partially evaluated only when necessary, and if an -argument is used several times then it is computed only once. This -reduction is efficient for reducing expressions with dead code. For -instance, the proofs of a proposition {\tt exists~$x$. $P(x)$} reduce to a -pair of a witness $t$, and a proof that $t$ satisfies the predicate -$P$. Most of the time, $t$ may be computed without computing the proof -of $P(t)$, thanks to the lazy strategy. - -The call-by-value strategy is the one used in ML languages: the -arguments of a function call are evaluated first, using a weak -reduction (no reduction under the $\lambda$-abstractions). Despite the -lazy strategy always performs fewer reductions than the call-by-value -strategy, the latter is generally more efficient for evaluating purely -computational expressions (i.e. with few dead code). - -\begin{Variants} -\item {\tt compute} \tacindex{compute}\\ - {\tt cbv} - - These are synonyms for {\tt cbv beta delta iota zeta}. - -\item {\tt lazy} - - This is a synonym for {\tt lazy beta delta iota zeta}. - -\item {\tt compute [\qualid$_1$\ldots\qualid$_k$]}\\ - {\tt cbv [\qualid$_1$\ldots\qualid$_k$]} - - These are synonyms of {\tt cbv beta delta - [\qualid$_1$\ldots\qualid$_k$] iota zeta}. - -\item {\tt compute -[\qualid$_1$\ldots\qualid$_k$]}\\ - {\tt cbv -[\qualid$_1$\ldots\qualid$_k$]} - - These are synonyms of {\tt cbv beta delta - -[\qualid$_1$\ldots\qualid$_k$] iota zeta}. - -\item {\tt lazy [\qualid$_1$\ldots\qualid$_k$]}\\ - {\tt lazy -[\qualid$_1$\ldots\qualid$_k$]} - - These are respectively synonyms of {\tt lazy beta delta - [\qualid$_1$\ldots\qualid$_k$] iota zeta} and {\tt lazy beta delta - -[\qualid$_1$\ldots\qualid$_k$] iota zeta}. - -\item {\tt vm\_compute} \tacindex{vm\_compute} - - This tactic evaluates the goal using the optimized call-by-value - evaluation bytecode-based virtual machine. This algorithm is - dramatically more efficient than the algorithm used for the {\tt - cbv} tactic, but it cannot be fine-tuned. It is specially - interesting for full evaluation of algebraic objects. This includes - the case of reflexion-based tactics. - -\end{Variants} - -% Obsolete? Anyway not very important message -%\begin{ErrMsgs} -%\item \errindex{Delta must be specified before} -% -% A list of constants appeared before the {\tt delta} flag. -%\end{ErrMsgs} - - -\subsection{{\tt red} -\tacindex{red}} - -This tactic applies to a goal which has the form {\tt - forall (x:T1)\dots(xk:Tk), c t1 \dots\ tn} where {\tt c} is a constant. If -{\tt c} is transparent then it replaces {\tt c} with its definition -(say {\tt t}) and then reduces {\tt (t t1 \dots\ tn)} according to -$\beta\iota\zeta$-reduction rules. - -\begin{ErrMsgs} -\item \errindex{Not reducible} -\end{ErrMsgs} - -\subsection{{\tt hnf} -\tacindex{hnf}} - -This tactic applies to any goal. It replaces the current goal with its -head normal form according to the $\beta\delta\iota\zeta$-reduction -rules, i.e. it reduces the head of the goal until it becomes a -product or an irreducible term. - -\Example -The term \verb+forall n:nat, (plus (S n) (S n))+ is not reduced by {\tt hnf}. - -\Rem The $\delta$ rule only applies to transparent constants -(see Section~\ref{Opaque} on transparency and opacity). - -\subsection{\tt simpl -\tacindex{simpl}} - -This tactic applies to any goal. The tactic {\tt simpl} first applies -$\beta\iota$-reduction rule. Then it expands transparent constants -and tries to reduce {\tt T'} according, once more, to $\beta\iota$ -rules. But when the $\iota$ rule is not applicable then possible -$\delta$-reductions are not applied. For instance trying to use {\tt -simpl} on {\tt (plus n O)=n} changes nothing. Notice that only -transparent constants whose name can be reused as such in the -recursive calls are possibly unfolded. For instance a constant defined -by {\tt plus' := plus} is possibly unfolded and reused in the -recursive calls, but a constant such as {\tt succ := plus (S O)} is -never unfolded. - -The behavior of {\tt simpl} can be tuned using the {\tt Arguments} vernacular -command as follows: -\comindex{Arguments} -\begin{itemize} -\item -A constant can be marked to be never unfolded by {\tt simpl}: -\begin{coq_example*} -Arguments minus x y : simpl never -\end{coq_example*} -After that command an expression like {\tt (minus (S x) y)} is left untouched by -the {\tt simpl} tactic. -\item -A constant can be marked to be unfolded only if applied to enough arguments. -The number of arguments required can be specified using -the {\tt /} symbol in the arguments list of the {\tt Arguments} vernacular -command. -\begin{coq_example*} -Definition fcomp A B C f (g : A -> B) (x : A) : C := f (g x). -Notation "f \o g" := (fcomp f g) (at level 50). -Arguments fcomp {A B C} f g x /. -\end{coq_example*} -After that command the expression {\tt (f \verb+\+o g)} is left untouched by -{\tt simpl} while {\tt ((f \verb+\+o g) t)} is reduced to {\tt (f (g t))}. -The same mechanism can be used to make a constant volatile, i.e. always -unfolded by {\tt simpl}. -\begin{coq_example*} -Definition volatile := fun x : nat => x. -Arguments volatile / x. -\end{coq_example*} -\item -A constant can be marked to be unfolded only if an entire set of arguments -evaluates to a constructor. The {\tt !} symbol can be used to mark such -arguments. -\begin{coq_example*} -Arguments minus !x !y. -\end{coq_example*} -After that command, the expression {\tt (minus (S x) y)} is left untouched by -{\tt simpl}, while {\tt (minus (S x) (S y))} is reduced to {\tt (minus x y)}. -\item -A special heuristic to determine if a constant has to be unfolded can be -activated with the following command: -\begin{coq_example*} -Arguments minus x y : simpl nomatch -\end{coq_example*} -The heuristic avoids to perform a simplification step that would -expose a {\tt match} construct in head position. For example the -expression {\tt (minus (S (S x)) (S y))} is simplified to -{\tt (minus (S x) y)} even if an extra simplification is possible. -\end{itemize} - -\tacindex{simpl \dots\ in} -\begin{Variants} -\item {\tt simpl {\term}} - - This applies {\tt simpl} only to the occurrences of {\term} in the - current goal. - -\item {\tt simpl {\term} at \num$_1$ \dots\ \num$_i$} - - This applies {\tt simpl} only to the \num$_1$, \dots, \num$_i$ - occurrences of {\term} in the current goal. - - \ErrMsg {\tt Too few occurrences} - -\item {\tt simpl {\ident}} - - This applies {\tt simpl} only to the applicative subterms whose head - occurrence is {\ident}. - -\item {\tt simpl {\ident} at \num$_1$ \dots\ \num$_i$} - - This applies {\tt simpl} only to the \num$_1$, \dots, \num$_i$ -applicative subterms whose head occurrence is {\ident}. - -\end{Variants} - -\subsection{\tt unfold \qualid -\tacindex{unfold} -\label{unfold}} - -This tactic applies to any goal. The argument {\qualid} must denote a -defined transparent constant or local definition (see Sections~\ref{Basic-definitions} and~\ref{Transparent}). The tactic {\tt - unfold} applies the $\delta$ rule to each occurrence of the constant -to which {\qualid} refers in the current goal and then replaces it -with its $\beta\iota$-normal form. - -\begin{ErrMsgs} -\item {\qualid} \errindex{does not denote an evaluable constant} - -\end{ErrMsgs} - -\begin{Variants} -\item {\tt unfold {\qualid}$_1$, \dots, \qualid$_n$} - \tacindex{unfold \dots\ in} - - Replaces {\em simultaneously} {\qualid}$_1$, \dots, {\qualid}$_n$ - with their definitions and replaces the current goal with its - $\beta\iota$ normal form. - -\item {\tt unfold {\qualid}$_1$ at \num$_1^1$, \dots, \num$_i^1$, -\dots,\ \qualid$_n$ at \num$_1^n$ \dots\ \num$_j^n$} - - The lists \num$_1^1$, \dots, \num$_i^1$ and \num$_1^n$, \dots, - \num$_j^n$ specify the occurrences of {\qualid}$_1$, \dots, - \qualid$_n$ to be unfolded. Occurrences are located from left to - right. - - \ErrMsg {\tt bad occurrence number of {\qualid}$_i$} - - \ErrMsg {\qualid}$_i$ {\tt does not occur} - -\item {\tt unfold {\qstring}} - - If {\qstring} denotes the discriminating symbol of a notation (e.g. {\tt - "+"}) or an expression defining a notation (e.g. \verb!"_ + _"!), and - this notation refers to an unfoldable constant, then the tactic - unfolds it. - -\item {\tt unfold {\qstring}\%{\delimkey}} - - This is variant of {\tt unfold {\qstring}} where {\qstring} gets its - interpretation from the scope bound to the delimiting key - {\delimkey} instead of its default interpretation (see - Section~\ref{scopechange}). - -\item {\tt unfold \qualidorstring$_1$ at \num$_1^1$, \dots, \num$_i^1$, -\dots,\ \qualidorstring$_n$ at \num$_1^n$ \dots\ \num$_j^n$} - - This is the most general form, where {\qualidorstring} is either a - {\qualid} or a {\qstring} referring to a notation. - -\end{Variants} - -\subsection{{\tt fold} \term -\tacindex{fold}} - -This tactic applies to any goal. The term \term\ is reduced using the {\tt red} -tactic. Every occurrence of the resulting term in the goal is then -replaced by \term. - -\begin{Variants} -\item {\tt fold} \term$_1$ \dots\ \term$_n$ - - Equivalent to {\tt fold} \term$_1${\tt;}\ldots{\tt; fold} \term$_n$. -\end{Variants} - -\subsection{{\tt pattern {\term}} -\tacindex{pattern} -\label{pattern}} - -This command applies to any goal. The argument {\term} must be a free -subterm of the current goal. The command {\tt pattern} performs -$\beta$-expansion (the inverse of $\bt$-reduction) of the current goal -(say \T) by -\begin{enumerate} -\item replacing all occurrences of {\term} in {\T} with a fresh variable -\item abstracting this variable -\item applying the abstracted goal to {\term} -\end{enumerate} - -For instance, if the current goal $T$ is expressible has $\phi(t)$ -where the notation captures all the instances of $t$ in $\phi(t)$, -then {\tt pattern $t$} transforms it into {\tt (fun x:$A$ => $\phi(${\tt -x}$)$) $t$}. This command can be used, for instance, when the tactic -{\tt apply} fails on matching. - -\begin{Variants} -\item {\tt pattern {\term} at {\num$_1$} \dots\ {\num$_n$}} - - Only the occurrences {\num$_1$} \dots\ {\num$_n$} of {\term} are - considered for $\beta$-expansion. Occurrences are located from left - to right. - -\item {\tt pattern {\term} at - {\num$_1$} \dots\ {\num$_n$}} - - All occurrences except the occurrences of indexes {\num$_1$} \dots\ - {\num$_n$} of {\term} are considered for - $\beta$-expansion. Occurrences are located from left to right. - -\item {\tt pattern {\term$_1$}, \dots, {\term$_m$}} - - Starting from a goal $\phi(t_1 \dots\ t_m)$, the tactic - {\tt pattern $t_1$, \dots,\ $t_m$} generates the equivalent goal {\tt - (fun (x$_1$:$A_1$) \dots\ (x$_m$:$A_m$) => $\phi(${\tt x$_1$\dots\ - x$_m$}$)$) $t_1$ \dots\ $t_m$}.\\ If $t_i$ occurs in one of the - generated types $A_j$ these occurrences will also be considered and - possibly abstracted. - -\item {\tt pattern {\term$_1$} at {\num$_1^1$} \dots\ {\num$_{n_1}^1$}, \dots, - {\term$_m$} at {\num$_1^m$} \dots\ {\num$_{n_m}^m$}} - - This behaves as above but processing only the occurrences \num$_1^1$, - \dots, \num$_i^1$ of \term$_1$, \dots, \num$_1^m$, \dots, \num$_j^m$ - of \term$_m$ starting from \term$_m$. - -\item {\tt pattern} {\term$_1$} \zeroone{{\tt at \zeroone{-}} {\num$_1^1$} \dots\ {\num$_{n_1}^1$}} {\tt ,} \dots {\tt ,} - {\term$_m$} \zeroone{{\tt at \zeroone{-}} {\num$_1^m$} \dots\ {\num$_{n_m}^m$}} - - This is the most general syntax that combines the different variants. - -\end{Variants} - -\subsection{Conversion tactics applied to hypotheses} - -{\convtactic} {\tt in} \ident$_1$ \dots\ \ident$_n$ - -Applies the conversion tactic {\convtactic} to the -hypotheses \ident$_1$, \ldots, \ident$_n$. The tactic {\convtactic} is -any of the conversion tactics listed in this section. - -If \ident$_i$ is a local definition, then \ident$_i$ can be replaced -by (Type of \ident$_i$) to address not the body but the type of the -local definition. Example: {\tt unfold not in (Type of H1) (Type of H3).} - -\begin{ErrMsgs} -\item \errindex{No such hypothesis} : {\ident}. -\end{ErrMsgs} - - -\section{Automation} -\subsection{\tt auto -\label{auto} -\tacindex{auto}} - -This tactic implements a Prolog-like resolution procedure to solve the -current goal. It first tries to solve the goal using the {\tt - assumption} tactic, then it reduces the goal to an atomic one using -{\tt intros} and introducing the newly generated hypotheses as hints. -Then it looks at the list of tactics associated to the head symbol of -the goal and tries to apply one of them (starting from the tactics -with lower cost). This process is recursively applied to the generated -subgoals. - -By default, \texttt{auto} only uses the hypotheses of the current goal and the -hints of the database named {\tt core}. - -\begin{Variants} - -\item {\tt auto \num} - - Forces the search depth to be \num. The maximal search depth is 5 by - default. - -\item {\tt auto with \ident$_1$ \dots\ \ident$_n$} - - Uses the hint databases $\ident_1$ \dots\ $\ident_n$ in addition to - the database {\tt core}. See Section~\ref{Hints-databases} for the - list of pre-defined databases and the way to create or extend a - database. This option can be combined with the previous one. - -\item {\tt auto with *} - - Uses all existing hint databases, minus the special database - {\tt v62}. See Section~\ref{Hints-databases} - -\item \texttt{auto using \nterm{lemma}$_1$ , \ldots , \nterm{lemma}$_n$} - - Uses \nterm{lemma}$_1$, \ldots, \nterm{lemma}$_n$ in addition to - hints (can be combined with the \texttt{with \ident} option). If - $lemma_i$ is an inductive type, it is the collection of its - constructors which is added as hints. - -\item \texttt{auto using \nterm{lemma}$_1$ , \ldots , \nterm{lemma}$_n$ with \ident$_1$ \dots\ \ident$_n$} - - This combines the effects of the {\tt using} and {\tt with} options. - -\item {\tt trivial}\tacindex{trivial} - - This tactic is a restriction of {\tt auto} that is not recursive and - tries only hints which cost 0. Typically it solves trivial - equalities like $X=X$. - -\item \texttt{trivial with \ident$_1$ \dots\ \ident$_n$} - -\item \texttt{trivial with *} - -\end{Variants} - -\Rem {\tt auto} either solves completely the goal or else leaves it -intact. \texttt{auto} and \texttt{trivial} never fail. - -\SeeAlso Section~\ref{Hints-databases} - -\subsection{\tt eauto -\tacindex{eauto} -\label{eauto}} - -This tactic generalizes {\tt auto}. In contrast with -the latter, {\tt eauto} uses unification of the goal -against the hints rather than pattern-matching -(in other words, it uses {\tt eapply} instead of -{\tt apply}). -As a consequence, {\tt eauto} can solve such a goal: - -\begin{coq_example} -Hint Resolve ex_intro. -Goal forall P:nat -> Prop, P 0 -> exists n, P n. -eauto. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Note that {\tt ex\_intro} should be declared as an -hint. - -\SeeAlso Section~\ref{Hints-databases} - -\subsection{\tt autounfold with \ident$_1$ \dots\ \ident$_n$ -\tacindex{autounfold} -\label{autounfold}} - -This tactic unfolds constants that were declared through a {\tt Hint - Unfold} in the given databases. - -\begin{Variants} -\item {\tt autounfold with \ident$_1$ \dots\ \ident$_n$ in \textit{clause}} - - Perform the unfolding in the given clause. - -\item {\tt autounfold with *} - - Uses the unfold hints declared in all the hint databases. -\end{Variants} - - -\subsection{\tt autorewrite with \ident$_1$ \dots \ident$_n$. -\label{tactic:autorewrite} -\tacindex{autorewrite}} - -This tactic \footnote{The behavior of this tactic has much changed compared to -the versions available in the previous distributions (V6). This may cause -significant changes in your theories to obtain the same result. As a drawback -of the re-engineering of the code, this tactic has also been completely revised -to get a very compact and readable version.} carries out rewritings according -the rewriting rule bases {\tt \ident$_1$ \dots \ident$_n$}. - -Each rewriting rule of a base \ident$_i$ is applied to the main subgoal until -it fails. Once all the rules have been processed, if the main subgoal has -progressed (e.g., if it is distinct from the initial main goal) then the rules -of this base are processed again. If the main subgoal has not progressed then -the next base is processed. For the bases, the behavior is exactly similar to -the processing of the rewriting rules. - -The rewriting rule bases are built with the {\tt Hint~Rewrite} vernacular -command. - -\Warning{} This tactic may loop if you build non terminating rewriting systems. - -\begin{Variant} -\item {\tt autorewrite with \ident$_1$ \dots \ident$_n$ using \tac}\\ -Performs, in the same way, all the rewritings of the bases {\tt \ident$_1$ $...$ -\ident$_n$} applying {\tt \tac} to the main subgoal after each rewriting step. - -\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in {\qualid}} - - Performs all the rewritings in hypothesis {\qualid}. -\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in {\qualid} using \tac} - - Performs all the rewritings in hypothesis {\qualid} applying {\tt - \tac} to the main subgoal after each rewriting step. - -\item \texttt{autorewrite with {\ident$_1$} \dots \ident$_n$ in \textit{clause}} - Performs all the rewritings in the clause \textit{clause}. \\ - The \textit{clause} argument must not contain any \texttt{type of} nor \texttt{value of}. - -\end{Variant} - -\SeeAlso Section~\ref{HintRewrite} for feeding the database of lemmas used by {\tt autorewrite}. - -\SeeAlso Section~\ref{autorewrite-example} for examples showing the use of -this tactic. - -% En attente d'un moyen de valoriser les fichiers de demos -%\SeeAlso file \texttt{contrib/Rocq/DEMOS/Demo\_AutoRewrite.v} - -\section{Controlling automation} - -\subsection{The hints databases for {\tt auto} and {\tt eauto} -\index{Hints databases} -\label{Hints-databases} -\comindex{Hint}} - -The hints for \texttt{auto} and \texttt{eauto} are stored in -databases. Each database maps head symbols to a list of hints. One can -use the command \texttt{Print Hint \ident} to display the hints -associated to the head symbol \ident{} (see \ref{PrintHint}). Each -hint has a cost that is an nonnegative integer, and an optional pattern. -The hints with lower cost are tried first. A hint is tried by -\texttt{auto} when the conclusion of the current goal -matches its pattern or when it has no pattern. - -\subsubsection*{Creating Hint databases - \label{CreateHintDb}\comindex{CreateHintDb}} - -One can optionally declare a hint database using the command -\texttt{Create HintDb}. If a hint is added to an unknown database, it -will be automatically created. - -\medskip -\texttt{Create HintDb} {\ident} [\texttt{discriminated}] -\medskip - -This command creates a new database named \ident. -The database is implemented by a Discrimination Tree (DT) that serves as -an index of all the lemmas. The DT can use transparency information to decide -if a constant should be indexed or not (c.f. \ref{HintTransparency}), -making the retrieval more efficient. -The legacy implementation (the default one for new databases) uses the -DT only on goals without existentials (i.e., auto goals), for non-Immediate -hints and do not make use of transparency hints, putting more work on the -unification that is run after retrieval (it keeps a list of the lemmas -in case the DT is not used). The new implementation enabled by -the {\tt discriminated} option makes use of DTs in all cases and takes -transparency information into account. However, the order in which hints -are retrieved from the DT may differ from the order in which they were -inserted, making this implementation observationally different from the -legacy one. - -\begin{Variants} -\item\texttt{Local Hint} \textsl{hint\_definition} \texttt{:} - \ident$_1$ \ldots\ \ident$_n$ - - This is used to declare a hint database that must not be exported to the other - modules that require and import the current module. Inside a - section, the option {\tt Local} is useless since hints do not - survive anyway to the closure of sections. - -\end{Variants} - -The general -command to add a hint to some database \ident$_1$, \dots, \ident$_n$ is: -\begin{tabbing} - \texttt{Hint} \textsl{hint\_definition} \texttt{:} \ident$_1$ \ldots\ \ident$_n$ -\end{tabbing} -where {\sl hint\_definition} is one of the following expressions: - -\begin{itemize} -\item \texttt{Resolve} {\term} - \comindex{Hint Resolve} - - This command adds {\tt apply {\term}} to the hint list - with the head symbol of the type of \term. The cost of that hint is - the number of subgoals generated by {\tt apply {\term}}. - - In case the inferred type of \term\ does not start with a product the - tactic added in the hint list is {\tt exact {\term}}. In case this - type can be reduced to a type starting with a product, the tactic {\tt - apply {\term}} is also stored in the hints list. - - If the inferred type of \term\ contains a dependent - quantification on a predicate, it is added to the hint list of {\tt - eapply} instead of the hint list of {\tt apply}. In this case, a - warning is printed since the hint is only used by the tactic {\tt - eauto} (see \ref{eauto}). A typical example of a hint that is used - only by \texttt{eauto} is a transitivity lemma. - - \begin{ErrMsgs} - \item \errindex{Bound head variable} - - The head symbol of the type of {\term} is a bound variable such - that this tactic cannot be associated to a constant. - - \item \term\ \errindex{cannot be used as a hint} - - The type of \term\ contains products over variables which do not - appear in the conclusion. A typical example is a transitivity axiom. - In that case the {\tt apply} tactic fails, and thus is useless. - - \end{ErrMsgs} - - \begin{Variants} - - \item \texttt{Resolve} {\term$_1$} \dots {\term$_m$} - - Adds each \texttt{Resolve} {\term$_i$}. - - \end{Variants} - -\item \texttt{Immediate {\term}} -\comindex{Hint Immediate} - - This command adds {\tt apply {\term}; trivial} to the hint list - associated with the head symbol of the type of {\ident} in the given - database. This tactic will fail if all the subgoals generated by - {\tt apply {\term}} are not solved immediately by the {\tt trivial} - tactic (which only tries tactics with cost $0$). - - This command is useful for theorems such as the symmetry of equality - or $n+1=m+1 \to n=m$ that we may like to introduce with a - limited use in order to avoid useless proof-search. - - The cost of this tactic (which never generates subgoals) is always 1, - so that it is not used by {\tt trivial} itself. - - \begin{ErrMsgs} - - \item \errindex{Bound head variable} - - \item \term\ \errindex{cannot be used as a hint} - - \end{ErrMsgs} - - \begin{Variants} - - \item \texttt{Immediate} {\term$_1$} \dots {\term$_m$} - - Adds each \texttt{Immediate} {\term$_i$}. - - \end{Variants} - -\item \texttt{Constructors} {\ident} -\comindex{Hint Constructors} - - If {\ident} is an inductive type, this command adds all its - constructors as hints of type \texttt{Resolve}. Then, when the - conclusion of current goal has the form \texttt{({\ident} \dots)}, - \texttt{auto} will try to apply each constructor. - - \begin{ErrMsgs} - - \item {\ident} \errindex{is not an inductive type} - - \item {\ident} \errindex{not declared} - - \end{ErrMsgs} - - \begin{Variants} - - \item \texttt{Constructors} {\ident$_1$} \dots {\ident$_m$} - - Adds each \texttt{Constructors} {\ident$_i$}. - - \end{Variants} - -\item \texttt{Unfold} {\qualid} -\comindex{Hint Unfold} - - This adds the tactic {\tt unfold {\qualid}} to the hint list that - will only be used when the head constant of the goal is \ident. Its - cost is 4. - - \begin{Variants} - - \item \texttt{Unfold} {\ident$_1$} \dots {\ident$_m$} - - Adds each \texttt{Unfold} {\ident$_i$}. - - \end{Variants} - -\item \texttt{Transparent}, \texttt{Opaque} {\qualid} -\label{HintTransparency} -\comindex{Hint Transparent} -\comindex{Hint Opaque} - - This adds a transparency hint to the database, making {\tt {\qualid}} - a transparent or opaque constant during resolution. This information - is used during unification of the goal with any lemma in the database - and inside the discrimination network to relax or constrain it in the - case of \texttt{discriminated} databases. - - \begin{Variants} - - \item \texttt{Transparent}, \texttt{Opaque} {\ident$_1$} \dots {\ident$_m$} - - Declares each {\ident$_i$} as a transparent or opaque constant. - - \end{Variants} - -\item \texttt{Extern \num\ [\pattern]\ => }\textsl{tactic} -\comindex{Hint Extern} - - This hint type is to extend \texttt{auto} with tactics other than - \texttt{apply} and \texttt{unfold}. For that, we must specify a - cost, an optional pattern and a tactic to execute. Here is an example: - -\begin{quotation} -\begin{verbatim} -Hint Extern 4 (~(_ = _)) => discriminate. -\end{verbatim} -\end{quotation} - - Now, when the head of the goal is a disequality, \texttt{auto} will - try \texttt{discriminate} if it does not manage to solve the goal - with hints with a cost less than 4. - - One can even use some sub-patterns of the pattern in the tactic - script. A sub-pattern is a question mark followed by an ident, like - \texttt{?X1} or \texttt{?X2}. Here is an example: - -% Require EqDecide. -\begin{coq_example*} -Require Import List. -\end{coq_example*} -\begin{coq_example} -Hint Extern 5 ({?X1 = ?X2} + {?X1 <> ?X2}) => - generalize X1, X2; decide equality : eqdec. -Goal -forall a b:list (nat * nat), {a = b} + {a <> b}. -info auto with eqdec. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\end{itemize} - -\Rem One can use an \texttt{Extern} hint with no pattern to do -pattern-matching on hypotheses using \texttt{match goal with} inside -the tactic. - -\begin{Variants} -\item \texttt{Hint} \textsl{hint\_definition} - - No database name is given: the hint is registered in the {\tt core} - database. - -\item\texttt{Hint Local} \textsl{hint\_definition} \texttt{:} - \ident$_1$ \ldots\ \ident$_n$ - - This is used to declare hints that must not be exported to the other - modules that require and import the current module. Inside a - section, the option {\tt Local} is useless since hints do not - survive anyway to the closure of sections. - -\item\texttt{Hint Local} \textsl{hint\_definition} - - Idem for the {\tt core} database. - -\end{Variants} - -% There are shortcuts that allow to define several goal at once: - -% \begin{itemize} -% \item \comindex{Hints Resolve}\texttt{Hints Resolve \ident$_1$ \dots\ \ident$_n$ : \ident.}\\ -% This command is a shortcut for the following ones: -% \begin{quotation} -% \noindent\texttt{Hint \ident$_1$ : \ident\ := Resolve \ident$_1$}\\ -% \dots\\ -% \texttt{Hint \ident$_1$ : \ident := Resolve \ident$_1$} -% \end{quotation} -% Notice that the hint name is the same that the theorem given as -% hint. -% \item \comindex{Hints Immediate}\texttt{Hints Immediate \ident$_1$ \dots\ \ident$_n$ : \ident.}\\ -% \item \comindex{Hints Unfold}\texttt{Hints Unfold \qualid$_1$ \dots\ \qualid$_n$ : \ident.}\\ -% \end{itemize} - -%\begin{Warnings} -% \item \texttt{Overriding hint named \dots\ in database \dots} -%\end{Warnings} - - - -\subsection{Hint databases defined in the \Coq\ standard library} - -Several hint databases are defined in the \Coq\ standard library. The -actual content of a database is the collection of the hints declared -to belong to this database in each of the various modules currently -loaded. Especially, requiring new modules potentially extend a -database. At {\Coq} startup, only the {\tt core} and {\tt v62} -databases are non empty and can be used. - -\begin{description} - -\item[\tt core] This special database is automatically used by - \texttt{auto}, except when pseudo-database \texttt{nocore} is - given to \texttt{auto}. The \texttt{core} database contains - only basic lemmas about negation, - conjunction, and so on from. Most of the hints in this database come - from the \texttt{Init} and \texttt{Logic} directories. - -\item[\tt arith] This database contains all lemmas about Peano's - arithmetic proved in the directories \texttt{Init} and - \texttt{Arith} - -\item[\tt zarith] contains lemmas about binary signed integers from - the directories \texttt{theories/ZArith}. When required, the module - {\tt Omega} also extends the database {\tt zarith} with a high-cost - hint that calls {\tt omega} on equations and inequalities in {\tt - nat} or {\tt Z}. - -\item[\tt bool] contains lemmas about booleans, mostly from directory - \texttt{theories/Bool}. - -\item[\tt datatypes] is for lemmas about lists, streams and so on that - are mainly proved in the \texttt{Lists} subdirectory. - -\item[\tt sets] contains lemmas about sets and relations from the - directories \texttt{Sets} and \texttt{Relations}. - -\item[\tt typeclass\_instances] contains all the type class instances - declared in the environment, including those used for \texttt{setoid\_rewrite}, - from the \texttt{Classes} directory. -\end{description} - -There is also a special database called {\tt v62}. It collects all -hints that were declared in the versions of {\Coq} prior to version -6.2.4 when the databases {\tt core}, {\tt arith}, and so on were -introduced. The purpose of the database {\tt v62} is to ensure -compatibility with further versions of {\Coq} for developments done in -versions prior to 6.2.4 ({\tt auto} being replaced by {\tt auto with v62}). -The database {\tt v62} is intended not to be extended (!). It is not -included in the hint databases list used in the {\tt auto with *} tactic. - -Furthermore, you are advised not to put your own hints in the -{\tt core} database, but use one or several databases specific to your -development. - -\subsection{\tt Print Hint -\label{PrintHint} -\comindex{Print Hint}} - -This command displays all hints that apply to the current goal. It -fails if no proof is being edited, while the two variants can be used at -every moment. - -\begin{Variants} - -\item {\tt Print Hint {\ident} } - - This command displays only tactics associated with \ident\ in the - hints list. This is independent of the goal being edited, so this - command will not fail if no goal is being edited. - -\item {\tt Print Hint *} - - This command displays all declared hints. - -\item {\tt Print HintDb {\ident} } -\label{PrintHintDb} -\comindex{Print HintDb} - - This command displays all hints from database \ident. - -\end{Variants} - -\subsection{\tt Hint Rewrite \term$_1$ \dots \term$_n$ : \ident -\label{HintRewrite} -\comindex{Hint Rewrite}} - -This vernacular command adds the terms {\tt \term$_1$ \dots \term$_n$} -(their types must be equalities) in the rewriting base {\tt \ident} -with the default orientation (left to right). Notice that the -rewriting bases are distinct from the {\tt auto} hint bases and that -{\tt auto} does not take them into account. - -This command is synchronous with the section mechanism (see \ref{Section}): -when closing a section, all aliases created by \texttt{Hint Rewrite} in that -section are lost. Conversely, when loading a module, all \texttt{Hint Rewrite} -declarations at the global level of that module are loaded. - -\begin{Variants} -\item {\tt Hint Rewrite -> \term$_1$ \dots \term$_n$ : \ident}\\ -This is strictly equivalent to the command above (we only make explicit the -orientation which otherwise defaults to {\tt ->}). - -\item {\tt Hint Rewrite <- \term$_1$ \dots \term$_n$ : \ident}\\ -Adds the rewriting rules {\tt \term$_1$ \dots \term$_n$} with a right-to-left -orientation in the base {\tt \ident}. - -\item {\tt Hint Rewrite \term$_1$ \dots \term$_n$ using {\tac} : {\ident}}\\ -When the rewriting rules {\tt \term$_1$ \dots \term$_n$} in {\tt \ident} will -be used, the tactic {\tt \tac} will be applied to the generated subgoals, the -main subgoal excluded. - -%% \item -%% {\tt Hint Rewrite [ \term$_1$ \dots \term$_n$ ] in \ident}\\ -%% {\tt Hint Rewrite [ \term$_1$ \dots \term$_n$ ] in {\ident} using {\tac}}\\ -%% These are deprecated syntactic variants for -%% {\tt Hint Rewrite \term$_1$ \dots \term$_n$ : \ident} and -%% {\tt Hint Rewrite \term$_1$ \dots \term$_n$ using {\tac} : {\ident}}. - -\item \texttt{Print Rewrite HintDb {\ident}} - - This command displays all rewrite hints contained in {\ident}. - -\end{Variants} - -\subsection{Hints and sections -\label{Hint-and-Section}} - -Hints provided by the \texttt{Hint} commands are erased when closing a -section. Conversely, all hints of a module \texttt{A} that are not -defined inside a section (and not defined with option {\tt Local}) become -available when the module {\tt A} is imported (using -e.g. \texttt{Require Import A.}). - -\subsection{Setting implicit automation tactics} - -\subsubsection[\tt Proof with {\tac}.]{\tt Proof with {\tac}.\label{ProofWith} -\comindex{Proof with}} - - This command may be used to start a proof. It defines a default - tactic to be used each time a tactic command {\tac$_1$} is ended by - ``\verb#...#''. In this case the tactic command typed by the user is - equivalent to \tac$_1$;{\tac}. - -\SeeAlso {\tt Proof.} in Section~\ref{BeginProof}. - -\begin{Variants} -\item {\tt Proof with {\tac} using {\ident$_1$ \dots {\ident$_n$}}} - Combines in a single line {\tt Proof with} and {\tt Proof using}, - see~\ref{ProofUsing} -\item {\tt Proof using {\ident$_1$ \dots {\ident$_n$}} with {\tac}} - Combines in a single line {\tt Proof with} and {\tt Proof using}, - see~\ref{ProofUsing} - -\end{Variants} - -\subsubsection[\tt Declare Implicit Tactic {\tac}.]{\tt Declare Implicit Tactic {\tac}.\comindex{Declare Implicit Tactic}} - -This command declares a tactic to be used to solve implicit arguments -that {\Coq} does not know how to solve by unification. It is used -every time the term argument of a tactic has one of its holes not -fully resolved. - -Here is an example: - -\begin{coq_example} -Parameter quo : nat -> forall n:nat, n<>0 -> nat. -Notation "x // y" := (quo x y _) (at level 40). - -Declare Implicit Tactic assumption. -Goal forall n m, m<>0 -> { q:nat & { r | q * m + r = n } }. -intros. -exists (n // m). -\end{coq_example} - -The tactic {\tt exists (n // m)} did not fail. The hole was solved by -{\tt assumption} so that it behaved as {\tt exists (quo n m H)}. - -\section{Decision procedures} - -\subsection{\tt tauto -\tacindex{tauto} -\label{tauto}} - -This tactic implements a decision procedure for intuitionistic propositional -calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff -\cite{Dyc92}. Note that {\tt tauto} succeeds on any instance of an -intuitionistic tautological proposition. {\tt tauto} unfolds negations -and logical equivalence but does not unfold any other definition. - -The following goal can be proved by {\tt tauto} whereas {\tt auto} -would fail: - -\begin{coq_example} -Goal forall (x:nat) (P:nat -> Prop), x = 0 \/ P x -> x <> 0 -> P x. - intros. - tauto. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Moreover, if it has nothing else to do, {\tt tauto} performs -introductions. Therefore, the use of {\tt intros} in the previous -proof is unnecessary. {\tt tauto} can for instance prove the -following: -\begin{coq_example} -(* auto would fail *) -Goal forall (A:Prop) (P:nat -> Prop), - A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ A -> P x. - - tauto. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -\Rem In contrast, {\tt tauto} cannot solve the following goal - -\begin{coq_example*} -Goal forall (A:Prop) (P:nat -> Prop), - A \/ (forall x:nat, ~ A -> P x) -> forall x:nat, ~ ~ (A \/ P x). -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} - -because \verb=(forall x:nat, ~ A -> P x)= cannot be treated as atomic and an -instantiation of \verb=x= is necessary. - -\subsection{\tt intuition {\tac} -\tacindex{intuition} -\label{intuition}} - -The tactic \texttt{intuition} takes advantage of the search-tree built -by the decision procedure involved in the tactic {\tt tauto}. It uses -this information to generate a set of subgoals equivalent to the -original one (but simpler than it) and applies the tactic -{\tac} to them \cite{Mun94}. If this tactic fails on some goals then -{\tt intuition} fails. In fact, {\tt tauto} is simply {\tt intuition - fail}. - -For instance, the tactic {\tt intuition auto} applied to the goal -\begin{verbatim} -(forall (x:nat), P x)/\B -> (forall (y:nat),P y)/\ P O \/B/\ P O -\end{verbatim} -internally replaces it by the equivalent one: -\begin{verbatim} -(forall (x:nat), P x), B |- P O -\end{verbatim} -and then uses {\tt auto} which completes the proof. - -Originally due to C{\'e}sar~Mu{\~n}oz, these tactics ({\tt tauto} and {\tt intuition}) -have been completely re-engineered by David~Delahaye using mainly the tactic -language (see Chapter~\ref{TacticLanguage}). The code is now much shorter and -a significant increase in performance has been noticed. The general behavior -with respect to dependent types, unfolding and introductions has -slightly changed to get clearer semantics. This may lead to some -incompatibilities. - -\begin{Variants} -\item {\tt intuition}\\ - Is equivalent to {\tt intuition auto with *}. -\end{Variants} - -% En attente d'un moyen de valoriser les fichiers de demos -%\SeeAlso file \texttt{contrib/Rocq/DEMOS/Demo\_tauto.v} - - -\subsection{\tt rtauto -\tacindex{rtauto} -\label{rtauto}} - -The {\tt rtauto} tactic solves propositional tautologies similarly to what {\tt tauto} does. The main difference is that the proof term is built using a reflection scheme applied to a sequent calculus proof of the goal. The search procedure is also implemented using a different technique. - -Users should be aware that this difference may result in faster proof-search but slower proof-checking, and {\tt rtauto} might not solve goals that {\tt tauto} would be able to solve (e.g. goals involving universal quantifiers). - -\subsection{{\tt firstorder} -\tacindex{firstorder} -\label{firstorder}} - -The tactic \texttt{firstorder} is an {\it experimental} extension of -\texttt{tauto} to -first-order reasoning, written by Pierre Corbineau. -It is not restricted to usual logical connectives but -instead may reason about any first-order class inductive definition. - -\begin{Variants} - \item {\tt firstorder {\tac}} - \tacindex{firstorder {\tac}} - - Tries to solve the goal with {\tac} when no logical rule may apply. - - \item {\tt firstorder with \ident$_1$ \dots\ \ident$_n$ } - \tacindex{firstorder with} - - Adds lemmas \ident$_1$ \dots\ \ident$_n$ to the proof-search - environment. - - \item {\tt firstorder using {\qualid}$_1$ , \dots\ , {\qualid}$_n$ } - \tacindex{firstorder using} - - Adds lemmas in {\tt auto} hints bases {\qualid}$_1$ \dots\ {\qualid}$_n$ - to the proof-search environment. If {\qualid}$_i$ refers to an inductive - type, it is the collection of its constructors which is added as hints. - -\item \texttt{firstorder using {\qualid}$_1$ , \dots\ , {\qualid}$_n$ with \ident$_1$ \dots\ \ident$_n$} - - This combines the effects of the {\tt using} and {\tt with} options. - -\end{Variants} - -Proof-search is bounded by a depth parameter which can be set by typing the -{\nobreak \tt Set Firstorder Depth $n$} \comindex{Set Firstorder Depth} -vernacular command. - - -\subsection{\tt congruence -\tacindex{congruence} -\label{congruence}} - -The tactic {\tt congruence}, by Pierre Corbineau, implements the standard Nelson and Oppen -congruence closure algorithm, which is a decision procedure for ground -equalities with uninterpreted symbols. It also include the constructor theory -(see \ref{injection} and \ref{discriminate}). -If the goal is a non-quantified equality, {\tt congruence} tries to -prove it with non-quantified equalities in the context. Otherwise it -tries to infer a discriminable equality from those in the context. Alternatively, congruence tries to prove that a hypothesis is equal to the goal or to the negation of another hypothesis. - -{\tt congruence} is also able to take advantage of hypotheses stating quantified equalities, you have to provide a bound for the number of extra equalities generated that way. Please note that one of the members of the equality must contain all the quantified variables in order for {\tt congruence} to match against it. - -\begin{coq_eval} -Reset Initial. -Variable A:Set. -Variables a b:A. -Variable f:A->A. -Variable g:A->A->A. -\end{coq_eval} - -\begin{coq_example} -Theorem T: - a=(f a) -> (g b (f a))=(f (f a)) -> (g a b)=(f (g b a)) -> (g a b)=a. -intros. -congruence. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -Variable A:Set. -Variables a c d:A. -Variable f:A->A*A. -\end{coq_eval} - -\begin{coq_example} -Theorem inj : f = pair a -> Some (f c) = Some (f d) -> c=d. -intros. -congruence. -\end{coq_example} - -\begin{Variants} - \item {\tt congruence {\sl n}}\\ - Tries to add at most {\tt \sl n} instances of hypotheses stating quantified equalities to the problem in order to solve it. A bigger value of {\tt \sl n} does not make success slower, only failure. You might consider adding some lemmas as hypotheses using {\tt assert} in order for congruence to use them. - -\end{Variants} - -\begin{Variants} -\item {\tt congruence with \term$_1$ \dots\ \term$_n$}\\ - Adds {\tt \term$_1$ \dots\ \term$_n$} to the pool of terms used by - {\tt congruence}. This helps in case you have partially applied - constructors in your goal. -\end{Variants} - -\begin{ErrMsgs} - \item \errindex{I don't know how to handle dependent equality} \\ - The decision procedure managed to find a proof of the goal or of - a discriminable equality but this proof couldn't be built in {\Coq} - because of dependently-typed functions. - \item \errindex{I couldn't solve goal} \\ - The decision procedure didn't find any way to solve the goal. - \item \errindex{Goal is solvable by congruence but some arguments are missing. Try "congruence with \dots", replacing metavariables by arbitrary terms.} \\ - The decision procedure could solve the goal with the provision - that additional arguments are supplied for some partially applied - constructors. Any term of an appropriate type will allow the - tactic to successfully solve the goal. Those additional arguments - can be given to {\tt congruence} by filling in the holes in the - terms given in the error message, using the {\tt with} variant - described above. -\end{ErrMsgs} - - -\section{Things that do not fit other sections} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\section{Everything after this point has yet to be sorted} - - -\subsection{\tt constr\_eq \term$_1$ \term$_2$ -\tacindex{constr\_eq} -\label{constreq}} - -This tactic applies to any goal. It checks whether its arguments are -equal modulo alpha conversion and casts. - -\ErrMsg \errindex{Not equal} - -\subsection{\tt unify \term$_1$ \term$_2$ -\tacindex{unify} -\label{unify}} - -This tactic applies to any goal. It checks whether its arguments are -unifiable, potentially instantiating existential variables. - -\ErrMsg \errindex{Not unifiable} - -\begin{Variants} -\item {\tt unify \term$_1$ \term$_2$ with \ident} - - Unification takes the transparency information defined in the - hint database {\tt \ident} into account (see Section~\ref{HintTransparency}). -\end{Variants} - -\subsection{\tt is\_evar \term -\tacindex{is\_evar} -\label{isevar}} - -This tactic applies to any goal. It checks whether its argument is an -existential variable. Existential variables are uninstantiated -variables generated by e.g. {\tt eapply} (see Section~\ref{apply}). - -\ErrMsg \errindex{Not an evar} - -\subsection{\tt has\_evar \term -\tacindex{has\_evar} -\label{hasevar}} - -This tactic applies to any goal. It checks whether its argument has an -existential variable as a subterm. Unlike {\tt context} patterns -combined with {\tt is\_evar}, this tactic scans all subterms, -including those under binders. - -\ErrMsg \errindex{No evars} - -\subsection{\tt is\_var \term -\tacindex{is\_var} -\label{isvar}} - -This tactic applies to any goal. It checks whether its argument is a -variable or hypothesis in the current goal context or in the opened sections. - -\ErrMsg \errindex{Not a variable or hypothesis} - -\section{Equality} - -\subsection{\tt f\_equal -\label{f-equal} -\tacindex{f\_equal}} - -This tactic applies to a goal of the form $f\ a_1\ \ldots\ a_n = f'\ -a'_1\ \ldots\ a'_n$. Using {\tt f\_equal} on such a goal leads to -subgoals $f=f'$ and $a_1=a'_1$ and so on up to $a_n=a'_n$. Amongst -these subgoals, the simple ones (e.g. provable by -reflexivity or congruence) are automatically solved by {\tt f\_equal}. - - -\section{Equality and inductive sets} - -We describe in this section some special purpose tactics dealing with -equality and inductive sets or types. These tactics use the equality -{\tt eq:forall (A:Type), A->A->Prop}, simply written with the -infix symbol {\tt =}. - -\subsection{\tt decide equality -\label{decideequality} -\tacindex{decide equality}} - -This tactic solves a goal of the form -{\tt forall $x$ $y$:$R$, \{$x$=$y$\}+\{\verb|~|$x$=$y$\}}, where $R$ -is an inductive type such that its constructors do not take proofs or -functions as arguments, nor objects in dependent types. -It solves goals of the form {\tt \{$x$=$y$\}+\{\verb|~|$x$=$y$\}} as well. - -\subsection{\tt compare \term$_1$ \term$_2$ -\tacindex{compare}} - -This tactic compares two given objects \term$_1$ and \term$_2$ -of an inductive datatype. If $G$ is the current goal, it leaves the sub-goals -\term$_1${\tt =}\term$_2$ {\tt ->} $G$ and \verb|~|\term$_1${\tt =}\term$_2$ -{\tt ->} $G$. The type -of \term$_1$ and \term$_2$ must satisfy the same restrictions as in the tactic -\texttt{decide equality}. - -\subsection{\tt simplify\_eq {\term} -\tacindex{simplify\_eq} -\tacindex{esimplify\_eq} -\label{simplify-eq}} - -Let {\term} be the proof of a statement of conclusion {\tt - {\term$_1$}={\term$_2$}}. If {\term$_1$} and -{\term$_2$} are structurally different (in the sense described for the -tactic {\tt discriminate}), then the tactic {\tt simplify\_eq} behaves as {\tt - discriminate {\term}}, otherwise it behaves as {\tt injection - {\term}}. - -\Rem If some quantified hypothesis of the goal is named {\ident}, then -{\tt simplify\_eq {\ident}} first introduces the hypothesis in the local -context using \texttt{intros until \ident}. - -\begin{Variants} -\item \texttt{simplify\_eq} \num - - This does the same thing as \texttt{intros until \num} then -\texttt{simplify\_eq \ident} where {\ident} is the identifier for the last -introduced hypothesis. - -\item \texttt{simplify\_eq} \term{} {\tt with} {\bindinglist} - - This does the same as \texttt{simplify\_eq {\term}} but using - the given bindings to instantiate parameters or hypotheses of {\term}. - -\item \texttt{esimplify\_eq} \num\\ - \texttt{esimplify\_eq} \term{} \zeroone{{\tt with} {\bindinglist}} - - This works the same as {\tt simplify\_eq} but if the type of {\term}, - or the type of the hypothesis referred to by {\num}, has uninstantiated - parameters, these parameters are left as existential variables. - -\item{\tt simplify\_eq} - -If the current goal has form $t_1\verb=<>=t_2$, it behaves as -\texttt{intro {\ident}; simplify\_eq {\ident}}. -\end{Variants} - -\subsection{\tt dependent rewrite -> {\ident} -\tacindex{dependent rewrite ->} -\label{dependent-rewrite}} - -This tactic applies to any goal. If \ident\ has type -\verb+(existT B a b)=(existT B a' b')+ -in the local context (i.e. each term of the -equality has a sigma type $\{ a:A~ \&~(B~a)\}$) this tactic rewrites -\verb+a+ into \verb+a'+ and \verb+b+ into \verb+b'+ in the current -goal. This tactic works even if $B$ is also a sigma type. This kind -of equalities between dependent pairs may be derived by the injection -and inversion tactics. - -\begin{Variants} -\item{\tt dependent rewrite <- {\ident}} -\tacindex{dependent rewrite <-} \\ -Analogous to {\tt dependent rewrite ->} but uses the equality from -right to left. -\end{Variants} - -\section{Inversion -\label{inversion}} - -\subsection[\tt functional inversion \ident]{\tt functional inversion \ident\label{sec:functional-inversion}} - -\texttt{functional inversion} is a \emph{highly} experimental tactic -which performs inversion on hypothesis \ident\ of the form -\texttt{\qualid\ \term$_1$\dots\term$_n$\ = \term} or \texttt{\term\ = - \qualid\ \term$_1$\dots\term$_n$} where \qualid\ must have been -defined using \texttt{Function} (see Section~\ref{Function}). - -\begin{ErrMsgs} -\item \errindex{Hypothesis {\ident} must contain at least one Function} -\item \errindex{Cannot find inversion information for hypothesis \ident} - This error may be raised when some inversion lemma failed to be - generated by Function. -\end{ErrMsgs} - -\begin{Variants} -\item {\tt functional inversion \num} - - This does the same thing as \texttt{intros until \num} then - \texttt{functional inversion \ident} where {\ident} is the - identifier for the last introduced hypothesis. -\item {\tt functional inversion \ident\ \qualid}\\ - {\tt functional inversion \num\ \qualid} - - In case the hypothesis {\ident} (or {\num}) has a type of the form - \texttt{\qualid$_1$\ \term$_1$\dots\term$_n$\ =\ \qualid$_2$\ - \term$_{n+1}$\dots\term$_{n+m}$} where \qualid$_1$ and \qualid$_2$ - are valid candidates to functional inversion, this variant allows to - choose which must be inverted. -\end{Variants} - - - -\subsection{\tt quote \ident -\tacindex{quote} -\index{2-level approach}} - -This kind of inversion has nothing to do with the tactic -\texttt{inversion} above. This tactic does \texttt{change (\ident\ - t)}, where \texttt{t} is a term built in order to ensure the -convertibility. In other words, it does inversion of the function -\ident. This function must be a fixpoint on a simple recursive -datatype: see~\ref{quote-examples} for the full details. - -\begin{ErrMsgs} -\item \errindex{quote: not a simple fixpoint}\\ - Happens when \texttt{quote} is not able to perform inversion properly. -\end{ErrMsgs} - -\begin{Variants} -\item \texttt{quote {\ident} [ \ident$_1$ \dots \ident$_n$ ]}\\ - All terms that are built only with \ident$_1$ \dots \ident$_n$ will be - considered by \texttt{quote} as constants rather than variables. -\end{Variants} - -% En attente d'un moyen de valoriser les fichiers de demos -% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v} in the distribution - -\section[Classical tactics]{Classical tactics\label{ClassicalTactics}} - -In order to ease the proving process, when the {\tt Classical} module is loaded. A few more tactics are available. Make sure to load the module using the \texttt{Require Import} command. - -\subsection{{\tt classical\_left, classical\_right} \tacindex{classical\_left} \tacindex{classical\_right}} - -The tactics \texttt{classical\_left} and \texttt{classical\_right} are the analog of the \texttt{left} and \texttt{right} but using classical logic. They can only be used for disjunctions. -Use \texttt{classical\_left} to prove the left part of the disjunction with the assumption that the negation of right part holds. -Use \texttt{classical\_right} to prove the right part of the disjunction with the assumption that the negation of left part holds. - -\section{Automatizing -\label{Automatizing}} - -% EXISTE ENCORE ? -% -% \subsection{\tt Prolog [ \term$_1$ \dots\ \term$_n$ ] \num} -% \tacindex{Prolog}\label{Prolog} -% This tactic, implemented by Chet Murthy, is based upon the concept of -% existential variables of Gilles Dowek, stating that resolution is a -% kind of unification. It tries to solve the current goal using the {\tt -% Assumption} tactic, the {\tt intro} tactic, and applying hypotheses -% of the local context and terms of the given list {\tt [ \term$_1$ -% \dots\ \term$_n$\ ]}. It is more powerful than {\tt auto} since it -% may apply to any theorem, even those of the form {\tt (x:A)(P x) -> Q} -% where {\tt x} does not appear free in {\tt Q}. The maximal search -% depth is {\tt \num}. - -% \begin{ErrMsgs} -% \item \errindex{Prolog failed}\\ -% The Prolog tactic was not able to prove the subgoal. -% \end{ErrMsgs} - - -%% \subsection{{\tt jp} {\em (Jprover)} -%% \tacindex{jp} -%% \label{jprover}} - -%% The tactic \texttt{jp}, due to Huang Guan-Shieng, is an experimental -%% port of the {\em Jprover}\cite{SLKN01} semi-decision procedure for -%% first-order intuitionistic logic implemented in {\em -%% NuPRL}\cite{Kre02}. - -%% The tactic \texttt{jp}, due to Huang Guan-Shieng, is an {\it -%% experimental} port of the {\em Jprover}\cite{SLKN01} semi-decision -%% procedure for first-order intuitionistic logic implemented in {\em -%% NuPRL}\cite{Kre02}. - -%% Search may optionnaly be bounded by a multiplicity parameter -%% indicating how many (at most) copies of a formula may be used in -%% the proof process, its absence may lead to non-termination of the tactic. - -%% %\begin{coq_eval} -%% %Variable S:Set. -%% %Variables P Q:S->Prop. -%% %Variable f:S->S. -%% %\end{coq_eval} - -%% %\begin{coq_example*} -%% %Lemma example: (exists x |P x\/Q x)->(exists x |P x)\/(exists x |Q x). -%% %jp. -%% %Qed. - -%% %Lemma example2: (forall x ,P x->P (f x))->forall x,P x->P (f(f x)). -%% %jp. -%% %Qed. -%% %\end{coq_example*} - -%% \begin{Variants} -%% \item {\tt jp $n$}\\ -%% \tacindex{jp $n$} -%% Tries the {\em Jprover} procedure with multiplicities up to $n$, -%% starting from 1. -%% \item {\tt jp}\\ -%% Tries the {\em Jprover} procedure without multiplicity bound, -%% possibly running forever. -%% \end{Variants} - -%% \begin{ErrMsgs} -%% \item \errindex{multiplicity limit reached}\\ -%% The procedure tried all multiplicities below the limit and -%% failed. Goal might be solved by increasing the multiplicity limit. -%% \item \errindex{formula is not provable}\\ -%% The procedure determined that goal was not provable in -%% intuitionistic first-order logic, no matter how big the -%% multiplicity is. -%% \end{ErrMsgs} - - -% \subsection[\tt Linear]{\tt Linear\tacindex{Linear}\label{Linear}} -% The tactic \texttt{Linear}, due to Jean-Christophe Filli{\^a}atre -% \cite{Fil94}, implements a decision procedure for {\em Direct -% Predicate Calculus}, that is first-order Gentzen's Sequent Calculus -% without contraction rules \cite{KeWe84,BeKe92}. Intuitively, a -% first-order goal is provable in Direct Predicate Calculus if it can be -% proved using each hypothesis at most once. - -% Unlike the previous tactics, the \texttt{Linear} tactic does not belong -% to the initial state of the system, and it must be loaded explicitly -% with the command - -% \begin{coq_example*} -% Require Linear. -% \end{coq_example*} - -% For instance, assuming that \texttt{even} and \texttt{odd} are two -% predicates on natural numbers, and \texttt{a} of type \texttt{nat}, the -% tactic \texttt{Linear} solves the following goal - -% \begin{coq_eval} -% Variables even,odd : nat -> Prop. -% Variable a:nat. -% \end{coq_eval} - -% \begin{coq_example*} -% Lemma example : (even a) -% -> ((x:nat)((even x)->(odd (S x)))) -% -> (EX y | (odd y)). -% \end{coq_example*} - -% You can find examples of the use of \texttt{Linear} in -% \texttt{theories/DEMOS/DemoLinear.v}. -% \begin{coq_eval} -% Abort. -% \end{coq_eval} - -% \begin{Variants} -% \item {\tt Linear with \ident$_1$ \dots\ \ident$_n$}\\ -% \tacindex{Linear with} -% Is equivalent to apply first {\tt generalize \ident$_1$ \dots -% \ident$_n$} (see Section~\ref{generalize}) then the \texttt{Linear} -% tactic. So one can use axioms, lemmas or hypotheses of the local -% context with \texttt{Linear} in this way. -% \end{Variants} - -% \begin{ErrMsgs} -% \item \errindex{Not provable in Direct Predicate Calculus} -% \item \errindex{Found $n$ classical proof(s) but no intuitionistic one}\\ -% The decision procedure looks actually for classical proofs of the -% goals, and then checks that they are intuitionistic. In that case, -% classical proofs have been found, which do not correspond to -% intuitionistic ones. -% \end{ErrMsgs} - - -\subsection{\tt omega -\tacindex{omega} -\label{omega}} - -The tactic \texttt{omega}, due to Pierre Cr{\'e}gut, -is an automatic decision procedure for Presburger -arithmetic. It solves quantifier-free -formulas built with \verb|~|, \verb|\/|, \verb|/\|, -\verb|->| on top of equalities, inequalities and disequalities on -both the type \texttt{nat} of natural numbers and \texttt{Z} of binary -integers. This tactic must be loaded by the command \texttt{Require Import - Omega}. See the additional documentation about \texttt{omega} -(see Chapter~\ref{OmegaChapter}). - -\subsection{{\tt ring} and {\tt ring\_simplify \term$_1$ \dots\ \term$_n$} -\tacindex{ring} -\tacindex{ring\_simplify} -\comindex{Add Ring}} - -The {\tt ring} tactic solves equations upon polynomial expressions of -a ring (or semi-ring) structure. It proceeds by normalizing both hand -sides of the equation (w.r.t. associativity, commutativity and -distributivity, constant propagation) and comparing syntactically the -results. - -{\tt ring\_simplify} applies the normalization procedure described -above to the terms given. The tactic then replaces all occurrences of -the terms given in the conclusion of the goal by their normal -forms. If no term is given, then the conclusion should be an equation -and both hand sides are normalized. - -See Chapter~\ref{ring} for more information on the tactic and how to -declare new ring structures. - -\subsection{{\tt field}, {\tt field\_simplify \term$_1$\dots\ \term$_n$} - and {\tt field\_simplify\_eq} -\tacindex{field} -\tacindex{field\_simplify} -\tacindex{field\_simplify\_eq} -\comindex{Add Field}} - -The {\tt field} tactic is built on the same ideas as {\tt ring}: this -is a reflexive tactic that solves or simplifies equations in a field -structure. The main idea is to reduce a field expression (which is an -extension of ring expressions with the inverse and division -operations) to a fraction made of two polynomial expressions. - -Tactic {\tt field} is used to solve subgoals, whereas {\tt - field\_simplify \term$_1$\dots\term$_n$} replaces the provided terms -by their reduced fraction. {\tt field\_simplify\_eq} applies when the -conclusion is an equation: it simplifies both hand sides and multiplies -so as to cancel denominators. So it produces an equation without -division nor inverse. - -All of these 3 tactics may generate a subgoal in order to prove that -denominators are different from zero. - -See Chapter~\ref{ring} for more information on the tactic and how to -declare new field structures. - -\Example -\begin{coq_example*} -Require Import Reals. -Goal forall x y:R, - (x * y > 0)%R -> - (x * (1 / x + x / (x + y)))%R = - ((- 1 / y) * y * (- x * (x / (x + y)) - 1))%R. -\end{coq_example*} - -\begin{coq_example} -intros; field. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\SeeAlso file {\tt plugins/setoid\_ring/RealField.v} for an example of instantiation,\\ -\phantom{\SeeAlso}theory {\tt theories/Reals} for many examples of use of {\tt -field}. - -\subsection{\tt fourier -\tacindex{fourier}} - -This tactic written by Lo{\"\i}c Pottier solves linear inequalities on -real numbers using Fourier's method~\cite{Fourier}. This tactic must -be loaded by {\tt Require Import Fourier}. - -\Example -\begin{coq_example*} -Require Import Reals. -Require Import Fourier. -Goal forall x y:R, (x < y)%R -> (y + 1 >= x - 1)%R. -\end{coq_example*} - -\begin{coq_example} -intros; fourier. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - - -\section{Simple tactic macros -\index{Tactic macros} -\comindex{Tactic Definition} -\label{TacticDefinition}} - -A simple example has more value than a long explanation: - -\begin{coq_example} -Ltac Solve := simpl; intros; auto. -Ltac ElimBoolRewrite b H1 H2 := - elim b; [ intros; rewrite H1; eauto | intros; rewrite H2; eauto ]. -\end{coq_example} - -The tactics macros are synchronous with the \Coq\ section mechanism: -a tactic definition is deleted from the current environment -when you close the section (see also \ref{Section}) -where it was defined. If you want that a -tactic macro defined in a module is usable in the modules that -require it, you should put it outside of any section. - -Chapter~\ref{TacticLanguage} gives examples of more complex -user-defined tactics. - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-tacex.tex b/doc/refman/RefMan-tacex.tex deleted file mode 100644 index 83a8cd11..00000000 --- a/doc/refman/RefMan-tacex.tex +++ /dev/null @@ -1,921 +0,0 @@ -\chapter[Detailed examples of tactics]{Detailed examples of tactics\label{Tactics-examples}} - -This chapter presents detailed examples of certain tactics, to -illustrate their behavior. - -\section[\tt dependent induction]{\tt dependent induction\label{dependent-induction-example}} -\def\depind{{\tt dependent induction}~} -\def\depdestr{{\tt dependent destruction}~} - -The tactics \depind and \depdestr are another solution for inverting -inductive predicate instances and potentially doing induction at the -same time. It is based on the \texttt{BasicElim} tactic of Conor McBride which -works by abstracting each argument of an inductive instance by a variable -and constraining it by equalities afterwards. This way, the usual -{\tt induction} and {\tt destruct} tactics can be applied to the -abstracted instance and after simplification of the equalities we get -the expected goals. - -The abstracting tactic is called {\tt generalize\_eqs} and it takes as -argument an hypothesis to generalize. It uses the {\tt JMeq} datatype -defined in {\tt Coq.Logic.JMeq}, hence we need to require it before. -For example, revisiting the first example of the inversion documentation above: - -\begin{coq_example*} -Require Import Coq.Logic.JMeq. -\end{coq_example*} -\begin{coq_eval} -Require Import Coq.Program.Equality. -\end{coq_eval} - -\begin{coq_eval} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0 n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_eval} - -\begin{coq_example*} -Goal forall n m:nat, Le (S n) m -> P n m. -intros n m H. -\end{coq_example*} -\begin{coq_example} -generalize_eqs H. -\end{coq_example} - -The index {\tt S n} gets abstracted by a variable here, but a -corresponding equality is added under the abstract instance so that no -information is actually lost. The goal is now almost amenable to do induction -or case analysis. One should indeed first move {\tt n} into the goal to -strengthen it before doing induction, or {\tt n} will be fixed in -the inductive hypotheses (this does not matter for case analysis). -As a rule of thumb, all the variables that appear inside constructors in -the indices of the hypothesis should be generalized. This is exactly -what the \texttt{generalize\_eqs\_vars} variant does: - -\begin{coq_eval} -Undo 1. -\end{coq_eval} -\begin{coq_example} -generalize_eqs_vars H. -induction H. -\end{coq_example} - -As the hypothesis itself did not appear in the goal, we did not need to -use an heterogeneous equality to relate the new hypothesis to the old -one (which just disappeared here). However, the tactic works just a well -in this case, e.g.: - -\begin{coq_eval} -Admitted. -\end{coq_eval} - -\begin{coq_example} -Goal forall n m (p : Le (S n) m), Q (S n) m p. -intros n m p ; generalize_eqs_vars p. -\end{coq_example} - -One drawback of this approach is that in the branches one will have to -substitute the equalities back into the instance to get the right -assumptions. Sometimes injection of constructors will also be needed to -recover the needed equalities. Also, some subgoals should be directly -solved because of inconsistent contexts arising from the constraints on -indexes. The nice thing is that we can make a tactic based on -discriminate, injection and variants of substitution to automatically -do such simplifications (which may involve the K axiom). -This is what the {\tt simplify\_dep\_elim} tactic from -{\tt Coq.Program.Equality} does. For example, we might simplify the -previous goals considerably: -% \begin{coq_eval} -% Abort. -% Goal forall n m:nat, Le (S n) m -> P n m. -% intros n m H ; generalize_eqs_vars H. -% \end{coq_eval} - -\begin{coq_example} -induction p ; simplify_dep_elim. -\end{coq_example} - -The higher-order tactic {\tt do\_depind} defined in {\tt - Coq.Program.Equality} takes a tactic and combines the -building blocks we have seen with it: generalizing by equalities -calling the given tactic with the -generalized induction hypothesis as argument and cleaning the subgoals -with respect to equalities. Its most important instantiations are -\depind and \depdestr that do induction or simply case analysis on the -generalized hypothesis. For example we can redo what we've done manually -with \depdestr: - -\begin{coq_eval} -Abort. -\end{coq_eval} -\begin{coq_example*} -Require Import Coq.Program.Equality. -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros n m H. -\end{coq_example*} -\begin{coq_example} -dependent destruction H. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -This gives essentially the same result as inversion. Now if the -destructed hypothesis actually appeared in the goal, the tactic would -still be able to invert it, contrary to {\tt dependent - inversion}. Consider the following example on vectors: - -\begin{coq_example*} -Require Import Coq.Program.Equality. -Set Implicit Arguments. -Variable A : Set. -Inductive vector : nat -> Type := -| vnil : vector 0 -| vcons : A -> forall n, vector n -> vector (S n). -Goal forall n, forall v : vector (S n), - exists v' : vector n, exists a : A, v = vcons a v'. - intros n v. -\end{coq_example*} -\begin{coq_example} - dependent destruction v. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In this case, the {\tt v} variable can be replaced in the goal by the -generalized hypothesis only when it has a type of the form {\tt vector - (S n)}, that is only in the second case of the {\tt destruct}. The -first one is dismissed because {\tt S n <> 0}. - -\subsection{A larger example} - -Let's see how the technique works with {\tt induction} on inductive -predicates on a real example. We will develop an example application to the -theory of simply-typed lambda-calculus formalized in a dependently-typed style: - -\begin{coq_example*} -Inductive type : Type := -| base : type -| arrow : type -> type -> type. -Notation " t --> t' " := (arrow t t') (at level 20, t' at next level). -Inductive ctx : Type := -| empty : ctx -| snoc : ctx -> type -> ctx. -Notation " G , tau " := (snoc G tau) (at level 20, t at next level). -Fixpoint conc (G D : ctx) : ctx := - match D with - | empty => G - | snoc D' x => snoc (conc G D') x - end. -Notation " G ; D " := (conc G D) (at level 20). -Inductive term : ctx -> type -> Type := -| ax : forall G tau, term (G, tau) tau -| weak : forall G tau, - term G tau -> forall tau', term (G, tau') tau -| abs : forall G tau tau', - term (G , tau) tau' -> term G (tau --> tau') -| app : forall G tau tau', - term G (tau --> tau') -> term G tau -> term G tau'. -\end{coq_example*} - -We have defined types and contexts which are snoc-lists of types. We -also have a {\tt conc} operation that concatenates two contexts. -The {\tt term} datatype represents in fact the possible typing -derivations of the calculus, which are isomorphic to the well-typed -terms, hence the name. A term is either an application of: -\begin{itemize} -\item the axiom rule to type a reference to the first variable in a context, -\item the weakening rule to type an object in a larger context -\item the abstraction or lambda rule to type a function -\item the application to type an application of a function to an argument -\end{itemize} - -Once we have this datatype we want to do proofs on it, like weakening: - -\begin{coq_example*} -Lemma weakening : forall G D tau, term (G ; D) tau -> - forall tau', term (G , tau' ; D) tau. -\end{coq_example*} -\begin{coq_eval} - Abort. -\end{coq_eval} - -The problem here is that we can't just use {\tt induction} on the typing -derivation because it will forget about the {\tt G ; D} constraint -appearing in the instance. A solution would be to rewrite the goal as: -\begin{coq_example*} -Lemma weakening' : forall G' tau, term G' tau -> - forall G D, (G ; D) = G' -> - forall tau', term (G, tau' ; D) tau. -\end{coq_example*} -\begin{coq_eval} - Abort. -\end{coq_eval} - -With this proper separation of the index from the instance and the right -induction loading (putting {\tt G} and {\tt D} after the inducted-on -hypothesis), the proof will go through, but it is a very tedious -process. One is also forced to make a wrapper lemma to get back the -more natural statement. The \depind tactic alleviates this trouble by -doing all of this plumbing of generalizing and substituting back automatically. -Indeed we can simply write: - -\begin{coq_example*} -Require Import Coq.Program.Tactics. -Lemma weakening : forall G D tau, term (G ; D) tau -> - forall tau', term (G , tau' ; D) tau. -Proof with simpl in * ; simpl_depind ; auto. - intros G D tau H. dependent induction H generalizing G D ; intros. -\end{coq_example*} - -This call to \depind has an additional arguments which is a list of -variables appearing in the instance that should be generalized in the -goal, so that they can vary in the induction hypotheses. By default, all -variables appearing inside constructors (except in a parameter position) -of the instantiated hypothesis will be generalized automatically but -one can always give the list explicitly. - -\begin{coq_example} - Show. -\end{coq_example} - -The {\tt simpl\_depind} tactic includes an automatic tactic that tries -to simplify equalities appearing at the beginning of induction -hypotheses, generally using trivial applications of -reflexivity. In cases where the equality is not between constructor -forms though, one must help the automation by giving -some arguments, using the {\tt specialize} tactic. - -\begin{coq_example*} -destruct D... apply weak ; apply ax. apply ax. -destruct D... -\end{coq_example*} -\begin{coq_example} -Show. -\end{coq_example} -\begin{coq_example} - specialize (IHterm G empty). -\end{coq_example} - -Then the automation can find the needed equality {\tt G = G} to narrow -the induction hypothesis further. This concludes our example. - -\begin{coq_example} - simpl_depind. -\end{coq_example} - -\SeeAlso The induction \ref{elim}, case \ref{case} and inversion \ref{inversion} tactics. - -\section[\tt autorewrite]{\tt autorewrite\label{autorewrite-example}} - -Here are two examples of {\tt autorewrite} use. The first one ({\em Ackermann -function}) shows actually a quite basic use where there is no conditional -rewriting. The second one ({\em Mac Carthy function}) involves conditional -rewritings and shows how to deal with them using the optional tactic of the -{\tt Hint~Rewrite} command. - -\firstexample -\example{Ackermann function} -%Here is a basic use of {\tt AutoRewrite} with the Ackermann function: - -\begin{coq_example*} -Reset Initial. -Require Import Arith. -Variable Ack : - nat -> nat -> nat. -Axiom Ack0 : - forall m:nat, Ack 0 m = S m. -Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1. -Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m). -\end{coq_example*} - -\begin{coq_example} -Hint Rewrite Ack0 Ack1 Ack2 : base0. -Lemma ResAck0 : - Ack 3 2 = 29. -autorewrite with base0 using try reflexivity. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\example{Mac Carthy function} -%The Mac Carthy function shows a more complex case: - -\begin{coq_example*} -Require Import Omega. -Variable g : - nat -> nat -> nat. -Axiom g0 : - forall m:nat, g 0 m = m. -Axiom - g1 : - forall n m:nat, - (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10). -Axiom - g2 : - forall n m:nat, - (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11). -\end{coq_example*} - -\begin{coq_example} -Hint Rewrite g0 g1 g2 using omega : base1. -Lemma Resg0 : - g 1 110 = 100. -autorewrite with base1 using reflexivity || simpl. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\begin{coq_example} -Lemma Resg1 : g 1 95 = 91. -autorewrite with base1 using reflexivity || simpl. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\section[\tt quote]{\tt quote\tacindex{quote} -\label{quote-examples}} - -The tactic \texttt{quote} allows to use Barendregt's so-called -2-level approach without writing any ML code. Suppose you have a -language \texttt{L} of -'abstract terms' and a type \texttt{A} of 'concrete terms' -and a function \texttt{f : L -> A}. If \texttt{L} is a simple -inductive datatype and \texttt{f} a simple fixpoint, \texttt{quote f} -will replace the head of current goal by a convertible term of the form -\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A - -> L}. - -Here is an example: - -\begin{coq_example} -Require Import Quote. -Parameters A B C : Prop. -Inductive formula : Type := - | f_and : formula -> formula -> formula (* binary constructor *) - | f_or : formula -> formula -> formula - | f_not : formula -> formula (* unary constructor *) - | f_true : formula (* 0-ary constructor *) - | f_const : Prop -> formula (* constructor for constants *). -Fixpoint interp_f (f: - formula) : Prop := - match f with - | f_and f1 f2 => interp_f f1 /\ interp_f f2 - | f_or f1 f2 => interp_f f1 \/ interp_f f2 - | f_not f1 => ~ interp_f f1 - | f_true => True - | f_const c => c - end. -Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A). -quote interp_f. -\end{coq_example} - -The algorithm to perform this inversion is: try to match the -term with right-hand sides expression of \texttt{f}. If there is a -match, apply the corresponding left-hand side and call yourself -recursively on sub-terms. If there is no match, we are at a leaf: -return the corresponding constructor (here \texttt{f\_const}) applied -to the term. - -\begin{ErrMsgs} -\item \errindex{quote: not a simple fixpoint} \\ - Happens when \texttt{quote} is not able to perform inversion properly. -\end{ErrMsgs} - -\subsection{Introducing variables map} - -The normal use of \texttt{quote} is to make proofs by reflection: one -defines a function \texttt{simplify : formula -> formula} and proves a -theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) -> - (interp\_f f)}. Then, one can simplify formulas by doing: -\begin{verbatim} - quote interp_f. - apply simplify_ok. - compute. -\end{verbatim} -But there is a problem with leafs: in the example above one cannot -write a function that implements, for example, the logical simplifications -$A \land A \ra A$ or $A \land \lnot A \ra \texttt{False}$. This is -because the \Prop{} is impredicative. - -It is better to use that type of formulas: - -\begin{coq_eval} -Reset formula. -\end{coq_eval} -\begin{coq_example} -Inductive formula : Set := - | f_and : formula -> formula -> formula - | f_or : formula -> formula -> formula - | f_not : formula -> formula - | f_true : formula - | f_atom : index -> formula. -\end{coq_example*} - -\texttt{index} is defined in module \texttt{quote}. Equality on that -type is decidable so we are able to simplify $A \land A$ into $A$ at -the abstract level. - -When there are variables, there are bindings, and \texttt{quote} -provides also a type \texttt{(varmap A)} of bindings from -\texttt{index} to any set \texttt{A}, and a function -\texttt{varmap\_find} to search in such maps. The interpretation -function has now another argument, a variables map: - -\begin{coq_example} -Fixpoint interp_f (vm: - varmap Prop) (f:formula) {struct f} : Prop := - match f with - | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2 - | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2 - | f_not f1 => ~ interp_f vm f1 - | f_true => True - | f_atom i => varmap_find True i vm - end. -\end{coq_example} - -\noindent\texttt{quote} handles this second case properly: - -\begin{coq_example} -Goal A /\ (B \/ A) /\ (A \/ ~ B). -quote interp_f. -\end{coq_example} - -It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is -convertible with the conclusion of current goal. - -\subsection{Combining variables and constants} - -One can have both variables and constants in abstracts terms; that is -the case, for example, for the \texttt{ring} tactic (chapter -\ref{ring}). Then one must provide to \texttt{quote} a list of -\emph{constructors of constants}. For example, if the list is -\texttt{[O S]} then closed natural numbers will be considered as -constants and other terms as variables. - -Example: - -\begin{coq_eval} -Reset formula. -\end{coq_eval} -\begin{coq_example*} -Inductive formula : Type := - | f_and : formula -> formula -> formula - | f_or : formula -> formula -> formula - | f_not : formula -> formula - | f_true : formula - | f_const : Prop -> formula (* constructor for constants *) - | f_atom : index -> formula. -Fixpoint interp_f - (vm: (* constructor for variables *) - varmap Prop) (f:formula) {struct f} : Prop := - match f with - | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2 - | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2 - | f_not f1 => ~ interp_f vm f1 - | f_true => True - | f_const c => c - | f_atom i => varmap_find True i vm - end. -Goal -A /\ (A \/ True) /\ ~ B /\ (C <-> C). -\end{coq_example*} - -\begin{coq_example} -quote interp_f [ A B ]. -Undo. - quote interp_f [ B C iff ]. -\end{coq_example} - -\Warning Since function inversion -is undecidable in general case, don't expect miracles from it! - -\begin{Variants} - -\item {\tt quote {\ident} in {\term} using {\tac}} - - \tac\ must be a functional tactic (starting with {\tt fun x =>}) - and will be called with the quoted version of \term\ according to - \ident. - -\item {\tt quote {\ident} [ \ident$_1$ \dots\ \ident$_n$ ] in {\term} using {\tac}} - - Same as above, but will use \ident$_1$, \dots, \ident$_n$ to - chose which subterms are constants (see above). - -\end{Variants} - -% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v} - -\SeeAlso comments of source file \texttt{plugins/quote/quote.ml} - -\SeeAlso the \texttt{ring} tactic (Chapter~\ref{ring}) - - - -\section{Using the tactical language} - -\subsection{About the cardinality of the set of natural numbers} - -A first example which shows how to use the pattern matching over the proof -contexts is the proof that natural numbers have more than two elements. The -proof of such a lemma can be done as %shown on Figure~\ref{cnatltac}. -follows: -%\begin{figure} -%\begin{centerframe} -\begin{coq_eval} -Reset Initial. -Require Import Arith. -Require Import List. -\end{coq_eval} -\begin{coq_example*} -Lemma card_nat : - ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z). -Proof. -red; intros (x, (y, Hy)). -elim (Hy 0); elim (Hy 1); elim (Hy 2); intros; - match goal with - | [_:(?a = ?b),_:(?a = ?c) |- _ ] => - cut (b = c); [ discriminate | apply trans_equal with a; auto ] - end. -Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{A proof on cardinality of natural numbers} -%\label{cnatltac} -%\end{figure} - -We can notice that all the (very similar) cases coming from the three -eliminations (with three distinct natural numbers) are successfully solved by -a {\tt match goal} structure and, in particular, with only one pattern (use -of non-linear matching). - -\subsection{Permutation on closed lists} - -Another more complex example is the problem of permutation on closed lists. The -aim is to show that a closed list is a permutation of another one. - -First, we define the permutation predicate as shown in table~\ref{permutpred}. - -\begin{figure} -\begin{centerframe} -\begin{coq_example*} -Section Sort. -Variable A : Set. -Inductive permut : list A -> list A -> Prop := - | permut_refl : forall l, permut l l - | permut_cons : - forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1) - | permut_append : forall a l, permut (a :: l) (l ++ a :: nil) - | permut_trans : - forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2. -End Sort. -\end{coq_example*} -\end{centerframe} -\caption{Definition of the permutation predicate} -\label{permutpred} -\end{figure} - -A more complex example is the problem of permutation on closed lists. -The aim is to show that a closed list is a permutation of another one. -First, we define the permutation predicate as shown on -Figure~\ref{permutpred}. - -\begin{figure} -\begin{centerframe} -\begin{coq_example} -Ltac Permut n := - match goal with - | |- (permut _ ?l ?l) => apply permut_refl - | |- (permut _ (?a :: ?l1) (?a :: ?l2)) => - let newn := eval compute in (length l1) in - (apply permut_cons; Permut newn) - | |- (permut ?A (?a :: ?l1) ?l2) => - match eval compute in n with - | 1 => fail - | _ => - let l1' := constr:(l1 ++ a :: nil) in - (apply (permut_trans A (a :: l1) l1' l2); - [ apply permut_append | compute; Permut (pred n) ]) - end - end. -Ltac PermutProve := - match goal with - | |- (permut _ ?l1 ?l2) => - match eval compute in (length l1 = length l2) with - | (?n = ?n) => Permut n - end - end. -\end{coq_example} -\end{centerframe} -\caption{Permutation tactic} -\label{permutltac} -\end{figure} - -Next, we can write naturally the tactic and the result can be seen on -Figure~\ref{permutltac}. We can notice that we use two toplevel -definitions {\tt PermutProve} and {\tt Permut}. The function to be -called is {\tt PermutProve} which computes the lengths of the two -lists and calls {\tt Permut} with the length if the two lists have the -same length. {\tt Permut} works as expected. If the two lists are -equal, it concludes. Otherwise, if the lists have identical first -elements, it applies {\tt Permut} on the tail of the lists. Finally, -if the lists have different first elements, it puts the first element -of one of the lists (here the second one which appears in the {\tt - permut} predicate) at the end if that is possible, i.e., if the new -first element has been at this place previously. To verify that all -rotations have been done for a list, we use the length of the list as -an argument for {\tt Permut} and this length is decremented for each -rotation down to, but not including, 1 because for a list of length -$n$, we can make exactly $n-1$ rotations to generate at most $n$ -distinct lists. Here, it must be noticed that we use the natural -numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we -can see that it is possible to use usual natural numbers but they are -only used as arguments for primitive tactics and they cannot be -handled, in particular, we cannot make computations with them. So, a -natural choice is to use {\Coq} data structures so that {\Coq} makes -the computations (reductions) by {\tt eval compute in} and we can get -the terms back by {\tt match}. - -With {\tt PermutProve}, we can now prove lemmas as -% shown on Figure~\ref{permutlem}. -follows: -%\begin{figure} -%\begin{centerframe} - -\begin{coq_example*} -Lemma permut_ex1 : - permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil). -Proof. PermutProve. Qed. -Lemma permut_ex2 : - permut nat - (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil) - (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil). -Proof. PermutProve. Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Examples of {\tt PermutProve} use} -%\label{permutlem} -%\end{figure} - - -\subsection{Deciding intuitionistic propositional logic} - -\begin{figure}[b] -\begin{centerframe} -\begin{coq_example} -Ltac Axioms := - match goal with - | |- True => trivial - | _:False |- _ => elimtype False; assumption - | _:?A |- ?A => auto - end. -\end{coq_example} -\end{centerframe} -\caption{Deciding intuitionistic propositions (1)} -\label{tautoltaca} -\end{figure} - - -\begin{figure} -\begin{centerframe} -\begin{coq_example} -Ltac DSimplif := - repeat - (intros; - match goal with - | id:(~ _) |- _ => red in id - | id:(_ /\ _) |- _ => - elim id; do 2 intro; clear id - | id:(_ \/ _) |- _ => - elim id; intro; clear id - | id:(?A /\ ?B -> ?C) |- _ => - cut (A -> B -> C); - [ intro | intros; apply id; split; assumption ] - | id:(?A \/ ?B -> ?C) |- _ => - cut (B -> C); - [ cut (A -> C); - [ intros; clear id - | intro; apply id; left; assumption ] - | intro; apply id; right; assumption ] - | id0:(?A -> ?B),id1:?A |- _ => - cut B; [ intro; clear id0 | apply id0; assumption ] - | |- (_ /\ _) => split - | |- (~ _) => red - end). -Ltac TautoProp := - DSimplif; - Axioms || - match goal with - | id:((?A -> ?B) -> ?C) |- _ => - cut (B -> C); - [ intro; cut (A -> B); - [ intro; cut C; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; intro; assumption ]; TautoProp - | id:(~ ?A -> ?B) |- _ => - cut (False -> B); - [ intro; cut (A -> False); - [ intro; cut B; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; red; intro; assumption ]; TautoProp - | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp) - end. -\end{coq_example} -\end{centerframe} -\caption{Deciding intuitionistic propositions (2)} -\label{tautoltacb} -\end{figure} - -The pattern matching on goals allows a complete and so a powerful -backtracking when returning tactic values. An interesting application -is the problem of deciding intuitionistic propositional logic. -Considering the contraction-free sequent calculi {\tt LJT*} of -Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic -using the tactic language as shown on Figures~\ref{tautoltaca} -and~\ref{tautoltacb}. The tactic {\tt Axioms} tries to conclude using -usual axioms. The tactic {\tt DSimplif} applies all the reversible -rules of Dyckhoff's system. Finally, the tactic {\tt TautoProp} (the -main tactic to be called) simplifies with {\tt DSimplif}, tries to -conclude with {\tt Axioms} and tries several paths using the -backtracking rules (one of the four Dyckhoff's rules for the left -implication to get rid of the contraction and the right or). - -For example, with {\tt TautoProp}, we can prove tautologies like - those: -% on Figure~\ref{tautolem}. -%\begin{figure}[tbp] -%\begin{centerframe} -\begin{coq_example*} -Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B. -Proof. TautoProp. Qed. -Lemma tauto_ex2 : - forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B. -Proof. TautoProp. Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Proofs of tautologies with {\tt TautoProp}} -%\label{tautolem} -%\end{figure} - -\subsection{Deciding type isomorphisms} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given by -table~\ref{isosax}. - -\begin{figure} -\begin{centerframe} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Open Scope type_scope. -Section Iso_axioms. -Variables A B C : Set. -Axiom Com : A * B = B * A. -Axiom Ass : A * (B * C) = A * B * C. -Axiom Cur : (A * B -> C) = (A -> B -> C). -Axiom Dis : (A -> B * C) = (A -> B) * (A -> C). -Axiom P_unit : A * unit = A. -Axiom AR_unit : (A -> unit) = unit. -Axiom AL_unit : (unit -> A) = A. -Lemma Cons : B = C -> A * B = A * C. -Proof. -intro Heq; rewrite Heq; apply refl_equal. -Qed. -End Iso_axioms. -\end{coq_example*} -\end{centerframe} -\caption{Type isomorphism axioms} -\label{isosax} -\end{figure} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given on -Figure~\ref{isosax}. - -\begin{figure}[ht] -\begin{centerframe} -\begin{coq_example} -Ltac DSimplif trm := - match trm with - | (?A * ?B * ?C) => - rewrite <- (Ass A B C); try MainSimplif - | (?A * ?B -> ?C) => - rewrite (Cur A B C); try MainSimplif - | (?A -> ?B * ?C) => - rewrite (Dis A B C); try MainSimplif - | (?A * unit) => - rewrite (P_unit A); try MainSimplif - | (unit * ?B) => - rewrite (Com unit B); try MainSimplif - | (?A -> unit) => - rewrite (AR_unit A); try MainSimplif - | (unit -> ?B) => - rewrite (AL_unit B); try MainSimplif - | (?A * ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - | (?A -> ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - end - with MainSimplif := - match goal with - | |- (?A = ?B) => try DSimplif A; try DSimplif B - end. -Ltac Length trm := - match trm with - | (_ * ?B) => let succ := Length B in constr:(S succ) - | _ => constr:1 - end. -Ltac assoc := repeat rewrite <- Ass. -\end{coq_example} -\end{centerframe} -\caption{Type isomorphism tactic (1)} -\label{isosltac1} -\end{figure} - -\begin{figure}[ht] -\begin{centerframe} -\begin{coq_example} -Ltac DoCompare n := - match goal with - | [ |- (?A = ?A) ] => apply refl_equal - | [ |- (?A * ?B = ?A * ?C) ] => - apply Cons; let newn := Length B in - DoCompare newn - | [ |- (?A * ?B = ?C) ] => - match eval compute in n with - | 1 => fail - | _ => - pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n) - end - end. -Ltac CompareStruct := - match goal with - | [ |- (?A = ?B) ] => - let l1 := Length A - with l2 := Length B in - match eval compute in (l1 = l2) with - | (?n = ?n) => DoCompare n - end - end. -Ltac IsoProve := MainSimplif; CompareStruct. -\end{coq_example} -\end{centerframe} -\caption{Type isomorphism tactic (2)} -\label{isosltac2} -\end{figure} - -The tactic to judge equalities modulo this axiomatization can be written as -shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite -simple. Types are reduced using axioms that can be oriented (this done by {\tt -MainSimplif}). The normal forms are sequences of Cartesian -products without Cartesian product in the left component. These normal forms -are then compared modulo permutation of the components (this is done by {\tt -CompareStruct}). The main tactic to be called and realizing this algorithm is -{\tt IsoProve}. - -% Figure~\ref{isoslem} gives -Here are examples of what can be solved by {\tt IsoProve}. -%\begin{figure}[ht] -%\begin{centerframe} -\begin{coq_example*} -Lemma isos_ex1 : - forall A B:Set, A * unit * B = B * (unit * A). -Proof. -intros; IsoProve. -Qed. - -Lemma isos_ex2 : - forall A B C:Set, - (A * unit -> B * (C * unit)) = - (A * unit -> (C -> unit) * C) * (unit -> A -> B). -Proof. -intros; IsoProve. -Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Type equalities solved by {\tt IsoProve}} -%\label{isoslem} -%\end{figure} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/RefMan-tus.tex b/doc/refman/RefMan-tus.tex deleted file mode 100644 index 3e298867..00000000 --- a/doc/refman/RefMan-tus.tex +++ /dev/null @@ -1,2001 +0,0 @@ -%\documentclass[11pt]{article} -%\usepackage{fullpage,euler} -%\usepackage[latin1]{inputenc} -%\begin{document} -%\title{Writing ad-hoc Tactics in Coq} -%\author{} -%\date{} -%\maketitle -%\tableofcontents -%\clearpage - -\chapter[Writing ad-hoc Tactics in Coq]{Writing ad-hoc Tactics in Coq\label{WritingTactics}} - -\section{Introduction} - -\Coq\ is an open proof environment, in the sense that the collection of -proof strategies offered by the system can be extended by the user. -This feature has two important advantages. First, the user can develop -his/her own ad-hoc proof procedures, customizing the system for a -particular domain of application. Second, the repetitive and tedious -aspects of the proofs can be abstracted away implementing new tactics -for dealing with them. For example, this may be useful when a theorem -needs several lemmas which are all proven in a similar but not exactly -the same way. Let us illustrate this with an example. - -Consider the problem of deciding the equality of two booleans. The -theorem establishing that this is always possible is state by -the following theorem: - -\begin{coq_example*} -Theorem decideBool : (x,y:bool){x=y}+{~x=y}. -\end{coq_example*} - -The proof proceeds by case analysis on both $x$ and $y$. This yields -four cases to solve. The cases $x=y=\textsl{true}$ and -$x=y=\textsl{false}$ are immediate by the reflexivity of equality. - -The other two cases follow by discrimination. The following script -describes the proof: - -\begin{coq_example*} -Destruct x. - Destruct y. - Left ; Reflexivity. - Right; Discriminate. - Destruct y. - Right; Discriminate. - Left ; Reflexivity. -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Now, consider the theorem stating the same property but for the -following enumerated type: - -\begin{coq_example*} -Inductive Set Color := Blue:Color | White:Color | Red:Color. -Theorem decideColor : (c1,c2:Color){c1=c2}+{~c1=c2}. -\end{coq_example*} - -This theorem can be proven in a very similar way, reasoning by case -analysis on $c_1$ and $c_2$. Once more, each of the (now six) cases is -solved either by reflexivity or by discrimination: - -\begin{coq_example*} -Destruct c1. - Destruct c2. - Left ; Reflexivity. - Right ; Discriminate. - Right ; Discriminate. - Destruct c2. - Right ; Discriminate. - Left ; Reflexivity. - Right ; Discriminate. - Destruct c2. - Right ; Discriminate. - Right ; Discriminate. - Left ; Reflexivity. -\end{coq_example*} -\begin{coq_eval} -Abort. -\end{coq_eval} - -If we face the same theorem for an enumerated datatype corresponding -to the days of the week, it would still follow a similar pattern. In -general, the general pattern for proving the property -$(x,y:R)\{x=y\}+\{\neg x =y\}$ for an enumerated type $R$ proceeds as -follow: -\begin{enumerate} -\item Analyze the cases for $x$. -\item For each of the sub-goals generated by the first step, analyze -the cases for $y$. -\item The remaining subgoals follow either by reflexivity or -by discrimination. -\end{enumerate} - -Let us describe how this general proof procedure can be introduced in -\Coq. - -\section{Tactic Macros} - -The simplest way to introduce it is to define it as new a -\textsl{tactic macro}, as follows: - -\begin{coq_example*} -Tactic Definition DecideEq [$a $b] := - [<:tactic:<Destruct $a; - Destruct $b; - (Left;Reflexivity) Orelse (Right;Discriminate)>>]. -\end{coq_example*} - -The general pattern of the proof is abstracted away using the -tacticals ``\texttt{;}'' and \texttt{Orelse}, and introducing two -parameters for the names of the arguments to be analyzed. - -Once defined, this tactic can be called like any other tactic, just -supplying the list of terms corresponding to its real arguments. Let us -revisit the proof of the former theorems using the new tactic -\texttt{DecideEq}: - -\begin{coq_example*} -Theorem decideBool : (x,y:bool){x=y}+{~x=y}. -DecideEq x y. -Defined. -\end{coq_example*} -\begin{coq_example*} -Theorem decideColor : (c1,c2:Color){c1=c2}+{~c1=c2}. -DecideEq c1 c2. -Defined. -\end{coq_example*} - -In general, the command \texttt{Tactic Definition} associates a name -to a parameterized tactic expression, built up from the tactics and -tacticals that are already available. The general syntax rule for this -command is the following: - -\begin{tabbing} -\texttt{Tactic Definition} \textit{tactic-name} \= -\texttt{[}\$$id_1\ldots \$id_n$\texttt{]}\\ -\> := \texttt{[<:tactic:<} \textit{tactic-expression} \verb+>>]+ -\end{tabbing} - -This command provides a quick but also very primitive mechanism for -introducing new tactics. It does not support recursive definitions, -and the arguments of a tactic macro are restricted to term -expressions. Moreover, there is no static checking of the definition -other than the syntactical one. Any error in the definition of the -tactic ---for instance, a call to an undefined tactic--- will not be -noticed until the tactic is called. - -%This command provides a very primitive mechanism for introducing new -%tactics. The arguments of a tactic macro are restricted to term -%expressions. Hence, it is not possible to define higher order tactics -%with this command. Also, there is no static checking of the definition -%other than syntactical. If the tactic contain errors in its definition -%--for instance, a call to an undefined tactic-- this will be noticed -%during the tactic call. - -Let us illustrate the weakness of this way of introducing new tactics -trying to extend our proof procedure to work on a larger class of -inductive types. Consider for example the decidability of equality -for pairs of booleans and colors: - -\begin{coq_example*} -Theorem decideBoolXColor : (p1,p2:bool*Color){p1=p2}+{~p1=p2}. -\end{coq_example*} - -The proof still proceeds by a double case analysis, but now the -constructors of the type take two arguments. Therefore, the sub-goals -that can not be solved by discrimination need further considerations -about the equality of such arguments: - -\begin{coq_example} - Destruct p1; - Destruct p2; Try (Right;Discriminate);Intros. -\end{coq_example} - -The half of the disjunction to be chosen depends on whether or not -$b=b_0$ and $c=c_0$. These equalities can be decided automatically -using the previous lemmas about booleans and colors. If both -equalities are satisfied, then it is sufficient to rewrite $b$ into -$b_0$ and $c$ into $c_0$, so that the left half of the goal follows by -reflexivity. Otherwise, the right half follows by first contraposing -the disequality, and then applying the invectiveness of the pairing -constructor. - -As the cases associated to each argument of the pair are very similar, -a tactic macro can be introduced to abstract this part of the proof: - -\begin{coq_example*} -Hints Resolve decideBool decideColor. -Tactic Definition SolveArg [$t1 $t2] := - [<:tactic:< - ElimType {$t1=$t2}+{~$t1=$t2}; - [(Intro equality;Rewrite equality;Clear equality) | - (Intro diseq; Right; Red; Intro absurd; - Apply diseq;Injection absurd;Trivial) | - Auto]>>]. -\end{coq_example*} - -This tactic is applied to each corresponding pair of arguments of the -arguments, until the goal can be solved by reflexivity: - -\begin{coq_example*} -SolveArg b b0; - SolveArg c c0; - Left; Reflexivity. -Defined. -\end{coq_example*} - -Therefore, a more general strategy for deciding the property -$(x,y:R)\{x=y\}+\{\neg x =y\}$ on $R$ can be sketched as follows: -\begin{enumerate} -\item Eliminate $x$ and then $y$. -\item Try discrimination to solve those goals where $x$ and $y$ has -been introduced by different constructors. -\item If $x$ and $y$ have been introduced by the same constructor, -then iterate the tactic \textsl{SolveArg} for each pair of -arguments. -\item Finally, solve the left half of the goal by reflexivity. -\end{enumerate} - -The implementation of this stronger proof strategy needs to perform a -term decomposition, in order to extract the list of arguments of each -constructor. It also requires the introduction of recursively defined -tactics, so that the \textsl{SolveArg} can be iterated on the lists of -arguments. These features are not supported by the \texttt{Tactic -Definition} command. One possibility could be extended this command in -order to introduce recursion, general parameter passing, -pattern-matching, etc, but this would quickly lead us to introduce the -whole \ocaml{} into \Coq\footnote{This is historically true. In fact, -\ocaml{} is a direct descendent of ML, a functional programming language -conceived language for programming the tactics of the theorem prover -LCF.}. Instead of doing this, we prefer to give to the user the -possibility of writing his/her own tactics directly in \ocaml{}, and then -to link them dynamically with \Coq's code. This requires a minimal -knowledge about \Coq's implementation. The next section provides an -overview of \Coq's architecture. - -%It is important to point out that the introduction of a new tactic -%never endangers the correction of the theorems proven in the extended -%system. In order to understand why, let us introduce briefly the system -%architecture. - -\section{An Overview of \Coq's Architecture} - -The implementation of \Coq\ is based on eight \textsl{logical -modules}. By ``module'' we mean here a logical piece of code having a -conceptual unity, that may concern several \ocaml{} files. By the sake of -organization, all the \ocaml{} files concerning a logical module are -grouped altogether into the same sub-directory. The eight modules -are: - -\begin{tabular}{lll} -1. & The logical framework & (directory \texttt{src/generic})\\ -2. & The language of constructions & (directory \texttt{src/constr})\\ -3. & The type-checker & (directory \texttt{src/typing})\\ -4. & The proof engine & (directory \texttt{src/proofs})\\ -5. & The language of basic tactics & (directory \texttt{src/tactics})\\ -6. & The vernacular interpreter & (directory \texttt{src/env})\\ -7. & The parser and the pretty-printer & (directory \texttt{src/parsing})\\ -8. & The standard library & (directory \texttt{src/lib}) -\end{tabular} - -\vspace{1em} - -The following sections briefly present each of the modules above. -This presentation is not intended to be a complete description of \Coq's -implementation, but rather a guideline to be read before taking a look -at the sources. For each of the modules, we also present some of its -most important functions, which are sufficient to implement a large -class of tactics. - - -\subsection[The Logical Framework]{The Logical Framework\label{LogicalFramework}} - -At the very heart of \Coq there is a generic untyped language for -expressing abstractions, applications and global constants. This -language is used as a meta-language for expressing the terms of the -Calculus of Inductive Constructions. General operations on terms like -collecting the free variables of an expression, substituting a term for -a free variable, etc, are expressed in this language. - -The meta-language \texttt{'op term} of terms has seven main -constructors: -\begin{itemize} -\item $(\texttt{VAR}\;id)$, a reference to a global identifier called $id$; -\item $(\texttt{Rel}\;n)$, a bound variable, whose binder is the $nth$ - binder up in the term; -\item $\texttt{DLAM}\;(x,t)$, a deBruijn's binder on the term $t$; -\item $\texttt{DLAMV}\;(x,vt)$, a deBruijn's binder on all the terms of - the vector $vt$; -\item $(\texttt{DOP0}\;op)$, a unary operator $op$; -\item $\texttt{DOP2}\;(op,t_1,t_2)$, the application of a binary -operator $op$ to the terms $t_1$ and $t_2$; -\item $\texttt{DOPN} (op,vt)$, the application of an n-ary operator $op$ to the -vector of terms $vt$. -\end{itemize} - -In this meta-language, bound variables are represented using the -so-called deBrujin's indexes. In this representation, an occurrence of -a bound variable is denoted by an integer, meaning the number of -binders that must be traversed to reach its own -binder\footnote{Actually, $(\texttt{Rel}\;n)$ means that $(n-1)$ binders -have to be traversed, since indexes are represented by strictly -positive integers.}. On the other hand, constants are referred by its -name, as usual. For example, if $A$ is a variable of the current -section, then the lambda abstraction $[x:A]x$ of the Calculus of -Constructions is represented in the meta-language by the term: - -\begin{displaymath} -(DOP2 (Lambda,(Var\;A),DLAM (x,(Rel\;1))) -\end{displaymath} - -In this term, $Lambda$ is a binary operator. Its first argument -correspond to the type $A$ of the bound variable, while the second is -a body of the abstraction, where $x$ is bound. The name $x$ is just kept -to pretty-print the occurrences of the bound variable. - -%Similarly, the product -%$(A:Prop)A$ of the Calculus of Constructions is represented by the -%term: -%\begin{displaumath} -%DOP2 (Prod, DOP0 (Sort (Prop Null)), DLAM (Name \#A, Rel 1)) -%\end{displaymath} - -The following functions perform some of the most frequent operations -on the terms of the meta-language: -\begin{description} -\fun{val Generic.subst1 : 'op term -> 'op term -> 'op term} - {$(\texttt{subst1}\;t_1\;t_2)$ substitutes $t_1$ for - $\texttt{(Rel}\;1)$ in $t_2$.} -\fun{val Generic.occur\_var : identifier -> 'op term -> bool} - {Returns true when the given identifier appears in the term, - and false otherwise.} -\fun{val Generic.eq\_term : 'op term -> 'op term -> bool} - {Implements $\alpha$-equality for terms.} -\fun{val Generic.dependent : 'op term -> 'op term -> bool} - {Returns true if the first term is a sub-term of the second.} -%\fun{val Generic.subst\_var : identifier -> 'op term -> 'op term} -% { $(\texttt{subst\_var}\;id\;t)$ substitutes the deBruijn's index -% associated to $id$ to every occurrence of the term -% $(\texttt{VAR}\;id)$ in $t$.} -\end{description} - -\subsubsection{Identifiers, names and sections paths.} - -Three different kinds of names are used in the meta-language. They are -all defined in the \ocaml{} file \texttt{Names}. - -\paragraph{Identifiers.} The simplest kind of names are -\textsl{identifiers}. An identifier is a string possibly indexed by an -integer. They are used to represent names that are not unique, like -for example the name of a variable in the scope of a section. The -following operations can be used for handling identifiers: - -\begin{description} -\fun{val Names.make\_ident : string -> int -> identifier} - {The value $(\texttt{make\_ident}\;x\;i)$ creates the - identifier $x_i$. If $i=-1$, then the identifier has - is created with no index at all.} -\fun{val Names.repr\_ident : identifier -> string * int} - {The inverse operation of \texttt{make\_ident}: - it yields the string and the index of the identifier.} -\fun{val Names.lift\_ident : identifier -> identifier} - {Increases the index of the identifier by one.} -\fun{val Names.next\_ident\_away : \\ -\qquad identifier -> identifier list -> identifier} - {\\ Generates a new identifier with the same root string than the - given one, but with a new index, different from all the indexes of - a given list of identifiers.} -\fun{val Names.id\_of\_string : string -> - identifier} - {Creates an identifier from a string.} -\fun{val Names.string\_of\_id : identifier -> string} - {The inverse operation: transforms an identifier into a string} -\end{description} - -\paragraph{Names.} A \textsl{name} is either an identifier or the -special name \texttt{Anonymous}. Names are used as arguments of -binders, in order to pretty print bound variables. -The following operations can be used for handling names: - -\begin{description} -\fun{val Names.Name: identifier -> Name} - {Constructs a name from an identifier.} -\fun{val Names.Anonymous : Name} - {Constructs a special, anonymous identifier, like the variable abstracted - in the term $[\_:A]0$.} -\fun{val - Names.next\_name\_away\_with\_default : \\ \qquad - string->name->identifier list->identifier} -{\\ If the name is not anonymous, then this function generates a new - identifier different from all the ones in a given list. Otherwise, it - generates an identifier from the given string.} -\end{description} - -\paragraph[Section paths.]{Section paths.\label{SectionPaths}} -A \textsl{section-path} is a global name to refer to an object without -ambiguity. It can be seen as a sort of filename, where open sections -play the role of directories. Each section path is formed by three -components: a \textsl{directory} (the list of open sections); a -\textsl{basename} (the identifier for the object); and a \textsl{kind} -(either CCI for the terms of the Calculus of Constructions, FW for the -the terms of $F_\omega$, or OBJ for other objects). For example, the -name of the following constant: -\begin{verbatim} - Section A. - Section B. - Section C. - Definition zero := O. -\end{verbatim} - -is internally represented by the section path: - -$$\underbrace{\mathtt{\#A\#B\#C}}_{\mbox{dirpath}} -\underbrace{\mathtt{\tt \#zero}}_{\mbox{basename}} -\underbrace{\mathtt{\tt .cci}_{\;}}_{\mbox{kind}}$$ - -When one of the sections is closed, a new constant is created with an -updated section-path,a nd the old one is no longer reachable. In our -example, after closing the section \texttt{C}, the new section-path -for the constant {\tt zero} becomes: -\begin{center} -\texttt{ \#A\#B\#zero.cci} -\end{center} - -The following operations can be used to handle section paths: - -\begin{description} -\fun{val Names.string\_of\_path : section\_path -> string} - {Transforms the section path into a string.} -\fun{val Names.path\_of\_string : string -> section\_path} - {Parses a string an returns the corresponding section path.} -\fun{val Names.basename : section\_path -> identifier} - {Provides the basename of a section path} -\fun{val Names.dirpath : section\_path -> string list} - {Provides the directory of a section path} -\fun{val Names.kind\_of\_path : section\_path -> path\_kind} - {Provides the kind of a section path} -\end{description} - -\subsubsection{Signatures} - -A \textsl{signature} is a mapping associating different informations -to identifiers (for example, its type, its definition, etc). The -following operations could be useful for working with signatures: - -\begin{description} -\fun{val Names.ids\_of\_sign : 'a signature -> identifier list} - {Gets the list of identifiers of the signature.} -\fun{val Names.vals\_of\_sign : 'a signature -> 'a list} - {Gets the list of values associated to the identifiers of the signature.} -\fun{val Names.lookup\_glob1 : \\ \qquad -identifier -> 'a signature -> (identifier * - 'a)} - {\\ Gets the value associated to a given identifier of the signature.} -\end{description} - - -\subsection{The Terms of the Calculus of Constructions} - -The language of the Calculus of Inductive Constructions described in -Chapter \ref{Cic} is implemented on the top of the logical framework, -instantiating the parameter $op$ of the meta-language with a -particular set of operators. In the implementation this language is -called \texttt{constr}, the language of constructions. - -% The only difference -%with respect to the one described in Section \ref{} is that the terms -%of \texttt{constr} may contain \textsl{existential variables}. An -%existential variable is a place holder representing a part of the term -%that is still to be constructed. Such ``open terms'' are necessary -%when building proofs interactively. - -\subsubsection{Building Constructions} - -The user does not need to know the choices made to represent -\texttt{constr} in the meta-language. They are abstracted away by the -following constructor functions: - -\begin{description} -\fun{val Term.mkRel : int -> constr} - {$(\texttt{mkRel}\;n)$ represents deBrujin's index $n$.} - -\fun{val Term.mkVar : identifier -> constr} - {$(\texttt{mkVar}\;id)$ - represents a global identifier named $id$, like a variable - inside the scope of a section, or a hypothesis in a proof}. - -\fun{val Term.mkExistential : constr} - {\texttt{mkExistential} represents an implicit sub-term, like the question - marks in the term \texttt{(pair ? ? O true)}.} - -%\fun{val Term.mkMeta : int -> constr} -% {$(\texttt{mkMeta}\;n)$ represents an existential variable, whose -% name is the integer $n$.} - -\fun{val Term.mkProp : constr} - {$\texttt{mkProp}$ represents the sort \textsl{Prop}.} - -\fun{val Term.mkSet : constr} - {$\texttt{mkSet}$ represents the sort \textsl{Set}.} - -\fun{val Term.mkType : Impuniv.universe -> constr} - {$(\texttt{mkType}\;u)$ represents the term - $\textsl{Type}(u)$. The universe $u$ is represented as a - section path indexed by an integer. } - -\fun{val Term.mkConst : section\_path -> constr array -> constr} - {$(\texttt{mkConst}\;c\;v)$ represents a constant whose name is - $c$. The body of the constant is stored in a global table, - accessible through the name of the constant. The array of terms - $v$ corresponds to the variables of the environment appearing in - the body of the constant when it was defined. For instance, a - constant defined in the section \textsl{Foo} containing the - variable $A$, and whose body is $[x:Prop\ra Prop](x\;A)$ is - represented inside the scope of the section by - $(\texttt{mkConst}\;\texttt{\#foo\#f.cci}\;[| \texttt{mkVAR}\;A - |])$. Once the section is closed, the constant is represented by - the term $(\texttt{mkConst}\;\#f.cci\;[| |])$, and its body - becomes $[A:Prop][x:Prop\ra Prop](x\;A)$}. - -\fun{val Term.mkMutInd : section\_path -> int -> constr array ->constr} - {$(\texttt{mkMutInd}\;c\;i)$ represents the $ith$ type - (starting from zero) of the block of mutually dependent - (co)inductive types, whose first type is $c$. Similarly to the - case of constants, the array of terms represents the current - environment of the (co)inductive type. The definition of the type - (its arity, its constructors, whether it is inductive or co-inductive, etc.) - is stored in a global hash table, accessible through the name of - the type.} - -\fun{val Term.mkMutConstruct : \\ \qquad section\_path -> int -> int -> constr array - ->constr} {\\ $(\texttt{mkMutConstruct}\;c\;i\;j)$ represents the - $jth$ constructor of the $ith$ type of the block of mutually - dependent (co)inductive types whose first type is $c$. The array - of terms represents the current environment of the (co)inductive - type.} - -\fun{val Term.mkCast : constr -> constr -> constr} - {$(\texttt{mkCast}\;t\;T)$ represents the annotated term $t::T$ in - \Coq's syntax.} - -\fun{val Term.mkProd : name ->constr ->constr -> constr} - {$(\texttt{mkProd}\;x\;A\;B)$ represents the product $(x:A)B$. - The free ocurrences of $x$ in $B$ are represented by deBrujin's - indexes.} - -\fun{val Term.mkNamedProd : identifier -> constr -> constr -> constr} - {$(\texttt{produit}\;x\;A\;B)$ represents the product $(x:A)B$, - but the bound occurrences of $x$ in $B$ are denoted by - the identifier $(\texttt{mkVar}\;x)$. The function automatically - changes each occurrences of this identifier into the corresponding - deBrujin's index.} - -\fun{val Term.mkArrow : constr -> constr -> constr} - {$(\texttt{arrow}\;A\;B)$ represents the type $(A\rightarrow B)$.} - -\fun{val Term.mkLambda : name -> constr -> constr -> constr} - {$(\texttt{mkLambda}\;x\;A\;b)$ represents the lambda abstraction - $[x:A]b$. The free ocurrences of $x$ in $B$ are represented by deBrujin's - indexes.} - -\fun{val Term.mkNamedLambda : identifier -> constr -> constr -> constr} - {$(\texttt{lambda}\;x\;A\;b)$ represents the lambda abstraction - $[x:A]b$, but the bound occurrences of $x$ in $B$ are denoted by - the identifier $(\texttt{mkVar}\;x)$. } - -\fun{val Term.mkAppLA : constr array -> constr} - {$(\texttt{mkAppLA}\;t\;[|t_1\ldots t_n|])$ represents the application - $(t\;t_1\;\ldots t_n)$.} - -\fun{val Term.mkMutCaseA : \\ \qquad - case\_info -> constr ->constr - ->constr array -> constr} - {\\ $(\texttt{mkMutCaseA}\;r\;P\;m\;[|f_1\ldots f_n|])$ - represents the term \Case{P}{m}{f_1\ldots f_n}. The first argument - $r$ is either \texttt{None} or $\texttt{Some}\;(c,i)$, where the - pair $(c,i)$ refers to the inductive type that $m$ belongs to.} - -\fun{val Term.mkFix : \\ \qquad -int array->int->constr array->name - list->constr array->constr} - {\\ $(\texttt{mkFix}\;[|k_1\ldots k_n |]\;i\;[|A_1\ldots - A_n|]\;[|f_1\ldots f_n|]\;[|t_1\ldots t_n|])$ represents the term - $\Fix{f_i}{f_1/k_1:A_1:=t_1 \ldots f_n/k_n:A_n:=t_n}$} - -\fun{val Term.mkCoFix : \\ \qquad - int -> constr array -> name list -> - constr array -> constr} - {\\ $(\texttt{mkCoFix}\;i\;[|A_1\ldots - A_n|]\;[|f_1\ldots f_n|]\;[|t_1\ldots t_n|])$ represents the term - $\CoFix{f_i}{f_1:A_1:=t_1 \ldots f_n:A_n:=t_n}$. There are no - decreasing indexes in this case.} -\end{description} - -\subsubsection{Decomposing Constructions} - -Each of the construction functions above has its corresponding -(partial) destruction function, whose name is obtained changing the -prefix \texttt{mk} by \texttt{dest}. In addition to these functions, a -concrete datatype \texttt{kindOfTerm} can be used to do pattern -matching on terms without dealing with their internal representation -in the meta-language. This concrete datatype is described in the \ocaml{} -file \texttt{term.mli}. The following function transforms a construction -into an element of type \texttt{kindOfTerm}: - -\begin{description} -\fun{val Term.kind\_of\_term : constr -> kindOfTerm} - {Destructs a term of the language \texttt{constr}, -yielding the direct components of the term. Hence, in order to do -pattern matching on an object $c$ of \texttt{constr}, it is sufficient -to do pattern matching on the value $(\texttt{kind\_of\_term}\;c)$.} -\end{description} - -Part of the information associated to the constants is stored in -global tables. The following functions give access to such -information: - -\begin{description} -\fun{val Termenv.constant\_value : constr -> constr} - {If the term denotes a constant, projects the body of a constant} -\fun{Termenv.constant\_type : constr -> constr} - {If the term denotes a constant, projects the type of the constant} -\fun{val mind\_arity : constr -> constr} - {If the term denotes an inductive type, projects its arity (i.e., - the type of the inductive type).} -\fun{val Termenv.mis\_is\_finite : mind\_specif -> bool} - {Determines whether a recursive type is inductive or co-inductive.} -\fun{val Termenv.mind\_nparams : constr -> int} - {If the term denotes an inductive type, projects the number of - its general parameters.} -\fun{val Termenv.mind\_is\_recursive : constr -> bool} - {If the term denotes an inductive type, - determines if the type has at least one recursive constructor. } -\fun{val Termenv.mind\_recargs : constr -> recarg list array array} - {If the term denotes an inductive type, returns an array $v$ such - that the nth element of $v.(i).(j)$ is - \texttt{Mrec} if the $nth$ argument of the $jth$ constructor of - the $ith$ type is recursive, and \texttt{Norec} if it is not.}. -\end{description} - -\subsection[The Type Checker]{The Type Checker\label{TypeChecker}} - -The third logical module is the type checker. It concentrates two main -tasks concerning the language of constructions. - -On one hand, it contains the type inference and type-checking -functions. The type inference function takes a term -$a$ and a signature $\Gamma$, and yields a term $A$ such that -$\Gamma \vdash a:A$. The type-checking function takes two terms $a$ -and $A$ and a signature $\Gamma$, and determines whether or not -$\Gamma \vdash a:A$. - -On the other hand, this module is in charge of the compilation of -\Coq's abstract syntax trees into the language \texttt{constr} of -constructions. This compilation seeks to eliminate all the ambiguities -contained in \Coq's abstract syntax, restoring the information -necessary to type-check it. It concerns at least the following steps: -\begin{enumerate} -\item Compiling the pattern-matching expressions containing -constructor patterns, wild-cards, etc, into terms that only -use the primitive \textsl{Case} described in Chapter \ref{Cic} -\item Restoring type coercions and synthesizing the implicit arguments -(the one denoted by question marks in -{\Coq} syntax: see Section~\ref{Coercions}). -\item Transforming the named bound variables into deBrujin's indexes. -\item Classifying the global names into the different classes of -constants (defined constants, constructors, inductive types, etc). -\end{enumerate} - -\subsection{The Proof Engine} - -The fourth stage of \Coq's implementation is the \textsl{proof engine}: -the interactive machine for constructing proofs. The aim of the proof -engine is to construct a top-down derivation or \textsl{proof tree}, -by the application of \textsl{tactics}. A proof tree has the following -general structure:\\ - -\begin{displaymath} -\frac{\Gamma \vdash ? = t(?_1,\ldots?_n) : G} - {\hspace{3ex}\frac{\displaystyle \Gamma_1 \vdash ?_1 = t_1(\ldots) : G_1} - {\stackrel{\vdots}{\displaystyle {\Gamma_{i_1} \vdash ?_{i_1} - : G_{i_1}}}}(tac_1) - \;\;\;\;\;\;\;\;\; - \frac{\displaystyle \Gamma_n \vdash ?_n = t_n(\ldots) : G_n} - {\displaystyle \stackrel{\vdots}{\displaystyle {\Gamma_{i_m} \vdash ?_{i_m} : - G_{i_m}}}}(tac_n)} (tac) -\end{displaymath} - - -\noindent Each node of the tree is called a \textsl{goal}. A goal -is a record type containing the following three fields: -\begin{enumerate} -\item the conclusion $G$ to be proven; -\item a typing signature $\Gamma$ for the free variables in $G$; -\item if the goal is an internal node of the proof tree, the -definition $t(?_1,\ldots?_n)$ of an \textsl{existential variable} -(i.e. a possible undefined constant) $?$ of type $G$ in terms of the -existential variables of the children sub-goals. If the node is a -leaf, the existential variable maybe still undefined. -\end{enumerate} - -Once all the existential variables have been defined the derivation is -completed, and a construction can be generated from the proof tree, -replacing each of the existential variables by its definition. This -is exactly what happens when one of the commands -\texttt{Qed}, \texttt{Save} or \texttt{Defined} is invoked -(see Section~\ref{Qed}). The saved theorem becomes a defined constant, -whose body is the proof object generated. - -\paragraph{Important:} Before being added to the -context, the proof object is type-checked, in order to verify that it is -actually an object of the expected type $G$. Hence, the correctness -of the proof actually does not depend on the tactics applied to -generate it or the machinery of the proof engine, but only on the -type-checker. In other words, extending the system with a potentially -bugged new tactic never endangers the consistency of the system. - -\subsubsection[What is a Tactic?]{What is a Tactic?\label{WhatIsATactic}} -%Let us now explain what is a tactic, and how the user can introduce -%new ones. - -From an operational point of view, the current state of the proof -engine is given by the mapping $emap$ from existential variables into -goals, plus a pointer to one of the leaf goals $g$. Such a pointer -indicates where the proof tree will be refined by the application of a -\textsl{tactic}. A tactic is a function from the current state -$(g,emap)$ of the proof engine into a pair $(l,val)$. The first -component of this pair is the list of children sub-goals $g_1,\ldots -g_n$ of $g$ to be yielded by the tactic. The second one is a -\textsl{validation function}. Once the proof trees $\pi_1,\ldots -\pi_n$ for $g_1,\ldots g_n$ have been completed, this validation -function must yield a proof tree $(val\;\pi_1,\ldots \pi_n)$ deriving -$g$. - -Tactics can be classified into \textsl{primitive} ones and -\textsl{defined} ones. Primitive tactics correspond to the five basic -operations of the proof engine: - -\begin{enumerate} -\item Introducing a universally quantified variable into the local -context of the goal. -\item Defining an undefined existential variable -\item Changing the conclusion of the goal for another ---definitionally equal-- term. -\item Changing the type of a variable in the local context for another -definitionally equal term. -\item Erasing a variable from the local context. -\end{enumerate} - -\textsl{Defined} tactics are tactics constructed by combining these -primitive operations. Defined tactics are registered in a hash table, -so that they can be introduced dynamically. In order to define such a -tactic table, it is necessary to fix what a \textsl{possible argument} -of a tactic may be. The type \texttt{tactic\_arg} of the possible -arguments for tactics is a union type including: -\begin{itemize} -\item quoted strings; -\item integers; -\item identifiers; -\item lists of identifiers; -\item plain terms, represented by its abstract syntax tree; -\item well-typed terms, represented by a construction; -\item a substitution for bound variables, like the -substitution in the tactic \\$\texttt{Apply}\;t\;\texttt{with}\;x:=t_1\ldots -x_n:=t_n$, (see Section~\ref{apply}); -\item a reduction expression, denoting the reduction strategy to be -followed. -\end{itemize} -Therefore, for each function $tac:a \rightarrow tactic$ implementing a -defined tactic, an associated dynamic tactic $tacargs\_tac: -\texttt{tactic\_arg}\;list \rightarrow tactic$ calling $tac$ must be -written. The aim of the auxiliary function $tacargs\_tac$ is to inject -the arguments of the tactic $tac$ into the type of possible arguments -for a tactic. - -The following function can be used for registering and calling a -defined tactic: - -\begin{description} -\fun{val Tacmach.add\_tactic : \\ \qquad -string -> (tactic\_arg list ->tactic) -> unit} - {\\ Registers a dynamic tactic with the given string as access index.} -\fun{val Tacinterp.vernac\_tactic : string*tactic\_arg list -> tactic} - {Interprets a defined tactic given by its entry in the - tactics table with a particular list of possible arguments.} -\fun{val Tacinterp.vernac\_interp : CoqAst.t -> tactic} - {Interprets a tactic expression formed combining \Coq's tactics and - tacticals, and described by its abstract syntax tree.} -\end{description} - -When programming a new tactic that calls an already defined tactic -$tac$, we have the choice between using the \ocaml{} function -implementing $tac$, or calling the tactic interpreter with the name -and arguments for interpreting $tac$. In the first case, a tactic call -will left the trace of the whole implementation of $tac$ in the proof -tree. In the second, the implementation of $tac$ will be hidden, and -only an invocation of $tac$ will be recalled (cf. the example of -Section \ref{ACompleteExample}. The following combinators can be used -to hide the implementation of a tactic: - -\begin{verbatim} -type 'a hiding_combinator = string -> ('a -> tactic) -> ('a -> tactic) -val Tacmach.hide_atomic_tactic : string -> tactic -> tactic -val Tacmach.hide_constr_tactic : constr hiding_combinator -val Tacmach.hide_constrl_tactic : (constr list) hiding_combinator -val Tacmach.hide_numarg_tactic : int hiding_combinator -val Tacmach.hide_ident_tactic : identifier hiding_combinator -val Tacmach.hide_identl_tactic : identifier hiding_combinator -val Tacmach.hide_string_tactic : string hiding_combinator -val Tacmach.hide_bindl_tactic : substitution hiding_combinator -val Tacmach.hide_cbindl_tactic : - (constr * substitution) hiding_combinator -\end{verbatim} - -These functions first register the tactic by a side effect, and then -yield a function calling the interpreter with the registered name and -the right injection into the type of possible arguments. - -\subsection{Tactics and Tacticals Provided by \Coq} - -The fifth logical module is the library of tacticals and basic tactics -provided by \Coq. This library is distributed into the directories -\texttt{tactics} and \texttt{src/tactics}. The former contains those -basic tactics that make use of the types contained in the basic state -of \Coq. For example, inversion or rewriting tactics are in the -directory \texttt{tactics}, since they make use of the propositional -equality type. Those tactics which are independent from the context ---like for example \texttt{Cut}, \texttt{Intros}, etc-- are defined in -the directory \texttt{src/tactics}. This latter directory also -contains some useful tools for programming new tactics, referred in -Section \ref{SomeUsefulToolsforWrittingTactics}. - -In practice, it is very unusual that the list of sub-goals and the -validation function of the tactic must be explicitly constructed by -the user. In most of the cases, the implementation of a new tactic -consists in supplying the appropriate arguments to the basic tactics -and tacticals. - -\subsubsection{Basic Tactics} - -The file \texttt{Tactics} contain the implementation of the basic -tactics provided by \Coq. The following tactics are some of the most -used ones: - -\begin{verbatim} -val Tactics.intro : tactic -val Tactics.assumption : tactic -val Tactics.clear : identifier list -> tactic -val Tactics.apply : constr -> constr substitution -> tactic -val Tactics.one_constructor : int -> constr substitution -> tactic -val Tactics.simplest_elim : constr -> tactic -val Tactics.elimType : constr -> tactic -val Tactics.simplest_case : constr -> tactic -val Tactics.caseType : constr -> tactic -val Tactics.cut : constr -> tactic -val Tactics.reduce : redexpr -> tactic -val Tactics.exact : constr -> tactic -val Auto.auto : int option -> tactic -val Auto.trivial : tactic -\end{verbatim} - -The functions hiding the implementation of these tactics are defined -in the module \texttt{Hiddentac}. Their names are prefixed by ``h\_''. - -\subsubsection[Tacticals]{Tacticals\label{OcamlTacticals}} - -The following tacticals can be used to combine already existing -tactics: - -\begin{description} -\fun{val Tacticals.tclIDTAC : tactic} - {The identity tactic: it leaves the goal as it is.} - -\fun{val Tacticals.tclORELSE : tactic -> tactic -> tactic} - {Tries the first tactic and in case of failure applies the second one.} - -\fun{val Tacticals.tclTHEN : tactic -> tactic -> tactic} - {Applies the first tactic and then the second one to each generated subgoal.} - -\fun{val Tacticals.tclTHENS : tactic -> tactic list -> tactic} - {Applies a tactic, and then applies each tactic of the tactic list to the - corresponding generated subgoal.} - -\fun{val Tacticals.tclTHENL : tactic -> tactic -> tactic} - {Applies the first tactic, and then applies the second one to the last - generated subgoal.} - -\fun{val Tacticals.tclREPEAT : tactic -> tactic} - {If the given tactic succeeds in producing a subgoal, then it - is recursively applied to each generated subgoal, - and so on until it fails. } - -\fun{val Tacticals.tclFIRST : tactic list -> tactic} - {Tries the tactics of the given list one by one, until one of them - succeeds.} - -\fun{val Tacticals.tclTRY : tactic -> tactic} - {Tries the given tactic and in case of failure applies the {\tt - tclIDTAC} tactical to the original goal.} - -\fun{val Tacticals.tclDO : int -> tactic -> tactic} - {Applies the tactic a given number of times.} - -\fun{val Tacticals.tclFAIL : tactic} - {The always failing tactic: it raises a {\tt UserError} exception.} - -\fun{val Tacticals.tclPROGRESS : tactic -> tactic} - {Applies the given tactic to the current goal and fails if the - tactic leaves the goal unchanged} - -\fun{val Tacticals.tclNTH\_HYP : int -> (constr -> tactic) -> tactic} - {Applies a tactic to the nth hypothesis of the local context. - The last hypothesis introduced correspond to the integer 1.} - -\fun{val Tacticals.tclLAST\_HYP : (constr -> tactic) -> tactic} - {Applies a tactic to the last hypothesis introduced.} - -\fun{val Tacticals.tclCOMPLETE : tactic -> tactic} - {Applies a tactic and fails if the tactic did not solve completely the - goal} - -\fun{val Tacticals.tclMAP : ('a -> tactic) -> 'a list -> tactic} - {Applied to the function \texttt{f} and the list \texttt{[x\_1; - ... ; x\_n]}, this tactical applies the tactic - \texttt{tclTHEN (f x1) (tclTHEN (f x2) ... ))))}} - -\fun{val Tacicals.tclIF : (goal sigma -> bool) -> tactic -> tactic -> tactic} - {If the condition holds, apply the first tactic; otherwise, - apply the second one} - -\end{description} - - -\subsection{The Vernacular Interpreter} - -The sixth logical module of the implementation corresponds to the -interpreter of the vernacular phrases of \Coq. These phrases may be -expressions from the \gallina{} language (definitions), general -directives (setting commands) or tactics to be applied by the proof -engine. - -\subsection[The Parser and the Pretty-Printer]{The Parser and the Pretty-Printer\label{PrettyPrinter}} - -The last logical module is the parser and pretty printer of \Coq, -which is the interface between the vernacular interpreter and the -user. They translate the chains of characters entered at the input -into abstract syntax trees, and vice versa. Abstract syntax trees are -represented by labeled n-ary trees, and its type is called -\texttt{CoqAst.t}. For instance, the abstract syntax tree associated -to the term $[x:A]x$ is: - -\begin{displaymath} -\texttt{Node} - ((0,6), "LAMBDA", - [\texttt{Nvar}~((3, 4),"A");~\texttt{Slam}~((0,6),~Some~"x",~\texttt{Nvar}~((5,6),"x"))]) -\end{displaymath} - -The numbers correspond to \textsl{locations}, used to point to some -input line and character positions in the error messages. As it was -already explained in Section \ref{TypeChecker}, this term is then -translated into a construction term in order to be typed. - -The parser of \Coq\ is implemented using \camlpppp. The lexer and the data -used by \camlpppp\ to generate the parser lay in the directory -\texttt{src/parsing}. This directory also contains \Coq's -pretty-printer. The printing rules lay in the directory -\texttt{src/syntax}. The different entries of the grammar are -described in the module \texttt{Pcoq.Entry}. Let us present here two -important functions of this logical module: - -\begin{description} -\fun{val Pcoq.parse\_string : 'a Grammar.Entry.e -> string -> 'a} - {Parses a given string, trying to recognize a phrase - corresponding to some entry in the grammar. If it succeeds, - it yields a value associated to the grammar entry. For example, - applied to the entry \texttt{Pcoq.Command.command}, this function - parses a term of \Coq's language, and yields a value of type - \texttt{CoqAst.t}. When applied to the entry - \texttt{Pcoq.Vernac.vernac}, it parses a vernacular command and - returns the corresponding Ast.} -\fun{val gentermpr : \\ \qquad -path\_kind -> constr assumptions -> constr -> std\_ppcmds} - {\\ Pretty-prints a well-typed term of certain kind (cf. Section - \ref{SectionPaths}) under its context of typing assumption.} -\fun{val gentacpr : CoqAst.t -> std\_ppcmds} - {Pretty-prints a given abstract syntax tree representing a tactic - expression.} -\end{description} - -\subsection{The General Library} - -In addition to the ones laying in the standard library of \ocaml{}, -several useful modules about lists, arrays, sets, mappings, balanced -trees, and other frequently used data structures can be found in the -directory \texttt{lib}. Before writing a new one, check if it is not -already there! - -\subsubsection{The module \texttt{Std}} -This module in the directory \texttt{src/lib/util} is opened by almost -all modules of \Coq{}. Among other things, it contains a definition of -the different kinds of errors used in \Coq{} : - -\begin{description} -\fun{exception UserError of string * std\_ppcmds} - {This is the class of ``users exceptions''. Such errors arise when - the user attempts to do something illegal, for example \texttt{Intro} - when the current goal conclusion is not a product.} - -\fun{val Std.error : string -> 'a} - {For simple error messages} -\fun{val Std.errorlabstrm : string -> std\_ppcmds -> 'a} - {See Section~\ref{PrettyPrinter} : this can be used if the user - want to display a term or build a complex error message} - -\fun{exception Anomaly of string * std\_ppcmds} - {This for reporting bugs or things that should not - happen. The tacticals \texttt{tclTRY} and - \texttt{tclTRY} described in Section~\ref{OcamlTacticals} catch the - exceptions of type \texttt{UserError}, but they don't catch the - anomalies. So, in your code, don't raise any anomaly, unless you - know what you are doing. We also recommend to avoid constructs - such as \texttt{try ... with \_ -> ...} : such constructs can trap - an anomaly and make the debugging process harder.} - -\fun{val Std.anomaly : string -> 'a}{} -\fun{val Std.anomalylabstrm : string -> std\_ppcmds -> 'a}{} -\end{description} - -\section{The tactic writer mini-HOWTO} - -\subsection{How to add a vernacular command} - -The command to register a vernacular command can be found -in module \texttt{Vernacinterp}: - -\begin{verbatim} -val vinterp_add : string * (vernac_arg list -> unit -> unit) -> unit;; -\end{verbatim} - -The first argument is the name, the second argument is a function that -parses the arguments and returns a function of type -\texttt{unit}$\rightarrow$\texttt{unit} that do the job. - -In this section we will show how to add a vernacular command -\texttt{CheckCheck} that print a type of a term and the type of its -type. - -File \texttt{dcheck.ml}: - -\begin{verbatim} -open Vernacinterp;; -open Trad;; -let _ = - vinterp_add - ("DblCheck", - function [VARG_COMMAND com] -> - (fun () -> - let evmap = Evd.mt_evd () - and sign = Termenv.initial_sign () in - let {vAL=c;tYP=t;kIND=k} = - fconstruct_with_univ evmap sign com in - Pp.mSGNL [< Printer.prterm c; 'sTR ":"; - Printer.prterm t; 'sTR ":"; - Printer.prterm k >] ) - | _ -> bad_vernac_args "DblCheck") -;; -\end{verbatim} - -Like for a new tactic, a new syntax entry must be created. - -File \texttt{DCheck.v}: - -\begin{verbatim} -Declare ML Module "dcheck.ml". - -Grammar vernac vernac := - dblcheck [ "CheckCheck" comarg($c) ] -> [(DblCheck $c)]. -\end{verbatim} - -We are now able to test our new command: - -\begin{verbatim} -Coq < Require DCheck. -Coq < CheckCheck O. -O:nat:Set -\end{verbatim} - -Most Coq vernacular commands are registered in the module - \verb+src/env/vernacentries.ml+. One can see more examples here. - -\subsection{How to keep a hashtable synchronous with the reset mechanism} - -This is far more tricky. Some vernacular commands modify some -sort of state (for example by adding something in a hashtable). One -wants that \texttt{Reset} has the expected behavior with this -commands. - -\Coq{} provides a general mechanism to do that. \Coq{} environments -contains objects of three kinds: CCI, FW and OBJ. CCI and FW are for -constants of the calculus. OBJ is a dynamically extensible datatype -that contains sections, tactic definitions, hints for auto, and so -on. - -The simplest example of use of such a mechanism is in file -\verb+src/proofs/macros.ml+ (which implements the \texttt{Tactic - Definition} command). Tactic macros are stored in the imperative -hashtable \texttt{mactab}. There are two functions freeze and unfreeze -to make a copy of the table and to restore the state of table from the -copy. Then this table is declared using \texttt{Library.declare\_summary}. - -What does \Coq{} with that ? \Coq{} defines synchronization points. -At each synchronisation point, the declared tables are frozen (that -is, a copy of this tables is stored). - -When \texttt{Reset }$i$ is called, \Coq{} goes back to the first -synchronisation point that is above $i$ and ``replays'' all objects -between that point -and $i$. It will re-declare constants, re-open section, etc. - -So we need to declare a new type of objects, TACTIC-MACRO-DATA. To -``replay'' on object of that type is to add the corresponding tactic -macro to \texttt{mactab} - -So, now, we can say that \texttt{mactab} is synchronous with the Reset -mechanism$^{\mathrm{TM}}$. - -Notice that this works for hash tables but also for a single integer -(the Undo stack size, modified by the \texttt{Set Undo} command, for -example). - -\subsection{The right way to access to Coq constants from your ML code} - -With their long names, Coq constants are stored using: - -\begin{itemize} -\item a section path -\item an identifier -\end{itemize} - -The identifier is exactly the identifier that is used in \Coq{} to -denote the constant; the section path can be known using the -\texttt{Locate} command: - -\begin{coq_example} - Locate S. - Locate nat. - Locate eq. -\end{coq_example} - -Now it is easy to get a constant by its name and section path: - - -\begin{verbatim} -let constant sp id = - Machops.global_reference (Names.gLOB (Termenv.initial_sign ())) - (Names.path_of_string sp) (Names.id_of_string id);; -\end{verbatim} - - -The only issue is that if one cannot put: - - -\begin{verbatim} -let coq_S = constant "#Datatypes#nat.cci" "S";; -\end{verbatim} - - -in his tactic's code. That is because this sentence is evaluated -\emph{before} the module \texttt{Datatypes} is loaded. The solution is -to use the lazy evaluation of \ocaml{}: - - -\begin{verbatim} -let coq_S = lazy (constant "#Datatypes#nat.cci" "S");; - -... (Lazy.force coq_S) ... -\end{verbatim} - - -Be sure to call always Lazy.force behind a closure -- i.e. inside a -function body or behind the \texttt{lazy} keyword. - -One can see examples of that technique in the source code of \Coq{}, -for example -\verb+plugins/omega/coq_omega.ml+. - -\section[Some Useful Tools for Writing Tactics]{Some Useful Tools for Writing Tactics\label{SomeUsefulToolsforWrittingTactics}} -When the implementation of a tactic is not a straightforward -combination of tactics and tacticals, the module \texttt{Tacmach} -provides several useful functions for handling goals, calling the -type-checker, parsing terms, etc. This module is intended to be -the interface of the proof engine for the user. - -\begin{description} -\fun{val Tacmach.pf\_hyps : goal sigma -> constr signature} - {Projects the local typing context $\Gamma$ from a given goal $\Gamma\vdash ?:G$.} -\fun{val pf\_concl : goal sigma -> constr} - {Projects the conclusion $G$ from a given goal $\Gamma\vdash ?:G$.} -\fun{val Tacmach.pf\_nth\_hyp : goal sigma -> int -> identifier * - constr} - {Projects the $ith$ typing constraint $x_i:A_i$ from the local - context of the given goal.} -\fun{val Tacmach.pf\_fexecute : goal sigma -> constr -> judgement} - {Given a goal whose local context is $\Gamma$ and a term $a$, this - function infers a type $A$ and a kind $K$ such that the judgement - $a:A:K$ is valid under $\Gamma$, or raises an exception if there - is no such judgement. A judgement is just a record type containing - the three terms $a$, $A$ and $K$.} -\fun{val Tacmach.pf\_infexecute : \\ - \qquad -goal sigma -> constr -> judgement * information} - {\\ In addition to the typing judgement, this function also extracts - the $F_{\omega}$ program underlying the term.} -\fun{val Tacmach.pf\_type\_of : goal sigma -> constr -> constr} - {Infers a term $A$ such that $\Gamma\vdash a:A$ for a given term - $a$, where $\Gamma$ is the local typing context of the goal.} -\fun{val Tacmach.pf\_check\_type : goal sigma -> constr -> constr -> bool} - {This function yields a type $A$ if the two given terms $a$ and $A$ verify $\Gamma\vdash - a:A$ in the local typing context $\Gamma$ of the goal. Otherwise, - it raises an exception.} -\fun{val Tacmach.pf\_constr\_of\_com : goal sigma -> CoqAst.t -> constr} - {Transforms an abstract syntax tree into a well-typed term of the - language of constructions. Raises an exception if the term cannot - be typed.} -\fun{val Tacmach.pf\_constr\_of\_com\_sort : goal sigma -> CoqAst.t -> constr} - {Transforms an abstract syntax tree representing a type into - a well-typed term of the language of constructions. Raises an - exception if the term cannot be typed.} -\fun{val Tacmach.pf\_parse\_const : goal sigma -> string -> constr} - {Constructs the constant whose name is the given string.} -\fun{val -Tacmach.pf\_reduction\_of\_redexp : \\ - \qquad goal sigma -> red\_expr -> constr -> constr} - {\\ Applies a certain kind of reduction function, specified by an - element of the type red\_expr.} -\fun{val Tacmach.pf\_conv\_x : goal sigma -> constr -> constr -> bool} - {Test whether two given terms are definitionally equal.} -\end{description} - -\subsection[Patterns]{Patterns\label{Patterns}} - -The \ocaml{} file \texttt{Pattern} provides a quick way for describing a -term pattern and performing second-order, binding-preserving, matching -on it. Patterns are described using an extension of \Coq's concrete -syntax, where the second-order meta-variables of the pattern are -denoted by indexed question marks. - -Patterns may depend on constants, and therefore only to make have -sense when certain theories have been loaded. For this reason, they -are stored with a \textsl{module-marker}, telling us which modules -have to be open in order to use the pattern. The following functions -can be used to store and retrieve patterns form the pattern table: - -\begin{description} -\fun{val Pattern.make\_module\_marker : string list -> module\_mark} - {Constructs a module marker from a list of module names.} -\fun{val Pattern.put\_pat : module\_mark -> string -> marked\_term} - {Constructs a pattern from a parseable string containing holes - and a module marker.} -\fun{val Pattern.somatches : constr -> marked\_term-> bool} - {Tests if a term matches a pattern.} -\fun{val dest\_somatch : constr -> marked\_term -> constr list} - {If the term matches the pattern, yields the list of sub-terms - matching the occurrences of the pattern variables (ordered from - left to right). Raises a \texttt{UserError} exception if the term - does not match the pattern.} -\fun{val Pattern.soinstance : marked\_term -> constr list -> constr} - {Substitutes each hole in the pattern - by the corresponding term of the given the list.} -\end{description} - -\paragraph{Warning:} Sometimes, a \Coq\ term may have invisible -sub-terms that the matching functions are nevertheless sensible to. -For example, the \Coq\ term $(?_1,?_2)$ is actually a shorthand for -the expression $(\texttt{pair}\;?\;?\;?_1\;?_2)$. -Hence, matching this term pattern -with the term $(\texttt{true},\texttt{O})$ actually yields the list -$[?;?;\texttt{true};\texttt{O}]$ as result (and \textbf{not} -$[\texttt{true};\texttt{O}]$, as could be expected). - -\subsection{Patterns on Inductive Definitions} - -The module \texttt{Pattern} also includes some functions for testing -if the definition of an inductive type satisfies certain -properties. Such functions may be used to perform pattern matching -independently from the name given to the inductive type and the -universe it inhabits. They yield the value $(\texttt{Some}\;r::l)$ if -the input term reduces into an application of an inductive type $r$ to -a list of terms $l$, and the definition of $r$ satisfies certain -conditions. Otherwise, they yield the value \texttt{None}. - -\begin{description} -\fun{val Pattern.match\_with\_non\_recursive\_type : constr list option} - {Tests if the inductive type $r$ has no recursive constructors} -\fun{val Pattern.match\_with\_disjunction : constr list option} - {Tests if the inductive type $r$ is a non-recursive type - such that all its constructors have a single argument.} -\fun{val Pattern.match\_with\_conjunction : constr list option} - {Tests if the inductive type $r$ is a non-recursive type - with a unique constructor.} -\fun{val Pattern.match\_with\_empty\_type : constr list option} - {Tests if the inductive type $r$ has no constructors at all} -\fun{val Pattern.match\_with\_equation : constr list option} - {Tests if the inductive type $r$ has a single constructor - expressing the property of reflexivity for some type. For - example, the types $a=b$, $A\mbox{==}B$ and $A\mbox{===}B$ satisfy - this predicate.} -\end{description} - -\subsection{Elimination Tacticals} - -It is frequently the case that the subgoals generated by an -elimination can all be solved in a similar way, possibly parametrized -on some information about each case, like for example: -\begin{itemize} -\item the inductive type of the object being eliminated; -\item its arguments (if it is an inductive predicate); -\item the branch number; -\item the predicate to be proven; -\item the number of assumptions to be introduced by the case -\item the signature of the branch, i.e., for each argument of -the branch whether it is recursive or not. -\end{itemize} - -The following tacticals can be useful to deal with such situations. -They - -\begin{description} -\fun{val Elim.simple\_elimination\_then : \\ \qquad -(branch\_args -> tactic) -> constr -> tactic} - {\\ Performs the default elimination on the last argument, and then - tries to solve the generated subgoals using a given parametrized - tactic. The type branch\_args is a record type containing all - information mentioned above.} -\fun{val Elim.simple\_case\_then : \\ \qquad -(branch\_args -> tactic) -> constr -> tactic} - {\\ Similarly, but it performs case analysis instead of induction.} -\end{description} - -\section[A Complete Example]{A Complete Example\label{ACompleteExample}} - -In order to illustrate the implementation of a new tactic, let us come -back to the problem of deciding the equality of two elements of an -inductive type. - -\subsection{Preliminaries} - -Let us call \texttt{newtactic} the directory that will contain the -implementation of the new tactic. In this directory will lay two -files: a file \texttt{eqdecide.ml}, containing the \ocaml{} sources that -implements the tactic, and a \Coq\ file \texttt{Eqdecide.v}, containing -its associated grammar rules and the commands to generate a module -that can be loaded dynamically from \Coq's toplevel. - -To compile our project, we will create a \texttt{Makefile} with the -command \texttt{do\_Makefile} (see Section~\ref{Makefile}) : - -\begin{quotation} - \texttt{do\_Makefile eqdecide.ml EqDecide.v > Makefile}\\ - \texttt{touch .depend}\\ - \texttt{make depend} -\end{quotation} - -We must have kept the sources of \Coq{} somewhere and to set an -environment variable \texttt{COQTOP} that points to that directory. - -\subsection{Implementing the Tactic} - -The file \texttt{eqdecide.ml} contains the implementation of the -tactic in \ocaml{}. Let us recall the main steps of the proof strategy -for deciding the proposition $(x,y:R)\{x=y\}+\{\neg x=y\}$ on the -inductive type $R$: -\begin{enumerate} -\item Eliminate $x$ and then $y$. -\item Try discrimination to solve those goals where $x$ and $y$ has -been introduced by different constructors. -\item If $x$ and $y$ have been introduced by the same constructor, - then analyze one by one the corresponding pairs of arguments. - If they are equal, rewrite one into the other. If they are - not, derive a contradiction from the invectiveness of the - constructor. -\item Once all the arguments have been rewritten, solve the left half -of the goal by reflexivity. -\end{enumerate} - -In the sequel we implement these steps one by one. We start opening -the modules necessary for the implementation of the tactic: - -\begin{verbatim} -open Names -open Term -open Tactics -open Tacticals -open Hiddentac -open Equality -open Auto -open Pattern -open Names -open Termenv -open Std -open Proof_trees -open Tacmach -\end{verbatim} - -The first step of the procedure can be straightforwardly implemented as -follows: - -\begin{verbatim} -let clear_last = (tclLAST_HYP (fun c -> (clear_one (destVar c))));; -\end{verbatim} - -\begin{verbatim} -let mkBranches = - (tclTHEN intro - (tclTHEN (tclLAST_HYP h_simplest_elim) - (tclTHEN clear_last - (tclTHEN intros - (tclTHEN (tclLAST_HYP h_simplest_case) - (tclTHEN clear_last - intros))))));; -\end{verbatim} - -Notice the use of the tactical \texttt{tclLAST\_HYP}, which avoids to -give a (potentially clashing) name to the quantified variables of the -goal when they are introduced. - -The second step of the procedure is implemented by the following -tactic: - -\begin{verbatim} -let solveRightBranch = (tclTHEN simplest_right discrConcl);; -\end{verbatim} - -In order to illustrate how the implementation of a tactic can be -hidden, let us do it with the tactic above: - -\begin{verbatim} -let h_solveRightBranch = - hide_atomic_tactic "solveRightBranch" solveRightBranch -;; -\end{verbatim} - -As it was already mentioned in Section \ref{WhatIsATactic}, the -combinator \texttt{hide\_atomic\_tactic} first registers the tactic -\texttt{solveRightBranch} in the table, and returns a tactic which -calls the interpreter with the used to register it. Hence, when the -tactical \texttt{Info} is used, our tactic will just inform that -\texttt{solveRightBranch} was applied, omitting all the details -corresponding to \texttt{simplest\_right} and \texttt{discrConcl}. - - - -The third step requires some auxiliary functions for constructing the -type $\{c_1=c_2\}+\{\neg c_1=c_2\}$ for a given inductive type $R$ and -two constructions $c_1$ and $c_2$, and for generalizing this type over -$c_1$ and $c_2$: - -\begin{verbatim} -let mmk = make_module_marker ["#Logic.obj";"#Specif.obj"];; -let eqpat = put_pat mmk "eq";; -let sumboolpat = put_pat mmk "sumbool";; -let notpat = put_pat mmk "not";; -let eq = get_pat eqpat;; -let sumbool = get_pat sumboolpat;; -let not = get_pat notpat;; - -let mkDecideEqGoal rectype c1 c2 g = - let equality = mkAppL [eq;rectype;c1;c2] in - let disequality = mkAppL [not;equality] - in mkAppL [sumbool;equality;disequality] -;; -let mkGenDecideEqGoal rectype g = - let hypnames = ids_of_sign (pf_hyps g) in - let xname = next_ident_away (id_of_string "x") hypnames - and yname = next_ident_away (id_of_string "y") hypnames - in (mkNamedProd xname rectype - (mkNamedProd yname rectype - (mkDecideEqGoal rectype (mkVar xname) (mkVar yname) g))) -;; -\end{verbatim} - -The tactic will depend on the \Coq modules \texttt{Logic} and -\texttt{Specif}, since we use the constants corresponding to -propositional equality (\texttt{eq}), computational disjunction -(\texttt{sumbool}), and logical negation (\texttt{not}), defined in -that modules. This is specified creating the module maker -\texttt{mmk} (see Section~\ref{Patterns}). - -The third step of the procedure can be divided into three sub-steps. -Assume that both $x$ and $y$ have been introduced by the same -constructor. For each corresponding pair of arguments of that -constructor, we have to consider whether they are equal or not. If -they are equal, the following tactic is applied to rewrite one into -the other: - -\begin{verbatim} -let eqCase tac = - (tclTHEN intro - (tclTHEN (tclLAST_HYP h_rewriteLR) - (tclTHEN clear_last - tac))) -;; -\end{verbatim} - - -If they are not equal, then the goal is contraposed and a -contradiction is reached form the invectiveness of the constructor: - -\begin{verbatim} -let diseqCase = - let diseq = (id_of_string "diseq") in - let absurd = (id_of_string "absurd") - in (tclTHEN (intro_using diseq) - (tclTHEN h_simplest_right - (tclTHEN red_in_concl - (tclTHEN (intro_using absurd) - (tclTHEN (h_simplest_apply (mkVar diseq)) - (tclTHEN (h_injHyp absurd) - trivial )))))) -;; -\end{verbatim} - -In the tactic above we have chosen to name the hypotheses because -they have to be applied later on. This introduces a potential risk -of name clashing if the context already contains other hypotheses -also named ``diseq'' or ``absurd''. - -We are now ready to implement the tactic \textsl{SolveArg}. Given the -two arguments $a_1$ and $a_2$ of the constructor, this tactic cuts the -goal with the proposition $\{a_1=a_2\}+\{\neg a_1=a_2\}$, and then -applies the tactics above to each of the generated cases. If the -disjunction cannot be solved automatically, it remains as a sub-goal -to be proven. - -\begin{verbatim} -let solveArg a1 a2 tac g = - let rectype = pf_type_of g a1 in - let decide = mkDecideEqGoal rectype a1 a2 g - in (tclTHENS (h_elimType decide) - [(eqCase tac);diseqCase;default_auto]) g -;; -\end{verbatim} - -The following tactic implements the third and fourth steps of the -proof procedure: - -\begin{verbatim} -let conclpatt = put_pat mmk "{<?1>?2=?3}+{?4}" -;; -let solveLeftBranch rectype g = - let (_::(lhs::(rhs::_))) = - try (dest_somatch (pf_concl g) conclpatt) - with UserError ("somatch",_)-> error "Unexpected conclusion!" in - let nparams = mind_nparams rectype in - let getargs l = snd (chop_list nparams (snd (decomp_app l))) in - let rargs = getargs rhs - and largs = getargs lhs - in List.fold_right2 - solveArg largs rargs (tclTHEN h_simplest_left h_reflexivity) g -;; -\end{verbatim} - -Notice the use of a pattern to decompose the goal and obtain the -inductive type and the left and right hand sides of the equality. A -certain number of arguments correspond to the general parameters of -the type, and must be skipped over. Once the corresponding list of -arguments \texttt{rargs} and \texttt{largs} have been obtained, the -tactic \texttt{solveArg} is iterated on them, leaving a disjunction -whose left half can be solved by reflexivity. - -The following tactic joints together the three steps of the -proof procedure: - -\begin{verbatim} -let initialpatt = put_pat mmk "(x,y:?1){<?1>x=y}+{~(<?1>x=y)}" -;; -let decideGralEquality g = - let (typ::_) = try (dest_somatch (pf_concl g) initialpatt) - with UserError ("somatch",_) -> - error "The goal does not have the expected form" in - let headtyp = hd_app (pf_compute g typ) in - let rectype = match (kind_of_term headtyp) with - IsMutInd _ -> headtyp - | _ -> error ("This decision procedure only" - " works for inductive objects") - in (tclTHEN mkBranches - (tclORELSE h_solveRightBranch (solveLeftBranch rectype))) g -;; -;; -\end{verbatim} - -The tactic above can be specialized in two different ways: either to -decide a particular instance $\{c_1=c_2\}+\{\neg c_1=c_2\}$ of the -universal quantification; or to eliminate this property and obtain two -subgoals containing the hypotheses $c_1=c_2$ and $\neg c_1=c_2$ -respectively. - -\begin{verbatim} -let decideGralEquality = - (tclTHEN mkBranches (tclORELSE h_solveRightBranch solveLeftBranch)) -;; -let decideEquality c1 c2 g = - let rectype = pf_type_of g c1 in - let decide = mkGenDecideEqGoal rectype g - in (tclTHENS (cut decide) [default_auto;decideGralEquality]) g -;; -let compare c1 c2 g = - let rectype = pf_type_of g c1 in - let decide = mkDecideEqGoal rectype c1 c2 g - in (tclTHENS (cut decide) - [(tclTHEN intro - (tclTHEN (tclLAST_HYP simplest_case) - clear_last)); - decideEquality c1 c2]) g -;; -\end{verbatim} - -Next, for each of the tactics that will have an entry in the grammar -we construct the associated dynamic one to be registered in the table -of tactics. This function can be used to overload a tactic name with -several similar tactics. For example, the tactic proving the general -decidability property and the one proving a particular instance for -two terms can be grouped together with the following convention: if -the user provides two terms as arguments, then the specialized tactic -is used; if no argument is provided then the general tactic is invoked. - -\begin{verbatim} -let dyn_decideEquality args g = - match args with - [(COMMAND com1);(COMMAND com2)] -> - let c1 = pf_constr_of_com g com1 - and c2 = pf_constr_of_com g com2 - in decideEquality c1 c2 g - | [] -> decideGralEquality g - | _ -> error "Invalid arguments for dynamic tactic" -;; -add_tactic "DecideEquality" dyn_decideEquality -;; - -let dyn_compare args g = - match args with - [(COMMAND com1);(COMMAND com2)] -> - let c1 = pf_constr_of_com g com1 - and c2 = pf_constr_of_com g com2 - in compare c1 c2 g - | _ -> error "Invalid arguments for dynamic tactic" -;; -add_tactic "Compare" tacargs_compare -;; -\end{verbatim} - -This completes the implementation of the tactic. We turn now to the -\Coq file \texttt{Eqdecide.v}. - - -\subsection{The Grammar Rules} - -Associated to the implementation of the tactic there is a \Coq\ file -containing the grammar and pretty-printing rules for the new tactic, -and the commands to generate an object module that can be then loaded -dynamically during a \Coq\ session. In order to generate an ML module, -the \Coq\ file must contain a -\texttt{Declare ML module} command for all the \ocaml{} files concerning -the implementation of the tactic --in our case there is only one file, -the file \texttt{eqdecide.ml}: - -\begin{verbatim} -Declare ML Module "eqdecide". -\end{verbatim} - -The following grammar and pretty-printing rules are -self-explanatory. We refer the reader to the Section \ref{Grammar} for -the details: - -\begin{verbatim} -Grammar tactic simple_tactic := - EqDecideRuleG1 - [ "Decide" "Equality" comarg($com1) comarg($com2)] -> - [(DecideEquality $com1 $com2)] -| EqDecideRuleG2 - [ "Decide" "Equality" ] -> - [(DecideEquality)] -| CompareRule - [ "Compare" comarg($com1) comarg($com2)] -> - [(Compare $com1 $com2)]. - -Syntax tactic level 0: - EqDecideRulePP1 - [(DecideEquality)] -> - ["Decide" "Equality"] -| EqDecideRulePP2 - [(DecideEquality $com1 $com2)] -> - ["Decide" "Equality" $com1 $com2] -| ComparePP - [(Compare $com1 $com2)] -> - ["Compare" $com1 $com2]. -\end{verbatim} - - -\paragraph{Important:} The names used to label the abstract syntax tree -in the grammar rules ---in this case ``DecideEquality'' and -``Compare''--- must be the same as the name used to register the -tactic in the tactics table. This is what makes the links between the -input entered by the user and the tactic executed by the interpreter. - -\subsection{Loading the Tactic} - -Once the module \texttt{EqDecide.v} has been compiled, the tactic can -be dynamically loaded using the \texttt{Require} command. - -\begin{coq_example} -Require EqDecide. -Goal (x,y:nat){x=y}+{~x=y}. -Decide Equality. -\end{coq_example} - -The implementation of the tactic can be accessed through the -tactical \texttt{Info}: -\begin{coq_example} -Undo. -Info Decide Equality. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -Remark that the task performed by the tactic \texttt{solveRightBranch} -is not displayed, since we have chosen to hide its implementation. - -\section[Testing and Debugging your Tactic]{Testing and Debugging your Tactic\label{test-and-debug}} - -When your tactic does not behave as expected, it is possible to trace -it dynamically from \Coq. In order to do this, you have first to leave -the toplevel of \Coq, and come back to the \ocaml{} interpreter. This can -be done using the command \texttt{Drop} (see Section~\ref{Drop}). Once -in the \ocaml{} toplevel, load the file \texttt{tactics/include.ml}. -This file installs several pretty printers for proof trees, goals, -terms, abstract syntax trees, names, etc. It also contains the -function \texttt{go:unit -> unit} that enables to go back to \Coq's -toplevel. - -The modules \texttt{Tacmach} and \texttt{Pfedit} contain some basic -functions for extracting information from the state of the proof -engine. Such functions can be used to debug your tactic if -necessary. Let us mention here some of them: - -\begin{description} -\fun{val get\_pftreestate : unit -> pftreestate} - {Projects the current state of the proof engine.} -\fun{val proof\_of\_pftreestate : pftreestate -> proof} - {Projects the current state of the proof tree. A pretty-printer - displays it in a readable form. } -\fun{val top\_goal\_of\_pftreestate : pftreestate -> goal sigma} - {Projects the goal and the existential variables mapping from - the current state of the proof engine.} -\fun{val nth\_goal\_of\_pftreestate : int -> pftreestate -> goal sigma} - {Projects the goal and mapping corresponding to the $nth$ subgoal - that remains to be proven} -\fun{val traverse : int -> pftreestate -> pftreestate} - {Yields the children of the node that the current state of the - proof engine points to.} -\fun{val solve\_nth\_pftreestate : \\ \qquad -int -> tactic -> pftreestate -> pftreestate} - {\\ Provides the new state of the proof engine obtained applying - a given tactic to some unproven sub-goal.} -\end{description} - -Finally, the traditional \ocaml{} debugging tools like the directives -\texttt{trace} and \texttt{untrace} can be used to follow the -execution of your functions. Frequently, a better solution is to use -the \ocaml{} debugger, see Chapter \ref{Utilities}. - -\section[Concrete syntax for ML tactic and vernacular command]{Concrete syntax for ML tactic and vernacular command\label{Notations-for-ML-command}} - -\subsection{The general case} - -The standard way to bind an ML-written tactic or vernacular command to -a concrete {\Coq} syntax is to use the -\verb=TACTIC EXTEND= and \verb=VERNAC COMMAND EXTEND= macros. - -These macros can be used in any {\ocaml} file defining a (new) ML tactic -or vernacular command. They are expanded into pure {\ocaml} code by -the {\camlpppp} preprocessor of {\ocaml}. Concretely, files that use -these macros need to be compiled by giving to {\tt ocamlc} the option - -\verb=-pp "camlp4o -I $(COQTOP)/parsing grammar.cma pa_extend.cmo"= - -\noindent which is the default for every file compiled by means of a Makefile -generated by {\tt coq\_makefile} (see Chapter~\ref{Addoc-coqc}). So, -just do \verb=make= in this latter case. - -The syntax of the macros is given on figure -\ref{EXTEND-syntax}. They can be used at any place of an {\ocaml} -files where an ML sentence (called \verb=str_item= in the {\tt ocamlc} -parser) is expected. For each rule, the left-hand-side describes the -grammar production and the right-hand-side its interpretation which -must be an {\ocaml} expression. Each grammar production starts with -the concrete name of the tactic or command in {\Coq} and is followed -by arguments, possibly separated by terminal symbols or words. -Here is an example: - -\begin{verbatim} -TACTIC EXTEND Replace - [ "replace" constr(c1) "with" constr(c2) ] -> [ replace c1 c2 ] -END -\end{verbatim} - -\newcommand{\grule}{\textrm{\textsl{rule}}} -\newcommand{\stritem}{\textrm{\textsl{ocaml\_str\_item}}} -\newcommand{\camlexpr}{\textrm{\textsl{ocaml\_expr}}} -\newcommand{\arginfo}{\textrm{\textsl{argument\_infos}}} -\newcommand{\lident}{\textrm{\textsl{lower\_ident}}} -\newcommand{\argument}{\textrm{\textsl{argument}}} -\newcommand{\entry}{\textrm{\textsl{entry}}} -\newcommand{\argtype}{\textrm{\textsl{argtype}}} - -\begin{figure} -\begin{tabular}{|lcll|} -\hline -{\stritem} - & ::= & -\multicolumn{2}{l|}{{\tt TACTIC EXTEND} {\ident} \nelist{\grule}{$|$} {\tt END}}\\ - & $|$ & \multicolumn{2}{l|}{{\tt VERNAC COMMAND EXTEND} {\ident} \nelist{\grule}{$|$} {\tt END}}\\ -&&\multicolumn{2}{l|}{}\\ -{\grule} & ::= & -\multicolumn{2}{l|}{{\tt [} {\str} \sequence{\argument}{} {\tt ] -> [} {\camlexpr} {\tt ]}}\\ -&&\multicolumn{2}{l|}{}\\ -{\argument} & ::= & {\str} &\mbox{(terminal)}\\ - & $|$ & {\entry} {\tt (} {\lident} {\tt )} &\mbox{(non-terminal)}\\ -&&\multicolumn{2}{l|}{}\\ -{\entry} - & ::= & {\tt string} & (a string)\\ - & $|$ & {\tt preident} & (an identifier typed as a {\tt string})\\ - & $|$ & {\tt ident} & (an identifier of type {\tt identifier})\\ - & $|$ & {\tt global} & (a qualified identifier)\\ - & $|$ & {\tt constr} & (a {\Coq} term)\\ - & $|$ & {\tt openconstr} & (a {\Coq} term with holes)\\ - & $|$ & {\tt sort} & (a {\Coq} sort)\\ - & $|$ & {\tt tactic} & (an ${\cal L}_{tac}$ expression)\\ - & $|$ & {\tt constr\_with\_bindings} & (a {\Coq} term with a list of bindings\footnote{as for the tactics {\tt apply} and {\tt elim}})\\ - & $|$ & {\tt int\_or\_var} & (an integer or an identifier denoting an integer)\\ - & $|$ & {\tt quantified\_hypothesis} & (a quantified hypothesis\footnote{as for the tactics {\tt intros until}})\\ - & $|$ & {\tt {\entry}\_opt} & (an optional {\entry} )\\ - & $|$ & {\tt ne\_{\entry}\_list} & (a non empty list of {\entry})\\ - & $|$ & {\tt {\entry}\_list} & (a list of {\entry})\\ - & $|$ & {\tt bool} & (a boolean: no grammar rule, just for typing)\\ - & $|$ & {\lident} & (a user-defined entry)\\ -\hline -\end{tabular} -\caption{Syntax of the macros binding {\ocaml} tactics or commands to a {\Coq} syntax} -\label{EXTEND-syntax} -\end{figure} - -There is a set of predefined non-terminal entries which are -automatically translated into an {\ocaml} object of a given type. The -type is not the same for tactics and for vernacular commands. It is -given in the following table: - -\begin{small} -\noindent \begin{tabular}{|l|l|l|} -\hline -{\entry} & {\it type for tactics} & {\it type for commands} \\ -{\tt string} & {\tt string} & {\tt string}\\ -{\tt preident} & {\tt string} & {\tt string}\\ -{\tt ident} & {\tt identifier} & {\tt identifier}\\ -{\tt global} & {\tt global\_reference} & {\tt qualid}\\ -{\tt constr} & {\tt constr} & {\tt constr\_expr}\\ -{\tt openconstr} & {\tt open\_constr} & {\tt constr\_expr}\\ -{\tt sort} & {\tt sorts} & {\tt rawsort}\\ -{\tt tactic} & {\tt glob\_tactic\_expr * tactic} & {\tt raw\_tactic\_expr}\\ -{\tt constr\_with\_bindings} & {\tt constr with\_bindings} & {\tt constr\_expr with\_bindings}\\\\ -{\tt int\_or\_var} & {\tt int or\_var} & {\tt int or\_var}\\ -{\tt quantified\_hypothesis} & {\tt quantified\_hypothesis} & {\tt quantified\_hypothesis}\\ -{\tt {\entry}\_opt} & {\it the type of entry} {\tt option} & {\it the type of entry} {\tt option}\\ -{\tt ne\_{\entry}\_list} & {\it the type of entry} {\tt list} & {\it the type of entry} {\tt list}\\ -{\tt {\entry}\_list} & {\it the type of entry} {\tt list} & {\it the type of entry} {\tt list}\\ -{\tt bool} & {\tt bool} & {\tt bool}\\ -{\lident} & {user-provided, cf next section} & {user-provided, cf next section}\\ -\hline -\end{tabular} -\end{small} - -\bigskip - -Notice that {\entry} consists in a single identifier and that the {\tt -\_opt}, {\tt \_list}, ... modifiers are part of the identifier. -Here is now another example of a tactic which takes either a non empty -list of identifiers and executes the {\ocaml} function {\tt subst} or -takes no arguments and executes the{\ocaml} function {\tt subst\_all}. - -\begin{verbatim} -TACTIC EXTEND Subst -| [ "subst" ne_ident_list(l) ] -> [ subst l ] -| [ "subst" ] -> [ subst_all ] -END -\end{verbatim} - -\subsection{Adding grammar entries for tactic or command arguments} - -In case parsing the arguments of the tactic or the vernacular command -involves grammar entries other than the predefined entries listed -above, you have to declare a new entry using the macros -\verb=ARGUMENT EXTEND= or \verb=VERNAC ARGUMENT EXTEND=. The syntax is -given on Figure~\ref{ARGUMENT-EXTEND-syntax}. Notice that arguments -declared by \verb=ARGUMENT EXTEND= can be used for arguments of both -tactics and vernacular commands while arguments declared by -\verb=VERNAC ARGUMENT EXTEND= can only be used by vernacular commands. - -For \verb=VERNAC ARGUMENT EXTEND=, the identifier is the name of the -entry and it must be a valid {\ocaml} identifier (especially it must -be lowercase). The grammar rules works as before except that they do -not have to start by a terminal symbol or word. As an example, here -is how the {\Coq} {\tt Extraction Language {\it language}} parses its -argument: - -\begin{verbatim} -VERNAC ARGUMENT EXTEND language -| [ "Ocaml" ] -> [ Ocaml ] -| [ "Haskell" ] -> [ Haskell ] -| [ "Scheme" ] -> [ Scheme ] -END -\end{verbatim} - -For tactic arguments, and especially for \verb=ARGUMENT EXTEND=, the -procedure is more subtle because tactics are objects of the {\Coq} -environment which can be printed and interpreted. Then the syntax -requires extra information providing a printer and a type telling how -the argument behaves. Here is an example of entry parsing a pair of -optional {\Coq} terms. - -\begin{verbatim} -let pp_minus_div_arg pr_constr pr_tactic (omin,odiv) = - if omin=None && odiv=None then mt() else - spc() ++ str "with" ++ - pr_opt (fun c -> str "minus := " ++ pr_constr c) omin ++ - pr_opt (fun c -> str "div := " ++ pr_constr c) odiv - -ARGUMENT EXTEND minus_div_arg - TYPED AS constr_opt * constr_opt - PRINTED BY pp_minus_div_arg -| [ "with" minusarg(m) divarg_opt(d) ] -> [ Some m, d ] -| [ "with" divarg(d) minusarg_opt(m) ] -> [ m, Some d ] -| [ ] -> [ None, None ] -END -\end{verbatim} - -Notice that the type {\tt constr\_opt * constr\_opt} tells that the -object behaves as a pair of optional {\Coq} terms, i.e. as an object -of {\ocaml} type {\tt constr option * constr option} if in a -\verb=TACTIC EXTEND= macro and of type {\tt constr\_expr option * -constr\_expr option} if in a \verb=VERNAC COMMAND EXTEND= macro. - -As for the printer, it must be a function expecting a printer for -terms, a printer for tactics and returning a printer for the created -argument. Especially, each sub-{\term} and each sub-{\tac} in the -argument must be typed by the corresponding printers. Otherwise, the -{\ocaml} code will not be well-typed. - -\Rem The entry {\tt bool} is bound to no syntax but it can be used to -give the type of an argument as in the following example: - -\begin{verbatim} -let pr_orient _prc _prt = function - | true -> mt () - | false -> str " <-" - -ARGUMENT EXTEND orient TYPED AS bool PRINTED BY pr_orient -| [ "->" ] -> [ true ] -| [ "<-" ] -> [ false ] -| [ ] -> [ true ] -END -\end{verbatim} - -\begin{figure} -\begin{tabular}{|lcl|} -\hline -{\stritem} & ::= & - {\tt ARGUMENT EXTEND} {\ident} {\arginfo} {\nelist{\grule}{$|$}} {\tt END}\\ -& $|$ & {\tt VERNAC ARGUMENT EXTEND} {\ident} {\nelist{\grule}{$|$}} {\tt END}\\ -\\ -{\arginfo} & ::= & {\tt TYPED AS} {\argtype} \\ -&& {\tt PRINTED BY} {\lident} \\ -%&& \zeroone{{\tt INTERPRETED BY} {\lident}}\\ -%&& \zeroone{{\tt GLOBALIZED BY} {\lident}}\\ -%&& \zeroone{{\tt SUBSTITUTED BY} {\lident}}\\ -%&& \zeroone{{\tt RAW\_TYPED AS} {\lident} {\tt RAW\_PRINTED BY} {\lident}}\\ -%&& \zeroone{{\tt GLOB\_TYPED AS} {\lident} {\tt GLOB\_PRINTED BY} {\lident}}\\ -\\ -{\argtype} & ::= & {\argtype} {\tt *} {\argtype} \\ -& $|$ & {\entry} \\ -\hline -\end{tabular} -\caption{Syntax of the macros binding {\ocaml} tactics or commands to a {\Coq} syntax} -\label{ARGUMENT-EXTEND-syntax} -\end{figure} - -%\end{document} diff --git a/doc/refman/RefMan-uti.tex b/doc/refman/RefMan-uti.tex deleted file mode 100644 index f5178445..00000000 --- a/doc/refman/RefMan-uti.tex +++ /dev/null @@ -1,227 +0,0 @@ -\chapter[Utilities]{Utilities\label{Utilities}} - -The distribution provides utilities to simplify some tedious works -beside proof development, tactics writing or documentation. - -\section[Building a toplevel extended with user tactics]{Building a toplevel extended with user tactics\label{Coqmktop}\index{Coqmktop@{\tt coqmktop}}} - -The native-code version of \Coq\ cannot dynamically load user tactics -using Objective Caml code. It is possible to build a toplevel of \Coq, -with Objective Caml code statically linked, with the tool {\tt - coqmktop}. - -For example, one can build a native-code \Coq\ toplevel extended with a tactic -which source is in {\tt tactic.ml} with the command -\begin{verbatim} - % coqmktop -opt -o mytop.out tactic.cmx -\end{verbatim} -where {\tt tactic.ml} has been compiled with the native-code -compiler {\tt ocamlopt}. This command generates an executable -called {\tt mytop.out}. To use this executable to compile your \Coq\ -files, use {\tt coqc -image mytop.out}. - -A basic example is the native-code version of \Coq\ ({\tt coqtop.opt}), -which can be generated by {\tt coqmktop -opt -o coqopt.opt}. - - -\paragraph[Application: how to use the Objective Caml debugger with Coq.]{Application: how to use the Objective Caml debugger with Coq.\index{Debugger}} - -One useful application of \texttt{coqmktop} is to build a \Coq\ toplevel in -order to debug your tactics with the Objective Caml debugger. -You need to have configured and compiled \Coq\ for debugging -(see the file \texttt{INSTALL} included in the distribution). -Then, you must compile the Caml modules of your tactic with the -option \texttt{-g} (with the bytecode compiler) and build a stand-alone -bytecode toplevel with the following command: - -\begin{quotation} -\texttt{\% coqmktop -g -o coq-debug}~\emph{<your \texttt{.cmo} files>} -\end{quotation} - - -To launch the \ocaml\ debugger with the image you need to execute it in -an environment which correctly sets the \texttt{COQLIB} variable. -Moreover, you have to indicate the directories in which -\texttt{ocamldebug} should search for Caml modules. - -A possible solution is to use a wrapper around \texttt{ocamldebug} -which detects the executables containing the word \texttt{coq}. In -this case, the debugger is called with the required additional -arguments. In other cases, the debugger is simply called without additional -arguments. Such a wrapper can be found in the \texttt{dev/} -subdirectory of the sources. - -\section[Modules dependencies]{Modules dependencies\label{Dependencies}\index{Dependencies} - \index{Coqdep@{\tt coqdep}}} - -In order to compute modules dependencies (so to use {\tt make}), -\Coq\ comes with an appropriate tool, {\tt coqdep}. - -{\tt coqdep} computes inter-module dependencies for \Coq\ and -\ocaml\ programs, and prints the dependencies on the standard -output in a format readable by make. When a directory is given as -argument, it is recursively looked at. - -Dependencies of \Coq\ modules are computed by looking at {\tt Require} -commands ({\tt Require}, {\tt Requi\-re Export}, {\tt Require Import}, -but also at the command {\tt Declare ML Module}. - -Dependencies of \ocaml\ modules are computed by looking at -\verb!open! commands and the dot notation {\em module.value}. However, -this is done approximatively and you are advised to use {\tt ocamldep} -instead for the \ocaml\ modules dependencies. - -See the man page of {\tt coqdep} for more details and options. - - -\section[Creating a {\tt Makefile} for \Coq\ modules]{Creating a {\tt Makefile} for \Coq\ modules\label{Makefile} -\index{Makefile@{\tt Makefile}} -\index{CoqMakefile@{\tt coq\_Makefile}}} - -When a proof development becomes large, is split into several files or contains -Ocaml plugins, it becomes crucial to use a tool like {\tt make} to compile -\Coq\ modules. - -The writing of a generic and complete {\tt Makefile} may be a tedious work -and that's why \Coq\ provides a tool to automate its creation, -{\tt coq\_makefile}. - -You can get a description of the arguments by the command \texttt{\% coq\_makefile - --help}. Arguments can be directly written on the command line interface but it is recommended -to write them in a file ({\tt \_CoqProject} by default) and then call {\tt - coq\_makefile -f \_CoqProject -o Makefile}. That means options are read from {\tt - \_CoqProject} and written in {\tt Makefile}. This way, {\tt Makefile} will be -automagically regenerated when something changes in {\tt \_CoqProject}. - -The first time you use this tool, you may be happy with: -\begin{quotation} -\texttt{\% \{ echo '-R .} {\em MyFancyLib} \texttt{' ; find -name '*.v' -print \} > - \_CoqProject \&\& coq\_makefile -f \_CoqProject -o Makefile} -\end{quotation} - -To customize things further, remember the following: -\begin{itemize} -\item \Coq files must end in {\tt .v}, \ocaml modules in {\tt .ml4} if they - require camlp preproccessing (and in {\tt .ml} otherwise), and \ocaml module - signatures in {\tt .mli}. -\item Whenever a directory is passed as argument, any inner {\tt Makefile} will be - recursively called. -\item {\tt -R} option is for \Coq, {\tt -I} for \ocaml. The same directory can be - ``included'' by both. - - Using {\tt -R} option gives a correct logical path and a correct installation - emplacement to your coq files. -\item If your files depend on an external library, never use {\tt -R \dots} to - include it in the path, the {\em make clean} command would erase it! Take - advantage of the \verb:COQPATH: variable (see \ref{envars}) instead if - necessary. -\end{itemize} - -Under normal circumstances, the only other variable that you may use is -\verb:$COQBIN: to specify the directory where the binaries are. - -\section[Documenting \Coq\ files with coqdoc]{Documenting \Coq\ files with coqdoc\label{coqdoc} -\index{Coqdoc@{\sf coqdoc}}} - -\input{./coqdoc} - -\section{Exporting \Coq\ theories to XML} - -\input{./Helm} - -\section[Embedded \Coq\ phrases inside \LaTeX\ documents]{Embedded \Coq\ phrases inside \LaTeX\ documents\label{Latex} - \index{Coqtex@{\tt coq-tex}}\index{Latex@{\LaTeX}}} - -When writing a documentation about a proof development, one may want -to insert \Coq\ phrases inside a \LaTeX\ document, possibly together with -the corresponding answers of the system. We provide a -mechanical way to process such \Coq\ phrases embedded in \LaTeX\ files: the -{\tt coq-tex} filter. This filter extracts Coq phrases embedded in -LaTeX files, evaluates them, and insert the outcome of the evaluation -after each phrase. - -Starting with a file {\em file}{\tt.tex} containing \Coq\ phrases, -the {\tt coq-tex} filter produces a file named {\em file}{\tt.v.tex} with -the \Coq\ outcome. - -There are options to produce the \Coq\ parts in smaller font, italic, -between horizontal rules, etc. -See the man page of {\tt coq-tex} for more details. - -\medskip\noindent {\bf Remark.} This Reference Manual and the Tutorial -have been completely produced with {\tt coq-tex}. - - -\section[\Coq\ and \emacs]{\Coq\ and \emacs\label{Emacs}\index{Emacs}} - -\subsection{The \Coq\ Emacs mode} - -\Coq\ comes with a Major mode for \emacs, {\tt coq.el}. This mode provides -syntax highlighting -and also a rudimentary indentation facility -in the style of the Caml \emacs\ mode. - -Add the following lines to your \verb!.emacs! file: - -\begin{verbatim} - (setq auto-mode-alist (cons '("\\.v$" . coq-mode) auto-mode-alist)) - (autoload 'coq-mode "coq" "Major mode for editing Coq vernacular." t) -\end{verbatim} - -The \Coq\ major mode is triggered by visiting a file with extension {\tt .v}, -or manually with the command \verb!M-x coq-mode!. -It gives you the correct syntax table for -the \Coq\ language, and also a rudimentary indentation facility: -\begin{itemize} - \item pressing {\sc Tab} at the beginning of a line indents the line like - the line above; - - \item extra {\sc Tab}s increase the indentation level - (by 2 spaces by default); - - \item M-{\sc Tab} decreases the indentation level. -\end{itemize} - -An inferior mode to run \Coq\ under Emacs, by Marco Maggesi, is also -included in the distribution, in file \texttt{coq-inferior.el}. -Instructions to use it are contained in this file. - -\subsection[Proof General]{Proof General\index{Proof General}} - -Proof General is a generic interface for proof assistants based on -Emacs. The main idea is that the \Coq\ commands you are -editing are sent to a \Coq\ toplevel running behind Emacs and the -answers of the system automatically inserted into other Emacs buffers. -Thus you don't need to copy-paste the \Coq\ material from your files -to the \Coq\ toplevel or conversely from the \Coq\ toplevel to some -files. - -Proof General is developped and distributed independently of the -system \Coq. It is freely available at \verb!proofgeneral.inf.ed.ac.uk!. - - -\section[Module specification]{Module specification\label{gallina}\index{Gallina@{\tt gallina}}} - -Given a \Coq\ vernacular file, the {\tt gallina} filter extracts its -specification (inductive types declarations, definitions, type of -lemmas and theorems), removing the proofs parts of the file. The \Coq\ -file {\em file}{\tt.v} gives birth to the specification file -{\em file}{\tt.g} (where the suffix {\tt.g} stands for \gallina). - -See the man page of {\tt gallina} for more details and options. - - -\section[Man pages]{Man pages\label{ManPages}\index{Man pages}} - -There are man pages for the commands {\tt coqdep}, {\tt gallina} and -{\tt coq-tex}. Man pages are installed at installation time -(see installation instructions in file {\tt INSTALL}, step 6). - -%BEGIN LATEX -\RefManCutCommand{ENDREFMAN=\thepage} -%END LATEX - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: t -%%% End: diff --git a/doc/refman/Reference-Manual.tex b/doc/refman/Reference-Manual.tex deleted file mode 100644 index 4380f544..00000000 --- a/doc/refman/Reference-Manual.tex +++ /dev/null @@ -1,151 +0,0 @@ -%\RequirePackage{ifpdf} -%\ifpdf -% \documentclass[11pt,a4paper,pdftex]{book} -%\else - \documentclass[11pt,a4paper]{book} -%\fi - -\usepackage[latin1]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{times} -\usepackage{url} -\usepackage{verbatim} -\usepackage{amsmath} -\usepackage{amssymb} -\usepackage{alltt} -\usepackage{hevea} -\usepackage{ifpdf} -\usepackage[headings]{fullpage} -\usepackage{headers} % in this directory -\usepackage{multicol} -\usepackage{xspace} - -% for coqide -\ifpdf % si on est pas en pdflatex - \usepackage[pdftex]{graphicx} -\else - \usepackage[dvips]{graphicx} -\fi - - -%\includeonly{Setoid} - -\input{../common/version.tex} -\input{../common/macros.tex}% extension .tex pour htmlgen -\input{../common/title.tex}% extension .tex pour htmlgen -%\input{headers} - -\usepackage[linktocpage,colorlinks]{hyperref} -% The manual advises to load hyperref package last to be able to redefine -% necessary commands. -% The above should work for both latex and pdflatex. Even if PDF is produced -% through DVI and PS using dvips and ps2pdf, hyperlinks should still work. -% linktocpage option makes page numbers, not section names, to be links in -% the table of contents. -% colorlinks option colors the links instead of using boxes. - -% The command \tocnumber was added to HEVEA in version 1.06-6. -% It instructs HEVEA to put chapter numbers into the table of -% content entries. The table of content is produced by HACHA using -% the options -tocbis -o toc.html. HEVEA produces a warning when -% a command is not recognized, so versions earlier than 1.06-6 can -% still be used. -%HEVEA\tocnumber - -\begin{document} -%BEGIN LATEX -\sloppy\hbadness=5000 -%END LATEX - -%BEGIN LATEX -\coverpage{Reference Manual} -{The Coq Development Team} -{This material may be distributed only subject to the terms and -conditions set forth in the Open Publication License, v1.0 or later -(the latest version is presently available at -\url{http://www.opencontent.org/openpub}). -Options A and B of the licence are {\em not} elected.} -%END LATEX - -%\defaultheaders -\include{RefMan-int}% Introduction -\include{RefMan-pre}% Credits - -%BEGIN LATEX -\tableofcontents -%END LATEX - -\part{The language} -%BEGIN LATEX -\defaultheaders -%END LATEX -\include{RefMan-gal.v}% Gallina -\include{RefMan-ext.v}% Gallina extensions -\include{RefMan-lib.v}% The coq library -\include{RefMan-cic.v}% The Calculus of Constructions -\include{RefMan-modr}% The module system - - -\part{The proof engine} -\include{RefMan-oth.v}% Vernacular commands -\include{RefMan-pro.v}% Proof handling -\include{RefMan-tac.v}% Tactics and tacticals -\include{RefMan-ltac.v}% Writing tactics -\include{RefMan-tacex.v}% Detailed Examples of tactics -\include{RefMan-decl.v}% The mathematical proof language - -\part{User extensions} -\include{RefMan-syn.v}% The Syntax and the Grammar commands -%%SUPPRIME \include{RefMan-tus.v}% Writing tactics -\include{RefMan-sch.v}% The Scheme commands - -\part{Practical tools} -\include{RefMan-com}% The coq commands (coqc coqtop) -\include{RefMan-uti}% utilities (gallina, do_Makefile, etc) -\include{RefMan-ide}% Coq IDE - -%BEGIN LATEX -\RefManCutCommand{BEGINADDENDUM=\thepage} -%END LATEX -\part{Addendum to the Reference Manual} -\include{AddRefMan-pre}% -\include{Cases.v}% -\include{Coercion.v}% -\include{Classes.v}% -%%SUPPRIME \include{Natural.v}% -\include{Omega.v}% -\include{Micromega.v} -%%SUPPRIME \include{Correctness.v}% = preuve de pgms imperatifs -\include{Extraction.v}% -\include{Program.v}% -\include{Polynom.v}% = Ring -\include{Nsatz.v}% -\include{Setoid.v}% Tactique pour les setoides -%BEGIN LATEX -\RefManCutCommand{ENDADDENDUM=\thepage} -%END LATEX -\nocite{*} -\bibliographystyle{plain} -\bibliography{biblio} -\cutname{biblio.html} - -\printindex -\cutname{general-index.html} - -\printindex[tactic] -\cutname{tactic-index.html} - -\printindex[command] -\cutname{command-index.html} - -\printindex[error] -\cutname{error-index.html} - -%BEGIN LATEX -\listoffigures -\addcontentsline{toc}{chapter}{\listfigurename} -%END LATEX - -\end{document} - - diff --git a/doc/refman/Setoid.tex b/doc/refman/Setoid.tex deleted file mode 100644 index 8e1bb10c..00000000 --- a/doc/refman/Setoid.tex +++ /dev/null @@ -1,713 +0,0 @@ -\newtheorem{cscexample}{Example} - -\achapter{\protect{User defined equalities and relations}} -\aauthor{Matthieu Sozeau} -\tacindex{setoid\_replace} -\label{setoid_replace} - -This chapter presents the extension of several equality related tactics to -work over user-defined structures (called setoids) that are equipped with -ad-hoc equivalence relations meant to behave as equalities. -Actually, the tactics have also been generalized to relations weaker then -equivalences (e.g. rewriting systems). - -This documentation is adapted from the previous setoid documentation by -Claudio Sacerdoti Coen (based on previous work by Cl\'ement Renard). -The new implementation is a drop-in replacement for the old one \footnote{Nicolas -Tabareau helped with the gluing}, hence most of the documentation still applies. - -The work is a complete rewrite of the previous implementation, based on -the type class infrastructure. It also improves on and generalizes -the previous implementation in several ways: -\begin{itemize} -\item User-extensible algorithm. The algorithm is separated in two - parts: generations of the rewriting constraints (done in ML) and - solving of these constraints using type class resolution. As type - class resolution is extensible using tactics, this allows users to define - general ways to solve morphism constraints. -\item Sub-relations. An example extension to the base algorithm is the - ability to define one relation as a subrelation of another so that - morphism declarations on one relation can be used automatically for - the other. This is done purely using tactics and type class search. -\item Rewriting under binders. It is possible to rewrite under binders - in the new implementation, if one provides the proper - morphisms. Again, most of the work is handled in the tactics. -\item First-class morphisms and signatures. Signatures and morphisms are - ordinary Coq terms, hence they can be manipulated inside Coq, put - inside structures and lemmas about them can be proved inside the - system. Higher-order morphisms are also allowed. -\item Performance. The implementation is based on a depth-first search for the first - solution to a set of constraints which can be as fast as linear in the - size of the term, and the size of the proof term is linear - in the size of the original term. Besides, the extensibility allows the - user to customize the proof-search if necessary. -\end{itemize} - -\asection{Relations and morphisms} - -A parametric \emph{relation} \texttt{R} is any term of type -\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), relation $A$}. The -expression $A$, which depends on $x_1$ \ldots $x_n$, is called the -\emph{carrier} of the relation and \texttt{R} is -said to be a relation over \texttt{A}; the list $x_1,\ldots,x_n$ -is the (possibly empty) list of parameters of the relation. - -\firstexample -\begin{cscexample}[Parametric relation] -It is possible to implement finite sets of elements of type \texttt{A} -as unordered list of elements of type \texttt{A}. The function -\texttt{set\_eq: forall (A: Type), relation (list A)} satisfied by two lists -with the same elements is a parametric relation over \texttt{(list A)} with -one parameter \texttt{A}. The type of \texttt{set\_eq} is convertible with -\texttt{forall (A: Type), list A -> list A -> Prop}. -\end{cscexample} - -An \emph{instance} of a parametric relation \texttt{R} with $n$ parameters -is any term \texttt{(R $t_1$ \ldots $t_n$)}. - -Let \texttt{R} be a relation over \texttt{A} with $n$ parameters. -A term is a parametric proof of reflexivity for \texttt{R} if it has type -\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), - reflexive (R $x_1$ \ldots $x_n$)}. Similar definitions are given for -parametric proofs of symmetry and transitivity. - -\begin{cscexample}[Parametric relation (cont.)] -The \texttt{set\_eq} relation of the previous example can be proved to be -reflexive, symmetric and transitive. -\end{cscexample} - -A parametric unary function $f$ of type -\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$} -covariantly respects two parametric relation instances $R_1$ and $R_2$ if, -whenever $x, y$ satisfy $R_1~x~y$, their images $(f~x)$ and $(f~y)$ -satisfy $R_2~(f~x)~(f~y)$ . An $f$ that respects its input and output relations -will be called a unary covariant \emph{morphism}. We can also say that $f$ is -a monotone function with respect to $R_1$ and $R_2$. -The sequence $x_1,\ldots x_n$ represents the parameters of the morphism. - -Let $R_1$ and $R_2$ be two parametric relations. -The \emph{signature} of a parametric morphism of type -\texttt{forall ($x_1$:$T_1$) \ldots ($x_n$:$T_n$), $A_1$ -> $A_2$} that -covariantly respects two instances $I_{R_1}$ and $I_{R_2}$ of $R_1$ and $R_2$ is written $I_{R_1} \texttt{++>} I_{R_2}$. -Notice that the special arrow \texttt{++>}, which reminds the reader -of covariance, is placed between the two relation instances, not -between the two carriers. The signature relation instances and morphism will -be typed in a context introducing variables for the parameters. - -The previous definitions are extended straightforwardly to $n$-ary morphisms, -that are required to be simultaneously monotone on every argument. - -Morphisms can also be contravariant in one or more of their arguments. -A morphism is contravariant on an argument associated to the relation instance -$R$ if it is covariant on the same argument when the inverse relation -$R^{-1}$ (\texttt{inverse R} in Coq) is considered. -The special arrow \texttt{-{}->} is used in signatures -for contravariant morphisms. - -Functions having arguments related by symmetric relations instances are both -covariant and contravariant in those arguments. The special arrow -\texttt{==>} is used in signatures for morphisms that are both covariant -and contravariant. - -An instance of a parametric morphism $f$ with $n$ parameters is any term -\texttt{f $t_1$ \ldots $t_n$}. - -\begin{cscexample}[Morphisms] -Continuing the previous example, let -\texttt{union: forall (A: Type), list A -> list A -> list A} perform the union -of two sets by appending one list to the other. \texttt{union} is a binary -morphism parametric over \texttt{A} that respects the relation instance -\texttt{(set\_eq A)}. The latter condition is proved by showing -\texttt{forall (A: Type) (S1 S1' S2 S2': list A), set\_eq A S1 S1' -> - set\_eq A S2 S2' -> set\_eq A (union A S1 S2) (union A S1' S2')}. - -The signature of the function \texttt{union A} is -\texttt{set\_eq A ==> set\_eq A ==> set\_eq A} for all \texttt{A}. -\end{cscexample} - -\begin{cscexample}[Contravariant morphism] -The division function \texttt{Rdiv: R -> R -> R} is a morphism of -signature \texttt{le ++> le -{}-> le} where \texttt{le} is -the usual order relation over real numbers. Notice that division is -covariant in its first argument and contravariant in its second -argument. -\end{cscexample} - -Leibniz equality is a relation and every function is a -morphism that respects Leibniz equality. Unfortunately, Leibniz equality -is not always the intended equality for a given structure. - -In the next section we will describe the commands to register terms as -parametric relations and morphisms. Several tactics that deal with equality -in \Coq\ can also work with the registered relations. -The exact list of tactic will be given in Sect.~\ref{setoidtactics}. -For instance, the -tactic \texttt{reflexivity} can be used to close a goal $R~n~n$ whenever -$R$ is an instance of a registered reflexive relation. However, the tactics -that replace in a context $C[]$ one term with another one related by $R$ -must verify that $C[]$ is a morphism that respects the intended relation. -Currently the verification consists in checking whether $C[]$ is a syntactic -composition of morphism instances that respects some obvious -compatibility constraints. - -\begin{cscexample}[Rewriting] -Continuing the previous examples, suppose that the user must prove -\texttt{set\_eq int (union int (union int S1 S2) S2) (f S1 S2)} under the -hypothesis \texttt{H: set\_eq int S2 (nil int)}. It is possible to -use the \texttt{rewrite} tactic to replace the first two occurrences of -\texttt{S2} with \texttt{nil int} in the goal since the context -\texttt{set\_eq int (union int (union int S1 nil) nil) (f S1 S2)}, being -a composition of morphisms instances, is a morphism. However the tactic -will fail replacing the third occurrence of \texttt{S2} unless \texttt{f} -has also been declared as a morphism. -\end{cscexample} - -\asection{Adding new relations and morphisms} -A parametric relation -\textit{Aeq}\texttt{: forall ($y_1 : \beta_!$ \ldots $y_m : \beta_m$), relation (A $t_1$ \ldots $t_n$)} over -\textit{(A : $\alpha_i$ -> \ldots $\alpha_n$ -> }\texttt{Type}) -can be declared with the following command: - -\comindex{Add Parametric Relation} -\begin{quote} - \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) : - \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\ - ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\ - ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\ - ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\ - \texttt{~as} \textit{id}. -\end{quote} -after having required the \texttt{Setoid} module with the -\texttt{Require Setoid} command. - -The identifier \textit{id} gives a unique name to the morphism and it is -used by the command to generate fresh names for automatically provided lemmas -used internally. - -Notice that the carrier and relation parameters may refer to the context -of variables introduced at the beginning of the declaration, but the -instances need not be made only of variables. -Also notice that \textit{A} is \emph{not} required to be a term -having the same parameters as \textit{Aeq}, although that is often the -case in practice (this departs from the previous implementation). - -\comindex{Add Relation} -In case the carrier and relations are not parametric, one can use the -command \texttt{Add Relation} instead, whose syntax is the same except -there is no local context. - -The proofs of reflexivity, symmetry and transitivity can be omitted if the -relation is not an equivalence relation. The proofs must be instances of the -corresponding relation definitions: e.g. the proof of reflexivity must -have a type convertible to \texttt{reflexive (A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots - $t'_n$)}. Each proof may refer to the introduced variables as well. - -\begin{cscexample}[Parametric relation] -For Leibniz equality, we may declare: -\texttt{Add Parametric Relation (A : Type) :} \texttt{A (@eq A)}\\ -~\zeroone{\texttt{reflexivity proved by} \texttt{@refl\_equal A}}\\ -\ldots -\end{cscexample} - -Some tactics -(\texttt{reflexivity}, \texttt{symmetry}, \texttt{transitivity}) work only -on relations that respect the expected properties. The remaining tactics -(\texttt{replace}, \texttt{rewrite} and derived tactics such as -\texttt{autorewrite}) do not require any properties over the relation. -However, they are able to replace terms with related ones only in contexts -that are syntactic compositions of parametric morphism instances declared with -the following command. - -\comindex{Add Parametric Morphism} -\begin{quote} - \texttt{Add Parametric Morphism} ($x_1 : \T_!$) \ldots ($x_k : \T_k$)\\ - (\textit{f $t_1$ \ldots $t_n$})\\ - \texttt{~with signature} \textit{sig}\\ - \texttt{~as id}.\\ - \texttt{Proof}\\ - ~\ldots\\ - \texttt{Qed} -\end{quote} - -The command declares \textit{f} as a parametric morphism of signature -\textit{sig}. The identifier \textit{id} gives a unique name to the morphism -and it is used as the base name of the type class instance definition -and as the name of the lemma that proves the well-definedness of the morphism. -The parameters of the morphism as well as the signature may refer to the -context of variables. -The command asks the user to prove interactively that \textit{f} respects -the relations identified from the signature. - -\begin{cscexample} -We start the example by assuming a small theory over homogeneous sets and -we declare set equality as a parametric equivalence relation and -union of two sets as a parametric morphism. -\begin{coq_example*} -Require Export Setoid. -Require Export Relation_Definitions. -Set Implicit Arguments. -Parameter set: Type -> Type. -Parameter empty: forall A, set A. -Parameter eq_set: forall A, set A -> set A -> Prop. -Parameter union: forall A, set A -> set A -> set A. -Axiom eq_set_refl: forall A, reflexive _ (eq_set (A:=A)). -Axiom eq_set_sym: forall A, symmetric _ (eq_set (A:=A)). -Axiom eq_set_trans: forall A, transitive _ (eq_set (A:=A)). -Axiom empty_neutral: forall A (S: set A), eq_set (union S (empty A)) S. -Axiom union_compat: - forall (A : Type), - forall x x' : set A, eq_set x x' -> - forall y y' : set A, eq_set y y' -> - eq_set (union x y) (union x' y'). -Add Parametric Relation A : (set A) (@eq_set A) - reflexivity proved by (eq_set_refl (A:=A)) - symmetry proved by (eq_set_sym (A:=A)) - transitivity proved by (eq_set_trans (A:=A)) - as eq_set_rel. -Add Parametric Morphism A : (@union A) with -signature (@eq_set A) ==> (@eq_set A) ==> (@eq_set A) as union_mor. -Proof. exact (@union_compat A). Qed. -\end{coq_example*} - -\end{cscexample} - -Is is possible to reduce the burden of specifying parameters using -(maximally inserted) implicit arguments. If \texttt{A} is always set as -maximally implicit in the previous example, one can write: - -\begin{coq_eval} -Reset Initial. -Require Export Setoid. -Require Export Relation_Definitions. -Parameter set: Type -> Type. -Parameter empty: forall {A}, set A. -Parameter eq_set: forall {A}, set A -> set A -> Prop. -Parameter union: forall {A}, set A -> set A -> set A. -Axiom eq_set_refl: forall {A}, reflexive (set A) eq_set. -Axiom eq_set_sym: forall {A}, symmetric (set A) eq_set. -Axiom eq_set_trans: forall {A}, transitive (set A) eq_set. -Axiom empty_neutral: forall A (S: set A), eq_set (union S empty) S. -Axiom union_compat: - forall (A : Type), - forall x x' : set A, eq_set x x' -> - forall y y' : set A, eq_set y y' -> - eq_set (union x y) (union x' y'). -\end{coq_eval} - -\begin{coq_example*} -Add Parametric Relation A : (set A) eq_set - reflexivity proved by eq_set_refl - symmetry proved by eq_set_sym - transitivity proved by eq_set_trans - as eq_set_rel. -Add Parametric Morphism A : (@union A) with - signature eq_set ==> eq_set ==> eq_set as union_mor. -Proof. exact (@union_compat A). Qed. -\end{coq_example*} - -We proceed now by proving a simple lemma performing a rewrite step -and then applying reflexivity, as we would do working with Leibniz -equality. Both tactic applications are accepted -since the required properties over \texttt{eq\_set} and -\texttt{union} can be established from the two declarations above. - -\begin{coq_example*} -Goal forall (S: set nat), - eq_set (union (union S empty) S) (union S S). -Proof. intros. rewrite empty_neutral. reflexivity. Qed. -\end{coq_example*} - -The tables of relations and morphisms are managed by the type class -instance mechanism. The behavior on section close is to generalize -the instances by the variables of the section (and possibly hypotheses -used in the proofs of instance declarations) but not to export them in -the rest of the development for proof search. One can use the -\texttt{Existing Instance} command to do so outside the section, -using the name of the declared morphism suffixed by \texttt{\_Morphism}, -or use the \texttt{Global} modifier for the corresponding class instance -declaration (see \S\ref{setoid:first-class}) at definition time. -When loading a compiled file or importing a module, -all the declarations of this module will be loaded. - -\asection{Rewriting and non reflexive relations} -To replace only one argument of an n-ary morphism it is necessary to prove -that all the other arguments are related to themselves by the respective -relation instances. - -\begin{cscexample} -To replace \texttt{(union S empty)} with \texttt{S} in -\texttt{(union (union S empty) S) (union S S)} the rewrite tactic must -exploit the monotony of \texttt{union} (axiom \texttt{union\_compat} in -the previous example). Applying \texttt{union\_compat} by hand we are left -with the goal \texttt{eq\_set (union S S) (union S S)}. -\end{cscexample} - -When the relations associated to some arguments are not reflexive, the tactic -cannot automatically prove the reflexivity goals, that are left to the user. - -Setoids whose relation are partial equivalence relations (PER) -are useful to deal with partial functions. Let \texttt{R} be a PER. We say -that an element \texttt{x} is defined if \texttt{R x x}. A partial function -whose domain comprises all the defined elements only is declared as a -morphism that respects \texttt{R}. Every time a rewriting step is performed -the user must prove that the argument of the morphism is defined. - -\begin{cscexample} -Let \texttt{eqO} be \texttt{fun x y => x = y $\land$ ~x$\neq$ 0} (the smaller PER over -non zero elements). Division can be declared as a morphism of signature -\texttt{eq ==> eq0 ==> eq}. Replace \texttt{x} with \texttt{y} in -\texttt{div x n = div y n} opens the additional goal \texttt{eq0 n n} that -is equivalent to \texttt{n=n $\land$ n$\neq$0}. -\end{cscexample} - -\asection{Rewriting and non symmetric relations} -When the user works up to relations that are not symmetric, it is no longer -the case that any covariant morphism argument is also contravariant. As a -result it is no longer possible to replace a term with a related one in -every context, since the obtained goal implies the previous one if and -only if the replacement has been performed in a contravariant position. -In a similar way, replacement in an hypothesis can be performed only if -the replaced term occurs in a covariant position. - -\begin{cscexample}[Covariance and contravariance] -Suppose that division over real numbers has been defined as a -morphism of signature \texttt{Zdiv: Zlt ++> Zlt -{}-> Zlt} (i.e. -\texttt{Zdiv} is increasing in its first argument, but decreasing on the -second one). Let \texttt{<} denotes \texttt{Zlt}. -Under the hypothesis \texttt{H: x < y} we have -\texttt{k < x / y -> k < x / x}, but not -\texttt{k < y / x -> k < x / x}. -Dually, under the same hypothesis \texttt{k < x / y -> k < y / y} holds, -but \texttt{k < y / x -> k < y / y} does not. -Thus, if the current goal is \texttt{k < x / x}, it is possible to replace -only the second occurrence of \texttt{x} (in contravariant position) -with \texttt{y} since the obtained goal must imply the current one. -On the contrary, if \texttt{k < x / x} is -an hypothesis, it is possible to replace only the first occurrence of -\texttt{x} (in covariant position) with \texttt{y} since -the current hypothesis must imply the obtained one. -\end{cscexample} - -Contrary to the previous implementation, no specific error message will -be raised when trying to replace a term that occurs in the wrong -position. It will only fail because the rewriting constraints are not -satisfiable. However it is possible to use the \texttt{at} modifier to -specify which occurrences should be rewritten. - -As expected, composing morphisms together propagates the variance annotations by -switching the variance every time a contravariant position is traversed. -\begin{cscexample} -Let us continue the previous example and let us consider the goal -\texttt{x / (x / x) < k}. The first and third occurrences of \texttt{x} are -in a contravariant position, while the second one is in covariant position. -More in detail, the second occurrence of \texttt{x} occurs -covariantly in \texttt{(x / x)} (since division is covariant in its first -argument), and thus contravariantly in \texttt{x / (x / x)} (since division -is contravariant in its second argument), and finally covariantly in -\texttt{x / (x / x) < k} (since \texttt{<}, as every transitive relation, -is contravariant in its first argument with respect to the relation itself). -\end{cscexample} - -\asection{Rewriting in ambiguous setoid contexts} -One function can respect several different relations and thus it can be -declared as a morphism having multiple signatures. - -\begin{cscexample} -Union over homogeneous lists can be given all the following signatures: -\texttt{eq ==> eq ==> eq} (\texttt{eq} being the equality over ordered lists) -\texttt{set\_eq ==> set\_eq ==> set\_eq} (\texttt{set\_eq} being the equality -over unordered lists up to duplicates), -\texttt{multiset\_eq ==> multiset\_eq ==> multiset\_eq} (\texttt{multiset\_eq} -being the equality over unordered lists). -\end{cscexample} - -To declare multiple signatures for a morphism, repeat the \texttt{Add Morphism} -command. - -When morphisms have multiple signatures it can be the case that a rewrite -request is ambiguous, since it is unclear what relations should be used to -perform the rewriting. Contrary to the previous implementation, the -tactic will always choose the first possible solution to the set of -constraints generated by a rewrite and will not try to find \emph{all} -possible solutions to warn the user about. - -\asection{First class setoids and morphisms} -\label{setoid:first-class} - -The implementation is based on a first-class representation of -properties of relations and morphisms as type classes. That is, -the various combinations of properties on relations and morphisms -are represented as records and instances of theses classes are put -in a hint database. -For example, the declaration: - -\begin{quote} - \texttt{Add Parametric Relation} ($x_1 : T_1$) \ldots ($x_n : T_k$) : - \textit{(A $t_1$ \ldots $t_n$) (Aeq $t'_1$ \ldots $t'_m$)}\\ - ~\zeroone{\texttt{reflexivity proved by} \textit{refl}}\\ - ~\zeroone{\texttt{symmetry proved by} \textit{sym}}\\ - ~\zeroone{\texttt{transitivity proved by} \textit{trans}}\\ - \texttt{~as} \textit{id}. -\end{quote} - -is equivalent to an instance declaration: - -\begin{quote} - \texttt{Instance} ($x_1 : T_1$) \ldots ($x_n : T_k$) \texttt{=>} - \textit{id} : \texttt{@Equivalence} \textit{(A $t_1$ \ldots $t_n$) (Aeq - $t'_1$ \ldots $t'_m$)} :=\\ - ~\zeroone{\texttt{Equivalence\_Reflexive :=} \textit{refl}}\\ - ~\zeroone{\texttt{Equivalence\_Symmetric :=} \textit{sym}}\\ - ~\zeroone{\texttt{Equivalence\_Transitive :=} \textit{trans}}. -\end{quote} - -The declaration itself amounts to the definition of an object of the -record type \texttt{Coq.Classes.RelationClasses.Equivalence} and a -hint added to the \texttt{typeclass\_instances} hint database. -Morphism declarations are also instances of a type class defined in -\texttt{Classes.Morphisms}. -See the documentation on type classes \ref{typeclasses} and -the theories files in \texttt{Classes} for further explanations. - -One can inform the rewrite tactic about morphisms and relations just by -using the typeclass mechanism to declare them using \texttt{Instance} -and \texttt{Context} vernacular commands. -Any object of type \texttt{Proper} (the type of morphism declarations) -in the local context will also be automatically used by the rewriting -tactic to solve constraints. - -Other representations of first class setoids and morphisms can also -be handled by encoding them as records. In the following example, -the projections of the setoid relation and of the morphism function -can be registered as parametric relations and morphisms. -\begin{cscexample}[First class setoids] - -\begin{coq_example*} -Require Import Relation_Definitions Setoid. -Record Setoid: Type := -{ car:Type; - eq:car->car->Prop; - refl: reflexive _ eq; - sym: symmetric _ eq; - trans: transitive _ eq -}. -Add Parametric Relation (s : Setoid) : (@car s) (@eq s) - reflexivity proved by (refl s) - symmetry proved by (sym s) - transitivity proved by (trans s) as eq_rel. -Record Morphism (S1 S2:Setoid): Type := -{ f:car S1 ->car S2; - compat: forall (x1 x2: car S1), eq S1 x1 x2 -> eq S2 (f x1) (f x2) }. -Add Parametric Morphism (S1 S2 : Setoid) (M : Morphism S1 S2) : - (@f S1 S2 M) with signature (@eq S1 ==> @eq S2) as apply_mor. -Proof. apply (compat S1 S2 M). Qed. -Lemma test: forall (S1 S2:Setoid) (m: Morphism S1 S2) - (x y: car S1), eq S1 x y -> eq S2 (f _ _ m x) (f _ _ m y). -Proof. intros. rewrite H. reflexivity. Qed. -\end{coq_example*} -\end{cscexample} - -\asection{Tactics enabled on user provided relations} -\label{setoidtactics} -The following tactics, all prefixed by \texttt{setoid\_}, -deal with arbitrary -registered relations and morphisms. Moreover, all the corresponding unprefixed -tactics (i.e. \texttt{reflexivity, symmetry, transitivity, replace, rewrite}) -have been extended to fall back to their prefixed counterparts when -the relation involved is not Leibniz equality. Notice, however, that using -the prefixed tactics it is possible to pass additional arguments such as -\texttt{using relation}. -\medskip - -\comindex{setoid\_reflexivity} -\texttt{setoid\_reflexivity} - -\comindex{setoid\_symmetry} -\texttt{setoid\_symmetry} \zeroone{\texttt{in} \textit{ident}} - -\comindex{setoid\_transitivity} -\texttt{setoid\_transitivity} - -\comindex{setoid\_rewrite} -\texttt{setoid\_rewrite} \zeroone{\textit{orientation}} \textit{term} -~\zeroone{\texttt{at} \textit{occs}} ~\zeroone{\texttt{in} \textit{ident}} - -\comindex{setoid\_replace} -\texttt{setoid\_replace} \textit{term} \texttt{with} \textit{term} -~\zeroone{\texttt{in} \textit{ident}} -~\zeroone{\texttt{using relation} \textit{term}} -~\zeroone{\texttt{by} \textit{tactic}} -\medskip - -The \texttt{using relation} -arguments cannot be passed to the unprefixed form. The latter argument -tells the tactic what parametric relation should be used to replace -the first tactic argument with the second one. If omitted, it defaults -to the \texttt{DefaultRelation} instance on the type of the objects. -By default, it means the most recent \texttt{Equivalence} instance in -the environment, but it can be customized by declaring new -\texttt{DefaultRelation} instances. As Leibniz equality is a declared -equivalence, it will fall back to it if no other relation is declared on -a given type. - -Every derived tactic that is based on the unprefixed forms of the tactics -considered above will also work up to user defined relations. For instance, -it is possible to register hints for \texttt{autorewrite} that are -not proof of Leibniz equalities. In particular it is possible to exploit -\texttt{autorewrite} to simulate normalization in a term rewriting system -up to user defined equalities. - -\asection{Printing relations and morphisms} -The \texttt{Print Instances} command can be used to show the list of -currently registered \texttt{Reflexive} (using \texttt{Print Instances Reflexive}), -\texttt{Symmetric} or \texttt{Transitive} relations, -\texttt{Equivalence}s, \texttt{PreOrder}s, \texttt{PER}s, and -Morphisms (implemented as \texttt{Proper} instances). When - the rewriting tactics refuse to replace a term in a context -because the latter is not a composition of morphisms, the \texttt{Print Instances} -commands can be useful to understand what additional morphisms should be -registered. - -\asection{Deprecated syntax and backward incompatibilities} -Due to backward compatibility reasons, the following syntax for the -declaration of setoids and morphisms is also accepted. - -\comindex{Add Setoid} -\begin{quote} - \texttt{Add Setoid} \textit{A Aeq ST} \texttt{as} \textit{ident} -\end{quote} -where \textit{Aeq} is a congruence relation without parameters, -\textit{A} is its carrier and \textit{ST} is an object of type -\texttt{(Setoid\_Theory A Aeq)} (i.e. a record packing together the reflexivity, -symmetry and transitivity lemmas). Notice that the syntax is not completely -backward compatible since the identifier was not required. - -\comindex{Add Morphism} -\begin{quote} - \texttt{Add Morphism} \textit{f}:\textit{ident}.\\ - Proof.\\ - \ldots\\ - Qed. -\end{quote} - -The latter command also is restricted to the declaration of morphisms without -parameters. It is not fully backward compatible since the property the user -is asked to prove is slightly different: for $n$-ary morphisms the hypotheses -of the property are permuted; moreover, when the morphism returns a -proposition, the property is now stated using a bi-implication in place of -a simple implication. In practice, porting an old development to the new -semantics is usually quite simple. - -Notice that several limitations of the old implementation have been lifted. -In particular, it is now possible to declare several relations with the -same carrier and several signatures for the same morphism. Moreover, it is -now also possible to declare several morphisms having the same signature. -Finally, the replace and rewrite tactics can be used to replace terms in -contexts that were refused by the old implementation. As discussed in -the next section, the semantics of the new \texttt{setoid\_rewrite} -command differs slightly from the old one and \texttt{rewrite}. - -\asection{Rewriting under binders} - -\textbf{Warning}: Due to compatibility issues, this feature is enabled only when calling -the \texttt{setoid\_rewrite} tactics directly and not \texttt{rewrite}. - -To be able to rewrite under binding constructs, one must declare -morphisms with respect to pointwise (setoid) equivalence of functions. -Example of such morphisms are the standard \texttt{all} and \texttt{ex} -combinators for universal and existential quantification respectively. -They are declared as morphisms in the \texttt{Classes.Morphisms\_Prop} -module. For example, to declare that universal quantification is a -morphism for logical equivalence: - -\begin{coq_eval} -Reset Initial. -Require Import Setoid Morphisms. -\end{coq_eval} -\begin{coq_example} -Instance all_iff_morphism (A : Type) : - Proper (pointwise_relation A iff ==> iff) (@all A). -Proof. simpl_relation. -\end{coq_example} -\begin{coq_eval} -Admitted. -\end{coq_eval} - -One then has to show that if two predicates are equivalent at every -point, their universal quantifications are equivalent. Once we have -declared such a morphism, it will be used by the setoid rewriting tactic -each time we try to rewrite under an \texttt{all} application (products -in \Prop{} are implicitly translated to such applications). - -Indeed, when rewriting under a lambda, binding variable $x$, say from -$P~x$ to $Q~x$ using the relation \texttt{iff}, the tactic will generate -a proof of \texttt{pointwise\_relation A iff (fun x => P x) (fun x => Q -x)} from the proof of \texttt{iff (P x) (Q x)} and a constraint of the -form \texttt{Proper (pointwise\_relation A iff ==> ?) m} will be -generated for the surrounding morphism \texttt{m}. - -Hence, one can add higher-order combinators as morphisms by providing -signatures using pointwise extension for the relations on the functional -arguments (or whatever subrelation of the pointwise extension). -For example, one could declare the \texttt{map} combinator on lists as -a morphism: -\begin{coq_eval} -Require Import List. -Set Implicit Arguments. -Inductive list_equiv {A:Type} (eqA : relation A) : relation (list A) := -| eq_nil : list_equiv eqA nil nil -| eq_cons : forall x y, eqA x y -> - forall l l', list_equiv eqA l l' -> list_equiv eqA (x :: l) (y :: l'). -\end{coq_eval} -\begin{coq_example*} -Instance map_morphism `{Equivalence A eqA, Equivalence B eqB} : - Proper ((eqA ==> eqB) ==> list_equiv eqA ==> list_equiv eqB) - (@map A B). -\end{coq_example*} - -where \texttt{list\_equiv} implements an equivalence on lists -parameterized by an equivalence on the elements. - -Note that when one does rewriting with a lemma under a binder -using \texttt{setoid\_rewrite}, the application of the lemma may capture -the bound variable, as the semantics are different from rewrite where -the lemma is first matched on the whole term. With the new -\texttt{setoid\_rewrite}, matching is done on each subterm separately -and in its local environment, and all matches are rewritten -\emph{simultaneously} by default. The semantics of the previous -\texttt{setoid\_rewrite} implementation can almost be recovered using -the \texttt{at 1} modifier. - -\asection{Sub-relations} - -Sub-relations can be used to specify that one relation is included in -another, so that morphisms signatures for one can be used for the other. -If a signature mentions a relation $R$ on the left of an arrow -\texttt{==>}, then the signature also applies for any relation $S$ that -is smaller than $R$, and the inverse applies on the right of an arrow. -One can then declare only a few morphisms instances that generate the complete set -of signatures for a particular constant. By default, the only declared -subrelation is \texttt{iff}, which is a subrelation of \texttt{impl} -and \texttt{inverse impl} (the dual of implication). That's why we can -declare only two morphisms for conjunction: -\texttt{Proper (impl ==> impl ==> impl) and} and -\texttt{Proper (iff ==> iff ==> iff) and}. This is sufficient to satisfy -any rewriting constraints arising from a rewrite using \texttt{iff}, -\texttt{impl} or \texttt{inverse impl} through \texttt{and}. - -Sub-relations are implemented in \texttt{Classes.Morphisms} and are a -prime example of a mostly user-space extension of the algorithm. - -\asection{Constant unfolding} - -The resolution tactic is based on type classes and hence regards user-defined -constants as transparent by default. This may slow down the resolution -due to a lot of unifications (all the declared \texttt{Proper} -instances are tried at each node of the search tree). -To speed it up, declare your constant as rigid for proof search -using the command \texttt{Typeclasses Opaque} (see \S \ref{TypeclassesTransparency}). - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/biblio.bib b/doc/refman/biblio.bib deleted file mode 100644 index 192a9699..00000000 --- a/doc/refman/biblio.bib +++ /dev/null @@ -1,1286 +0,0 @@ -@String{jfp = "Journal of Functional Programming"} -@String{lncs = "Lecture Notes in Computer Science"} -@String{lnai = "Lecture Notes in Artificial Intelligence"} -@String{SV = "{Springer-Verlag}"} - -@InProceedings{Aud91, - author = {Ph. Audebaud}, - booktitle = {Proceedings of the sixth Conf. on Logic in Computer Science.}, - publisher = {IEEE}, - title = {Partial {Objects} in the {Calculus of Constructions}}, - year = {1991} -} - -@PhDThesis{Aud92, - author = {Ph. Audebaud}, - school = {{Universit\'e} Bordeaux I}, - title = {Extension du Calcul des Constructions par Points fixes}, - year = {1992} -} - -@InProceedings{Audebaud92b, - author = {Ph. Audebaud}, - booktitle = {{Proceedings of the 1992 Workshop on Types for Proofs and Programs}}, - editor = {{B. Nordstr\"om and K. Petersson and G. Plotkin}}, - note = {Also Research Report LIP-ENS-Lyon}, - pages = {21--34}, - title = {{CC+ : an extension of the Calculus of Constructions with fixpoints}}, - year = {1992} -} - -@InProceedings{Augustsson85, - author = {L. Augustsson}, - title = {{Compiling Pattern Matching}}, - booktitle = {Conference Functional Programming and -Computer Architecture}, - year = {1985} -} - -@Article{BaCo85, - author = {J.L. Bates and R.L. Constable}, - journal = {ACM transactions on Programming Languages and Systems}, - title = {Proofs as {Programs}}, - volume = {7}, - year = {1985} -} - -@Book{Bar81, - author = {H.P. Barendregt}, - publisher = {North-Holland}, - title = {The Lambda Calculus its Syntax and Semantics}, - year = {1981} -} - -@TechReport{Bar91, - author = {H. Barendregt}, - institution = {Catholic University Nijmegen}, - note = {In Handbook of Logic in Computer Science, Vol II}, - number = {91-19}, - title = {Lambda {Calculi with Types}}, - year = {1991} -} - -@Article{BeKe92, - author = {G. Bellin and J. Ketonen}, - journal = {Theoretical Computer Science}, - pages = {115--142}, - title = {A decision procedure revisited : Notes on direct logic, linear logic and its implementation}, - volume = {95}, - year = {1992} -} - -@Book{Bee85, - author = {M.J. Beeson}, - publisher = SV, - title = {Foundations of Constructive Mathematics, Metamathematical Studies}, - year = {1985} -} - -@Book{Bis67, - author = {E. Bishop}, - publisher = {McGraw-Hill}, - title = {Foundations of Constructive Analysis}, - year = {1967} -} - -@Book{BoMo79, - author = {R.S. Boyer and J.S. Moore}, - key = {BoMo79}, - publisher = {Academic Press}, - series = {ACM Monograph}, - title = {A computational logic}, - year = {1979} -} - -@MastersThesis{Bou92, - author = {S. Boutin}, - month = sep, - school = {{Universit\'e Paris 7}}, - title = {Certification d'un compilateur {ML en Coq}}, - year = {1992} -} - -@InProceedings{Bou97, - title = {Using reflection to build efficient and certified decision procedure -s}, - author = {S. Boutin}, - booktitle = {TACS'97}, - editor = {Martin Abadi and Takahashi Ito}, - publisher = SV, - series = lncs, - volume = 1281, - year = {1997} -} - -@PhDThesis{Bou97These, - author = {S. Boutin}, - title = {R\'eflexions sur les quotients}, - school = {Paris 7}, - year = 1997, - type = {th\`ese d'Universit\'e}, - month = apr -} - -@Article{Bru72, - author = {N.J. de Bruijn}, - journal = {Indag. Math.}, - title = {{Lambda-Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem}}, - volume = {34}, - year = {1972} -} - - -@InCollection{Bru80, - author = {N.J. de Bruijn}, - booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.}, - editor = {J.P. Seldin and J.R. Hindley}, - publisher = {Academic Press}, - title = {A survey of the project {Automath}}, - year = {1980} -} - -@TechReport{COQ93, - author = {G. Dowek and A. Felty and H. Herbelin and G. Huet and C. Murthy and C. Parent and C. Paulin-Mohring and B. Werner}, - institution = {INRIA}, - month = may, - number = {154}, - title = {{The Coq Proof Assistant User's Guide Version 5.8}}, - year = {1993} -} - -@TechReport{COQ02, - author = {The Coq Development Team}, - institution = {INRIA}, - month = Feb, - number = {255}, - title = {{The Coq Proof Assistant Reference Manual Version 7.2}}, - year = {2002} -} - -@TechReport{CPar93, - author = {C. Parent}, - institution = {Ecole {Normale} {Sup\'erieure} de {Lyon}}, - month = oct, - note = {Also in~\cite{Nijmegen93}}, - number = {93-29}, - title = {Developing certified programs in the system {Coq}- {The} {Program} tactic}, - year = {1993} -} - -@PhDThesis{CPar95, - author = {C. Parent}, - school = {Ecole {Normale} {Sup\'erieure} de {Lyon}}, - title = {{Synth\`ese de preuves de programmes dans le Calcul des Constructions Inductives}}, - year = {1995} -} - -@Book{Caml, - author = {P. Weis and X. Leroy}, - publisher = {InterEditions}, - title = {Le langage Caml}, - year = {1993} -} - -@InProceedings{ChiPotSimp03, - author = {Laurent Chicli and Lo\"{\i}c Pottier and Carlos Simpson}, - title = {Mathematical Quotients and Quotient Types in Coq}, - booktitle = {TYPES}, - crossref = {DBLP:conf/types/2002}, - year = {2002} -} - -@TechReport{CoC89, - author = {Projet Formel}, - institution = {INRIA}, - number = {110}, - title = {{The Calculus of Constructions. Documentation and user's guide, Version 4.10}}, - year = {1989} -} - -@InProceedings{CoHu85a, - author = {Th. Coquand and G. Huet}, - address = {Linz}, - booktitle = {EUROCAL'85}, - publisher = SV, - series = LNCS, - title = {{Constructions : A Higher Order Proof System for Mechanizing Mathematics}}, - volume = {203}, - year = {1985} -} - -@InProceedings{CoHu85b, - author = {Th. Coquand and G. Huet}, - booktitle = {Logic Colloquium'85}, - editor = {The Paris Logic Group}, - publisher = {North-Holland}, - title = {{Concepts Math\'ematiques et Informatiques formalis\'es dans le Calcul des Constructions}}, - year = {1987} -} - -@Article{CoHu86, - author = {Th. Coquand and G. Huet}, - journal = {Information and Computation}, - number = {2/3}, - title = {The {Calculus of Constructions}}, - volume = {76}, - year = {1988} -} - -@InProceedings{CoPa89, - author = {Th. Coquand and C. Paulin-Mohring}, - booktitle = {Proceedings of Colog'88}, - editor = {P. Martin-L\"of and G. Mints}, - publisher = SV, - series = LNCS, - title = {Inductively defined types}, - volume = {417}, - year = {1990} -} - -@Book{Con86, - author = {R.L. {Constable et al.}}, - publisher = {Prentice-Hall}, - title = {{Implementing Mathematics with the Nuprl Proof Development System}}, - year = {1986} -} - -@PhDThesis{Coq85, - author = {Th. Coquand}, - month = jan, - school = {Universit\'e Paris~7}, - title = {Une Th\'eorie des Constructions}, - year = {1985} -} - -@InProceedings{Coq86, - author = {Th. Coquand}, - address = {Cambridge, MA}, - booktitle = {Symposium on Logic in Computer Science}, - publisher = {IEEE Computer Society Press}, - title = {{An Analysis of Girard's Paradox}}, - year = {1986} -} - -@InProceedings{Coq90, - author = {Th. Coquand}, - booktitle = {Logic and Computer Science}, - editor = {P. Oddifredi}, - note = {INRIA Research Report 1088, also in~\cite{CoC89}}, - publisher = {Academic Press}, - title = {{Metamathematical Investigations of a Calculus of Constructions}}, - year = {1990} -} - -@InProceedings{Coq91, - author = {Th. Coquand}, - booktitle = {Proceedings 9th Int. Congress of Logic, Methodology and Philosophy of Science}, - title = {{A New Paradox in Type Theory}}, - month = {August}, - year = {1991} -} - -@InProceedings{Coq92, - author = {Th. Coquand}, - title = {{Pattern Matching with Dependent Types}}, - year = {1992}, - crossref = {Bastad92} -} - -@InProceedings{Coquand93, - author = {Th. Coquand}, - title = {{Infinite Objects in Type Theory}}, - year = {1993}, - crossref = {Nijmegen93} -} - -@inproceedings{Corbineau08types, - author = {P. Corbineau}, - title = {A Declarative Language for the Coq Proof Assistant}, - editor = {M. Miculan and I. Scagnetto and F. Honsell}, - booktitle = {TYPES '07, Cividale del Friuli, Revised Selected Papers}, - publisher = {Springer}, - series = LNCS, - volume = {4941}, - year = {2007}, - pages = {69-84}, - ee = {http://dx.doi.org/10.1007/978-3-540-68103-8_5}, -} - -@PhDThesis{Cor97, - author = {C. Cornes}, - month = nov, - school = {{Universit\'e Paris 7}}, - title = {Conception d'un langage de haut niveau de représentation de preuves}, - type = {Th\`ese de Doctorat}, - year = {1997} -} - -@MastersThesis{Cou94a, - author = {J. Courant}, - month = sep, - school = {DEA d'Informatique, ENS Lyon}, - title = {Explicitation de preuves par r\'ecurrence implicite}, - year = {1994} -} - -@InProceedings{Del99, - author = {Delahaye, D.}, - title = {Information Retrieval in a Coq Proof Library using - Type Isomorphisms}, - booktitle = {Proceedings of TYPES '99, L\"okeberg}, - publisher = SV, - series = lncs, - year = {1999}, - url = - "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf TYPES99-SIsos.ps.gz}" -} - -@InProceedings{Del00, - author = {Delahaye, D.}, - title = {A {T}actic {L}anguage for the {S}ystem {{\sf Coq}}}, - booktitle = {Proceedings of Logic for Programming and Automated Reasoning - (LPAR), Reunion Island}, - publisher = SV, - series = LNCS, - volume = {1955}, - pages = {85--95}, - month = {November}, - year = {2000}, - url = - "{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf LPAR2000-ltac.ps.gz}" -} - -@InProceedings{DelMay01, - author = {Delahaye, D. and Mayero, M.}, - title = {{\tt Field}: une proc\'edure de d\'ecision pour les nombres r\'eels en {\Coq}}, - booktitle = {Journ\'ees Francophones des Langages Applicatifs, Pontarlier}, - publisher = {INRIA}, - month = {Janvier}, - year = {2001}, - url = - "\\{\sf ftp://ftp.inria.fr/INRIA/Projects/coq/David.Delahaye/papers/}"# - "{\sf JFLA2000-Field.ps.gz}" -} - -@TechReport{Dow90, - author = {G. Dowek}, - institution = {INRIA}, - number = {1283}, - title = {Naming and Scoping in a Mathematical Vernacular}, - type = {Research Report}, - year = {1990} -} - -@Article{Dow91a, - author = {G. Dowek}, - journal = {Compte-Rendus de l'Acad\'emie des Sciences}, - note = {The undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors}, - number = {12}, - pages = {951--956}, - title = {L'Ind\'ecidabilit\'e du Filtrage du Troisi\`eme Ordre dans les Calculs avec Types D\'ependants ou Constructeurs de Types}, - volume = {I, 312}, - year = {1991} -} - -@InProceedings{Dow91b, - author = {G. Dowek}, - booktitle = {Proceedings of Mathematical Foundation of Computer Science}, - note = {Also INRIA Research Report}, - pages = {151--160}, - publisher = SV, - series = LNCS, - title = {A Second Order Pattern Matching Algorithm in the Cube of Typed $\lambda$-calculi}, - volume = {520}, - year = {1991} -} - -@PhDThesis{Dow91c, - author = {G. Dowek}, - month = dec, - school = {Universit\'e Paris 7}, - title = {D\'emonstration automatique dans le Calcul des Constructions}, - year = {1991} -} - -@Article{Dow92a, - author = {G. Dowek}, - title = {The Undecidability of Pattern Matching in Calculi where Primitive Recursive Functions are Representable}, - year = 1993, - journal = tcs, - volume = 107, - number = 2, - pages = {349-356} -} - -@Article{Dow94a, - author = {G. Dowek}, - journal = {Annals of Pure and Applied Logic}, - volume = {69}, - pages = {135--155}, - title = {Third order matching is decidable}, - year = {1994} -} - -@InProceedings{Dow94b, - author = {G. Dowek}, - booktitle = {Proceedings of the second international conference on typed lambda calculus and applications}, - title = {Lambda-calculus, Combinators and the Comprehension Schema}, - year = {1995} -} - -@InProceedings{Dyb91, - author = {P. Dybjer}, - booktitle = {Logical Frameworks}, - editor = {G. Huet and G. Plotkin}, - pages = {59--79}, - publisher = {Cambridge University Press}, - title = {Inductive sets and families in {Martin-Löf's} - Type Theory and their set-theoretic semantics: An inversion principle for {Martin-L\"of's} type theory}, - volume = {14}, - year = {1991} -} - -@Article{Dyc92, - author = {Roy Dyckhoff}, - journal = {The Journal of Symbolic Logic}, - month = sep, - number = {3}, - title = {Contraction-free sequent calculi for intuitionistic logic}, - volume = {57}, - year = {1992} -} - -@MastersThesis{Fil94, - author = {J.-C. Filli\^atre}, - month = sep, - school = {DEA d'Informatique, ENS Lyon}, - title = {Une proc\'edure de d\'ecision pour le Calcul des Pr\'edicats Direct. Étude et impl\'ementation dans le syst\`eme {\Coq}}, - year = {1994} -} - -@TechReport{Filliatre95, - author = {J.-C. Filli\^atre}, - institution = {LIP-ENS-Lyon}, - title = {A decision procedure for Direct Predicate Calculus}, - type = {Research report}, - number = {96--25}, - year = {1995} -} - -@Article{Filliatre03jfp, - author = {J.-C. Filliâtre}, - title = {Verification of Non-Functional Programs - using Interpretations in Type Theory}, - journal = jfp, - volume = 13, - number = 4, - pages = {709--745}, - month = jul, - year = 2003, - note = {[English translation of \cite{Filliatre99}]}, - url = {http://www.lri.fr/~filliatr/ftp/publis/jphd.ps.gz}, - topics = {team, lri}, - type_publi = {irevcomlec} -} - -@PhDThesis{Filliatre99, - author = {J.-C. Filli\^atre}, - title = {Preuve de programmes imp\'eratifs en th\'eorie des types}, - type = {Thèse de Doctorat}, - school = {Universit\'e Paris-Sud}, - year = 1999, - month = {July}, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/these.ps.gz}} -} - -@Unpublished{Filliatre99c, - author = {J.-C. Filli\^atre}, - title = {{Formal Proof of a Program: Find}}, - month = {January}, - year = 2000, - note = {Submitted to \emph{Science of Computer Programming}}, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/find.ps.gz}} -} - -@InProceedings{FilliatreMagaud99, - author = {J.-C. Filli\^atre and N. Magaud}, - title = {Certification of sorting algorithms in the system {\Coq}}, - booktitle = {Theorem Proving in Higher Order Logics: - Emerging Trends}, - year = 1999, - url = {\url{http://www.lri.fr/~filliatr/ftp/publis/Filliatre-Magaud.ps.gz}} -} - -@Unpublished{Fle90, - author = {E. Fleury}, - month = jul, - note = {Rapport de Stage}, - title = {Implantation des algorithmes de {Floyd et de Dijkstra} dans le {Calcul des Constructions}}, - year = {1990} -} - -@Book{Fourier, - author = {Jean-Baptiste-Joseph Fourier}, - publisher = {Gauthier-Villars}, - title = {Fourier's method to solve linear - inequations/equations systems.}, - year = {1890} -} - -@InProceedings{Gim94, - author = {E. Gim\'enez}, - booktitle = {Types'94 : Types for Proofs and Programs}, - note = {Extended version in LIP research report 95-07, ENS Lyon}, - publisher = SV, - series = LNCS, - title = {Codifying guarded definitions with recursive schemes}, - volume = {996}, - year = {1994} -} - -@TechReport{Gim98, - author = {E. Gim\'enez}, - title = {A Tutorial on Recursive Types in Coq}, - institution = {INRIA}, - year = 1998, - month = mar -} - -@Unpublished{GimCas05, - author = {E. Gim\'enez and P. Cast\'eran}, - title = {A Tutorial on [Co-]Inductive Types in Coq}, - institution = {INRIA}, - year = 2005, - month = jan, - note = {available at \url{http://coq.inria.fr/doc}} -} - -@InProceedings{Gimenez95b, - author = {E. Gim\'enez}, - booktitle = {Workshop on Types for Proofs and Programs}, - series = LNCS, - number = {1158}, - pages = {135-152}, - title = {An application of co-Inductive types in Coq: - verification of the Alternating Bit Protocol}, - editorS = {S. Berardi and M. Coppo}, - publisher = SV, - year = {1995} -} - -@InProceedings{Gir70, - author = {J.-Y. Girard}, - booktitle = {Proceedings of the 2nd Scandinavian Logic Symposium}, - publisher = {North-Holland}, - title = {Une extension de l'interpr\'etation de {G\"odel} \`a l'analyse, et son application \`a l'\'elimination des coupures dans l'analyse et la th\'eorie des types}, - year = {1970} -} - -@PhDThesis{Gir72, - author = {J.-Y. Girard}, - school = {Universit\'e Paris~7}, - title = {Interpr\'etation fonctionnelle et \'elimination des coupures de l'arithm\'etique d'ordre sup\'erieur}, - year = {1972} -} - -@Book{Gir89, - author = {J.-Y. Girard and Y. Lafont and P. Taylor}, - publisher = {Cambridge University Press}, - series = {Cambridge Tracts in Theoretical Computer Science 7}, - title = {Proofs and Types}, - year = {1989} -} - -@TechReport{Har95, - author = {John Harrison}, - title = {Metatheory and Reflection in Theorem Proving: A Survey and Critique}, - institution = {SRI International Cambridge Computer Science Research Centre,}, - year = 1995, - type = {Technical Report}, - number = {CRC-053}, - abstract = {http://www.cl.cam.ac.uk/users/jrh/papers.html} -} - -@MastersThesis{Hir94, - author = {D. Hirschkoff}, - month = sep, - school = {DEA IARFA, Ecole des Ponts et Chauss\'ees, Paris}, - title = {Écriture d'une tactique arithm\'etique pour le syst\`eme {\Coq}}, - year = {1994} -} - -@InProceedings{HofStr98, - author = {Martin Hofmann and Thomas Streicher}, - title = {The groupoid interpretation of type theory}, - booktitle = {Proceedings of the meeting Twenty-five years of constructive type theory}, - publisher = {Oxford University Press}, - year = {1998} -} - -@InCollection{How80, - author = {W.A. Howard}, - booktitle = {to H.B. Curry : Essays on Combinatory Logic, Lambda Calculus and Formalism.}, - editor = {J.P. Seldin and J.R. Hindley}, - note = {Unpublished 1969 Manuscript}, - publisher = {Academic Press}, - title = {The Formulae-as-Types Notion of Constructions}, - year = {1980} -} - -@InProceedings{Hue87tapsoft, - author = {G. Huet}, - title = {Programming of Future Generation Computers}, - booktitle = {Proceedings of TAPSOFT87}, - series = LNCS, - volume = 249, - pages = {276--286}, - year = 1987, - publisher = SV -} - -@InProceedings{Hue87, - author = {G. Huet}, - booktitle = {Programming of Future Generation Computers}, - editor = {K. Fuchi and M. Nivat}, - note = {Also in \cite{Hue87tapsoft}}, - publisher = {Elsevier Science}, - title = {Induction Principles Formalized in the {Calculus of Constructions}}, - year = {1988} -} - -@InProceedings{Hue88, - author = {G. Huet}, - booktitle = {A perspective in Theoretical Computer Science. Commemorative Volume for Gift Siromoney}, - editor = {R. Narasimhan}, - note = {Also in~\cite{CoC89}}, - publisher = {World Scientific Publishing}, - title = {{The Constructive Engine}}, - year = {1989} -} - -@Book{Hue89, - editor = {G. Huet}, - publisher = {Addison-Wesley}, - series = {The UT Year of Programming Series}, - title = {Logical Foundations of Functional Programming}, - year = {1989} -} - -@InProceedings{Hue92, - author = {G. Huet}, - booktitle = {Proceedings of 12th FST/TCS Conference, New Delhi}, - pages = {229--240}, - publisher = SV, - series = LNCS, - title = {The Gallina Specification Language : A case study}, - volume = {652}, - year = {1992} -} - -@Article{Hue94, - author = {G. Huet}, - journal = {J. Functional Programming}, - pages = {371--394}, - publisher = {Cambridge University Press}, - title = {Residual theory in $\lambda$-calculus: a formal development}, - volume = {4,3}, - year = {1994} -} - -@InCollection{HuetLevy79, - author = {G. Huet and J.-J. L\'{e}vy}, - title = {Call by Need Computations in Non-Ambigous -Linear Term Rewriting Systems}, - note = {Also research report 359, INRIA, 1979}, - booktitle = {Computational Logic, Essays in Honor of -Alan Robinson}, - editor = {J.-L. Lassez and G. Plotkin}, - publisher = {The MIT press}, - year = {1991} -} - -@Article{KeWe84, - author = {J. Ketonen and R. Weyhrauch}, - journal = {Theoretical Computer Science}, - pages = {297--307}, - title = {A decidable fragment of {P}redicate {C}alculus}, - volume = {32}, - year = {1984} -} - -@Book{Kle52, - author = {S.C. Kleene}, - publisher = {North-Holland}, - series = {Bibliotheca Mathematica}, - title = {Introduction to Metamathematics}, - year = {1952} -} - -@Book{Kri90, - author = {J.-L. Krivine}, - publisher = {Masson}, - series = {Etudes et recherche en informatique}, - title = {Lambda-calcul {types et mod\`eles}}, - year = {1990} -} - -@Book{LE92, - editor = {G. Huet and G. Plotkin}, - publisher = {Cambridge University Press}, - title = {Logical Environments}, - year = {1992} -} - -@Book{LF91, - editor = {G. Huet and G. Plotkin}, - publisher = {Cambridge University Press}, - title = {Logical Frameworks}, - year = {1991} -} - -@Article{Laville91, - author = {A. Laville}, - title = {Comparison of Priority Rules in Pattern -Matching and Term Rewriting}, - journal = {Journal of Symbolic Computation}, - volume = {11}, - pages = {321--347}, - year = {1991} -} - -@InProceedings{LePa94, - author = {F. Leclerc and C. Paulin-Mohring}, - booktitle = {{Types for Proofs and Programs, Types' 93}}, - editor = {H. Barendregt and T. Nipkow}, - publisher = SV, - series = {LNCS}, - title = {{Programming with Streams in Coq. A case study : The Sieve of Eratosthenes}}, - volume = {806}, - year = {1994} -} - -@TechReport{Leroy90, - author = {X. Leroy}, - title = {The {ZINC} experiment: an economical implementation -of the {ML} language}, - institution = {INRIA}, - number = {117}, - year = {1990} -} - -@InProceedings{Let02, - author = {P. Letouzey}, - title = {A New Extraction for Coq}, - booktitle = {TYPES}, - year = 2002, - crossref = {DBLP:conf/types/2002}, - url = {draft at \url{http://www.pps.jussieu.fr/~letouzey/download/extraction2002.ps.gz}} -} - -@PhDThesis{Luo90, - author = {Z. Luo}, - title = {An Extended Calculus of Constructions}, - school = {University of Edinburgh}, - year = {1990} -} - -@Book{MaL84, - author = {{P. Martin-L\"of}}, - publisher = {Bibliopolis}, - series = {Studies in Proof Theory}, - title = {Intuitionistic Type Theory}, - year = {1984} -} - -@Article{MaSi94, - author = {P. Manoury and M. Simonot}, - title = {Automatizing Termination Proofs of Recursively Defined Functions.}, - journal = {TCS}, - volume = {135}, - number = {2}, - year = {1994}, - pages = {319-343}, -} - -@InProceedings{Miquel00, - author = {A. Miquel}, - title = {A Model for Impredicative Type Systems with Universes, -Intersection Types and Subtyping}, - booktitle = {{Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS'00)}}, - publisher = {IEEE Computer Society Press}, - year = {2000} -} - -@PhDThesis{Miquel01a, - author = {A. Miquel}, - title = {Le Calcul des Constructions implicite: syntaxe et s\'emantique}, - month = {dec}, - school = {{Universit\'e Paris 7}}, - year = {2001} -} - -@InProceedings{Miquel01b, - author = {A. Miquel}, - title = {The Implicit Calculus of Constructions: Extending Pure Type Systems with an Intersection Type Binder and Subtyping}, - booktitle = {{Proceedings of the fifth International Conference on Typed Lambda Calculi and Applications (TLCA01), Krakow, Poland}}, - publisher = SV, - series = {LNCS}, - number = 2044, - year = {2001} -} - -@InProceedings{MiWer02, - author = {A. Miquel and B. Werner}, - title = {The Not So Simple Proof-Irrelevant Model of CC}, - booktitle = {TYPES}, - year = {2002}, - pages = {240-258}, - ee = {http://link.springer.de/link/service/series/0558/bibs/2646/26460240.htm}, - crossref = {DBLP:conf/types/2002}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@proceedings{DBLP:conf/types/2002, - editor = {H. Geuvers and F. Wiedijk}, - title = {Types for Proofs and Programs, Second International Workshop, - TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, - Selected Papers}, - booktitle = {TYPES}, - publisher = SV, - series = LNCS, - volume = {2646}, - year = {2003}, - isbn = {3-540-14031-X}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@InProceedings{Moh89a, - author = {C. Paulin-Mohring}, - address = {Austin}, - booktitle = {Sixteenth Annual ACM Symposium on Principles of Programming Languages}, - month = jan, - publisher = {ACM}, - title = {Extracting ${F}_{\omega}$'s programs from proofs in the {Calculus of Constructions}}, - year = {1989} -} - -@PhDThesis{Moh89b, - author = {C. Paulin-Mohring}, - month = jan, - school = {{Universit\'e Paris 7}}, - title = {Extraction de programmes dans le {Calcul des Constructions}}, - year = {1989} -} - -@InProceedings{Moh93, - author = {C. Paulin-Mohring}, - booktitle = {Proceedings of the conference Typed Lambda Calculi and Applications}, - editor = {M. Bezem and J.-F. Groote}, - note = {Also LIP research report 92-49, ENS Lyon}, - number = {664}, - publisher = SV, - series = {LNCS}, - title = {{Inductive Definitions in the System Coq - Rules and Properties}}, - year = {1993} -} - -@Book{Moh97, - author = {C. Paulin-Mohring}, - month = jan, - publisher = {{ENS Lyon}}, - title = {{Le syst\`eme Coq. \mbox{Th\`ese d'habilitation}}}, - year = {1997} -} - -@MastersThesis{Mun94, - author = {C. Muñoz}, - month = sep, - school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7}, - title = {D\'emonstration automatique dans la logique propositionnelle intuitionniste}, - year = {1994} -} - -@PhDThesis{Mun97d, - author = {C. Mu{\~{n}}oz}, - title = {Un calcul de substitutions pour la repr\'esentation - de preuves partielles en th\'eorie de types}, - school = {Universit\'e Paris 7}, - year = {1997}, - note = {Version en anglais disponible comme rapport de - recherche INRIA RR-3309}, - type = {Th\`ese de Doctorat} -} - -@Book{NoPS90, - author = {B. {Nordstr\"om} and K. Peterson and J. Smith}, - booktitle = {Information Processing 83}, - publisher = {Oxford Science Publications}, - series = {International Series of Monographs on Computer Science}, - title = {Programming in {Martin-L\"of's} Type Theory}, - year = {1990} -} - -@Article{Nor88, - author = {B. {Nordstr\"om}}, - journal = {BIT}, - title = {Terminating General Recursion}, - volume = {28}, - year = {1988} -} - -@Book{Odi90, - editor = {P. Odifreddi}, - publisher = {Academic Press}, - title = {Logic and Computer Science}, - year = {1990} -} - -@InProceedings{PaMS92, - author = {M. Parigot and P. Manoury and M. Simonot}, - address = {St. Petersburg, Russia}, - booktitle = {Logic Programming and automated reasoning}, - editor = {A. Voronkov}, - month = jul, - number = {624}, - publisher = SV, - series = {LNCS}, - title = {{ProPre : A Programming language with proofs}}, - year = {1992} -} - -@Article{PaWe92, - author = {C. Paulin-Mohring and B. Werner}, - journal = {Journal of Symbolic Computation}, - pages = {607--640}, - title = {{Synthesis of ML programs in the system Coq}}, - volume = {15}, - year = {1993} -} - -@Article{Par92, - author = {M. Parigot}, - journal = {Theoretical Computer Science}, - number = {2}, - pages = {335--356}, - title = {{Recursive Programming with Proofs}}, - volume = {94}, - year = {1992} -} - -@InProceedings{Parent95b, - author = {C. Parent}, - booktitle = {{Mathematics of Program Construction'95}}, - publisher = SV, - series = {LNCS}, - title = {{Synthesizing proofs from programs in -the Calculus of Inductive Constructions}}, - volume = {947}, - year = {1995} -} - -@InProceedings{Prasad93, - author = {K.V. Prasad}, - booktitle = {{Proceedings of CONCUR'93}}, - publisher = SV, - series = {LNCS}, - title = {{Programming with broadcasts}}, - volume = {715}, - year = {1993} -} - -@Book{RC95, - author = {di~Cosmo, R.}, - title = {Isomorphisms of Types: from $\lambda$-calculus to information - retrieval and language design}, - series = {Progress in Theoretical Computer Science}, - publisher = {Birkhauser}, - year = {1995}, - note = {ISBN-0-8176-3763-X} -} - -@TechReport{Rou92, - author = {J. Rouyer}, - institution = {INRIA}, - month = nov, - number = {1795}, - title = {{Développement de l'Algorithme d'Unification dans le Calcul des Constructions}}, - year = {1992} -} - -@Article{Rushby98, - title = {Subtypes for Specifications: Predicate Subtyping in - {PVS}}, - author = {John Rushby and Sam Owre and N. Shankar}, - journal = {IEEE Transactions on Software Engineering}, - pages = {709--720}, - volume = 24, - number = 9, - month = sep, - year = 1998 -} - -@TechReport{Saibi94, - author = {A. Sa\"{\i}bi}, - institution = {INRIA}, - month = dec, - number = {2345}, - title = {{Axiomatization of a lambda-calculus with explicit-substitutions in the Coq System}}, - year = {1994} -} - - -@MastersThesis{Ter92, - author = {D. Terrasse}, - month = sep, - school = {IARFA}, - title = {{Traduction de TYPOL en COQ. Application \`a Mini ML}}, - year = {1992} -} - -@TechReport{ThBeKa92, - author = {L. Th\'ery and Y. Bertot and G. Kahn}, - institution = {INRIA Sophia}, - month = may, - number = {1684}, - title = {Real theorem provers deserve real user-interfaces}, - type = {Research Report}, - year = {1992} -} - -@Book{TrDa89, - author = {A.S. Troelstra and D. van Dalen}, - publisher = {North-Holland}, - series = {Studies in Logic and the foundations of Mathematics, volumes 121 and 123}, - title = {Constructivism in Mathematics, an introduction}, - year = {1988} -} - -@PhDThesis{Wer94, - author = {B. Werner}, - school = {Universit\'e Paris 7}, - title = {Une th\'eorie des constructions inductives}, - type = {Th\`ese de Doctorat}, - year = {1994} -} - -@PhDThesis{Bar99, - author = {B. Barras}, - school = {Universit\'e Paris 7}, - title = {Auto-validation d'un système de preuves avec familles inductives}, - type = {Th\`ese de Doctorat}, - year = {1999} -} - -@Unpublished{ddr98, - author = {D. de Rauglaudre}, - title = {Camlp4 version 1.07.2}, - year = {1998}, - note = {In Camlp4 distribution} -} - -@Article{dowek93, - author = {G. Dowek}, - title = {{A Complete Proof Synthesis Method for the Cube of Type Systems}}, - journal = {Journal Logic Computation}, - volume = {3}, - number = {3}, - pages = {287--315}, - month = {June}, - year = {1993} -} - -@InProceedings{manoury94, - author = {P. Manoury}, - title = {{A User's Friendly Syntax to Define -Recursive Functions as Typed $\lambda-$Terms}}, - booktitle = {{Types for Proofs and Programs, TYPES'94}}, - series = {LNCS}, - volume = {996}, - month = jun, - year = {1994} -} - -@TechReport{maranget94, - author = {L. Maranget}, - institution = {INRIA}, - number = {2385}, - title = {{Two Techniques for Compiling Lazy Pattern Matching}}, - year = {1994} -} - -@InProceedings{puel-suarez90, - author = {L.Puel and A. Su\'arez}, - booktitle = {{Conference Lisp and Functional Programming}}, - series = {ACM}, - publisher = SV, - title = {{Compiling Pattern Matching by Term -Decomposition}}, - year = {1990} -} - -@MastersThesis{saidi94, - author = {H. Saidi}, - month = sep, - school = {DEA d'Informatique Fondamentale, Universit\'e Paris 7}, - title = {R\'esolution d'\'equations dans le syst\`eme T - de G\"odel}, - year = {1994} -} - -@inproceedings{sozeau06, - author = {Matthieu Sozeau}, - title = {Subset Coercions in {C}oq}, - year = {2007}, - booktitle = {TYPES'06}, - pages = {237-252}, - volume = {4502}, - publisher = "Springer", - series = {LNCS} -} - -@inproceedings{sozeau08, - Author = {Matthieu Sozeau and Nicolas Oury}, - booktitle = {TPHOLs'08}, - Pdf = {http://www.lri.fr/~sozeau/research/publications/drafts/classes.pdf}, - Title = {{F}irst-{C}lass {T}ype {C}lasses}, - Year = {2008}, -} - -@Misc{streicher93semantical, - author = {T. Streicher}, - title = {Semantical Investigations into Intensional Type Theory}, - note = {Habilitationsschrift, LMU Munchen.}, - year = {1993} -} - -@Misc{Pcoq, - author = {Lemme Team}, - title = {Pcoq a graphical user-interface for {Coq}}, - note = {\url{http://www-sop.inria.fr/lemme/pcoq/}} -} - -@Misc{ProofGeneral, - author = {David Aspinall}, - title = {Proof General}, - note = {\url{http://proofgeneral.inf.ed.ac.uk/}} -} - -@Book{CoqArt, - title = {Interactive Theorem Proving and Program Development. - Coq'Art: The Calculus of Inductive Constructions}, - author = {Yves Bertot and Pierre Castéran}, - publisher = {Springer Verlag}, - series = {Texts in Theoretical Computer Science. An EATCS series}, - year = 2004 -} - -@InCollection{wadler87, - author = {P. Wadler}, - title = {Efficient Compilation of Pattern Matching}, - booktitle = {The Implementation of Functional Programming -Languages}, - editor = {S.L. Peyton Jones}, - publisher = {Prentice-Hall}, - year = {1987} -} - -@inproceedings{DBLP:conf/types/CornesT95, - author = {Cristina Cornes and - Delphine Terrasse}, - title = {Automating Inversion of Inductive Predicates in Coq}, - booktitle = {TYPES}, - year = {1995}, - pages = {85-104}, - crossref = {DBLP:conf/types/1995}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} -@proceedings{DBLP:conf/types/1995, - editor = {Stefano Berardi and - Mario Coppo}, - title = {Types for Proofs and Programs, International Workshop TYPES'95, - Torino, Italy, June 5-8, 1995, Selected Papers}, - booktitle = {TYPES}, - publisher = {Springer}, - series = {Lecture Notes in Computer Science}, - volume = {1158}, - year = {1996}, - isbn = {3-540-61780-9}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@inproceedings{DBLP:conf/types/McBride00, - author = {Conor McBride}, - title = {Elimination with a Motive}, - booktitle = {TYPES}, - year = {2000}, - pages = {197-216}, - ee = {http://link.springer.de/link/service/series/0558/bibs/2277/22770197.htm}, - crossref = {DBLP:conf/types/2000}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@proceedings{DBLP:conf/types/2000, - editor = {Paul Callaghan and - Zhaohui Luo and - James McKinna and - Robert Pollack}, - title = {Types for Proofs and Programs, International Workshop, TYPES - 2000, Durham, UK, December 8-12, 2000, Selected Papers}, - booktitle = {TYPES}, - publisher = {Springer}, - series = {Lecture Notes in Computer Science}, - volume = {2277}, - year = {2002}, - isbn = {3-540-43287-6}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@INPROCEEDINGS{sugar, - author = {Alessandro Giovini and Teo Mora and Gianfranco Niesi and Lorenzo Robbiano and Carlo Traverso}, - title = {"One sugar cube, please" or Selection strategies in the Buchberger algorithm}, - booktitle = { Proceedings of the ISSAC'91, ACM Press}, - year = {1991}, - pages = {5--4}, - publisher = {} -} - -@article{LeeWerner11, - author = {Gyesik Lee and - Benjamin Werner}, - title = {Proof-irrelevant model of {CC} with predicative induction - and judgmental equality}, - journal = {Logical Methods in Computer Science}, - volume = {7}, - number = {4}, - year = {2011}, - ee = {http://dx.doi.org/10.2168/LMCS-7(4:5)2011}, - bibsource = {DBLP, http://dblp.uni-trier.de} -} - -@Comment{cross-references, must be at end} - -@Book{Bastad92, - editor = {B. Nordstr\"om and K. Petersson and G. Plotkin}, - publisher = {Available by ftp at site ftp.inria.fr}, - title = {Proceedings of the 1992 Workshop on Types for Proofs and Programs}, - year = {1992} -} - -@Book{Nijmegen93, - editor = {H. Barendregt and T. Nipkow}, - publisher = SV, - series = LNCS, - title = {Types for Proofs and Programs}, - volume = {806}, - year = {1994} -} - -@article{ TheOmegaPaper, - author = "W. Pugh", - title = "The Omega test: a fast and practical integer programming algorithm for dependence analysis", - journal = "Communication of the ACM", - pages = "102--114", - year = "1992", -} diff --git a/doc/refman/coqdoc.tex b/doc/refman/coqdoc.tex deleted file mode 100644 index c2591a7b..00000000 --- a/doc/refman/coqdoc.tex +++ /dev/null @@ -1,561 +0,0 @@ - -%\newcommand{\Coq}{\textsf{Coq}} -\newcommand{\javadoc}{\textsf{javadoc}} -\newcommand{\ocamldoc}{\textsf{ocamldoc}} -\newcommand{\coqdoc}{\textsf{coqdoc}} -\newcommand{\texmacs}{\TeX{}macs} -\newcommand{\monurl}[1]{#1} -%HEVEA\renewcommand{\monurl}[1]{\ahref{#1}{#1}} -%\newcommand{\lnot}{not} % Hevea handles these symbols nicely -%\newcommand{\lor}{or} -%\newcommand{\land}{\&} -%%% attention : -- dans un argument de \texttt est affiché comme un -%%% seul - d'où l'utilisation de la macro suivante -\newcommand{\mm}{\symbol{45}\symbol{45}} - - -\coqdoc\ is a documentation tool for the proof assistant -\Coq, similar to \javadoc\ or \ocamldoc. -The task of \coqdoc\ is -\begin{enumerate} -\item to produce a nice \LaTeX\ and/or HTML document from the \Coq\ - sources, readable for a human and not only for the proof assistant; -\item to help the user navigating in his own (or third-party) sources. -\end{enumerate} - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\subsection{Principles} - -Documentation is inserted into \Coq\ files as \emph{special comments}. -Thus your files will compile as usual, whether you use \coqdoc\ or not. -\coqdoc\ presupposes that the given \Coq\ files are well-formed (at -least lexically). Documentation starts with -\texttt{(**}, followed by a space, and ends with the pending \texttt{*)}. -The documentation format is inspired - by Todd~A.~Coram's \emph{Almost Free Text (AFT)} tool: it is mainly -ASCII text with some syntax-light controls, described below. -\coqdoc\ is robust: it shouldn't fail, whatever the input is. But -remember: ``garbage in, garbage out''. - -\paragraph{\Coq\ material inside documentation.} -\Coq\ material is quoted between the -delimiters \texttt{[} and \texttt{]}. Square brackets may be nested, -the inner ones being understood as being part of the quoted code (thus -you can quote a term like \texttt{fun x => u} by writing -\texttt{[fun x => u]}). Inside quotations, the code is pretty-printed in -the same way as it is in code parts. - -Pre-formatted vernacular is enclosed by \texttt{[[} and -\texttt{]]}. The former must be followed by a newline and the latter -must follow a newline. - -\paragraph{Pretty-printing.} -\coqdoc\ uses different faces for identifiers and keywords. -The pretty-printing of \Coq\ tokens (identifiers or symbols) can be -controlled using one of the following commands: -\begin{alltt} -(** printing \emph{token} %...\LaTeX...% #...HTML...# *) -\end{alltt} -or -\begin{alltt} -(** printing \emph{token} $...\LaTeX\ math...$ #...HTML...# *) -\end{alltt} -It gives the \LaTeX\ and HTML texts to be produced for the given \Coq\ -token. One of the \LaTeX\ or HTML text may be omitted, causing the -default pretty-printing to be used for this token. - -The printing for one token can be removed with -\begin{alltt} -(** remove printing \emph{token} *) -\end{alltt} - -Initially, the pretty-printing table contains the following mapping: -\begin{center} - \begin{tabular}{ll@{\qquad\qquad}ll@{\qquad\qquad}ll@{\qquad\qquad}} - \verb!->! & $\rightarrow$ & - \verb!<-! & $\leftarrow$ & - \verb|*| & $\times$ \\ - \verb|<=| & $\le$ & - \verb|>=| & $\ge$ & - \verb|=>| & $\Rightarrow$ \\ - \verb|<>| & $\not=$ & - \verb|<->| & $\leftrightarrow$ & - \verb!|-! & $\vdash$ \\ - \verb|\/| & $\lor$ & - \verb|/\| & $\land$ & - \verb|~| & $\lnot$ - \end{tabular} -\end{center} -Any of these can be overwritten or suppressed using the -\texttt{printing} commands. - -Important note: the recognition of tokens is done by a (ocaml)lex -automaton and thus applies the longest-match rule. For instance, -\verb!->~! is recognized as a single token, where \Coq\ sees two -tokens. It is the responsibility of the user to insert space between -tokens \emph{or} to give pretty-printing rules for the possible -combinations, e.g. -\begin{verbatim} -(** printing ->~ %\ensuremath{\rightarrow\lnot}% *) -\end{verbatim} - - -\paragraph{Sections.} -Sections are introduced by 1 to 4 leading stars (i.e. at the beginning of the -line) followed by a space. One star is a section, two stars a sub-section, etc. -The section title is given on the remaining of the line. -Example: -\begin{verbatim} - (** * Well-founded relations - - In this section, we introduce... *) -\end{verbatim} - - -%TODO \paragraph{Fonts.} - - -\paragraph{Lists.} -List items are introduced by a leading dash. \coqdoc\ uses whitespace -to determine the depth of a new list item and which text belongs in -which list items. A list ends when a line of text starts at or before -the level of indenting of the list's dash. A list item's dash must -always be the first non-space character on its line (so, in -particular, a list can not begin on the first line of a comment - -start it on the second line instead). - -Example: -\begin{verbatim} - We go by induction on [n]: - - If [n] is 0... - - If [n] is [S n'] we require... - - two paragraphs of reasoning, and two subcases: - - - In the first case... - - In the second case... - - So the theorem holds. -\end{verbatim} - -\paragraph{Rules.} -More than 4 leading dashes produce an horizontal rule. - -\paragraph{Emphasis.} -Text can be italicized by placing it in underscores. A non-identifier -character must precede the leading underscore and follow the trailing -underscore, so that uses of underscores in names aren't mistaken for -emphasis. Usually, these are spaces or punctuation. - -\begin{verbatim} - This sentence contains some _emphasized text_. -\end{verbatim} - -\paragraph{Escaping to \LaTeX\ and HTML.} -Pure \LaTeX\ or HTML material can be inserted using the following -escape sequences: -\begin{itemize} -\item \verb+$...LaTeX stuff...$+ inserts some \LaTeX\ material in math mode. - Simply discarded in HTML output. - -\item \verb+%...LaTeX stuff...%+ inserts some \LaTeX\ material. - Simply discarded in HTML output. - -\item \verb+#...HTML stuff...#+ inserts some HTML material. Simply - discarded in \LaTeX\ output. -\end{itemize} - -Note: to simply output the characters \verb+$+, \verb+%+ and \verb+#+ -and escaping their escaping role, these characters must be doubled. - -\paragraph{Verbatim.} -Verbatim material is introduced by a leading \verb+<<+ and closed by -\verb+>>+ at the beginning of a line. Example: -\begin{verbatim} -Here is the corresponding caml code: -<< - let rec fact n = - if n <= 1 then 1 else n * fact (n-1) ->> -\end{verbatim} - - -\paragraph{Hyperlinks.} -Hyperlinks can be inserted into the HTML output, so that any -identifier is linked to the place of its definition. - -\texttt{coqc \emph{file}.v} automatically dumps localization information -in \texttt{\emph{file}.glob} or appends it to a file specified using option -\texttt{\mm{}dump-glob \emph{file}}. Take care of erasing this global file, if -any, when starting the whole compilation process. - -Then invoke \texttt{coqdoc} or \texttt{coqdoc \mm{}glob-from \emph{file}} to tell -\coqdoc\ to look for name resolutions into the file \texttt{\emph{file}} -(it will look in \texttt{\emph{file}.glob} by default). - -Identifiers from the \Coq\ standard library are linked to the \Coq\ -web site at \url{http://coq.inria.fr/library/}. This behavior can be -changed using command line options \url{--no-externals} and -\url{--coqlib}; see below. - - -\paragraph{Hiding / Showing parts of the source.} -Some parts of the source can be hidden using command line options -\texttt{-g} and \texttt{-l} (see below), or using such comments: -\begin{alltt} -(* begin hide *) -\emph{some Coq material} -(* end hide *) -\end{alltt} -Conversely, some parts of the source which would be hidden can be -shown using such comments: -\begin{alltt} -(* begin show *) -\emph{some Coq material} -(* end show *) -\end{alltt} -The latter cannot be used around some inner parts of a proof, but can -be used around a whole proof. - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\subsection{Usage} - -\coqdoc\ is invoked on a shell command line as follows: -\begin{displaymath} - \texttt{coqdoc }<\textit{options and files}> -\end{displaymath} -Any command line argument which is not an option is considered to be a -file (even if it starts with a \verb!-!). \Coq\ files are identified -by the suffixes \verb!.v! and \verb!.g! and \LaTeX\ files by the -suffix \verb!.tex!. - -\begin{description} -\item[HTML output] ~\par - This is the default output. - One HTML file is created for each \Coq\ file given on the command line, - together with a file \texttt{index.html} (unless option - \texttt{-no-index} is passed). The HTML pages use a style sheet - named \texttt{style.css}. Such a file is distributed with \coqdoc. - -\item[\LaTeX\ output] ~\par - A single \LaTeX\ file is created, on standard output. It can be - redirected to a file with option \texttt{-o}. - The order of files on the command line is kept in the final - document. \LaTeX\ files given on the command line are copied `as is' - in the final document . - DVI and PostScript can be produced directly with the options - \texttt{-dvi} and \texttt{-ps} respectively. - -\item[\texmacs\ output] ~\par - To translate the input files to \texmacs\ format, to be used by - the \texmacs\ Coq interface - (see \url{http://www-sop.inria.fr/lemme/Philippe.Audebaud/tmcoq/}). -\end{description} - - -\subsubsection*{Command line options} - - -\paragraph{Overall options} - -\begin{description} - -\item[\texttt{\mm{}html}] ~\par - - Select a HTML output. - -\item[\texttt{\mm{}latex}] ~\par - - Select a \LaTeX\ output. - -\item[\texttt{\mm{}dvi}] ~\par - - Select a DVI output. - -\item[\texttt{\mm{}ps}] ~\par - - Select a PostScript output. - -\item[\texttt{\mm{}texmacs}] ~\par - - Select a \texmacs\ output. - -\item[\texttt{--stdout}] ~\par - - Write output to stdout. - -\item[\texttt{-o }\textit{file}, \texttt{\mm{}output }\textit{file}] ~\par - - Redirect the output into the file `\textit{file}' (meaningless with - \texttt{-html}). - -\item[\texttt{-d }\textit{dir}, \texttt{\mm{}directory }\textit{dir}] ~\par - - Output files into directory `\textit{dir}' instead of current - directory (option \texttt{-d} does not change the filename specified - with option \texttt{-o}, if any). - -\item[\texttt{\mm{}body-only}] ~\par - - Suppress the header and trailer of the final document. Thus, you can - insert the resulting document into a larger one. - -\item[\texttt{-p} \textit{string}, \texttt{\mm{}preamble} \textit{string}]~\par - - Insert some material in the \LaTeX\ preamble, right before - \verb!\begin{document}! (meaningless with \texttt{-html}). - -\item[\texttt{\mm{}vernac-file }\textit{file}, - \texttt{\mm{}tex-file }\textit{file}] ~\par - - Considers the file `\textit{file}' respectively as a \verb!.v! - (or \verb!.g!) file or a \verb!.tex! file. - -\item[\texttt{\mm{}files-from }\textit{file}] ~\par - - Read file names to process in file `\textit{file}' as if they were - given on the command line. Useful for program sources split up into - several directories. - -\item[\texttt{-q}, \texttt{\mm{}quiet}] ~\par - - Be quiet. Do not print anything except errors. - -\item[\texttt{-h}, \texttt{\mm{}help}] ~\par - - Give a short summary of the options and exit. - -\item[\texttt{-v}, \texttt{\mm{}version}] ~\par - - Print the version and exit. - -\end{description} - -\paragraph{Index options} - -Default behavior is to build an index, for the HTML output only, into -\texttt{index.html}. - -\begin{description} - -\item[\texttt{\mm{}no-index}] ~\par - - Do not output the index. - -\item[\texttt{\mm{}multi-index}] ~\par - - Generate one page for each category and each letter in the index, - together with a top page \texttt{index.html}. - -\item[\texttt{\mm{}index }\textit{string}] ~\par - - Make the filename of the index \textit{string} instead of ``index''. - Useful since ``index.html'' is special. - -\end{description} - -\paragraph{Table of contents option} - -\begin{description} - -\item[\texttt{-toc}, \texttt{\mm{}table-of-contents}] ~\par - - Insert a table of contents. - For a \LaTeX\ output, it inserts a \verb!\tableofcontents! at the - beginning of the document. For a HTML output, it builds a table of - contents into \texttt{toc.html}. - -\item[\texttt{\mm{}toc-depth }\textit{int}] ~\par - - Only include headers up to depth \textit{int} in the table of - contents. - -\end{description} - -\paragraph{Hyperlinks options} -\begin{description} - -\item[\texttt{\mm{}glob-from }\textit{file}] ~\par - - Make references using \Coq\ globalizations from file \textit{file}. - (Such globalizations are obtained with \Coq\ option \texttt{-dump-glob}). - -\item[\texttt{\mm{}no-externals}] ~\par - - Do not insert links to the \Coq\ standard library. - -\item[\texttt{\mm{}external }\textit{url}~\textit{coqdir}] ~\par - - Use given URL for linking references whose name starts with prefix - \textit{coqdir}. - -\item[\texttt{\mm{}coqlib }\textit{url}] ~\par - - Set base URL for the \Coq\ standard library (default is - \url{http://coq.inria.fr/library/}). This is equivalent to - \texttt{\mm{}external }\textit{url}~\texttt{Coq}. - -\item[\texttt{-R }\textit{dir }\textit{coqdir}] ~\par - - Map physical directory \textit{dir} to \Coq\ logical directory - \textit{coqdir} (similarly to \Coq\ option \texttt{-R}). - - Note: option \texttt{-R} only has effect on the files - \emph{following} it on the command line, so you will probably need - to put this option first. - -\end{description} - -\paragraph{Title options} -\begin{description} -\item[\texttt{-s }, \texttt{\mm{}short}] ~\par - - Do not insert titles for the files. The default behavior is to - insert a title like ``Library Foo'' for each file. - -\item[\texttt{\mm{}lib-name }\textit{string}] ~\par - - Print ``\textit{string} Foo'' instead of ``Library Foo'' in titles. - For example ``Chapter'' and ``Module'' are reasonable choices. - -\item[\texttt{\mm{}no-lib-name}] ~\par - - Print just ``Foo'' instead of ``Library Foo'' in titles. - -\item[\texttt{\mm{}lib-subtitles}] ~\par - - Look for library subtitles. When enabled, the beginning of each - file is checked for a comment of the form: -\begin{alltt} -(** * ModuleName : text *) -\end{alltt} - where \texttt{ModuleName} must be the name of the file. If it is - present, the \texttt{text} is used as a subtitle for the module in - appropriate places. - -\item[\texttt{-t }\textit{string}, - \texttt{\mm{}title }\textit{string}] ~\par - - Set the document title. - -\end{description} - -\paragraph{Contents options} -\begin{description} - -\item[\texttt{-g}, \texttt{\mm{}gallina}] ~\par - - Do not print proofs. - -\item[\texttt{-l}, \texttt{\mm{}light}] ~\par - - Light mode. Suppress proofs (as with \texttt{-g}) and the following commands: - \begin{itemize} - \item {}[\texttt{Recursive}] \texttt{Tactic Definition} - \item \texttt{Hint / Hints} - \item \texttt{Require} - \item \texttt{Transparent / Opaque} - \item \texttt{Implicit Argument / Implicits} - \item \texttt{Section / Variable / Hypothesis / End} - \end{itemize} - -\end{description} -The behavior of options \texttt{-g} and \texttt{-l} can be locally -overridden using the \texttt{(* begin show *)} \dots\ \texttt{(* end - show *)} environment (see above). - -There are a few options to drive the parsing of comments: -\begin{description} -\item[\texttt{\mm{}parse-comments}] ~\par - - Parses regular comments delimited by \texttt{(*} and \texttt{*)} as - well. They are typeset inline. - -\item[\texttt{\mm{}plain-comments}] ~\par - - Do not interpret comments, simply copy them as plain-text. - -\item[\texttt{\mm{}interpolate}] ~\par - - Use the globalization information to typeset identifiers appearing in - \Coq{} escapings inside comments. -\end{description} - - -\paragraph{Language options} - -Default behavior is to assume ASCII 7 bits input files. - -\begin{description} - -\item[\texttt{-latin1}, \texttt{\mm{}latin1}] ~\par - - Select ISO-8859-1 input files. It is equivalent to - \texttt{--inputenc latin1 --charset iso-8859-1}. - -\item[\texttt{-utf8}, \texttt{\mm{}utf8}] ~\par - - Select UTF-8 (Unicode) input files. It is equivalent to - \texttt{--inputenc utf8 --charset utf-8}. - \LaTeX\ UTF-8 support can be found at - \url{http://www.ctan.org/tex-archive/macros/latex/contrib/supported/unicode/}. - -\item[\texttt{\mm{}inputenc} \textit{string}] ~\par - - Give a \LaTeX\ input encoding, as an option to \LaTeX\ package - \texttt{inputenc}. - -\item[\texttt{\mm{}charset} \textit{string}] ~\par - - Specify the HTML character set, to be inserted in the HTML header. - -\end{description} - - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -\subsection[The coqdoc \LaTeX{} style file]{The coqdoc \LaTeX{} style file\label{section:coqdoc.sty}} - -In case you choose to produce a document without the default \LaTeX{} -preamble (by using option \verb|--no-preamble|), then you must insert -into your own preamble the command -\begin{quote} - \verb|\usepackage{coqdoc}| -\end{quote} - -The package optionally takes the argument \verb|[color]| to typeset -identifiers with colors (this requires the \verb|xcolor| package). - -Then you may alter the rendering of the document by -redefining some macros: -\begin{description} - -\item[\texttt{coqdockw}, \texttt{coqdocid}, \ldots] ~ - - The one-argument macros for typesetting keywords and identifiers. - Defaults are sans-serif for keywords and italic for identifiers. - - For example, if you would like a slanted font for keywords, you - may insert -\begin{verbatim} - \renewcommand{\coqdockw}[1]{\textsl{#1}} -\end{verbatim} - anywhere between \verb|\usepackage{coqdoc}| and - \verb|\begin{document}|. - -\item[\texttt{coqdocmodule}] ~ - - One-argument macro for typesetting the title of a \verb|.v| file. - Default is -\begin{verbatim} -\newcommand{\coqdocmodule}[1]{\section*{Module #1}} -\end{verbatim} - and you may redefine it using \verb|\renewcommand|. - -\end{description} - - diff --git a/doc/refman/coqide-queries.eps b/doc/refman/coqide-queries.eps deleted file mode 100644 index 6345bb29..00000000 --- a/doc/refman/coqide-queries.eps +++ /dev/null @@ -1,3116 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: GIMP PostScript file plugin V 1,17 by Peter Kirchgessner -%%Title: coqide-queries1.eps -%%CreationDate: Mon Aug 30 15:34:11 2010 -%%DocumentData: Clean7Bit -%%LanguageLevel: 2 -%%Pages: 1 -%%BoundingBox: 14 14 867 530 -%%EndComments -%%BeginProlog -% Use own dictionary to avoid conflicts -10 dict begin -%%EndProlog -%%Page: 1 1 -% Translate for offset -14.173228346456694 14.173228346456694 translate -% Translate to begin of first scanline -0 515 translate -852 -515 scale -% Image geometry -852 515 8 -% Transformation matrix -[ 852 0 0 515 0 0 ] -% Strings to hold RGB-samples per scanline -/rstr 852 string def -/gstr 852 string def -/bstr 852 string def -{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop} -{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop} -{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop} -true 3 -%%BeginData: 186063 ASCII Bytes -colorimage -JcC<$JcC<$JcC<$XoEn~> -JcC<$JcC<$JcC<$XoEn~> -JcC<$JcC<$JcC<$XoEn~> -!<7W$J_#D'J_#D'J_%$U!!%N~> -!<7VpJ^&bjJ^&bjJ^(CC!!%N~> -!<7V^J\-KFJ\-KFJ\/+t!!%N~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'XO[@OJ_#D'L=QBu!.Y~> -!<7VpJ^&bjXN^_FJ^&bjL<Ta_!.Y~> -!<7V^J\-KFXLeH4J\-KFL:[J2!.Y~> -!<;H;!!)oIrW(O#rrDrI!!(!h!!(m,!!&)2!!'FXrW(!ir;ba+!!'@V!!)oIrW(R$!!)K=rrBjc -rW%N#iRS%&!.Y~> -!<;H2!!)o@rW(NorrDr@!!(!_!!(m#!!&))!!'FOrW(!`r;ba"!!'@M!!)o@rW(Qp!!)K4rrBjZ -rW%MoiQVCe!.Y~> -!<;Gu!!)o.rW(N]rrDr.!!(!M!!(lf!!&(l!!'F=rW(!Nr;b`e!!'@;!!)o.rW(Q^!!)K"rrBjH -rW%M]iO],8!.Y~> -!<;lGq>gHE!!)iG!!)'1q>gBC!!)oI!!)oI!!)?9rW)uLrW)67!!)97!!)cE!!(a(q>fU-q>fm5 -!!)cE!!(a(q>fL*!!)T@!!([&!!)uK!!'IYrVuuM!9)K/!;Y1G!9D`1!<1RK!<(IK!:JD<!7]U! -!<:XL!;"bA!.i_[ecDEDJ,~> -!<;l>q>gH<!!)i>!!)'(q>gB:!!)o@!!)o@!!)?0rW)uCrW)6.!!)9.!!)c<!!(`tq>fU$q>fm, -!!)c<!!(`tq>fL!!!)T7!!(Zr!!)uB!!'IPrVuuD!9)0&!;Xk>!9DE(!<17B!<(.B!:J)3!7]9m -!<:=C!;"G8!.iDRblO".J,~> -!<;l,q>gH*!!)i,!!)&kq>gB(!!)o.!!)o.!!)>srW)u1rW)5q!!)8q!!)c*!!(`bq>fTgq>flo -!!)c*!!(`bq>fKd!!)T%!!(Z`!!)u0!!'I>rVuu2!9(Ni!;X5,!9Cck!<0V0!<'M0!:IH!!7\X[ -!<9\1!;!f&!.hc@])d-VJ,~> -!<;iF!!)uK!!)WA!!)$0!!)uK!!)lH!!)ZB!!)<8rrE&L!!(Bs!!(?r"p!6*!7o^$jOOM8f%'iP -ec>'f!!(?r"p!6*!7o^$iRRu/o%!d@g"$-'qpkiLec5^Lf)GaJf)>[Jf)GaMf)GaKf)>[Gf)>[I -f),O8ec5^Lf)Ga&ec5^1ec5^Jec5^6ec5^!ec5^Kec5^@ec5]$f&>0\TE'K~> -!<;i=!!)uB!!)W8!!)$'!!)uB!!)l?!!)Z9!!)</rrE&C!!(Bj!!(?i"ouom!6ragjNRl/c-675 -blI+T!!(?i"ouom!6ragiQV?&o$%.7g!'Ksqoo3Cbl@bCc2ReAc2I_Ac2ReDc2ReBc2I_>c2I_@ -c27S/bl@bCc2Rdrbl@b(bl@bAbl@b-bl@ambl@bBbl@b7bl@`pc/HnJP5p+~> -!<;i+!!)u0!!)W&!!)#j!!)u0!!)l-!!)Z'!!);rrrE&1!!(BX!!(?W"ou9I!5#iCjLYTr]=S'T -])_30!!(?W"ou9I!5#iCiO]'io"+l%ft.4aqmuq1])Vj1]Dhm/]D_g/]Dhm2]Dhm0]D_g,]D_g. -]DMZr])Vj1]Dhl`])Vik])Vj/])Vip])Vi[])Vj0])Vj%])Vh^]A^@&GQ<6~> -!<;iF!!)uK!!*#LrW)cF!!)lHrW)<9!!)uK!!*#LrVuuM!<(LJ!<(LG!:A>@!7h/$ec>["r;ciJ -rW)uLrW)rKrW)iHrW!#N!!*#Lr;ciJqZ-QFrW)iHr;ciJrr<&MrW)?:&-1;4!7o^$f%'g$f%'g$ -f%0g#s47/Lp=9EJf%'iPec>^#r;c`GrW!#N!7q#Ir7:iIqUYWG!S.8Mf),O9ecl-*ec=:P!<(LJ -!<1RL!"%3V!7h,Mec5^$rW)fG!!)oIr;ciJqZ-NErW)lIquH3:!!)oI!s$p'!<(IK!<(IK!<1OL -!<(IP!7h/$ec>X!!!)oI!!*#L!!*#L!!)uK!!)H<!!)rJ!!*#Lr;ciJrr<AV!!(RM!7h,Mf)>[I -f)>[Fec5^Hf)>[:ecl-*ec=:P!<1RK!<(LK!!(UL!;tFI!!1XNrRUoIrmq&Krmq&Ks47)Jma_@< -rRLrKr7:iIqUPWHrRUuK!7q,LJ_'/<!MBFC~> -!<;i=!!)uB!!*#CrW)c=!!)l?rW)<0!!)uB!!*#CrVuuD!<(1A!<(1>!:A#7!6kMgblI^er;ciA -rW)uCrW)rBrW)i?rW!#E!!*#Cr;ciAqZ-Q=rW)i?r;ciArr<&DrW)?1&-0u"!6ragc-64gc-64g -c-?4fs3:NCp<<dAc-675blIafr;c`>rW!#E!6tB@r6>3@qT]!>!R1WDc27S0bm"0mblH#5!<(1A -!<17C!"$mM!6kKDbl@agrW)f>!!)o@r;ciAqZ-N<rW)l@quH31!!)o@!s$Tj!<(.B!<(.B!<14C -!<(.G!6kMgblI[d!!)o@!!*#C!!*#C!!)uB!!)H3!!)rA!!*#Cr;ciArr<AM!!(7D!6kKDc2I_@ -c2I_=bl@b?c2I_1bm"0mblH#5!<17B!<(1B!!(:C!;t+@!!1=ErQY9@rltEBrltEBs3:HAm`b_3 -rQP<Br6>3@qTT!?rQY?B!6tKCJ^*N*!L!M6~> -!<;i+!!)u0!!*#1rW)c+!!)l-rW);s!!)u0!!*#1rVuu2!<'P/!<'P,!:@B%!4r6C])_fAr;ci/ -rW)u1rW)r0rW)i-rW!#3!!*#1r;ci/qZ-Q+rW)i-r;ci/rr<&2rW)>t&-0>S!5#iC]=S%C]=S%C -]=\%Bs1A71p:CM/]=S'T])_iBr;c`,rW!#3!5&+.r4Dq.qRc_,!P8@2]DMZs]*88I])]IT!<'P/ -!<0V1!"$7;!4r42])ViCrW)f,!!)o.r;ci/qZ-N*rW)l.quH2t!!)o.!s#sF!<'M0!<'M0!<0S1 -!<'M5!4r6C])_c@!!)o.!!*#1!!*#1!!)u0!!)H!!!)r/!!*#1r;ci/rr<A;!!'V2!4r42]D_g. -]D_g+])Vj-]D_ft]*88I])]IT!<0V0!<'P0!!'Y1!;sJ.!!0\3rO`".rk&.0rk&.0s1A1/m^iH! -rOW%0r4Dq.qRZ_-rO`(0!5&41J\16[!I+Tp~> -!<;iF!s$p'!;b7H!;Y1G!;k=I!<1OL!:A>>!7o^$rRLrKrmq)Lqpk`Iqpk`IlIH+=ec=:P!<1OL -!<(IK!<1OL!<(IK!;k=I!;tCJ!<1RL!<1OL!<(IK!<(IK!;G%E!;tCJ!<(IK!<1RL!<1OL!:/29 -!;k=Q!7h/$ec=:P!<(IK!:n\@!;tCJ!<(IK!<(IK!<1RL!<1OL!;G%E!;k=I!<1RL!<:UM!<(IK -!:/29!;k=I!<1OL!<1RL!!q-U!7h/$ec5^Lec5^Iec5^Jec5^Kec5^Kec5^Gec5^Lec5^Lec5^K -ec5^=ec5^IecPp'ec>["!!*#L!!)rJ!!*#LrrDiF!!)rJ!!)rJ!s$p'!9r&7!;Y1G!<(IK!<1RL -!!q-U!7h/$ec5^Lec5^Iec5^Gec5^Iec5^Lec5^<ecl-*ec=:P!;tCJ!;tFJ!<1OL!<1OL!<1RL -!<1OL!<(IK!<1OL!;tCM!7o^$rRLrKma_@<rRLrKrRLrKrmh&Lqpk`Ir7:lJrmh&LJ_'2=!MBFC~> -!<;i=!s$Tj!;aq?!;Xk>!;k"@!<14C!:A#5!6ragrQP<BrltHCqoo*@qoo*@lHKJ4blH#5!<14C -!<(.B!<14C!<(.B!;k"@!;t(A!<17C!<14C!<(.B!<(.B!;F_<!;t(A!<(.B!<17C!<14C!:.l0 -!;k"H!6kMgblH#5!<(.B!:nA7!;t(A!<(.B!<(.B!<17C!<14C!;F_<!;k"@!<17C!<::D!<(.B -!:.l0!;k"@!<14C!<17C!!pgL!6kMgbl@bCbl@b@bl@bAbl@bBbl@bBbl@b>bl@bCbl@bCbl@bB -bl@b4bl@b@bl[sjblI^e!!*#C!!)rA!!*#CrrDi=!!)rA!!)rA!s$Tj!9q`.!;Xk>!<(.B!<17C -!!pgL!6kMgbl@bCbl@b@bl@b>bl@b@bl@bCbl@b3bm"0mblH#5!;t(A!;t+A!<14C!<14C!<17C -!<14C!<(.B!<14C!;t(D!6ragrQP<Bm`b_3rQP<BrQP<BrlkECqoo*@r6>6ArlkECJ^*Q+!L!M6~> -!<;i+!s#sF!;a;-!;X5,!;jA.!<0S1!:@B#!5#iCrOW%0rk&11qmuh.qmuh.lFR3"])]IT!<0S1 -!<'M0!<0S1!<'M0!;jA.!;sG/!<0V1!<0S1!<'M0!<'M0!;F)*!;sG/!<'M0!<0V1!<0S1!:.5s -!;jA6!4r6C])]IT!<'M0!:m`%!;sG/!<'M0!<'M0!<0V1!<0S1!;F)*!;jA.!<0V1!<9Y2!<'M0 -!:.5s!;jA.!<0S1!<0V1!!p1:!4r6C])Vj1])Vj.])Vj/])Vj0])Vj0])Vj,])Vj1])Vj1])Vj0 -])Vj"])Vj.])r&F])_fA!!*#1!!)r/!!*#1rrDi+!!)r/!!)r/!s#sF!9q)q!;X5,!<'M0!<0V1 -!!p1:!4r6C])Vj1])Vj.])Vj,])Vj.])Vj1])Vj!]*88I])]IT!;sG/!;sJ/!<0S1!<0S1!<0V1 -!<0S1!<'M0!<0S1!;sG2!5#iCrOW%0m^iH!rOW%0rOW%0rjr.1qmuh.r4Dt/rjr.1J\19\!I+Tp~> -!<;iFr;c]F!!)iG!!)rJ!!)rJ!!)H<r;ciJ!!)rJ!!)oI!!)oI!!)<8"T[-)!7h/Gec5^Lec5^K -ec5^Iec5^Kec5^Jec5^Gec5^Kec5^Eec5^Kec5^IecPp'ec>["!!)?9!!)oIrrDrI!!)uK!!)T@ -!!)cE!!*#L!!)rJ!!*#L!!)cE!!)rJ!!)rJ!s$p'!9Vi4!;tCJ!;tCV!7o^$f%'iPec=:P!;tCJ -!;tCJ!;G%E!<(IK!;b7H!;tCM!7o^$lIGq8qpkiLf%'j"ec5^Lf(oCGec5^Eec5^Jf(oCGf)5U9 -ec5^Hec5^IedMQ0ec=:P!7o^$f%'j!ec5^Jec5^Gec5^Jec5^Jec5^=ecl-*!7h/$!;tCJ!;tCJ -!<(IN!7o^$r71rMf%'iuedMQ0ec=:P!7o^$f%'icf)#IHec5^Jec5^Jec5^Jec5^Jec5]$f'V#h -TE'K~> -!<;i=r;c]=!!)i>!!)rA!!)rA!!)H3r;ciA!!)rA!!)o@!!)o@!!)</"TZfl!6kN>bl@bCbl@bB -bl@b@bl@bBbl@bAbl@b>bl@bBbl@b<bl@bBbl@b@bl[sjblI^e!!)?0!!)o@rrDr@!!)uB!!)T7 -!!)c<!!*#C!!)rA!!*#C!!)c<!!)rA!!)rA!s$Tj!9VN+!;t(A!;t(M!6ragc-675blH#5!;t(A -!;t(A!;F_<!<(.B!;aq?!;t(D!6raglHK;/qoo3Cc-67ebl@bCc2%G>bl@b<bl@bAc2%G>c2@Y0 -bl@b?bl@b@bmXTsblH#5!6ragc-67dbl@bAbl@b>bl@bAbl@bAbl@b4bm"0m!6kMg!;t(A!;t(A -!<(.E!6ragr65<Dc-67cbmXTsblH#5!6ragc-67Qc2.M?bl@bAbl@bAbl@bAbl@bAbl@`pc0`aV -P5p+~> -!<;i+r;c]+!!)i,!!)r/!!)r/!!)H!r;ci/!!)r/!!)o.!!)o.!!);r"TZ0H!4r7,])Vj1])Vj0 -])Vj.])Vj0])Vj/])Vj,])Vj0])Vj*])Vj0])Vj.])r&F])_fA!!)>s!!)o.rrDr.!!)u0!!)T% -!!)c*!!*#1!!)r/!!*#1!!)c*!!)r/!!)r/!s#sF!9Uln!;sG/!;sG;!5#iC]=S'T])]IT!;sG/ -!;sG/!;F)*!<'M0!;a;-!;sG2!5#iClFR#rqmuq1]=S(A])Vj1]D;O,])Vj*])Vj/]D;O,]DV`s -])Vj-])Vj.]*n\O])]IT!5#iC]=S(@])Vj/])Vj,])Vj/])Vj/])Vj"]*88I!4r6C!;sG/!;sG/ -!<'M3!5#iCr4<%2]=S(?]*n\O])]IT!5#iC]=S(-]DDU-])Vj/])Vj/])Vj/])Vj/])Vh^]C!32 -GQ<6~> -!<;iF!s$p'!;b7H!;Y1G!;tFE!:JD?!7o^$rmh&Lr71iJqpk`Iqpk`IlIH+=f%'iP!<(LH!<(IN -!7o^$qUPWHrRLrKr71iJrRUlHrRLrKpXT<ErRLrKqpkiLf%'j"ec5^9ec5^Iec5^GecPp'ec>6k -!!)oIquH`I!!)fF!!)cE!!)rJ!!)fFr;c-6!!)rJq>gQH#lrQ-!7o^$f%'j!ec5^Jec5^If),OH -ec5^Hf(oCGf)5U:ec5^IecPp'ec>["!!*#L!!)fF!!)cE!!)rJ!!)ZB!!)H<!!)lH!!)oI$inl0 -!7o^$f%'iPec>X!!!)rJ!!)iG!!)rJq>g!8"p!3Sec=8$r71iJr71iJrRM&Nf%'j!ecPp'ec>Tu -#lrQ-!7o^$f%'j#f)5U9ec5^Kec5^Lf(oCEec5^Jec5^Jec5]$f'V#hTE'K~> -!<;i=!s$Tj!;aq?!;Xk>!;t+<!:J)6!6ragrlkECr653Aqoo*@qoo*@lHKJ4c-675!<(1?!<(.E -!6ragqTT!?rQP<Br653ArQY6?rQP<BpWW[<rQP<Bqoo3Cc-67ebl@b0bl@b@bl@b>bl[sjblI:Y -!!)o@quH`@!!)f=!!)c<!!)rA!!)f=r;c--!!)rAq>gQ?#lr5p!6ragc-67dbl@bAbl@b@c27S? -bl@b?c2%G>c2@Y1bl@b@bl[sjblI^e!!*#C!!)f=!!)c<!!)rA!!)Z9!!)H3!!)l?!!)o@$inPs -!6ragc-675blI[d!!)rA!!)i>!!)rAq>g!/"oumJblGugr653Ar653ArQPEEc-67dbl[sjblIXc -#lr5p!6ragc-67fc2@Y0bl@bBbl@bCc2%G<bl@bAbl@bAbl@`pc0`aVP5p+~> -!<;i+!s#sF!;a;-!;X5,!;sJ*!:IH$!5#iCrjr.1r4;q/qmuh.qmuh.lFR3"]=S'T!<'P-!<'M3 -!5#iCqRZ_-rOW%0r4;q/rO_t-rOW%0pU^D*rOW%0qmuq1]=S(A])Vis])Vj.])Vj,])r&F])_B5 -!!)o.quH`.!!)f+!!)c*!!)r/!!)f+r;c,p!!)r/q>gQ-#lqTL!5#iC]=S(@])Vj/])Vj.]DM[- -])Vj-]D;O,]DV`t])Vj.])r&F])_fA!!*#1!!)f+!!)c*!!)r/!!)Z'!!)H!!!)l-!!)o.$imoO -!5#iC]=S'T])_c@!!)r/!!)i,!!)r/q>fur"ou78])]GCr4;q/r4;q/rOW.3]=S(@])r&F])_`? -#lqTL!5#iC]=S(B]DV`s])Vj0])Vj1]D;O*])Vj/])Vj/])Vh^]C!32GQ<6~> -!<;iF!!)cE!!)iG!!)rJ!!)66!!)uK!W^dOr71iJqpk`Iqpk`IlIGq8rmq)Lrmh&LrRLrKrRM&N -f%'itec5^Kec5^Jec5^Lec5^Kec5^Kec5^Eec5^Kec5^IecPp'ec>["!!)?9!!)oI!!)iG!s$p' -!:eV?!;tCJ!<(IK!<1OL!;P+F!;G%E!;tCJ!;+hB!:/29!;tCJ!;Y1P!7o^$f%'iPec>X!!!)rJ -!!)rJ!!)uK!!)uK!!)lH!!)ZB!!)H<!!)uK!!*#L!!*#LrrE#K!!)uK!!*#L!!)cE!!)oI!!)uK -!s$p'!<(IK!:JD<!;b7H!;k=U!7o^$f%'iPec=:P!;tCJ!;tCJ!;Y1G!;tCJ!9hu6!<1OL!;k=I -!;tCJ!<(IN!7o^$r71rMf%'iuec5^LecZ!(!7h/Gec5^<ec5^Kec5^Lec5^Dec5^Jec5^Jec5]$ -f'V#hTE'K~> -!<;i=!!)c<!!)i>!!)rA!!)6-!!)uB!W^IFr653Aqoo*@qoo*@lHK;/rltHCrlkECrQP<BrQPEE -c-67bbl@bBbl@bAbl@bCbl@bBbl@bBbl@b<bl@bBbl@b@bl[sjblI^e!!)?0!!)o@!!)i>!s$Tj -!:e;6!;t(A!<(.B!<14C!;Oe=!;F_<!;t(A!;+M9!:.l0!;t(A!;XkG!6ragc-675blI[d!!)rA -!!)rA!!)uB!!)uB!!)l?!!)Z9!!)H3!!)uB!!*#C!!*#CrrE#B!!)uB!!*#C!!)c<!!)o@!!)uB -!s$Tj!<(.B!:J)3!;aq?!;k"L!6ragc-675blH#5!;t(A!;t(A!;Xk>!;t(A!9hZ-!<14C!;k"@ -!;t(A!<(.E!6ragr65<Dc-67cbl@bCble$k!6kN>bl@b3bl@bBbl@bCbl@b;bl@bAbl@bAbl@`p -c0`aVP5p+~> -!<;i+!!)c*!!)i,!!)r/!!)5p!!)u0!W]h4r4;q/qmuh.qmuh.lFR#rrk&11rjr.1rOW%0rOW.3 -]=S(>])Vj0])Vj/])Vj1])Vj0])Vj0])Vj*])Vj0])Vj.])r&F])_fA!!)>s!!)o.!!)i,!s#sF -!:dZ$!;sG/!<'M0!<0S1!;O/+!;F)*!;sG/!;*l'!:.5s!;sG/!;X55!5#iC]=S'T])_c@!!)r/ -!!)r/!!)u0!!)u0!!)l-!!)Z'!!)H!!!)u0!!*#1!!*#1rrE#0!!)u0!!*#1!!)c*!!)o.!!)u0 -!s#sF!<'M0!:IH!!;a;-!;jA:!5#iC]=S'T])]IT!;sG/!;sG/!;X5,!;sG/!9h#p!<0S1!;jA. -!;sG/!<'M3!5#iCr4<%2]=S(?])Vj1]*&,G!4r7,])Vj!])Vj0])Vj1])Vj)])Vj/])Vj/])Vh^ -]C!32GQ<6~> -!<;iF!!)cE!!)iG!!)oI!!)uK!!)H<!!)uK!s$p'!<1RL!;k=I!;k=I!<1OL!:JD<!<1RL!<1OL -!<(IK!;tFJ!;Y1G!;tCJ!<1RL!<1OL!<(IK!<(IK!<1OL!;k=I!;tCJ!<(IK!<1OL!<(IK!:/29 -!;k=I!;P.F!:\P>!;tCJ!<(IK!<(IK!<(IK!<1OL!<1OL!;k=I!;k=I!<(IN!7o^$rRLrKldc%9 -qpk`IrRMDXf%'iPec=:P!7o^$!<1OL!;k=I!;tCJ!<(IK!<(IK!<1OL!<(IK!<(IN!7o^$rRLrK -mFM49r7:iI!nI>OrRUoIrmpuIr7:cGr7:fHrmpuIm+).:rRM&Nf%'j"ec5^Led;E.ec=:P!7o^$ -!<1OL!;k=I!;Y1G!;k=I!<(IK!:JD<!<1OL!;k=I!;tCJ!<(IK!<1OL!<1RL!<1OL!<(IK!<(LK -!!:^O!<1OL!<(IK!:JD<!<(IK!<(IK!<(IK!;tCJ!;tFJ!<1OL!.i_fecDEDJ,~> -!<;i=!!)c<!!)i>!!)o@!!)uB!!)H3!!)uB!s$Tj!<17C!;k"@!;k"@!<14C!:J)3!<17C!<14C -!<(.B!;t+A!;Xk>!;t(A!<17C!<14C!<(.B!<(.B!<14C!;k"@!;t(A!<(.B!<14C!<(.B!:.l0 -!;k"@!;Oh=!:\55!;t(A!<(.B!<(.B!<(.B!<14C!<14C!;k"@!;k"@!<(.E!6ragrQP<BlcfD0 -qoo*@rQPcOc-675blH#5!6rag!<14C!;k"@!;t(A!<(.B!<(.B!<14C!<(.B!<(.E!6ragrQP<B -mEPS0r6>3@!mL]FrQY9@rlt?@r6>->r6>0?rlt?@m*,M1rQPEEc-67ebl@bCbmFHqblH#5!6rag -!<14C!;k"@!;Xk>!;k"@!<(.B!:J)3!<14C!;k"@!;t(A!<(.B!<14C!<17C!<14C!<(.B!<(1B -!!:CF!<14C!<(.B!:J)3!<(.B!<(.B!<(.B!;t(A!;t+A!<14C!.iD]blO".J,~> -!<;i+!!)c*!!)i,!!)o.!!)u0!!)H!!!)u0!s#sF!<0V1!;jA.!;jA.!<0S1!:IH!!<0V1!<0S1 -!<'M0!;sJ/!;X5,!;sG/!<0V1!<0S1!<'M0!<'M0!<0S1!;jA.!;sG/!<'M0!<0S1!<'M0!:.5s -!;jA.!;O2+!:[T#!;sG/!<'M0!<'M0!<'M0!<0S1!<0S1!;jA.!;jA.!<'M3!5#iCrOW%0lam,s -qmuh.rOWL=]=S'T])]IT!5#iC!<0S1!;jA.!;sG/!<'M0!<'M0!<0S1!<'M0!<'M3!5#iCrOW%0 -mCW;sr4Dq.!kSF4rO`".rk&(.r4Dk,r4Dn-rk&(.m(35trOW.3]=S(A])Vj1]*\PM])]IT!5#iC -!<0S1!;jA.!;X5,!;jA.!<'M0!:IH!!<0S1!;jA.!;sG/!<'M0!<0S1!<0V1!<0S1!<'M0!<'P0 -!!9b4!<0S1!<'M0!:IH!!<'M0!<'M0!<'M0!;sG/!;sJ/!<0S1!.hcK])d-VJ,~> -!<;lGr;c`GquH]HquHZGr;c9:q>gNGrW!#N!!*#LquHZGrW)B;rW)rK!!)uKr;ZlL!<(LK!;k@F -!<(LJ!!1XNrRUoI!S.8Lf)>[If),OHf)5UJf)>[Lf)>[;f),OIf),OEec5^@f),OHf)5RLec>[" -r;ccHrW)lIquHZGr;ciJquH*7quHZGr;clKrW!5T!!(RM!7h/$rW)lIquH]Hr;ZlL!<(LJ!;k@G -!<1RI!:8;:!<1OL!4UPX!<(LI!<1RK!!q-U!7h,Mec=;#!;tFG!<(LH!;tFH!:A>;!<1OL!<(LH -!<:XL!<:XL!<1RK!!:^O!<1RJ!;tCJ!<1OL!<1RI!:JG;!<:XL!<(LI!<(LH!<1OM!7q,LJ_'/< -!MBFC~> -!<;l>r;c`>quH]?quHZ>r;c91q>gN>rW!#E!!*#CquHZ>rW)B2rW)rB!!)uBr;ZlC!<(1B!;k%= -!<(1A!!1=ErQY9@!R1WCc2I_@c27S?c2@YAc2I_Cc2I_2c27S@c27S<bl@b7c27S?c2@VCblI^e -r;cc?rW)l@quHZ>r;ciAquH*.quHZ>r;clBrW!5K!!(7D!6kMgrW)l@quH]?r;ZlC!<(1A!;k%> -!<17@!:7u1!<14C!4U5O!<(1@!<17B!!pgL!6kKDblH#f!;t+>!<(1?!;t+?!:A#2!<14C!<(1? -!<:=C!<:=C!<17B!!:CF!<17A!;t(A!<14C!<17@!:J,2!<:=C!<(1@!<(1?!<14D!6tKCJ^*N* -!L!M6~> -!<;l,r;c`,quH]-quHZ,r;c8tq>gN,rW!#3!!*#1quHZ,rW)AurW)r0!!)u0r;Zl1!<'P0!;jD+ -!<'P/!!0\3rO`".!P8@1]D_g.]DM[-]DVa/]D_g1]D_fu]DM[.]DM[*])Vj%]DM[-]DV^1])_fA -r;cc-rW)l.quHZ,r;ci/quH)qquHZ,r;cl0rW!59!!'V2!4r6CrW)l.quH]-r;Zl1!<'P/!;jD, -!<0V.!:7>t!<0S1!4TT=!<'P.!<0V0!!p1:!4r42])]JB!;sJ,!<'P-!;sJ-!:@Au!<0S1!<'P- -!<9\1!<9\1!<0V0!!9b4!<0V/!;sG/!<0S1!<0V.!:IJu!<9\1!<'P.!<'P-!<0S2!5&41J\16[ -!I+Tp~> -!<7W$kgf_6Xk!IPLt2P+][d)`f)5T>ec5]$f&YB^!.i_aecDEDJ,~> -!<7Vpkfj)-Xj$hGLs5o"]ZgHWc2@X5bl@`pc/d+L!.iDXblO".J,~> -!<7V^kdpfpXh+Q5Lq<We]Xn1E]DV`#])Vh^]B$R(!.hcF])d-VJ,~> -!<;oHp]/mrp]/mrp]0:(!!'jdp]1!<!!&56o`0Qomah.5ma_@<cdqgj][liXma_@<J_'#8!MBFC~> -!<;o?p]/mip]/mip]09t!!'j[p]1!3!!&5-o`0Qfm`kM,m`b_3ccu1a]Zp3Om`b_3J^*B&!L!M6~> -!<;o-p]/mWp]/mWp]09b!!'jIp]1!!!!&4po`0QTm^r5om^iH!cb&oO]Y!q=m^iH!J\1*W!I+Tp~> -!<7W$mFM49Xk*FNMUq_+^Xi/[T[s&AJ_'#8r;_E"l.,m.!.Y~> -!<7VpmEPS0Xj-eEMTu)"^WlNRT[!E8J^*B&r;_Dnl-06m!.Y~> -!<7V^mCW;sXh4N3MS&fe^Us7@TY(.&J\1*Wr;_D\l+6t@!.Y~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!WU`%TRibeTRibeTRic?TE"tB~> -!WUDqPC\pKPC\pKPC\q%P5kT5~> -!WTc_G_(*jG_(*jG_(+DGQ7_o~> -!<7TMJH16$JH16$JH2hQJ,~> -!<7TMJH16$JH16$JH2hQJ,~> -!<7TMJH16$JH16$JH2hQJ,~> -JcC<$JcC<$JcC<$XoEn~> -JcC<$JcC<$JcC<$XoEn~> -JcC<$JcC<$JcC<$XoEn~> -!<7W$J_#D'J_#D'J_%$U!!%N~> -!<7VpJ^&bjJ^&bjJ^(CC!!%N~> -!<7V^J\-KFJ\-KFJ\/+t!!%N~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!<9OZ!7e4&$.R51XKAV+\BNIied9mN]<J<7Y/AW:J_#D'J_#D'J_'SH!MBFC~> -!<9OQ!6hRi$-U8mUS=KXYf"ZObmDV3[&TstVn:!nJ^&bjJ^&bjJ^*r6!L!M6~> -!<9O?!4o;E$+dI;Q'.;qTsD8s]*Z'SVP'HIR]<g-J\-KFJ\-KFJ\1Zg!I+Tp~> -!<:X$!h[iilIH!,eGe#!ea1ie[IfR]W:/:;cMEY'^$aG\e^CjeCKFtR;dtZgd+.X:$e2i"eE#]C -]T]/6eUc;&eq)D'eq)EIecDEDJ,~> -!<:Wp!h%*QlHK?qbPo`dbj<RSY4RVPU$p5+`qkSn[I29KbfQr78hMeN.RJEXa3=%t$d5rce)]TA -]9&W$b^n#ic%4,jc%4.7blO".J,~> -!<:W^!fOLulFR(R])K;A]'R$/T(IL4POH*`[/,7PV=(r!]!n5H2B2W4">OVW[^tt?$bE1?g$S:j -`fQ:e\q.JE]7ISF]7ITh])d-VJ,~> -!<:[%"J]+BcIM73"rE3Ee^i:$mFD>X87VU*!)NM^!BEX<ed/u7BjO\180NiYedp<XQ%b@:f@SHm -XFGGQcdhU;%Fr)6oChY:j5&:NREO-3eq)D'eq)D'f(mktTE'K~> -!<:Zq"Irh=`m!bn"rE!6bg"AUmEG]J88A*9!*]:r!C9*Abm:a'D.QjK:aUh`bn&%=NE\qYAn5:N -5;#Q[a3=,!%Eu0#oChY:j5/COPJbUqc%4,jc%4,jc2#TbP5p+~> -!<:Z_"HZ\t[(>S8"r2Hm]">PbmCNF/87MO(!)<AY!B!%/]*P8YBO">(73?dC]+;K]J3bG20J+e!% -LP"8[CYq@%D&C[q"j^UnaG\1LU"FA]7ISF]7ISF]D9&>GQ<6~> -!<;iF!6"_/!2Ji1#*jk3131[jma_Wne.u/@cbGD;:'#pVn^[b\LV3Sn!/UPk!E2JVed/uZb-["H -DDR.=ee-HZNe51-iSE28bJh2lFb\5mo@Er]$haAjn*B)lg"(bWd=Kl"eq)D'eq)EJecDEDJ,~> -!<;i=!5//$!1`?!#*+MG4Di*^m`c!\b8=lCa0p^$9*'FFn]_,NN7%UK!N1hRM#h6Vn')-H8_V@` -NJBcOnBDQha+HijD.?aI:.n)F3]MN-bk''g^;T^@p[@G0hqQe7VT=>5J^&bjJ^&bjq98r(!.Y~> -!<;i+!3H#b!06?V#(hAn/nD?#m^rM1"VOLO[AJ9L6ih;$n[ej3LV!Gi!J>"_AH>Fen%/k&7EDff -C1T&Cn@K:D[WX#P1aEqN&.T0Z$QX2o](<NCXi1)6qY0XQnEoOrQa_OXJ\-KFJ\-KFq7?ZP!.Y~> -!<;iF$+;OLKOe%[.>-.:ed.mf^S>!dFjAP.ecE?6r[\HoV,_4iJs*4*I5%&<o@=Cj)'gCM,9ds; -&J>Zf$qB^:#ei[AW-2?F.>dQF&^m"tc/e!Kj5/D6aMGHeEKAQ?edp<AlhC5Lo'PVug"!udaOPjm -J_#D'J_#D'qUP\?!.Y~> -!<;i=$*H.ZQZm.V21<[7bm9_]eAcSjEQ65nblG'J.h!?8@UqE(@Z5)*/s=ELbmnM-.4?Sn-m'9C -)&O2%6gr8*[ReoeR<`j4KCI+tac8f#DHp=H<DcI^77''tLWT25&'VEHp\FRSmH<H_fuA0Lb^n#i -c%4,jc%4.9blO".J,~> -!<;i+$(il0IpPfA-$$T`]*O=5^7eLVB=,8@])eZTr[/*fN_*J2)':XY(ak$Ko=GKA)'^=L,9dm6% -hK6^$9dji#c9u&VJf7',^Agj&\!?>0/FCW&ePZc%LrpV+a^]j]+;KQnbW.Zp\+4Kmd&MBYI]:sJ -\-KFJ\-KFqRZcQ!.Y~> -!<;lG$IuIF[&S:R="/[KmFDWH@EZ-UBiQU*ajp"6'!agGb0ee[Yt/T\m.9PpW'6Blo[X#irQ>>c -XY6!^rQ>2en(%cY7)5^D>#m&.n^\B'[YDQUjk7Gui7cDa\@],9Fg9Hhedp3Io(W%Vp$qG3gXXf# -][VM`J_#D'J_#D'qUP\?!.Y~> -!<;l>$I#P<bf,rpF>nNgmEH!8B&V:]KPWGb_9DMq&unCQg"tlUe5oGNbL4G9IkH]$oZ[BWrPJcS -VD"%HrPJWUn')-H8CbYIH#klrn]_`jY$>=L>?=X"<`;ac7RB9s9W?5.bn%q4o(W%Vp$qG3hV6b2 -[*+$FJ^&bjJ^&bjqTT&)!.Y~> -!<;l,$G)`gZ)MY<9I+PdmCN^m@*5pQ?qqt[Ye'G<&t;&!^W+?tR6;N[A8"q//KfSQoXb+4rNQL0 -Qn!`lrNQ@1n%/k&6b]@7:J2pWn[fIGSjY1a'GM>r&J5Wl'+PEY2k%>N]+;Bdq"jpbq=jUSmcs.c -Uq2,hJ\-KFJ\-KFqRZcQ!.Y~> -!<;lG$IuFE[&8(N<[iRIma_f=@F;NmV/'O>-#UlUo[X\\6c-1?_T0U$:6+`>r;5T7<OC9GecsU# -Cl9X+dHf?h^-TE1G$7opM=K.1cB4(@iSU]D[`Hh&]t_7fXE0-?p!s5jbjb<)p^$Tbm,-@BJ@3jW -eq)D'eq)D'f)!quTE'K~> -!<;l>$I#M;c,H,sF#SEem`c0.B'@apabG.V0P\JKoZ\&L8D;PHjm2-\?@p_iiRPYX9WcM.bm)@` -Cn*#;aQq(V[RS]aRX&s4KCR2"`IC6j>?Z!8G>qLXTnZK14",3gp!!TYb4,*'p^$TbmGd!VJ?I(H -c%4,jc%4,jc2,ZcP5p+~> -!<;l,$G)]gZ(u;69-eGbm^imc?dQ3hULID#,%%UdoXbd+5dHoSWirLm5tlBEA5PiA31d_O]*>g. -Ar7db\*LX3VEh\gDbj"NGk&BZZu7*E)&6#.<uMcGPADKR$jpROot(=5bP1i2q?QiinET=oT"0Ea -J\-KFJ\-KFqRZcQ!.Y~> -!<;lG$IuFF[AS1O<[`LHn(%u6B[4/t\"mbF<CnZXcIMU='<jEcMiX*hQBmRhS,!!]oY+mud.5`n -e>?]MQ:WiodI>]ud[kDs@m.5uG?S#q7rWF+cLoa%\o,+4hVQ6No?4Yeo]s`.XGpMmp!sZ!aR/Qk -q"a^Xlep=AI^RXUeq)D'eq)D'f)!quTE'K~> -!<;l>$I#M<cGc5tF#J?dn'(ooDrCWF#fq^DCL&f4`m",#'<+1(X0B(E\[o.<L#;"Ib`kYTa7@I\ -bF`:IZ<]AHaRIFcad6dY?UW/XRX&s46u-Rm`q@RiZ;Y"5<Eu<ujGS#moYto:4"ik$p!*NV%IN`Y -p\FUXlf@$[I]gkFc%4,jc%4,jc2,ZcP5p+~> -!<;l,$G)]hZD;D79-\Aan%0']B$Ilp[\I839g^78[(>qB':L\6FE`+]I=62\5@@Pj9JRT9[dq$9 -\rg6mPX@!O\+%!@[u+X(=$3aaE)0+O5%7uI[.V$EUHpRU&K6f2h.ocsoX.@'$OJMYot(aAaS#<$ -q>:'bnaPf.K:]W)]7ISF]7ISF]DB,?GQ<6~> -!<;oH%+Wk44gh53>#m&$dFId<&="7u7;]ZEUhEg_)]B!&cdha?'<j!0?t!PUA8#="RJ$OXpX<Jn -an"!h[99?3OBk42Q.,9S&C[@(7;dmaWHVNJ6np2%OO3[O'<G0ZeCrZijSn`0o_.(^Z`BHYV"N:L -d^SH,n)a',lJgOHdVukKJ_#D'J_#D'J_'\K!MBFC~> -!<;o?%*Znp7*`c?H#klhaNX2!&<@bs9RGFAaFe@m+sI;0a3=8%'<*dMJV/Z2LQ.*LIG!iDdAfWU -_=GhWY$&!JY'!`(Nlpn:&B^Ik;h1=Y`gV0r>=(@]MT>D7';R<j;,^M;f)Fg`o]DWZ5WUY>SFt,; -agC="nE'3/lf@-hheogEJ^&bjJ^&bjJ^+&9!L!M6~> -!<;o-s1/Q,4L1f%:J2pN\%;+A&;(i_7;TQBU0pbI)&NTh[CZ(D':L7V7n?6F927nm0N2%P:-TS/ -Yk#C4Sl;GiN`A4qK"1?_&@d`H5\u.UVf5F+4=_H]I^\p]':'^m'+kpTci2nNo\Y-c%LWUNNqL!p -\$GSsp#u/Do'>W*lY`N0J\-KFJ\-KFJ\1cj!I+Tp~> -!<;uJ&ClFb/1!HdW-;EG-lX]gA(C2%&AOg$I6k]VULmFH<Jca1b1$(8'<s'1?XR8M@TXXphY[<N -p!?r``:MOf_`b60ToNG^6ReYXn^\3!W&0(-Y,Z\L>$+H8Oj`mQ'<><_cdg^ual`U%pu0B-Z)O'X -V"N:KeZ@E_j5/kVfZ_joZuj?>eq)D'eq)D'f(mktTE'K~> -!<;uA&BoSR.jII,`L;'n2B"%q?d/,d&@RpbGY-]=`IVbP;1j[o_TVYt'<3jNJ:W<)Kmt[b\`)i3 -c`BcV]^sAU]0*^F\ZBso<@sT^n]_QeTfAmiaMsZoG]mXAMokV9';7!b9MeVfIG=c#lD&)f4ZP86 -RJ"f7bbs.Yl/Lphh:1WO]l1Z:c%4,jc%4,jc2#TbP5p+~> -!<;u/&@up1-QkOVV/T4',8V[S=1\"8&>k>9D*btDTO(>58pG`DZ+9S?':U=W7n6*@8O!n<78m8d -9gKe0XRj%3W]75fTSuoL4X>rsn[f:AP:h0^XJg)6:JNq^J%,'^'9X1^%hK<h=OmEMjG6&?$k!CF -MtO[l\t.mLn)X$/k1]%`a_%],]7ISF]7ISF]D9&>GQ<6~> -!<;uJ&CeZr@%OF#WcqWL;bB,#^sho+&Co+MYs5q/Tk..DDnF*6d+.j@'<i9@4Zu);:Ea;qp\k'g -k.Oc;`:_[ke?qBPY+V>G?<^Q$)kkdOedU*>.s[qiG?S-A-'?[Jee>,fbK8&XdDb2GrqP6_[B?Bb -3hu>u%E,!sg;V[pc-k%^B!9U5eq)D'eq)D'f(mktTE'K~> -!<;uA&Bha]Ek931`gV0sDduQk\B=Ef&Br24W^kai_gZ;IC9t[ma3=8%'<**a?=%)kE\1:ne`>`D -_2pQo]CjDYbH<qK_R[+VG&qV)+.CCCbm_h$0:KetRX''d/W7gDbnHd%>Y.Ua;Kpdmrp5tI5<CeU -&t/C:%D8@nk0N#DeD]ZDAuE_$c%4,jc%4,jc2#TbP5p+~> -!<;u/&A"r4=IZ7hVf5F,83\OJW4;H2&A#9SRm4TmT3Y,1@AL*3[^u1E':KId.4Hi;3"mW/:K:@k -8MUihX7a(7\t1goXe2,B<`;j\(lc,s]*u9E-$,iZE)01h)h5Ei]+^>E.Llt#'iEHZroSJI%1<OL -!fQ]_%BQ8hlHe\Xe)]`MAsp,Z]7ISF]7ISF]D9&>GQ<6~> -!<;uJ&Co(A<`YfnWHVNL=#r:Kc.2@8%+VsR]X"/>;]g"te(+*A'>$Lk3B7I:(J:CgrVcQ_fUZNA -anF9se#"^3G^l?UNa>[J1,9B+dI>]nZU&W,G?IBlOOE^N'<G$H_oKKrh"g^<rqFsOWhFu"V"E4I -e[([nb/DT@d)KpfbLM0pJ_#D'J_#D'q:5S>!.Y~> -!<;uA&Br/(;KBIk`gV0tFA=fu`6@br%*Z%Jf[.E^Bddi1bKTV''=0h]2`D7Z,s-atf\4m"Z#NX+ -_=l+bbF^;)K9*ONXEJAS5X,gAaRIF\X%AAfRWr."MTPG6';R3[7S$'gchZkirp5hA3Ai6#SFk&8 -bcI2`ccO\WgsL#"_p!\VJ^&bjJ^&bjq98r(!.Y~> -!<;u/&A#6I92V.YW,PO.8h)EbZb#\=%(`5u]<Rl29H@WD\[qFF';RTD1,9+i%i$ci:f1"^6Qdt: -YkG[?\WJ:TG^c6RN)iY4/hRTc\+%!9S2kAXE)&;=I^em[':'Ua%Ls%Ganb#Vro\JH$jm4FNqBpm -\t,DQd_sDGgtH_!Z+>LuJ\-KFJ\-KFq7?ZP!.Y~> -!<;rI%b/e==B(ZeG?S'.6`8)Vn(%iZ4h7bb@T"7e`74D0'@Y+=]=JG+5!,@rnFPhnYt/<5d.Z$% -d@"W[><&OMNa>R(6"ahacLBBje>6#ZDbDpHd.,[#]5FO[^nS^Fp>+?mro^qkQ>9I-o@=<!\!k=U -b0Ie*S]TE5eq)D'eq)D'f(desTE'K~> -!<;r@%a2i#=)GLeRX'!L7\IWAn')3I7b#YpHY=dD]Z]ok'?e8%Za(*)4"blnaiqT*MDebEa7dah -aHC%C=?jL,XEJ5(5@\2R`UM+XbF_jmP@Q_0a77CfZVs@]76mUHk*qFmrl8G,1*Si`o?@ZdYEcr@ -a2kemQGLdrc%4,jc%4,jc1oNaP5p+~> -!<;r.%_B$F9i%%PE)0(U30LPXn%/q'4h.Y^=\B`EXLe#8'=kBGUn\8D2Adu992.uF1)X)c[e@<E -[tS!h:cP>@McNFi3EfU/[.([5\rT?pB0%De[dgsCUdQ44%2>'+hgTP#rjb-"$3`/Uo=GCATo$(g -]X+,)M6ORB]7ISF]7ISF]D/u=GQ<6~> -!<;oH%+NS3?!NqD=ZSpFaj]\/$GA3ZLN6?f+E>?Lo@=T*e'QFd(l"i"6DqrH\th\lVodHZed/uR -YF:GW;'(S[ecsTt6:W>`d.#U"cB3Rc\Z;sjf>>>Mj3G!(KMd?Fo%",r^@1@Fe?3;te:H2%eq)D' -eq)EHecDEDJ,~> -!<;o?%*QVn@!&uKG>:Vt_9;8k$FN%%UQ9.t.;c`@o?@rmb/_QA(P//g1k([dNHm6TTY\hBbm:aF -`3cUhB.&>tbm)=[8RO--a7.=e`I^0@5sTM#P#k_A]T6#L.N<HHo$%Ka[c?5l`1C>HbCRohc%4,j -c%4.6blO".J,~> -!<;o-%(`g=;,s$&9e&,_Yds26$DfJ>KlBaT*b2:_o=G[I\@/fP'm5UB)BL_"0c^p!P-DOg]*P8t -YF1;L8fW*A]*>d*3]J(-[d^mBZu[<(%1l[?FXS_TXEH3("pS\Fo",4=S%,npMe5ne\q.JE]7ISF -]7ITg])d-VJ,~> -!<;lG$J!D+=B''&2lFdHmFDWX#T=Hk%h8hb`74D0rRDD,Vng?iM-_MT+]EE_aOB\1#eiX6RuUfP -+,T:6"Oj:uOj`^L'@aC9Tsh>8_7[.^\\#2FP\4F-e+2&reA(MAjOUJF`79FiJ_#D'J_#D'pXTA< -!.Y~> -!<;l>$I$Gh=`'4&32"+2mEH!G$R$K,'+tUg]Z]okrQGbpTX_bJK2`^1(Ir>=^WQ)k#e!4E[B4Ub -."gg0"O!JhMokG4'?dFW7n5d9A5PTZ<FAik0-ETYbOWmabI6KneAn4j]ZbrOJ^&bjJ^&bjpWW`& -!.Y~> -!<;l,$G*R59hf(M/X!?KmCN_%#T=Hk%1EGOXLe#8rONKLP,PO_GWZ3="u'PQYIO,7#c9qsRYt3= -*I-k]"M'^=J%+mY'=s]$+;YJ-4<k=L.m,L"#R)uM\am?=\t$CMSW@SdXL`tpJ\-KFJ\-KFpU^HN -!.Y~> -!<;iF#h@21:Gs`1b1#_.!n4lgr2]t0ajfb0%+ESPe^2:EXfJbEc-u15#ei[8RuUfP*f9@:!d,M. -rZVCe'cHrj!?"W'ee-;nEi-.GYHG"-W2-#JCfcSBn^\#r^@(.:bcbWseUc;&eq)D'eq)EHecDED -J,~> -!<;i=#gC5m9h-b:_TV;j!mA$Pr1sJ!_9;8k%*HW6bf@E#VPL6'`67Yp#e!7G[B4Ub-\Lm4!c]2* -rZ_Ig(EEAo!?+T%bn8$T4%Mq+4Zked3B&fK+YA>en]_B`[H$)e]qJiHb^n#ic%4,jc%4.6blO". -J,~> -!<;i+#eI@:73s4NZ+955!kG1tr0@DXYe'87%(NaV]!e]5Q^4,?ZaoS;#c9tuRZ(9>*-gqa!bWGq -rZD7a',^Zd!>\&o]+MN$,9Ip9%1EUQ%1EUM"rhfqn[f+=S\;_,M/?4n\q.JE]7ISF]7ITg])d-V -J,~> -!<;fE#1Ur5=LHB&lIH!bcMYofcI;"."kD&Hbg+]*ed/uSWJl4,:*>D^ecKfP`r3UOQi)C8AOc7A -&C?>QQDpdZV5'WFIUZN7cdhR:$.ZKIi6]?1B#iGQeq)D'eq)D'f([_rTE'K~> -!<;f<#0Xup<3F-^lHK@P`r*aU`lmSj"jG*-_oBjebm:aG]r%39@k!'!blV[DfDX/!ZC(TW!I.!& -bn.pI4[M=l3&``O0IIkoI)jJ$bmDUtgt'<INa]]HJ^&bjJ^&bjJ^*r6!L!M6~> -!<;f*#.h1>9qJZ%lFR),[/@62[(5D4"hM1MZF%.0]*P8tW/>jt803$E])lH'`;R=LP'[(P!F7kZ -]*,Qd-6<j"$i^P<#mLMQEOECJ]*Z'<[Bb^;?WO>@J\-KFJ\-KFJ\1Zg!I+Tp~> -!<;cD"Ot`<c.(q-r70iY!7gGe#eh9L2D6C(&W,u-%WF[<=BSa.4t\K@/h\>:o%"?%d$AllKT_LN -I:Q,fNR-/Eed0g*Ohe/V7[),Keq)D'eq)D'f(RYqTE'K~> -!<;c;"O"g"`67>gr643G!6jfS#dtjS6p*1W'nbu"%VnIHB4tpj;*I3.5!LPbo$%]ha,j4I.k`S+ --ls<rKu_F,bm;OfLp`q'5`Na6c%4,jc%4,jc1]B_P5p+~> -!<;c)"M1tDZb#>3r4:q#!4qO/#c8S32(^$s%s[QT%Uq\-='/O*4"2U,-n--!o",FD[Y$dO#RC_A -#6Y5gH*t6Q]*Q!2C5d"+/V(3Z]7ISF]7ISF]Cri;GQ<6~> -!<;`C!nGcMXk!KtqM>3`n(%KDoSERBn^\0"d^P$C5!1VV>D9</eaCune%'$]8>aMYJ_#D'J_#D' -J_'PG!MBFC~> -!<;`:!mJj3Xj$jbqL\dRn'(j4oRd.5n]_Neafft\*#&r"6?]<KbjN^\bHYMI7A%E>J^&bjJ^&bj -J^*o5!L!M6~> -!<;`(!kPqRXh+S?qKN"8n%/RhoQU@rn[f7A\"IIs%0HY>2/&De]'d08\Y37u5EW1]J\-KFJ\-KF -J\1Wf!I+Tp~> -!<7W$imnFccFKaFUSPBDe*GQge]"Q#cddTtJ_#D'J_#D'p!s/:!.Y~> -!<7VpilqeQ`Nc#'R@UP"bNmCVbe9aWa39+ZJ^&bjJ^&bjp!!N$!.Y~> -!<7V^ik#N.[%WS>MiXO;\a-j2\u_-l[CUq$J\-KFJ\-KFot(6L!.Y~> -!<7W$J_#D'J_#D'J_%'V!MBFC~> -!<7VpJ^&bjJ^&bjJ^(FD!L!M6~> -!<7V^J\-KFJ\-KFJ\/.u!I+Tp~> -!WU`%TRibeTRibeTRic?TE"tB~> -!WUDqPC\pKPC\pKPC\q%P5kT5~> -!WTc_G_(*jG_(*jG_(+DGQ7_o~> -!<7TMJH16$JH16$JH2hQJ,~> -!<7TMJH16$JH16$JH2hQJ,~> -!<7TMJH16$JH16$JH2hQJ,~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -J_&6"Sc=8lj48e]JcC<$j8T+PrmlT~> -J^)TeSc=8cj3</TJcC<$j8T+Crlor~> -J\0=ASc=8Qj1BmBJcC<$j8T+(rk![~> -J_&9#!<8V@!!%T$jOO>2JY7ReJY;%rrmlT~> -J^)Wf!<8V7!!%SpjNR])JWkYKJWo,Xrlor~> -J\0@B!<8V%!!%S^jLYElJTu`jJU$4"rk![~> -rRQPXf&-Q.T%3q8!.i_^ecGfDJ_#D'J_&u7!WShlepm~> -rQToKf%^9*T$7;"!.iDUblRj.J^&bjJ^*?%!WSA_c%#~> -rO[X0f$aX!T">#J!.hcC])hqVJ\-KFJ\1'V!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.FqoJ_#D'k10S5T`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-&#YJ^&bjk03r,PQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*0+,J\-KFk.:ZoGlG=*~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.FqoJ_#D'k10S5T`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-&#YJ^&bjk03r,PQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*0+,J\-KFk.:ZoGlG=*~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.KABJcC<$JcG*:rmh,MT`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-*H,JcC<$JcG*:rlkKDPQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*4OTJcC<$JcG*:rjr42GlG=*~> -rmh)-J[3k4!<<#K!Re@IT`M+:Zdo/M!.i_^ecGfDrmq&JrrD*ZrW(jUr;_EKJcE:\rmh,MT`3Mm~> -rlkGuJZIA&!<<#B!QhG8RK9,#ZcrN7!.iDUblRj.rltEArrD*ZrW(jUr;_EKJcE:\rlkKDPQ&gW~> -rjr0ZJXk;]!<<#0!OnWlN<,6LZb$6_!.hcC])hqVrk&./rrD*ZrW(jUr;_EKJcE:\rjr42GlG=*~> -rmh)-pTadsrh0=eJ[4CC!<<#K#ddQ17!!EiEcM%r"B.ugMUSr`!MBFDf&YB_s.KABs8W#tirB#Y -h>dKTJcC<$\c;Z[!WShlepm~> -rlkGupT":ergEhXJZIn5!<<#B#cq':6!mu&>?h)."^+Ds=+n`'blO".J^*9#!WSA_c2[hB!94%Y -!8[\T!.k0$s1/1/blRj.rlor~> -rjr0ZpRD5Hrf$o=JXkhl!<<#0#b>.;6<[Pm=',B""]\-#??iue])d-VJ\1!T!WRED]Dqp0!94%Y -!8[\T!.k0$s1/1/])hqVrk![~> -rmh)-q6C:&QT,?^#oo;*J[4IE!<<#K&YWC!JE,\JhqQf5eBOG9<aa1_OSmZ1TE'PojOOA3T`3O@ -s8N)Ys8N)Ts8N(Ms+13\s8LRMs.KABJ,~> -rlkGuq5XdmOZ<sf&0I%(JZIt7!<<#B&Xm=EF-r/NNfT*OL4+'0Cg=ohmek<1P5p0YjNR`*PQ&i* -s8N)Ys8N)Ts8N(Ms+13\s8L7Ds-*H,J,~> -rjr0Zq4%_PKeWlA#8i,RJXknn!<<#0&WLe\GDLm"J:`2oH#di'IT3YaOSl]kGQ<<,jLYHmGlG>R -s8N)Ys8N)Ts8N(Ms+13\s8KV2s*4OTJ,~> -rmh)-qQ^I%9HQN(A5+Zg2O]3&kct3grRM+F=Hn<brm_>#e'ZOdR<h5*agmN2ecDEDJ_&o5!WShl -f)>XK!;$6f!!*&u!<<)u!<<*!!!*&u!<3#t!!*&u!<3#s!<)rq!;lfr!.k0$s1/1/ecGfDrmlT~> -rlkGuqPssm9dj(nP'BY@30\upkc4^`rQPqCA[?KGPa%JmOcG6MG`Gp/_7B"3blO".J^*9#!WSA_ -c2I\B!;$6f!!*&u!<<)u!<<*!!!*&u!<3#t!!*&u!<3#s!<)rq!;lfr!.k0$s1/1/blRj.rlor~> -rjr0ZqO@nP6lS*^<Bh]:08G+KkaVYQrOWZ$Dp3NjNfB$QM2-V/H_G4PYdokn])d-VJ\1!T!WRED -]D_d0!;$6f!!*&u!<<)u!<<*!!!*&u!<3#t!!*&u!<3#s!<)rq!;lfr!.k0$s1/1/])hqVrk![~> -rmh)-qm$X+?:01,O*G5966JCT]!D>9i3N:]r3H8$i3E@_rRM(E=-AX>rWTl]6!MHmq>f62!!)8F -r71nA!.i_^ecGfDrmq&JrrD]krrE&urrE*!rrE&urrE*!rW)uurr<3%!!*'!rW)rtrrE*!rrDoq -rrDusrr@WMJcE:\rmh,MT`3Mm~> -rlkGuql:-s?WET)ZD*V<D)ab?\uYi2i2ceVr2]bri2ZkXrQPG5A[7EmrWTlr<`m0*q>f7;!!)9O -r658+!.iDUblRj.rltEArrD]krrE&urrE*!rrE&urrE*!rW)uurr<3%!!*'!rW)rtrrE*!rrDoq -rrDusrr@WMJcE:\rlkKDPQ&gW~> -rjr0Zqj\(V<'GD^K5=RW2&J0%\t&d#i10`Gr1*]ci1'fIrOW/kDTS(:rWTm.Al,[mq>f62!!)8F -r4;uS!.hcC])hqVrk&./rrD]krrE&urrE*!rrE&urrE*!rW)uurr<3%!!*'!rW)rtrrE*!rrDoq -rrDusrr@WMJcE:\rjr42GlG=*~> -rmh)-r3?g/;G`O`[\SXj<(]:o2jO<H!!)r&rW)u(rW(3K!!)_uqZ-2m!!)i#!!)2f!!)c!!<<#K -"//h[M##a1fV3mY>KMtg!<%uZ!8<M7!9oUCecDEDJ_&o5!WShlf)>XK!;-<k!;c`q!<3#u!<<*! -!<3#u!!<0#!<3#u!<<*!!<)rt!;lfr!;uls!.k0$s1/1/ecGfDrmlT~> -rlkGur2U=!;IZfQc,$NKL3mVn3fj3>!!)qtrW)u!rW(3D!!)_nqZ-2f!!)hq!!)2_!!)bo!<<#B -".Ef)M>>j2fV4U-=MX@m!<)<c!8?i@!9rqLblO".J^*9#!WSA_c2I\B!;-<k!;c`q!<3#u!<<*! -!<3#u!!<0#!<3#u!<<*!!<)rt!;lfr!;uls!.k0$s1/1/blRj.rlor~> -rjr0Zr1"7Y84n`>Y*sZ=6olq8/qX"k!!)qerW)tgrW(35!!)__qZ-2W!!)hb!!)2P!!)b`!<<#0 -"-%3?MYYs3fV53N:p5tB!<%uZ!8<M7!9oUC])d-VJ\1!T!WRED]D_d0!;-<k!;c`q!<3#u!<<*! -!<3#u!!<0#!<3#u!<<*!!<)rt!;lfr!;uls!.k0$s1/1/])hqVrk![~> -rmh)-r3?g"+b-uFb--\7:e3i+&U+)X!!)o%!!)u'!!(6K!!)\t!!)u'!!)Vr!!)i#!!)2f!!)c! -!<<#K"//eWL%tNM\:?SDacMSarK%!ZrK.!YrK.$Zs,d6\s,d6\"cr]aO8o:[OSo1YOS]%NOT#7[ -OT#4[OSmZ1TE'PojOOA3T`3O@s8N)js82lrs8N)us8N*!s8N)us8N'#rr<&us8N*!s8N)ts8N*! -s8)fos8N(Ms+13\s8LRMs.KABJ,~> -rlkGur2U<j.\4l?g;pLcLOF5K,'!O]!!)ns!!)tu!!(6D!!)\m!!)tu!!)Vk!!)hq!!)2_!!)bo -!<<#B".E`%L\U`O\<Tcj_!^UjrU'XcrU0XbrU0[cs6fmes6fme"mu?jmJm7dmem.bme["Wmf!4d -mf!1dmek<1P5p0YjNR`*PQ&i*s8N)js82lrs8N)us8N*!s8N)us8N'#rr<&us8N*!s8N)ts8N*! -s8)fos8N(Ms+13\s8L7Ds-*H,J,~> -rjr0Zr1"7N*d4a-`27ua5WCJD$YTC-!!)nd!!)tf!!(65!!)\^!!)tf!!)V\!!)hb!!)2P!!)b` -!<<#0"-%3<M"piP\><D+YE4hGrK%!ZrK.!YrK.$Zs,d6\s,d6\"cr]aO8o:[OSo1YOS]%NOT#7[ -OT#4[OSl]kGQ<<,jLYHmGlG>Rs8N)js82lrs8N)us8N*!s8N)us8N'#rr<&us8N*!s8N)ts8N*! -s8)fos8N(Ms+13\s8KV2s*4OTJ,~> -rmh)-rN['63_5s_g!m<`@n]?V2^'c>ZEjB.rNZD'rNZS,ZEaH1ZMjk'ZMsn)ZMjk%ZMae&ZMsn. -Z2am1!!)u'rW)l%rVuu)!;3Vt!<'2+!4&m1!<0;(!<0;$!<0;$!;s/%!<'5'!<9A)!<0;%!;Wo# -s8CLOTiI#.k5+0IjK!ep>KMtg!0E9Br/^mYrf@*[rK%TkO8tB(!0E9B!0@0\O8tB(!<%uZ!<%uZ -!:c-N!<%u\!0E<?ecDEDJ_&o5!WShlf)>XK!:Tsf!<<*!!<3#u!<<*!!<3#u!!<0#!<3#u!<<*! -!<)rt!!<0#!<3#u!;uls!.k0$s1/1/ecGfDrmlT~> -rlkGurMpR(3aTSQjPe:dQA0j1Bg=G:X/l-urMonurMp)%X/c4#X8W+uX8`/"X8W+sX8N%tX8`/' -WrN.#!!)turW)ksrVuu"!;3Am!<&r$!3<.#!<0&!!<0%r!<0%r!;rns!<&tu!<9,"!<0%s!;WYq -s8C1FRUN7Tk5+0IjK"M>=MX@m!:K7Tr9aObrpBadrU(6tmJu\C!:K7T!:BgemJu\C!<)<c!<)<c -!:fIW!<)<e!:K:QblO".J^*9#!WSA_c2I\B!:Tsf!<<*!!<3#u!<<*!!<3#u!!<0#!<3#u!<<*! -!<)rt!!<0#!<3#u!;uls!.k0$s1/1/blRj.rlor~> -rjr0ZrL=L`1-h2>e^1=C<&uif-Pe%_S=KKWrL<ifrL=#kS=BQZSGiNfSGrQhSGiNdSG`HeSGrQm -S,`PZ!!)tfrW)kdrVuth!;2i^!<&Dj!1]PZ!</Mg!</Mc!</Mc!;rAd!<&Gf!<8Sh!</Md!;W,b -s8BP4NGZRlk5+0IjK#+Z:p5tB!0E9Br/^mYrf@*[rK%TkO8tB(!0E9B!0@0\O8tB(!<%uZ!<%uZ -!:c-N!<%u\!0E<?])d-VJ\1!T!WRED]D_d0!:Tsf!<<*!!<3#u!<<*!!<3#u!!<0#!<3#u!<<*! -!<)rt!!<0#!<3#u!;uls!.k0$s1/1/])hqVrk![~> -rmh)-rN[!.%;M]Oa1n9r>tI@F2_PVtrNZD'qm$2%rNZD'rj)P(riuM(rj)P(riuM(riuM(rNZD' -rj)P("L8"-Z2jm0!!*#(!!*#(!!*#(rrD_t!!)u'!!*#(!!)u'!!)r&!!)i#!!)l$!!*#(!!)u' -"TYh.ZEaK/Z2an!Z2jq'ec_[FNK!B&mfp%G6<hQnOSo1XO8o:YO8o:[OT,=XO9P]HO8tB(!;_cW -!<%uZ!:c-N!<%u\!0E<?ecDEDJ_&o5!WShlf)>XK!;-<k!<3#u!<<*!!<<)u!<<)u!<<*!!!N<% -!<<)u!<3#u!<<*!!<<*!!<<)u!;uls!.k0$s1/1/ecGfDrmlT~> -rlkGurMpKu&rXTRg!md8P(\4(C02@-rMonuql9\srMonuri?&!ri6#!ri?&!ri6#!ri6#!rMonu -ri?&!"KMM&WrW."!!*#!!!*#!!!*#!rrD_m!!)tu!!*#!!!)tu!!)qt!!)hq!!)kr!!*#!!!)tu -"TYS'X/c7!WrN.oWrW1ubljJFXFTg9mfp%[9N]*umem.amJm7bmJm7dmf*:amKN[ZmJu\C!;c*` -!<)<c!:fIW!<)<e!:K:QblO".J^*9#!WSA_c2I\B!;-<k!<3#u!<<*!!<<)u!<<)u!<<*!!!N<% -!<<)u!<3#u!<<*!!<<*!!<<)u!;uls!.k0$s1/1/blRj.rlor~> -rjr0ZrL=FY$X]C2_75bL9K+XU-R&kBrL<ifqj[WdrL<ifrg`ugrgWrgrg`ugrgWrgrgWrgrL<if -rg`ug"IoGlS,iPY!!*"g!!*"g!!*"grrD_^!!)tf!!*"g!!)tf!!)qe!!)hb!!)kc!!*"g!!)tf -"TY%mS=BTXS,`Q`S,iTf]*++1_L_4Pmfp%l;c'ZZOSo1XO8o:YO8o:[OT,=XO9P]HO8tB(!;_cW -!<%uZ!:c-N!<%u\!0E<?])d-VJ\1!T!WRED]D_d0!;-<k!<3#u!<<*!!<<)u!<<)u!<<*!!!N<% -!<<)u!<3#u!<<*!!<<*!!<<)u!;uls!.k0$s1/1/])hqVrk![~> -rmh)-rN[!.&9X;6UmZpO;FNi778"PVriuS*Z2jg.!!)u'!!*#(!!)u'!!*#(!!)u'!!)i#!!*#( -#lq9:!4&m1ZEaK.Z2t$3!;s,&!;3Yq!<'2'!<'2'!;s,&!;Wo#!;j&%!;s,&!<0;(!;`u&!3uV" -Z2jq'eeb#WL3nArH@'d[I!g6^J2(9MOH9I(O9#6@q>gMV!!)kW"osaH!0E9BrfI$XrK%!Zn;m_P -OH9JAOSmZ1TE'PojOOA3T`3OBs8)fis8)fps8Duus8)crs8E#ts8E!"rr<&ts8;rrs8Duus8E#u -s8)eIs+13^s8LRMs.KABJ,~> -rlkGurMpKu(7r"N^q-V;Mh$+oF)r[^ri6)#WrW'u!!)tu!!*#!!!)tu!!*#!!!)tu!!)hq!!*#! -#lq$,!3<.#X/c6uWr`:%!;rkt!;3Dj!<&qu!<&qu!;rkt!;WYq!;ies!;rkt!<0&!!;`_t!36+p -WrW1ubljJEVi6<.JId3ZJV&E"QU4fimd:)CmK!4Rq>gN_!!)l`"p")Z!:K7TrpK[arU'XcnEpAY -md:)Smek<1P5p0YjNR`*PQ&i,s8)fis8)fps8Duus8)crs8E#ts8E!"rr<&ts8;rrs8Duus8E#u -s8)eIs+13^s8L7Ds-*H,J,~> -rjr0ZrL=FY%V^ljRZD\t5r1,E2Eqt&rgX#iS,iJW!!)tf!!*"g!!)tf!!*"g!!)tf!!)hb!!*"g -#lpKc!1]PZS=BTWS,r\\!;r>e!;2l[!<&Df!<&Df!;r>e!;W,b!;i8d!;r>e!</Mg!;`2e!1X&a -S,iTf]*++0^6siWL(AukL5(D8W_H<nOH9I(O9#6@q>gMV!!)kW"osaH!0E9BrfI$XrK%!Zn;m_P -OH9JAOSl]kGQ<<,jLYHmGlG>Ts8)fis8)fps8Duus8)crs8E#ts8E!"rr<&ts8;rrs8Duus8E#u -s8)eIs+13^s8KV2s*4OTJ,~> -rmh)-rN[*1$t+aHKR%<783]:/@UU76ZEaK0Z2an'Z2an'Z2an(Z2an'Z2an(Z2an'Z2an'ZMX_% -Z3UH9Z2h29!4&p,!!0A*r3?;&os+PtrNZD'riuM(rNZD'r3?;&q6Bu#qm-%uriuM(qQ^)$riuM( -q6C##rRM[V;1Wq/@VKarDf';uDiQGSacMSaqN([WplGIUqN)!`OH9I(O8tB(!<%uZ!<%uZ!:Z'P -!0E9BrfI'/!MBFDf&YB_s.KABci="FJcC<$T`>#B!WShlepm~> -rlkGurMpU#&r!?gX.u,BK6h]dLOUY)X/c7"WrN.uWrN.uWrN/!WrN.uWrN/!WrN.uWrN.uX8Dts -WsA^+WrT3$!3<0s!!0,#r2TetorA&mrMonuri6#!rMonur2Tetq5XJqqlBPnri6#!qPsSrri6#! -q5XMqrQQ%F?_Nd@Fa\spK7SMsLT!@<_!^UjqX+=`q!J+^qX+Ximd:)CmJu\C!<)<c!<)<c!:]CY -!:K7TrpK^/!L!M7c/d+Ms-*H,ci="FJcC<$T`>#9!WSA_c%#~> -rjr0ZrL=O\$<28!G\gSR2D$I@<`^/aS=BTYS,`QfS,`QfS,`QgS,`QfS,`QgS,`QfS,`QfSGWBd -S-T+bS,f(L!1]SU!!/Sir1!`eopc!^rL<ifrgWrgrL<ifr1!`eq4%EbqjdK_rgWrgqO@NcrgWrg -q4%HbrOWc'CqHp@KT;@]PECo`S%_EiYE4hGqN([WplGIUqN)!`OH9I(O8tB(!<%uZ!<%uZ!:Z'P -!0E9BrfI&i!I+Tq]B$R)s*4OTci="FJcC<$T`>#'!WRED]79~> -rmh)-rN[!0*^"@]CLC185sIqMH;u2Op9FYurNZD'riuM(rNZD'riuM(rNZD'riuM(rNZD'riuh1 -ZEaJ9Z2h29!;`u$!;s,&!;3Vt!<'2'!<08(!<'2'!;s,&!;Wo#!;j&%!;Ni"!:@&ls8CL_Ti$;Q -BVW/V_7$A):/I*+>KMtg!;V]V!<%uZ!</&[!;_c`!0E9BOH9I(O9#6@!!)tZ!!*"[!!)qYrrDnW -rrE"Zr71nA!.i_^ecGfDrmoEqrr@WMJcDDCrmh,MT`3Mm~> -rlkGurMpL#+BOnuQ]R&TH?X[kQYS%.p8\/nrMonuri6#!rMonuri6#!rMonuri6#!rMonuri6>* -X/c6$WrT3$!;`_r!;rkt!;3Am!<&qu!<0#!!<&qu!;rkt!;WYq!;ies!;NSp!:?fes8C1VRU;\@ -E21(b`42n/?#$K)=MX@m!;Z$_!<)<c!<2Bd!;c*i!:K7Tmd:)CmK!4R!!)uc!!*#d!!)rbrrDo` -rrE#cr658+!.iDUblRj.rlrdhrr@WMJcDDCrlkKDPQ&gW~> -rjr0ZrL=F[)Dbi6>u=$N0J,:cED@X+p7)*_rL<ifrgWrgrL<ifrgWrgrL<ifrgWrgrL<ifrgX8p -S=BSLS,f(L!;`2c!;r>e!;2i^!<&Df!</Jg!<&Df!;r>e!;W,b!;i8d!;N&a!:?9Vs8BPDNGQ.q -FJ?Fg`OMq+B7Rog:p5tB!;V]V!<%uZ!</&[!;_c`!0E9BOH9I(O9#6@!!)tZ!!*"[!!)qYrrDnW -rrE"Zr4;uS!.hcC])hqVrk$MVrr@WMJcDDCrjr42GlG=*~> -rmh)-r3?g!'iSLE<_Z"L94N9i/U-ln!!)u'!!*#(!!)u'!!*#(!!)u'!!*#(!!)u'!!*#("ots7 -!4&m1riuM(rNZM*ZEaK0ZMsptZ2an'Z2an(Z2an(ZMsq&Z2an#Z2an$Z2an'Z2an(Z2amlZ2jq' -ee4ZRHt/#mD-4*_]uWlAQ7Q7^OSo1UOSo1YOSf+XOT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlX!;_fW -!<&#WecDEDJ_&o5!WShlf$jZs!.k0$s.B>jecGfDrmlT~> -rlkGur2U<i+aT$%Kn+JmH]"/L3HFen!!)tu!!*#!!!)tu!!*#!!!)tu!!*#!!!)tu!!*#!"ot^) -!3<.#ri6#!rMp##X/c7"X8`1mWrN.uWrN/!WrN/!X8`1tWrN.qWrN.rWrN.uWrN/!WrN.eWrW1u -bn?IQSUHFTCK7UV\].ceY;]S!mem.^mem.bmed(amf!1kmJm7T!!)HTr;Zld!<)?b!;l3a!;c-` -!<)?`blO".J^*9#!WSA_c-u^j!.k0$s.B>jblRj.rlor~> -rjr0Zr1"7M&k>hp7QiU`4BQT>.;/=D!!)tf!!*"g!!)tf!!*"g!!)tf!!*"g!!)tf!!*"g"ot0` -!1]PZrgWrgrL<riS=BTYSGrT^S,`QfS,`QgS,`QgSGrTeS,`QbS,`QcS,`QfS,`QgS,`QVS,iTf -]+U*>[?6F(A50/=ZGC%$_E^r$OSo1UOSo1YOSf+XOT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlX!;_fW -!<&#W])d-VJ\1!T!WRED]@6fX!.k0$s.B>j])hqVrk![~> -rmh)-r3?g+2^h?s9hIlNBRP%h16(q3r;ci&rW)u(rVur(rW)u(rW)r'r;Zo)!4)S("gS+.Z2an( -ZMae%ZMjh*Z2an!ZMOY"ZMjh,Z2am1ZMX_$ZMX_"ZMae&ZMX^lZ2jq'ee+TOH";it?VdQ8bM>uh -OtKt\\WHa?!MBFDf&YB_s.KABJcC<$JcG*:rmh,MT`3Mm~> -rlkGur2U<s3^7Y2H$=CXN1,i-2M^q*r;chtrW)u!rVur!rW)u!rW)qur;Zo"!3?)!"fhV'WrN/! -X8N%sX8W)#WrN.oX8;npX8W)%WrN.#X8DtrX8DtpX8N%tX8DteWrW1ubn6CNRs^4Y>th$,aP1!7 -XZ'@t\aKC?!L!M7c/d+Ms-*H,JcC<$JcG*:rlkKDPQ&gW~> -rjr0Zr1"7V0HiYK5W^nj>]agD/:@)[r;cherW)tgrVuqgrW)tgrW)qfr;Znh!1a#g"e5PmS,`Qg -SG`HdSGiKiS,`Q`SGN<aSGiKkS,`PZSGWBcSGWBaSG`HeSGWBVS,iTf]+L$<[#^7.<CEFf_q8RL -_*(Vu\WHa$!I+Tq]B$R)s*4OTJcC<$JcG*:rjr42GlG=*~> -rmh)-qm$X!5:&Ha:KV=XE^)UBJ[4OG!<<#K&YVC/>_Ca09VB\jk"JC'0O)Z0OSmZ1TE'PojOOA3 -T`3Mns+13$s6TdbecGfDrmlT~> -rlkGuql:-i5s&ImFaT(4Mc)cmJZJ%9!<<#B&Xl:NFbJCD8=[l^j]Q,l2-@Z)mek<1P5p0YjNR`* -PQ&gXs+13$s6TdbblRj.rlor~> -rjr0Zqj\(M2BFY;6VLj-C,n(qJXktp!<<#0&WK\_M1sGN6']IHiaI#E3DcoiOSl]kGQ<<,jLYHm -GlG=+s+13$s6Tdb])hqVrk![~> -rmh)-qQ^Hm3#45BAnOsk0oCOfkct3grRMS(DEC9oPE;91['Z;]3Gp?_agmN2ecDEDJ_&o5!WShl -eq*jPs.98j!;ZZp!;lfr!9=+YecGfDrmlT~> -rlkGuqPss`4![C4Jq7Po22$O]kc4^`rQPqlCIM02OGoU&ZEora9T(T:_7B"3blO".J^*9#!WSA_ -c%5nGs.98j!;ZZp!;lfr!9=+YblRj.rlor~> -rjr0ZqO@nE0bPp&?!^,O.sZ]9kaVYQrOWZH@nU*:MM@@fZ*BQa>+IHTYdokn])d-VJ\1!T!WRED -]7L!5s.98j!;ZZp!;lfr!9=+Y])hqVrk![~> -rmh)-q6C9kFtsjX*[5ffJ[4IE!<;uJ"Nc!s>[7)/")2PYcEu.'TE'PojOOA3T`3Mns+13Js8N)s -s8;rns8N)ts8;rqs8N)as8LRMs.KABJ,~> -rlkGuq5Xd^EA\gg-7<hhJZIt7!<;uA!l/t_pK.N4B<K7]blO".J^*9#!WSA_c%5nGs/5ns!;ulq -!;ZZp!<)rr!;uls!:'U`blRj.rlor~> -rjr0Zq4%_BB.=T<)]iX>JXknn!<;u/"KuW>;,R-c"(kl2['[FGGQ<<,jLYHmGlG=+s+13Js8N)s -s8;rns8N)ts8;rqs8N)as8KV2s*4OTJ,~> -rmh)-pTadcre^];J[4CC!<;uJ!nG`CouR6[e$R[,TE'PojOOA3T`3Mns+13Ks8N)ps8N)qs8N)q -s8N)rs8N)bs8LRMs.KABJ,~> -rlkGupT":Wre1?1JZIn5!<;uA!mJd(p:paG`lka6!L!M7c/d+Ms-*H,JcC<$W;lktq>^HpqZ$Qq -qZ$Qqqu?Zrli6t/!WSA_c%#~> -rjr0ZpRD5;rcnKnJXkhl!<;u/!kPkHp9+P%[(3QU!I+Tq]B$R)s*4OTJcC<$W;lktq>^HpqZ$Qq -qZ$Qqqu?Zrli6sr!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.KABJcC<$W;lktq>^HpqZ$QqqZ$Qqqu?Zrli6t8!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-*H,JcC<$W;lktq>^HpqZ$QqqZ$Qqqu?Zrli6t/!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*4OTJcC<$W;lktq>^HpqZ$QqqZ$Qqqu?Zrli6sr!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.KABJcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R(9!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-*H,JcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R(0!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*4OTJcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R's!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.KABJcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R(9!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-*H,JcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R(0!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*4OTJcC<$WW2tuq#C?oqu?Zrq>^HpqZ$Qqm/R's!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&YB_s.KABJcC<$WW2tuq#C?or;Zcsq#C?oqZ$Qqm/R(9!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/d+Ms-*H,JcC<$WW2tuq#C?or;Zcsq#C?oqZ$Qqm/R(0!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]B$R)s*4OTJcC<$WW2tuq#C?or;Zcsq#C?oqZ$Qqm/R's!WRED]79~> -rmlZ#ec2,iJcG$8!!)rJ!WShleq*jPs/H%u!;QTo!;uls!;QTo!;c`q!:9abecGfDrmlT~> -rlp#oec2,`JcG$8!!)rA!WSA_c%5nGs/H%u!;QTo!;uls!;QTo!;c`q!:9abblRj.rlor~> -rk!a]ec2,NJcG$8!!)r/!WRED]7L!5s/H%u!;QTo!;uls!;QTo!;c`q!:9ab])hqVrk![~> -rmh)LJ_#D'J_&N*!!)rJ!WShleq*jPs/H%u!;QTo!<)rt!;HNn!;c`q!:9abecGfDrmlT~> -rlkHCJ^&bjJ^)lm!!)rA!WSA_c%5nGs/H%u!;QTo!<)rt!;HNn!;c`q!:9abblRj.rlor~> -rjr11J\-KFJ\0UI!!)r/!WRED]7L!5s/H%u!;QTo!<)rt!;HNn!;c`q!:9ab])hqVrk![~> -rmh,Meq*jPs+14*s8S_l!;tCKs.KABJcC<$W;lktqu?Nns8W*!q>^<lrVultli6t8!WShlepm~> -rlkKDc%5nGs+14*s8S8_!;t(Bs-*H,JcC<$W;lktqu?Nns8W*!q>^<lrVultli6t/!WSA_c%#~> -rjr42]7L!5s+14*s8R<D!;sG0s*4OTJcC<$W;lktqu?Nns8W*!q>^<lrVultli6sr!WRED]79~> -rmh/Nf)L;oJY7RegRnNHr71oKT`3Mns+13Ks8N)ks8N)es8N)bs8LRMs.KABJ,~> -rlkNEc2W?YJWkYKgQMU;r659BPQ&gXs+13Ks8N)ks8N)es8N)bs8L7Ds-*H,J,~> -rjr73]DmG,JTu`jgNW\ur4<"0GlG=+s+13Ks8N)ks8N)es8N)bs8KV2s*4OTJ,~> -rmh2Of)MCqOFdF_s4mYSTE"uiecGfDrmlW#JH2_NrVultp&G$ln,NCflMpk7!WShlepm~> -rlkQFc2Wu[mXbChs4mYSP5kU\blRj.rlouoJH2_NrVultp&G$ln,NCflMpk.!WSA_c%#~> -rjr:4]Dm,.OFdF_s4mYSGQ7aA])hqVrk!^]JH2_NrVultp&G$ln,NCflMpjq!WRED]79~> -rmh2Of)MDsOT,=#OSo1FOFdF_s4mYSTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2X!]mf*:,mem.OmXbChs4mYSP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm-0OT5@#OT#4FOFdF_s4mYSGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)ME>!9'%>!90+:!:#[G!:,_ts+14*s8S_l!;tCKs.KABJcC<$JcG*:rmh,MT`3Mm~> -rlkQFc2X"(!9*AG!93GC!:'"P!:0'(s+14*s8S8_!;t(Bs-*H,JcC<$JcG*:rlkKDPQ&gW~> -rjr:4]Dm-Ps5B(>s5K.:s6>^Gs6Gbts+14*s8R<D!;sG0s*4OTJcC<$JcG*:rjr42GlG=*~> -rmh;Rf)MD)!!*"[rrBirrrE%[rrDAHrrDAHJcC<$h#IDI!!)rJ!WShleq*jPs+14:s8LRMs.KAB -J,~> -rlkZIc2X!q!!*#drrBk&rrE&drrDBQrrDBQJcC<$h#ID<!!)rA!WSA_c%5nGs+14:s8L7Ds-*H, -J,~> -rjrC7]Dm,;s8W([s8Tlrs8W([s8VDHs8VDHJcC<$h#ID!!!)r/!WRED]7L!5s+14:s8KV2s*4OT -J,~> -rmh;Rf)MD)!!*"[rrE%[r;ceXrVuq[rVuq[rW)t[rW)t[r;cbWrVuq[rW)qZr;cJOrrE%[rrE%[ -r;ceXquHVUrrDqXqZ-APJcC<$h#IDI!!)rJ!WShlf)>XI!9F1Y!;ulq!.k1&s8E#)s8E"fs8LRM -s.KABJ,~> -rlkZIc2X!q!!*#drrE&dr;cfarVurdrVurdrW)udrW)udr;cc`rVurdrW)rcr;cKXrrE&drrE&d -r;cfaquHW^rrDraqZ-BYJcC<$h#ID<!!)rA!WSA_c2I\@!9F1Y!;ulq!.k1&s8E#)s8E"fs8L7D -s-*H,J,~> -rjrC7]Dm,;s8W([s8W([rVuhXrr2t[rr2t[rr<"[rr<"[rVueWrr2t[rr;tZrVuMOs8W([s8W([ -rVuhXr;ZYUs8VtXqu?DPJcC<$h#ID!!!)r/!WRED]D_d.!9F1Y!;ulq!.k1&s8E#)s8E"fs8KV2 -s*4OTJ,~> -rmh;Rf)MD)!!*"[rrE(\rrE(\rrE(\rrE(\rW)qZrrE%[rrE"ZrrDqXrW)kXrrE(\rrD_RrrE%[ -rrE(\rrE(\rrDnWrrDtYrrDtYrrE%[rrDeTJcC<$h#IDI!!)rJ!WShlf)G^L!8mhV!;c`q!1<fd -!6"p;!!<0#!4Dk,!!<0#!6+s<!87DOecGfDrmlT~> -rlkZIc2X!q!!*#drrE)errE)errE)errE)erW)rcrrE&drrE#crrDrarW)larrE)errD`[rrE&d -rrE)errE)errDo`rrDubrrDubrrE&drrDf]JcC<$h#ID<!!)rA!WSA_c2RbC!8mhV!;c`q!1<fd -!6"p;!!<0#!4Dk,!!<0#!6+s<!87DOblRj.rlor~> -rjrC7]Dm,;s8W([s8W+\s8W+\s8W+\s8W+\rr;tZs8W([s8W%Zs8VtXrr;nXs8W+\s8VbRs8W([ -s8W+\s8W+\s8VqWs8W"Ys8W"Ys8W([s8VhTJcC<$h#ID!!!)r/!WRED]Dhj1!8mhV!;c`q!1<fd -!6"p;!!<0#!4Dk,!!<0#!6+s<!87DO])hqVrk![~> -rmhSZf)MD)!!&+B!!&+B!!)tZrr<+^!!*"[rrE%[rrE%[rrE"ZrrDqXrrDtYrrE"ZrrDbSrrE(\ -rrE(\rrE"ZrrDqXrrDtYrrDtYrrDVOJcC<$h#IDI!!)rJ!WShlf)G^L!8mhV!;c`q!1<fd!8%8M -!:p0i!<3#u!:Bgc!9!nV!:p0i!<3#u!:Bgc!8dbT!8@JPecGfDrmlT~> -rlkrQc2X!q!!)HT!!)HT!!)ucrr<,g!!*#drrE&drrE&drrE#crrDrarrDubrrE#crrDc\rrE)e -rrE)errE#crrDrarrDubrrDubrrDWXJcC<$h#ID<!!)rA!WSA_c2RbC!8mhV!;c`q!1<fd!8%8M -!:p0i!<3#u!:Bgc!9!nV!:p0i!<3#u!:Bgc!8dbT!8@JPblRj.rlor~> -rjr[?]Dm,;s8S1Bs8S1Bs8W%Zs8N.^s8W([s8W([s8W([s8W%Zs8VtXs8W"Ys8W%Zs8VeSs8W+\ -s8W+\s8W%Zs8VtXs8W"Ys8W"Ys8VYOJcC<$h#ID!!!)r/!WRED]Dhj1!8mhV!;c`q!1<fd!8%8M -!:p0i!<3#u!:Bgc!9!nV!:p0i!<3#u!:Bgc!8dbT!8@JP])hqVrk![~> -rmh5Pf)MD)quH_Xq#CJX!!*"[rrE%[rrE%[rrE"ZrrDqXrrDtYq#L,MquH_Xq#LGVqZ-PUrrDqX -quHGPJcC<$h#IDI!!)rJ!WShlec>aI!<)rr!<)rs!!*&u!<<)s!;lfr!;c`q!;-<j!<<)u!;HNm -!<3#t!;HNj!;?Hl!!*&u!;uls!<)rs!!*&u!<3#r!<)rp!:Bgc!<<)u!;-<j!;-<k!<3#u!:0[a -!;6Bk!<3#t!;6Bk!;-<k!<3#u!:0[a!;6Bk!<<)u!;6Bl!!<0#!;?Hl!!*&u!:BgcecGfDrmlT~> -rlkTGc2X!qquH`aq#CKa!!*#drrE&drrE&drrE#crrDrarrDubq#L-VquH`aq#LH_qZ-Q^rrDra -quHHYJcC<$h#ID<!!)rA!WSA_blIe@!<)rr!<)rs!!*&u!<<)s!;lfr!;c`q!;-<j!<<)u!;HNm -!<3#t!;HNj!;?Hl!!*&u!;uls!<)rs!!*&u!<3#r!<)rp!:Bgc!<<)u!;-<j!;-<k!<3#u!:0[a -!;6Bk!<3#t!;6Bk!;-<k!<3#u!:0[a!;6Bk!<<)u!;6Bl!!<0#!;?Hl!!*&u!:BgcblRj.rlor~> -rjr=5]Dm,;r;ZbXq>UMXs8W([s8W([s8W([s8W%Zs8VtXs8W"Yq>^/Mr;ZbXq>^JVqu?SUs8VtX -r;ZJPJcC<$h#ID!!!)r/!WRED])_m.!<)rr!<)rs!!*&u!<<)s!;lfr!;c`q!;-<j!<<)u!;HNm -!<3#t!;HNj!;?Hl!!*&u!;uls!<)rs!!*&u!<3#r!<)rp!:Bgc!<<)u!;-<j!;-<k!<3#u!:0[a -!;6Bk!<3#t!;6Bk!;-<k!<3#u!:0[a!;6Bk!<<)u!;6Bl!!<0#!;?Hl!!*&u!:Bgc])hqVrk![~> -rmhSZf)MD)!!&+B!!&+B!!)kWrrE%[rrE%[rrE%[rrE"ZrrDqXrrDtYrrDPMrrE(\rrE(\rrDnW -rrE%[rrDtYrrDeTrrDeTJcC<$h#IDI!!)rJ!WShlf)G^L!;uls!<<*!!<)rs!;QTo!;uls!;c`q -!;$6j!<<*!!;6Bl!<3#u!;?Em!<3#u!;6Bk!<<*!!<)rt!;ulr!<<*!!;lfr!<)rt!9sO`!<<*! -!:g*g!;?Hm!<3#u!9sO_!;?Hm!<3#u!:p0h!;?Hm!<3#u!9sO_!;?Hm!<<*!!;-9k!<2uu!;6Bk -!<<*!!:KmdecGfDrmlT~> -rlkrQc2X!q!!)HT!!)HT!!)l`rrE&drrE&drrE&drrE#crrDrarrDubrrDQVrrE)errE)errDo` -rrE&drrDubrrDf]rrDf]JcC<$h#ID<!!)rA!WSA_c2RbC!;uls!<<*!!<)rs!;QTo!;uls!;c`q -!;$6j!<<*!!;6Bl!<3#u!;?Em!<3#u!;6Bk!<<*!!<)rt!;ulr!<<*!!;lfr!<)rt!9sO`!<<*! -!:g*g!;?Hm!<3#u!9sO_!;?Hm!<3#u!:p0h!;?Hm!<3#u!9sO_!;?Hm!<<*!!;-9k!<2uu!;6Bk -!<<*!!:KmdblRj.rlor~> -rjr[?]Dm,;s8S1Bs8S1Bs8VqWs8W([s8W([s8W([s8W%Zs8VtXs8W"Ys8VSMs8W+\s8W+\s8VqW -s8W([s8W"Ys8VhTs8VhTJcC<$h#ID!!!)r/!WRED]Dhj1!;uls!<<*!!<)rs!;QTo!;uls!;c`q -!;$6j!<<*!!;6Bl!<3#u!;?Em!<3#u!;6Bk!<<*!!<)rt!;ulr!<<*!!;lfr!<)rt!9sO`!<<*! -!:g*g!;?Hm!<3#u!9sO_!;?Hm!<3#u!:p0h!;?Hm!<3#u!9sO_!;?Hm!<<*!!;-9k!<2uu!;6Bk -!<<*!!:Kmd])hqVrk![~> -rmh;Rf)MD)!!*"[rrE(\rrE(\rW!(_!!&+BrW)qZrrE(\rW)nYrrDqXrrDqXrrE(\rW)YRrrE%[ -rrE(\rrE(\rW!(_!!&+BrW)kXrrDtYrrE%[rrE"ZrrE"ZJcC<$h#IDI!!)rJ!WShlf)G^L!<)rt -!<)rt!<3#u!;HNn!;uls!;c`q!:p0g!;-<k!<3#u!;$6j!;-<k!<3#u!;?Hm!<3#u!;lfr!<)rt -!9jI]!:Kme!;HNn!<3#u!;?Hi!;QTo!;HNn!<3#u!:^$g!;HNn!<3#u!;?Hi!;QTo!;?Hk!94%Y -!<3#u!:KmdecGfDrmlT~> -rlkZIc2X!q!!*#drrE)errE)erW!)h!!)HTrW)rcrrE)erW)obrrDrarrDrarrE)erW)Z[rrE&d -rrE)errE)erW!)h!!)HTrW)larrDubrrE&drrE#crrE#cJcC<$h#ID<!!)rA!WSA_c2RbC!<)rt -!<)rt!<3#u!;HNn!;uls!;c`q!:p0g!;-<k!<3#u!;$6j!;-<k!<3#u!;?Hm!<3#u!;lfr!<)rt -!9jI]!:Kme!;HNn!<3#u!;?Hi!;QTo!;HNn!<3#u!:^$g!;HNn!<3#u!;?Hi!;QTo!;?Hk!94%Y -!<3#u!:KmdblRj.rlor~> -rjrC7]Dm,;s8W([s8W+\s8W+\rr3+_s8S1Brr;tZs8W+\rr;qYs8VtXs8VtXs8W+\rr;\Rs8W([ -s8W+\s8W+\rr3+_s8S1Brr;nXs8W"Ys8W([s8W%ZrrE"ZJcC<$h#ID!!!)r/!WRED]Dhj1!<)rt -!<)rt!<3#u!;HNn!;uls!;c`q!:p0g!;-<k!<3#u!;$6j!;-<k!<3#u!;?Hm!<3#u!;lfr!<)rt -!9jI]!:Kme!;HNn!<3#u!;?Hi!;QTo!;HNn!<3#u!:^$g!;HNn!<3#u!;?Hi!;QTo!;?Hk!94%Y -!<3#u!:Kmd])hqVrk![~> -rmh2Of)MEA!<8/[!<8/Y!</)Z!!85^!<&#Y!!&,[!!&,X!</)W!<&#W!;;NQ!<8/[!<8/Y!</)Z -!!&,[!<8/X!</)W!;qrY!<&"1s+14*s8S_l!;tCKs.KABrr;uurVultrVultrr;uuqu?Nnr;Zcs -qZ$Qqnc/Uho)J^i!ri6#oDegjoDegjrr;uupAb-mrr;uus8VrrrVultkPtP^n,N@epAb-mrr;uu -l2U__p&G$l!ri6#nc/RgpAb-mrr;uul2U__o`+pkiW&oXrr;uumf3:;!WShlepm~> -rlkQFc2X"+!<;Kd!<;Kb!<2Ec!!;Qg!<)?b!!)Hd!!)Ha!<2E`!<)?`!;>jZ!<;Kd!<;Kb!<2Ec -!!)Hd!<;Ka!<2E`!;u9b!<)>:s+14*s8S8_!;t(Bs-*H,rr;uurVultrVultrr;uuqu?Nnr;Zcs -qZ$Qqnc/Uho)J^i!ri6#oDegjoDegjrr;uupAb-mrr;uus8VrrrVultkPtP^n,N@epAb-mrr;uu -l2U__p&G$l!ri6#nc/RgpAb-mrr;uul2U__o`+pkiW&oXrr;uumf3:2!WSA_c%#~> -rjr:4]Dm-Ss8S2[s8S2Ys8J,ZrrS;^s8A&YrrA/[rrA/Xs8J,Ws8A&Ws7VQQs8S2[s8S2Ys8J,Z -rrA/[s8S2Xs8J,Ws87uY!<&"1s+14*s8R<D!;sG0s*4OTrr;uurVultrVultrr;uuqu?Nnr;Zcs -qZ$Qqnc/Uho)J^i!ri6#oDegjoDegjrr;uupAb-mrr;uus8VrrrVultkPtP^n,N@epAb-mrr;uu -l2U__p&G$l!ri6#nc/RgpAb-mrr;uul2U__o`+pkiW&oXrr;uumf39u!WRED]79~> -rmh2Of)ME.OT,<NOFdF_s4mYSTE"uiecGfDrmq)KrrE#trrE#trrE&urrDusrrE&urrDusrrDoq -rrDWir;cHhrr<-#!!)ZkrrDWirrE&urrDcmrrE&urr<-#!!*#urrE#trrD9_r;cEgrW)TjrrE&u -rrDBbrW)Qirr<-#!!)WjrW)TjrrE&urrDBbrW)Qir;bjWrrE&urrDKermh,MT`3Mm~> -rlkQFc2X!mmf*9WmXbChs4mYSP5kU\blRj.rltHBrrE#trrE#trrE&urrDusrrE&urrDusrrDoq -rrDWir;cHhrr<-#!!)ZkrrDWirrE&urrDcmrrE&urr<-#!!*#urrE#trrD9_r;cEgrW)TjrrE&u -rrDBbrW)Qirr<-#!!)WjrW)TjrrE&urrDBbrW)Qir;bjWrrE&urrDKerlkKDPQ&gW~> -rjr:4]Dm-@OT5?NOFdF_s4mYSGQ7aA])hqVrk&10rrE#trrE#trrE&urrDusrrE&urrDusrrDoq -rrDWir;cHhrr<-#!!)ZkrrDWirrE&urrDcmrrE&urr<-#!!*#urrE#trrD9_r;cEgrW)TjrrE&u -rrDBbrW)Qirr<-#!!)WjrW)TjrrE&urrDBbrW)Qir;bjWrrE&urrDKerjr42GlG=*~> -rmh2Of)ME.OT,<NOFdF_s4mYSTE"uiecGfDrmq)KrrDusrrE*!rrE#trrDusrrE*!rW)lrrrDoq -rrDZjrrE*!rrDZjrW)TjrrE&u!!)]lrrE&urrE#trrDusrrE&urr<3%!!*'!rW)osrrE*!rrE#t -rrDZjrrE*!rrD`lrW)Kgrr<-#!!)BcrW)HfrW)TjrW)Kgrr<-#!!)BcrW)NhrrE*!rrD*ZrrE&u -rrDKermh,MT`3Mm~> -rlkQFc2X!mmf*9WmXbChs4mYSP5kU\blRj.rltHBrrDusrrE*!rrE#trrDusrrE*!rW)lrrrDoq -rrDZjrrE*!rrDZjrW)TjrrE&u!!)]lrrE&urrE#trrDusrrE&urr<3%!!*'!rW)osrrE*!rrE#t -rrDZjrrE*!rrD`lrW)Kgrr<-#!!)BcrW)HfrW)TjrW)Kgrr<-#!!)BcrW)NhrrE*!rrD*ZrrE&u -rrDKerlkKDPQ&gW~> -rjr:4]Dm-@OT5?NOFdF_s4mYSGQ7aA])hqVrk&10rrDusrrE*!rrE#trrDusrrE*!rW)lrrrDoq -rrDZjrrE*!rrDZjrW)TjrrE&u!!)]lrrE&urrE#trrDusrrE&urr<3%!!*'!rW)osrrE*!rrE#t -rrDZjrrE*!rrD`lrW)Kgrr<-#!!)BcrW)HfrW)TjrW)Kgrr<-#!!)BcrW)NhrrE*!rrD*ZrrE&u -rrDKerjr42GlG=*~> -rmh2Of)ME/OSo0MOFdF_s4mYSTE"uiecGfDrmh)LqZ-Tpr;cfrqZ-WqrVururW)uuqZ-WqqZ-?i -rW)uurW)TjrW)TjqZ-?ir;Zitr;cisrrE#tr;Zitr;ZitrVururW)osr;ccqrrD]krW)uurW(sX -rW(RMrW(mVrW([PrW)uurW)'[r;Zitr;c<drmh,MT`3Mm~> -rlkQFc2X!nmem-VmXbChs4mYSP5kU\blRj.rlkHCqZ-Tpr;cfrqZ-WqrVururW)uuqZ-WqqZ-?i -rW)uurW)TjrW)TjqZ-?ir;Zitr;cisrrE#tr;Zitr;ZitrVururW)osr;ccqrrD]krW)uurW(sX -rW(RMrW(mVrW([PrW)uurW)'[r;Zitr;c<drlkKDPQ&gW~> -rjr:4]Dm-AOT#3MOFdF_s4mYSGQ7aA])hqVrjr11qZ-Tpr;cfrqZ-WqrVururW)uuqZ-WqqZ-?i -rW)uurW)TjrW)TjqZ-?ir;Zitr;cisrrE#tr;Zitr;ZitrVururW)osr;ccqrrD]krW)uurW(sX -rW(RMrW(mVrW([PrW)uurW)'[r;Zitr;c<drjr42GlG=*~> -rmh2Of)MCqOFdF_s4mYSTE"uiecGfDrmn4OrrBD*rrA\krr@WMpAb-C!WShlepm~> -rlkQFc2Wu[mXbChs4mYSP5kU\blRj.rlqSFrrBD*rrA\krr@WMpAb-:!WSA_c%#~> -rjr:4]Dm,.OFdF_s4mYSGQ7aA])hqVrk#<4rrBD*rrA\krr@WMpAb-(!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmn4OrrBD*!!&Vjrr@WMpAb-C!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlqSFrrBD*!!&Vjrr@WMpAb-:!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk#<4rrBD*!!&Vjrr@WMpAb-(!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmn:QquD<Jdf94FJcGKErmh,MT`3Mm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlqYHquD<Jdf94FJcGKErlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk#B6quD<Jdf94FJcGKErjr42GlG=*~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#VuQ\qJcEmmrmh,MT`3Mm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oVuQ\qJcEmmrlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]VuQ\qJcEmmrjr42GlG=*~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmod&!!'V1!!&GerrE*!rr@WMbQ%Rm!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rls-r!!'V1!!&GerrE*!rr@WMbQ%Rd!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk$k`!!'V1!!&GerrE*!rr@WMbQ%RR!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!(pVrW'V2rW(XOrW(aRrW)?crrE*!rr@WMbQ%Rm -!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!(pVrW'V2rW(XOrW(aRrW)?crrE*!rr@WMbQ%Rd -!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!(pVrW'V2rW(XOrW(aRrW)?crrE*!rr@WMbQ%RR -!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!)ZkrW)rtrW)Zlrr<-#!!)`mrVururW)!YqZ-9g -rr<-#!!)`mrVururW)6`rW)WkrVururW)QirW)-]rr@WMbQ%Rm!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!)ZkrW)rtrW)Zlrr<-#!!)`mrVururW)!YqZ-9g -rr<-#!!)`mrVururW)6`rW)WkrVururW)QirW)-]rr@WMbQ%Rd!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!)ZkrW)rtrW)Zlrr<-#!!)`mrVururW)!YqZ-9g -rr<-#!!)`mrVururW)6`rW)WkrVururW)QirW)-]rr@WMbQ%RR!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!)WjrrE&urrD`l!!*#u!!)]lrW)uurrDcmq>g6h -!!*#urrD]k!!*#u!!)]lrW)uurrD<`rW)ZlrW)uurrDcmrW)iqq>g*drr@WMbQ%Rm!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!)WjrrE&urrD`l!!*#u!!)]lrW)uurrDcmq>g6h -!!*#urrD]k!!*#u!!)]lrW)uurrD<`rW)ZlrW)uurrDcmrW)iqq>g*drr@WMbQ%Rd!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!)WjrrE&urrD`l!!*#u!!)]lrW)uurrDcmq>g6h -!!*#urrD]k!!*#u!!)]lrW)uurrD<`rW)ZlrW)uurrDcmrW)iqq>g*drr@WMbQ%RR!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmh)Lq>g6hrrE&urrD-[rrE&urrD$XrrD'YrrE&urrDcm -qZ-EkrrDfnrrE&urrDfnrrD-[rr@WMb5_Il!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlkHCq>g6hrrE&urrD-[rrE&urrD$XrrD'YrrE&urrDcm -qZ-EkrrDfnrrE&urrDfnrrD-[rr@WMb5_Ic!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrjr11q>g6hrrE&urrD-[rrE&urrD$XrrD'YrrE&urrDcm -qZ-EkrrDfnrrE&urrDfnrrD-[rr@WMb5_IQ!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!)Tirr<-#!!)'ZrrE&urrD'YrrD$XrrE&urrD<` -rW)ZlrrE&urrDcmrW)-]rr@WMaoD@k!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!)Tirr<-#!!)'ZrrE&urrD'YrrD$XrrE&urrD<` -rW)ZlrrE&urrDcmrW)-]rr@WMaoD@b!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!)Tirr<-#!!)'ZrrE&urrD'YrrD$XrrE&urrD<` -rW)ZlrrE&urrDcmrW)-]rr@WMaoD@P!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!)Tirr<-#!!)'ZrrE&urrDcmq>g3grrD!WrrE&u -rrDBbrW)TjrrE&urrD]krW)osq>g3grr@WMaT)7j!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!)Tirr<-#!!)'ZrrE&urrDcmq>g3grrD!WrrE&u -rrDBbrW)TjrrE&urrD]krW)osq>g3grr@WMaT)7a!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!)Tirr<-#!!)'ZrrE&urrDcmq>g3grrD!WrrE&u -rrDBbrW)TjrrE&urrD]krW)osq>g3grr@WMaT)7O!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmq&J!!)QhrW(sXrrE&urrD-[rrE&u!!)'ZrrE&urrDHd -rW)NhrrE&urrDWirW)?crr@WMa8c.i!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rltEA!!)QhrW(sXrrE&urrD-[rrE&u!!)'ZrrE&urrDHd -rW)NhrrE&urrDWirW)?crr@WMa8c.`!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk&./!!)QhrW(sXrrE&urrD-[rrE&u!!)'ZrrE&urrDHd -rW)NhrrE&urrDWirW)?crr@WMa8c.N!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmpH9rW)!Yr;Zitr;bsZqZ,^Wr;Zitr;b[Rr;Zitr;bXQ -qZ)3IbQ%Rm!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlsg0rW)!Yr;Zitr;bsZqZ,^Wr;Zitr;b[Rr;Zitr;bXQ -qZ)3IbQ%Rd!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk%OsrW)!Yr;Zitr;bsZqZ,^Wr;Zitr;b[Rr;Zitr;bXQ -qZ)3IbQ%RR!WRED]79~> -rmh2Of)MCos0_lX!.b-$!.b-<!:^$fecGfDrmlT~> -rlkQFc2WuYs0_lX!.b-$!.b-<!:^$fblRj.rlor~> -rjr:4]Dm,,s0_lX!.b-$!.b-<!:^$f])hqVrk![~> -rmh2Of)MCoOLC7%!.b-$!.b-o!7(TFCB3o)rmh,MT`3Mm~> -rlkQFc2WuYm^DP7!.b-$!.b-o!7(TFB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,OLC7%!.b-$!.b-o!7(TF?3'Nqrjr42GlG=*~> -rmh2Of)MDmOT#7NOT#7(OT,:^O8o:8OT#7LOT,:^O8o:NOT,<3$\8\:$\8]3$NL1PecBOdnc/U> -!WShlepm~> -rlkQFc2X!Wmf!4Wmf!41mf*7gmJm7Amf!4Umf*7gmJm7Wmf*9<$\8\:$\8]3$NL1PblMGWnc/U5 -!WSA_c%#~> -rjr:4]Dm-*OT#7NOT#7(OT,:^O8o:8OT#7LOT,:^O8o:NOT,<3$@rP8$@rQ1$31(O])c4<nc/U# -!WRED]79~> -rmh8Qf)MD)OSo.[O9"$srrDnWquH\WrrD5DrrDSNr;cbWrr<+^!!)qYrVut\!9B7A!:Z*M!!85^ -!<&#X!;V`V!.br;(P*BR(XElu!7p_H!<;Vq!<;Vq"TR'(CB3o)rmh,MT`3Mm~> -rlkWHc2X!qmem+dmJu#0rrDo`quH]`rrD6MrrDTWr;cc`rr<,g!!)rbrVuue!9ESJ!:]FV!!;Qg -!<)?a!;Z'_!.bo:(4d6P(=*`s!6t)8!<;Vj!<;Vj"TQ`kB)qK%rlkKDPQ&gW~> -rjr@6]Dm,;OSo.[O9"$srrDnWquH\WrrD5DrrDSNr;cbWrr<+^!!)qYrVut\!9B7A!:Z*M!!85^ -!<&#X!;V`V!.bi8'S-sL'[IHo!5%fl!<;V[!<;V["TQ*G?3'Nqrjr42GlG=*~> -rmhATf)MD)!!&+BrW(]7rrDhUrW)nYrrD5DrrDSNrrDnWrr<+^!!)tZrrE(\rrD,ArrDPMrr<+^ -!!)nXrrDkVrrE$C!.b%Kp`fb=lQZU)R`<jpO>cDL!7poi!7oLA!7l]GJKo^jcm&Slf!=m_!WTIs -CB=I@o4nL/f%+U:nc/U>!WShlepm~> -rlk`Kc2X!q!!)HTrW(^@rrDi^rW)obrrD6MrrDTWrrDo`rr<,g!!)ucrrE)errD-JrrDQVrr<,g -!!)oarrDl_rrE$B!.b%Kp`]\<lQQO'RE!aoO#?5I!7poh!7oL@!7l]FJKfXhclrMkc)^GK!WT4l -B*&%5o4J4+c-9l$nc/U5!WSA_c%#~> -rjrI9]Dm,;!!&+BrW(]7rrDhUrW)nYrrD5DrrDSNrrDnWrr<+^!!)tZrrE(\rrD,ArrDPMrr<+^ -!!)nXrrDkVrrE$?!.b%Kp`BJ9lQ6="R)[UlN\fuC!7poe!7oL=!7l]CJKKFbclW;h]:AJ!!WS\] -?31(ro3MS"]=VALnc/U#!WRED]79~> -rmh;Rf)MD)!!*"[rrE%[r;ceXquH\WrVuq[rW)qZr;[%`!0E9B!0I0[rK.$Z!g!B^rfI-[!0I0[ -rK-sXrfI*Zs,d3[s,d*XoT9(Qq2b[YOH9JAOT,=[OT,=\OSf+XOT#7[OT#7ZOSo.`O8tB(!!&,[ -!<8/[!</)Z!</&^!0E9BqiLgXq2kUVr@e-M!.ao!!<@Z:0*lO7DET^:E5P030*'Su0*'RS07bd- -0:jg!!7nGkpAY9$C]C\UpAY9$C]C\UpAY?&C]Du:CB3o)rmh,MT`3Mm~> -rlkZIc2X!q!!*#drrE&dr;cfaquH]`rVurdrW)rcr;[&i!:K7T!:KgdrU0[c!q$$grpKdd!:Kgd -rU0UarpKacs6fjds6faao^;_Zq<e=bmd:)Smf*:dmf*:emed(amf!4dmf!4cmem+imJu\C!!)Hd -!<;Kd!<2Ec!<2Bg!:K7TqsOIaq<n7_r@S!K!.ant!<@Z:/I6:3D*'C3Do+p//HFAs/HF@Q/V,L) -/Y4Nr!6qQWpAY8rBE,#FpAY8rBE,#FpAY>tBE-6$B)qK%rlkKDPQ&gW~> -rjrC7]Dm,;!!*"[rrE%[r;ceXquH\WrVuq[rW)qZr;[%`!0E9B!0I0[rK.$Z!g!B^rfI-[!0I0[ -rK-sXrfI*Zs,d3[s,d*XoT9(Qq2b[YOH9JAOT,=[OT,=\OSf+XOT#7[OT#7ZOSo.`O8tB(!!&,[ -!<8/[!</)Z!</&^!0E9BqiLgXq2kUVr@.^G!.anp!<@Z:.0sb,CH!e'Cr/I(.0.ro.0.qM.=iq! -.@qsj!5"b-pAY8c?N6O%pAY8c?N6O%pAY>e?N7XL?3'Nqrjr42GlG=*~> -rmh5Pf)MD)rW)hWrrE(\rrDnWrrE"ZrW)kXrrE(\rW)t[rW)t[rrE%[rr<+^!!*"[rW)t[rrE(\ -rrE(\rrE%[rrE%[rrE%[rrDSNrrDVOrrDbSrrE%[rrE%[rrE(\rrE(\rW)t[rW)t[rrE(\rrE%[ -rrDYPrrDkVrrDsYrVuqKr&XoZJGD;,!;nnY!;nn[<lIc13rt)8loP3upcAK,JNJEEJNKGb"9@#Y -C]F.m"gVqDZ>9L7kQS8-s0?G?pZMgeC]Du:CB3o)rmh,MT`3Mm~> -rlkTGc2X!qrW)i`rrE)errDo`rrE#crW)larrE)erW)udrW)udrrE&drr<,g!!*#drW)udrrE)e -rrE)errE&drrE&drrE&drrDTWrrDWXrrDc\rrE&drrE&drrE)errE)erW)udrW)udrrE)errE&d -rrDZYrrDl_rrDsVrVuqKr&=]WJGD2)!;neV!;neX;oM?+3!"`3lo5!rpc&9)JN/3?JN05\"9?]I -BE._e"fl;9X(VJ,j9;Sss/Tf4pZ)OZBE-6$B)qK%rlkKDPQ&gW~> -rjr=5]Dm,;rW)hWrrE(\rrDnWrrE"ZrW)kXrrE(\rW)t[rW)t[rrE%[rr<+^!!*"[rW)t[rrE(\ -rrE(\rrE%[rrE%[rrE%[rrDSNrrDVOrrDbSrrE%[rrE%[rrE(\rrE(\rW)t[rW)t[rrE(\rrE%[ -rrDYPrrDkVrrDsQrVuqKr%e?RJGD#$!;nVQ!;nVS:W,[!1BE**ln\XmpbMp$JMVj5JMWlR"9?'( -?N9cT"e8p!S6l6ig]a3Ss.!EqpY5tC?N7XL?3'Nqrjr42GlG=*~> -rmh8Qf)MD)OSf+YOT,=ZOT,=XOT,=ZOT,=YOT,=ZOT,=\OT,=[OT,=[O8o:[O8o:[OT,=[OT,:^ -O8o:ZOT,=\OT,=[OT,=[OT,=NOT,=OOT,=SOT,=[OT,=[OT,:^O8o:ZOT,=\OT,=[OT,=\OT,=[ -OT,=POT,=VOT,=Y7f\)=!<#Ff!;K%c!<3&u8,iSe7ff6<qaUZ`If;h?Ek^#:ErAK3F1fu:En:4[ -!7q*="`:g!`.HS>7g*bCd_Bku7gO1Ke%]qS7n;/.7f_->7g*bCd_Bl&7g@Otaj[Lbf)8)ADnON5 -F8eZ5FOSgeY$cfNJOb8]i^X+Of!9)kpYlC_C]C\Us5NhS$0&7+s0?G?io0t:iX#VEij*A"f%+U: -nc/U>!WShlepm~> -rlkWHc2X!qmed(bmf*:cmf*:amf*:cmf*:bmf*:cmf*:emf*:dmf*:dmJm7dmJm7dmf*:dmf*7g -mJm7cmf*:emf*:dmf*:dmf*:Wmf*:Xmf*:\mf*:dmf*:dmf*7gmJm7cmf*:emf*:dmf*:emf*:d -mf*:Ymf*:_mf*:b6i_c:!<#=c!;Jq`!<3&u7/m8b6iij5qa:HZIJuV;E4s`6E;`0.E4aT6E7Y"V -!7q*:"`(Zt`.?M=6j.A=d_9\q6jRbDe%]kQ6q#W(6ibg;6j.A=d_9]"6jD4oaO@@]f)7u>D7e61 -E;i6/EmrUbY$HTHJOG&Wi^<nLc)YLWpYH+TBE,#Fs5*PO$/V^qs/Tf4hVJ82h?a2=hQ(;hc-9l$ -nc/U5!WSA_c%#~> -rjr@6]Dm,;OSf+YOT,=ZOT,=XOT,=ZOT,=YOT,=ZOT,=\OT,=[OT,=[O8o:[O8o:[OT,=[OT,:^ -O8o:ZOT,=\OT,=[OT,=[OT,=NOT,=OOT,=SOT,=[OT,=[OT,:^O8o:ZOT,=\OT,=[OT,=\OT,=[ -OT,=POT,=VOT,=Y4og-4!<#+]!;J_Z!<3&u55tW\4oq.*q`Y$OH2]u1CqS3/D#HO$CqA*0CtASL -!7q*4"_P6m_gU,84p5Q1d_0Jl4pYu9e%TYL5!IQq4oj154p5Q1d_0Jr4pKSeaO@:Uf)7c8BY)X* -D#QU%DU[1^XB:$;JNeWKi][JF]:<4-pXKJ<?N6O%s4-oF$.YPPs.!Eqe^XZueHl6+eXTtG]=VAL -nc/U#!WRED]79~> -rmh2Of)ME@OT#4[OSJnVOS]%VOT,=YOT,=VOT,=[OT,=\OT,=[OT,=\OT,=[OT,:^O8o:ZOT,=\ -OT,=[OT,=[OT,=NOT,=OOT,=WOS]%WOT,=[OT,:^O8o:VOT,=[OT,=[OT,:^O8o:OOT,=VOT,=X -;ZM@I!<5suJ,o=B!W`9#rW!!!!;oar`G#!E%s,m;=*D`,;c@\WFB<q:f)ASJf)ASYDT?j#H-Xu> -;fKp)=*)H%qGR]?aE1L4cIPomf)/GZel,LdbBR*0aDb'Vf"5HuDH#-c;\!ciGZSt-E)T]bI8a:( -^k#F8;h7m,;Zm*OZ>9L7g]k'"s0?G?h"^pTgp1_qZ>9KqrW)uRrW!2YZ>9KkenY9Us8LRMs.KAB -J,~> -rlkQFc2X"*mf!1dmeHk_me["_mf*:bmf*:_mf*:dmf*:emf*:dmf*:emf*:dmf*7gmJm7cmf*:e -mf*:dmf*:dmf*:Wmf*:Xmf*:`me["`mf*:dmf*7gmJm7_mf*:dmf*:dmf*7gmJm7Xmf*:_mf*:a -:B5qE!<5gqJ,o=>!W`9#rW!!!!;oUn`+A[=%rf[5;fg*":JYlLEDq5/f)AGFf)AGUCW:?mG0ST6 -:Mn9t;fKcoqG.E8aDk.*c.5Zdf)/;Vek](YbB6a&a)+UJf",9nCJWO\:C_6bF]38"D,3sWH;@Op -^O]13:Ou=$:BU[BX(VJ,fESBhs/Tf4f_GLPfW/ZbX(VIbrW)uNrW!2UX(VIWc"@%Hs8L7Ds-*H, -J,~> -rjr:4]Dm-ROT#4[OSJnVOS]%VOT,=YOT,=VOT,=[OT,=\OT,=[OT,=\OT,=[OT,:^O8o:ZOT,=\ -OT,=[OT,=[OT,=NOT,=OOT,=WOS]%WOT,=[OT,:^O8o:VOT,=[OT,=[OT,:^O8o:OOT,=VOT,=X -8-"2>!<5RjJ,o=7!W`9#rW!!!!;o@g_dE./%r9:*9Q%se84[I8CeT&tf)A2?f)A2NA]8IZER!'* -88$(a9P_[^qFCp,a)"Fnc.5EVf)/&Oejr>Eb&C$ia(S"7f!np_AOtDO8.K:TE(k&fBLk\CF\#;Z -^4Ah+8:a=k8-Aq)S6l6icN]nGs.!EqchRPGc^\>AS6l6ArW)uErW!2LS6l6-]3YL-s8KV2s*4OT -J,~> -rmh;Rf)MD)!!*"[rr<+^!!)kWrrE%[rrE"ZrrDtYrrDkVrrE%[rrE(\q>gPWrrE%[rr<+^!!)tZ -rrE(\rrE%[rrE%[rrDSNrrDVOrrDqXrrE%[rrE%[rrE%[rr<+^!!)hVrrE%[rrE%[rr<+^!!)SO -rrDkVrrDn&rW)tK!!)q(qu6m$ZN%61ZMsq&?NJYepKms.N;d/fN3lr!Z&/He!Ku%5?NA[V?NI9b -ra,hhemDdhN;d/bLp?e`!O7L\?NcPC?XMC^?Neqe?a5Rh?Nl7j?XMB4rEfQUra,]2N;d/fLp:;o -eU<!UJR<t8hHpBcf!9)krn%)KrmqF]C]C\Us475NrR_&L#hQ@ts0?G?f@Tm"s47I\C]Du:CB3o) -rmh,MT`3Mm~> -rlkZIc2X!q!!*#drr<,g!!)l`rrE&drrE#crrDubrrDl_rrE&drrE)eq>gQ`rrE&drr<,g!!)uc -rrE)errE&drrE&drrDTWrrDWXrrDrarrE&drrE&drrE&drr<,g!!)i_rrE&drrE&drr<,g!!)TX -rrDl_rrDn"rW)tK!!)q$qu6m$X8f7#X8`1t>635]pKI[(M>g]_M6gDjY_W3^!Kbn3>6*7R>61g[ -r`]Pbelu@_MZ-f\Ks:DX!O.@Y>6L&=>?f\V>6NM]>Hj"a>6T_b>?f[)rEB9Qr`]E-MZ-f`Ks4cc -eTudNJQm\0hHL*_c)YLWrmL`FrmD(QBE,#Fs3^lIrR1]G#h#bds/Tf4daJ!ms3_+PBE-6$B)qK% -rlkKDPQ&gW~> -rjrC7]Dm,;!!*"[rr<+^!!)kWrrE%[rrE"ZrrDtYrrDkVrrE%[rrE(\q>gPWrrE%[rr<+^!!)tZ -rrE(\rrE%[rrE%[rrDSNrrDVOrrDqXrrE%[rrE%[rrE%[rr<+^!!)hVrrE%[rrE%[rr<+^!!)SO -rrDkVrrDmorW)tK!!)pqqu6m$SH#,ZSGrTe;ZYBMpJV*sK`4mRKX"HSXb-ON!K5P.;ZPDJ;ZWkJ -r_iuUel,MML&P!OJ?AZH!NgtQ;Zr$0;cD9F;ZtZM;m(iR;[%]R;cD7grDN^Ir_ij#L&P!SJ?;aK -eTHFAJQ%+uhGXOW]:<4-rlG$<rl>A8?N6O%s2Y0?rQ,!=#frNBs.!EqaN45Ys2YD7?N7XL?3'Nq -rjr42GlG=*~> -rmh5Pf)MD)rW)t[rrE(\rrE(\rW!(_!!&+BrW)nYrrDqXrrE%[rrE(\rrE%[rrE(\rrE%[rrE(\ -rW)t[rrE(\rrE(\rrE%[rrE(\rW)qZrrE(\rrD_RrrDSNrrE(\rr<1`!!&+BrW)qZrrE(\rW)t[ -rrE%[rrE(\rrE%[rrE"ZrW)JMrrDqXr;cY.rr<(7!;gO.Z3LB8s0D[1rrDt3!Rku]C&uV$rb;UX -c>%+=F8fnTFk6P,!7q-a!R,T`C'Ab2C22"5rb;IRc2)/Uc#`l!"Ei:1C=`;t"P.=&c#N_t"`_e% -C=[>%C&liaC&uS!rb;^Yc"_!lRZiDAJSKaNJSO.Y"9@#YC]FC]r;ciE#dS7GZ>9Kf!!)uFrr<8N -Z>9KGC]FC]r;ciE#-r%Ef%+U:nc/U>!WShlepm~> -rlkTGc2X!qrW)udrrE)errE)erW!)h!!)HTrW)obrrDrarrE&drrE)errE&drrE)errE&drrE)e -rW)udrrE)errE)errE&drrE)erW)rcrrE)errD`[rrDTWrrE)err<2i!!)HTrW)rcrrE)erW)ud -rrE&drrE)errE&drrE#crW)KVrrDrar;cY*rr<(3!;gC*Ws8X*s/Z1#rrDt/!RkiYAc^1rral=Q -c=U\4DuO>LEn:5%!7q-]!R,H\Ad*2*AnK8(ral1Jc2)#Qb]!Jm"EN(*B%Hll"P.0sb\d>k"`;Lr -B%CbrAcUE]Ac^+mralFQc":RcR#ll5JS'IFJS*kQ"9?]IBE.tTr;ci@#chV<X(VIV!!)uArr<8I -X(VI5BE.tTr;ci@#-2D:c-9l$nc/U5!WSA_c%#~> -rjr=5]Dm,;rW)t[rrE(\rrE(\rW!(_!!&+BrW)nYrrDqXrrE%[rrE(\rrE%[rrE(\rrE%[rrE(\ -rW)t[rrE(\rrE(\rrE%[rrE(\rW)qZrrE(\rrD_RrrDSNrrE(\rr<1`!!&+BrW)qZrrE(\rW)t[ -rrE%[rrE(\rrE%[rrE"ZrW)JMrrDqXr;cY!rr<(*!;g(!S-K%as.'+ZrrDt&!RkQQ>li2_r`o\? -c<X`"BDu0;C=`Ai!7q-T!R#*S>m4rn?!YZcr`oP9bkbTGb\-o\"DZLn?.SpZ"P-jab[pcZ"_Gn` -?.NNa>l`IT>li/\r`oe@b["MLPDXZoJR*h4JR.5?"9?'(?N:#Ar;ci6#b56$S6l64!!)u7rr<8? -S6l5c?N:#Ar;ci6#+T$"]=VALnc/U#!WRED]79~> -rmh;Rf)MD)!0I-ZrK-pWrfI*Z!0I0[s,d*XrK-pWs,d0Z!0I!V!0I$W!0I0[rK-sXr/gmX!0I0[ -rfI'YoT9(Qn<!SKrfI*Z!0I0[rfI*Z!0I0[s,d-Ys,d0Z!0I-ZrfI*ZnW<bNqiLaVq/ui?FoVO> -G5;4=Z3105!3uV&FofX<pN?SeGlDjiGgpn[eTh(:!I*,oFo^+mFog*;rcSEheol5dr71ktqK;ni -GlDjhGLgq\f)0[neol5dr71u"G';I7Fo^+mFo^%ied0cKG'^I;f$T5'G(FgfG2dZJ!7nGks8L4? -!<1.IZ>9KGC]DQX!<(+@!!^WPC]C\Us8L4?!<1.GZ>9KkenY9Us8LRMs.KABJ,~> -rlkZIc2X!q!:KdcrU0R`rpKac!:Kgds6faarU0R`s6fgc!:KX_!:K[`!:KgdrU0Uar9jOa!:Kgd -rpK^bo^;_ZnF$5TrpKac!:KgdrpKac!:Kgds6fdbs6fgc!:KdcrpKacna?DWqsOC_q/HK:E<$"9 -EV]\8WrrF'!36+tE<4(2pMg5`F8g._F4>2LeT:_0!HQcjE<+ShE<4R1rc&'^eo>]Zr71ktqJcPd -F8g.^En55Mf)0Lieo>]Zr71u"EH0S-E<+ShE<+Mded0cFEHSM/f$T)#EIi+\ET1s@!6qQWs8L%: -!<0tDX(VI5BE,sO!<'q;!!^HDBE,#Fs8L%:!<0tBX(VIWc"@%Hs8L7Ds-*H,J,~> -rjrC7]Dm,;!0I-ZrK-pWrfI*Z!0I0[s,d*XrK-pWs,d0Z!0I!V!0I$W!0I0[rK-sXr/gmX!0I0[ -rfI'YoT9(Qn<!SKrfI*Z!0I0[rfI*Z!0I0[s,d-Ys,d0Z!0I-ZrfI*ZnW<bNqiLaVq.Bd0B)hr/ -BDMW.S-/h^!1X&eB*#ttpLaNVC&V`KC"-d.eS5"q!GL'`B)pN^B*$Lrrau@Jen8XFr71ktqI]iZ -C&V`JB\$g/f)0._en8XFr71u"B4ofnB)pN^B)pHZed0c<B5FZlf$J_oB7X]HBB!P,!5"b-s8K\0 -!<0V:S6l5c?N7Y<!<'S1!!^*+?N6O%s8K\0!<0V8S6l6-]3YL-s8KV2s*4OTJ,~> -rmh2Of)MD,OT,<uOT,=MOT,=VOT,=WJcYq&JGoQBJcPkWqZ-PG!OSg%Jcq]tK$]ARJd%"YJqD:) -rdk0,f)C7$f)C7%cADOP"c1`]K$fAHJcX/Rrdk9/eq/M)rIP3,eq/M$L\cT&f)1+"f)C7%d>.IJ -!f`qpJV&H)JV)m5"9@#YC]FCRr;ci:#dS7GZ>9K[!!)u;rr<>EZ>9KGC]DDoqZ-Z9#-r%Ef%+U: -nc/U>!WShlepm~> -rlkQFc2Wukmf*:)mf*:Vmf*:_mf*:`I0'D!JGoQBI/s>KqZ-PB!OAR!I0G(iI=9Irrd=s(d!^>f -K`6B#K@^$M!7q-t!R?AtI0G8SI=9IoomHkdK`6B&K@YI!f):"#JC]-sd";+B!7q'r!7q-t!RQGm -I0,7sa+8YiI=Zh+I09PpX(VJ3_#494^^-uRs/Tf4^]4B5_#FB?^oM,JX(VIJ_#"-3^]piPs38f$ -!:g*gblRj.rlor~> -rjr:4]Dm,>OT,<uOT,=MOT,=VOT,=WEWQ5kJGoQBEWH01qZ-P7!Ni!kEWpNLEcTKQrc/0hcuO0O -HN%pcH.Mt8!7q-i!R5riEWpa>EcTNOol:)XHN%pfH.I"Vf)9UmFk1SRd!5D-!7q'g!7q-i!RQ)c -EWU`X`IW&\Ee/8jEWcBSS6l6p[J^+)[0W:/s.!Eq[/^4*[Jp44[@CS'S6l6'[JKt([0E.-s1>mL -!:g*g])hqVrk![~> -rmh2Of)MD,OSo0uOT,=OOSo1TOT,=XNWT93NfO)=!.ag(rW)qXrrDtW!h7K"r/LrYZ]:'_WW%n] -WksdV]W1sk!N4NJNW@Z0NWHhmrf./[erGd-W;_eXT#phh!PGH3NWc92NfM]hNWl*,NfLuTrf.,Q -ac;D4r/Ld.rf.#rW;_eXT#phh!7l^]JW>;Aif4-Af!9)kpV7!=C]C\Us1nF1#JdW\s0?G?_#=?6 -_#=<=^p7bUf%+U:nc/U>!WShlepm~> -rlkQFc2Wukmem.)mf*:Xmem.]mf*:aL][X-Lku$1!.ag"rW)qRrrDtQ!g_)lr.kNPZ&"4OV>c8S -VSS(E\u,I_!Me6FL]H$*L]P)`reL`Qeqf-tV#H/NR`P>]!P50-L]jL(LksX\L]s="LkrjBreL]G -aG>Z'r.k@(reLTjV#H/NR`P>]!7l^WJV\l5ieR^;c)YLWpUUR0BE,#Fs18"+#J-sKs/Tf4])D^0 -])D[7\uTKDc-9l$nc/U5!WSA_c%#~> -rjr:4]Dm,>OSo0uOT,=OOSo1TOT,=XHijA!I!knn!.afkrW)qFrrDtE!fY?Vr-S[<X*f<-T)O*@ -T"]T"[@dGG!Lq[>HiVasHi^[Ird4m=epMkYSGmm:ON.-E!O\R!Hj#qiI!jNDHj,_bI!iVtrd4j1 -`dE0br-SLqrd4a[SGmm:ON.-E!7l^KJUE#rid:k/]:<4-pTFdk?N6O%s0)4u#HsY(s.!EqYPnP% -YPnM,YFJr!]=VALnc/U#!WRED]79~> -rmh2Of)MCoOO]Hj!9]ID!;r8d!.b$:rVuqKpmV3_r0dTcqjJG3cEEh/U:A:7R[U5'Wgg$9WLB9M -cE*M8dFS;c!7q.<LPS#OccR[U5'X.6$1YPO\,U<]j0WmTCdRanO/SZC&eR[U5'X.6$1YF:p2 -r0dW:rgF=rdAre6bcdJ(bHmb.XjqukJXV.YigKuMf!9)kpUUR7C]C\Us18"+$+dEXs0?G?]".n? -\d8AJ]!?,Of%+U:nc/U>!WShlepm~> -rlkQFc2WuYma^b'!9`eM!;r&^!.b$4rVuqKpltdYr0.0]qii#*c)[4sS[HM(Pa&#lVO"(*V3I48 -cDQu)d+82\!7q.6&"_+FQDMsZPa&#lVj=%"X88&"S^+.!V9meXPguatQ`&*ZPa&#lVj=%"X-Ak" -r0.34rfdnhdAN;(bH$klb-..rWRZQaJWt_MifjQGc)YLWpTt.*BE,#Fs0VS%$+-aGs/Tf4['Ti3 -Zj?`>[&[j>c-9l$nc/U5!WSA_c%#~> -rjr:4]Dm,,OO]Hj!9]ID!;qTQ!.b$'rVuqKpkSkLr.b7PqhH)kbG'rOP-;f]LPMAGS;Ec^Rtlc^ -basZ]cdr)N!7q.)&!P;1M4;fALPMAGSr&cTU\]`bP0BMSSBocALXi&QMOr#BLPMAGSr&cTUPFWU -r.b:'reCuQd%6)[aeOWHaJXrOT[eUKJVSf3ieIX:]:<4-pS\:d?N6O%s/>_n$)jA#s.!EqW2K^p -W!NI&W172o]=VALnc/U#!WRED]79~> -rmh2Of)MCoOLC8N!<&bqJ,oME!.b%Kl)"Zmb1"qg^Sq+."LcY,cF*VJ"g?)!dCe'0V?#3GV?O3I -e^1hWrh]h+c.14QpneP)b14nPeu#=Pe^i6mZI]#P"LZM)dCT=S!7q(F!7q+G"LZM)dCT=S"g6"t -f%%0ZVLbUqVW+HU!7nGks7`o)Z>9KGC]F.:"gVqDZ>9L7[0EpPs45b:!:g*gecGfDrmlT~> -rlkQFc2WuYm^DQ`!<&MjJ,oM>!.b%Kl(80aaOA\c]:o1q"L68&c*7/="f]Smd(%[+T)dI@T*;:< -e^(VRrgs=tbgk(Kpn&%qaOJSHet8S=e^i6lXOdBC"L-,#d'iqG!7q(?!7q+@"L-,#d'iqG"fTMl -f%%!UT7NVcTAlIG!6qQWs7`Z"X(VI5BE._/"fl;9X(VJ,Xp1q>s38f$!:g*gblRj.rlor~> -rjr:4]Dm,,OLC8N!<&#\J,oM0!.b%Kl&c1J`R<;][?UWP"K0GnbGP6#"eN]_c`u(#OT<u2OThDu -e]t5HrfI>\b14e?plQ&X`RN5=erc)me^i6iU=T=+"K'>lcE@//!7q(1!7q+2"K'>lcE@//"eEW] -f%$[LOb&XGOlDK+!5"b-s7`5kS6l5c?N9bo"e8p!S6l6iU'@,os1>mL!:g*g])hqVrk![~> -rmh2Of)MCos0ht-!<08)J,oGO!.b%KdBWc'h6I%3J[0j4J[2\h!s$oXC\=t8C]C\Uos+[8s0?G5 -Z3>%Df%+U:nc/U>!WShlepm~> -rlkQFc2WuYs0ht-!</u!J,oGG!.b%KdAd2th5UJ+JZ=:$JZ?,X!s$THBD&;-BE,#ForA1-s/Tf* -Ws*/9c-9l$nc/U5!WSA_c%#~> -rjr:4]Dm,,s0ht-!</GgJ,oG8!.b%Kd@1-eh4"DqJX_4[JXa':!s#s'?M0fj?N6O%opc+js.!Eg -S-<7!]=VALnc/U#!WRED]79~> -rmh2Of)MCos0ht-!<0\4!;O;-!!%Pt^&Za?^&Z`8^4F"L^9tZV!7nIICB=I@o4nC,ZL_i7s45b: -!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht-!<0D,!;O#%!!%Pt[K+n7[K+m0[Xkl<[^EOF!6qS9B*&%5o4J+(X7Ks,s38f$ -!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht-!</hq!;NGj!!%PtV?#3'V?#1uVLbUqVR<9&!5"cm?31(ro3MItSF^%is1>mL -!:g*g])hqVrk![~> -rmh2Of)MCos0ht-!5ZeXf%nIKeq(tpb(7^CaoMLndJs6t!G_]*s8LRMs.KABJ,~> -rlkQFc2WuYs0ht-!5ZJOf%n.Beq(Yg_1BG1_#XP\dJs6k!G;E&s8L7Ds-*H,J,~> -rjr:4]Dm,,s0ht-!5Yl>f%mP1eq(&VY^s$dYQ4a9dJs6Y!F>crs8KV2s*4OTJ,~> -rmh2Of)MCos0ht,!.ep:COp8PCRo5BenY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0ht,!.ed6B7X]HB:WZ:c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0ht,!.eI-?@cF6?CbC(]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0ht,!!$ecs+13$s+13Brr[&fCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0ht,!!$Y_s+13$s+13BrrZoYB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0ht,!!$>Vs+13$s+13BrrZT>?3'Nqrjr42GlG=*~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U"0>HCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU!3]?B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFTt:F-?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U=KL@!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU<Nk*!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFU:USR!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U=KL@!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU<Nk*!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFU:USR!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U=KL@!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU<Nk*!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFU:USR!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U=KL@!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU<Nk*!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFU:USR!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0ht,!!-m8J_#D'J_#D'U=KL@!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4J^&bjJ^&bjU<Nk*!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+J\-KFJ\-KFU:USR!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0ht,!!-m8hUV_V^\G,9]?flq$I6:j*[W*O17ZJ9J_#D'J_#D'n^[l:!,L/$!:g*g -ecGfDrmlT~> -rlkQFc2WuYs0ht,!!-a4hTZ)D[eQm(ZcDIX$H9AV*[W*O0p]VuJ^&bjJ^&bjn]_6$!,'Ph!:g*g -blRj.rlor~> -rjr:4]Dm,,s0ht,!!-F+hR`fuVYHY^Up]U%$FHX/*[W*O/VpUAJ\-KFJ\-KFn[esL!+*9D!:g*g -])hqVrk![~> -rmh2Of)MCos0ht,!!-m8hUVe4;G'd_;$0KjMTYJ?&(84bD-qS4mGc#m5%BDPb^n>req)D'f(7Gr -TE&cYCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0ht,!!-a4hTZ/$:J+I\;$0KiKYm9(&';8IBjGu,mGc#l4^Wf=_h$'`c%4,jc1B0` -P5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0ht,!!-F+hR`lX91i%X;$0KfH*QnO&%AEo?W;'flJKB_2HG$iZ@TW=]7ISF]CWW< -GQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)MCos0ht,!!-m8hUVdkD"7K&rr;p"m'2=ccL]U!d[G)j>'um@StE?nG["!]G0#6cJ_#D' -J_'JE"eYj2enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0ht,!!-a4hTZ.\D"7K&rr;p"m'2:^`Uh=dacgLT=aQX;SY!*hG?RdWEPI(LJ^&bj -J^*i3"d8q!c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0ht,!!-F+hR`l>D"7K&rr;p"m'24U[.CmA[t\9q9PKEVPa/);Akb["B<QluJ\-KF -J\1Qd"aC#R]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0ht,!!-m8hUVajGPqF=rr!#bc/F%Se+D3']LeC2d\h7W2D[XYR]!?W;2'SPJ_#D' -J_'JE"eYj2enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0ht,!!-a4hTZ+[GPqF=rr!#bc/F%Pb4NpjZpp8"d%kbO2).CURAR-S:k+&@J^&bj -J^*i3"d8q!c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0ht,!!-F+hR`i=GPqF=rr!#bc/F%H\FdBFUcs=5\<18^/Lrf,K9;IO7!+!lJ\-KF -J\1Qd"aC#R]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCoOLC8M!!-m8hUV^iH2ddNrVZQjqr5cifPP'Gp!s_hEmWP&a-h'S6WSB$[C!,PB7\Wb -eq)D'f(@MsTE&cYCB3o)rmh,MT`3Mm~> -rlkQFc2WuYm^DQ_!!-a4hTZ(ZH2ddNrVZQjqr5cifPOm9p!")WEmE=u`KtXK5ur,tZa6cI@tDmU -c%4,jc1K6aP5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,OLC8M!!-F+hR`f<H2ddNrVZQjqVoZhfPFNsot(g6CUh70[>STj3([Y8S=,XF>(O;: -]7ISF]C`]=GQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)ME9OT5@<OT5?3OQ_f*!!-m8pXT<ErRUuKn(&)5H2[^>qtg-aptWI8fWT7Ech>p%ZUj3B -jm1FC]sXr?\[oVS>A&N<J_#D'J_'JE"eYj2enY9Us8LRMs.KABJ,~> -rlkQFc2X"#mf,`5mf,_,mca*<!!-a4pWW[<rQY?Bn')H&H2[^>qtg-aptWI8fWT4>a7daiX%;:7 -j6G+>]X+Z9\@B;L>%<-.J^&bjJ^*i3"d8q!c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-KOT,=<OT,<3OQ_f*!!-F+pU^D*rO`(0n%00]H2[^>qt^$_pY375fWT.1[J%3ES3kc\ -e_8!XWLK*3StN!?9j3+[J\-KFJ\1Qd"aC#R]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME=s8A&Zs5/q<s729Os1+6k!61-#!!&,[!!-m8pX]?Es47,KnCA57H2RR9q=s^Yp>UZl -4#%p7T%3Sd&[O<oe*Z_mlKRH]cdTn5G=lM!eq)D'eq)EEech]HCY!8$nc/U>!WShlepm~> -rlkQFc2X"'7K)ZS7GmP57IomH7Chjd!64I,!!)Hd!!-a4pW`^<s3:KBnBDT(H2RR9q=jUWp>LQj -4"qg3Qd#3K&Z[^ddHpDhl0%-Vc-XD,G"H1pc%4,jc%4.3bls:2B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-O!<&#Z!8in<!:l6O!4e3k!61-#!!&,[!!-F+pUgG*s1A40n@K<_H2RR8q"FCSp#(Bg -4"qd/MRrPo&Y(D<aQ;XDgtC2l\%K#4ANs@L]7ISF]7ITd]*3EZ?FsMDnc/U#!WRED]79~> -rmh;Rf)MD)s8W([s8U0%s8TZlrrC$"rr<%\rVut7s7Y%D!!(UL!:SJOOa6j"q"OLTp%7k?fu^IP -4FGWPee,5<PH)ILk3(d\f>On\I;),_J_#D'J_#D'o[X2=!,L/$!:g*gecGfDrmlT~> -rlkZIc2X!q77I4Ds$b#ss$aNerrC%+rr<&erVut3s7X_;!!(:C!:S/FMg>3qp\+:Pp%7h=fZ:7K -3d8a@bn7!+P,Q1Gk2t[Ye\\JTHY>fWJ^&bjJ^&bjoZ[Q'!,'Ph!:g*gblRj.rlor~> -rjrC7]Dm,;!!*"[rrC-%rrBWlrrC$"rr<%\rVut*s7X))!!'Y1!:RN4IsLncp\"1MoCDG7f#FkC -2Jotu]+LPYI$V%Zgtp`3`j)%dC0<T$J\-KFJ\-KFoXb9O!+*9D!:g*g])hqVrk![~> -rmh;Rf)MD)s8W([s8W+\rVuhXrr<"[rr2t[rr2t[rr;qYrVuhXrVuhXrr2t[rr;tZqu?AOrr2t[ -rr;qYrVunZrr;qYrr<"[rVuhXrr2t[rr;VPrrE"ZrW)t[rW)\SrVuq[rW)kXrrE"ZrVuq[rW)qZ -quH\Wq>^P3s7Y%A!:JDNOa6ftp@\(LoCDD;k2O^f89iPVee,i$=I$2/cdKqEZD*;,A5PC[J_#D' -J_#D'o[X2=!,L/$!:g*gecGfDrmlT~> -rlkZIc2X!q77I4Ds$ctUrC-\Qr^HkTr^?hTr^?hTr^HeRrC-\QrC-\Qr^?hTr^HhSqaL5Hr^?hT -r^HeRrC-bSr^HeRr^HkTrC-\Qr^?hTr^HJIrrE#crW)udrW)]\rVurdrW)larrE#crVurdrW)rc -quH]`q>^P/s7X_8!:J)9Mg>0mp%7kTnd+aOjl+La7<?QEbn7Te=Hp&+cHsY?YFpc$@o,.PJ^&bj -J^&bjoZ[Q'!,'Ph!:g*gblRj.rlor~> -rjrC7]Dm,;!!*"[rrE(\r;ceXrW)t[rVuq[rVuq[rW)nYr;ceXr;ceXrVuq[rW)qZqZ->OrVuq[ -rW)nYr;ckZrW)nYrW)t[r;ceXrVuq[rW)SPrrE"ZrW)t[rW)\SrVuq[rW)kXrrE"ZrVuq[rW)qZ -quH\Wq>^P&s7X)&!:IH3IsLk_o^hYDnaPu3j58+X6#!h&]+M,;;1kLH^V[RUR#-$&<D,**J\-KF -J\-KFoXb9O!+*9D!:g*g])hqVrk![~> -rmhATf)MD)s8S2\qN1aWr/gsYs,d9\rfI-Zs,d9\s,d9\s,d9\r/gsYr/gpXs,d9\rfI0[nrWkN -s,d9\s,d9\s,d9\s,d9\%?UViOT5?BOT5?BOT5@ZOT,:NOT,=XOT,=\OT,=ROT#7[OT,=ZOT,=Y -OT#7[OT,=XOT,=ZOT,:\OT#4\C]F(YrW)?:&s7J7o^h\EnF?#:m-<]h\4LnlpXTr,MC_^uX0/k9 -VN?[Y3Y=8:dXfu#eq)D'f(@MsTE&cYCB3o)rmh,MT`3Mm~> -rlk`Kc2X!q77HW5qX4APr9jSRs6fnUrpKbSs6fnUs6fnUs6fnUr9jSRr9jPQs6fnUrpKeTo'ZKG -s6fnUs6fnUs6fnUs6fnU%IQYRmR9S4mR9S4mR9SCmf#ZGmf*:amf*:emf*:[mf!4dmf*:cmf*:b -mf!4dmf*:amf*:cmf*7emf!1eBE.YLrW)?1&rV&1o^_SCnF?#9lfmKd[RYAZpWX;oKe-1pX/rY3 -UlU@T3>"/7aaq]fc%4,jc1K6aP5o7?B)qK%rlkKDPQ&gW~> -rjrI9]Dm,;!!&)\qN1^Wr/gpYs,d6\rfI*Zs,d6\s,d6\s,d6\r/gpYr/gmXs,d6\rfI-[nrWhN -s,d6\s,d6\s,d6\s,d6\%?LPiO8o9BO8o9BO8o:ZOT#7NOT,=XOT,=\OT,=ROT#7[OT,=ZOT,=Y -OT#7[OT,=XOT,=ZOT,:\OT#4\?N9]1rW)>t&q>3$o'u8=mdKT1l0%'[YsE'4pU_$KGpZ6TVO3sH -Nd>h`2@_?#[t2/B]7ISF]C`]=GQ;'^?3'Nqrjr42GlG=*~> -rmh5Pf)MD)rVu_Us8VtXrVuhXs8W([s8N.^s8W%Zs8W%Zs8W"Ys8W([s8W([s8VYOs8W([s8N.^ -s8W%Zs8NIgs8S2\s,d9\OT5@ZOT5@[OT5@NOT,=WOSo1OOT,=[OT,=SOT,=[OT,=XOT,=ZOT,:\ -OT#4\C]F(Yr;c9:"d+*)o'l)Hmg8FLl/gs`a%gj+p=9b:1gX?X;)1Nb%M0dL2`F3Weq)D'eq)ED -ech]HCY!8$nc/U>!WShlepm~> -rlkTGc2X!qrC-SNs$chQrC-\Qs$cqTs$["W77I1Cs$cnSs$ckRs$cqTs$cqTs$cMHs$cqTs$["W -77I1Cs$[=`77HW57IET5mR9SCmf,`Tmf,`Gmf*:`mem.Xmf*:dmf*:\mf*:dmf*:amf*:cmf*7e -mf!1eBE.YLr;c91"H.R!naQJE#jgd9inq[IEldt!%uW8N=\2IG6mE0Q+[J%G6\3L5c%4,jc1B0` -P5o7?B)qK%rlkKDPQ&gW~> -rjr=5]Dm,;r;c\UrrDqXr;ceXrrE%[rr<+^!!)tZrrE"ZrrDtYrrE%[rrE%[rrDVOrrE%[rr<+^ -!!)tZrr<Fg!!&)\!0@0\O8o:ZOT,=[OT,=NOT,=WOSo1OOT,=[OT,=SOT,=[OT,=XOT,=ZOT,:\ -OT#4\?N9]1r;c8t"Fk^inF$5@#jUR2hqYt9BXd]I%t?*(8j?'(66HXF)`B9"4b:4r]7ISF]CWW< -GQ;'^?3'Nqrjr42GlG=*~> -rmhATf)MD)s8S2\qN1aWqN1aWr/gsYrfI0[!g*H^rK.'ZrK.'Zr/gsYrfI0[rfI0[nrWnOrfI0[ -!g*H^rK.'Z$'>2eOT5?Bs8S2Vs8J,[s7)3N!;V`V!:u<P!</)[!;;NS!</)[!<8/X!<&#Z!!&,[ -!!-m8p=B*@n(%W(H1parrU(!ZlfdEhi6,)DdIu-%OZR3*C4]r6E^a5)8NB70J_#D'J_#D'o@=)< -!,L/$!:g*gecGfDrmlT~> -rlk`Kc2X!q77HW5qX4APqX4APr9jSRrpKeT!q&KGrU0\SrU0\Sr9jSRrpKeTrpKeTo'ZNHrpKeT -!q&KGrU0\S$1:5NmR9S477HY?7K2`T7IfgG!;Z'_!;#XY!<2Ed!;>j\!<2Ed!<;Ka!<)?c!!)Hd -!!-a4p<EI7n')#oH1g[qmf)S[m-<coiSV^REldt!%uWM]IqaLDDK80N8P(p36\3L5c%4,jc1B0` -P5o7?B)qK%rlkKDPQ&gW~> -rjrI9]Dm,;!!&)\qN1^WqN1^Wr/gpYrfI-[!g!B^rK.$ZrK.$Zr/gpYrfI-[rfI-[nrWkOrfI-[ -!g!B^rK.$Z$'5,eO8o9B!!&,V!</)[!:c0N!;V`V!:u<P!</)[!;;NS!</)[!<8/X!<&#Z!!&,[ -!!-F+p:L2%n%/aQH1^Olm/H;WlKI<ehV>tABXd]I%t?94DHLsY@:;/i4?P8W4b:4r]7ISF]CWW< -GQ;'^?3'Nqrjr42GlG=*~> -rmh;Rf)MD)s8VkUs8VtXrVuhXs8W([s8N.^s8W%Zs8W%Zs8W"Ys8W([s8W([s8VYOs8W([s8N.^ -s8W%Zs8W+\$3-+es,d8BOT5@UOT5@NOT,=WOSo1OOT,=[OT,=SOT,=[OT,:^O8o:[OT,=ZOT,:\ -OT#4\C]F+Zrr<&Mr;c?<#*F3&mHj3*rosdQjl>:Ua\m?1p=9e;5&$I-SoT(487,.g5u:##J_#D' -J_#D'o[X2=!,L/$!:g*gecGfDrmlT~> -rlkZIc2X!q77I">s$chQrC-\Qs$cqTs$["W77I1Cs$cnSs$ckRs$cqTs$cqTs$cMHs$cqTs$["W -77I1Cs$ctU#t=8N7IEV4mR9S>mf,`Gmf*:`mem.Xmf*:dmf*:\mf*:dmf*7gmJm7dmf*:cmf*7e -mf!1eBE.\Mrr<&Dr;c?3#)dcum-O''roj^OjPo%Pa&$ftp<=/,5&$F+ST/n187,.g5u9nlJ^&bj -J^&bjoZ[Q'!,'Ph!:g*gblRj.rlor~> -rjrC7]Dm,;!!)eUrrDqXr;ceXrrE%[rr<+^!!)tZrrE"ZrrDtYrrE%[rrE%[rrDVOrrE%[rr<+^ -!!)tZrrE(\#lp%e!0@2BO8o:UOT,=NOT,=WOSo1OOT,=[OT,=SOT,=[OT,:^O8o:[OT,=ZOT,:\ -OT#4\?N9`2rr<&2r;c?!&q>2tlK[WtkND!giSN>B^e/:Lp:Clc1KT<>O(2sM4AJ1/2*sF:J\-KF -J\-KFoXb9O!+*9D!:g*g])hqVrk![~> -rmh;Rf)MD)s8VkUs8W"Ys8W+\s8W([rr<"[s8W+\s8W+\s8W"Ys8W"Ys8W([s8W([s8W+\s8VeS -rr<"[s8W+\s8W+\s8W([s8W+\s8W([s8W+\rr;tZs8VVNrrDqXrrE(\rrD_RrrE%[rrE"ZrrDtY -rrE%[rr<1`!!&+BrW)nYrr<%\rVut7s7b+E!<1RJ!:eVQOa6K]l0.?okN:mdiSE;1;KpO_ee?Mm -5&$m=^QFh[<H;/E8m4U/e('$#J_#D'J_'PG"eYj2enY9Us8LRMs.KABJ,~> -rlkZIc2X!q77I">s$ckRs$ctUs$cqTr^HkTs$ctUs$ctUs$ckRs$ckRs$cqTs$cqTs$ctUs$cYL -r^HkTs$ctUs$ctUs$cqTs$ctUs$cqTs$ctUr^HhSs$cJGrrDrarrE)errD`[rrE&drrE#crrDub -rrE&drr<2i!!)HTrW)obrr<&erVut3s7ae<!<17A!:e;HMg=jVki_-kk2k[`i8!)+:NFPNbnJ6U -5&$j;^6"VW<H;/E8m4L#b05F]J^&bjJ^*o5"d8q!c"@%Hs8L7Ds-*H,J,~> -rjrC7]Dm,;!!)eUrrDtYrrE(\rrE%[rW)t[rrE(\rrE(\rrDtYrrDtYrrE%[rrE%[rrE(\rrDbS -rW)t[rrE(\rrE(\rrE%[rrE(\rrE%[rrE(\rW)qZrrDSNrrDqXrrE(\rrD_RrrE%[rrE"ZrrDtY -rrE%[rr<1`!!&+BrW)nYrr<%\rVut*s7a/*!<0V/!:dZ6IsLPGk2k[ajPo.Tgt:5n8SGU-]+_]% -1KKWKX+#_c7peeZ4A.cE\@R7'J\-KFJ\1Wf"aC#R]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME@s87uUs8S2[s8S2[s8S2\rrA/[s8A&Xs8A&Vs8S2ZrrA/Zs8J,Ys7MKRrrA/[s8A&X -s8A&Zs8S2\s8A&Ws8J,Ws7;?P!<&#Y!<8/[!;DTR!!&,Z!</)[!<&#X!!&,Z!!&,[!!&,[!<&#W -!!-m8pXT<Er7:lJnC@Z'H11^n$fpF1io&\Jg;R!7dJ)3*cA+StUNjhJV6O<R=^"F$5K1mrJ_#D' -J_#D'p=9D?!,L/$!:g*gecGfDrmlT~> -rlkQFc2X"*7JuTN7K;fT7K;fT7K;fU70)cT7K)ZQ7K)ZO7K;fS70)cS7K2`R7J6*K70)cT7K)ZQ -7K)ZS7K;fU7K)ZP7K2`P7J#sI!<)?b!<;Kd!;Gp[!!)Hc!<2Ed!<)?a!!)Hc!!)Hd!!)Hd!<)?` -!!-a4pWW[<r6>6AnBD#mH1([mrSn1Bhqd#=_G>3npWXAkJNdeBGK6,IZ!D`[>"Vs\]u8*Fc%4,j -c%4.5bls:2B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-R!;qrU!<8/[!<8/[!<8/\!!&,[!<&#X!<&#V!<8/Z!!&,Z!</)Y!;2HR!!&,[!<&#X -!<&#Z!<8/\!<&#W!</)W!:u<P!<&#Y!<8/[!;DTR!!&,Z!</)[!<&#X!!&,Z!!&,[!!&,[!<&#W -!!-F+pU^D*r4Dt/n@K<_H0jPLiS`VOhqd&?f$q?(BXd`J'=;p=<fUasKoh`tBM(lZ9/irY\UhAD -]7ISF]Cri?GQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)ME)OT5@*OT5@(OT,<tOT,:^enb<BecLtVlMffAi<\>tgtLE!;0UF^ee>rM5%pI2a-rj0 -?$odY8m+*Y_9RV_J_#D'J_'PG"eYj2enY9Us8LRMs.KABJ,~> -rlkQFc2X!hmf,`#mf,`!mf*:(mf*7gc"I(5bls#Jl/CRZrSRt<h:gN4^eSpkpWXA`Gs5o3GK-&H -Z!D`[>"VpTWk$*"c%4,jc%4.5bls:2B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-;OT,=*OT,=(OT,<tOT,:^]3bNo]*3\,kMG%NrS.\4g"+[#\k$MDpU_*=DDP=JA?giM -RS@Hf8j#^"S#NcG]7ISF]7ITf]*3EZ?FsMDnc/U#!WRED]79~> -rmh2Of)ME)OT5@*OT5@'OT,<uO9>R`enb<BecLtMiV_R?hV[/FgXt)o;0UF^ee>cA2IiJ+a-rj0 -?$odY92@@?]$#ZUJ_#D'J_'PG"eYj2enY9Us8LRMs.KABJ,~> -rlkQFc2X!hmf,`#mf,_umf*:)mK<Oic"I(5bl`l?i8+Chs4n"<gtUN5eA"b!aS3pm[W499U3FVF -Up43Q=^"Ho0qP\gJ^&bjJ^&bjp<<c)!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-;OT,=*OT,='OT,<uO9>R`]3bNo])mIuhYl1.fa6Bbf@A<q\4C;BpU_*9BIm#@A[-rN -RS@Hf8j5NmOJB(3]7ISF]7ITf]*3EZ?FsMDnc/U#!WRED]79~> -rmh2Of)ME*OT#4*OT#3;O9>R`enb<Bech1:]u%V%rkJiV^V7Cn\u.l=dJ)3*^l(6GN-)UpVQjER -=&_gG=JidWJ_#D'J_#D'p=9D?!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!imeoT#meoS4mK<Oic"I(5bl`l)]>"6W$G='a]",;YUHik@pWXA]KfD\`F1IO3Z!D]X -<(eiCT=)Xhc%4,jc%4.5bls:2B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-<OSo1*OSo0;O9>R`]3bNo]*<aa['mEN[f3Z?['R'AY*qCb\+dKJW-U0]G[[G"Odf'X -84>]i9p)9ZJ\-KFJ\-KFp:CKQ!+*9D!:g*g])hqVrk![~> -rmh2Of)MCoOLC5R!<:Vcs5)<-X[i7L!BE4?3WD&@0fYHHpXU"uZ[Xe\/T5<NJ5]W0*#W"MZGk7C -eq)D'eq)EGech]HCY!8$nc/U>!WShlepm~> -rlkQFc2WuYm^DNd!<:;Vs5)!$VFCAAr&=X6""uNmanO$n^T2W8.4oIOI=P7"2B3T;PH)=<J^&bj -J^&bjp<<c)!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,OLC5R!<9Z;s5(?mQU*Jc1c$pEr\Fd71GU[80S?k/]+_?;D_3.Z?s%/[6qT!H'MsOR -XLEbmJ\-KFJ\1Wf"aC#R]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCqOL5#j!<:Vcs5)<.dBf;6Pld`!eG%N-ccEi!MGt)t'GM&f/o-BF\AZ\CJ_#D'J_#D' -p=9D?!,L/$!:g*gecGfDrmlT~> -rlkQFc2Wu[m^2us!<:;Vs5)!&aK(Mcoo9*D]?Brn'?@krTnQ>S&/5fh%P27HUThDNb^n#ic%4,j -c1]BcP5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm,.OL5#j!<9Z;s5(?i\"&2*on!7*X1J&;'=G$@PBfb/%1j'Z$R]8,Q(b:d\q.JE]7ISF -]Cri?GQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)MDdOT#70OT,=QOT#7WOL5#j!<:Vcs+/aPeq)D'etU_!TE&cYCB3o)rmh,MT`3Mm~> -rlkQFc2X!Nmf!49mf*:Zmf!4`m^2us!<:;Vs+/FGc%4,jc(`GdP5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm-!OT#70OT,=QOT#7WOL5#j!<9Z;s+.e5]7ISF]:un@GQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)MDtOT,=OOT,=1OT,=XOT,=XOT,=XOL5#k!<:Vcs42aoJY7ReJY8a1"9<5gCB3o)rmh,M -T`3Mm~> -rlkQFc2X!^mf*:Xmf*::mf*:amf*:amf*:am^2ut!<:;Vs36+YJWkYKJWlgl"9<)ZB)qK%rlkKD -PQ&gW~> -rjr:4]Dm-1OT,=OOT,=1OT,=XOT,=XOT,=XOL5#k!<9Z;s1<i,JTu`jJU!o6"9;c??3'Nqrjr42 -GlG=*~> -rmh2Of)MDtOT,=OOT,=)OT,=XOT,=XOL5#j!<:Vcs+(0$!.b-$!2';oCY!8$nc/U>!WShlepm~> -rlkQFc2X!^mf*:Xmf*:2mf*:amf*:am^2us!<:;Vs+(0$!.b-$!2';oB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-1OT,=OOT,=)OT,=XOT,=XOL5#j!<9Z;s+(0$!.b-$!2';o?FsMDnc/U#!WRED]79~> -rmh2Of)ME3OT,:\OSf+YOSf+WOS]%VOSo.`O8tB(!!&,[!;;NR!!&,[!;DTS!<&#Y!!&,Z!;qrU -!</)[!!&,[!<8.frr`?%en`jQs+/aPeq)D'f&5*]CY!8$nc/U>!WShlepm~> -rlkQFc2X!rmf*7emed(bmed(`me["_mem+imJu\C!!)Hd!;>j[!!)Hd!;Gp\!<)?b!!)Hc!;u9^ -!<2Ed!!)Hd!<;Jorr`?%c"G;;s+/FGc%4,jc/?hKB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-EOT,:\OSf+YOSf+WOS]%VOSo.`O8tB(!!&,[!;;NR!!&,[!;DTS!<&#Y!!&,Z!;qrU -!</)[!!&,[!<8.frr`?%]3`+cs+.e5]7ISF]AU:'?FsMDnc/U#!WRED]79~> -rmh2Of)ME2OT,:aO8o9B!!)qYrrE"ZrrDqXrrE(\rW)t[rW)t[rrDbSrW)t[rrDeTrr<4a!!&)\ -!<&#Z!;hlX!;hlW!<8/\!!&+frr`?%enb<%ec5]$eq)D'eq)E2ecT^=CB3o)rmh,MT`3Mm~> -rlkQFc2X!qmf*7jmJm7T!!)rbrrE#crrDrarrE)erW)udrW)udrrDc\rW)udrrDf]rr<5j!!)Ee -!<)?c!;l3a!;l3`!<;Ke!!)Gorr`?%c"I'mbl@`pc%4,jc%4-ubl_V'B)qK%rlkKDPQ&gW~> -rjr:4]Dm-DOT,:aO8o9B!!)qYrrE"ZrrDqXrrE(\rW)t[rW)t[rrDbSrW)t[rrDeTrr<4a!!&)\ -!<&#Z!;hlX!;hlW!<8/\!!&+frr`?%]3bNR])Vh^]7ISF]7ITQ])uBO?3'Nqrjr42GlG=*~> -rmh2Of)ME2OT,:aO8o9B!!)qYrrE"ZrrDtYrrE"ZrrE(\rrE%[rrDbSrrE%[rrDeTrr<4a!!&)\ -!<&#Z!;hlX!;hlX!</)[!!&+frr`?%enb<&ecDEDJ_#D'J_#D'iRS*HenY9Us8LRMs.KABJ,~> -rlkQFc2X!qmf*7jmJm7T!!)rbrrE#crrDubrrE#crrE)errE&drrDc\rrE&drrDf]rr<5j!!)Ee -!<)?c!;l3a!;l3a!<2Ed!!)Gorr`?%c"I'nblO".J^&bjJ^&bjiQVI;c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-DOT,:aO8o9B!!)qYrrE"ZrrDtYrrE"ZrrE(\rrE%[rrDbSrrE%[rrDeTrr<4a!!&)\ -!<&#Z!;hlX!;hlX!</)[!!&+frr`?%]3bNS])d-VJ\-KFJ\-KFiO]1u]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME2OT,:bO8o9B!!&,X!<&#Z!;qrY!;V`V!</)[!;;NS!</)[!;DTT!!SGa!0@0\rK.$Z -qiLgXqiLgXrfI-[!0FSf"9AJQC]D9&!MBFDeq)D'eq)E2ecT^=CB3o)rmh,MT`3Mm~> -rlkQFc2X!qmf*7kmJm7T!!)Ha!<)?c!;u9b!;Z'_!<2Ed!;>j\!<2Ed!;Gp]!!Vcj!:BgerU0[c -qsOIaqsOIarpKdd!:I5o"9AJHBE,in!L!M7c%4,jc%4-ubl_V'B)qK%rlkKDPQ&gW~> -rjr:4]Dm-DOT,:bO8o9B!!&,X!<&#Z!;qrY!;V`V!</)[!;;NS!</)[!;DTT!!SGa!0@0\rK.$Z -qiLgXqiLgXrfI-[!0FSf"9AJ6?N7mS!I+Tq]7ISF]7ITQ])uBO?3'Nqrjr42GlG=*~> -rmh2Of)ME2OT,:_O8o9Br;chYrrE"ZrrDtYrrDkVrrE%[rrDbSrrE%[rrDbS"TXVa!0@3YOT,=X -OT,=XOT,=[OT,:\OL5#j!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!qmf*7hmJm7Tr;cibrrE#crrDubrrDl_rrE&drrDc\rrE&drrDc\"T[rj!:Bjbmf*:a -mf*:amf*:dmf*7em^2us!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-DOT,:_O8o9Br;chYrrE"ZrrDtYrrDkVrrE%[rrDbSrrE%[rrDbS"TXVa!0@3YOT,=X -OT,=XOT,=[OT,:\OL5#j!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)ME2OT,:_O8o9Br;ckZrW)nYrrE(\rrE(\rrE%[rrE(\rrE%[rrDbSrrE%[rrDbSrrE(\ -rrDtYrrDqXrrE(\rrE(\rrE%[rr<%\[/U7/s41uc_U\a\!.i^Peq)D'f&>0^CY!8$nc/U>!WShl -epm~> -rlkQFc2X!qmf*7hmJm7Tr;clcrW)obrrE)errE)errE&drrE)errE&drrDc\rrE&drrDc\rrE)e -rrDubrrDrarrE)errE)errE&drr<&e[/U7/s353V_T`+F!.iCGc%4,jc/HnLB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm-DOT,:_O8o9Br;ckZrW)nYrrE(\rrE(\rrE%[rrE(\rrE%[rrDbSrrE%[rrDbSrrE(\ -rrDtYrrDqXrrE(\rrE(\rrE%[rr<%\[/U7/s1;V;_Rfhn!.hb5]7ISF]A^@(?FsMDnc/U#!WRED -]79~> -rmh2Of)ME3OT#4aO8o9B!!&,[!!&,[!<&#X!<&#W!<8/Z!!&,Z!;MZS!!&,Z!;DTT!<8/\!</)W -!;qrW!<8/Z!!&,Z!4;b/!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!rmf!1jmJm7T!!)Hd!!)Hd!<)?a!<)?`!<;Kc!!)Hc!;Q!\!!)Hc!;Gp]!<;Ke!<2E` -!;u9`!<;Kc!!)Hc!4;b/!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-EOT#4aO8o9B!!&,[!!&,[!<&#X!<&#W!<8/Z!!&,Z!;MZS!!&,Z!;DTT!<8/\!</)W -!;qrW!<8/Z!!&,Z!4;b/!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)MCqOL5#j!<:Vcs30$o!;P+GTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2Wu[m^2us!<:;Vs3/^f!;Oe>P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm,.OL5#j!<9Z;s3/(T!;O/,GQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)MCqOL5#j!<:Vcs81CE!85s'!;P+GTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2Wu[m^2us!<:;Vs81(<!85Ws!;Oe>P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm,.OL5#j!<9Z;s80G*!85!a!;O/,GQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)MCqOL5#j!<:Vcs8(:H!<(IK!8H'+!7h/FecDEDJ_#D'J_#D'iRS*HenY9Us8LRMs.KAB -J,~> -rlkQFc2Wu[m^2us!<:;Vs8't?!<(.B!8Ga"!6kN=blO".J^&bjJ^&bjiQVI;c"@%Hs8L7Ds-*H, -J,~> -rjr:4]Dm,.OL5#j!<9Z;s8'>-!<'M0!8G*e!4r7+])d-VJ\-KFJ\-KFiO]1u]3YL-s8KV2s*4OT -J,~> -rmh2Of)MCqOL5#j!<:Vcs8(:H!<(IK!<1RJ!;tFI!!:^O!<(LJ!:n\@!;P+GTE'PoJ_#D'J_&f2 -")HJ'!:g*gecGfDrmlT~> -rlkQFc2Wu[m^2us!<:;Vs8't?!<(.B!<17A!;t+@!!:CF!<(1A!:nA7!;Oe>P5p0YJ^&bjJ^*/u -")#kk!:g*gblRj.rlor~> -rjr:4]Dm,.OL5#j!<9Z;s8'>-!<'M0!<0V/!;sJ.!!9b4!<'P/!:m`%!;O/,GQ<<,J\-KFJ\0mQ -"(&TG!:g*g])hqVrk![~> -rmh2Of)MD@OHBJF!<:Vcs8(:H!<(IN!7o^$rRLrKrmh&Lrmq)LrRLrKrmh&Lo@<mApsoJ=!.i^P -eq)D'f&>0^CY!8$nc/U>!WShlepm~> -rlkQFc2X!*mZ@GO!<:;Vs8't?!<(.E!6ragrQP<BrlkECrltHCrQP<BrlkECo?@78prri'!.iCG -c%4,jc/HnLB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,ROHBJF!<9Z;s8'>-!<'M3!5#iCrOW%0rjr.1rk&11rOW%0rjr.1o=Fu&pq$QO!.hb5 -]7ISF]A^@(?FsMDnc/U#!WRED]79~> -rmh2Of)MDsOT#72OT,=[OHBJF!<:Vcs8(:H!<(IK!;b7K!7o^$r71iJrmh&Lr71iJo[X!BpsoJ= -!.i^Peq)D'f&>0^CY!8$nc/U>!WShlepm~> -rlkQFc2X!]mf!4;mf*:dmZ@GO!<:;Vs8't?!<(.B!;aqB!6ragr653ArlkECr653AoZ[@9prri' -!.iCGc%4,jc/HnLB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-0OT#72OT,=[OHBJF!<9Z;s8'>-!<'M0!;a;0!5#iCr4;q/rjr.1r4;q/oXb)'pq$QO -!.hb5]7ISF]A^@(?FsMDnc/U#!WRED]79~> -rmh2Of)ME0OT,=OOT,:^O8o:6OSo1YOHBJF!<:Vcs8(=E!<(LH!<:UM!;tCJ!<1RG!;+hB!;P+G -TE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Xmf*7gmJm7?mem.bmZ@GO!<:;Vs8("<!<(1?!<::D!;t(A!<17>!;+M9!;Oe> -P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=OOT,:^O8o:6OSo1YOHBJF!<9Z;s8'A*!<'P-!<9Y2!;sG/!<0V,!;*l'!;O/, -GQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT,=[OT,=JOT#7KOT,=[OHBJF!<:Vcs8(:H!;b7H!<(IN!7o^$r71iJrmh&L -ma_@<psoJ=!.i^Peq)D'f&>0^CY!8$nc/U>!WShlepm~> -rlkQFc2X!omf*:Ymf*:dmf*:Smf!4Tmf*:dmZ@GO!<:;Vs8't?!;aq?!<(.E!6ragr653ArlkEC -m`b_3prri'!.iCGc%4,jc/HnLB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-BOT,=POT,=[OT,=JOT#7KOT,=[OHBJF!<9Z;s8'>-!;a;-!<'M3!5#iCr4;q/rjr.1 -m^iH!pq$QO!.hb5]7ISF]A^@(?FsMDnc/U#!WRED]79~> -rmh2Of)ME0OT,=POT,=[OT,=HOT#7MOT,=[OHBJF!<:Vcs8(:H!;b7H!<(IK!<1OL!<1RL!<(IK -!<(IK!;+hB!;P+GTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:Qmf!4Vmf*:dmZ@GO!<:;Vs8't?!;aq?!<(.B!<14C!<17C!<(.B -!<(.B!;+M9!;Oe>P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=HOT#7MOT,=[OHBJF!<9Z;s8'>-!;a;-!<'M0!<0S1!<0V1!<'M0 -!<'M0!;*l'!;O/,GQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT,=[OT,=SOSStSOT#7OOT,=[OHBJF!<:Vcs81CG!;k@G!!1XNrmq&K!S.8K -f)5UAf),OEecDEDJ_#D'J_#D'iRS*HenY9Us8LRMs.KABJ,~> -rlkQFc2X!omf*:Ymf*:dmf*:\meQq\mf!4Xmf*:dmZ@GO!<:;Vs81(>!;k%>!!1=ErltEB!R1WB -c2@Y8c27S<blO".J^&bjJ^&bjiQVI;c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-BOT,=POT,=[OT,=SOSStSOT#7OOT,=[OHBJF!<9Z;s80G,!;jD,!!0\3rk&.0!P8@0 -]DVa&]DM[*])d-VJ\-KFJ\-KFiO]1u]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME0OT,=POT,=[OT,=DOT,=QOT,=[OHBJF!<:Vcs5_`2!8uE/TE'PoJ_#D'J_&f2")HJ' -!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:Mmf*:Zmf*:dmZ@GO!<:;Vs5_E)!8u*&P5p0YJ^&bjJ^*/u")#kk -!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=DOT,=QOT,=[OHBJF!<9Z;s5^cl!8tHiGQ<<,J\-KFJ\0mQ"(&TG -!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT,=[OT,=FOT#7OOT,=[OHBJF!<:Vcs5hf3!8l?.TE'PoJ_#D'J_&f2")HJ' -!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:Omf!4Xmf*:dmZ@GO!<:;Vs5hK*!8l$%P5p0YJ^&bjJ^*/u")#kk -!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=FOT#7OOT,=[OHBJF!<9Z;s5gim!8kBhGQ<<,J\-KFJ\0mQ"(&TG -!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT,=[OT,=SOSStUOT#7MOT,=[OHBJF!<:Vcs68,5!8c9-TE'PoJ_#D'J_&f2 -")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:\meQq^mf!4Vmf*:dmZ@GO!<:;Vs67f,!8bs$P5p0YJ^&bjJ^*/u -")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=SOSStUOT#7MOT,=[OHBJF!<9Z;s67/o!8b<gGQ<<,J\-KFJ\0mQ -"(&TG!:g*g])hqVrk![~> -rmh2Of)ME0OT,=OOT,:^O8o:IOT#7KOT,=[OHBJF!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*g -ecGfDrmlT~> -rlkQFc2X!omf*:Xmf*7gmJm7Rmf!4Tmf*:dmZ@GO!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*g -blRj.rlor~> -rjr:4]Dm-BOT,=OOT,:^O8o:IOT#7KOT,=[OHBJF!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g -])hqVrk![~> -rmh2Of)ME0OT,=NOT#74OS]"XOHBJF!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Wmf!4=meZtamZ@GO!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=NOT#74OS]"XOHBJF!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)ME0OT,<pOHBJF!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:$mZ@GO!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,<pOHBJF!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)ME0OT,<pOHBJF!<:Vcs2*=fTE'PoJ_#D'J_&f2")HJ'!:g*gecGfDrmlT~> -rlkQFc2X!omf*:$mZ@GO!<:;Vs2*"]P5p0YJ^&bjJ^*/u")#kk!:g*gblRj.rlor~> -rjr:4]Dm-BOT,<pOHBJF!<9Z;s2)AKGQ<<,J\-KFJ\0mQ"(&TG!:g*g])hqVrk![~> -rmh2Of)MD@OHBJF!<:Vcs1m3:s+13$s+140rr`=;enY9Us8LRMs.KABJ,~> -rlkQFc2X!*mZ@GO!<:;Vs1lm1s+13$s+140rr`=7c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,ROHBJF!<9Z;s1l6ts+13$s+140rr`=.]3YL-s8KV2s*4OTJ,~> -rmh2Of)MD@OHBJF!<:Vcs+/aPeq)D'etLXt!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!*mZ@GO!<:;Vs+/FGc%4,jc(WAb!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,ROHBJF!<9Z;s+.e5]7ISF]:lh>!+*9D!:g*g])hqVrk![~> -rmh2Of)MCoOLC5S!<:Vcs42c$JcC<$JcDPGs.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYm^DNe!<:;Vs36,pJcC<$JcDPGs-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OLC5S!<9Z;s1<j^JcC<$JcDPGs*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOLC5T!<:Vcs474$TRibeTRic2TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2WuYm^DNf!<:;Vs3:RpPC\pKPC\pmP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,OLC5T!<9Z;s1A;^G_(*jG_(+7GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME0OT,=OOSo.[O8uYL!!'6b#6=eTC]DucTRk[Feq)D'f#-)"s8S_p!,L/$!:g*gecGfD -rmlT~> -rlkQFc2X!omf*:Xmem+dmJsW^!!'7k#6=eKBE-6VPC^u0c%4,jc,7fes8S8c!,'Ph!:g*gblRj. -rlor~> -rjr:4]Dm-BOT,=OOSo.[O8uYL!!'6b#6=e9?N7Y;G_*JX]7ISF]>M8As8R<H!+*9D!:g*g])hqV -rk![~> -rmh2Of)ME0OT,=POT,=\OT#77OT#7;O9>QF!0@2dO9P^benb<:s+-j&T^;]0TRibeT_>#Ys6%r= -!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:emf!4@mf!4DmK<OX!:BimmKN[kc"I($s+-BnPO/=#PC\pKPP11?s6%W4 -!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=\OT#77OT#7;O9>QF!0@2dO9P^b]3bNLs+,FSGjPH]G_(*jGkQ@^s6%!" -!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT,=[OT,=TOT,:\OSf+EOT#7QOT#7[OT#7QOSf+POT#4[OT#7YOSo1ZOT#7Y -OT#7[OSo1XOT#4[OT#7SOT#7[OT#7WO9bjdenb<:s.H$9!9F4\s6eG=!2+lCJH16$p]1?okgg'5 -!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:]mf*7emed(Nmf!4Zmf!4dmf!4Zmed(Ymf!1dmf!4bmem.cmf!4b -mf!4dmem.amf!1dmf!4\mf!4dmf!4`mK`gmc"I($s-&Xt!9F4\s6e,4!0_s6JH16$p]1?okfjEt -!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=TOT,:\OSf+EOT#7QOT#7[OT#7QOSf+POT#4[OT#7YOSo1ZOT#7Y -OT#7[OSo1XOT#4[OT#7SOT#7[OT#7WO9bjd]3bNLs*/d>!9F4\s6dK"!-j%pJH16$p]1?okdq.G -!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT#7NOT,:aO8o9B!!)bTq>gDSrW)YRrrE(\rrDYPrW)SPrW)t[rrE(\rrE(\ -rrE(\rr<Li!!&)\!0E9B!0E9B!<&#Y!:u<P!<8/\!;_c`!<:Vcs474CTE'QCkPkV7s8VQ="/#Xe -!.k0$s+14HrrUdOs6/#?TE,"bTE&cYCB3o)rmh,MT`3Mm~> -rlkQFc2X!omf*:Ymf!4Wmf*7jmJm7T!!)c]q>gE\rW)Z[rrE)errDZYrW)TYrW)udrrE)errE)e -rrE)err<Mr!!)Ee!:K7T!:K7T!<)?b!;#XY!<;Ke!;c*i!<:;Vs3:S-P5p16kPkV.s8VQ4"-W_K -!.k0$s+14HrrUIFs6.]6P5tWHP5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm-BOT,=POT#7NOT,:aO8o9B!!)bTq>gDSrW)YRrrE(\rrDYPrW)SPrW)t[rrE(\rrE(\ -rrE(\rr<Li!!&)\!0E9B!0E9B!<&#Y!:u<P!<8/\!;_c`!<9Z;s1A;UGQ<<pkPkUqs8VQ""*afj -!.k0$s+14HrrTh4s6.'$GQ@bgGQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)ME0OT,=OOSf+OOT,:aO8o9B!!)5ErrDbSr;cGNrr<+^!!)\RrrE%[rr<+^!!)tZrr<Fg -!!&)\!0@0\O8o:ZOT,=[OT,=NOSo1TO9kpeenb<:s.H"bJcFp5!nRDOn(%T6!2'=Cs+13$s8)`s -f)Pd6ed7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!omf*:Xmed(Xmf*7jmJm7T!!)6NrrDc\r;cHWrr<,g!!)][rrE&drr<,g!!)ucrr<Gp -!!)Ee!:BgemJm7cmf*:dmf*:Wmem.]mKimnc"I($s-&WHJcFp5!mUcFn'(ru!0[D6s+13$s8)`s -c2[h-bmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-BOT,=OOSf+OOT,:aO8o9B!!)5ErrDbSr;cGNrr<+^!!)\RrrE%[rr<+^!!)tZrr<Fg -!!&)\!0@0\O8o:ZOT,=[OT,=NOSo1TO9kpe]3bNLs*/bgJcFp5!k\L4n%/[H!-eKps+13$s8)`s -]Dqop]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME0OT,=LOT#7ROT,:aO8o9B!!);GrW)SPrrD#>rrE%[rr<+^!!)tZrr<@e!!&)\!0@0\ -OSJnUOT,=MOT,=UO9kpeenb<:s.H"bJcFp5!nRDOn(%T6!2'=Cs+13$s8)`sf)Pd6ed7uLs.H"b -CY!8$nc/U>!WShlepm~> -rlkQFc2X!omf*:Umf!4[mf*7jmJm7T!!)<PrW)TYrrD$GrrE&drr<,g!!)ucrr<An!!)Ee!:Bge -meHk^mf*:Vmf*:^mKimnc"I($s-&WHJcFp5!mUcFn'(ru!0[D6s+13$s8)`sc2[h-bmBR6s-&WH -B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-BOT,=LOT#7ROT,:aO8o9B!!);GrW)SPrrD#>rrE%[rr<+^!!)tZrr<@e!!&)\!0@0\ -OSJnUOT,=MOT,=UO9kpe]3bNLs*/bgJcFp5!k\L4n%/[H!-eKps+13$s8)`s]Dqop]*W]^s*/bg -?FsMDnc/U#!WRED]79~> -rmh2Of)ME0OT,=POT,=[OT,=SOT,:aO8o9B!!)bTq>gJUrW)POr;bi=rrE%[rr<+^!!)tZrrE(\ -#lp%e!0@2BO8o:UOT,=NOSo1TO9kpeenb<:s.H"bl2L_`Jc>iPf)Pd=ecVQFTE+<XrW%NLJcCr6 -!nRDOo@EpApsobE!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!omf*:Ymf*:dmf*:\mf*7jmJm7T!!)c]q>gK^rW)QXr;bjFrrE&drr<,g!!)ucrrE)e -#lsAn!:BjTmJm7^mf*:Wmem.]mKimnc"I($s-&WHl2L_`Jc>iPc2[h4bla.0P5sqKrW%NLJcCr6 -!mUcFo?I:8prs,/!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-BOT,=POT,=[OT,=SOT,:aO8o9B!!)bTq>gJUrW)POr;bi=rrE%[rr<+^!!)tZrrE(\ -#lp%e!0@2BO8o:UOT,=NOSo1TO9kpe]3bNLs*/bgl2L_`Jc>iP]Dqp"]*!9XGQ@(0rW%NLJcCr6 -!k\L4o=P#&pq$iW!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME0OT,=POT#7[OT,=SOT,:aO8o9B!!)GKrW)MNrrE(\rrD)@rW)t[rrE(\rrE(\rrE%[ -rrE(\rrE%[rrE(\rW)qZrrDVOrrE(\rrDnW#lt"VC]DucTV);as8)ferr<&irr<%\rrUdOs6nM@ -TE(Vbl2L_`qu6WrJcC<$Rf<H?s8VuIr;ccH!!)fF$(q:uTV):#enY9Us8LRMs.KABJ,~> -rlkQFc2X!omf*:Ymf!4dmf*:\mf*7jmJm7T!!)HTrW)NWrrE)errD*IrW)udrrE)errE)errE&d -rrE)errE&drrE)erW)rcrrDWXrrE)errDo`#lt"MBE-6VPEQ"Gs8)ferr<&irr<%\rrUIFs6n27 -P5pdHl2L_`qu6WrJcC<$Rf<H6s8Vu@r;cc?!!)f=$'PAhPEPuZc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-BOT,=POT#7[OT,=SOT,:aO8o9B!!)GKrW)MNrrE(\rrD)@rW)t[rrE(\rrE(\rrE%[ -rrE(\rrE%[rrE(\rW)qZrrDVOrrE(\rrDnW#lt";?N7Y;G^'5fs8)ferr<&irr<%\rrTh4s6mQ% -GQ;sgl2L_`qu6WrJcC<$Rf<H$s8Vu.r;cc-!!)f+$$ZIMG^'3p]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME0OT,=PO9#?Cr;cPQrW!+`!!&)\!8Wb9!<8/[!9B7A!!&,[!<&#X!<&#Z!<8/\!<&#W -!</)W!;;NR!<8/[!;hia!<:Vcs474CTE+rj!!)ut!!)'Z!!&,\!nRDOn(%T6!2'>Vrr<&rrr<%M -s+13=rrUdOs8:FJ!<(IK!<(IK!;P+OTE,"bTE&cYCB3o)rmh,MT`3Mm~> -rlkQFc2X!omf*:YmK!=Ur;cQZrW!,i!!)Ee!8[)B!<;Kd!9ESJ!!)Hd!<)?a!<)?c!<;Ke!<)?` -!<2E`!;>j[!<;Kd!;l0j!<:;Vs3:S-P5tR]!!)ut!!)'Z!!&,\!mUcFn'(ru!0[EIrr<&rrr<%M -s+13=rrUIFs8:+A!<(.B!<(.B!;OeFP5tWHP5o7?B)qK%rlkKDPQ&gW~> -rjr:4]Dm-BOT,=PO9#?Cr;cPQrW!+`!!&)\!8Wb9!<8/[!9B7A!!&,[!<&#X!<&#Z!<8/\!<&#W -!</)W!;;NR!<8/[!;hia!<9Z;s1A;UGQ@^B!!)ut!!)'Z!!&,\!k\L4n%/[H!-eM.rr<&rrr<%M -s+13=rrTh4s89J/!<'M0!<'M0!;O/4GQ@bgGQ;'^?3'Nqrjr42GlG=*~> -rmh2Of)ME0OT,<BOT,<rO9kpeenb<:s.H"brVlitrVm-'s8N'!s8N'!rVuisrVult!<<#urr;iq -PQ(^8s8W#Jp]19D&>0#r!<<'!!<3$!rr<'!!!*#urrDrr!!)utqZ)3IJcD;@!nRDOrRLrKqpk`I -rmh,Nf%0g#rRM:J!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!omf*9Kmf*:&mKimnc"I($s-&WHrVlitrVm-'s8N'!s8N'!rVuisrVult!<<#urr;iq -PQ(^/s8W#Ap]19;&<d*X!<<'!!<3$!rr<'!!!*#urrDrr!!)utqZ)3IJcD;@!mUcFrQP<Bqoo*@ -rlkKEc-?4frQPY4!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-BOT,<BOT,<rO9kpe]3bNLs*/bgrVlitrVm-'s8N'!s8N'!rVuisrVult!<<#urr;iq -PQ(]rs8W#/p]19)&9n2"!<<'!!<3$!rr<'!!!*#urrDrr!!)utqZ)3IJcD;@!k\L4rOW%0qmuh. -rjr43]=\%BrOWA\!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME0OT,<BOT,<rO9kpeenb<:s.H"brVlitrVlitrr3-%rrE*!!;uis!;uls!<2uu!<)ot -!0I3^f)PdIf(oCEecVQFTE+ukrr<<(!!*$!s8N)trr<&rrr<&rrr<%Ms+13=rrUdOs8CLK!;k=I -!<1OO!7o^$qpl(H!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!omf*9Kmf*:&mKimnc"I($s-&WHrVlitrVlitrr3-%rrE*!!;uis!;uls!<2uu!<)ot -!0I3^c2[h@c2%G<bla.0P5tU^rr<<(!!*$!s8N)trr<&rrr<&rrr<%Ms+13=rrUIFs8C1B!;k"@ -!<14F!6ragqooG2!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-BOT,<BOT,<rO9kpe]3bNLs*/bgrVlitrVlitrr3-%rrE*!!;uis!;uls!<2uu!<)ot -!0I3^]Dqp.]D;O*]*!9XGQ@aCrr<<(!!*$!s8N)trr<&rrr<&rrr<%Ms+13=rrTh4s8BP0!;jA. -!<0S4!5#iCqn!/Z!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)MCoOSY(;!5Xa'!<:Vcs474CTE+rj!!)ut!!*#urrDio!!)rs!!)ut!!)ut!!&,\!nRDO -qUYQEqpkkB!2'>krs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H?s8W&K!!)oI!!*#L!W^dO -qUPtG!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYmeZAM!5\(0!<:;Vs3:S-P5tR]!!)ut!!*#urrDio!!)rs!!)ut!!)ut!!&,\!mUcF -qT\p<qoo5,!0[E^rs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H6s8W&B!!)o@!!*#C!W^IF -qTT>1!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,OSY(;!5Xa'!<9Z;s1A;UGQ@^B!!)ut!!*#urrDio!!)rs!!)ut!!)ut!!&,\!k\L4 -qRcY*qmurT!-eMCrs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H$s8W&0!!)o.!!*#1!W]h4 -qR[&Y!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)MCoOLC5W!<:Vcs474CTE+rjquH]q!!)cn!!)rs!!)ut!!)ut!!&,\!nRDOq:>NFqUPbA -!2'>krs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H?s8W&K!!)oI!!*#LrrDlG$(q:uTV):# -enY9Us8LRMs.KABJ,~> -rlkQFc2WuYm^DNi!<:;Vs3:S-P5tR]quH]q!!)cn!!)rs!!)ut!!)ut!!&,\!mUcFq9Am=qTT,+ -!0[E^rs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H6s8W&B!!)o@!!*#CrrDl>$'PAhPEPuZ -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,OLC5W!<9Z;s1A;UGQ@^BquH]q!!)cn!!)rs!!)ut!!)ut!!&,\!k\L4q7HV+qRZiS -!-eMCrs8]*rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$Rf<H$s8W&0!!)o.!!*#1rrDl,$$ZIMG^'3p -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDdOFdGurs8]*enb<:s.H"brVlitq>UEpp\t3nr;Q`srVlitrVlitOT,C5s8VlF!!)iG -"/#Xe!<3!)!<<'!s8N*!rrE#t!!)or!!)or!!%TMJcD2=!nRDOrRLrKqpk`Irmh,Nec>Qt$(q:u -TV):#enY9Us8LRMs.KABJ,~> -rlkQFc2X!NmXbE)rs8]*c"I($s-&WHrVlitq>UEpp\t3nr;Q`srVlitrVlitOT,C,s8Vl=!!)i> -"-W_K!<3!)!<<'!s8N*!rrE#t!!)or!!)or!!%TMJcD2=!mUcFrQP<Bqoo*@rlkKEblIUb$'PAh -PEPuZc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-!OFdGurs8]*]3bNLs*/bgrVlitq>UEpp\t3nr;Q`srVlitrVlitOT,Bos8Vl+!!)i, -"*afj!<3!)!<<'!s8N*!rrE#t!!)or!!)or!!%TMJcD2=!k\L4rOW%0qmuh.rjr43])_]>$$ZIM -G^'3p]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDrOT#7ROFdGurs8]*enb<:s.H"brVlitq>UEpp\t3nr;Q`srVlitrVlitrr2ruPlCg9 -s8VQ="/#Xe!<3!)!<<'!s8N*!rrE&urrDrr!!)or!!*#u!!%TMJcD>A!nRDOr71iJrRLrKrRM&N -f%'iued7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!\mf!4[mXbE)rs8]*c"I($s-&WHrVlitq>UEpp\t3nr;Q`srVlitrVlitrr2ruPlCg0 -s8VQ4"-W_K!<3!)!<<'!s8N*!rrE&urrDrr!!)or!!*#u!!%TMJcD>A!mUcFr653ArQP<BrQPEE -c-67cbmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-/OT#7ROFdGurs8]*]3bNLs*/bgrVlitq>UEpp\t3nr;Q`srVlitrVlitrr2ruPlCfs -s8VQ""*afj!<3!)!<<'!s8N*!rrE&urrDrr!!)or!!*#u!!%TMJcD>A!k\L4r4;q/rOW%0rOW.3 -]=S(?]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)MDqOT,=SOFdGurs8]*enb<:s.H"brr;osr;ZZpr;ZZps8W&us8W&urVuisPQ(^8s8VQ= -"eYjg!<<)u!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`rJcC<$Sc8cBs8VuIr;cfIrrE)MrW)oJ$(q:u -TV):#enY9Us8LRMs.KABJ,~> -rlkQFc2X![mf*:\mXbE)rs8]*c"I($s-&WHrr;osr;ZZpr;ZZps8W&us8W&urVuisPQ(^/s8VQ4 -"d8qM!<<)u!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`rJcC<$Sc8c9s8Vu@r;cf@rrE)DrW)oA$'PAh -PEPuZc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-.OT,=SOFdGurs8]*]3bNLs*/bgrr;osr;ZZpr;ZZps8W&us8W&urVuisPQ(]rs8VQ" -"aC#l!<<)u!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`rJcC<$Sc8c's8Vu.r;cf.rrE)2rW)o/$$ZIM -G^'3p]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDqOT,=SOFdGurs8]*enb<:s.H"bJcFp5!nRDOn(%T6!2'=Cs+13$s8)`sf)Pd6ed7uL -s.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X![mf*:\mXbE)rs8]*c"I($s-&WHJcFp5!mUcFn'(ru!0[D6s+13$s8)`sc2[h-bmBR6 -s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-.OT,=SOFdGurs8]*]3bNLs*/bgJcFp5!k\L4n%/[H!-eKps+13$s8)`s]Dqop]*W]^ -s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME1OSo1YOT#4[OT#7ZOT#4]O8o:SOFdGurs8]*enb<:s.H"bJcFp5!nRDOn(%T6!2'=C -s+13$s8)`sf)Pd6ed7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!pmem.bmf!1dmf!4cmf!1fmJm7\mXbE)rs8]*c"I($s-&WHJcFp5!mUcFn'(ru!0[D6 -s+13$s8)`sc2[h-bmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-COSo1YOT#4[OT#7ZOT#4]O8o:SOFdGurs8]*]3bNLs*/bgJcFp5!k\L4n%/[H!-eKp -s+13$s8)`s]Dqop]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME2OT,=\OT,=[OT#7[OT,:`O8o9BOT#7ROFdGurs8]*enb<:s.H"bJcFp5!nRDOn(%T6 -!2'=Cs+13$s8)`sf)Pd6ed7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!qmf*:emf*:dmf!4dmf*7imJm7Tmf!4[mXbE)rs8]*c"I($s-&WHJcFp5!mUcFn'(ru -!0[D6s+13$s8)`sc2[h-bmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-DOT,=\OT,=[OT#7[OT,:`O8o9BOT#7ROFdGurs8]*]3bNLs*/bgJcFp5!k\L4n%/[H -!-eKps+13$s8)`s]Dqop]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME3OT,=ZOT,=\OT,=[OT,:^O8o:[OT,=SOFdGurs8]*enb<:s.H"bJcFp5!nRDOn(%T6 -!2'=Cs+13$s8)`sf)Pd6ed7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!rmf*:cmf*:emf*:dmf*7gmJm7dmf*:\mXbE)rs8]*c"I($s-&WHJcFp5!mUcFn'(ru -!0[D6s+13$s8)`sc2[h-bmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-EOT,=ZOT,=\OT,=[OT,:^O8o:[OT,=SOFdGurs8]*]3bNLs*/bgJcFp5!k\L4n%/[H -!-eKps+13$s8)`s]Dqop]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME3OSJnVOT,=[OT,:^O8o:[OT,=SOFdGurs8]*enb<:s.H"bJcFp5!nRDOn(%T6!2'=C -s+13$s8)`sf)Pd6ed7uLs.H"bCY!8$nc/U>!WShlepm~> -rlkQFc2X!rmeHk_mf*:dmf*7gmJm7dmf*:\mXbE)rs8]*c"I($s-&WHJcFp5!mUcFn'(ru!0[D6 -s+13$s8)`sc2[h-bmBR6s-&WHB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-EOSJnVOT,=[OT,:^O8o:[OT,=SOFdGurs8]*]3bNLs*/bgJcFp5!k\L4n%/[H!-eKp -s+13$s8)`s]Dqop]*W]^s*/bg?FsMDnc/U#!WRED]79~> -rmh2Of)ME3OT,=VOT,=[OT,:^O8o:[OT,=SOFdGurs8]*enb<:s.H"bJ_&u7s8N)Mn"9^^TE'Po -J_#D'q:>TGkgg'5!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!rmf*:_mf*:dmf*7gmJm7dmf*:\mXbE)rs8]*c"I($s-&WHJ^*?%s8N)DmumeQP5p0Y -J^&bjq9As>kfjEt!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-EOT,=VOT,=[OT,:^O8o:[OT,=SOFdGurs8]*]3bNLs*/bgJ\1'Vs8N)2ms"m6GQ<<, -J\-KFq7H\,kdq.G!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME2OT,=\OT#7[OT,=[OT,:`O8o9BOT#7XOT,=ZOFdGurs/W)enb<:s.H$9s5X.H!!&[C -s+13$s7ZHmf'&b4!<8^b!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!qmf*:emf!4dmf*:dmf*7imJm7Tmf!4amf*:cmXbE)rs/W)c"I($s-&Xts5X.H!!&46 -s+13$s7ZHmc01>s!<87H!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-DOT,=\OT#7[OT,=[OT,:`O8o9BOT#7XOT,=ZOFdGurs/W)]3bNLs*/d>s5X.H!!%7p -s+13$s7ZHm]BFJF!<7:g!+*9D!:g*g])hqVrk![~> -rmh2Of)ME1OSf+YOSo.ZOSo.ZOT#4[OT#7YOT,=ZOFdGurs&Q(enb<:s.FqoJ_#D'J_%`i!<;0] -#QLHi!,L/$!:g*gecGfDrmlT~> -rlkQFc2X!pmed(bmem+cmem+cmf!1dmf!4bmf*:cmXbE)rs&Q(c"I($s-&#YJ^&bjJ^)*W!<;0] -#QL!O!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-COSf+YOSo.ZOSo.ZOT#4[OT#7YOT,=ZOFdGurs&Q(]3bNLs*0+,J\-KFJ\/h3!<;0] -#QK$n!+*9D!:g*g])hqVrk![~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCJcC<$JcDVIs.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6JcC<$JcDVIs-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pJcC<$JcDVIs*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MDdOFdGurs&Q(enb<:s.J-HrW)-]r;`ktrrD!W!!(=ErW%NLJcD>As.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-)4;rW)-]r;`ktrrD!W!!(=ErW%NLJcD>As-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*3;urW)-]r;`ktrrD!W!!(=ErW%NLJcD>As*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)MDdOFdGurs&Q(enb<:s.K5hhu<ZVqu6Wrn,E@fV>gMqp&Fmho)A[io)A[ih#@?Squ6Wr -JcC<$V>pRg"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-*<[hu<ZVqu6Wrn,E@fV>gMqp&Fmho)A[io)A[ih#@?Squ6Wr -JcC<$V>pRZ"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*4D@hu<ZVqu6Wrn,E@fV>gMqp&Fmho)A[io)A[ih#@?Squ6Wr -JcC<$V>pR?"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MDdOFdGurs8]*enb<:s.KAlrVliti;WcWqu6Wrn,E@fV>gMqo`"mkrVlitj8T)Zh#@?S -qu6WrJcC<$V>pRg"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X!NmXbE)rs8]*c"I($s-*H_rVliti;WcWqu6Wrn,E@fV>gMqo`"mkrVlitj8T)Zh#@?S -qu6WrJcC<$V>pRZ"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-!OFdGurs8]*]3bNLs*4PDrVliti;WcWqu6Wrn,E@fV>gMqo`"mkrVlitj8T)Zh#@?S -qu6WrJcC<$V>pR?"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq6!<:Vcs474CrrE#t!!)rsrW)lrquHcsrrE&urrDrr!!)utqZ-9gqZ-Tpr;cfr -rrE*!rrDZjrW!!!!<3#s!<3#u!"T#/!<3$!rr<'!!!*$!!<3#s!<3#u!!*&u!;ulr!!3*"o`"mk -rVm-'s8N'!s8N'!rVuisrVult!<<#urr;iqp&G$l#lal)rr<'!!!*#urrDrr!!)utqZ,RSrr@WM -JcEpns.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE#t!!)rsrW)lrquHcsrrE&urrDrr!!)utqZ-9gqZ-Tpr;cfr -rrE*!rrDZjrW!!!!<3#s!<3#u!"T#/!<3$!rr<'!!!*$!!<3#s!<3#u!!*&u!;ulr!!3*"o`"mk -rVm-'s8N'!s8N'!rVuisrVult!<<#urr;iqp&G$l#lal)rr<'!!!*#urrDrr!!)utqZ,RSrr@WM -JcEpns-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE#t!!)rsrW)lrquHcsrrE&urrDrr!!)utqZ-9gqZ-Tpr;cfr -rrE*!rrDZjrW!!!!<3#s!<3#u!"T#/!<3$!rr<'!!!*$!!<3#s!<3#u!!*&u!;ulr!!3*"o`"mk -rVm-'s8N'!s8N'!rVuisrVult!<<#urr;iqp&G$l#lal)rr<'!!!*#urrDrr!!)utqZ,RSrr@WM -JcEpns*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq6!<:Vcs474CrrE#t!!)ut!!*#u!!*#u!!)ut!!*#u!!)ut!!)or!!)or!!)Kf -!!)or!!)ut!!)ut"T\Q&s8N)lrr<&us8N*!rr<&trr<&us8N'1rr<'!!<<'!!<3$!rrE*!!<)ot -!<3#u!<2uu!<2uu!<3#u!;-9k!<)ot!<3!%!<3'!rrDus!!)rsrrE&u!!)ut!!)Qhrr<<(!!*$! -s8N)trr<&rrr<&rrr<&Ts8N(Ms+13ns8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE#t!!)ut!!*#u!!*#u!!)ut!!*#u!!)ut!!)or!!)or!!)Kf -!!)or!!)ut!!)ut"T\Q&s8N)lrr<&us8N*!rr<&trr<&us8N'1rr<'!!<<'!!<3$!rrE*!!<)ot -!<3#u!<2uu!<2uu!<3#u!;-9k!<)ot!<3!%!<3'!rrDus!!)rsrrE&u!!)ut!!)Qhrr<<(!!*$! -s8N)trr<&rrr<&rrr<&Ts8N(Ms+13ns8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE#t!!)ut!!*#u!!*#u!!)ut!!*#u!!)ut!!)or!!)or!!)Kf -!!)or!!)ut!!)ut"T\Q&s8N)lrr<&us8N*!rr<&trr<&us8N'1rr<'!!<<'!!<3$!rrE*!!<)ot -!<3#u!<2uu!<2uu!<3#u!;-9k!<)ot!<3!%!<3'!rrDus!!)rsrrE&u!!)ut!!)Qhrr<<(!!*$! -s8N)trr<&rrr<&rrr<&Ts8N(Ms+13ns8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq6!<:Vcs474CrrE&u!!)ut!!)rs!s&B$!;ZWp!<)ot!;lcr!;lcr!:Tpf!;uis -!;lcr!<3#u!:p-i!;uiu!<3&rrt5>3rrE*!!<<'!s8N*!rrE*!!;c]q!<2uu!<)p"!<<'!r;Q`s -o`"mkrVlitrr;uuq#:<or;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bq -TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE&u!!)ut!!)rs!s&B$!;ZWp!<)ot!;lcr!;lcr!:Tpf!;uis -!;lcr!<3#u!:p-i!;uiu!<3&rrt5>3rrE*!!<<'!s8N*!rrE*!!;c]q!<2uu!<)p"!<<'!r;Q`s -o`"mkrVlitrr;uuq#:<or;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bq -P6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE&u!!)ut!!)rs!s&B$!;ZWp!<)ot!;lcr!;lcr!:Tpf!;uis -!;lcr!<3#u!:p-i!;uiu!<3&rrt5>3rrE*!!<<'!s8N*!rrE*!!;c]q!<2uu!<)p"!<<'!r;Q`s -o`"mkrVlitrr;uuq#:<or;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bq -GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq5!<:Vcs474Cs8;rqs7u`ps8;rrrr<&trr<&rrr<&rrr<&frr<&srr<&rrr<&u -rr<&hrr<&qrr<&rrt5>3rrE*!!<<'!s8N*!rrE*!!<3#r!<2uu!<)p"!<<'!r;Q`so`+ghrVlit -p\t3nr;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bqTEG71enY9Us8LRM -s.KABJ,~> -rlkQFc2WuYs0hq5!<:;Vs3:S-s8;rqs7u`ps8;rrrr<&trr<&rrr<&rrr<&frr<&srr<&rrr<&u -rr<&hrr<&qrr<&rrt5>3rrE*!!<<'!s8N*!rrE*!!<3#r!<2uu!<)p"!<<'!r;Q`so`+ghrVlit -p\t3nr;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bqP6:kuc"@%Hs8L7D -s-*H,J,~> -rjr:4]Dm,,s0hq5!<9Z;s1A;Us8;rqs7u`ps8;rrrr<&trr<&rrr<&rrr<&frr<&srr<&rrr<&u -rr<&hrr<&qrr<&rrt5>3rrE*!!<<'!s8N*!rrE*!!<3#r!<2uu!<)p"!<<'!r;Q`so`+ghrVlit -p\t3nr;Q`srVlitrVlitnc&mqs8N*!rrE*!!<)ot!;lcr!;lcr!.k0$s/#bqGQ\"Q]3YL-s8KV2 -s*4OTJ,~> -rmh2Of)MCos0hq6!<:Vcs474CrrE&u!!)ut!!)Zk!!*#u!!)ut!!)or!!)or!!)Kf!!)rs!!)or -!!*#u!!)Qh!!)lq!!)or'`e:6!<<'!s8N*!rrE*!!<<'!s8N)trr<&urr<&trrW9$rrDus!!)Zk -!!)ip!!)cn!!)rs!!)ut!!)ut!!)Qh#lt#*!<<'!s8N)trr<&rrr<&rrr<%Ms+13Hs8S_p!,L/$ -!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE&u!!)ut!!)Zk!!*#u!!)ut!!)or!!)or!!)Kf!!)rs!!)or -!!*#u!!)Qh!!)lq!!)or'`e:6!<<'!s8N*!rrE*!!<<'!s8N)trr<&urr<&trrW9$rrDus!!)Zk -!!)ip!!)cn!!)rs!!)ut!!)ut!!)Qh#lt#*!<<'!s8N)trr<&rrr<&rrr<%Ms+13Hs8S8c!,'Ph -!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE&u!!)ut!!)Zk!!*#u!!)ut!!)or!!)or!!)Kf!!)rs!!)or -!!*#u!!)Qh!!)lq!!)or'`e:6!<<'!s8N*!rrE*!!<<'!s8N)trr<&urr<&trrW9$rrDus!!)Zk -!!)ip!!)cn!!)rs!!)ut!!)ut!!)Qh#lt#*!<<'!s8N)trr<&rrr<&rrr<%Ms+13Hs8R<H!+*9D -!:g*g])hqVrk![~> -rmh2Of)MCos0hq6!<:Vcs474CrrE#t!!)ut!!)ut!s&B$!<)ot!<2uu!<3#u!;lcr!;lcr!<2uu -!;$3j!;lcr!<)ot!<)ot!:^!g!<)p"!<<'!rVlitrr3T2s8N*!rrE*!!<<'!s8N*!rrE#t!!*#u -!!)ut!!*#u!!*#urrD]k!!)ip!!)cn!!)rs!!)ut!!)ut!!*#u!!)]l#lt#*!<<'!s8N)us8N)r -rr<&rrr<&urr<&js8N)hs8N(Ms+13ns8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE#t!!)ut!!)ut!s&B$!<)ot!<2uu!<3#u!;lcr!;lcr!<2uu -!;$3j!;lcr!<)ot!<)ot!:^!g!<)p"!<<'!rVlitrr3T2s8N*!rrE*!!<<'!s8N*!rrE#t!!*#u -!!)ut!!*#u!!*#urrD]k!!)ip!!)cn!!)rs!!)ut!!)ut!!*#u!!)]l#lt#*!<<'!s8N)us8N)r -rr<&rrr<&urr<&js8N)hs8N(Ms+13ns8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE#t!!)ut!!)ut!s&B$!<)ot!<2uu!<3#u!;lcr!;lcr!<2uu -!;$3j!;lcr!<)ot!<)ot!:^!g!<)p"!<<'!rVlitrr3T2s8N*!rrE*!!<<'!s8N*!rrE#t!!*#u -!!)ut!!*#u!!*#urrD]k!!)ip!!)cn!!)rs!!)ut!!)ut!!*#u!!)]l#lt#*!<<'!s8N)us8N)r -rr<&rrr<&urr<&js8N)hs8N(Ms+13ns8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474CrW)os!!)utr;cisquHZprW!$"!!*#uquHZprW)TjquHZpr;cfr -quH<fr;cfrr;cisrW!'#!!*&s!!iN(!<3$!s8W#t!ri9#rW)uurW)rtrW!$"!!)`mr;ccqquHZp -quHcsrW)uurW)osrW)WkrW!3'!!*$!!<<)u!!<0#!<3#r!;ulr!:p0i!:g*h!.k0$s3(HBTEG71 -enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rW)os!!)utr;cisquHZprW!$"!!*#uquHZprW)TjquHZpr;cfr -quH<fr;cfrr;cisrW!'#!!*&s!!iN(!<3$!s8W#t!ri9#rW)uurW)rtrW!$"!!)`mr;ccqquHZp -quHcsrW)uurW)osrW)WkrW!3'!!*$!!<<)u!!<0#!<3#r!;ulr!:p0i!:g*h!.k0$s3(HBP6:ku -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UrW)os!!)utr;cisquHZprW!$"!!*#uquHZprW)TjquHZpr;cfr -quH<fr;cfrr;cisrW!'#!!*&s!!iN(!<3$!s8W#t!ri9#rW)uurW)rtrW!$"!!)`mr;ccqquHZp -quHcsrW)uurW)osrW)WkrW!3'!!*$!!<<)u!!<0#!<3#r!;ulr!:p0i!:g*h!.k0$s3(HBGQ\"Q -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CmJm.cJcC<$JcC<$^&S,*"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-mJm.cJcC<$JcC<$^&S+r"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UmJm.cJcC<$JcC<$^&S+W"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474Cli-qbqu6WrJcC<$JcC<$`;fk1"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-li-qbqu6WrJcC<$JcC<$`;fk$"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uli-qbqu6WrJcC<$JcC<$`;fj^"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474Cli-qbqu6WrJcC<$JcC<$`;fk1"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-li-qbqu6WrJcC<$JcC<$`;fk$"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uli-qbqu6WrJcC<$JcC<$`;fj^"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq?!<:Vcs474C!!*$!!<3$!rr<&us8N)rrr<&ts8)eIs+13$s+13js8S_p!,L/$ -!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq?!<:;Vs3:S-!!*$!!<3$!rr<&us8N)rrr<&ts8)eIs+13$s+13js8S8c!,'Ph -!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq?!<9Z;s1A;U!!*$!!<3$!rr<&us8N)rrr<&ts8)eIs+13$s+13js8R<H!+*9D -!:g*g])hqVrk![~> -rmh2Of)MCoOLC5`!<:Vcs474Crr<'!!!*$!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8S_p -!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYm^DNr!<:;Vs3:S-rr<'!!!*$!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8S8c -!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,OLC5`!<9Z;s1A;Urr<'!!!*$!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8R<H -!+*9D!:g*g])hqVrk![~> -rmh2Of)MDjOT,==OT,:^O8o:-OT,:^O8o:!O:hQnenb<:s.KAls8N*!rrE*!!<)ot!;lcr!;lcr -!.k0$s+13$s2=s;TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X!Tmf*:Fmf*7gmJm76mf*7gmJm7*mLfO"c"I($s-*H_s8N*!rrE*!!<)ot!;lcr!;lcr -!.k0$s+13$s2=s;P6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-'OT,==OT,:^O8o:-OT,:^O8o:!O:hQn]3bNLs*4PDs8N*!rrE*!!<)ot!;lcr!;lcr -!.k0$s+13$s2=s;GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MEB!<8/Z!;;NS!:c0N!;V`V!8rt=!!85^!9oRF!9oUF!!85^!8!>4!:Z'_!<:Vcs474C -rrE*!!<<'!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2X",!<;Kc!;>j\!:fLW!;Z'_!9!;F!!;Qg!9rnO!9rqO!!;Qg!8$Z=!:]Ch!<:;Vs3:S- -rrE*!!<<'!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-T!<8/Z!;;NS!:c0N!;V`V!8rt=!!85^!9oRF!9oUF!!85^!8!>4!:Z'_!<9Z;s1A;U -rrE*!!<<'!s8N)trr<&rrr<&rrr<&hs7u_Hs+13$s+14)s8R<H!+*9D!:g*g])hqVrk![~> -rmh;Rf)MD)!!*"[rrD_RrrDSNrrCW3rr<+^!!);GrW)5Frr<+^!!(Z5rrDML&chs_C]DucT`5#l -rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$JcC<$`;fk1"9<5gCB3o)rmh,MT`3Mm~> -rlkZIc2X!q!!*#drrD`[rrDTWrrCX<rr<,g!!)<PrW)6Orr<,g!!([>rrDNU&chsVBE-6VPQ(X_ -rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$JcC<$`;fk$"9<)ZB)qK%rlkKDPQ&gW~> -rjrC7]Dm,;!!*"[rrD_RrrDSNrrCW3rr<+^!!);GrW)5Frr<+^!!(Z5rrDML&chsD?N7Y;GlIdD -rrE*!!<<'!rVlitqu6Wrqu6WrJcC<$JcC<$`;fj^"9;c??3'Nqrjr42GlG=*~> -rmh5Pf)MD)rW)t[rrE%[r;ceXqZ-VWquH\WqZ-VWr;c_Vr;chYrVuq[rW)PO"TXXG!0E<A!<8/[ -!;2HR!!85^!;;NR!!&,[!;qo\!0E9Bo8rtPk`GfErK.!Y!0I0[rK-sX&c^Ets474CrrE*!!<<'! -s8N)us8N)rrr<&rrr<&urr<%Ms+13$s+13ks8S_p!,L/$!:g*gecGfDrmlT~> -rlkTGc2X!qrW)udrrE&dr;cfaqZ-W`quH]`qZ-W`r;c`_r;cibrVurdrW)QX"T[uY!:K:S!<;Kd -!;5d[!!;Qg!;>j[!!)Hd!;u6e!:K7ToBuVYkjJHNrU0Xb!:KgdrU0Ua&c^*gs3:S-rrE*!!<<'! -s8N)us8N)rrr<&rrr<&urr<%Ms+13$s+13ks8S8c!,'Ph!:g*gblRj.rlor~> -rjr=5]Dm,;rW)t[rrE%[r;ceXqZ-VWquH\WqZ-VWr;c_Vr;chYrVuq[rW)PO"TXXG!0E<A!<8/[ -!;2HR!!85^!;;NR!!&,[!;qo\!0E9Bo8rtPk`GfErK.!Y!0I0[rK-sX&c]ILs1A;UrrE*!!<<'! -s8N)us8N)rrr<&rrr<&urr<%Ms+13$s+13ks8R<H!+*9D!:g*g])hqVrk![~> -rmh5Pf)MD)rW)t[rrE(\rrE(\rrE"ZrrDeTrrE"ZrrDkVrrDtYrrE(\rrE%[rW)t[rrDGJrrE(\ -rrD\Q!!*"[!!)\RrW)t[rrDAHrrDtYq>g2MrrDqXrW)t[rrE(\rrE(\#6=eTC]DucT`+orrr<'! -!!*'!rW!$"!!*#uquHZprW%NLJcC<$JcEdjs.BJpCY!8$nc/U>!WShlepm~> -rlkTGc2X!qrW)udrrE)errE)errE#crrDf]rrE#crrDl_rrDubrrE)errE&drW)udrrDHSrrE)e -rrD]Z!!*#d!!)][rW)udrrDBQrrDubq>g3VrrDrarW)udrrE)errE)e#6=eKBE-6VPPtOerr<'! -!!*'!rW!$"!!*#uquHZprW%NLJcC<$JcEdjs-!QcB?b&hnc/U5!WSA_c%#~> -rjr=5]Dm,;rW)t[rrE(\rrE(\rrE"ZrrDeTrrE"ZrrDkVrrDtYrrE(\rrE%[rW)t[rrDGJrrE(\ -rrD\Q!!*"[!!)\RrW)t[rrDAHrrDtYq>g2MrrDqXrW)t[rrE(\rrE(\#6=e9?N7Y;Gl@[Jrr<'! -!!*'!rW!$"!!*#uquHZprW%NLJcC<$JcEdjs*+YH?FsMDnc/U#!WRED]79~> -rmhSZf)MD)!!&)\O8o9B!!)tZrrE%[rrDeTrrE"ZrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDDIr;bi= -rrE%[rrCH.rrDqXrrE%[rr<+^!!*"[#6=eTC]DucTRm,os+13$s/,hrTEG71enY9Us8LRMs.KAB -J,~> -rlkrQc2X!q!!)EemJm7T!!)ucrrE&drrDf]rrE#crrDl_rrE#crrE#crrE)errE&drrDERr;bjF -rrE&drrCI7rrDrarrE&drr<,g!!*#d#6=eKBE-6VPC`abs+13$s/,hrP6:kuc"@%Hs8L7Ds-*H, -J,~> -rjr[?]Dm,;!!&)\O8o9B!!)tZrrE%[rrDeTrrE"ZrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDDIr;bi= -rrE%[rrCH.rrDqXrrE%[rr<+^!!*"[#6=e9?N7Y;G_,mGs+13$s/,hrGQ\"Q]3YL-s8KV2s*4OT -J,~> -rmhSZf)MD)!!&)\O8o9B!!)tZrrE%[rrDqXqZ-SVrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDAHrrD#> -rrE%[rrCH.rrDqXrrE%[rr<+^!!*"[#6=eTC]DucTRm,os+13$s/,hrTEG71enY9Us8LRMs.KAB -J,~> -rlkrQc2X!q!!)EemJm7T!!)ucrrE&drrDraqZ-T_rrDl_rrE#crrE#crrE)errE&drrDBQrrD$G -rrE&drrCI7rrDrarrE&drr<,g!!*#d#6=eKBE-6VPC`abs+13$s/,hrP6:kuc"@%Hs8L7Ds-*H, -J,~> -rjr[?]Dm,;!!&)\O8o9B!!)tZrrE%[rrDqXqZ-SVrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDAHrrD#> -rrE%[rrCH.rrDqXrrE%[rr<+^!!*"[#6=e9?N7Y;G_,mGs+13$s/,hrGQ\"Q]3YL-s8KV2s*4OT -J,~> -rmhATf)MD)!!&+BrW!"]!!)tZrrE%[rrDtYrrE%[rrE"ZrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDDI -r;bi=rrE%[rrD,Aq>g2MrrDqXrrE%[rr<+^!!*"[#6=eTC]DucTRm,os+13$s/,hrTEG71enY9U -s8LRMs.KABJ,~> -rlk`Kc2X!q!!)HTrW!#f!!)ucrrE&drrDubrrE&drrE#crrDl_rrE#crrE#crrE)errE&drrDER -r;bjFrrE&drrD-Jq>g3VrrDrarrE&drr<,g!!*#d#6=eKBE-6VPC`abs+13$s/,hrP6:kuc"@%H -s8L7Ds-*H,J,~> -rjrI9]Dm,;!!&+BrW!"]!!)tZrrE%[rrDtYrrE%[rrE"ZrrDkVrrE"ZrrE"ZrrE(\rrE%[rrDDI -r;bi=rrE%[rrD,Aq>g2MrrDqXrrE%[rr<+^!!*"[#6=e9?N7Y;G_,mGs+13$s/,hrGQ\"Q]3YL- -s8KV2s*4OTJ,~> -rmhATf)MD)!!&+BrW)t[rrE(\rrE"ZrrE(\rr<1`!!&+BrW)nYrrE(\rrE"ZrrDtYrrE(\rrE%[ -rrE%[rrDGJrrE(\rrD)@rrE%[rrDAHrrD;FrrDqXrW)t[rrE(\rrE(\#6=eTC]DucTRm,os+13$ -s/,hrTEG71enY9Us8LRMs.KABJ,~> -rlk`Kc2X!q!!)HTrW)udrrE)errE#crrE)err<2i!!)HTrW)obrrE)errE#crrDubrrE)errE&d -rrE&drrDHSrrE)errD*IrrE&drrDBQrrD<OrrDrarW)udrrE)errE)e#6=eKBE-6VPC`abs+13$ -s/,hrP6:kuc"@%Hs8L7Ds-*H,J,~> -rjrI9]Dm,;!!&+BrW)t[rrE(\rrE"ZrrE(\rr<1`!!&+BrW)nYrrE(\rrE"ZrrDtYrrE(\rrE%[ -rrE%[rrDGJrrE(\rrD)@rrE%[rrDAHrrD;FrrDqXrW)t[rrE(\rrE(\#6=e9?N7Y;G_,mGs+13$ -s/,hrGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MEA!<8/\!</)Y!;hlV!</)Z!!&,[!<&#X!</)W!<&#X!</)Y!!&,Z!:Q$K!<8/[!9K=@ -!!&,Z!:5gI!9fOE!;qrY!!&,[!<&#X!!`JSC]DucT`"fi!;c`o!;uis!8%8M!9X:]!71ZF!.k0$ -s+13\s8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2X"+!<;Ke!<2Eb!;l3_!<2Ec!!)Hd!<)?a!<2E`!<)?a!<2Eb!!)Hc!:T@T!<;Kd!9NYI -!!)Hc!:9.R!9ikN!;u9b!!)Hd!<)?a!!`JJBE-6VPPkF\!;c`o!;uis!8%8M!9X:]!71ZF!.k0$ -s+13\s8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-S!<8/\!</)Y!;hlV!</)Z!!&,[!<&#X!</)W!<&#X!</)Y!!&,Z!:Q$K!<8/[!9K=@ -!!&,Z!:5gI!9fOE!;qrY!!&,[!<&#X!!`J8?N7Y;Gl7RA!;c`o!;uis!8%8M!9X:]!71ZF!.k0$ -s+13\s8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCoONN[b!;qrY!;;KZ!<:Vcs474CrVlitqYpNqq#:<oec,ULqu6Wrmf*7efDbgNq#:<o -c2RbD_uB]:JcC<$Y5eNp"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYm`Ott!;u9b!;>gc!<:;Vs3:S-rVlitqYpNqq#:<oec,ULqu6Wrmf*7efDbgNq#:<o -c2RbD_uB]:JcC<$Y5eNc"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,ONN[b!;qrY!;;KZ!<9Z;s1A;UrVlitqYpNqq#:<oec,ULqu6Wrmf*7efDbgNq#:<o -c2RbD_uB]:JcC<$Y5eNH"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCoONEUa!<&#Z!;;KZ!<:Vcs474CrVlitqYpNqbPqPBqu6Wrmf*7efDbgNq#:<oc2RbD -kl:Y_hZ!QUJcC<$Y5eNp"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYm`Fns!<)?c!;>gc!<:;Vs3:S-rVlitqYpNqbPqPBqu6Wrmf*7efDbgNq#:<oc2RbD -kl:Y_hZ!QUJcC<$Y5eNc"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,ONEUa!<&#Z!;;KZ!<9Z;s1A;UrVlitqYpNqbPqPBqu6Wrmf*7efDbgNq#:<oc2RbD -kl:Y_hZ!QUJcC<$Y5eNH"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCoOMm7Z!;DQ[!<:Vcs474Crr2ruqu?NnrVuisrVuis!<<#upAb-m#lal)rr<'!!!*#u -rrDrr!!)utqZ-3e!!)rsrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-Km!!)QhrrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ-3err@WMJcEUes.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYm_nPl!;Gmd!<:;Vs3:S-rr2ruqu?NnrVuisrVuis!<<#upAb-m#lal)rr<'!!!*#u -rrDrr!!)utqZ-3e!!)rsrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-Km!!)QhrrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ-3err@WMJcEUes-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OMm7Z!;DQ[!<9Z;s1A;Urr2ruqu?NnrVuisrVuis!<<#upAb-m#lal)rr<'!!!*#u -rrDrr!!)utqZ-3e!!)rsrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-Km!!)QhrrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ-3err@WMJcEUes*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOLC5U!<:Vcs474Crr2ruq>UEpq#:<or;Q`srr2ruo`+pk#QFc(rrE*!!<)ot!;lcr -!;lcr!:Tpf!;lfr!<2uu!;uls!;uls!<2uu!<2uu!<)ot!<)ot!;HKn!:g*h!;$6j!<2uu!<2uu -!<)ot!<)ot!9F1[!;6Bl!<2uu!<2uu!<)ot!<)ot!:Tsf!;uln!.k0$s3CZETEG71enY9Us8LRM -s.KABJ,~> -rlkQFc2WuYm^DNg!<:;Vs3:S-rr2ruq>UEpq#:<or;Q`srr2ruo`+pk#QFc(rrE*!!<)ot!;lcr -!;lcr!:Tpf!;lfr!<2uu!;uls!;uls!<2uu!<2uu!<)ot!<)ot!;HKn!:g*h!;$6j!<2uu!<2uu -!<)ot!<)ot!9F1[!;6Bl!<2uu!<2uu!<)ot!<)ot!:Tsf!;uln!.k0$s3CZEP6:kuc"@%Hs8L7D -s-*H,J,~> -rjr:4]Dm,,OLC5U!<9Z;s1A;Urr2ruq>UEpq#:<or;Q`srr2ruo`+pk#QFc(rrE*!!<)ot!;lcr -!;lcr!:Tpf!;lfr!<2uu!;uls!;uls!<2uu!<2uu!<)ot!<)ot!;HKn!:g*h!;$6j!<2uu!<2uu -!<)ot!<)ot!9F1[!;6Bl!<2uu!<2uu!<)ot!<)ot!:Tsf!;uln!.k0$s3CZEGQ\"Q]3YL-s8KV2 -s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474Crr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&prr<&trr<&nrr<&Xrr<&trr<&prr<&trr<&hs8)fkrr<&m -rr<&trr<&prr<&trr<%Ms+13Qs8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&prr<&trr<&nrr<&Xrr<&trr<&prr<&trr<&hs8)fkrr<&m -rr<&trr<&prr<&trr<%Ms+13Qs8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Urr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&prr<&trr<&nrr<&Xrr<&trr<&prr<&trr<&hs8)fkrr<&m -rr<&trr<&prr<&trr<%Ms+13Qs8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474Crr2ruq>UEpq#:<oqYpNqo)B!rs8N*!rrE*!!<)ot!;lcr!;lcr -!:Tpf!;lcr!<)ot!;6?l!<)ot!<)rq!<)ot!;HKn!9*qX!<)ot!<)rq!<)ot!9F1[!;6?l!<)ot -!<)rq!<)ot!9jIZ!.k0$s3CZETEG71enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rr2ruq>UEpq#:<oqYpNqo)B!rs8N*!rrE*!!<)ot!;lcr!;lcr -!:Tpf!;lcr!<)ot!;6?l!<)ot!<)rq!<)ot!;HKn!9*qX!<)ot!<)rq!<)ot!9F1[!;6?l!<)ot -!<)rq!<)ot!9jIZ!.k0$s3CZEP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Urr2ruq>UEpq#:<oqYpNqo)B!rs8N*!rrE*!!<)ot!;lcr!;lcr -!:Tpf!;lcr!<)ot!;6?l!<)ot!<)rq!<)ot!;HKn!9*qX!<)ot!<)rq!<)ot!9F1[!;6?l!<)ot -!<)rq!<)ot!9jIZ!.k0$s3CZEGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474Crr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&urr<&trr<&trr<&nrr<&Xrr<&trr<&urr<&trr<&trr<&] -s8N)jrr<&trr<&urr<&trr<&trr<%Ms+13Qs8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&urr<&trr<&trr<&nrr<&Xrr<&trr<&urr<&trr<&trr<&] -s8N)jrr<&trr<&urr<&trr<&trr<%Ms+13Qs8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Urr2ruq>UEpq#:<oqu6]trrDZj#lt#*!<<'!s8N)trr<&rrr<&r -rr<&frr<&rrr<&trr<&lrr<&trr<&urr<&trr<&trr<&nrr<&Xrr<&trr<&urr<&trr<&trr<&] -s8N)jrr<&trr<&urr<&trr<&trr<%Ms+13Qs8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474Crr2ruq>UEpq#:<or;Q`srr2ruo`#3ts8N*!rrE*!!<3#u!;lcr -!;lcr!<2uu!;$3j!;lcr!<)ot!;uls!;uis!<)ot!<2uu!<)ot!<)ot!<2uu!;lcr!:g*h!;$3j -!<)ot!<2uu!<)ot!<)ot!<2uu!:9ac!:g'h!<)ot!<2uu!<)ot!<)ot!<2uu!;$6j!.k0$s2+g9 -TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rr2ruq>UEpq#:<or;Q`srr2ruo`#3ts8N*!rrE*!!<3#u!;lcr -!;lcr!<2uu!;$3j!;lcr!<)ot!;uls!;uis!<)ot!<2uu!<)ot!<)ot!<2uu!;lcr!:g*h!;$3j -!<)ot!<2uu!<)ot!<)ot!<2uu!:9ac!:g'h!<)ot!<2uu!<)ot!<)ot!<2uu!;$6j!.k0$s2+g9 -P6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Urr2ruq>UEpq#:<or;Q`srr2ruo`#3ts8N*!rrE*!!<3#u!;lcr -!;lcr!<2uu!;$3j!;lcr!<)ot!;uls!;uis!<)ot!<2uu!<)ot!<)ot!<2uu!;lcr!:g*h!;$3j -!<)ot!<2uu!<)ot!<)ot!<2uu!:9ac!:g'h!<)ot!<2uu!<)ot!<)ot!<2uu!;$6j!.k0$s2+g9 -GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474CrVlitr;ZZpr;ZZps8W&u!<<#upAb*l#QFc(rr<'!s8E!"rr<&u -s82lps8E#grr<&ts8E#us8E#ss8N)ts8E#us8E#ts8;ourrE#trW)iq!!)NgrrD]krW)uurW)rt -r;Zlu!<)rs!8@JP!<<)u!<3#s!!3*"rVuiso)J^iJcC<$_Z0Y/"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rVlitr;ZZpr;ZZps8W&u!<<#upAb*l#QFc(rr<'!s8E!"rr<&u -s82lps8E#grr<&ts8E#us8E#ss8N)ts8E#us8E#ts8;ourrE#trW)iq!!)NgrrD]krW)uurW)rt -r;Zlu!<)rs!8@JP!<<)u!<3#s!!3*"rVuiso)J^iJcC<$_Z0Y""9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UrVlitr;ZZpr;ZZps8W&u!<<#upAb*l#QFc(rr<'!s8E!"rr<&u -s82lps8E#grr<&ts8E#us8E#ss8N)ts8E#us8E#ts8;ourrE#trW)iq!!)NgrrD]krW)uurW)rt -r;Zlu!<)rs!8@JP!<<)u!<3#s!!3*"rVuiso)J^iJcC<$_Z0X\"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CrVlitW;chtc2RbDJcC<$JcE=]s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rVlitW;chtc2RbDJcC<$JcE=]s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UrVlitW;chtc2RbDJcC<$JcE=]s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq4!<:Vcs474Cr;Q`sW;chtci3tFJcC<$JcE:\s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-r;Q`sW;chtci3tFJcC<$JcE:\s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Ur;Q`sW;chtci3tFJcC<$JcE:\s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CirArWJcG6>rrCLI!!)Zkrr@WMJcD5>s.BJpCY!8$nc/U>!WShl -epm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-irArWJcG6>rrCLI!!)Zkrr@WMJcD5>s-!QcB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UirArWJcG6>rrCLI!!)Zkrr@WMJcD5>s*+YH?FsMDnc/U#!WRED -]79~> -rmh2Of)MCos0hq4!<:Vcs474Cj8T)Z]Dhj2_uB]:nc&Rhdf0:Iqu6WrqYpNqJcC<$S,`M]"9<5g -CB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-j8T)Z]Dhj2_uB]:nc&Rhdf0:Iqu6WrqYpNqJcC<$S,`MP"9<)Z -B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uj8T)Z]Dhj2_uB]:nc&Rhdf0:Iqu6WrqYpNqJcC<$S,`M5"9;c? -?3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474Cj8T)Z]Dhj2kl:Y_hZ!QUnc&RhbPqPBqYpNqJcC<$S,`M]"9<5g -CB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-j8T)Z]Dhj2kl:Y_hZ!QUnc&RhbPqPBqYpNqJcC<$S,`MP"9<)Z -B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uj8T)Z]Dhj2kl:Y_hZ!QUnc&RhbPqPBqYpNqJcC<$S,`M5"9;c? -?3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474Cjo>2Xs8W*!rr;uus8W*!!<<#up&G$l"oeQ&rr<&ts8N)ts8N'! -s8E#rs8;rss8)f\s8N)ks8N'&rr<'!!!*#ur;cisqZ-NnrW!-%!<<'!s8E#ks8N'!s8E#ks8E#t -s8E#us8E#ss8)fprrE-"rW%NLJcDABs.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-jo>2Xs8W*!rr;uus8W*!!<<#up&G$l"oeQ&rr<&ts8N)ts8N'! -s8E#rs8;rss8)f\s8N)ks8N'&rr<'!!!*#ur;cisqZ-NnrW!-%!<<'!s8E#ks8N'!s8E#ks8E#t -s8E#us8E#ss8)fprrE-"rW%NLJcDABs-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Ujo>2Xs8W*!rr;uus8W*!!<<#up&G$l"oeQ&rr<&ts8N)ts8N'! -s8E#rs8;rss8)f\s8N)ks8N'&rr<'!!!*#ur;cisqZ-NnrW!-%!<<'!s8E#ks8N'!s8E#ks8E#t -s8E#us8E#ss8)fprrE-"rW%NLJcDABs*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq4!<:Vcs474Cj8T)Zqu6WrrVlitrr;uurr2rup&G$l"TJH%rrE#trrDusrrE&u -!!*#u!!)ut!!)ut!!)Qhq>gEmrrD`lrr<<(!!*$!s8N)trr<&trr<&prr<&us8N*!s8N)urr<&l -s8N)urr<&lrr<&srr<&srr<&rrr<&qs8N)urr<%Ms+13Cs8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq4!<:;Vs3:S-j8T)Zqu6WrrVlitrr;uurr2rup&G$l"TJH%rrE#trrDusrrE&u -!!*#u!!)ut!!)ut!!)Qhq>gEmrrD`lrr<<(!!*$!s8N)trr<&trr<&prr<&us8N*!s8N)urr<&l -s8N)urr<&lrr<&srr<&srr<&rrr<&qs8N)urr<%Ms+13Cs8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uj8T)Zqu6WrrVlitrr;uurr2rup&G$l"TJH%rrE#trrDusrrE&u -!!*#u!!)ut!!)ut!!)Qhq>gEmrrD`lrr<<(!!*$!s8N)trr<&trr<&prr<&us8N*!s8N)urr<&l -s8N)urr<&lrr<&srr<&srr<&rrr<&qs8N)urr<%Ms+13Cs8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474Cj8T)Zqu6WrrVlitrr2rurVlitp&>3rs8N*!rrDcm!!)ut!!)ip -!!)ut!!)$Y!!)`m"p"]'!<<'!qYpNqrVlitqYpNqr;Qj!s8N)trr<&lrr<&trr<&lrrrK'rrE*! -!;uis!;lcr!;c]q!<)ot!.k0$s.KDlTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq4!<:;Vs3:S-j8T)Zqu6WrrVlitrr2rurVlitp&>3rs8N*!rrDcm!!)ut!!)ip -!!)ut!!)$Y!!)`m"p"]'!<<'!qYpNqrVlitqYpNqr;Qj!s8N)trr<&lrr<&trr<&lrrrK'rrE*! -!;uis!;lcr!;c]q!<)ot!.k0$s.KDlP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Uj8T)Zqu6WrrVlitrr2rurVlitp&>3rs8N*!rrDcm!!)ut!!)ip -!!)ut!!)$Y!!)`m"p"]'!<<'!qYpNqrVlitqYpNqr;Qj!s8N)trr<&lrr<&trr<&lrrrK'rrE*! -!;uis!;lcr!;c]q!<)ot!.k0$s.KDlGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCoOR\FPrs&Q(enb<:s.JEP!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*mrVlit -rVucqrVlitnc/Fcqu?Zrp&>3rs8N*!rrE&uquH]q!!)lq!!)ip!!)ut!!)]l!!)ut!!)]l"p"]' -!<<'!r;Q`squ6WrqYpNqrVlitJcC<$T`>%b"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYmd]_brs&Q(c"I($s-)LC!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*mrVlit -rVucqrVlitnc/Fcqu?Zrp&>3rs8N*!rrE&uquH]q!!)lq!!)ip!!)ut!!)]l!!)ut!!)]l"p"]' -!<<'!r;Q`squ6WrqYpNqrVlitJcC<$T`>%U"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,OR\FPrs&Q(]3bNLs*3T(!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*mrVlit -rVucqrVlitnc/Fcqu?Zrp&>3rs8N*!rrE&uquH]q!!)lq!!)ip!!)ut!!)]l!!)ut!!)]l"p"]' -!<<'!r;Q`squ6WrqYpNqrVlitJcC<$T`>%:"9;c??3'Nqrjr42GlG=*~> -rmh2Of)ME<OT,92OSt9\rs&Q(enb<:s.JEP!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*m -rVlitrr2rurVlitrVlitk5YG]oD]*ss8N*!rrE*!!<)ot!<)ot!;c]q!;ZWp!<)ot!;6?l!<)ot -!;-9o!<3'!!;lcr!;lcr!;c]q!<)ot!.k0$s.KDlTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X"&mf#Y+meuRnrs&Q(c"I($s-)LC!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*m -rVlitrr2rurVlitrVlitk5YG]oD]*ss8N*!rrE*!!<)ot!<)ot!;c]q!;ZWp!<)ot!;6?l!<)ot -!;-9o!<3'!!;lcr!;lcr!;c]q!<)ot!.k0$s.KDlP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-NOT#62OSt9\rs&Q(]3bNLs*3T(!!)or!!)ut!!*#u!!)ut!!)]l"p"]'!<<'!pAY*m -rVlitrr2rurVlitrVlitk5YG]oD]*ss8N*!rrE*!!<)ot!<)ot!;c]q!;ZWp!<)ot!;6?l!<)ot -!;-9o!<3'!!;lcr!;lcr!;c]q!<)ot!.k0$s.KDlGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME=s8S2\s2C)qs4WS7s6>]crs&Q(enb<:s.JEP!!)or!!*#urrE&u!!)ut!!)]l"p"]' -!<<'!rVultr;Q`srVlitrr2rurVlitrVlitrr2rum/R(cnc&mqs8N*!rrE*!!<)ot!<)ot!<2uu -!<)ot!<)p"!<<'!rVlitp&>!lrVlito`+pk!ri6#qu6Wrqu6Wrrr2rurr2rurVlitJcC<$T`>%b -"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X"'7K;fU7E+]j7G@207I'<\rs&Q(c"I($s-)LC!!)or!!*#urrE&u!!)ut!!)]l"p"]' -!<<'!rVultr;Q`srVlitrr2rurVlitrVlitrr2rum/R(cnc&mqs8N*!rrE*!!<)ot!<)ot!<2uu -!<)ot!<)p"!<<'!rVlitp&>!lrVlito`+pk!ri6#qu6Wrqu6Wrrr2rurr2rurVlitJcC<$T`>%U -"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-O!<8/\!6(&q!8<P7!:#Zcrs&Q(]3bNLs*3T(!!)or!!*#urrE&u!!)ut!!)]l"p"]' -!<<'!rVultr;Q`srVlitrr2rurVlitrVlitrr2rum/R(cnc&mqs8N*!rrE*!!<)ot!<)ot!<2uu -!<)ot!<)p"!<<'!rVlitp&>!lrVlito`+pk!ri6#qu6Wrqu6Wrrr2rurr2rurVlitJcC<$T`>%: -"9;c??3'Nqrjr42GlG=*~> -rmhV[f)MECs,d9\OT5?BOT5@!OT5@[OT5@7OT5@GON.;*!<:Vcs474Cjo>5Yr;Z`r"9/?$s8E#u -s8E#ms8E!%rr<'!!!*#urrE#trW)uurW)rtr;Zlu!<)rs!8@JP!!iN(!<3$!s8W#t!WN/us8E#q -s8;rts8E#us8E#ms8E#us8E#krr<&urr<&ts82lps8E#ts8E#us8E"Ls+13Ds8S_p!,L/$!:g*g -ecGfDrmlT~> -rlkuRc2Wtr7IET5mR9S4mR9R_mf,`Tmf,`0mf,`@m`,83!<:;Vs3:S-jo>5Yr;Z`r"9/?$s8E#u -s8E#ms8E!%rr<'!!!*#urrE#trW)uurW)rtr;Zlu!<)rs!8@JP!!iN(!<3$!s8W#t!WN/us8E#q -s8;rts8E#us8E#ms8E#us8E#krr<&urr<&ts82lps8E#ts8E#us8E"Ls+13Ds8S8c!,'Ph!:g*g -blRj.rlor~> -rjr^@]Dm*U!0@0\O8o9BO8o:!OT,=[OT,=7OT,=GON.;*!<9Z;s1A;Ujo>5Yr;Z`r"9/?$s8E#u -s8E#ms8E!%rr<'!!!*#urrE#trW)uurW)rtr;Zlu!<)rs!8@JP!!iN(!<3$!s8W#t!WN/us8E#q -s8;rts8E#us8E#ms8E#us8E#krr<&urr<&ts82lps8E#ts8E#us8E"Ls+13Ds8R<H!+*9D!:g*g -])hqVrk![~> -rmhY\f)MECs,d9\OT5?BOT5?Brr;qYrVueWrVuhXrr2t[rr;tZrVukYs8N(\r;ZJPs8W([s8W([ -rVuhXrr2t[rr3(^s8S2Ys8S2Ys8A&Vs7;?P!<&#!rs&Q(enb<:s.FrCJcC<$JcDVIs.BJpCY!8$ -nc/U>!WShlepm~> -rll#Sc2Wtr7IET5mR9S4mR9S4r^HeRrC-YPrC-\Qr^?hTr^HhSrC-_Rs$ZqUr'g>Is$cqTs$cqT -rC-\Qr^?hTr^?qW77HYB7K;fR7K)ZO7J#sI!<)?*rs&Q(c"I($s-&$6JcC<$JcDVIs-!QcB?b&h -nc/U5!WSA_c%#~> -rjraA]Dm*U!0@0\O8o9BO8o9BrW)nYr;cbWr;ceXrVuq[rW)qZr;chYrr<%\quHGPrrE%[rrE%[ -r;ceXrVuq[rW!%^!!&,Y!<8/Y!<&#V!:u<P!<&#!rs&Q(]3bNLs*0+pJcC<$JcDVIs*+YH?FsMD -nc/U#!WRED]79~> -rmh2Of)MEBOT5@YOT,:[OT5@\OT5@\OT5@[OT5@\OT5@ZOT,:XOT5@\OT5@[OT5=aOT5?Bs8VhT -s8N+]s87uYs8S2\s8A&Ys87uYrrnMas,d9\r/gsYrK.'Zn<!YMrK,&!#6=eTC]DucTRm,os+13$ -s/,hrTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X",mf,`Rmf#ZTmf,`Umf,`Umf,`Tmf,`Umf,`Smf#ZQmf,`Umf,`Tmf,]ZmR9S477Ht= -s$ZtV7JuTR7K;fU7K)ZR7JuTR70W*J7IET5r9jSRrU0\SnF$;VrU.]*#6=eKBE-6VPC`abs+13$ -s/,hrP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-TOT,=YOT#7[OT,=\OT,=\OT,=[OT,=\OT,=ZOT#7XOT,=\OT,=[OT,:aO8o9B!!)bT -rr<(]!;qrY!<8/\!<&#Y!;qrY!!SGa!0@0\r/gpYrK.$Zn<!YMrK,&!#6=e9?N7Y;G_,mGs+13$ -s/,hrGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MEBOT5@YOT5@[OT5=^OT5@ZOT5=^OT5@ZOT5@[OT5@YOT5@ZOT5@\OT5=aOT5?Bs8VhT -rVuhXs8W%Zs8W([s8VtXs8N7as8S2\s87uYs8A&Zs6>]crs&Q(enb<:s.FrCJcC<$JcDVIs.BJp -CY!8$nc/U>!WShlepm~> -rlkQFc2X",mf,`Rmf,`Tmf,]WmR9SCmf,]WmR9SCmf,`Tmf,`Rmf,`Smf,`Umf,]ZmR9S477Ht= -rC-\Qs$cnSs$cqTs$chQs$[+Z77HW57JuTR7K)ZS7I'<\rs&Q(c"I($s-&$6JcC<$JcDVIs-!Qc -B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-TOT,=YOT,=[OT,:^O8o:ZOT,:^O8o:ZOT,=[OT,=YOT,=ZOT,=\OT,:aO8o9B!!)bT -r;ceXrrE"ZrrE%[rrDqXrr<4a!!&)\!;qrY!<&#Z!:#Zcrs&Q(]3bNLs*0+pJcC<$JcDVIs*+YH -?FsMDnc/U#!WRED]79~> -rmh2Of)MEBOT5@YOT5@[OT5=\OSSnXOT5@ZOT5@[OT5@YOSSqVOT5=aOT5?Bs8VhTs8N+]s8A&T -s8J,[s8.oXrs"Sbs,d9\OSf(VOT5@GON.;*!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,M -T`3Mm~> -rlkQFc2X",mf,`Rmf,`Tmf,]UmeK9QmR9SCmf,`Tmf,`RmeK<Omf,]ZmR9S477Ht=s$ZtV7K)ZM -7K2`T7JlNQ70`0K7IET5me]HOmf,`@m`,83!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKD -PQ&gW~> -rjr:4]Dm-TOT,=YOT,=[OT,:\OSJkXO8o:ZOT,=[OT,=YOSJnVOT,:aO8o9B!!)bTrr<(]!<&#T -!</)[!;hlX!!\Mb!0@0\OS]%VOT,=GON.;*!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42 -GlG=*~> -rmh2Of)MEBOT5@YOT5@[OT5=^OT5@WOT5@ZOT5@[OT5@YOT5@VOT5=aOT5?Bs8VhTs8VtXs8VkU -s8VtXs8N1_s8S2Zs8J,[s8A&Zs6>]crs&Q(enb<:s.FrCYQ+V&JcC<$JcGTHs.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2X",mf,`Rmf,`Tmf,]WmR9S@mf,`Smf,`Tmf,`Rmf,`Omf,]ZmR9S477Ht=s$chQs$c_N -s$chQs$[%X77HYC7K2`T7K)ZS7I'<\rs&Q(c"I($s-&$6YQ+V&JcC<$JcGTHs-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm-TOT,=YOT,=[OT,:^O8o:WOT,=ZOT,=[OT,=YOT,=VOT,:aO8o9B!!)bTrrDqXrrDhU -rrDqXrr<._!!&,Z!</)[!<&#Z!:#Zcrs&Q(]3bNLs*0+pYQ+V&JcC<$JcGTHs*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)MEBOT5@YOT5@[OT5@\OT5@\OT,:[OT5@\OT5@ZOT5@XOT5@\OT,:[OT5=aOT5?Bs8VhT -s8VqWs8W+\rr;tZs8VtXs8N1_s8S2Zs8S2[s8A&Zs8S2\s7DEQ!<&#!rs&Q(enb<:s.FrCmf*7e -nc/Off`)$Rs8N(Ms+13$s82irTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X",mf,`Rmf,`Tmf,`Umf,`Umf#ZTmf,`Umf,`Smf,`Qmf,`Umf#ZTmf,]ZmR9S477Ht= -s$cePs$ctUr^HhSs$chQs$[%X77HYC7K;fT7K)ZS7K;fU7J-$J!<)?*rs&Q(c"I($s-&$6mf*7e -nc/Off`)$Rs8N(Ms+13$s82irP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-TOT,=YOT,=[OT,=\OT,=\OT#7[OT,=\OT,=ZOT,=XOT,=\OT#7[OT,:aO8o9B!!)bT -rrDnWrrE(\rW)qZrrDqXrr<._!!&,Z!<8/[!<&#Z!<8/\!;)BQ!<&#!rs&Q(]3bNLs*0+pmf*7e -nc/Off`)$Rs8N(Ms+13$s82irGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh8Qf)MD)OT#4YOT#1ZOT#4ZOSo.WOT#4XOSf(VOSo.YOT,7`OT5?Bs8VkUr;ZYUr;ZbXqu?\X -rr31as8S2\s,d6[!0I3[rK.!Xo8rtPrK,&!#6=eTC]DucTRm.2rr<&irr<&trr<&cs8N)hrr<&t -rr<%Ms+13$s8;osTEG71enY9Us8LRMs.KABJ,~> -rlkWHc2X!qmeoTRmeoQSmeoTSmefNPmeoTQme]HOmefNRmf#WYmR9S477I">r'gMNr'gVQqaLPQ -r^@%Z77HW57IL.D!:KhTrU0VQoBuVYrU.]*#6=eKBE-6VPC`c%rr<&irr<&trr<&cs8N)hrr<&t -rr<%Ms+13$s8;osP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr@6]Dm,;OSo1YOSo.ZOSo1ZOSf+WOSo1XOS]%VOSf+YOT#4`O8o9B!!)eUquHVUquH_XqZ-YX -rW!.a!!&)\!0I0[!0I0[rK-sXo8rtPrK,&!#6=e9?N7Y;G_,n_rr<&irr<&trr<&cs8N)hrr<&t -rr<%Ms+13$s8;osGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCoOR\FPrs&Q(enb<:s.FrCmf*7eoD\djqu6Wrli6tboD\djrVlitJcC<$JcGZJs.BJp -CY!8$nc/U>!WShlepm~> -rlkQFc2WuYmd]_brs&Q(c"I($s-&$6mf*7eoD\djqu6Wrli6tboD\djrVlitJcC<$JcGZJs-!Qc -B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OR\FPrs&Q(]3bNLs*0+pmf*7eoD\djqu6Wrli6tboD\djrVlitJcC<$JcGZJs*+YH -?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOR\FPrs&Q(enb<:s.FrCmf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYmd]_brs&Q(c"I($s-&$6mf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OR\FPrs&Q(]3bNLs*0+pmf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOR\FPrs&Q(enb<:s.FrCmf*7eoD\djqu6WrkPkM^pAY*mrVlitJcC<$JcGZJs.BJp -CY!8$nc/U>!WShlepm~> -rlkQFc2WuYmd]_brs&Q(c"I($s-&$6mf*7eoD\djqu6WrkPkM^pAY*mrVlitJcC<$JcGZJs-!Qc -B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OR\FPrs&Q(]3bNLs*0+pmf*7eoD\djqu6WrkPkM^pAY*mrVlitJcC<$JcGZJs*+YH -?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOR\FPrs&Q(enb<:s.FrCmf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYmd]_brs&Q(c"I($s-&$6mf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,OR\FPrs&Q(]3bNLs*0+pmf*7eoD\djqu6WrpAashqu?Zrp&>!lrVlitJcC<$JcGZJ -s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCoOLC5U!<:Vcs474CJcG0<!!)Wj!!)or!!)?brrDZj!!)ut!!%TMJcC<$r;Zei"9<5g -CB3o)rmh,MT`3Mm~> -rlkQFc2WuYm^DNg!<:;Vs3:S-JcG0<!!)Wj!!)or!!)?brrDZj!!)ut!!%TMJcC<$r;Ze\"9<)Z -B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,OLC5U!<9Z;s1A;UJcG0<!!)Wj!!)or!!)?brrDZj!!)ut!!%TMJcC<$r;ZeA"9;c? -?3'Nqrjr42GlG=*~> -rmh2Of)MEAOSo1?OSo1WOSo0>OT#7:O9Ydcenb<:s.FrCmf*7eo)A[irVlitm/R(cnG`Rjs8N(M -s+13$s82irTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X"+mem.Hmem.`mem-Gmf!4CmKWalc"I($s-&$6mf*7eo)A[irVlitm/R(cnG`Rjs8N(M -s+13$s82irP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-SOSo1?OSo1WOSo0>OT#7:O9Ydc]3bNLs*0+pmf*7eo)A[irVlitm/R(cnG`Rjs8N(M -s+13$s82irGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MEBOT,=<OT,=WOT,<AOT,:^O8o:<O9Ydcenb<:s.FrCmf*7enc/OffDkjNJcC<$JcGTH -s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2X",mf*:Emf*:`mf*9Jmf*7gmJm7EmKWalc"I($s-&$6mf*7enc/OffDkjNJcC<$JcGTH -s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-TOT,=<OT,=WOT,<AOT,:^O8o:<O9Ydc]3bNLs*0+pmf*7enc/OffDkjNJcC<$JcGTH -s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MEBOT,=<OT,=WOT,<KOT#7WOT,=[OT,=JOT#7SO9Ydcenb<:s.FrCmf*7eJcC<$JcE=] -s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2X",mf*:Emf*:`mf*9Tmf!4`mf*:dmf*:Smf!4\mKWalc"I($s-&$6mf*7eJcC<$JcE=] -s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-TOT,=<OT,=WOT,<KOT#7WOT,=[OT,=JOT#7SO9Ydc]3bNLs*0+pmf*7eJcC<$JcE=] -s*+YH?FsMDnc/U#!WRED]79~> -rmh5Pf)MD)qZ-SVr;ceXrVuq[rW)t[quHVUrrDnWrrD\QrW)t[rW)\SrW)qZrW)\SqZ->OrVuq[ -rW)>IrW)t[rW)nYrW)nYrrE%[rrDAHrW)bU#6=eTC]DucTRm.2rr<%Ms+13$s1871TEG71enY9U -s8LRMs.KABJ,~> -rlkTGc2X!qqZ-T_r;cfarVurdrW)udquHW^rrDo`rrD]ZrW)udrW)]\rW)rcrW)]\qZ-?XrVurd -rW)?RrW)udrW)obrW)obrrE&drrDBQrW)c^#6=eKBE-6VPC`c%rr<%Ms+13$s1871P6:kuc"@%H -s8L7Ds-*H,J,~> -rjr=5]Dm,;qZ-SVr;ceXrVuq[rW)t[quHVUrrDnWrrD\QrW)t[rW)\SrW)qZrW)\SqZ->OrVuq[ -rW)>IrW)t[rW)nYrW)nYrrE%[rrDAHrW)bU#6=e9?N7Y;G_,n_rr<%Ms+13$s1871GQ\"Q]3YL- -s8KV2s*4OTJ,~> -rmh2Of)MEBOT,=YOT,=\OT,=ZOT#7TOT,=YOT,=WOT,=POT,=\OT,=ROT,=[OT,=SO8o:[OT,=R -OT#7[OT,=JOT,=\OT,=WOT#7[OT,=[OT,=FOT#7WO9Ydcenb<:s.FrCJcC<$JcDVIs.BJpCY!8$ -nc/U>!WShlepm~> -rlkQFc2X",mf*:bmf*:emf*:cmf!4]mf*:bmf*:`mf*:Ymf*:emf*:[mf*:dmf*:\mJm7dmf*:[ -mf!4dmf*:Smf*:emf*:`mf!4dmf*:dmf*:Omf!4`mKWalc"I($s-&$6JcC<$JcDVIs-!QcB?b&h -nc/U5!WSA_c%#~> -rjr:4]Dm-TOT,=YOT,=\OT,=ZOT#7TOT,=YOT,=WOT,=POT,=\OT,=ROT,=[OT,=SO8o:[OT,=R -OT#7[OT,=JOT,=\OT,=WOT#7[OT,=[OT,=FOT#7WO9Ydc]3bNLs*0+pJcC<$JcDVIs*+YH?FsMD -nc/U#!WRED]79~> -rmh2Of)MEBOT,=ZOT,=ZOT,=[OT,=TOT,=YOT,=WOT,=OOSo1OOT,=[OT,=POT,=QOT,=[OT,=I -OSo1ROT,:^O8o:[OT,=SOS]%QOT,=YO9Ydcenb<:s.FrCJcC<$JcDVIs.BJpCY!8$nc/U>!WShl -epm~> -rlkQFc2X",mf*:cmf*:cmf*:dmf*:]mf*:bmf*:`mf*:Xmem.Xmf*:dmf*:Ymf*:Zmf*:dmf*:R -mem.[mf*7gmJm7dmf*:\me["Zmf*:bmKWalc"I($s-&$6JcC<$JcDVIs-!QcB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm-TOT,=ZOT,=ZOT,=[OT,=TOT,=YOT,=WOT,=OOSo1OOT,=[OT,=POT,=QOT,=[OT,=I -OSo1ROT,:^O8o:[OT,=SOS]%QOT,=YO9Ydc]3bNLs*0+pJcC<$JcDVIs*+YH?FsMDnc/U#!WRED -]79~> -rmh2Of)MEBOT,=ZOT,=ZOT,=[OT,=XOS]%UOT,=WOT,=NOT,=OOT,:^O8o:POT,=POT,=[OT,=H -OT,=UOT#7[OT,=[OT,=FOT#7WO9Ydcenb<:s.FrCJcFs6rW%NLJcEUes.BJpCY!8$nc/U>!WShl -epm~> -rlkQFc2X",mf*:cmf*:cmf*:dmf*:ame["^mf*:`mf*:Wmf*:Xmf*7gmJm7Ymf*:Ymf*:dmf*:Q -mf*:^mf!4dmf*:dmf*:Omf!4`mKWalc"I($s-&$6JcFs6rW%NLJcEUes-!QcB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm-TOT,=ZOT,=ZOT,=[OT,=XOS]%UOT,=WOT,=NOT,=OOT,:^O8o:POT,=POT,=[OT,=H -OT,=UOT#7[OT,=[OT,=FOT#7WO9Ydc]3bNLs*0+pJcFs6rW%NLJcEUes*+YH?FsMDnc/U#!WRED -]79~> -rmh2Of)MEBOT,=ZOT,=ZOT,=[OT,=YOT,=[OT,=YOT,=WOT,=OOSo1NOT,:^O8o:QOT,=OOT,=[ -OT,=IOSo1VOT#7YOT,=[OT,=HOT#7UO9Ydcenb<:s.FrCmf*7enc/Rg!WN.\rr<&rrr<%Ms+13l -s8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2X",mf*:cmf*:cmf*:dmf*:bmf*:dmf*:bmf*:`mf*:Xmem.Wmf*7gmJm7Zmf*:Xmf*:d -mf*:Rmem._mf!4bmf*:dmf*:Qmf!4^mKWalc"I($s-&$6mf*7enc/Rg!WN.\rr<&rrr<%Ms+13l -s8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm-TOT,=ZOT,=ZOT,=[OT,=YOT,=[OT,=YOT,=WOT,=OOSo1NOT,:^O8o:QOT,=OOT,=[ -OT,=IOSo1VOT#7YOT,=[OT,=HOT#7UO9Ydc]3bNLs*0+pmf*7enc/Rg!WN.\rr<&rrr<%Ms+13l -s8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MEBOT,=YOT,=\OT,=ZOT,=YOT,=\OT#7XOT,=WOT,=POT,=\OT,=POT#7POT,=[O8o:R -OT,=[OT,=ZOT,=POT,=\OT,=[OT#7VOT,:^O8o:IOT#7SO9Ydcenb<:s.FrCmf*7eo)A[irr;uu -gAh0Qh#@?ShZ!QUqu6WrJcC<$aoDC6"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X",mf*:bmf*:emf*:cmf*:bmf*:emf!4amf*:`mf*:Ymf*:emf*:Ymf!4Ymf*:dmJm7[ -mf*:dmf*:cmf*:Ymf*:emf*:dmf!4_mf*7gmJm7Rmf!4\mKWalc"I($s-&$6mf*7eo)A[irr;uu -gAh0Qh#@?ShZ!QUqu6WrJcC<$aoDC)"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-TOT,=YOT,=\OT,=ZOT,=YOT,=\OT#7XOT,=WOT,=POT,=\OT,=POT#7POT,=[O8o:R -OT,=[OT,=ZOT,=POT,=\OT,=[OT#7VOT,:^O8o:IOT#7SO9Ydc]3bNLs*0+pmf*7eo)A[irr;uu -gAh0Qh#@?ShZ!QUqu6WrJcC<$aoDBc"9;c??3'Nqrjr42GlG=*~> -rmh5Pf)MD)qZ-SVr;ceXqZ-VWrVuq[rW)t[qZ-VWqZ->OrW)t[rW)SPrW)SPqZ->Or;ZhZr;chY -rrD\QrW)t[rW)SPrW(f:#6=eTC]DucTRm.2rr<&irr<&trr<&ms8N'!s8E#_s8N)ks8N'&rr<'! -!!)Wj!!)Zkrr<?)!!*$!!<3$!rr;uuqu6WrrVu`pp&G$l!<<#up&G$l"oeQ&rr<%Ms+14@s8S_p -!,L/$!:g*gecGfDrmlT~> -rlkTGc2X!qqZ-T_r;cfaqZ-W`rVurdrW)udqZ-W`qZ-?XrW)udrW)TYrW)TYqZ-?Xr;Zicr;cib -rrD]ZrW)udrW)TYrW(gC#6=eKBE-6VPC`c%rr<&irr<&trr<&ms8N'!s8E#_s8N)ks8N'&rr<'! -!!)Wj!!)Zkrr<?)!!*$!!<3$!rr;uuqu6WrrVu`pp&G$l!<<#up&G$l"oeQ&rr<%Ms+14@s8S8c -!,'Ph!:g*gblRj.rlor~> -rjr=5]Dm,;qZ-SVr;ceXqZ-VWrVuq[rW)t[qZ-VWqZ->OrW)t[rW)SPrW)SPqZ->Or;ZhZr;chY -rrD\QrW)t[rW)SPrW(f:#6=e9?N7Y;G_,n_rr<&irr<&trr<&ms8N'!s8E#_s8N)ks8N'&rr<'! -!!)Wj!!)Zkrr<?)!!*$!!<3$!rr;uuqu6WrrVu`pp&G$l!<<#up&G$l"oeQ&rr<%Ms+14@s8R<H -!+*9D!:g*g])hqVrk![~> -rmh2Of)MDFOT,=4OT,<jO9Ydcenb<:s.FrCmf*7eo)A[inGiLgrr2rup&Fjgqu?Zrp&G$l"TJH% -rrDZj!!)Wjrr<<(!!*$!s8N)trr<&rrr<&rrr<&hs8N)urr<&ls8N'%rr<'!!.k0$s763iTEG71 -enY9Us8LRMs.KABJ,~> -rlkQFc2X!0mf*:=mf*9smKWalc"I($s-&$6mf*7eo)A[inGiLgrr2rup&Fjgqu?Zrp&G$l"TJH% -rrDZj!!)Wjrr<<(!!*$!s8N)trr<&rrr<&rrr<&hs8N)urr<&ls8N'%rr<'!!.k0$s763iP6:ku -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,XOT,=4OT,<jO9Ydc]3bNLs*0+pmf*7eo)A[inGiLgrr2rup&Fjgqu?Zrp&G$l"TJH% -rrDZj!!)Wjrr<<(!!*$!s8N)trr<&rrr<&rrr<&hs8N)urr<&ls8N'%rr<'!!.k0$s763iGQ\"Q -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDFOT,=4O8o9iO9Ydcenb<:s.FrCmf*7enc/Ofo`"mkr;Q`skPkM^pAY<ss8N*!rrDcm -q>g6h#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iTEG71enY9U -s8LRMs.KABJ,~> -rlkQFc2X!0mf*:=mJm6rmKWalc"I($s-&$6mf*7enc/Ofo`"mkr;Q`skPkM^pAY<ss8N*!rrDcm -q>g6h#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iP6:kuc"@%H -s8L7Ds-*H,J,~> -rjr:4]Dm,XOT,=4O8o9iO9Ydc]3bNLs*0+pmf*7enc/Ofo`"mkr;Q`skPkM^pAY<ss8N*!rrDcm -q>g6h#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iGQ\"Q]3YL- -s8KV2s*4OTJ,~> -rmh2Of)MDHOSf*<O9Ydcenb<:s.FrCmf*7emJd.dp&>!lr;Q`spAashqu?Zrp&>3rs8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iTEG71enY9U -s8LRMs.KABJ,~> -rlkQFc2X!2med'EmKWalc"I($s-&$6mf*7emJd.dp&>!lr;Q`spAashqu?Zrp&>3rs8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iP6:kuc"@%H -s8L7Ds-*H,J,~> -rjr:4]Dm,ZOSf*<O9Ydc]3bNLs*0+pmf*7emJd.dp&>!lr;Q`spAashqu?Zrp&>3rs8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)trr<&rrr<&rrr<&hrr<&srr<&mrrrK'rrE*!!.k0$s763iGQ\"Q]3YL- -s8KV2s*4OTJ,~> -rmh2Of)MCoOLC5U!<:Vcs474CJcG0<!!)Ti!!)ut!!)]l!!)rs!!)?brrDZj"p"]'!<<'!oD\dj -oD]*ss8N*!rrE*!!<)ot!;lcr!;lcr!:g'h!;uis!;?Es!<<'!s8N(Ms+14@s8S_p!,L/$!:g*g -ecGfDrmlT~> -rlkQFc2WuYm^DNg!<:;Vs3:S-JcG0<!!)Ti!!)ut!!)]l!!)rs!!)?brrDZj"p"]'!<<'!oD\dj -oD]*ss8N*!rrE*!!<)ot!;lcr!;lcr!:g'h!;uis!;?Es!<<'!s8N(Ms+14@s8S8c!,'Ph!:g*g -blRj.rlor~> -rjr:4]Dm,,OLC5U!<9Z;s1A;UJcG0<!!)Ti!!)ut!!)]l!!)rs!!)?brrDZj"p"]'!<<'!oD\dj -oD]*ss8N*!rrE*!!<)ot!;lcr!;lcr!:g'h!;uis!;?Es!<<'!s8N(Ms+14@s8R<H!+*9D!:g*g -])hqVrk![~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCmf*7eo)J^irr2rup&G$lrr2rum/R(cnc&dns8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)us8N)rrr<&rrr<&urr<&ls8N)urr<&lrrrK'rrE*!!.k0$s763iTEG71 -enY9Us8LRMs.KABJ,~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6mf*7eo)J^irr2rup&G$lrr2rum/R(cnc&dns8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)us8N)rrr<&rrr<&urr<&ls8N)urr<&lrrrK'rrE*!!.k0$s763iP6:ku -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pmf*7eo)J^irr2rup&G$lrr2rum/R(cnc&dns8N*!rrDZj -!!)Wj#lt#*!<<'!s8N)us8N)rrr<&rrr<&urr<&ls8N)urr<&lrrrK'rrE*!!.k0$s763iGQ\"Q -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDrOSo1ROFdGurs&Q(enb<:s.FrCmf*7eo)A^js8E#jrrE-"rW([PrW!-%!!*$!!9X=\ -!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`ro`"pls8E#ks8E!%rr<'!!!%TMJcG?As.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2X!\mem.[mXbE)rs&Q(c"I($s-&$6mf*7eo)A^js8E#jrrE-"rW([PrW!-%!!*$!!9X=\ -!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`ro`"pls8E#ks8E!%rr<'!!!%TMJcG?As-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm-/OT#4ROFdGurs&Q(]3bNLs*0+pmf*7eo)A^js8E#jrrE-"rW([PrW!-%!!*$!!9X=\ -!!iN(!<3$!s8W&u!ri6#rr;lrr;Z`ro`"pls8E#ks8E!%rr<'!!!%TMJcG?As*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)ME>!9'%>!;)A(s6Taj!<:Vcs474CJcG0<!!(sW!!%]P!!%TMJcFI(s.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2X"(!9*AG!;,]1s6Taj!<:;Vs3:S-JcG0<!!(sW!!%]P!!%TMJcFI(s-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm-Ps5B(>s7DD(s6Taj!<9Z;s1A;UJcG0<!!(sW!!%]P!!%TMJcFI(s*+YH?FsMDnc/U# -!WRED]79~> -rmh;Rf)MD)!!*"[rrD&?rrD\QJcG*:#6=eTC]DucTRm.2rr<&Wrr<%Prr<%Ms+14(s8S_p!,L/$ -!:g*gecGfDrmlT~> -rlkZIc2X!q!!*#drrD'HrrD]ZJcG*:#6=eKBE-6VPC`c%rr<&Wrr<%Prr<%Ms+14(s8S8c!,'Ph -!:g*gblRj.rlor~> -rjrC7]Dm,;s8W([s8V)?s8V_QJcG*:#6=e9?N7Y;G_,n_rr<&Wrr<%Prr<%Ms+14(s8R<H!+*9D -!:g*g])hqVrk![~> -rmh;Rf)MD)!!*"[rrE(\rVuq[rW)qZr;cbWr;ceXqZ->OJcG*:#6=eTC]DucTRm-fs8;qQs8;qK -s+14*s8S_p!,L/$!:g*gecGfDrmlT~> -rlkZIc2X!q!!*#drrE)erVurdrW)rcr;cc`r;cfaqZ-?XJcG*:#6=eKBE-6VPC`bYs8;qQs8;qK -s+14*s8S8c!,'Ph!:g*gblRj.rlor~> -rjrC7]Dm,;s8W([s8W+\rr2t[rr;tZrVueWrVuhXqu?AOJcG*:#6=e9?N7Y;G_,n>s8;qQs8;qK -s+14*s8R<H!+*9D!:g*g])hqVrk![~> -rmh;Rf)MD)!!*"[rrE%[rW)kXrrE(\rrE%[rrE(\rrDtYrrD\QJcG*:#6=eTC]DucTRm,os+13$ -s/,hrTEG71enY9Us8LRMs.KABJ,~> -rlkZIc2X!q!!*#drrE&drW)larrE)errE&drrE)errDubrrD]ZJcG*:#6=eKBE-6VPC`abs+13$ -s/,hrP6:kuc"@%Hs8L7Ds-*H,J,~> -rjrC7]Dm,;s8W([s8W([rr;nXs8W+\s8W([s8W+\s8W"Ys8V_QJcG*:#6=e9?N7Y;G_,mGs+13$ -s/,hrGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmhGVf)MD)!!&+B!!)tZrrDtYrrE"Zrr<+^!!)tZrrE"ZrrD\QJcG*:#6=eTC]DucTRm-ss8N)t -rr<%Ms+13$s4%)KTEG71enY9Us8LRMs.KABJ,~> -rlkfMc2X!q!!)HT!!)ucrrDubrrE#crr<,g!!)ucrrE#crrD]ZJcG*:#6=eKBE-6VPC`bfs8N)t -rr<%Ms+13$s4%)KP6:kuc"@%Hs8L7Ds-*H,J,~> -rjrO;]Dm,;s8S1Bs8W%Zs8W"Ys8W%Zs8N.^s8W%Zs8W%Zs8V_QJcG*:#6=e9?N7Y;G_,nKs8N)t -rr<%Ms+13$s4%)KGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh5Pf)MD)quHYVrrDtYrrE"Zrr<+^!!)tZrrE"ZrrD\QJcG*:#6=eTC]DucTRm-rrr<&srr<%M -s+13$s4./LTEG71enY9Us8LRMs.KABJ,~> -rlkTGc2X!qquHZ_rrDubrrE#crr<,g!!)ucrrE#crrD]ZJcG*:#6=eKBE-6VPC`berr<&srr<%M -s+13$s4./LP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr=5]Dm,;r;Z\Vs8W"Ys8W%Zs8N.^s8W%Zs8W%Zs8V_QJcG*:#6=e9?N7Y;G_,nJrr<&srr<%M -s+13$s4./LGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh;Rf)MD)!!)hVrrDtYrrE"Zrr<+^!!)tZrrE"ZrrD\QJcG*:#6=eTC]DucTRm-rrr<&srr<%M -s+13$s4./LTEG71enY9Us8LRMs.KABJ,~> -rlkZIc2X!q!!)i_rrDubrrE#crr<,g!!)ucrrE#crrD]ZJcG*:#6=eKBE-6VPC`berr<&srr<%M -s+13$s4./LP6:kuc"@%Hs8L7Ds-*H,J,~> -rjrC7]Dm,;s8VnVs8W"Ys8W%Zs8N.^s8W%Zs8W%Zs8V_QJcG*:#6=e9?N7Y;G_,nJrr<&srr<%M -s+13$s4./LGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh;Rf)MD)!!)hVrrDqXrrE(\rrE%[rrE(\rrDtYrrDnWrrE"ZJcG*:#6=eTC]DucTRm.2s8E#t -s8N'!s8E#rs8E!!rrDrr!!%TMJcC<$f)PcC"9<5gCB3o)rmh,MT`3Mm~> -rlkZIc2X!q!!)i_rrDrarrE)errE&drrE)errDubrrDo`rrE#cJcG*:#6=eKBE-6VPC`c%s8E#t -s8N'!s8E#rs8E!!rrDrr!!%TMJcC<$f)Pc6"9<)ZB)qK%rlkKDPQ&gW~> -rjrC7]Dm,;s8VnVs8VtXs8W+\s8W([s8W+\s8W"Ys8VqWrrE"ZJcG*:#6=e9?N7Y;G_,n_s8E#t -s8N'!s8E#rs8E!!rrDrr!!%TMJcC<$f)Pbp"9;c??3'Nqrjr42GlG=*~> -rmh2Of)ME@!;qrU!<&#X!;qrW!<&#V!;qrY!<&"1s6Taj!<:Vcs474CJcG3=!!*#u!!*#urrE&u -!!*#u!!*#urrDrr!!%TMJcC<$f)PcC"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X"*!;u9^!<)?a!;u9`!<)?_!;u9b!<)>:s6Taj!<:;Vs3:S-JcG3=!!*#u!!*#urrE&u -!!*#u!!*#urrDrr!!%TMJcC<$f)Pc6"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-Rs87uUs8A&Xs87uWs8A&Vs87uY!<&"1s6Taj!<9Z;s1A;UJcG3=!!*#u!!*#urrE&u -!!*#u!!*#urrDrr!!%TMJcC<$f)Pbp"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCnG`Igr;Qj!s8N)trrW9$rrDus!!)or!!%TMJcC<$f)PcC -"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6nG`Igr;Qj!s8N)trrW9$rrDus!!)or!!%TMJcC<$f)Pc6 -"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pnG`Igr;Qj!s8N)trrW9$rrDus!!)or!!%TMJcC<$f)Pbp -"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCnGi=bs8N'!rVls"s8N)srr<&rrr<%Ms+13$s475MTEG71 -enY9Us8LRMs.KABJ,~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6nGi=bs8N'!rVls"s8N)srr<&rrr<%Ms+13$s475MP6:ku -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pnGi=bs8N'!rVls"s8N)srr<&rrr<%Ms+13$s475MGQ\"Q -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCnG`Igq>UEprVls"s8N)srr<&rrr<%Ms+13$s475MTEG71 -enY9Us8LRMs.KABJ,~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6nG`Igq>UEprVls"s8N)srr<&rrr<%Ms+13$s475MP6:ku -c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pnG`Igq>UEprVls"s8N)srr<&rrr<%Ms+13$s475MGQ\"Q -]3YL-s8KV2s*4OTJ,~> -rmh2Of)MDdOFdGurs&Q(enb<:s.FrCn,E@frVls"s8N)trr<&urr<&us8N)rrr<%Ms+13$s475M -TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X!NmXbE)rs&Q(c"I($s-&$6n,E@frVls"s8N)trr<&urr<&us8N)rrr<%Ms+13$s475M -P6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-!OFdGurs&Q(]3bNLs*0+pn,E@frVls"s8N)trr<&urr<&us8N)rrr<%Ms+13$s475M -GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME!J:[aSrs&Q(enb<:s.FrCmf34cs8W&us8W&urr;rt!ri6#rVlitJcC<$JcF:#s.BJp -CY!8$nc/U>!WShlepm~> -rlkQFc2X!`!.k1(rs&Q(c"I($s-&$6mf34cs8W&us8W&urr;rt!ri6#rVlitJcC<$JcF:#s-!Qc -B?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-3!.k1(rs&Q(]3bNLs*0+pmf34cs8W&us8W&urr;rt!ri6#rVlitJcC<$JcF:#s*+YH -?FsMDnc/U#!WRED]79~> -rmh2Of)ME2JGoN?J:[aSrs&Q(enb<:s.FrCe,KCJJcC<$JcF:#s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2X!q!<)ri!.k1(rs&Q(c"I($s-&$6e,KCJJcC<$JcF:#s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-D!<)ri!.k1(rs&Q(]3bNLs*0+pe,KCJJcC<$JcF:#s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)ME0JH,ZHJH,ZIJ:[aSrs&Q(enb<:s.FrCeGfLKJcC<$JcF7"s.BJpCY!8$nc/U>!WShl -epm~> -rlkQFc2X!o!<<)r!<<)s!.k1(rs&Q(c"I($s-&$6eGfLKJcC<$JcF7"s-!QcB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm-B!<<)r!<<)s!.k1(rs&Q(]3bNLs*0+peGfLKJcC<$JcF7"s*+YH?FsMDnc/U#!WRED -]79~> -rmh2Of)ME0JH,ZHJH,ZIJ:[aSrs&Q(enb<:s.FrCJcC<$JcDVIs.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2X!o!<<)r!<<)s!.k1(rs&Q(c"I($s-&$6JcC<$JcDVIs-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm-B!<<)r!<<)s!.k1(rs&Q(]3bNLs*0+pJcC<$JcDVIs*+YH?FsMDnc/U#!WRED]79~> -rmh;Rf)MECs+(%I!.b(Ks+(+KrIFqJr.+\Es+#\#gA_BXs41ucf)MCos+13$s+13Is8S_p!,L/$ -!:g*gecGfDrmlT~> -rlkZIc2X"-rrDus!!*#urrE&ur;cltquHWorr@WMgA_BXs353Vc2WuYs+13$s+13Is8S8c!,'Ph -!:g*gblRj.rlor~> -rjrC7]Dm-UrrDus!!*#urrE&ur;cltquHWorr@WMgA_BXs1;V;]Dm,,s+13$s+13Is8R<H!+*9D -!:g*g])hqVrk![~> -rmhV[f)MCns8RWLs+(.LJH,ZKJH,ZJJH,ZHJH,ZIJ:[aSrs&Q(enb<:s.FrCJcC<$JcDVIs.BJp -CY!8$ma_F=T`3Mm~> -rlkuRc2Wt-s8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(c"I($s-&$6JcC<$JcDVIs-!Qc -B?b&hm`be4PQ&gW~> -rjr^@]Dm*Us8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(]3bNLs*0+pJcC<$JcDVIs*+YH -?FsMDm^iN"GlG=*~> -rmhV[f)MCns8RWLs+(.LJH,ZKJH,ZJJH,ZHJH,ZIJ:[aSrs&Q(enb<:s.HOp!!'q:!!'q:!!%TM -JcC<$q#CAe"9<5gCB3eR!WShlepm~> -rlkuRc2Wt-s8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(c"I($s-'Vc!!'q:!!'q:!!%TM -JcC<$q#CAX"9<)ZB)qAE!WSA_c%#~> -rjr^@]Dm*Us8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(]3bNLs*1^H!!'q:!!'q:!!%TM -JcC<$q#CA="9;c??3'E*!WRED]79~> -rmhV[f)MCns8RWLs+(.LJH,ZKJH,ZJJH,ZHJH,ZIJ:[aSrs&Q(enb<:s.HOp!!)6_rrCpU!!)6_ -rrCpU!!%TMJcC<$q#CAe"9<5gCB3eR!WShlepm~> -rlkuRc2Wt-s8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(c"I($s-'Vc!!)6_rrCpU!!)6_ -rrCpU!!%TMJcC<$q#CAX"9<)ZB)qAE!WSA_c%#~> -rjr^@]Dm*Us8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(]3bNLs*1^H!!)6_rrCpU!!)6_ -rrCpU!!%TMJcC<$q#CA="9;c??3'E*!WRED]79~> -rmhV[f)MCns8RWLs+(.LJH,ZKJH,ZJJH,ZHJH,ZIJ:[aSrs&Q(enb<:s.Id>rrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ)3IJcC<$qu?\h"9<5g -CB3eR!WShlepm~> -rlkuRc2Wt-s8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(c"I($s-(k1rrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ)3IJcC<$qu?\["9<)Z -B)qAE!WSA_c%#~> -rjr^@]Dm*Us8N*!rrE*!!<<)u!<<)t!<<)r!<<)s!.k1(rs&Q(]3bNLs*2rkrrD]krr<'!rW)lr -r;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ,m\rrD]krr<'!rW)lrr;cisqZ)3IJcC<$qu?\@"9;c? -?3'E*!WRED]79~> -rmh\]f)MCns8RWLs+(.LJH,Y"JH#TIJH,ZHJH,ZLJH,WLJ:[aSrs&Q(enb<:s.Id>rrDZjrrE&u -!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut -!!%TMJcC<$q#CAe"9<5gCB3eR!WShlepm~> -rll&Tc2Wt-s8N*!rrE*!!<<'!!<3#s!<<)r!<<*!!<<'!!.k1(rs&Q(c"I($s-(k1rrDZjrrE&u -!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut -!!%TMJcC<$q#CAX"9<)ZB)qAE!WSA_c%#~> -rjrdB]Dm*Us8N*!rrE*!!<<'!!<3#s!<<)r!<<*!!<<'!!.k1(rs&Q(]3bNLs*2rkrrDZjrrE&u -!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut!!)*[rrD`lrrE&u!!*#u!!)ut!!)ut -!!%TMJcC<$q#CA="9;c??3'E*!WRED]79~> -rmh2Of)MEBrs+)Ss+(.LJ:RY!!.b(K!.atHr.+bGs+#\#gA_BXs41ucf)MDZrr<&trr<&prr<&t -rr<&hs8)fkrr<&mrr<&trr<&prr<&trr<&hs8)fkrr<&mrr<&trr<&prr<&trr<%Ms+13$s7lWo -TEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X",rs&Q(rrE*!!!*#u!!*#u!!)orquH]qrr@WMgA_BXs353Vc2X!Drr<&trr<&prr<&t -rr<&hs8)fkrr<&mrr<&trr<&prr<&trr<&hs8)fkrr<&mrr<&trr<&prr<&trr<%Ms+13$s7lWo -P6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-Trs&Q(rrE*!!!*#u!!*#u!!)orquH]qrr@WMgA_BXs1;V;]Dm,lrr<&trr<&prr<&t -rr<&hs8)fkrr<&mrr<&trr<&prr<&trr<&hs8)fkrr<&mrr<&trr<&prr<&trr<%Ms+13$s7lWo -GQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)ME!J:[aSrs&Q(enb<:s.I4.!!)ut!!)utquH]q!!)*[rrD`l!!)ut!!)utquH]q!!)*[ -rrD`l!!)ut!!)utquH]q!!%TMJcC<$q#CAe"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X!`!.k1(rs&Q(c"I($s-(;!!!)ut!!)utquH]q!!)*[rrD`l!!)ut!!)utquH]q!!)*[ -rrD`l!!)ut!!)utquH]q!!%TMJcC<$q#CAX"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-3!.k1(rs&Q(]3bNLs*2B[!!)ut!!)utquH]q!!)*[rrD`l!!)ut!!)utquH]q!!)*[ -rrD`l!!)ut!!)utquH]q!!%TMJcC<$q#CA="9;c??3'Nqrjr42GlG=*~> -rmh2Of)ME!J:[aSrs&Q(enb<:s.I4.!!)ut!!*#u!!)ut!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut -!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut!!)ut!!%TMJcC<$q#CAe"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2X!`!.k1(rs&Q(c"I($s-(;!!!)ut!!*#u!!)ut!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut -!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut!!)ut!!%TMJcC<$q#CAX"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm-3!.k1(rs&Q(]3bNLs*2B[!!)ut!!*#u!!)ut!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut -!!)ut!!)0]rrDZj!!)ut!!*#u!!)ut!!)ut!!%TMJcC<$q#CA="9;c??3'Nqrjr42GlG=*~> -rmh2Of)ME!J:[aSrs&Q(enb<:s.Id>rrDZj!!)ut!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut -!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut!!*#u!!)ut!!)ut!!*#u!!%TMJcC<$r;Zei"9<5g -CB3o)rmh,MT`3Mm~> -rlkQFc2X!`!.k1(rs&Q(c"I($s-(k1rrDZj!!)ut!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut -!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut!!*#u!!)ut!!)ut!!*#u!!%TMJcC<$r;Ze\"9<)Z -B)qK%rlkKDPQ&gW~> -rjr:4]Dm-3!.k1(rs&Q(]3bNLs*2rkrrDZj!!)ut!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut -!!*#u!!)ut!!)ut!!*#u!!)BcrrDTh!!)ut!!*#u!!)ut!!)ut!!*#u!!%TMJcC<$r;ZeA"9;c? -?3'Nqrjr42GlG=*~> -rmh2Of)ME!J:[aSrs&Q(enb<:s.Id>rrD]krW)uurW)rtr;Zlu!<)rs!8@JP!<<)u!<3#s!!3*" -rVuisgAh-Ps8W&urr;os!WN/us8E"Ls+13$s82irTEG71enY9Us8LRMs.KABJ,~> -rlkQFc2X!`!.k1(rs&Q(c"I($s-(k1rrD]krW)uurW)rtr;Zlu!<)rs!8@JP!<<)u!<3#s!!3*" -rVuisgAh-Ps8W&urr;os!WN/us8E"Ls+13$s82irP6:kuc"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm-3!.k1(rs&Q(]3bNLs*2rkrrD]krW)uurW)rtr;Zlu!<)rs!8@JP!<<)u!<3#s!!3*" -rVuisgAh-Ps8W&urr;os!WN/us8E"Ls+13$s82irGQ\"Q]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcEmmrW%NLdJs1GJcCr6s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcEmmrW%NLdJs1GJcCr6s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcEmmrW%NLdJs1GJcCr6s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq5!<:Vcs474Cs8E#:rr<%Xrr<&_rr<%trr<&8rr<%Ms-*K_TEG71enY9Us8LRM -s.KABJ,~> -rlkQFc2WuYs0hq5!<:;Vs3:S-s8E#:rr<%Xrr<&_rr<%trr<&8rr<%Ms-*K_P6:kuc"@%Hs8L7D -s-*H,J,~> -rjr:4]Dm,,s0hq5!<9Z;s1A;Us8E#:rr<%Xrr<&_rr<%trr<&8rr<%Ms-*K_GQ\"Q]3YL-s8KV2 -s*4OTJ,~> -rmh2Of)MCos0hq4!<:Vcs474Crr2ru`;]f;N;ikXkl1V_W;cht_>aK8JcCr6s.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rr2ru`;]f;N;ikXkl1V_W;cht_>aK8JcCr6s-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Urr2ru`;]f;N;ikXkl1V_W;cht_>aK8JcCr6s*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)MCos0hq9!<:Vcs474Cs8N*!!;uls!<<*!!<)rs!!WB&!<3$!rr;uus8W*!"oeQ&rr<&t -s8E#ts8N'!s8E#ts8)ffs82lps8E!!rrE&ur;cisrr<'!rW)iqrW)lrquHBhr;cfrrrE*!rrDus -rW)Nh!!)rsrr<'!rW)lrr;cisqZ-6fquHZprW!!!!<3#s!<3#u!!*&u!;lfq!;6Bl!!*&u!;ulq -!<3#q!;$6g!;ulr!!3*"rr;osrr;uu!<<#uqu?WqqYpNqJcCr6s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq9!<:;Vs3:S-s8N*!!;uls!<<*!!<)rs!!WB&!<3$!rr;uus8W*!"oeQ&rr<&t -s8E#ts8N'!s8E#ts8)ffs82lps8E!!rrE&ur;cisrr<'!rW)iqrW)lrquHBhr;cfrrrE*!rrDus -rW)Nh!!)rsrr<'!rW)lrr;cisqZ-6fquHZprW!!!!<3#s!<3#u!!*&u!;lfq!;6Bl!!*&u!;ulq -!<3#q!;$6g!;ulr!!3*"rr;osrr;uu!<<#uqu?WqqYpNqJcCr6s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq9!<9Z;s1A;Us8N*!!;uls!<<*!!<)rs!!WB&!<3$!rr;uus8W*!"oeQ&rr<&t -s8E#ts8N'!s8E#ts8)ffs82lps8E!!rrE&ur;cisrr<'!rW)iqrW)lrquHBhr;cfrrrE*!rrDus -rW)Nh!!)rsrr<'!rW)lrr;cisqZ-6fquHZprW!!!!<3#s!<3#u!!*&u!;lfq!;6Bl!!*&u!;ulq -!<3#q!;$6g!;ulr!!3*"rr;osrr;uu!<<#uqu?WqqYpNqJcCr6s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq9!<:Vcs474Cs8N*!!;ld%!<3'!rrE*!!<3#u!<2uu!<)ot!<3#u!!N<%!<3&u -rr<&urr<&us8N)urr<&trr<&hrr<&trr<&trr<&us8N*!rr<&trr<&us8N)urr<&trr<&urr<&u -rr<&trr<&lrr<&trr<&trriE&!<<'!rr2rurr2ruoD\djqu?Zrrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2rup&G$lrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2ruqu6WrJcCr6s.BJpCY!8$nc/U>!WShl -epm~> -rlkQFc2WuYs0hq9!<:;Vs3:S-s8N*!!;ld%!<3'!rrE*!!<3#u!<2uu!<)ot!<3#u!!N<%!<3&u -rr<&urr<&us8N)urr<&trr<&hrr<&trr<&trr<&us8N*!rr<&trr<&us8N)urr<&trr<&urr<&u -rr<&trr<&lrr<&trr<&trriE&!<<'!rr2rurr2ruoD\djqu?Zrrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2rup&G$lrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2ruqu6WrJcCr6s-!QcB?b&hnc/U5!WSA_ -c%#~> -rjr:4]Dm,,s0hq9!<9Z;s1A;Us8N*!!;ld%!<3'!rrE*!!<3#u!<2uu!<)ot!<3#u!!N<%!<3&u -rr<&urr<&us8N)urr<&trr<&hrr<&trr<&trr<&us8N*!rr<&trr<&us8N)urr<&trr<&urr<&u -rr<&trr<&lrr<&trr<&trriE&!<<'!rr2rurr2ruoD\djqu?Zrrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2rup&G$lrr2rurr2rurVlitrVlitnc&Rh -rVlitrVlitrr;uus8N'!rVlitrr;uurr2rurVlitrr2ruqu6WrJcCr6s*+YH?FsMDnc/U#!WRED -]79~> -rmh2Of)MCos0hq6!<:Vcs474CrrE&u!!)rsrrDus!!)rs!!*#u!!)ut!!*#u#lt#*!<<'!s8N)s -rrW9$rrE#t!!)ut!!)Qh!!)ip!!)rs!W`6#qu6`us8N)srrW9$rrDus!s&B$!:0Xb!<)rt!;lcr -!;uis!;-9k!;lcr!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;?Em -!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;uis!.k06s8S_p!,L/$ -!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq6!<:;Vs3:S-rrE&u!!)rsrrDus!!)rs!!*#u!!)ut!!*#u#lt#*!<<'!s8N)s -rrW9$rrE#t!!)ut!!)Qh!!)ip!!)rs!W`6#qu6`us8N)srrW9$rrDus!s&B$!:0Xb!<)rt!;lcr -!;uis!;-9k!;lcr!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;?Em -!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;uis!.k06s8S8c!,'Ph -!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq6!<9Z;s1A;UrrE&u!!)rsrrDus!!)rs!!*#u!!)ut!!*#u#lt#*!<<'!s8N)s -rrW9$rrE#t!!)ut!!)Qh!!)ip!!)rs!W`6#qu6`us8N)srrW9$rrDus!s&B$!:0Xb!<)rt!;lcr -!;uis!;-9k!;lcr!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;?Em -!<)ot!;ZWp!<)ot!:g'h!;ZWp!;uiu!<3&rrrW9$rrDus!s&B$!;uis!;uis!.k06s8R<H!+*9D -!:g*g])hqVrk![~> -rmh2Of)MCos0hq5!<:Vcs474Cs82lprr<&rrr<&srr<&urr<&trr<&urs/W)rrE*!!<<)q!<<'! -!<)ot!<)ot!:^$e!<)ot!;c]q!;lcu!<<'!r;Qfus8Voqrr;osoDe^grVlitqZ$Blo`"mkqu6Wr -rVlitrVucqrVlitnGiFerVlitqYpNqqu6`us8N)srrN3#s7u`hrr<&trr<&ts82lqrr<&gs8;rr -rr<&qrr<&rrrW9$rrDus!W`9#q>gHn!!%TMPQ1ZU"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq5!<:;Vs3:S-s82lprr<&rrr<&srr<&urr<&trr<&urs/W)rrE*!!<<)q!<<'! -!<)ot!<)ot!:^$e!<)ot!;c]q!;lcu!<<'!r;Qfus8Voqrr;osoDe^grVlitqZ$Blo`"mkqu6Wr -rVlitrVucqrVlitnGiFerVlitqYpNqqu6`us8N)srrN3#s7u`hrr<&trr<&ts82lqrr<&gs8;rr -rr<&qrr<&rrrW9$rrDus!W`9#q>gHn!!%TMPQ1ZH"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq5!<9Z;s1A;Us82lprr<&rrr<&srr<&urr<&trr<&urs/W)rrE*!!<<)q!<<'! -!<)ot!<)ot!:^$e!<)ot!;c]q!;lcu!<<'!r;Qfus8Voqrr;osoDe^grVlitqZ$Blo`"mkqu6Wr -rVlitrVucqrVlitnGiFerVlitqYpNqqu6`us8N)srrN3#s7u`hrr<&trr<&ts82lqrr<&gs8;rr -rr<&qrr<&rrrW9$rrDus!W`9#q>gHn!!%TMPQ1Z-"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq5!<:Vcs474C!;uis!<)ot!;lcr!;uis!<2uu!<)ot!<3!)!<<'!s8N*!rrDlp -!!)ut!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!o`"mkp&>!lrVlitrVlitqYpNqmf*7e -qu6WrrVlitrr2rurVlitrVlitm/I%crr2ruqYpNqqu6`us8N)srrW9$rrDQg!!)ut!!*#u!!)ut -!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!pAY*mJcCr6s.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq5!<:;Vs3:S-!;uis!<)ot!;lcr!;uis!<2uu!<)ot!<3!)!<<'!s8N*!rrDlp -!!)ut!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!o`"mkp&>!lrVlitrVlitqYpNqmf*7e -qu6WrrVlitrr2rurVlitrVlitm/I%crr2ruqYpNqqu6`us8N)srrW9$rrDQg!!)ut!!*#u!!)ut -!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!pAY*mJcCr6s-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq5!<9Z;s1A;U!;uis!<)ot!;lcr!;uis!<2uu!<)ot!<3!)!<<'!s8N*!rrDlp -!!)ut!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!o`"mkp&>!lrVlitrVlitqYpNqmf*7e -qu6WrrVlitrr2rurVlitrVlitm/I%crr2ruqYpNqqu6`us8N)srrW9$rrDQg!!)ut!!*#u!!)ut -!!)ut!!)Bc!!*#u!!)lq!!)or!s&B$!;uj!!<<'!pAY*mJcCr6s*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq5!<:Vcs474C!;uis!<)ot!;c]q!<3#u!<2uu!<3#u!<3!&!<<'!s8N)urr<&t -rrW9$rrE#t!!)ut!!*#u!!)]l!!)ut!!)ut!!)ut!s&B$!<)ot!<3#u!<2uu!<)ot!<)p"!<<'! -rVlitp&>!lrVlitrVlitq>UEprVlito`"mkqu6WrrVlitrr2rurVlitrVlitrr2rup&>!lrVlit -rVlitrVls"s8N)trr<&us8N)urr<&trr<&trr<&mrr<&trr<&urr<&trr<&trr<&urr<&lrr<&t -rr<&trr<&trrW9$rrE#t!!*#urrE&u!!)ut!!)ut!!)rs!!%TMPQ1ZU"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq5!<:;Vs3:S-!;uis!<)ot!;c]q!<3#u!<2uu!<3#u!<3!&!<<'!s8N)urr<&t -rrW9$rrE#t!!)ut!!*#u!!)]l!!)ut!!)ut!!)ut!s&B$!<)ot!<3#u!<2uu!<)ot!<)p"!<<'! -rVlitp&>!lrVlitrVlitq>UEprVlito`"mkqu6WrrVlitrr2rurVlitrVlitrr2rup&>!lrVlit -rVlitrVls"s8N)trr<&us8N)urr<&trr<&trr<&mrr<&trr<&urr<&trr<&trr<&urr<&lrr<&t -rr<&trr<&trrW9$rrE#t!!*#urrE&u!!)ut!!)ut!!)rs!!%TMPQ1ZH"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq5!<9Z;s1A;U!;uis!<)ot!;c]q!<3#u!<2uu!<3#u!<3!&!<<'!s8N)urr<&t -rrW9$rrE#t!!)ut!!*#u!!)]l!!)ut!!)ut!!)ut!s&B$!<)ot!<3#u!<2uu!<)ot!<)p"!<<'! -rVlitp&>!lrVlitrVlitq>UEprVlito`"mkqu6WrrVlitrr2rurVlitrVlitrr2rup&>!lrVlit -rVlitrVls"s8N)trr<&us8N)urr<&trr<&trr<&mrr<&trr<&urr<&trr<&trr<&urr<&lrr<&t -rr<&trr<&trrW9$rrE#t!!*#urrE&u!!)ut!!)ut!!)rs!!%TMPQ1Z-"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CrVurur;cltquHZprW!!!!<)rs!!E6$!<<#u"oeQ&rr<&us8;rt -s8E#us8E#ss8E#js82los8;rrs8;rrrrE-"rW)iqr;cisquH?gr;Zs"!<<)s!;lfp!;$3j!;ulr -!<<)u!<3#s!!3*"rVuiso`+ghqu?TprVufrrVllus8E#qs8;rks8E#us8E#ts8;ourrE#trW)Tj -quHWor;cfrr;cfr!<E0!!;lfp!;lcr!.k06s8S_p!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq4!<:;Vs3:S-rVurur;cltquHZprW!!!!<)rs!!E6$!<<#u"oeQ&rr<&us8;rt -s8E#us8E#ss8E#js82los8;rrs8;rrrrE-"rW)iqr;cisquH?gr;Zs"!<<)s!;lfp!;$3j!;ulr -!<<)u!<3#s!!3*"rVuiso`+ghqu?TprVufrrVllus8E#qs8;rks8E#us8E#ts8;ourrE#trW)Tj -quHWor;cfrr;cfr!<E0!!;lfp!;lcr!.k06s8S8c!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UrVurur;cltquHZprW!!!!<)rs!!E6$!<<#u"oeQ&rr<&us8;rt -s8E#us8E#ss8E#js82los8;rrs8;rrrrE-"rW)iqr;cisquH?gr;Zs"!<<)s!;lfp!;$3j!;ulr -!<<)u!<3#s!!3*"rVuiso`+ghqu?TprVufrrVllus8E#qs8;rks8E#us8E#ts8;ourrE#trW)Tj -quHWor;cfrr;cfr!<E0!!;lfp!;lcr!.k06s8R<H!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474Cl2L_`XoAA$\GlO/]`.s3W;chtmJd.dJcCr6s.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-l2L_`XoAA$\GlO/]`.s3W;chtmJd.dJcCr6s-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Ul2L_`XoAA$\GlO/]`.s3W;chtmJd.dJcCr6s*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)MCos0hq4!<:Vcs474ClMghaXT&8#\GuO.^Ae05W;chtn,N@eJcCr6s.BJpCY!8$nc/U> -!WShlepm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-lMghaXT&8#\GuO.^Ae05W;chtn,N@eJcCr6s-!QcB?b&hnc/U5 -!WSA_c%#~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UlMghaXT&8#\GuO.^Ae05W;chtn,N@eJcCr6s*+YH?FsMDnc/U# -!WRED]79~> -rmh2Of)MCos0hq4!<:Vcs474Cmf34cXT/5!RK*$^k5YA[ci<b?k5YA[JcC<$#QLHi!,L/$!:g*g -ecGfDrmlT~> -rlkQFc2WuYs0hq4!<:;Vs3:S-mf34cXT/5!RK*$^k5YA[ci<b?k5YA[JcC<$#QL!O!,'Ph!:g*g -blRj.rlor~> -rjr:4]Dm,,s0hq4!<9Z;s1A;Umf34cXT/5!RK*$^k5YA[ci<b?k5YA[JcC<$#QK$n!+*9D!:g*g -])hqVrk![~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq4!<:Vcs474CJcC<$JcC<$VZ6[h"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq4!<:;Vs3:S-JcC<$JcC<$VZ6[["9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq4!<9Z;s1A;UJcC<$JcC<$VZ6[@"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq2!<:Vcs42c$JcC<$JcDPGs.BJpCY!8$nc/U>!WShlepm~> -rlkQFc2WuYs0hq2!<:;Vs36,pJcC<$JcDPGs-!QcB?b&hnc/U5!WSA_c%#~> -rjr:4]Dm,,s0hq2!<9Z;s1<j^JcC<$JcDPGs*+YH?FsMDnc/U#!WRED]79~> -rmh2Of)MCos0hq2!<:Vcs42aoJY7ReJY8a1"9<5gCB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq2!<:;Vs36+YJWkYKJWlgl"9<)ZB)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq2!<9Z;s1<i,JTu`jJU!o6"9;c??3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq1!<:Vcs+-hoTRibeTV8"]!,L/$!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq1!<:;Vs+-AbPC\pKPG+0C!,'Ph!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq1!<9Z;s+,EGG_(*jGbK?b!+*9D!:g*g])hqVrk![~> -rmh2Of)MCos0hq0!<:VcJH16$JH16$T)\t/enY9Us8LRMs.KABJ,~> -rlkQFc2WuYs0hq0!<:;VJH16$JH16$T)\t+c"@%Hs8L7Ds-*H,J,~> -rjr:4]Dm,,s0hq0!<9Z;JH16$JH16$T)\t"]3YL-s8KV2s*4OTJ,~> -rmh2Of)MCos0hq/!<:W$COp8PCOp8lCBE(&!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq/!<:;pB7X]HB7X]dB*-=j!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq/!<9Z^?@cF6?@cFR?37`F!:g*g])hqVrk![~> -rmh2Of)MCos0hq-!:KjeCOuM:s+13$s2+d9C[V3'CB3o)rmh,MT`3Mm~> -rlkQFc2WuYs0hq-!:KjeB7^)6s+13$s2+d9BC>d#B)qK%rlkKDPQ&gW~> -rjr:4]Dm,,s0hq-!:Kje?@i--s+13$s2+d9?LIgo?3'Nqrjr42GlG=*~> -rmh2Of)MCos0hq.!<;Mn!Gh^dZ@T<4Z@T=!Z2nb@n$2t0!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq.!<;Mg!GDF`X+@=&X+@=hWrZl5n#HJ%!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq.!<;MX!FGeWS:R2]S:R3JS,lsrn!jDb!:g*g])hqVrk![~> -rmh2Of)MCos0hq.!<;Mn!Gh^dZ@T<4Z@T=!Z2nb@n$2t0!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq.!<;Mg!GDF`X+@=&X+@=hWrZl5n#HJ%!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq.!<;MX!FGeWS:R2]S:R3JS,lsrn!jDb!:g*g])hqVrk![~> -rmh2Of)MCos0hq.!<;Mn!Gh^dZ@T<4Z@T=!Z2nb@n$2t0!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq.!<;Mg!GDF`X+@=&X+@=hWrZl5n#HJ%!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq.!<;MX!FGeWS:R2]S:R3JS,lsrn!jDb!:g*g])hqVrk![~> -rmh2Of)MCos0hq.!<;Mn!Gh^dZ@T<4Z@T=!Z2nb@n$2t0!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq.!<;Mg!GDF`X+@=&X+@=hWrZl5n#HJ%!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq.!<;MX!FGeWS:R2]S:R3JS,lsrn!jDb!:g*g])hqVrk![~> -rmh2Of)MCos0hq-!.ep:COp8PCRJr<!:g*gecGfDrmlT~> -rlkQFc2WuYs0hq-!.ed6B7X]HB:3B4!:g*gblRj.rlor~> -rjr:4]Dm,,s0hq-!.eI-?@cF6?C>+"!:g*g])hqVrk![~> -rmh2Of)MCos0_lX!.b-$!.b-<!:^$fecGfDrmlT~> -rlkQFc2WuYs0_lX!.b-$!.b-<!:^$fblRj.rlor~> -rjr:4]Dm,,s0_lX!.b-$!.b-<!:^$f])hqVrk![~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCos+13$s5*eUTE"uiecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkQFc2WuYs+13$s5*eUP5kU\blRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr:4]Dm,,s+13$s5*eUGQ7aA])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh2Of)MCoeq)D'f&,$\s.H"br71oKT`3Mns+13$s6TdbecGfDrmlT~> -rlkQFc2WuYc%4,jc/6bJs-&WHr659BPQ&gXs+13$s6TdbblRj.rlor~> -rjr:4]Dm,,]7ISF]AL4&s*/bgr4<"0GlG=+s+13$s6Tdb])hqVrk![~> -rmh2Of)MCoeq)D'f&,$\s.H"br71oKT`3Mns+13$s6TdbecGfDrmlT~> -rlkQFc2WuYc%4,jc/6bJs-&WHr659BPQ&gXs+13$s6TdbblRj.rlor~> -rjr:4]Dm,,]7ISF]AL4&s*/bgr4<"0GlG=+s+13$s6Tdb])hqVrk![~> -rmh2Of)MCoeq)D'f&,$\s.H"br71oKT`3Mns+13$s6TdbecGfDrmlT~> -rlkQFc2WuYc%4,jc/6bJs-&WHr659BPQ&gXs+13$s6TdbblRj.rlor~> -rjr:4]Dm,,]7ISF]AL4&s*/bgr4<"0GlG=+s+13$s6Tdb])hqVrk![~> -rmh2Of)MCoIt<*#J)>_Xs.H"br71oKT`3Mns+13$s6TdbecGfDrmlT~> -rlkQFc2WuYH%C6lH/ElLs-&WHr659BPQ&gXs+13$s6TdbblRj.rlor~> -rjr:4]Dm,,COp8PCYrn0s*/bgr4<"0GlG=+s+13$s6Tdb])hqVrk![~> -rmh5Pf)MCmJcC<$VZ4fEoD\sOs.H"br71oKT`3Mns+13$s6TdbecGfDrmlT~> -rlkTGc2WuQJcC<$VZ4f>oD\sKs-&WHr659BPQ&gXs+13$s6TdbblRj.rlor~> -rjr=5]Dm+kJcC<$VZ4f/oD\sBs*/bgr4<"0GlG=+s+13$s6Tdb])hqVrk![~> -rmh8Qf)MCms7OqD!<7W$J_%9\!!(0I!<;`C"T[K\TV);_ecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkWHc2WuQs7OV;!<7VpJ^(XJ!!(0B!<;`:"T[?XPEQ"EblRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr@6]Dm+ks7Nu)!<7V^J\/A&!!(03!<;`("T[$OG^'5d])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh8Qf)MCms7Y"FTE,"Ceq)D]ecDEDb-D$Ip=9G@!9!mMTE+o@!WShleq*jPs+14:s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4-KblO".b,YOBp<<f*!8RU<P5tO*!WSA_c%5nGs+14:s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7IT'])d-Vb+&J3p:CNR!7UsmGQ@ZR!WRED]7L!5s+14:s8KV2s*4OT -J,~> -rmh8Qf)MCms81@I!<(IMTE,"Ceq)D]ecDEDb-D$IrRLrKqpktE!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs81%@!<(.DP5tW6c%4-KblO".b,YOBrQP<Bqoo>/!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks80D.!<'M2GQ@bp]7IT'])d-Vb+&J3rOW%0qn!&W!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms8:IJ!<(IMTE,"Ceq)D]ecDEDb-D$IrRUuKr72(F!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs8:.A!<(.DP5tW6c%4-KblO".b,YOBrQY?Br65G0!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks89M/!<'M2GQ@bp]7IT'])d-Vb+&J3rO`(0r4</X!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms8COJ!<(IMTE,"Ceq)D]ecDEDb-D$IrRUrJrRM1G!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs8C4A!<(.DP5tW6c%4-KblO".b,YOBrQY<ArQPP1!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8BS/!<'M2GQ@bp]7IT'])d-Vb+&J3rO`%/rOW8Y!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms8LUJ!<(IMTE,"Ceq)D]ecDEDb-D$IrRUoIrmh:H!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs8L:A!<(.DP5tW6c%4-KblO".b,YOBrQY9@rlkY2!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8KY/!<'M2GQ@bp]7IT'])d-Vb+&J3rO`".rjrAZ!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms8COJ!<(IMTE,"Ceq)D]ecDEDb-D$IrRUrJrRM1G!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs8C4A!<(.DP5tW6c%4-KblO".b,YOBrQY<ArQPP1!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8BS/!<'M2GQ@bp]7IT'])d-Vb+&J3rO`%/rOW8Y!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms8:IJ!<(IMTE,"Ceq)D]ecDEDb-D$IrRUuKr72(F!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs8:.A!<(.DP5tW6c%4-KblO".b,YOBrQY?Br65G0!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks89M/!<'M2GQ@bp]7IT'])d-Vb+&J3rO`(0r4</X!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms81@I!<(IMTE,"Ceq)D]ecDEDb-D$IrRLrKqpktE!9!mMTE+o@!WShleq*jPs+14: -s8LRMs.KABJ,~> -rlkWHc2WuQs81%@!<(.DP5tW6c%4-KblO".b,YOBrQP<Bqoo>/!8RU<P5tO*!WSA_c%5nGs+14: -s8L7Ds-*H,J,~> -rjr@6]Dm+ks80D.!<'M2GQ@bp]7IT'])d-Vb+&J3rOW%0qn!&W!7UsmGQ@ZR!WRED]7L!5s+14: -s8KV2s*4OTJ,~> -rmh8Qf)MCms7Y"FTE,"Ceq)D]ecDEDb-D$Ip=9G@!9!mMTE+o@!WShleq*jPs+14:s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4-KblO".b,YOBp<<f*!8RU<P5tO*!WSA_c%5nGs+14:s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7IT'])d-Vb+&J3p:CNR!7UsmGQ@ZR!WRED]7L!5s+14:s8KV2s*4OT -J,~> -rmh8Qf)MCms7Y"FTE,"Ceq)D]ecDEDb-D$Ip=9G@!9!mMTE+o@!WShleq*jPs+14:s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4-KblO".b,YOBp<<f*!8RU<P5tO*!WSA_c%5nGs+14:s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7IT'])d-Vb+&J3p:CNR!7UsmGQ@ZR!WRED]7L!5s+14:s8KV2s*4OT -J,~> -rmh;Rf)MCms46n:!W`8OJY7Re\"E^$b-D'Jf(Pa?!9!mMTE+o@!WShleq*jPs+14:s8LRMs.KAB -J,~> -rlkZIc2WuQs3:8$!W`8FJWkYK\!$dlb,YRCc1[>)!8RU<P5tO*!WSA_c%5nGs+14:s8L7Ds-*H, -J,~> -rjrC7]Dm+ks1@uL!W`84JTu`j[s.lQb+&M4]CpIQ!7UsmGQ@ZR!WRED]7L!5s+14:s8KV2s*4OT -J,~> -rmh8Qf)MCms7?9ks+(0$!4;gLZ2jps!!M6[TV);_ecGfDrmlZ#JcC<$m/R(9!WShlepm~> -rlkWHc2WuQs7?9ks+(0$!4;gLWrW1l!!M*WPEQ"EblRj.rlp#oJcC<$m/R(0!WSA_c%#~> -rjr@6]Dm+ks7?9ks+(0$!4;gLS,iT]!!LdNG^'5d])hqVrk!a]JcC<$m/R's!WRED]79~> -rmh5Pf)MCmJ`)+;J`,JE"95$e!;tCKs.FqoJ_#D'k10S5T`3Mm~> -rlkTGc2WuQJ_Yh3J_]2="94RK!;t(Bs-&#YJ^&bjk03r,PQ&gW~> -rjr=5]Dm+kJ^]2!J^`Q+"93Uj!;sG0s*0+,J\-KFk.:ZoGlG=*~> -rmh,Meq*jPs+14*s8S_l!;tCKs.FqoJ_#D'k10S5T`3Mm~> -rlkKDc%5nGs+14*s8S8_!;t(Bs-&#YJ^&bjk03r,PQ&gW~> -rjr42]7L!5s+14*s8R<D!;sG0s*0+,J\-KFk.:ZoGlG=*~> -rmh,Meq'KFTRiciTE"uiecGfDJ_#D'J_&u7!WShlepm~> -rlkKDc%2(0PC\qOP5kU\blRj.J^&bjJ^*?%!WSA_c%#~> -rjr42]7G3XG_(+nGQ7aA])hqVJ\-KFJ\1'V!WRED]79~> -rmh)LJY7ReJY:\h!!)rJJcC<$JcFd1!20>BJ,~> -rlkHCJWkYKJWncN!!)rAJcC<$JcFd1!0dE,J,~> -rjr11JTu`jJU#jm!!)r/JcC<$JcFd1!-nLTJ,~> -rmlW#JH16$f)Ya"JY7ReJY;"qrmlT~> -rlouoJH16$f)Y`nJWkYKJWo)Wrlor~> -rk!^]JH16$f)Y`\JTu`jJU$1!rk![~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -J_#D'J_#D'J_#D'Xk&"~> -J^&bjJ^&bjJ^&bjXj)@~> -J\-KFJ\-KFJ\-KFXh0)~> -JY7ReJY7Re!2+no`7BL4l_&b~> -JWkYKJWkYK!0_uY`6Ejsl]Zi~> -JTu`jJTu`j!-j(,`4LSFlZdp~> -!2+lCJH16$JcGfNJ_%cj!2+nomFD:;J,~> -!0_s6JH16$JcGfNJ^)-X!0_uYmEGY2J,~> -!-j%pJH16$JcGfNJ\/k4!-j(,mCNAuJ,~> -!MBFDeq)D'eq;NRs+/b>ec;ACf&Qeiec>`#~> -!L!M7c%4,jc%F7@s+/G5blEs-c/\i`blIco~> -!I+Tq]7ISF]7[]qs+.f#])[)U]ArqN])_k]~> -!MBGOf)G`_ec5]$eq)D'f'Cles+/b>ec;ACec>a3ec5^0ec>`#~> -!L!NBc2RdVbl@`pc%4,jc0NUSs+/G5blEs-blIe*bl@b'blIco~> -!I+V']DhlD])Vh^]7ISF]Bd'/s+.f#])[)U])_lm])Vij])_k]~> -!20/gk10M4][d&_iR[i*g=?6(J_#D']%-l]J_%cj!2-@C!<;34!MBGPec>`#~> -!0d6Zk03l+]ZgEViQ_3!g<BTtJ^&bj]$16TJ^)-X!0aG-!<;3+!L!NCblIco~> -!-n>?k.:Tn]Xn.DiOepdg:I=bJ\-KF]"7tBJ\/k4!-kNU!<;2n!I+V(])_k]~> -"/#YF!<(IK!9_o5!1MI=!<(IK!8?!(!.i^Pf"0E4s+/b>ec;ACec>a4ecDEDimn,0J,~> -"-W`0!<(.B!9_T,!1M.4!<(.B!8>Zt!.iCGc+;."s+/G5blEs-blIe+blO".ilqK'J,~> -"*agX!<'M0!9^ro!1LM"!<'M0!8>$b!.hb5]=PTSs+.f#])[)U])_ln])d-Vik#3jJ,~> -"/#YF!<(IK!;tFI!;tFH!;tFI!!CdPf%0g#s47/LmahC<!7q,LrRUuKs472MrRUoIrmq&Ks47/L -rmq&KrRUuK!7q,Lr7:iI!nI>Op!s*CrRLrKrRUrJrRUuKs472Ms472M"kEYRec5^Lf)5UJf)#Gu -eq)Dcec>`$f#6,>TW6QCs5ql5TE+!&!<7Q~> -"-W`0!<(.B!;t+@!;t+?!;t+@!!CIGc-?4fs3:NCm`kb3!6tKCrQY?Bs3:QDrQY9@rltEBs3:NC -rltEBrQY?B!6tKCr6>3@!mL]Fp!!I:rQP<BrQY<ArQY?Bs3:QDs3:QD"jI#Ibl@bCc2@YAc2.Kl -c%4-QblIcpc,@j,PH)k-s5qQ,P5sUe!<7Q~> -"*agX!<'M0!;sJ.!;sJ-!;sJ.!!Bh5]=\%Bs1A71m^rK!!5&41rO`(0s1A:2rO`".rk&.0s1A71 -rk&.0rO`(0!5&41r4Dq.!kSF4ot(2(rOW%0rO`%/rO`(0s1A:2s1A:2"hOa7])Vj1]DVa/]DDSZ -]7IT-])_k^]>V;]GcJ@Us5pooGQ?a8!<7Q~> -"/#YF!<(IK!<(IK!<1OL!<1OL!<(IK!<1OL!<1RL!<1OL!<(IK!:8;:!<1OL!<(IS!7h/$ec=:P -!<(IK!<1OL!<(IK!;k=I!;tFJ!<1OL!<1OL!<1RL!;+hE!7o^$r71iJrmh&LrRMP\ec=:P!7o^$ -!7h,Mec=:P!<(IK!<(IK!.i^Pf"9N5s7FkB!5$e^!;Y4F!:8;:!5d=b!<:UMTW6QCs5ql5TE+!& -!<7Q~> -"-W`0!<(.B!<(.B!<14C!<14C!<(.B!<14C!<17C!<14C!<(.B!:7u1!<14C!<(.J!6kMgblH#5 -!<(.B!<14C!<(.B!;k"@!;t+A!<14C!<14C!<17C!;+M<!6ragr653ArlkECrQPoSblH#5!6rag -!6kKDblH#5!<(.B!<(.B!.iCGc+D7#s7FP9!5$JU!;Xn=!:7u1!5d"Y!<::DPH)k-s5qQ,P5sUe -!<7Q~> -"*agX!<'M0!<'M0!<0S1!<0S1!<'M0!<0S1!<0V1!<0S1!<'M0!:7>t!<0S1!<'M8!4r6C])]IT -!<'M0!<0S1!<'M0!;jA.!;sJ/!<0S1!<0S1!<0V1!;*l*!5#iCr4;q/rjr.1rOWXA])]IT!5#iC -!4r42])]IT!<'M0!<'M0!.hb5]=Y]Ts7Eo'!5#iC!;X8+!:7>t!5cAG!<9Y2GcJ@Us5pooGQ?a8 -!<7Q~> -"/#YF!<1OL!<(IK!;tCJ!;b7K!7o^$r71iJrmh&LrRLrKm+).:r71iJrmq)Lr71iJqpkiLf%'j" -ec5^Iec5^Jec5^KecPp'ec>X!!!)ZBr;cfI!!)rJ!!*#LrrDrI"p!6*!7o^$qUPWHrRLrKJ_#D' -][d/aT`=oiq:5NG][m)_qUPWHn(.I<"P*S(ec<S<!!)oI!2-@C!<;34!MBGPec>`#~> -"-W`0!<14C!<(.B!;t(A!;aqB!6ragr653ArlkECrQP<Bm*,M1r653ArltHCr653Aqoo3Cc-67e -bl@b@bl@bAbl@bBbl[sjblI[d!!)Z9r;cf@!!)rA!!*#CrrDr@"ouom!6ragqTT!?rQP<BJ^&bj -]ZgNXPQ1O\q98m>]ZpHVqTT!?n'1h3"O-qkblGW*!!)o@!0aG-!<;3+!L!NCblIco~> -"*agX!<0S1!<'M0!;sG/!;a;0!5#iCr4;q/rjr.1rOW%0m(35tr4;q/rk&11r4;q/qmuq1]=S(A -])Vj.])Vj/])Vj0])r&F])_c@!!)Z'r;cf.!!)r/!!*#1rrDr."ou9I!5#iCqRZ_-rOW%0J\-KF -]Xn7FGlR[Aq7?V,]Y"1DqRZ_-n%8Q!"M4ZG])]^[!!)o.!-kNU!<;2n!I+V(])_k]~> -!h]PEr;ccHq>gNGquHcJ!!)rJ!!)uK!s$p'!:/29!;tCJ!<1OL!;k=I!;k=I!<1OO!7o^$qUPWH -r71iJrRM&Nf%'j!ec5^BecPp'ec>["q>gNG!!)lH"p!6*!7o^$rmpuIrRLrKJ_#D'^"*DfTV2>9 -ec<#,!W^dOqpk`In(%I=rmq)Ls4./M_U\\eqpkb?Wn%1Mk10R+!92Q0s*t~> -!g<W/r;cc?q>gN>quHcA!!)rA!!)uB!s$Tj!:.l0!;t(A!<14C!;k"@!;k"@!<14F!6ragqTT!? -r653ArQPEEc-67dbl@b9bl[sjblI^eq>gN>!!)l?"ouom!6ragrlt?@rQP<BJ^&bj^!-c]PEZ$k -blG&o!W^IFqoo*@n'(h4rltHCs31ND_T`&\qoo,)Wm(PDk03pj!926's*t~> -!dF^Wr;cc-q>gN,quHc/!!)r/!!)u0!s#sF!:.5s!;sG/!<0S1!;jA.!;jA.!<0S4!5#iCqRZ_- -r4;q/rOW.3]=S(@])Vj'])r&F])_fAq>gN,!!)l-"ou9I!5#iCrk&(.rOW%0J\-KF]t4LKG^08# -])].K!W]h4qmuh.n%/Q"rk&11s1872_RfdJqmuiQWk/92k.:Y=!91Tjs*t~> -"/#YF!<1OL!<(IK!;Y1G!<(IN!7o^$r71iJrRM&Nf%'ieec5^Jec5^Lec5^Iec5^Iec5^LecPp' -ec>Qt!!)rJ!!)uK!s$p'!;tCJ!;+hB!;b7H!;P+F!;b7Q!7o^$f%'iPec>["!!)uK!!%T$J_%Qd -#QLHif)O=P!;Y4F!<(LK!!(UL!;k@H!;k@I!7o^$!;k=I!:\P>!;tCN!7o^$f)>[If)5UIf)GaM -f)GaJf)Ga.ec5^Iec;ACec>a4ecDEDimn,0J,~> -"-W`0!<14C!<(.B!;Xk>!<(.E!6ragr653ArQPEEc-67Sbl@bAbl@bCbl@b@bl@b@bl@bCbl[sj -blIUb!!)rA!!)uB!s$Tj!;t(A!;+M9!;aq?!;Oe=!;aqH!6ragc-675blI^e!!)uB!!%SpJ^(pR -#QL!Oc2Z&5!;Xn=!<(1B!!(:C!;k%?!;k%@!7oBp!;k"@!:\55!;t(E!6ragc2I_@c2@Y@c2ReD -c2ReAc2Re%bl@b@blEs-blIe+blO".ilqK'J,~> -"*agX!<0S1!<'M0!;X5,!<'M3!5#iCr4;q/rOW.3]=S(/])Vj/])Vj1])Vj.])Vj.])Vj1])r&F -])_]>!!)r/!!)u0!s#sF!;sG/!;*l'!;a;-!;O/+!;a;6!5#iC]=S'T])_fA!!)u0!!%S^J\/Y. -#QK$n]DoLT!;X8+!<'P0!!'Y1!;jD-!;jD.!7na^!;jA.!:[T#!;sG3!5#iC]D_g.]DVa.]Dhm2 -]Dhm/]Dhlh])Vj.])[)U])_ln])d-Vik#3jJ,~> -"/#YF!<(IK!<(IK!<(IN!7o^$rRLrKrmh&Lrmq)Lr7:lJqUYZHo@EpArmh&LrRLrKqUPWHrRLrK -r7:lJq:5NGr71iJrRLrKrmh&Lrmq)Lo[X!Bq:5NGrRLrKrmh&LqUPrQf%'iPec=:P!<(IK!<(IK -!<1OL!.i^Pf#-&Es.H%9f)O=P!;G%E!;tFJ!<1OL!<(IK!<1OL!;tFJ!7o^$!;k=J!7q,Lo[X!B -q:>QGrmh&Lrmh&LrRLrKrRM,Pec=:P!<(LK!8uH,!<1OLTW6QCs5ql5TE+!&!<7Q~> -"-W`0!<(.B!<(.B!<(.E!6ragrQP<BrlkECrltHCr6>6AqT]$?o?I:8rlkECrQP<BqTT!?rQP<B -r6>6Aq98m>r653ArQP<BrlkECrltHCoZ[@9q98m>rQP<BrlkECqTT<Hc-675blH#5!<(.B!<(.B -!<14C!.iCGc,7d3s-&Ykc2Z&5!;F_<!;t+A!<14C!<(.B!<14C!;t+A!7oBp!;k"A!6tKCoZ[@9 -q9Ap>rlkECrlkECrQP<BrQPKGblH#5!<(1B!8u-#!<14CPH)k-s5qQ,P5sUe!<7Q~> -"*agX!<'M0!<'M0!<'M3!5#iCrOW%0rjr.1rk&11r4Dt/qRcb-o=P#&rjr.1rOW%0qRZ_-rOW%0 -r4Dt/q7?V,r4;q/rOW%0rjr.1rk&11oXb)'q7?V,rOW%0rjr.1qR[%6]=S'T])]IT!<'M0!<'M0 -!<0S1!.hb5]>M5ds*/e#]DoLT!;F)*!;sJ/!<0S1!<'M0!<0S1!;sJ/!7na^!;jA/!5&41oXb)' -q7HY,rjr.1rjr.1rOW%0rOW45])]IT!<'P0!8tKf!<0S1GcJ@Us5pooGQ?a8!<7Q~> -!208jrRLrKrRUoIrRUoI!S.8Mf)>XNec5^Jec5^Hf)GaAec>d%rW)oJquHZGr;c`GrrDrIquHcJ -rW)uLrW)rKrVuuM!;4qA!;b:F!<1RI!<1RK!!h'T!7h,Mf%0d"!S.8Lf)>Z#eq)Died;ALT[q]o -s45a$pXT<Er71iJrRLrKrmh&Lr71iJd+/0sqptcIrmh&Lp!s*Cq:5NGrRLrKq:5NGrRUuKdaeL# -f%-Loec>a4ecDEDimn,0J,~> -!0d?]rQP<BrQY9@rQY9@!R1WDc2I\Ebl@bAbl@b?c2Re8blIghrW)oAquHZ>r;c`>rrDr@quHcA -rW)uCrW)rBrVuuD!;4V8!;at=!<17@!<17B!!gaK!6kKDc-?1e!R1WCc2I]oc%4-WbmFE6PKhAP -s38dgpWW[<r653ArQP<BrlkECr653Ad*2Ojqp#-@rlkECp!!I:q98m>rQP<Bq98m>rQY?Bd`hjo -c-;HPblIe+blO".ilqK'J,~> -!-nGBrOW%0rO`".rO`".!P8@2]D_d3])Vj/])Vj-]Dhm&])_oDrW)o/quHZ,r;c`,rrDr.quHc/ -rW)u1rW)r0rVuu2!;3u&!;a>+!<0V.!<0V0!!g+9!4r42]=\"A!P8@1]D_e]]7IT3]*\L^Ge:Tf -s1>lCpU^D*r4;q/rOW%0rjr.1r4;q/d(98Xqn)k.rjr.1ot(2(q7?V,rOW%0q7?V,rO`(0d^oS] -]=W<f])_ln])d-Vik#3jJ,~> -!MBGHec5^Hf)Ga@ec5]jec5]$eq)D,edDGMT[q]oT`<To!<(IK!;tCJ!;tCJ!<(IK!<1RG!799s -!;k=I!<(IK!;4nC!;Y1G!<(IK!<(LH!<(IK!7B@"!7o_oWn%1Mk10R+!92Q0s*t~> -!L!N;bl@b?c2Re7bl@aabl@`pc%4,obmOK7PKhAPPQ/nP!<(.B!;t(A!;t(A!<(.B!<17>!78sj -!;k"@!<(.B!;4S:!;Xk>!<(.B!<(1?!<(.B!7B$n!6rcPWm(PDk03pj!926's*t~> -!I+Uu])Vj-]Dhm%])ViO])Vh^]7ISK]*eR_Ge:TfGlPCf!<'M0!;sG/!;sG/!<'M0!<0V,!78=X -!;jA.!<'M0!;3r(!;X5,!<'M0!<'P-!<'M0!7AC\!5#jfWk/92k.:Y=!91Tjs*t~> -!MBGHec5^Hec5^?ec5]kec5]$eq)D,edMMNT[q]oTV2>9ec>["!!)rJ!!)rJ!!)uK!!*#L!!(0m -!!)oI!!)uK!!)]C!!)iG!!)uK!!*#L!!)uK!!)uK!!(Et!s$p'TW6QCs5ql5TE+!&!<7Q~> -!L!N;bl@b?bl@b6bl@abbl@`pc%4,obmXQ8PKhAPPEZ$kblI^e!!)rA!!)rA!!)uB!!*#C!!(0d -!!)o@!!)uB!!)]:!!)i>!!)uB!!*#C!!)uB!!)uB!!(Ek!s$TjPH)k-s5qQ,P5sUe!<7Q~> -!I+Uu])Vj-])Vj$])ViP])Vh^]7ISK]*nX`Ge:TfG^08#])_fA!!)r/!!)r/!!)u0!!*#1!!(0R -!!)o.!!)u0!!)](!!)i,!!)u0!!*#1!!)u0!!)u0!!(EY!s#sFGcJ@Us5pooGQ?a8!<7Q~> -!MBGJf)5U7f)5Tof)5T"eq)D,edVSOT[q]oTV0m9f%'j"ec5^Jec5^Jec5^Kec5^Kec5^Kec5^K -f)Ga$ec5^Hec5^Lec5^Bec5^KecPp'ec>["!!*#L!!)uK!!)uK!!)fFrrD$/!!)uK!s$p'TW6QC -s5ql5TE+!&!<7Q~> -!L!N=c2@Y.c2@Xfc2@Wnc%4,obmaW9PKhAPPEX8kc-67ebl@bAbl@bAbl@bBbl@bBbl@bBbl@bB -c2Rdpbl@b?bl@bCbl@b9bl@bBbl[sjblI^e!!*#C!!)uB!!)uB!!)f=rrD$&!!)uB!s$TjPH)k- -s5qQ,P5sUe!<7Q~> -!I+V"]DV`q]DV`T]DV_\]7ISK]+"^aGe:TfG^-k#]=S(A])Vj/])Vj/])Vj0])Vj0])Vj0])Vj0 -]Dhl^])Vj-])Vj1])Vj'])Vj0])r&F])_fA!!*#1!!)u0!!)u0!!)f+rrD#i!!)u0!s#sFGcJ@U -s5pooGQ?a8!<7Q~> -!MBFDeq)D'erA5fs.H%9f)MD9f%0ls!<1RI!<:XL!<:XL!<(LI!;tFJ!8,m#!;k@H!:n_>!<:XL -!<:XL!<1RJ!!CdPf%0a!qptcIi7@i,rmh(BWn%1Mk10R+!92Q0s*t~> -!L!M7c%4,jc&KsTs-&Ykc2Wukc-?:a!<17@!<:=C!<:=C!<(1@!;t+A!8,Qo!;k%?!:nD5!<:=C -!<:=C!<17A!!CIGc-?.dqp#-@i6D3#rlkG,Wm(PDk03pj!926's*t~> -!I+Tq]7ISF]8aE0s*/e#]Dm,#]=\+=!<0V.!<9\1!<9\1!<'P.!;sJ/!8+p]!;jD-!:mc#!<9\1 -!<9\1!<0V/!!Bh5]=[t@qn)k.i4Jpfrjr/TWk/92k.:Y=!91Tjs*t~> -!MBFDeq)D'erJ;hs.H%9f)MD9f%0m$J_%cj!2-@C!<;34!MBGPec>`#~> -!L!M7c%4,jc&U$Vs-&Ykc2Wukc-?:gJ^)-X!0aG-!<;3+!L!NCblIco~> -!I+Tq]7ISF]8jK2s*/e#]Dm,#]=\+CJ\/k4!-kNU!<;2n!I+V(])_k]~> -!MBFDeq)D'erSAjs.H%9f)MD9f%0kos+/b>ec;ACec>a4ecDEDimn,0J,~> -!L!M7c%4,jc&^*Xs-&Ykc2Wukc-?9Ps+/G5blEs-blIe+blO".ilqK'J,~> -!I+Tq]7ISF]8sQ4s*/e#]Dm,#]=\)fs+.f#])[)U])_ln])d-Vik#3jJ,~> -!MBFDeq)D'er\Gls.H%9f)MD9f%0koT`9So`7=p]Wn%1Mk10R+!92Q0s*t~> -!L!M7c%4,jc&g0Zs-&Ykc2Wukc-?9PPQ-3Y`6A:GWm(PDk03pj!926's*t~> -!I+Tq]7ISF]9'W6s*/e#]Dm,#]=\)fGlN?,`4H"oWk/92k.:Y=!91Tjs*t~> -!MBFDeq)D'ereMns.H%9f)MD9f%0koT[s-of#6,>TW6QCs5ql5TE+!&!<7Q~> -!L!M7c%4,jc&p6\s-&Ykc2Wukc-?9PPKj,Yc,@j,PH)k-s5qQ,P5sUe!<7Q~> -!I+Tq]7ISF]90]8s*/e#]Dm,#]=\)fGe=!,]>V;]GcJ@Us5pooGQ?a8!<7Q~> -!MBFDeq)D'ernSps.H%9f)MD9f%0koT[q]oJ_%cj!2-@C!WUa5TE"uOec>`#~> -!L!M7c%4,jc'$<^s-&Ykc2Wukc-?9PPKhAPJ^)-X!0aG-!WUF,P5kUBblIco~> -!I+Tq]7ISF]99c:s*/e#]Dm,#]=\)fGe:TfJ\/k4!-kNU!WTdoGQ7a'])_k]~> -!MBFDeq)D'es"Yns.H%9f)MD9f%0koT`3LBs+/b>ec;ACec>a2!92Q0s*t~> -!L!M7c%4,jc'-B\s-&Ykc2Wukc-?9PPQ&f,s+/G5blEs-blIe)!926's*t~> -!I+Tq]7ISF]9Bi8s*/e#]Dm,#]=\)fGlG;Ts+.f#])[)U])_ll!91Tjs*t~> -!MBFDeq)D'es+_os.H%9f)MD9f%0koT`*FAs+/b>ec;@of'V#gs*t~> -!L!M7c%4,jc'6H]s-&Ykc2Wukc-?9PPPr`+s+/G5blErYc0`aUs*t~> -!I+Tq]7ISF]9Ko9s*/e#]Dm,#]=\)fGl>5Ss+.f#])[),]C!31s*t~> -!2+oCJcC<$JcC;P`7=p]JcG*:J,~> -!0`!6JcC<$JcC;G`6A:GJcG*:J,~> -!-j(pJcC<$JcC;5`4H"oJcG*:J,~> -%%EndData -showpage -%%Trailer -end -%%EOF diff --git a/doc/refman/coqide-queries.png b/doc/refman/coqide-queries.png Binary files differdeleted file mode 100644 index dea5626f..00000000 --- a/doc/refman/coqide-queries.png +++ /dev/null diff --git a/doc/refman/coqide.eps b/doc/refman/coqide.eps deleted file mode 100644 index 9902ea98..00000000 --- a/doc/refman/coqide.eps +++ /dev/null @@ -1,2707 +0,0 @@ -%!PS-Adobe-3.0 EPSF-3.0 -%%Creator: GIMP PostScript file plugin V 1,17 by Peter Kirchgessner -%%Title: coqide1.eps -%%CreationDate: Mon Aug 30 15:31:11 2010 -%%DocumentData: Clean7Bit -%%LanguageLevel: 2 -%%Pages: 1 -%%BoundingBox: 14 14 869 550 -%%EndComments -%%BeginProlog -% Use own dictionary to avoid conflicts -10 dict begin -%%EndProlog -%%Page: 1 1 -% Translate for offset -14.173228346456694 14.173228346456694 translate -% Translate to begin of first scanline -0 534.99605377196701 translate -853.99370078740151 -534.99605377196701 scale -% Image geometry -854 535 8 -% Transformation matrix -[ 854 0 0 535 0 0 ] -% Strings to hold RGB-samples per scanline -/rstr 854 string def -/gstr 854 string def -/bstr 854 string def -{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop} -{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop} -{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop} -true 3 -%%BeginData: 157701 ASCII Bytes -colorimage -JcC<$JcC<$JcC<$X8d\~> -JcC<$JcC<$JcC<$X8d\~> -JcC<$JcC<$JcC<$X8d\~> -!<7W$J_#D'J_#D'J_$sS!!%N~> -!<7VpJ^&bjJ^&bjJ^(=A!!%N~> -!<7V^J\-KFJ\-KFJ\/%r!!%N~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'XO[@OJ_#D'K[p0s!.Y~> -!<7VpJ^&bjXN^_FJ^&bjKZsO]!.Y~> -!<7V^J\-KFXLeH4J\-KFKY%80!.Y~> -!<;H;!!)oIrW(O#rrDrI!!(!h!!(m,!!&)2!!'FXrW(!ir;ba+!!'@V!!)oIrW(R$!!)K=rrBjc -rW%N#hpqh$!.Y~> -!<;H2!!)o@rW(NorrDr@!!(!_!!(m#!!&))!!'FOrW(!`r;ba"!!'@M!!)o@rW(Qp!!)K4rrBjZ -rW%Mohou1c!.Y~> -!<;Gu!!)o.rW(N]rrDr.!!(!M!!(lf!!&(l!!'F=rW(!Nr;b`e!!'@;!!)o.rW(Q^!!)K"rrBjH -rW%M]hn&o6!.Y~> -!<;lGq>gHE!!)iG!!)'1q>gBC!!)oI!!)oI!!)?9rW)uLrW)67!!)97!!)cE!!(a(q>fU-q>fm5 -!!)cE!!(a(q>fL*!!)T@!!([&!!)uK!!'IYrVuuM!9)K/!;Y1G!9D`1!<1RK!<(IK!:JD<!7]U! -!<:XL!;"bA!.i_YecDEDJ,~> -!<;l>q>gH<!!)i>!!)'(q>gB:!!)o@!!)o@!!)?0rW)uCrW)6.!!)9.!!)c<!!(`tq>fU$q>fm, -!!)c<!!(`tq>fL!!!)T7!!(Zr!!)uB!!'IPrVuuD!9)0&!;Xk>!9DE(!<17B!<(.B!:J)3!7]9m -!<:=C!;"G8!.iDPblO".J,~> -!<;l,q>gH*!!)i,!!)&kq>gB(!!)o.!!)o.!!)>srW)u1rW)5q!!)8q!!)c*!!(`bq>fTgq>flo -!!)c*!!(`bq>fKd!!)T%!!(Z`!!)u0!!'I>rVuu2!9(Ni!;X5,!9Cck!<0V0!<'M0!:IH!!7\X[ -!<9\1!;!f&!.hc>])d-VJ,~> -!<;iF!!)uK!!)WA!!)$0!!)uK!!)lH!!)ZB!!)<8rrE&L!!(Bs!!(?r"p!6*!7o^$jOOM8f%'iP -ec>'f!!(?r"p!6*!7o^$iRRu/o%!d@g"$-'qpkiLec5^Lf)GaJf)>[Jf)GaMf)GaKf)>[Gf)>[I -f),O8ec5^Lf)Ga&ec5^1ec5^Jec5^6ec5^!ec5^Kec5^@ec5]$f&,$ZTE'K~> -!<;i=!!)uB!!)W8!!)$'!!)uB!!)l?!!)Z9!!)</rrE&C!!(Bj!!(?i"ouom!6ragjNRl/c-675 -blI+T!!(?i"ouom!6ragiQV?&o$%.7g!'Ksqoo3Cbl@bCc2ReAc2I_Ac2ReDc2ReBc2I_>c2I_@ -c27S/bl@bCc2Rdrbl@b(bl@bAbl@b-bl@ambl@bBbl@b7bl@`pc/6bHP5p+~> -!<;i+!!)u0!!)W&!!)#j!!)u0!!)l-!!)Z'!!);rrrE&1!!(BX!!(?W"ou9I!5#iCjLYTr]=S'T -])_30!!(?W"ou9I!5#iCiO]'io"+l%ft.4aqmuq1])Vj1]Dhm/]D_g/]Dhm2]Dhm0]D_g,]D_g. -]DMZr])Vj1]Dhl`])Vik])Vj/])Vip])Vi[])Vj0])Vj%])Vh^]AL4$GQ<6~> -!<;iF!!)uK!!*#LrW)cF!!)lHrW)<9!!)uK!!*#LrVuuM!<(LJ!<(LG!:A>@!7h/$ec>["r;ciJ -rW)uLrW)rKrW)iHrW!#N!!*#Lr;ciJqZ-QFrW)iHr;ciJrr<&MrW)?:&-1;4!7o^$f%'g$f%'g$ -f%0g#s47/Lp=9EJf%'iPec>^#r;c`GrW!#N!7q#Ir7:iIqUYWG!S.8Mf),O9ecl-*ec=:P!<(LJ -!<1RL!"%3V!7h,Mec5^$rW)fG!!)oIr;ciJqZ-NErW)lIquH3:!!)oI!s$p'!<(IK!<(IK!<1OL -!<(IP!7h/$ec>X!!!)oI!!*#L!!*#L!!)uK!!)H<!!)rJ!!*#Lr;ciJrr<AV!!(RM!7h,Mf)>[I -f)>[Fec5^Hf)>[:ecl-*ec=:P!<1RK!<(LK!!(UL!;tFI!!1XNrRUoIrmq&Krmq&Ks47)Jma_@< -rRLrKr7:iIqUPWHrRUuK!7q,LJ_'):!MBFC~> -!<;i=!!)uB!!*#CrW)c=!!)l?rW)<0!!)uB!!*#CrVuuD!<(1A!<(1>!:A#7!6kMgblI^er;ciA -rW)uCrW)rBrW)i?rW!#E!!*#Cr;ciAqZ-Q=rW)i?r;ciArr<&DrW)?1&-0u"!6ragc-64gc-64g -c-?4fs3:NCp<<dAc-675blIafr;c`>rW!#E!6tB@r6>3@qT]!>!R1WDc27S0bm"0mblH#5!<(1A -!<17C!"$mM!6kKDbl@agrW)f>!!)o@r;ciAqZ-N<rW)l@quH31!!)o@!s$Tj!<(.B!<(.B!<14C -!<(.G!6kMgblI[d!!)o@!!*#C!!*#C!!)uB!!)H3!!)rA!!*#Cr;ciArr<AM!!(7D!6kKDc2I_@ -c2I_=bl@b?c2I_1bm"0mblH#5!<17B!<(1B!!(:C!;t+@!!1=ErQY9@rltEBrltEBs3:HAm`b_3 -rQP<Br6>3@qTT!?rQY?B!6tKCJ^*H(!L!M6~> -!<;i+!!)u0!!*#1rW)c+!!)l-rW);s!!)u0!!*#1rVuu2!<'P/!<'P,!:@B%!4r6C])_fAr;ci/ -rW)u1rW)r0rW)i-rW!#3!!*#1r;ci/qZ-Q+rW)i-r;ci/rr<&2rW)>t&-0>S!5#iC]=S%C]=S%C -]=\%Bs1A71p:CM/]=S'T])_iBr;c`,rW!#3!5&+.r4Dq.qRc_,!P8@2]DMZs]*88I])]IT!<'P/ -!<0V1!"$7;!4r42])ViCrW)f,!!)o.r;ci/qZ-N*rW)l.quH2t!!)o.!s#sF!<'M0!<'M0!<0S1 -!<'M5!4r6C])_c@!!)o.!!*#1!!*#1!!)u0!!)H!!!)r/!!*#1r;ci/rr<A;!!'V2!4r42]D_g. -]D_g+])Vj-]D_ft]*88I])]IT!<0V0!<'P0!!'Y1!;sJ.!!0\3rO`".rk&.0rk&.0s1A1/m^iH! -rOW%0r4Dq.qRZ_-rO`(0!5&41J\10Y!I+Tp~> -!<;iF!s$p'!;b7H!;Y1G!;k=I!<1OL!:A>>!7o^$rRLrKrmq)Lqpk`Iqpk`IlIH+=ec=:P!<1OL -!<(IK!<1OL!<(IK!;k=I!;tCJ!<1RL!<1OL!<(IK!<(IK!;G%E!;tCJ!<(IK!<1RL!<1OL!:/29 -!;k=Q!7h/$ec=:P!<(IK!:n\@!;tCJ!<(IK!<(IK!<1RL!<1OL!;G%E!;k=I!<1RL!<:UM!<(IK -!:/29!;k=I!<1OL!<1RL!!q-U!7h/$ec5^Lec5^Iec5^Jec5^Kec5^Kec5^Gec5^Lec5^Lec5^K -ec5^=ec5^IecPp'ec>["!!*#L!!)rJ!!*#LrrDiF!!)rJ!!)rJ!s$p'!9r&7!;Y1G!<(IK!<1RL -!!q-U!7h/$ec5^Lec5^Iec5^Gec5^Iec5^Lec5^<ecl-*ec=:P!;tCJ!;tFJ!<1OL!<1OL!<1RL -!<1OL!<(IK!<1OL!;tCM!7o^$rRLrKma_@<rRLrKrRLrKrmh&Lqpk`Ir7:lJrmh&LJ_',;!MBFC~> -!<;i=!s$Tj!;aq?!;Xk>!;k"@!<14C!:A#5!6ragrQP<BrltHCqoo*@qoo*@lHKJ4blH#5!<14C -!<(.B!<14C!<(.B!;k"@!;t(A!<17C!<14C!<(.B!<(.B!;F_<!;t(A!<(.B!<17C!<14C!:.l0 -!;k"H!6kMgblH#5!<(.B!:nA7!;t(A!<(.B!<(.B!<17C!<14C!;F_<!;k"@!<17C!<::D!<(.B -!:.l0!;k"@!<14C!<17C!!pgL!6kMgbl@bCbl@b@bl@bAbl@bBbl@bBbl@b>bl@bCbl@bCbl@bB -bl@b4bl@b@bl[sjblI^e!!*#C!!)rA!!*#CrrDi=!!)rA!!)rA!s$Tj!9q`.!;Xk>!<(.B!<17C -!!pgL!6kMgbl@bCbl@b@bl@b>bl@b@bl@bCbl@b3bm"0mblH#5!;t(A!;t+A!<14C!<14C!<17C -!<14C!<(.B!<14C!;t(D!6ragrQP<Bm`b_3rQP<BrQP<BrlkECqoo*@r6>6ArlkECJ^*K)!L!M6~> -!<;i+!s#sF!;a;-!;X5,!;jA.!<0S1!:@B#!5#iCrOW%0rk&11qmuh.qmuh.lFR3"])]IT!<0S1 -!<'M0!<0S1!<'M0!;jA.!;sG/!<0V1!<0S1!<'M0!<'M0!;F)*!;sG/!<'M0!<0V1!<0S1!:.5s -!;jA6!4r6C])]IT!<'M0!:m`%!;sG/!<'M0!<'M0!<0V1!<0S1!;F)*!;jA.!<0V1!<9Y2!<'M0 -!:.5s!;jA.!<0S1!<0V1!!p1:!4r6C])Vj1])Vj.])Vj/])Vj0])Vj0])Vj,])Vj1])Vj1])Vj0 -])Vj"])Vj.])r&F])_fA!!*#1!!)r/!!*#1rrDi+!!)r/!!)r/!s#sF!9q)q!;X5,!<'M0!<0V1 -!!p1:!4r6C])Vj1])Vj.])Vj,])Vj.])Vj1])Vj!]*88I])]IT!;sG/!;sJ/!<0S1!<0S1!<0V1 -!<0S1!<'M0!<0S1!;sG2!5#iCrOW%0m^iH!rOW%0rOW%0rjr.1qmuh.r4Dt/rjr.1J\13Z!I+Tp~> -!<;iFr;c]F!!)iG!!)rJ!!)rJ!!)H<r;ciJ!!)rJ!!)oI!!)oI!!)<8"T[-)!7h/Gec5^Lec5^K -ec5^Iec5^Kec5^Jec5^Gec5^Kec5^Eec5^Kec5^IecPp'ec>["!!)?9!!)oIrrDrI!!)uK!!)T@ -!!)cE!!*#L!!)rJ!!*#L!!)cE!!)rJ!!)rJ!s$p'!9Vi4!;tCJ!;tCV!7o^$f%'iPec=:P!;tCJ -!;tCJ!;G%E!<(IK!;b7H!;tCM!7o^$lIGq8qpkiLf%'j"ec5^Lf(oCGec5^Eec5^Jf(oCGf)5U9 -ec5^Hec5^IedMQ0ec=:P!7o^$f%'j!ec5^Jec5^Gec5^Jec5^Jec5^=ecl-*!7h/$!;tCJ!;tCJ -!<(IN!7o^$r71rMf%'iuedMQ0ec=:P!7o^$f%'icf)#IHec5^Jec5^Jec5^Jec5^Jec5]$f'Clf -TE'K~> -!<;i=r;c]=!!)i>!!)rA!!)rA!!)H3r;ciA!!)rA!!)o@!!)o@!!)</"TZfl!6kN>bl@bCbl@bB -bl@b@bl@bBbl@bAbl@b>bl@bBbl@b<bl@bBbl@b@bl[sjblI^e!!)?0!!)o@rrDr@!!)uB!!)T7 -!!)c<!!*#C!!)rA!!*#C!!)c<!!)rA!!)rA!s$Tj!9VN+!;t(A!;t(M!6ragc-675blH#5!;t(A -!;t(A!;F_<!<(.B!;aq?!;t(D!6raglHK;/qoo3Cc-67ebl@bCc2%G>bl@b<bl@bAc2%G>c2@Y0 -bl@b?bl@b@bmXTsblH#5!6ragc-67dbl@bAbl@b>bl@bAbl@bAbl@b4bm"0m!6kMg!;t(A!;t(A -!<(.E!6ragr65<Dc-67cbmXTsblH#5!6ragc-67Qc2.M?bl@bAbl@bAbl@bAbl@bAbl@`pc0NUT -P5p+~> -!<;i+r;c]+!!)i,!!)r/!!)r/!!)H!r;ci/!!)r/!!)o.!!)o.!!);r"TZ0H!4r7,])Vj1])Vj0 -])Vj.])Vj0])Vj/])Vj,])Vj0])Vj*])Vj0])Vj.])r&F])_fA!!)>s!!)o.rrDr.!!)u0!!)T% -!!)c*!!*#1!!)r/!!*#1!!)c*!!)r/!!)r/!s#sF!9Uln!;sG/!;sG;!5#iC]=S'T])]IT!;sG/ -!;sG/!;F)*!<'M0!;a;-!;sG2!5#iClFR#rqmuq1]=S(A])Vj1]D;O,])Vj*])Vj/]D;O,]DV`s -])Vj-])Vj.]*n\O])]IT!5#iC]=S(@])Vj/])Vj,])Vj/])Vj/])Vj"]*88I!4r6C!;sG/!;sG/ -!<'M3!5#iCr4<%2]=S(?]*n\O])]IT!5#iC]=S(-]DDU-])Vj/])Vj/])Vj/])Vj/])Vh^]Bd'0 -GQ<6~> -!<;iF!s$p'!;b7H!;Y1G!;tFE!:JD?!7o^$rmh&Lr71iJqpk`Iqpk`IlIH+=f%'iP!<(LH!<(IN -!7o^$qUPWHrRLrKr71iJrRUlHrRLrKpXT<ErRLrKqpkiLf%'j"ec5^9ec5^Iec5^GecPp'ec>6k -!!)oIquH`I!!)fF!!)cE!!)rJ!!)fFr;c-6!!)rJq>gQH#lrQ-!7o^$f%'j!ec5^Jec5^If),OH -ec5^Hf(oCGf)5U:ec5^IecPp'ec>["!!*#L!!)fF!!)cE!!)rJ!!)ZB!!)H<!!)lH!!)oI$inl0 -!7o^$f%'iPec>X!!!)rJ!!)iG!!)rJq>g!8"p!3Sec=8$r71iJr71iJrRM&Nf%'j!ecPp'ec>Tu -#lrQ-!7o^$f%'j#f)5U9ec5^Kec5^Lf(oCEec5^Jec5^Jec5]$f'ClfTE'K~> -!<;i=!s$Tj!;aq?!;Xk>!;t+<!:J)6!6ragrlkECr653Aqoo*@qoo*@lHKJ4c-675!<(1?!<(.E -!6ragqTT!?rQP<Br653ArQY6?rQP<BpWW[<rQP<Bqoo3Cc-67ebl@b0bl@b@bl@b>bl[sjblI:Y -!!)o@quH`@!!)f=!!)c<!!)rA!!)f=r;c--!!)rAq>gQ?#lr5p!6ragc-67dbl@bAbl@b@c27S? -bl@b?c2%G>c2@Y1bl@b@bl[sjblI^e!!*#C!!)f=!!)c<!!)rA!!)Z9!!)H3!!)l?!!)o@$inPs -!6ragc-675blI[d!!)rA!!)i>!!)rAq>g!/"oumJblGugr653Ar653ArQPEEc-67dbl[sjblIXc -#lr5p!6ragc-67fc2@Y0bl@bBbl@bCc2%G<bl@bAbl@bAbl@`pc0NUTP5p+~> -!<;i+!s#sF!;a;-!;X5,!;sJ*!:IH$!5#iCrjr.1r4;q/qmuh.qmuh.lFR3"]=S'T!<'P-!<'M3 -!5#iCqRZ_-rOW%0r4;q/rO_t-rOW%0pU^D*rOW%0qmuq1]=S(A])Vis])Vj.])Vj,])r&F])_B5 -!!)o.quH`.!!)f+!!)c*!!)r/!!)f+r;c,p!!)r/q>gQ-#lqTL!5#iC]=S(@])Vj/])Vj.]DM[- -])Vj-]D;O,]DV`t])Vj.])r&F])_fA!!*#1!!)f+!!)c*!!)r/!!)Z'!!)H!!!)l-!!)o.$imoO -!5#iC]=S'T])_c@!!)r/!!)i,!!)r/q>fur"ou78])]GCr4;q/r4;q/rOW.3]=S(@])r&F])_`? -#lqTL!5#iC]=S(B]DV`s])Vj0])Vj1]D;O*])Vj/])Vj/])Vh^]Bd'0GQ<6~> -!<;iF!!)cE!!)iG!!)rJ!!)66!!)uK!W^dOr71iJqpk`Iqpk`IlIGq8rmq)Lrmh&LrRLrKrRM&N -f%'itec5^Kec5^Jec5^Lec5^Kec5^Kec5^Eec5^Kec5^IecPp'ec>["!!)?9!!)oI!!)iG!s$p' -!:eV?!;tCJ!<(IK!<1OL!;P+F!;G%E!;tCJ!;+hB!:/29!;tCJ!;Y1P!7o^$f%'iPec>X!!!)rJ -!!)rJ!!)uK!!)uK!!)lH!!)ZB!!)H<!!)uK!!*#L!!*#LrrE#K!!)uK!!*#L!!)cE!!)oI!!)uK -!s$p'!<(IK!:JD<!;b7H!;k=U!7o^$f%'iPec=:P!;tCJ!;tCJ!;Y1G!;tCJ!9hu6!<1OL!;k=I -!;tCJ!<(IN!7o^$r71rMf%'iuec5^LecZ!(!7h/Gec5^<ec5^Kec5^Lec5^Dec5^Jec5^Jec5]$ -f'ClfTE'K~> -!<;i=!!)c<!!)i>!!)rA!!)6-!!)uB!W^IFr653Aqoo*@qoo*@lHK;/rltHCrlkECrQP<BrQPEE -c-67bbl@bBbl@bAbl@bCbl@bBbl@bBbl@b<bl@bBbl@b@bl[sjblI^e!!)?0!!)o@!!)i>!s$Tj -!:e;6!;t(A!<(.B!<14C!;Oe=!;F_<!;t(A!;+M9!:.l0!;t(A!;XkG!6ragc-675blI[d!!)rA -!!)rA!!)uB!!)uB!!)l?!!)Z9!!)H3!!)uB!!*#C!!*#CrrE#B!!)uB!!*#C!!)c<!!)o@!!)uB -!s$Tj!<(.B!:J)3!;aq?!;k"L!6ragc-675blH#5!;t(A!;t(A!;Xk>!;t(A!9hZ-!<14C!;k"@ -!;t(A!<(.E!6ragr65<Dc-67cbl@bCble$k!6kN>bl@b3bl@bBbl@bCbl@b;bl@bAbl@bAbl@`p -c0NUTP5p+~> -!<;i+!!)c*!!)i,!!)r/!!)5p!!)u0!W]h4r4;q/qmuh.qmuh.lFR#rrk&11rjr.1rOW%0rOW.3 -]=S(>])Vj0])Vj/])Vj1])Vj0])Vj0])Vj*])Vj0])Vj.])r&F])_fA!!)>s!!)o.!!)i,!s#sF -!:dZ$!;sG/!<'M0!<0S1!;O/+!;F)*!;sG/!;*l'!:.5s!;sG/!;X55!5#iC]=S'T])_c@!!)r/ -!!)r/!!)u0!!)u0!!)l-!!)Z'!!)H!!!)u0!!*#1!!*#1rrE#0!!)u0!!*#1!!)c*!!)o.!!)u0 -!s#sF!<'M0!:IH!!;a;-!;jA:!5#iC]=S'T])]IT!;sG/!;sG/!;X5,!;sG/!9h#p!<0S1!;jA. -!;sG/!<'M3!5#iCr4<%2]=S(?])Vj1]*&,G!4r7,])Vj!])Vj0])Vj1])Vj)])Vj/])Vj/])Vh^ -]Bd'0GQ<6~> -!<;iF!!)cE!!)iG!!)oI!!)uK!!)H<!!)uK!s$p'!<1RL!;k=I!;k=I!<1OL!:JD<!<1RL!<1OL -!<(IK!;tFJ!;Y1G!;tCJ!<1RL!<1OL!<(IK!<(IK!<1OL!;k=I!;tCJ!<(IK!<1OL!<(IK!:/29 -!;k=I!;P.F!:\P>!;tCJ!<(IK!<(IK!<(IK!<1OL!<1OL!;k=I!;k=I!<(IN!7o^$rRLrKldc%9 -qpk`IrRMDXf%'iPec=:P!7o^$!<1OL!;k=I!;tCJ!<(IK!<(IK!<1OL!<(IK!<(IN!7o^$rRLrK -mFM49r7:iI!nI>OrRUoIrmpuIr7:cGr7:fHrmpuIm+).:rRM&Nf%'j"ec5^Led;E.ec=:P!7o^$ -!<1OL!;k=I!;Y1G!;k=I!<(IK!:JD<!<1OL!;k=I!;tCJ!<(IK!<1OL!<1RL!<1OL!<(IK!<(LK -!!:^O!<1OL!<(IK!:JD<!<(IK!<(IK!<(IK!;tCJ!;tFJ!<1OL!.i_decDEDJ,~> -!<;i=!!)c<!!)i>!!)o@!!)uB!!)H3!!)uB!s$Tj!<17C!;k"@!;k"@!<14C!:J)3!<17C!<14C -!<(.B!;t+A!;Xk>!;t(A!<17C!<14C!<(.B!<(.B!<14C!;k"@!;t(A!<(.B!<14C!<(.B!:.l0 -!;k"@!;Oh=!:\55!;t(A!<(.B!<(.B!<(.B!<14C!<14C!;k"@!;k"@!<(.E!6ragrQP<BlcfD0 -qoo*@rQPcOc-675blH#5!6rag!<14C!;k"@!;t(A!<(.B!<(.B!<14C!<(.B!<(.E!6ragrQP<B -mEPS0r6>3@!mL]FrQY9@rlt?@r6>->r6>0?rlt?@m*,M1rQPEEc-67ebl@bCbmFHqblH#5!6rag -!<14C!;k"@!;Xk>!;k"@!<(.B!:J)3!<14C!;k"@!;t(A!<(.B!<14C!<17C!<14C!<(.B!<(1B -!!:CF!<14C!<(.B!:J)3!<(.B!<(.B!<(.B!;t(A!;t+A!<14C!.iD[blO".J,~> -!<;i+!!)c*!!)i,!!)o.!!)u0!!)H!!!)u0!s#sF!<0V1!;jA.!;jA.!<0S1!:IH!!<0V1!<0S1 -!<'M0!;sJ/!;X5,!;sG/!<0V1!<0S1!<'M0!<'M0!<0S1!;jA.!;sG/!<'M0!<0S1!<'M0!:.5s -!;jA.!;O2+!:[T#!;sG/!<'M0!<'M0!<'M0!<0S1!<0S1!;jA.!;jA.!<'M3!5#iCrOW%0lam,s -qmuh.rOWL=]=S'T])]IT!5#iC!<0S1!;jA.!;sG/!<'M0!<'M0!<0S1!<'M0!<'M3!5#iCrOW%0 -mCW;sr4Dq.!kSF4rO`".rk&(.r4Dk,r4Dn-rk&(.m(35trOW.3]=S(A])Vj1]*\PM])]IT!5#iC -!<0S1!;jA.!;X5,!;jA.!<'M0!:IH!!<0S1!;jA.!;sG/!<'M0!<0S1!<0V1!<0S1!<'M0!<'P0 -!!9b4!<0S1!<'M0!:IH!!<'M0!<'M0!<'M0!;sG/!;sJ/!<0S1!.hcI])d-VJ,~> -!<;lGr;c`GquH]HquHZGr;c9:q>gNGrW!#N!!*#LquHZGrW)B;rW)rK!!)uKr;ZlL!<(LK!;k@F -!<(LJ!!1XNrRUoI!S.8Lf)>[If),OHf)5UJf)>[Lf)>[;f),OIf),OEec5^@f),OHf)5RLec>[" -r;ccHrW)lIquHZGr;ciJquH*7quHZGr;clKrW!5T!!(RM!7h/$rW)lIquH]Hr;ZlL!<(LJ!;k@G -!<1RI!:8;:!<1OL!4UPX!<(LI!<1RK!!q-U!7h,Mec=;#!;tFG!<(LH!;tFH!:A>;!<1OL!<(LH -!<:XL!<:XL!<1RK!!:^O!<1RJ!;tCJ!<1OL!<1RI!:JG;!<:XL!<(LI!<(LH!<1OM!7q,LJ_'): -!MBFC~> -!<;l>r;c`>quH]?quHZ>r;c91q>gN>rW!#E!!*#CquHZ>rW)B2rW)rB!!)uBr;ZlC!<(1B!;k%= -!<(1A!!1=ErQY9@!R1WCc2I_@c27S?c2@YAc2I_Cc2I_2c27S@c27S<bl@b7c27S?c2@VCblI^e -r;cc?rW)l@quHZ>r;ciAquH*.quHZ>r;clBrW!5K!!(7D!6kMgrW)l@quH]?r;ZlC!<(1A!;k%> -!<17@!:7u1!<14C!4U5O!<(1@!<17B!!pgL!6kKDblH#f!;t+>!<(1?!;t+?!:A#2!<14C!<(1? -!<:=C!<:=C!<17B!!:CF!<17A!;t(A!<14C!<17@!:J,2!<:=C!<(1@!<(1?!<14D!6tKCJ^*H( -!L!M6~> -!<;l,r;c`,quH]-quHZ,r;c8tq>gN,rW!#3!!*#1quHZ,rW)AurW)r0!!)u0r;Zl1!<'P0!;jD+ -!<'P/!!0\3rO`".!P8@1]D_g.]DM[-]DVa/]D_g1]D_fu]DM[.]DM[*])Vj%]DM[-]DV^1])_fA -r;cc-rW)l.quHZ,r;ci/quH)qquHZ,r;cl0rW!59!!'V2!4r6CrW)l.quH]-r;Zl1!<'P/!;jD, -!<0V.!:7>t!<0S1!4TT=!<'P.!<0V0!!p1:!4r42])]JB!;sJ,!<'P-!;sJ-!:@Au!<0S1!<'P- -!<9\1!<9\1!<0V0!!9b4!<0V/!;sG/!<0S1!<0V.!:IJu!<9\1!<'P.!<'P-!<0S2!5&41J\10Y -!I+Tp~> -!<7W$kgf_6Xk!IPLt2P+][d)`f)5T>ec5]$f&YB^!.i__ecDEDJ,~> -!<7Vpkfj)-Xj$hGLs5o"]ZgHWc2@X5bl@`pc/d+L!.iDVblO".J,~> -!<7V^kdpfpXh+Q5Lq<We]Xn1E]DV`#])Vh^]B$R(!.hcD])d-VJ,~> -!<;oHp]/mrp]/mrp]0:(!!'jdp]1!<!!&56o`0Qomah.5ma_@<cdqgj][liXma_@<J_&r6!MBFC~> -!<;o?p]/mip]/mip]09t!!'j[p]1!3!!&5-o`0Qfm`kM,m`b_3ccu1a]Zp3Om`b_3J^*<$!L!M6~> -!<;o-p]/mWp]/mWp]09b!!'jIp]1!!!!&4po`0QTm^r5om^iH!cb&oO]Y!q=m^iH!J\1$U!I+Tp~> -!<7W$mFM49Xk*FNMUq_+^Xi/[T[s&AJ_'#8r;_E"kLK[,!.Y~> -!<7VpmEPS0Xj-eEMTu)"^WlNRT[!E8J^*B&r;_DnkKO$k!.Y~> -!<7V^mCW;sXh4N3MS&fe^Us7@TY(.&J\1*Wr;_D\kIUb>!.Y~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!WU`%TRibeTRibeTRic=TE"tB~> -!WUDqPC\pKPC\pKPC\q#P5kT5~> -!WTc_G_(*jG_(*jG_(+BGQ7_o~> -!<7TMJH16$JH16$JH2bOJ,~> -!<7TMJH16$JH16$JH2bOJ,~> -!<7TMJH16$JH16$JH2bOJ,~> -JcC<$JcC<$JcC<$X8d\~> -JcC<$JcC<$JcC<$X8d\~> -JcC<$JcC<$JcC<$X8d\~> -!<7W$J_#D'J_#D'J_$sS!!%N~> -!<7VpJ^&bjJ^&bjJ^(=A!!%N~> -!<7V^J\-KFJ\-KFJ\/%r!!%N~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!<;iF$.R51XKAV+\BNI(ec=7&ed9mN]<J<7Y/AW:J_#D'J_#D'J_'MF!MBFC~> -!<;i=$-U8mUS=KXYf"YcblGtibmDV3[&TstVn:!nJ^&bjJ^&bjJ^*l4!L!M6~> -!<;i+$+dI;Q'.;qTsD82])]FE]*Z'SVP'HIR]<g-J\-KFJ\-KFJ\1Te!I+Tp~> -!<;oH%Frn7OD@p,@8gWnYL(hEecMJje`t]dS^dYi!7gGe!4DH]!3#A;!7(G'!57dN$e2i"eE#]C -]T]/6eUc;&eq)D'eq)EGecDEDJ,~> -!<;o?%EuqqI7c+G0.K;6VT6p*blX<Rbj*FRQHT9P!6jfS!3YsP!28l+!64kn!4D4=$d5rce)]TA -]9&W$b^n#ic%4,jc%4.5blO".J,~> -!<;o-"hM16Cc373(^)R-QaXKM])mo!]'?m.M7W\u!4qO/!1rh4!0cl`!4;TP!2](p$bE1?g$S:j -`fQ:e\q.JE]7ISF]7ITf])d-VJ,~> -!<;rI&(T$lKos4'f@%dBIs6jte^)eLUKM`bea(cj(Q6Yjf%&=<ecKe]A,Ta7:]*Z_3C`Jg#ehNt -?;aEe+c5X<%Fr)6oChY:j5&:NREO-3eq)D'eq)D'f([_rTE'K~> -!<;r@&'W(R>=`"2A7/J'/kU`9bg4N:S6p9Ubj3LX(PToRc-4E!blVZOCAhcF>5V.s5st+c#du!q -AQ_r.-A1a2%Eu0#oChY:j5/COPJbUqc%4,jc%4,jc1fH`P5p+~> -!<;r.&%]3"5pRs7/Lr"T$8Zk5]$ItkOB6)%]'Hs4'md="]=PT@])lG4@f9U5:&I?Z2*LE?#c8h[ ->YdmZ+*d4c%D&C[q"j^UnaG\1LU"FA]7ISF]7ISF]D&o<GQ<6~> -!<;uJ&_56gK#?R+h:^6"`P/0kL<nE?ec<Yb:&q'SecqCmS2,-1eaCune^P@:L<mVmr_<KF\ae5P -E/2+)[/c$\DZNd+n(%cY7`r)pF)EdjmahEX$haAjn*B)lg"(bWd=Kl"eq)D'eq)EHecDEDJ,~> -!<;uA&^8:J7Ug4E>#J*g7moBtI)jJ$blGEQ9)tLIbm'2aZTN*EbjN^\bf^i9J]G3Qr_!9>Z16'? -CQ-[>blO`"rJ:Pf6gr8*[Ro2rUlC-pKC6tn^;T^@p[@G0hqQe7VT=>5J^&bjJ^&bjpWW`&!.Y~> -!<;u/&\>Do-SRA&)%dDi%LiddE4*:I])\r/6i`84]*<k;R4`$W]'d31\ci^?Fg\)mr^6d,U%,_r -@Y_PnZ2oSirFH"&4n#ugVFAS4K5+sNGj`0QXi1)6qY0XQnEoOrQa_OXJ\-KFJ\-KFpU^HN!.Y~> -!<;uJ&^m"tc/e!Kj5/D6aMGHeEKAQ<ed8c=OG%.D;CR7Jm+)H7EPJ8Q06PRjo%!iQ/cI:0(St,G -3J*EqS:*)YeFV6$E#BoF+sS9K&eP`g&I_.ted/uW^o2E[<[imoedp<AlhC5Lo'PVug"!udaOPjm -J_#D'J_#D'psoJ=!.Y~> -!<;uA&]p&%A8YXT=B/3m8OYs-4,:rJbmCO1TpKt;B/P+\m*,g(GLXWS3H<'_o$%0?r@89p`F<@: -?=Jk/=Y>l\o?@b\)C['_.4?8T(`=/-&4>p2#e!:R`L2!m2hUSD&'VEHp\FRSmH<H_fuA0Lb^n#i -c%4,jc%4.7blO".J,~> -!<;u/&\!?>0/FCW&ePZc%LrpV+a^]g]*Y)_N.5/-9-nVim(3O]Dn_oE.qc6#o"+pt./kS&'95Xh -1)V/i+rD\]](<ND@MpC7+sS9I%hB3^%gkJg]*P9$]r#^D9-ecN]+;KQnbW.Zp\+4Kmd&MBYI]:s -J\-KFJ\-KFpq$QO!.Y~> -!<<#K'@aIF^Z";-^sh5qbdY*o[$c'AeFV5ue[%BFWchTJ.=fn7edANfbI=9]<@N+5eaq?)Z9cXU -dFQ=B886]BoBY#,5*F=cec=+rb65qh0:'`Yb5flWed/uX^o)?Z<[`gnedp3Io(W%Vp$qG3gXXf# -][VM`J_#D'J_#D'psoJ=!.Y~> -!<<#B'?dO`?Y`kI:fCCn:.duB4uQ*6bO`scbc=+T`L(pm2gWX6bmL=[iRQ#&Cbp+Jbk''lW^YRn -hWF(P=&6*Ed`8VB/r[mDblGi`_Z[fQ09F!J_Z7aGbm:aKe\mo%F#J[>bn%q4o(W%Vp$qG3hV6b2 -[*+$FJ^&bjJ^&bjprri'!.Y~> -!<<#0'=sc'/h[nQ(D7;l&f22k$k#"_](<N@\stgdWGbU,,]C3[]*ap5b-n'Q:*aJV](<NHRm"O$ -`lP<N4WHt&BN.;M+Fprn])]>=Ylq:u.YFr'YlM3#]*P9$^8,[C9-\]M]+;Bdq"jpbq=jUSmcs.c -Uq2,hJ\-KFJ\-KFpq$QO!.Y~> -!<<#K'@)`!gu7.k[C40'[(X5f[&e>'bk'BmeZq<EVfl6E.=fk7edS0ZdC-N\CLU6hDT^N%ee>;U -_R$eia2G;ZNpZcBqrNc:[++Ws#1KGcM^Fb;ldc?U6+j.>>#m&.n(%Tdbjb<)p^$Tbm,-@BJ@3jW -eq)D'eq)D'f(desTE'K~> -!<<#B'?,GgCKjt]Rs.h1D4u\_5<C98_t2+[bc4%T`L;'n2gWU6bm^"Pkg\/)L3mVgC;S3ebnI*J -g=+d;lfcl*K%9#Be\5fmXip7Z#0WWTS1B]Blcf^D7af8EH#klrn'(sSb4,*'p^$TbmGd!VJ?I(H -c%4,jc%4,jc1oNaP5p+~> -!<<#0'=;[$1`7$*NE7#499X0;%1ESTZLb[8\skddUi0%%,]C0[]*sU)d'^<W@TlGL?a737]+^Z! -ZCIYhYH40Y9QYJh;+DijT"=I(#.]k.MB[\^lamG"5e3_0:J2pWn%/\/bP1i2q?QiinET=oT"0Ea -J\-KFJ\-KFpq$QO!.Y~> -!<<#K'=r(mg"tT)rq"=CbOk,E[&f6m[.DiUeZq?GVfl6E."Kb7eddsYcFLEnUhX498LeW'eb.K, -YW&)1O-GusQB*nmq#:6a^1EDQo%")rVIH<d8MZFUnCA0!SoAXY4gh54>#m%AE,^c]o@=GtaR/Qk -q"a^Xlep=AI^RXUeq)D'eq)D'f(desTE'K~> -!<<#B'=(PA>ZG%(roAuW^\#Nd5W^VaXn0dEbc4(V`L;'n2L<L6blWoDi;V74aG"hR>r?B:bk93o -WBRbkYd_3S]!Ot]hrWY;PXpYOo$%H`T4>%0>rIV^nBDNdQYUAD7*W]>H#kl3CMS[Eo?I<T%IN`Y -p\FUXlf@$[I]gkFc%4,jc%4,jc1oNaP5p+~> -!<<#0';IiI*t]ERrnV?b](EC(%gr[tT(BQ$\skgfUi0%%,B('[]+0F)c+19kUL@1t6RH3J](NZK -RPKbBGC4jfI<6Vs?rp6"1)t_No",1=O^+ZG6S*_rn@K7@MIL$r4L(`%:J2or@UaYjo=GO?aS#<$ -q>:'bnaPf.K:]W)]7ISF]7ISF]D/u=GQ<6~> -!<<#K'<G0ZeCrZijSn`0o_.(^Z`BHYV"E4He^Uie[A\7P<[`IFea_3%PoVtUD7d3OBNHi+)@1B0 -eb7Q-YUaj(@:NhYBO<6Wp&4madpI=@o%",T=f&Ec>sgK7e+)!#e"S?]DMPEpG?S*:0e3`qd.>g! -d^SH,n)a',lJgOHdVukKJ_#D'J_#D'J_'VI!MBFC~> -!<<#B';R<j;,^M;f)Fg`o]DWZ5WUY>SFk&7bfd"ScGc5tF#J<bbjiphNuLDZHe?ihK5Ndq+p`&+ -bkB9pWABZfK8#&8NJKQBf]qGCW^UsEo$%KD=g5lJF]CD]b43^fb*shYJ==U"RX''\695X7a7IOd -agC="nE'3/lf@-hheogEJ^&bjJ^&bjJ^*u7!L!M6~> -!<<#0':'^m'+kpTci2nNo\Y-c%LWUNNqBs`\dFohZDDJ89-\Aa](*BDK,Hd?Cq@!J?r&9j(^FTZ -](W`LRO2H584lNJ:.6!R;ccpn58\(<o",4";l$[Y<BW!e\FI0B\;hk#Ck\sgE)01j.io+J[e%*A -\$GSsp#u/Do'>W*lY`N0J\-KFJ\-KFJ\1]h!I+Tp~> -!<<#K'<><_cdg^ual`U%pu0B-Z)O'XV"W@NeV#J),sAW6G?S#q)_<OMeaq?'^Rg[<6,Bq'AlBdO -M2n=Qe+V?+Yq's(?smDP=<2VBqu6Qecs1S/o@=;e4g;5cNa>jU.A,/\edg0-1kDd3WcqWM=A0Qo -ddks!eZ@E_j5/kVfZ_joZuj?>eq)D'eq)D'f([_rTE'K~> -!<<#B';7!b9MeVfIG=c#lD&)f4ZP86RJ+l:b^M&m,=KeqRX&s4)Cd7Ebk''j[[2tu8_hb5JSHT1 -K8?#6bP'0oW\]cfJV&N.Ik>3AiTf@IX@mECo?@ZT4M/VDXEJS`/XXcPbmqpj32O^;`gV0tG%DhT -an![dbbs.Yl/Lphh:1WO]l1Z:c%4,jc%4,jc1fH`P5p+~> -!<<#0'9X1^%hK<h=OmEMjG6&?$k!CFMtXao\oT5H+?Zp*E)0+O(FCM2](<NFVM]qA6,9h"?;2G4 -G^POV\b<WKRjMQ67n?0B585P8;ccml5ojI:o=GC133]Z\N)ih>,`B8(]+2B8/paS"W,PO.:-&r9 -\+7-@\t.mLn)X$/k1]%`a_%],]7ISF]7ISF]D&o<GQ<6~> -!<<#K'<G?[aj/>^`T7$tptNQkY,7+<U\<7MeAY9mSu\rmG?S-J8inK;e+;-%e^)FD5J=FtAQ'Xg -]?&1Beb7Q-YST\j4[ECM+_B!orVcZV]iB3np!sW&[6)+*TUh*L>?OB6U"&V`%+Vm=H).E`>$4HD -OjigN%E,!sg;V[pc-k%^B!9U5eq)D'eq)D'f([_rTE'K~> -!<<#B';6s^8PDlWGM)oom$CL44#\`(RJ+l:bIpVj]#;\0RX'*q@o"M_b4Ejhbf@W$8(l;-IVC0E -ZbODubkB9pW?>\W?=JG*/QJq'jPnn0O>_'ip!!uiXujbB\[JS_F)Y5'R`k6G%*Yt0R`!+5H$3[L -Mp(V7%D8@nk0N#DeD]ZDAuE_$c%4,jc%4,jc1fH`P5p+~> -!<<#0'9X1^%M'*c;:GODk'8!W$O[4AMtXao\u\A'S#E?bE)05"5:IhU\F[<D]!\f45J=Cq>tc5H -Up%&3](W`LRLh/%.4mtJ'.-4F<E)ge1(\&uot(^FSi4<bT:Cj@;c,dsNOnYl%(`,YF/,XP:JEkh -J%>'\%BQ8hlHe\Xe)]`MAsp,Z]7ISF]7ISF]D&o<GQ<6~> -!<<#K'<G$H_oKKrh"g^<rqFsOWhFu"V"W@Ne]ts2<h?ClG?S0O3]FLlea_3!e[n#XZCbW*+*#6J -eb%E+]0JG<3=A:m8tkYNrV?$:SR\/2p=9f(VCcP-J"N6k?;s'C1(T\unC@oP6#r`E=[k60ddP`r -e[([nb/DT@d)KpfbLM0pJ_#D'J_#D'pXTA<!.Y~> -!<<#B';R3[7S$'gchZkirp5hA3Ai6#SG(2=bf7.jEkTN5RX'.":,oDpbjipdbd0gld(k'D-uHT> -bk0-nZTU9,2\0LH4+kK(g==EPED`";p<=/lT.=o6O1;X"G&'i<57iptnBD9?8WUZUG[<Fgam[I` -bcI2`ccO\WgsL#"_p!\VJ^&bjJ^&bjpWW`&!.Y~> -!<<#0':'Ua%Ls%Ganb#Vro\JH$jm4FNqU'r]!SD/;4=PaE)08%.P7:!](*B@\thO%Z(,&m*Fl.\ -](ETJUc:.c1'fTF'ei3U;,9kQ+>&DRp:CmHOXOshI\*$f<_YP+/e*HBn@K!s3GY:,:,XJK\*pp< -\t,DQd_sDGgtH_!Z+>LuJ\-KFJ\-KFpU^HN!.Y~> -!<<#K'>&.[]tgAZrq>1"o`"$dVNu!s[Ir)\eBYg2<1'Y/>$!^OVomNXedB)R\Z_H2;BBhreFV6) -e&oG;\d^AX4.bL%oB4Z/87B$Tp=9f&R:g/:32`7+?;Vb0B4lqDnC@lpV,;)J9/MXTmFDZp\!k=U -b0Ie*S]TE5eq)D'eq)D'f(RYqTE'K~> -!<<#B'=1V-6Ua87roT]2jSm2.3&2[?Y4^$LbJgqlD7RWSH#ubMTYen@bmLjJeBGRPBI@Z0bO`sl -bJL`pZ4B)[/pk:Rbe^N@2I3Q-p<=/iP%/!(5J=J+G%W0e@q1&.nBD6^T3$l5A3,LdmEH$^YEcr@ -a2kemQGLdrc%4,jc%4,jc1]B_P5p+~> -!<<#0';S#:%1O#9rni0Dh>XrI$jm.mT(T]*]!SA0:R.hs:J*)rP-MUe]*bAt\?;3%9,qHC](<NI -\Zr'.UC&>+(bA3N9h@]-)-*B=p:CmFKj%YV32W.&<_=>l>$?'Un@Jt;O%3kr3[]9_mCNb;To$(g -]X+,)M6ORB]7ISF]7ISF]Cri;GQ<6~> -!<<#K'@)_h\@JZEh:KNZd,WEXTS-0obk0HpeBYO/>b-%@3^][ae*bco]eYh-E`>^TEQ$Auee?T_ -d*KuSL88KLVod#kUdJ(Yajfn4#eiL+RZ1WN*f946#1K;57jX8DldcBk^@1@Fe?3;te:H2%eq)D' -eq)EFecDEDJ,~> -!<<#B'?,Pb7R9:\[usfoM7emK2(BPd_t;1^bJgYmFLmob:.CbibO3U^[6:diO(r&OD7n'`bnJ=D -a2c.8JY$C/I[$^hGqi-g_9;Do#e!+=[&eF`-\La0#0NE,?nI8VlcfaZ[c?5l`1C>HbCRohc%4,j -c%4.4blO".J,~> -!<<#0'=;g&'b(^WVfaC;CTM\3$O-fIZLka;]!S,-<LIc".QEHm\aI':V(n*dE(rbBA$!95]+_cc -[^EIWFc]fG*]-)9*>;#-Ye'D;#c9ehR>Y*<*-ge]#.T[S3#d=TlamJ6S%,npMe5ne\q.JE]7ISF -]7ITe])d-VJ,~> -!<<#K'@aC9Tsh>8_7[.^\\#2FP\4F-e+;,te]k@$<,4fZVodETedB(r)AWqr%L7$meFV8ieIL'+ -^rO<K?7$sA;f\t\e+(up^-]8tNa>R)M<`Xpe#4^Xdd#BieA(MAjOUJF`79FiJ_#D'J_#D'p!s/: -!.Y~> -!<<#B'?dFW7n5d9A5PTZ<FAik0-ETYbO`scbf$PbD3%gZTY\h=bmLid+WM=4&d`EfbOa!WbRVgh -\A,V-<#Hbo7r>*;b43^^[RSBHX`e>*KBg\abFpGEam.+WbI6KneAn4j]ZbrOJ^&bjJ^&bjp!!N$ -!.Y~> -!<<#0'=s]$+;YJ-4<k=L.m,L"#R)uM\b!E?]!Il#9k#b-P-DLa]*bA?)AWqp$jL7D](<Q4\dl96 -W33+E49l5u0OpEP\FI0:VF%_[McNFjGj;mD\W\.c\*CR3\t$CMSW@SdXL`tpJ\-KFJ\-KFot(6L -!.Y~> -!<;uJ&^ce_VR!D/Y-"_&Un3`c=,bMred0gN\PG+6[*$kaecO=7Z2C[)\B37gedU$Se()ga\#l^: -_TgR!ed/uW\!rCa;'(S_ecKt7,Q8kg+Vbmn*<@$Pn(%fp^@(.:bcbWseUc;&eq)D'eq)EFecDED -J,~> -!<;uA&]fkl84bs-4?GP`2`363/VD+6bm;P3Z;!h?Xhr9JblZ(sWr/[pYeeNNbm_b8bKS#?YGS+q -]#;e]bm:aJb-e?pB.&?#blVl),lT"i+r;6t*<@'Nn')0^[H$)e]qJiHb^n#ic%4,jc%4.4blO". -J,~> -!<;u/&\!36*uth#$k!IQ$k!=F)gJg]]*Q!SU.$@RT!>im])oO?S,AQRTs2,r]*u3X\[o5NTU1t6 -WO'/)]*P9$\!i7V8fW*E])lUa+oWSc*toLi)?CU@n%/n;S\;_,M/?4n\q.JE]7ISF]7ITe])d-V -J,~> -!<;rI&C?>QQDpdZV5'WFIUZN7cdhO9#1Ur5=LHB&lIH!bcMYofcI;"."kD&Hbg+]*ed/uSWJl4, -:*>D^ecKfP`r3UOQi)C8AOc.>$.ZKIi6]?1B#iGQeq)D'eq)D'f(ISpTE'K~> -!<;r@&BBAc69[@g2`<HG-QOjfa3=%t#0Xup<3F-^lHK@P`r*aU`lmSj"jG*-_oBjebm:aG]r%39 -@k!'!blV[DfDX/!ZC(TW!I.!#bmDUtgt'<INa]]HJ^&bjJ^&bjJ^*l4!L!M6~> -!<;r."L`M$*Y\M\rsAr:"p>rd[CYk>#.h1>9qJZ%lFR),[/@62[(5D4"hM1MZF%.0]*P8tW/>jt -803$E])lH'`;R=LP'[(P!F7kW]*Z'<[Bb^;?WO>@J\-KFJ\-KFJ\1Te!I+Tp~> -!<;rI&(T$mGAMqqP(S0n:MGg7eaCukeBZ.[eE>E\e`53\ea1im^)T[%0.&"XM=9"*E'RZ1=]eci -/h\h00-EaQed0g*Ohe/V7[),Keq)D'eq)D'f(@MoTE'K~> -!<;r@&'W(U;^X(K0IeIl)b#J$bjN^YbJq<8bNI.Jbi?qJbj<R[[NJL:4>AK(KC@%pCIDlLBP1sT -5!M4p5:]+ibm;OfLp`q'5`Na6c%4,jc%4,jc1K6]P5p+~> -!<;r.&%]3%57.Z%#mU\<"uU\6]'d05]!SZI]'$^']&UC&]'R$7VAr)`/L)GMGji6S@R+.!=BAQc -.4HYn.3(M>]*Q!2C5d"+/V(3Z]7ISF]7ISF]C`]9GQ<6~> -!<;oH%Frn9Lh&\31GW0gYgM"fecOCNeZIC&cME@t]'n2MZ1NkQU@-S;e%'$]8>aMYJ_#D'J_#D' -J_'JE!MBFC~> -!<;o?%EuqtGt8nh&/ITUW6!3LblZ,4bcT+i`VP2eZL?$<Wq:oDS*nN+bHYMI7A%E>J^&bjJ^&bj -J^*i3!L!M6~> -!<;o-%D'$AC,ue+!Xgl!RCBco])oRS\uiRE[/,"IU[PepS+Lq*NpaLa\Y37u5EW1]J\-KFJ\-KF -J\1Qd!I+Tp~> -!<;iF$.R82UnXW[\'<BQf%&=Te]"Q#cddTtJ_#D'J_#D'o@<r8!.Y~> -!<;i=$-U;mSsl(<YJeV8c.1&Bbe9aWa39+ZJ^&bjJ^&bjo?@<"!.Y~> -!<;i+$+dL;OGf$XTX21[]@FLs\u_-l[CUq$J\-KFJ\-KFo=G$J!.Y~> -!<7W$J_#D'J_#D'J_%!T!MBFC~> -!<7VpJ^&bjJ^&bjJ^(@B!L!M6~> -!<7V^J\-KFJ\-KFJ\/(s!I+Tp~> -!WU`%TRibeTRibeTRic=TE"tB~> -!WUDqPC\pKPC\pKPC\q#P5kT5~> -!WTc_G_(*jG_(*jG_(+BGQ7_o~> -!<7TMJH16$JH16$JH2bOJ,~> -!<7TMJH16$JH16$JH2bOJ,~> -!<7TMJH16$JH16$JH2bOJ,~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -J_&6"Sc=8limr\\JcC<$ir9"OrmlT~> -J^)TeSc=8cim!&SJcC<$ir9"Brlor~> -J\0=ASc=8Qik'dAJcC<$ir9"'rk![~> -J_&9#!<8V@!!%T$j4451JY7ReJY;"qrmlT~> -J^)Wf!<8V7!!%Spj37T(JWkYKJWo)Wrlor~> -J\0@B!<8V%!!%S^j1><kJTu`jJU$1!rk![~> -rRQPXf&-Q.T%3q8!.i_]ecGfDJ_#D'J_&r6!WShlepm~> -rQToKf%^9*T$7;"!.iDTblRj.J^&bjJ^*<$!WSA_c%#~> -rO[X0f$aX!T">#J!.hcB])hqVJ\-KFJ\1$U!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.FqoJ_#D'jjjJ4T`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-&#YJ^&bjjimi+PQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*0+,J\-KFjgtQnGlG=*~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.FqoJ_#D'jjjJ4T`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-&#YJ^&bjjimi+PQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*0+,J\-KFjgtQnGlG=*~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh)-J[3k4!<<#K!Re@IT`M+:Zdo/M!.i_]ecGfDrmq)K!!)!XrrCmTrW%NLJcE7[rmh,MT`3Mm~> -rlkGuJZIA&!<<#B!QhG8RK9,#ZcrN7!.iDTblRj.rltHB!!)!XrrCmTrW%NLJcE7[rlkKDPQ&gW~> -rjr0ZJXk;]!<<#0!OnWlN<,6LZb$6_!.hcB])hqVrk&10!!)!XrrCmTrW%NLJcE7[rjr42GlG=*~> -rmh)-pTadsrh0=eJ[4CC!<<#K#ddQ17!!EiEcM%r"B.ugMUSr`!MBFDf&P<^s.KABs8W*!i;WcW -g]%6RJcC<$\GuQZ!WShlepm~> -rlkGupT":ergEhXJZIn5!<<#B#cq':6!mu&>?h)."^+Ds=+n`'blO".J^*6"!WSA_c2[hD!9!kW -!8IMR!.k0$s1&+.blRj.rlor~> -rjr0ZpRD5Hrf$o=JXkhl!<<#0#b>.;6<[Pm=',B""]\-#??iue])d-VJ\0sS!WRED]Dqp2!9!kW -!8IMR!.k0$s1&+.])hqVrk![~> -rmh)-q6C:&QT,?^#oo;*J[4IE!<<#K&YWC!JE,\JhqQf5eBOG9<aa1_OSmZ1TE'Poj4482T`3LE -rrE'!i;WcWg]%6RJcC<$\GuQZ!WShlepm~> -rlkGuq5XdmOZ<sf&0I%(JZIt7!<<#B&Xm=EF-r/NNfT*OL4+'0Cg=ohmek<1P5p0Yj37W)PQ&f/ -rrE'!i;WcWg]%6RJcC<$\GuQQ!WSA_c%#~> -rjr0Zq4%_PKeWlA#8i,RJXknn!<<#0&WLe\GDLm"J:`2oH#di'IT3YaOSl]kGQ<<,j1>?lGlG;W -rrE'!i;WcWg]%6RJcC<$\GuQ?!WRED]79~> -rmh)-qQ^I%9HQN(A5+Zg2O]3&kct3grRM+F=Hn<brm_>#e'ZOdR<h5*agmN2ecDEDJ_&l4!WShl -f)G[L!:g*e!<<*!!<3#u!<3!!!<<#ur;Z`r!ri6#rr;osr;Z]qqYpNqJcC<$\GuQZ!WShlepm~> -rlkGuqPssm9dj(nP'BY@30\upkc4^`rQPqCA[?KGPa%JmOcG6MG`Gp/_7B"3blO".J^*6"!WSA_ -c2R_C!:g*e!<<*!!<3#u!<3!!!<<#ur;Z`r!ri6#rr;osr;Z]qqYpNqJcC<$\GuQQ!WSA_c%#~> -rjr0ZqO@nP6lS*^<Bh]:08G+KkaVYQrOWZ$Dp3NjNfB$QM2-V/H_G4PYdokn])d-VJ\0sS!WRED -]Dhg1!:g*e!<<*!!<3#u!<3!!!<<#ur;Z`r!ri6#rr;osr;Z]qqYpNqJcC<$\GuQ?!WRED]79~> -rmh)-qm$X+?:01,O*G5966JCT]!D>9i3N:]r3H8$i3E@_rRM(E=-AX>rWTl]6!MHmq>f62!!)8F -r71nA!.i_]ecGfDrmq)K!!)Ti!!)ut!!*#u!!)ut!!*#urrE&u!!*#u!!*#urrE&u!!)ut!!*#u -!!)ut!!)or!!%TMJcE7[rmh,MT`3Mm~> -rlkGuql:-s?WET)ZD*V<D)ab?\uYi2i2ceVr2]bri2ZkXrQPG5A[7EmrWTlr<`m0*q>f7;!!)9O -r658+!.iDTblRj.rltHB!!)Ti!!)ut!!*#u!!)ut!!*#urrE&u!!*#u!!*#urrE&u!!)ut!!*#u -!!)ut!!)or!!%TMJcE7[rlkKDPQ&gW~> -rjr0Zqj\(V<'GD^K5=RW2&J0%\t&d#i10`Gr1*]ci1'fIrOW/kDTS(:rWTm.Al,[mq>f62!!)8F -r4;uS!.hcB])hqVrk&10!!)Ti!!)ut!!*#u!!)ut!!*#urrE&u!!*#u!!*#urrE&u!!)ut!!*#u -!!)ut!!)or!!%TMJcE7[rjr42GlG=*~> -rmh)-r3?g/;G`O`[\SXj<(]:o2jO<H!!)r&rW)u(rW(3K!!)_uqZ-2m!!)i#!!)2f!!)c!!<<#K -"//h[M##a1fV3mY>KMtg!<%uZ!8<M7!9oUCecDEDJ_&l4!WShlf)G[L!:p-i!;ZWp!<)ot!<2uu -!;uiu!<3&srrW9$rrDrr!!)lq!!)or!!%TMJcE7[rmh,MT`3Mm~> -rlkGur2U=!;IZfQc,$NKL3mVn3fj3>!!)qtrW)u!rW(3D!!)_nqZ-2f!!)hq!!)2_!!)bo!<<#B -".Ef)M>>j2fV4U-=MX@m!<)<c!8?i@!9rqLblO".J^*6"!WSA_c2R_C!:p-i!;ZWp!<)ot!<2uu -!;uiu!<3&srrW9$rrDrr!!)lq!!)or!!%TMJcE7[rlkKDPQ&gW~> -rjr0Zr1"7Y84n`>Y*sZ=6olq8/qX"k!!)qerW)tgrW(35!!)__qZ-2W!!)hb!!)2P!!)b`!<<#0 -"-%3?MYYs3fV53N:p5tB!<%uZ!8<M7!9oUC])d-VJ\0sS!WRED]Dhg1!:p-i!;ZWp!<)ot!<2uu -!;uiu!<3&srrW9$rrDrr!!)lq!!)or!!%TMJcE7[rjr42GlG=*~> -rmh)-r3?g"+b-uFb--\7:e3i+&U+)X!!)o%!!)u'!!(6K!!)\t!!)u'!!)Vr!!)i#!!)2f!!)c! -!<<#K"//eWL%tNM\:?SDacMSarK%!ZrK.!YrK.$Zs,d6\s,d6\"cr]aO8o:[OSo1YOS]%NOT#7[ -OT#4[OSmZ1TE'Poj4482T`3OArr<&hs8;rrrr<&trr<&urr<&srrN3#!;uj!!<<'!qu6Wrrr;lr -qu6WrJcC<$\GuQZ!WShlepm~> -rlkGur2U<j.\4l?g;pLcLOF5K,'!O]!!)ns!!)tu!!(6D!!)\m!!)tu!!)Vk!!)hq!!)2_!!)bo -!<<#B".E`%L\U`O\<Tcj_!^UjrU'XcrU0XbrU0[cs6fmes6fme"mu?jmJm7dmem.bme["Wmf!4d -mf!1dmek<1P5p0Yj37W)PQ&i+rr<&hs8;rrrr<&trr<&urr<&srrN3#!;uj!!<<'!qu6Wrrr;lr -qu6WrJcC<$\GuQQ!WSA_c%#~> -rjr0Zr1"7N*d4a-`27ua5WCJD$YTC-!!)nd!!)tf!!(65!!)\^!!)tf!!)V\!!)hb!!)2P!!)b` -!<<#0"-%3<M"piP\><D+YE4hGrK%!ZrK.!YrK.$Zs,d6\s,d6\"cr]aO8o:[OSo1YOS]%NOT#7[ -OT#4[OSl]kGQ<<,j1>?lGlG>Srr<&hs8;rrrr<&trr<&urr<&srrN3#!;uj!!<<'!qu6Wrrr;lr -qu6WrJcC<$\GuQ?!WRED]79~> -rmh)-rN['63_5s_g!m<`@n]?V2^'c>ZEjB.rNZD'rNZS,ZEaH1ZMjk'ZMsn)ZMjk%ZMae&ZMsn. -Z2am1!!)u'rW)l%rVuu)!;3Vt!<'2+!4&m1!<0;(!<0;$!<0;$!;s/%!<'5'!<9A)!<0;%!;Wo# -s8CLOTiI#.k5+0IjK!ep>KMtg!0E9Br/^mYrf@*[rK%TkO8tB(!0E9B!0@0\O8tB(!<%uZ!<%uZ -!:c-N!<%u\!0E<?ecDEDJ_&l4!WShlf)G[L!:Bdd!<2uu!<)ot!<2uu!;uiu!<3&srrW9$rrDrr -!s&B$!<)ot!;lcr!.k0$s1&+.ecGfDrmlT~> -rlkGurMpR(3aTSQjPe:dQA0j1Bg=G:X/l-urMonurMp)%X/c4#X8W+uX8`/"X8W+sX8N%tX8`/' -WrN.#!!)turW)ksrVuu"!;3Am!<&r$!3<.#!<0&!!<0%r!<0%r!;rns!<&tu!<9,"!<0%s!;WYq -s8C1FRUN7Tk5+0IjK"M>=MX@m!:K7Tr9aObrpBadrU(6tmJu\C!:K7T!:BgemJu\C!<)<c!<)<c -!:fIW!<)<e!:K:QblO".J^*6"!WSA_c2R_C!:Bdd!<2uu!<)ot!<2uu!;uiu!<3&srrW9$rrDrr -!s&B$!<)ot!;lcr!.k0$s1&+.blRj.rlor~> -rjr0ZrL=L`1-h2>e^1=C<&uif-Pe%_S=KKWrL<ifrL=#kS=BQZSGiNfSGrQhSGiNdSG`HeSGrQm -S,`PZ!!)tfrW)kdrVuth!;2i^!<&Dj!1]PZ!</Mg!</Mc!</Mc!;rAd!<&Gf!<8Sh!</Md!;W,b -s8BP4NGZRlk5+0IjK#+Z:p5tB!0E9Br/^mYrf@*[rK%TkO8tB(!0E9B!0@0\O8tB(!<%uZ!<%uZ -!:c-N!<%u\!0E<?])d-VJ\0sS!WRED]Dhg1!:Bdd!<2uu!<)ot!<2uu!;uiu!<3&srrW9$rrDrr -!s&B$!<)ot!;lcr!.k0$s1&+.])hqVrk![~> -rmh)-rN[!.%;M]Oa1n9r>tI@F2_PVtrNZD'qm$2%rNZD'rj)P(riuM(rj)P(riuM(riuM(rNZD' -rj)P("L8"-Z2jm0!!*#(!!*#(!!*#(rrD_t!!)u'!!*#(!!)u'!!)r&!!)i#!!)l$!!*#(!!)u' -"TYh.ZEaK/Z2an!Z2jq'ec_[FNK!B&mfp%G6<hQnOSo1XO8o:YO8o:[OT,=XO9P]HO8tB(!;_cW -!<%uZ!:c-N!<%u\!0E<?ecDEDJ_&l4!WShlf)G[L!:p-i!<)ot!<2uu!<3#u!<3#u!<2uu!<2uu -!<3#u!<2uu!<)ot!<2uu!<)ot!;lcr!.k0$s1&+.ecGfDrmlT~> -rlkGurMpKu&rXTRg!md8P(\4(C02@-rMonuql9\srMonuri?&!ri6#!ri?&!ri6#!ri6#!rMonu -ri?&!"KMM&WrW."!!*#!!!*#!!!*#!rrD_m!!)tu!!*#!!!)tu!!)qt!!)hq!!)kr!!*#!!!)tu -"TYS'X/c7!WrN.oWrW1ubljJFXFTg9mfp%[9N]*umem.amJm7bmJm7dmf*:amKN[ZmJu\C!;c*` -!<)<c!:fIW!<)<e!:K:QblO".J^*6"!WSA_c2R_C!:p-i!<)ot!<2uu!<3#u!<3#u!<2uu!<2uu -!<3#u!<2uu!<)ot!<2uu!<)ot!;lcr!.k0$s1&+.blRj.rlor~> -rjr0ZrL=FY$X]C2_75bL9K+XU-R&kBrL<ifqj[WdrL<ifrg`ugrgWrgrg`ugrgWrgrgWrgrL<if -rg`ug"IoGlS,iPY!!*"g!!*"g!!*"grrD_^!!)tf!!*"g!!)tf!!)qe!!)hb!!)kc!!*"g!!)tf -"TY%mS=BTXS,`Q`S,iTf]*++1_L_4Pmfp%l;c'ZZOSo1XO8o:YO8o:[OT,=XO9P]HO8tB(!;_cW -!<%uZ!:c-N!<%u\!0E<?])d-VJ\0sS!WRED]Dhg1!:p-i!<)ot!<2uu!<3#u!<3#u!<2uu!<2uu -!<3#u!<2uu!<)ot!<2uu!<)ot!;lcr!.k0$s1&+.])hqVrk![~> -rmh)-rN[!.&9X;6UmZpO;FNi778"PVriuS*Z2jg.!!)u'!!*#(!!)u'!!*#(!!)u'!!)i#!!*#( -#lq9:!4&m1ZEaK.Z2t$3!;s,&!;3Yq!<'2'!<'2'!;s,&!;Wo#!;j&%!;s,&!<0;(!;`u&!3uV" -Z2jq'eeb#WL3nArH@'d[I!g6^J2(9MOH9I(O9#6@q>gMV!!)kW"osaH!0E9BrfI$XrK%!Zn;m_P -OH9JAOSmZ1TE'Poj4482T`3LBs82lhs82lps8E!&rr<'!!!*&u!;ulr!!3*"rVufrr;Z]q!WN0! -s82kJs+13]s8LRMs.KABJ,~> -rlkGurMpKu(7r"N^q-V;Mh$+oF)r[^ri6)#WrW'u!!)tu!!*#!!!)tu!!*#!!!)tu!!)hq!!*#! -#lq$,!3<.#X/c6uWr`:%!;rkt!;3Dj!<&qu!<&qu!;rkt!;WYq!;ies!;rkt!<0&!!;`_t!36+p -WrW1ubljJEVi6<.JId3ZJV&E"QU4fimd:)CmK!4Rq>gN_!!)l`"p")Z!:K7TrpK[arU'XcnEpAY -md:)Smek<1P5p0Yj37W)PQ&f,s82lhs82lps8E!&rr<'!!!*&u!;ulr!!3*"rVufrr;Z]q!WN0! -s82kJs+13]s8L7Ds-*H,J,~> -rjr0ZrL=FY%V^ljRZD\t5r1,E2Eqt&rgX#iS,iJW!!)tf!!*"g!!)tf!!*"g!!)tf!!)hb!!*"g -#lpKc!1]PZS=BTWS,r\\!;r>e!;2l[!<&Df!<&Df!;r>e!;W,b!;i8d!;r>e!</Mg!;`2e!1X&a -S,iTf]*++0^6siWL(AukL5(D8W_H<nOH9I(O9#6@q>gMV!!)kW"osaH!0E9BrfI$XrK%!Zn;m_P -OH9JAOSl]kGQ<<,j1>?lGlG;Ts82lhs82lps8E!&rr<'!!!*&u!;ulr!!3*"rVufrr;Z]q!WN0! -s82kJs+13]s8KV2s*4OTJ,~> -rmh)-rN[*1$t+aHKR%<783]:/@UU76ZEaK0Z2an'Z2an'Z2an(Z2an'Z2an(Z2an'Z2an'ZMX_% -Z3UH9Z2h29!4&p,!!0A*r3?;&os+PtrNZD'riuM(rNZD'r3?;&q6Bu#qm-%uriuM(qQ^)$riuM( -q6C##rRM[V;1Wq/@VKarDf';uDiQGSacMSaqN([WplGIUqN)!`OH9I(O8tB(!<%uZ!<%uZ!:Z'P -!0E9BrfI'/!MBFDf&P<^s.KABcMmkEJcC<$TE"oA!WShlepm~> -rlkGurMpU#&r!?gX.u,BK6h]dLOUY)X/c7"WrN.uWrN.uWrN/!WrN.uWrN/!WrN.uWrN.uX8Dts -WsA^+WrT3$!3<0s!!0,#r2TetorA&mrMonuri6#!rMonur2Tetq5XJqqlBPnri6#!qPsSrri6#! -q5XMqrQQ%F?_Nd@Fa\spK7SMsLT!@<_!^UjqX+=`q!J+^qX+Ximd:)CmJu\C!<)<c!<)<c!:]CY -!:K7TrpK^/!L!M7c/[%Ls-*H,cMmkEJcC<$TE"o8!WSA_c%#~> -rjr0ZrL=O\$<28!G\gSR2D$I@<`^/aS=BTYS,`QfS,`QfS,`QgS,`QfS,`QgS,`QfS,`QfSGWBd -S-T+bS,f(L!1]SU!!/Sir1!`eopc!^rL<ifrgWrgrL<ifr1!`eq4%EbqjdK_rgWrgqO@NcrgWrg -q4%HbrOWc'CqHp@KT;@]PECo`S%_EiYE4hGqN([WplGIUqN)!`OH9I(O8tB(!<%uZ!<%uZ!:Z'P -!0E9BrfI&i!I+Tq]ApL(s*4OTcMmkEJcC<$TE"o&!WRED]79~> -rmh)-rN[!0*^"@]CLC185sIqMH;u2Op9FYurNZD'riuM(rNZD'riuM(rNZD'riuM(rNZD'riuh1 -ZEaJ9Z2h29!;`u$!;s,&!;3Vt!<'2'!<08(!<'2'!;s,&!;Wo#!;j&%!;Ni"!:@&ls8CL_Ti$;Q -BVW/V_7$A):/I*+>KMtg!;V]V!<%uZ!</&[!;_c`!0E9BOH9I(O9#6@!!)tZ!!*"[!!)qYrrDnW -rrE"Zr71nA!.i_]ecGfDrmoEq!!%TMJcD>Armh,MT`3Mm~> -rlkGurMpL#+BOnuQ]R&TH?X[kQYS%.p8\/nrMonuri6#!rMonuri6#!rMonuri6#!rMonuri6>* -X/c6$WrT3$!;`_r!;rkt!;3Am!<&qu!<0#!!<&qu!;rkt!;WYq!;ies!;NSp!:?fes8C1VRU;\@ -E21(b`42n/?#$K)=MX@m!;Z$_!<)<c!<2Bd!;c*i!:K7Tmd:)CmK!4R!!)uc!!*#d!!)rbrrDo` -rrE#cr658+!.iDTblRj.rlrdh!!%TMJcD>ArlkKDPQ&gW~> -rjr0ZrL=F[)Dbi6>u=$N0J,:cED@X+p7)*_rL<ifrgWrgrL<ifrgWrgrL<ifrgWrgrL<ifrgX8p -S=BSLS,f(L!;`2c!;r>e!;2i^!<&Df!</Jg!<&Df!;r>e!;W,b!;i8d!;N&a!:?9Vs8BPDNGQ.q -FJ?Fg`OMq+B7Rog:p5tB!;V]V!<%uZ!</&[!;_c`!0E9BOH9I(O9#6@!!)tZ!!*"[!!)qYrrDnW -rrE"Zr4;uS!.hcB])hqVrk$MV!!%TMJcD>Arjr42GlG=*~> -rmh)-r3?g!'iSLE<_Z"L94N9i/U-ln!!)u'!!*#(!!)u'!!*#(!!)u'!!*#(!!)u'!!*#("ots7 -!4&m1riuM(rNZM*ZEaK0ZMsptZ2an'Z2an(Z2an(ZMsq&Z2an#Z2an$Z2an'Z2an(Z2amlZ2jq' -ee4ZRHt/#mD-4*_]uWlAQ7Q7^OSo1UOSo1YOSf+XOT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlX!;_fW -!<&#WecDEDJ_&l4!WShlf$jZt!.k0$s.02hecGfDrmlT~> -rlkGur2U<i+aT$%Kn+JmH]"/L3HFen!!)tu!!*#!!!)tu!!*#!!!)tu!!*#!!!)tu!!*#!"ot^) -!3<.#ri6#!rMp##X/c7"X8`1mWrN.uWrN/!WrN/!X8`1tWrN.qWrN.rWrN.uWrN/!WrN.eWrW1u -bn?IQSUHFTCK7UV\].ceY;]S!mem.^mem.bmed(amf!1kmJm7T!!)HTr;Zld!<)?b!;l3a!;c-` -!<)?`blO".J^*6"!WSA_c-u^k!.k0$s.02hblRj.rlor~> -rjr0Zr1"7M&k>hp7QiU`4BQT>.;/=D!!)tf!!*"g!!)tf!!*"g!!)tf!!*"g!!)tf!!*"g"ot0` -!1]PZrgWrgrL<riS=BTYSGrT^S,`QfS,`QgS,`QgSGrTeS,`QbS,`QcS,`QfS,`QgS,`QVS,iTf -]+U*>[?6F(A50/=ZGC%$_E^r$OSo1UOSo1YOSf+XOT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlX!;_fW -!<&#W])d-VJ\0sS!WRED]@6fY!.k0$s.02h])hqVrk![~> -rmh)-r3?g+2^h?s9hIlNBRP%h16(q3r;ci&rW)u(rVur(rW)u(rW)r'r;Zo)!4)S("gS+.Z2an( -ZMae%ZMjh*Z2an!ZMOY"ZMjh,Z2am1ZMX_$ZMX_"ZMae&ZMX^lZ2jq'ee+TOH";it?VdQ8bM>uh -OtKt\\WHa?!MBFDf&P<^s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkGur2U<s3^7Y2H$=CXN1,i-2M^q*r;chtrW)u!rVur!rW)u!rW)qur;Zo"!3?)!"fhV'WrN/! -X8N%sX8W)#WrN.oX8;npX8W)%WrN.#X8DtrX8DtpX8N%tX8DteWrW1ubn6CNRs^4Y>th$,aP1!7 -XZ'@t\aKC?!L!M7c/[%Ls-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr0Zr1"7V0HiYK5W^nj>]agD/:@)[r;cherW)tgrVuqgrW)tgrW)qfr;Znh!1a#g"e5PmS,`Qg -SG`HdSGiKiS,`Q`SGN<aSGiKkS,`PZSGWBcSGWBaSG`HeSGWBVS,iTf]+L$<[#^7.<CEFf_q8RL -_*(Vu\WHa$!I+Tq]ApL(s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh)-qm$X!5:&Ha:KV=XE^)UBJ[4OG!<<#K&YVC/>_Ca09VB\jk"JC'0O)Z0OSmZ1TE'Poj4482 -T`3Mns+13Irr<&rrr<&mrr<&srr<&qrr<&_s8LRMs.KABJ,~> -rlkGuql:-i5s&ImFaT(4Mc)cmJZJ%9!<<#B&Xl:NFbJCD8=[l^j]Q,l2-@Z)mek<1P5p0Yj37W) -PQ&gXs+13Irr<&rrr<&mrr<&srr<&qrr<&_s8L7Ds-*H,J,~> -rjr0Zqj\(M2BFY;6VLj-C,n(qJXktp!<<#0&WK\_M1sGN6']IHiaI#E3DcoiOSl]kGQ<<,j1>?l -GlG=+s+13Irr<&rrr<&mrr<&srr<&qrr<&_s8KV2s*4OTJ,~> -rmh)-qQ^Hm3#45BAnOsk0oCOfkct3grRMS(DEC9oPE;91['Z;]3Gp?_agmN2ecDEDJ_&l4!WShl -eq*jPs/5ks!;lfr!;HKn!;uls!;ZWp!9sO_ecGfDrmlT~> -rlkGuqPss`4![C4Jq7Po22$O]kc4^`rQPqlCIM02OGoU&ZEora9T(T:_7B"3blO".J^*6"!WSA_ -c%5nGs/5ks!;lfr!;HKn!;uls!;ZWp!9sO_blRj.rlor~> -rjr0ZqO@nE0bPp&?!^,O.sZ]9kaVYQrOWZH@nU*:MM@@fZ*BQa>+IHTYdokn])d-VJ\0sS!WRED -]7L!5s/5ks!;lfr!;HKn!;uls!;ZWp!9sO_])hqVrk![~> -rmh)-q6C9kFtsjX*[5ffJ[4IE!<;uJ"Nc!s>[7)/")2PYcEu.'TE'Poj4482T`3Mns+13Jrr<&s -rrN3#!;HKn!<)p!!<3&prr<&`s8LRMs.KABJ,~> -rlkGuq5Xd^EA\gg-7<hhJZIt7!<;uA!l/t_pK.N4B<K7]blO".J^*6"!WSA_c%5nGs/5ks!;uiu -!<3&nrr<&trrN3#!;ZWp!9sO_blRj.rlor~> -rjr0Zq4%_BB.=T<)]iX>JXknn!<;u/"KuW>;,R-c"(kl2['[FGGQ<<,j1>?lGlG=+s+13Jrr<&s -rrN3#!;HKn!<)p!!<3&prr<&`s8KV2s*4OTJ,~> -rmh)-pTadcre^];J[4CC!<;uJ!nG`CouR6[e$R[,TE'Poj4482T`3Mns+13Krr<&prr<&orr<&q -rr<&orr<&as8LRMs.KABJ,~> -rlkGupT":Wre1?1JZIn5!<;uA!mJd(p:paG`lka6!L!M7c/[%Ls-*H,JcC<$W;chtq>UEpq#:<o -qYpNqq#:<olMpk.!WSA_c%#~> -rjr0ZpRD5;rcnKnJXkhl!<;u/!kPkHp9+P%[(3QU!I+Tq]ApL(s*4OTJcC<$W;chtq>UEpq#:<o -qYpNqq#:<olMpjq!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.KABJcC<$W;chtq>UEpq#:<oqYpNqq#:<olMpk7!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-*H,JcC<$W;chtq>UEpq#:<oqYpNqq#:<olMpk.!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*4OTJcC<$W;chtq>UEpq#:<oqYpNqq#:<olMpjq!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.KABJcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpk7!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-*H,JcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpk.!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*4OTJcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpjq!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.KABJcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpk7!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-*H,JcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpk.!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*4OTJcC<$W;chtq>UEpq>UEpq>UEpq#:<olMpjq!WRED]79~> -rmh)-J[3k4!<8YA!MBFDf&P<^s.KABJcC<$W;chtq>UEpqYpNqq#:<oq#:<olMpk7!WShlepm~> -rlkGuJZIA&!<8Y8!L!M7c/[%Ls-*H,JcC<$W;chtq>UEpqYpNqq#:<oq#:<olMpk.!WSA_c%#~> -rjr0ZJXk;]!<8Y&!I+Tq]ApL(s*4OTJcC<$W;chtq>UEpqYpNqq#:<oq#:<olMpjq!WRED]79~> -rmlZ#ec2,iJcG!7!!)rJ!WShleq*jPs/>qt!;ZWp!;c]q!;QQo!;QQo!:'U`ecGfDrmlT~> -rlp#oec2,`JcG!7!!)rA!WSA_c%5nGs/>qt!;ZWp!;c]q!;QQo!;QQo!:'U`blRj.rlor~> -rk!a]ec2,NJcG!7!!)r/!WRED]7L!5s/>qt!;ZWp!;c]q!;QQo!;QQo!:'U`])hqVrk![~> -rmh)LJ_#D'J_&K)!!)rJ!WShleq*jPs/5ks!;ulp!<)ot!;ZZm!;lcr!9sO_ecGfDrmlT~> -rlkHCJ^&bjJ^)il!!)rA!WSA_c%5nGs/5ks!;ulp!<)ot!;ZZm!;lcr!9sO_blRj.rlor~> -rjr11J\-KFJ\0RH!!)r/!WRED]7L!5s/5ks!;ulp!<)ot!;ZZm!;lcr!9sO_])hqVrk![~> -rmh,Meq*jPs+14)s8S_l!;tCKs.KABJcC<$VuH_soD\djmf*7el2Ub6!WShlepm~> -rlkKDc%5nGs+14)s8S8_!;t(Bs-*H,JcC<$VuH_soD\djmf*7el2Ub-!WSA_c%#~> -rjr42]7L!5s+14)s8R<D!;sG0s*4OTJcC<$VuH_soD\djmf*7el2Uap!WRED]79~> -rmh/Nf)L;oJY7Reg7SEGr71oKT`3Mns+13Irr<&Xrr<&_s8LRMs.KABJ,~> -rlkNEc2W?YJWkYKg62L:r659BPQ&gXs+13Irr<&Xrr<&_s8L7Ds-*H,J,~> -rjr73]DmG,JTu`jg3<Str4<"0GlG=+s+13Irr<&Xrr<&_s8KV2s*4OTJ,~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlW#JH2_N_>jMc!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlouoJH2_N_>jMZ!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!^]JH2_N_>jMH!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&Jr;bmXrW)iqrW%NLJcD;@rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEAr;bmXrW)iqrW%NLJcD;@rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./r;bmXrW)iqrW%NLJcD;@rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!(jT!!)ip!!&Dd!!(LJ!!'V1!!'V1!!(%=rmh,M -T`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!(jT!!)ip!!&Dd!!(LJ!!'V1!!'V1!!(%=rlkKD -PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!(jT!!)ip!!&Dd!!(LJ!!'V1!!'V1!!(%=rjr42 -GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!(jT!!)ip!!&Dd!!(OK!W`6#hu<ZVhu<`XrrB_3 -!W`6#g&M'Pnc/U>!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!(jT!!)ip!!&Dd!!(OK!W`6#hu<ZVhu<`XrrB_3 -!W`6#g&M'Pnc/U5!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!(jT!!)ip!!&Dd!!(OK!W`6#hu<ZVhu<`XrrB_3 -!W`6#g&M'Pnc/U#!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmh)LqZ-Tpr;cfrrrE*!rrE#tr;c]o!!)ip!!)ZkrVuru -rW)ZlrW)uurW)WkquHHjrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-!_rVururW)Qi!W`6#p&G$l -!<<#unc&Rho`+mjs8W&uo`"smrrD`lrr<'!rW(pWquH?g!W`6#p&G$l!<<#ul2Ub`oDeg@!WShl -epm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlkHCqZ-Tpr;cfrrrE*!rrE#tr;c]o!!)ip!!)ZkrVuru -rW)ZlrW)uurW)WkquHHjrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-!_rVururW)Qi!W`6#p&G$l -!<<#unc&Rho`+mjs8W&uo`"smrrD`lrr<'!rW(pWquH?g!W`6#p&G$l!<<#ul2Ub`oDeg7!WSA_ -c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrjr11qZ-Tpr;cfrrrE*!rrE#tr;c]o!!)ip!!)ZkrVuru -rW)ZlrW)uurW)WkquHHjrr<'!rW)iqrrE#trr<'!rW)lrr;cisqZ-!_rVururW)Qi!W`6#p&G$l -!<<#unc&Rho`+mjs8W&uo`"smrrD`lrr<'!rW(pWquH?g!W`6#p&G$l!<<#ul2Ub`oDeg%!WRED -]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!)or!!)ut!!)ut#QXl)s8N*!rrE#t!!)or!!)ip -!!)Wj!!*#u!!)Zk!!)ut!!)Zk!!*#u!!)]lrrE&u!!)rsrrDusrrE&u!!*#u!!)ut!!)ut!!)6_ -!!*#u!!)Wj!!*#u!!)]lrrE&u!!)Ti!!)Wj!!)ut!!)Zk!!*#u!!)]lrrE&u!!)]lq>g3g!!*#u -!!)Zk!!*#u!!)]lrrE&u!!)6_rrD`lrmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!)or!!)ut!!)ut#QXl)s8N*!rrE#t!!)or!!)ip -!!)Wj!!*#u!!)Zk!!)ut!!)Zk!!*#u!!)]lrrE&u!!)rsrrDusrrE&u!!*#u!!)ut!!)ut!!)6_ -!!*#u!!)Wj!!*#u!!)]lrrE&u!!)Ti!!)Wj!!)ut!!)Zk!!*#u!!)]lrrE&u!!)]lq>g3g!!*#u -!!)Zk!!*#u!!)]lrrE&u!!)6_rrD`lrlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!)or!!)ut!!)ut#QXl)s8N*!rrE#t!!)or!!)ip -!!)Wj!!*#u!!)Zk!!)ut!!)Zk!!*#u!!)]lrrE&u!!)rsrrDusrrE&u!!*#u!!)ut!!)ut!!)6_ -!!*#u!!)Wj!!*#u!!)]lrrE&u!!)Ti!!)Wj!!)ut!!)Zk!!*#u!!)]lrrE&u!!)]lq>g3g!!*#u -!!)Zk!!*#u!!)]lrrE&u!!)6_rrD`lrjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!)rs!!)or!!*#urrDcm!!)or!!)ip!!)Ti!W`6# -oD\djrVlitnc&Rho`"mkrVlitp&>!lrVlitq>UEprVlitkPkS`rrDWi!!*#u!!)]l!!)ut!!)]l -q>g6h!!)ut!!)Zk!!*#u!!)]l!!)ut!!(pV!!)Wj!!*#u!!)]l!!)ut!!)]lqZ-Ek!!)`mrmh,M -T`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!)rs!!)or!!*#urrDcm!!)or!!)ip!!)Ti!W`6# -oD\djrVlitnc&Rho`"mkrVlitp&>!lrVlitq>UEprVlitkPkS`rrDWi!!*#u!!)]l!!)ut!!)]l -q>g6h!!)ut!!)Zk!!*#u!!)]l!!)ut!!(pV!!)Wj!!*#u!!)]l!!)ut!!)]lqZ-Ek!!)`mrlkKD -PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!)rs!!)or!!*#urrDcm!!)or!!)ip!!)Ti!W`6# -oD\djrVlitnc&Rho`"mkrVlitp&>!lrVlitq>UEprVlitkPkS`rrDWi!!*#u!!)]l!!)ut!!)]l -q>g6h!!)ut!!)Zk!!*#u!!)]l!!)ut!!(pV!!)Wj!!*#u!!)]l!!)ut!!)]lqZ-Ek!!)`mrjr42 -GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!)rs!!)or!!*#u!!)ipquHWo!!)ip!!)Qh!!)Qh -!s&B$!:g'h!;$3j!<)ot!;6?l!<)ot!<)rq!<)ot!9X:]!9!kW!<)ot!:p-i!:p-l!<<'!ir8uY -rVlitp&FjgoD\djiVrlXrVlitkl:Y_p&G$B!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!)rs!!)or!!*#u!!)ipquHWo!!)ip!!)Qh!!)Qh -!s&B$!:g'h!;$3j!<)ot!;6?l!<)ot!<)rq!<)ot!9X:]!9!kW!<)ot!:p-i!:p-l!<<'!ir8uY -rVlitp&FjgoD\djiVrlXrVlitkl:Y_p&G$9!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!)rs!!)or!!*#u!!)ipquHWo!!)ip!!)Qh!!)Qh -!s&B$!:g'h!;$3j!<)ot!;6?l!<)ot!<)rq!<)ot!9X:]!9!kW!<)ot!:p-i!:p-l!<<'!ir8uY -rVlitp&FjgoD\djiVrlXrVlitkl:Y_p&G$'!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!)rs!!)or!!*#u!!)lq!!)ut!!)or!!)ip!!)Ti -!W`6#o)Adls8N)irr<&irr<&trr<&lrr<&trr<&urr<&trr<&trr<&^rrN3#!9*qX!<)ot!:p-i -!:p-l!<<'!ir8uYrVlitiVrlXi;WcWrVlitlMpkaoDeg@!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!)rs!!)or!!*#u!!)lq!!)ut!!)or!!)ip!!)Ti -!W`6#o)Adls8N)irr<&irr<&trr<&lrr<&trr<&urr<&trr<&trr<&^rrN3#!9*qX!<)ot!:p-i -!:p-l!<<'!ir8uYrVlitiVrlXi;WcWrVlitlMpkaoDeg7!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!)rs!!)or!!*#u!!)lq!!)ut!!)or!!)ip!!)Ti -!W`6#o)Adls8N)irr<&irr<&trr<&lrr<&trr<&urr<&trr<&trr<&^rrN3#!9*qX!<)ot!:p-i -!:p-l!<<'!ir8uYrVlitiVrlXi;WcWrVlitlMpkaoDeg%!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq)K!!)or!!)ut!!)ut!!)lq!!)ut!!)or!!)ip!!)Wj -!!*#u!!)TirrDWi!!*#u!!)]l!!)ut!!)rsrrDus!!)ut!!*#u!!)ut!!)ut!!*#u!!)rsrrDZj -!!*#u!!)$Y!!)ut!!)Ti!!)QhrrD$X!!)ut!!)$Y!!*#u!!)'Z!!)ut!!)BcrrDThrmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltHB!!)or!!)ut!!)ut!!)lq!!)ut!!)or!!)ip!!)Wj -!!*#u!!)TirrDWi!!*#u!!)]l!!)ut!!)rsrrDus!!)ut!!*#u!!)ut!!)ut!!*#u!!)rsrrDZj -!!*#u!!)$Y!!)ut!!)Ti!!)QhrrD$X!!)ut!!)$Y!!*#u!!)'Z!!)ut!!)BcrrDThrlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&10!!)or!!)ut!!)ut!!)lq!!)ut!!)or!!)ip!!)Wj -!!*#u!!)TirrDWi!!*#u!!)]l!!)ut!!)rsrrDus!!)ut!!*#u!!)ut!!)ut!!*#u!!)rsrrDZj -!!*#u!!)$Y!!)ut!!)Ti!!)QhrrD$X!!)ut!!)$Y!!*#u!!)'Z!!)ut!!)BcrrDThrjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmh)LquHZpr;cfrquHZpr;Zlu!<3#r!<)rq!;?Hl!!*&u -!:p-i!:p0f!;?Hl!<<)u!<)rt!<)rs!<<)u!<3#s!!3*"rVuisqu?Zro`+mj!<<#ujT#2Zs8W&u -iVrlXirAuXs8W&uj8]#WjT#2Zs8W&ug].9(!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlkHCquHZpr;cfrquHZpr;Zlu!<3#r!<)rq!;?Hl!!*&u -!:p-i!:p0f!;?Hl!<<)u!<)rt!<)rs!<<)u!<3#s!!3*"rVuisqu?Zro`+mj!<<#ujT#2Zs8W&u -iVrlXirAuXs8W&uj8]#WjT#2Zs8W&ug].8t!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrjr11quHZpr;cfrquHZpr;Zlu!<3#r!<)rq!;?Hl!!*&u -!:p-i!:p0f!;?Hl!<<)u!<)rt!<)rs!<<)u!<3#s!!3*"rVuisqu?Zro`+mj!<<#ujT#2Zs8W&u -iVrlXirAuXs8W&uj8]#WjT#2Zs8W&ug].8b!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmn4O!!'>)rrB"t!!%TMli6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlqSF!!'>)rrB"t!!%TMli6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk#<4!!'>)rrB"t!!%TMli6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmn4O!!'>)!!&qs!!%TMli6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlqSF!!'>)!!&qs!!%TMli6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk#<4!!'>)!!&qs!!%TMli6sr!WRED]79~> -rmh2Of)MCoOF`LEOS+_"s8S_l!;tCKs.KABYQ+P$JcFI(r;_EKm/R(9!WShlepm~> -rlkQFc2WuYmXaeWme-#4s8S8_!;t(Bs-*H,YQ+P$JcFI(r;_EKm/R(0!WSA_c%#~> -rjr:4]Dm,,OF`LEOS+_"s8R<D!;sG0s*4OTYQ+P$JcFI(r;_EKm/R's!WRED]79~> -rmh2Of)ME8O9#=;O9#<YO8o9oO8o:KO8o9eO8o9\OQlfFTE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X""mJo]4mJo\RmJm7#mJm7TmJm6nmJm6emcjcOP5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-JO8o:;O8o9YO8o9oO8o:KO8o9eO8o9\OQlfFGQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh5Pf)MD)qZ$JT!<:o;!<;VO!<9Qj!!(!"!!)eU!!)MM!!)PN!!(l;!!)/C!!(9*!!(r=l2UdV -!!)rJ!WShlf$aTt!.k0$s.02hecGfDrmlT~> -rlkTGc2X!qqF1>M!(Gc4!(HJH!(FEc!!("+!!)f^!!)NV!!)QW!!(mD!!)0L!!(:3!!(sFl2UdI -!!)rA!WSA_c-lXk!.k0$s.02hblRj.rlor~> -rjr=5]Dm,;q>gGT!!(l;!!)SO!!'Nj!!(!"!!)eU!!)MM!!)PN!!(l;!!)/C!!(9*!!(r=l2Ud. -!!)r/!WRED]@-`Y!.k0$s.02h])hqVrk![~> -rmh;Rf)MD)OT59@!<:-%!<9Qj!!(!"!!)eU!!)MM!!)PN!!(l;!!)/C!!(9*!!(r=l2UdV!!)rJ -!WShlf$jX!!<2uu!.k0$s.98iecGfDrmlT~> -rlkZIc2X!qmR@*B!(Fus!(FEc!!("+!!)f^!!)NV!!)QW!!(mD!!)0L!!(:3!!(sFl2UdI!!)rA -!WSA_c-u[m!<2uu!.k0$s.98iblRj.rlor~> -rjrC7]Dm,;O9#6@!!(*%!!'Nj!!(!"!!)eU!!)MM!!)PN!!(l;!!)/C!!(9*!!(r=l2Ud.!!)r/ -!WRED]@6c[!<2uu!.k0$s.98i])hqVrk![~> -rmh;Rf)MD)OT59@!<<%[rr;qYrr2t[rr<"[s8N(\rr;nXrVueWrr;qYs8N(\rr;tZqu?>Ns8N(\ -rr;nXrVukYrr;tZrr;tZrr;qYs8W+\s8V\P!!)qYrVuq[rW)YRrr<%\rW)hWrrE"Zrr<%\rW)kX -r;chYqZ-JS!!)PN!!)kWquHbYqZ-SVrrE(\rrE(\rrE%[rrDtYrW!"]!0I'XooT1R!0I0[qiCdX -n<!YMoT9(Q!0I0[r/gjWrfI!WnrWkOoT8>;s.B>lr71oKT`3O-s8N)crr<&urr<%Ms+13As8LRM -s.KABJ,~> -rlkZIc2X!qmR@*B!(HnTr^HeRr^?hTr^HkTs$ZqUr^HbQrC-YPr^HeRs$ZqUr^HhSqaL2Gs$ZqU -r^HbQrC-_Rr^HhSr^HhSr^HeRs$ctUs$cPI!!)rbrVurdrW)Z[rr<&erW)i`rrE#crr<&erW)la -r;cibqZ-K\!!)QW!!)l`quHcbqZ-T_rrE)errE)errE&drrDubrW!#f!:K^ap$Vh[!:KgdqsFFa -nF$;Vo^;_Z!:Kgdr9jL`rpKX`o'ZMXo^:uDs-!E_r659BPQ&hls8N)crr<&urr<%Ms+13As8L7D -s-*H,J,~> -rjrC7]Dm,;O9#6@!!*"[rW)nYrVuq[rW)t[rr<%\rW)kXr;cbWrW)nYrr<%\rW)qZqZ-;Nrr<%\ -rW)kXr;chYrW)qZrW)qZrW)nYrrE(\rrDYP!!)qYrVuq[rW)YRrr<%\rW)hWrrE"Zrr<%\rW)kX -r;chYqZ-JS!!)PN!!)kWquHbYqZ-SVrrE(\rrE(\rrE%[rrDtYrW!"]!0I'XooT1R!0I0[qiCdX -n<!YMoT9(Q!0I0[r/gjWrfI!WnrWkOoT8>;s*+MDr4<"0GlG>?s8N)crr<&urr<%Ms+13As8KV2 -s*4OTJ,~> -rmhDUf)MD)OT1E(s8%fWs87rYs8J)[s8A&Zs8J)[s8J)[s8A#Zs8.lXs87uYs8J)[s8A#Zs7)3N -s8J)[s8J)[s8A#Zs8J)[s87rYs8J)[s8J)[s8A#_s,d8BOT4s7!!)nX!!*"[!!)YQrrE%[!!)qY -rrDtYrrE%[!!*"[!!)tZ!!)tZ!!)bT!!)PN!!)nX!!)tZ!!)tZ!!)hV#QTqdOH9I(O9#6@!!)tZ -!!*"[rrE%[!!)PNrrE%[!!)qY!!)MMrrDYPrrE%[!!*"[!!)tZ!!)tZ!!)JLrrDtYq>^MWl2UdV -!!)rJ!WShlf)G^Ms8E#hs8N)]rr<%Ms+13As8LRMs.KABJ,~> -rlkcLc2X!qmR?R37JcEP7JuQR7K2]T7K)ZS7K2]T7K2]T7K)WS7JlKQ7JuTR7K2]T7K)WS7IfgG -7K2]T7K2]T7K)WS7K2]T7JuQR7K2]T7K2]T7K)WX7IEV4mR?d9!!)oa!!*#d!!)ZZrrE&d!!)rb -rrDubrrE&d!!*#d!!)uc!!)uc!!)c]!!)QW!!)oa!!)uc!!)uc!!)i_#QX8mmd:)CmK!4R!!)uc -!!*#drrE&d!!)QWrrE&d!!)rb!!)NVrrDZYrrE&d!!*#d!!)uc!!)uc!!)KUrrDubq>^N`l2UdI -!!)rA!WSA_c2RbDs8E#hs8N)]rr<%Ms+13As8L7Ds-*H,J,~> -rjrL:]Dm,;O8tB(!;_cW!;qoY!</&[!<&#Z!</&[!</&[!<%uZ!;hiX!;qrY!</&[!<%uZ!:c0N -!</&[!</&[!<%uZ!</&[!;qoY!</&[!</&[!<%u_!0@2BO9"p7!!)nX!!*"[!!)YQrrE%[!!)qY -rrDtYrrE%[!!*"[!!)tZ!!)tZ!!)bT!!)PN!!)nX!!)tZ!!)tZ!!)hV#QTqdOH9I(O9#6@!!)tZ -!!*"[rrE%[!!)PNrrE%[!!)qY!!)MMrrDYPrrE%[!!*"[!!)tZ!!)tZ!!)JLrrDtYq>^MWl2Ud. -!!)r/!WRED]Dhj2s8E#hs8N)]rr<%Ms+13As8KV2s*4OTJ,~> -rmh8Qf)MD)OT#4UO9#=XO95HDs87rYs87r[s,d9XO9#=YO9#=YO9#=ZO9#=ZO9#=NO9#=YO95HD -s8.lds,`?BOHBL(OT1E(s87rYs8J,[s6u*M!;_cY!0@3PO8o:ZO8o:RO8o:ZO8o:VO8o:ZO8o:T -O8o:OO8o:WO8o:UO8o:VOT,=XO8o:ZO8o:[O8o:YO8o:[O8o:NO8o:ZO8o:XO8o:>O8o:ZO8o:V -O8o:ZO8o:=OQlfFTE"uiecGfDrmh/N!!*#u!!)]lrrDoqq>g-e!!%TMJcD;@rmh,MT`3Mm~> -rlkWHc2X!qmeoTNmJo]QmK,iF7JuQR7JuQT7IEVAmJo]RmJo]RmJo]SmJo]SmJo]GmJo]RmK,iF -7JlK]7IKS4md<O3mR?R37JuQR7K2`T7I]^F!;c*b!:BjYmJm7cmJm7[mJm7cmJm7_mJm7cmJm7] -mJm7XmJm7`mJm7^mJm7_mf*:amJm7cmJm7dmJm7bmJm7dmJm7WmJm7cmJm7amJm7GmJm7cmJm7_ -mJm7cmJm7FmcjcOP5kU\blRj.rlkNE!!*#u!!)]lrrDoqq>g-e!!%TMJcD;@rlkKDPQ&gW~> -rjr@6]Dm,;OSo1UO8o:XO9,ED!;qoY!;qo[!0@3XO8o:YO8o:YO8o:ZO8o:ZO8o:NO8o:YO9,ED -!;hid!0E9BOH9I(O8tB(!;qoY!</)[!:Z'M!;_cY!0@3PO8o:ZO8o:RO8o:ZO8o:VO8o:ZO8o:T -O8o:OO8o:WO8o:UO8o:VOT,=XO8o:ZO8o:[O8o:YO8o:[O8o:NO8o:ZO8o:XO8o:>O8o:ZO8o:V -O8o:ZO8o:=OQlfFGQ7aA])hqVrjr73!!*#u!!)]lrrDoqq>g-e!!%TMJcD;@rjr42GlG=*~> -rmhDUf)MD)OT1E(s8%fWs8%fWs8.lXs87r[s,d9XO9#=YO9#=YO9#=ZO9#=ZO9#=NO9#=YO95HD -s8.lcs,`?BOHBL(OT1E(qZ$PV!<;ML!!)hV!!)SO!!)tZ!!)\R!!)tZ!!)tZquH\W!!)bT!!)PN -!!)kWr;cbW!!)hV!!)kW!!)tZ!!*"[!!)eU!!)PN!!)tZ!!)qY!!(r=!!)tZ!!)tZquH\W!!)5E -q>^MWl2UdV!!)rJ!WShlecGdNrVlitpAY*mjSo2[JcC<$SH&T>!WShlepm~> -rlkcLc2X!qmR?R37JcEP7JcEP7JlKQ7JuQT7IEVAmJo]RmJo]RmJo]SmJo]SmJo]GmJo]RmK,iF -7JlK\7IKS4md<O3mR?R3qF1DO!(HAE!!)i_!!)TX!!)uc!!)][!!)uc!!)ucquH]`!!)c]!!)QW -!!)l`r;cc`!!)i_!!)l`!!)uc!!*#d!!)f^!!)QW!!)uc!!)rb!!(sF!!)uc!!)ucquH]`!!)6N -q>^N`l2UdI!!)rA!WSA_blRhErVlitpAY*mjSo2[JcC<$SH&T5!WSA_c%#~> -rjrL:]Dm,;O8tB(!;_cW!;_cW!;hiX!;qo[!0@3XO8o:YO8o:YO8o:ZO8o:ZO8o:NO8o:YO9,ED -!;hic!0E9BOH9I(O8tB(q>gMV!!)JL!!)hV!!)SO!!)tZ!!)\R!!)tZ!!)tZquH\W!!)bT!!)PN -!!)kWr;cbW!!)hV!!)kW!!)tZ!!*"[!!)eU!!)PN!!)tZ!!)qY!!(r=!!)tZ!!)tZquH\W!!)5E -q>^MWl2Ud.!!)r/!WRED])hp3rVlitpAY*mjSo2[JcC<$SH&T#!WRED]79~> -rmh;Rf)MD)OT5':!<;qX!rnA^r/^pYr/_![OT53>!<;tY!<;tY!<<"Z!<<"Z!<;SN!<;tY!rnA^ -qiCgXrf@9_OT1FBrf@-[plGLUmuRMLqN(aYO9"m6!!)tZ!!)\R!!)tZ!!*"[!!)tZ!!)tZ!!)bT -!!)PN!!)_S!!)tZ!!)hV!!)kW!!)tZ!!*"[!!)eU!!)PN!!)tZ!!)qY!!(r=!!)tZ!!*"[!!)tZ -!!)tZ!!(r=l2UdV!!)rJ!WShlecGdNrVlitp&G$lqZ$Blp&>!lJcC<$S,`K=!WShlepm~> -rlkZIc2X!qmR?m<!(HeQ!_)NGr9aPRr9aVTmR@$@!(HhR!(HhR!(HkS!(HkS!(HGG!(HhR!_)NG -qsFGQrpBnXmR?P4rpBbTq!J,Nn*U/UqX+CbmJukH!!)uc!!)][!!)uc!!*#d!!)uc!!)uc!!)c] -!!)QW!!)`\!!)uc!!)i_!!)l`!!)uc!!*#d!!)f^!!)QW!!)uc!!)rb!!(sF!!)uc!!*#d!!)uc -!!)uc!!(sFl2UdI!!)rA!WSA_blRhErVlitp&G$lqZ$Blp&>!lJcC<$S,`K4!WSA_c%#~> -rjrC7]Dm,;O9#$:!!)nX!W\;^r/^mYr/^s[O9#0>!!)qY!!)qY!!)tZ!!)tZ!!)PN!!)qY!W\;^ -qiCdXrf@6_O8t@Brf@*[plGIUmuRMLqN(aYO9"m6!!)tZ!!)\R!!)tZ!!*"[!!)tZ!!)tZ!!)bT -!!)PN!!)_S!!)tZ!!)hV!!)kW!!)tZ!!*"[!!)eU!!)PN!!)tZ!!)qY!!(r=!!)tZ!!*"[!!)tZ -!!)tZ!!(r=l2Ud.!!)r/!WRED])hp3rVlitp&G$lqZ$Blp&>!lJcC<$S,`K"!WRED]79~> -rmh;Rf)MD)OT5':!<;tY!<<%[!<<"Zs8W([!<<%[!<<"Z!<;qX!<;tY!<<"Z!<<"Z!<<%[!<;_R -s8W([!<<%[!<<"Z!<<"Zs8N.^s8W%Z!<<"Z!<<%[!<;ML!!)nX!!*"[!!)YQ!!)tZ!!)qYrrDtY -!!)tZ!!*"[!!)tZ!!)tZ!!*"[!!)nX!!)PN!!)nX!!)tZ!!)tZ!!*"[!!)tZ!!)kW!!*"[rrE"Z -!!)tZ!!*"[!!*"[!!)\R!!)tZ!!)qY!!)MMrrDYP!!)tZ!!*"[!!)tZ!!)tZ!!*"[!!)VPrrD\Q -l2UdV!!)rJ!WShlecGdNrVlitoDegjlMghaJcC<$RfEB<!WShlepm~> -rlkZIc2X!qmR?m<!(HhR!(HnT!(HkSs$cqT!(HnT!(HkS!(HeQ!(HhR!(HkS!(HkS!(HnT!(HSK -s$cqT!(HnT!(HkS!(HkSs$["W77I1C!(HkS!(HnT!(HAE!!)oa!!*#d!!)ZZ!!)uc!!)rbrrDub -!!)uc!!*#d!!)uc!!)uc!!*#d!!)oa!!)QW!!)oa!!)uc!!)uc!!*#d!!)uc!!)l`!!*#drrE#c -!!)uc!!*#d!!*#d!!)][!!)uc!!)rb!!)NVrrDZY!!)uc!!*#d!!)uc!!)uc!!*#d!!)WYrrD]Z -l2UdI!!)rA!WSA_blRhErVlitoDegjlMghaJcC<$RfEB3!WSA_c%#~> -rjrC7]Dm,;O9#$:!!)qY!!*"[!!)tZrrE%[!!*"[!!)tZ!!)nX!!)qY!!)tZ!!)tZ!!*"[!!)\R -rrE%[!!*"[!!)tZ!!)tZrr<+^!!)tZ!!)tZ!!*"[!!)JL!!)nX!!*"[!!)YQ!!)tZ!!)qYrrDtY -!!)tZ!!*"[!!)tZ!!)tZ!!*"[!!)nX!!)PN!!)nX!!)tZ!!)tZ!!*"[!!)tZ!!)kW!!*"[rrE"Z -!!)tZ!!*"[!!*"[!!)\R!!)tZ!!)qY!!)MMrrDYP!!)tZ!!*"[!!)tZ!!)tZ!!*"[!!)VPrrD\Q -l2Ud.!!)r/!WRED])hp3rVlitoDegjlMghaJcC<$RfEB!!WRED]79~> -rmh5Pf)MD)rVubVr;ZeYrr2t[rr;tZ!WS8\s87uWs87uVs8S2[s8S2[s8A&Ys7DBRs,d6[r/gmW -r/^pYrf@-[r/gmWrfI'XnW3_NrK.!Y!0I0[p5o7Rs,d3[rK.$ZrK.!Ys,d3[rfI'Y!K[<[OT#7W -O8o:MO8o:XOSf+UOT#7YOSf+VOT#4]O8o:ZOSo1WOT#7QOT#7[OT#7YO8o:MOT,=QOT#7[OT#7Z -OSo.[O9#6@rW)MNrrD\Ql2UdV!!)rJ!WShlecGdNrVlitnc/Uhm/I%crr2ruJcC<$T)\f@!WShl -epm~> -rlkTGc2X!qrC-VOr'gYRr^?hTr^HhS!CcGU7JuTP7JuTO7K;fT7K;fT7K)ZR7J-!K7IL.Dr9jMP -r9aPRrpBbTr9jMPrpK\Qna6AWrU0Xb!:Kgdp?qn[s6fjdrU0[crU0Xbs6fjdrpK^b!U]sdmf!4` -mJm7VmJm7amed(^mf!4bmed(_mf!1fmJm7cmem.`mf!4Zmf!4dmf!4bmJm7Vmf*:Zmf!4dmf!4c -mem+dmK!4RrW)NWrrD]Zl2UdI!!)rA!WSA_blRhErVlitnc/Uhm/I%crr2ruJcC<$T)\f7!WSA_ -c%#~> -rjr=5]Dm,;r;c_VquHbYrVuq[rW)qZ!<A5\!;qrW!;qrV!<8/[!<8/[!<&#Y!;)?R!0I0[r/gjW -r/^mYrf@*[r/gjWrfI$XnW3_NrK.!Y!0I0[p5o7Rs,d3[rK.$ZrK.!Ys,d3[rfI'Y!K[<[OT#7W -O8o:MO8o:XOSf+UOT#7YOSf+VOT#4]O8o:ZOSo1WOT#7QOT#7[OT#7YO8o:MOT,=QOT#7[OT#7Z -OSo.[O9#6@rW)MNrrD\Ql2Ud.!!)r/!WRED])hp3rVlitnc/Uhm/I%crr2ruJcC<$T)\f%!WRED -]79~> -rmh2Of)ME)O9#=)O9#=&O8o9mO8o:MO8o9cO8o9]OQlfFTE"uiecGfDrmq&Ks8W&ug].0OJcC<$ -T)\f@!WShlepm~> -rlkQFc2X!hmJo]"mJo\tmJm7!mJm7VmJm6lmJm6fmcjcOP5kU\blRj.rltEBs8W&ug].0OJcC<$ -T)\f7!WSA_c%#~> -rjr:4]Dm-;O8o:)O8o:&O8o9mO8o:MO8o9cO8o9]OQlfFGQ7aA])hqVrk&.0s8W&ug].0OJcC<$ -T)\f%!WRED]79~> -rmh2Of)ME)O9#=)O9#=%O8o9oO8o:KO8o9eO8o9\OQlfFTE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!hmJo]"mJo\smJm7#mJm7TmJm6nmJm6emcjcOP5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-;O8o:)O8o:%O8o9oO8o:KO8o9eO8o9\OQlfFGQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME*OT#4*OT#31OF`M9OQlfFTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!imeoT#meoS*mXafKmcjcOP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-<OSo1*OSo01OF`M9OQlfFGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCqOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2Wu[mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,.OFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOT,=/O8o:QOT,=WOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!Nmf*:8mJm7Zmf*:`mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OT,=/O8o:QOT,=WOFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDtO8o:NO8o:/O8o:XO8o:WO8o:WOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!^mJm7WmJm78mJm7amJm7`mJm7`mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-1O8o:NO8o:/O8o:XO8o:WO8o:WOFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)MDtO8o:NO8o:(O8o:WO8o:WOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!^mJm7WmJm71mJm7`mJm7`mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-1O8o:NO8o:(O8o:WO8o:WOFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME3OT,:aO8o9B!!*"[r;chYqZ-MTrW!+`!0E9BOT#7QOT,:\OT#7QOT#7ZOT#7[OT#7Y -OS]%VO9#?CrW)qZJcC<$g].;H!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!rmf*7jmJm7T!!*#dr;cibqZ-N]rW!,i!:K7Tmf!4Zmf*7emf!4Zmf!4cmf!4dmf!4b -me["_mK!=UrW)rcJcC<$g].;;!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-EOT,:aO8o9B!!*"[r;chYqZ-MTrW!+`!0E9BOT#7QOT,:\OT#7QOT#7ZOT#7[OT#7Y -OS]%VO9#?CrW)qZJcC<$g].:u!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME2OT,:cO8o9B!0E9BrK%!ZrK%!Zq2bRVrfI-[s,d6\rf@*[ooT1Rrf@*[ooK.Rr/^mY -r/^mYqiCdXqN1^Wrf@0]OH>%nJcFL)s.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2X!qmf*7lmJm7T!:K7TrU'XcrU'Xcq<e4_rpKdds6fmerpBadp$Vh[rpBadp$Me[r9aOb -r9aObqsFFaqX4@`rpBgfmd>Z+JcFL)s-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm-DOT,:cO8o9B!0E9BrK%!ZrK%!Zq2bRVrfI-[s,d6\rf@*[ooT1Rrf@*[ooK.Rr/^mY -r/^mYqiCdXqN1^Wrf@0]OH>%nJcFL)s*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)ME2O9P]HO8tB(!;_cW!<%uZ!;_cW!;qo\!0E9BrK%!ZooK.RrK%!ZooK@XOH9I(O9#3? -!!)nX!!)kW!!)tZ!W\=DJcC<$g].;H!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!qmKN[ZmJu\C!;c*`!<)<c!;c*`!;u6e!:K7TrU'Xcp$Me[rU'Xcp$N"amd:)CmK!1Q -!!)oa!!)l`!!)uc!W_ZVJcC<$g].;;!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-DO9P]HO8tB(!;_cW!<%uZ!;_cW!;qo\!0E9BrK%!ZooK.RrK%!ZooK@XOH9I(O9#3? -!!)nX!!)kW!!)tZ!W\=DJcC<$g].:u!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME2O9P]HO8tB(!</)X!<%uZ!;_cW!;V]V!<%uZ!;2ER!<%uZ!;2EX!0E9BOH9J?O8o:X -O8o:WO8o:ZO9,EDOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!qmKN[ZmJu\C!<2Ea!<)<c!;c*`!;Z$_!<)<c!;5a[!<)<c!;5aa!:K7Tmd:)QmJm7a -mJm7`mJm7cmK*CVmXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-DO9P]HO8tB(!</)X!<%uZ!;_cW!;V]V!<%uZ!;2ER!<%uZ!;2EX!0E9BOH9J?O8o:X -O8o:WO8o:ZO9,EDOFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME2O9koKO8tB(!0E9BrK%!ZrK%!ZqN([Wq2bRVrK%!ZooK.RrK%!ZoT01UO8t@BqiCdX -qiCdXqN([WrK%'\OH>%nJcFL)s.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2X!qmKim]mJu\C!:K7TrU'XcrU'XcqX+=`q<e4_rU'Xcp$Me[rU'Xco^2h^mJuYTqsFFa -qsFFaqX+=`rU'^emd>Z+JcFL)s-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm-DO9koKO8tB(!0E9BrK%!ZrK%!ZqN([Wq2bRVrK%!ZooK.RrK%!ZoT01UO8t@BqiCdX -qiCdXqN([WrK%'\OH>%nJcFL)s*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)ME2O9koKO8tB(!0E9BrK%!ZrK%!Zrf@*[rK%!ZrK%*]OH9J@O8o:RO8o:ZO8o:QOT,:^ -O8o:XO8o:XO8o:[O8o:[O8o:ZO9,EDOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!qmKim]mJu\C!:K7TrU'XcrU'XcrpBadrU'XcrU'afmd:)RmJm7[mJm7cmJm7Zmf*7g -mJm7amJm7amJm7dmJm7dmJm7cmK*CVmXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-DO9koKO8tB(!0E9BrK%!ZrK%!Zrf@*[rK%!ZrK%*]OH9J@O8o:RO8o:ZO8o:QOT,:^ -O8o:XO8o:XO8o:[O8o:[O8o:ZO9,EDOFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME3OT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlV!<8/[!<8/[!;DTS!<8/[!;2ER!</&[!<&#W -!;qrX!</)Z!<8/[!!&+3s+14)s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!rmf!1kmJm7T!!)HTr;Zld!<)?b!;l3_!<;Kd!<;Kd!;Gp\!<;Kd!;5a[!<2Bd!<)?` -!;u9a!<2Ec!<;Kd!!)G<s+14)s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-EOT#4bO8o9B!!&+Br;Zk[!<&#Y!;hlV!<8/[!<8/[!;DTS!<8/[!;2ER!</&[!<&#W -!;qrX!</)Z!<8/[!!&+3s+14)s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCqOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2Wu[mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,.OFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCqOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2Wu[mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,.OFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCqOFdF_s4dSRTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2Wu[mXbChs4dSRP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,.OFdF_s4dSRGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD@OFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!*mXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,ROFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDFO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!0mJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,XO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o:NOSo13OT,=YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7Wmem.<mf*:bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:NOSo13OT,=YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o:OO8o:ZO8o:IOT,=NO9,ED!;qq0s+13Zs8S_l!;tCKs.KABJcC<$JcG'9rmh,M -T`3Mm~> -rlkQFc2X!omJm7XmJm7cmJm7Rmf*:WmK*CV!;u89s+13Zs8S8_!;t(Bs-*H,JcC<$JcG'9rlkKD -PQ&gW~> -rjr:4]Dm-BO8o:OO8o:ZO8o:IOT,=NO9,ED!;qq0s+13Zs8R<D!;sG0s*4OTJcC<$JcG'9rjr42 -GlG=*~> -rmh2Of)ME0O8o:PO8o:XO8o:HOT,=NO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!omJm7YmJm7amJm7Qmf*:WmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-BO8o:PO8o:XO8o:HOT,=NO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME0O8o:PO8o:XO8o:SOSStSOT,=PO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8 -!WShlepm~> -rlkQFc2X!omJm7YmJm7amJm7\meQq\mf*:YmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/ -!WSA_c%#~> -rjr:4]Dm-BO8o:PO8o:XO8o:SOSStSOT,=PO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr -!WRED]79~> -rmh2Of)ME0O8o:PO8o:XO8o:DO8o:QO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!omJm7YmJm7amJm7MmJm7ZmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-BO8o:PO8o:XO8o:DO8o:QO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME0O8o:PO8o:XO8o:SOSStSOT,=PO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8 -!WShlepm~> -rlkQFc2X!omJm7YmJm7amJm7\meQq\mf*:YmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/ -!WSA_c%#~> -rjr:4]Dm-BO8o:PO8o:XO8o:SOSStSOT,=PO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr -!WRED]79~> -rmh2Of)ME0O8o:PO8o:XO8o:HOT,=NO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!omJm7YmJm7amJm7Qmf*:WmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-BO8o:PO8o:XO8o:HOT,=NO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME0O8o:OO8o:ZO8o:IOT,=LO8o:YOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!omJm7XmJm7cmJm7Rmf*:UmJm7bmXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-BO8o:OO8o:ZO8o:IOT,=LO8o:YOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME0O8o:NOSo14OSf+XOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7Wmem.=med(amXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:NOSo14OSf+XOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o9oOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7#mXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o9oOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o9oOFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7#mXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o9oOFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD@OFdF_s0r%.TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!*mXbChs0r%.P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,ROFdF_s0r%.GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoOK"=ms0_n,TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYm]#W*s0_n,P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,OK"=ms0_n,GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoOK"=ms0_n,TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYm]#W*s0_n,P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,OK"=ms0_n,GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o:NOT#4\O8uYL!!&aTJcE.Xs.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2X!omJm7Wmf!1emJsW^!!&b]JcE.Xs-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm-BO8o:NOT#4\O8uYL!!&aTJcE.Xs*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)ME0O8o:OO8o:[OT,=7OT,=:O8o9TOFdG>s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm7XmJm7dmf*:@mf*:CmJm6]mXbDGs8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o:OO8o:[OT,=7OT,=:O8o9TOFdG>s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME0O8o:OO8o:ZO8o:SOT,:aO8o9B!!)>HrrD\QrVuq[rW)VQquHDOrr<%\rW)kXr;chY -rW)qZrW)qZrW)nYrrE(\rrDbSrVuq[rW)YRrr<7b!!&)\!0Dd3[K$9"!!)rJ!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkQFc2X!omJm7XmJm7cmJm7\mf*7jmJm7T!!)?QrrD]ZrVurdrW)WZquHEXrr<&erW)lar;cib -rW)rcrW)rcrW)obrrE)errDc\rVurdrW)Z[rr<8k!!)Ee!:GF<[K$8j!!)rA!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr:4]Dm-BO8o:OO8o:ZO8o:SOT,:aO8o9B!!)>HrrD\QrVuq[rW)VQquHDOrr<%\rW)kXr;chY -rW)qZrW)qZrW)nYrrE(\rrDbSrVuq[rW)YRrr<7b!!&)\!0Dd3[K$8O!!)r/!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh2Of)ME0O8o:OO8o:MOT,:`O8o9B!;;NN!;hlX!;2ER!</&[!:l3O!:l6O!</&[!</&[!<%uZ -!</&[!;qoY!</&[!</&[!<%u_!0@2BO9#!9!!*"[!!)YQrr<4a!!&)\OFdG>s8S_l!;tCKs.KAB -JcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm7XmJm7Vmf*7imJm7T!;>jW!;l3a!;5a[!<2Bd!:oOX!:oRX!<2Bd!<2Bd!<)<c -!<2Bd!;u6b!<2Bd!<2Bd!<)<h!:BjTmJutK!!*#d!!)ZZrr<5j!!)EemXbDGs8S8_!;t(Bs-*H, -JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o:OO8o:MOT,:`O8o9B!;;NN!;hlX!;2ER!</&[!:l3O!:l6O!</&[!</&[!<%uZ -!</&[!;qoY!</&[!</&[!<%u_!0@2BO9#!9!!*"[!!)YQrr<4a!!&)\OFdG>s8R<D!;sG0s*4OT -JcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME0O8o:NOSo1OO9P]HO8tB(!9]FD!;2ET!0@3OO9,ED!:u9P!;qo[!0@3XO:2,NO8tB( -!0E9BOH9J?O8o:[OT,=NO9,ED!:u9W!0E9BOH9I(JcE.Xs.B>lr71oKT`3Mns+13$s6K^aecGfD -rmlT~> -rlkQFc2X!omJm7Wmem.XmKN[ZmJu\C!9`bM!;5a]!:BjXmK*CV!;#UY!;u6d!:BjamL0*`mJu\C -!:K7Tmd:)QmJm7dmf*:WmK*CV!;#U`!:K7Tmd:)CJcE.Xs-!E_r659BPQ&gXs+13$s6K^ablRj. -rlor~> -rjr:4]Dm-BO8o:NOSo1OO9P]HO8tB(!9]FD!;2ET!0@3OO9,ED!:u9P!;qo[!0@3XO:2,NO8tB( -!0E9BOH9J?O8o:[OT,=NO9,ED!:u9W!0E9BOH9I(JcE.Xs*+MDr4<"0GlG=+s+13$s6K^a])hqV -rk![~> -rmh2Of)ME0O8o:JO8o:RO9P]HO8tB(!;;NN!;hlX!:u9P!:l3O!</&[!;)?Q!;qo[!0@3XO:)&M -O8tB(!0E9BOHB;=rf@*[muRMLnrO(VOH9I(O8tAns0_n,TE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkQFc2X!omJm7SmJm7[mKN[ZmJu\C!;>jW!;l3a!;#UY!:oOX!<2Bd!;,[Z!;u6d!:BjamL'$_ -mJu\C!:K7TmdBoOrpBadn*U/Uo'Q__md:)CmJu[+s0_n,P5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr:4]Dm-BO8o:JO8o:RO9P]HO8tB(!;;NN!;hlX!:u9P!:l3O!</&[!;)?Q!;qo[!0@3XO:)&M -O8tB(!0E9BOHB;=rf@*[muRMLnrO(VOH9I(O8tAns0_n,GQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)ME0O8o:OO8o:ZO8o:RO9P]HO8tB(!:,aH!:l3Q!0@3>O8o:YO9,ED!;hiX!</&_!0@2B -!</&[!;MWU!:Z'O!0@3PO9YcIO8tB(!0Dd3[K$9"!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!omJm7XmJm7cmJm7[mKN[ZmJu\C!:0(Q!:oOZ!:BjGmJm7bmK*CV!;l0a!<2Bh!:BjT -!<2Bd!;Ps^!:]CX!:BjYmKWa[mJu\C!:GF<[K$8j!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-BO8o:OO8o:ZO8o:RO9P]HO8tB(!:,aH!:l3Q!0@3>O8o:YO9,ED!;hiX!</&_!0@2B -!</&[!;MWU!:Z'O!0@3PO9YcIO8tB(!0Dd3[K$8O!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME0O8o:OOT,=[O8o:RO9P]HO8tB(!:>mJ!:c-N!</&[!90+?!</&[!</&[!<%uZ!<&#Z -!!85^!<%uZ!<%uZ!</&[!:c-N!</&[!;)?X!0E9BOH9I(JcE.Xs.B>lr71oKT`3Mns+13$s6K^a -ecGfDrmlT~> -rlkQFc2X!omJm7Xmf*:dmJm7[mKN[ZmJu\C!:B4S!:fIW!<2Bd!93GH!<2Bd!<2Bd!<)<c!<)?c -!!;Qg!<)<c!<)<c!<2Bd!:fIW!<2Bd!;,[a!:K7Tmd:)CJcE.Xs-!E_r659BPQ&gXs+13$s6K^a -blRj.rlor~> -rjr:4]Dm-BO8o:OOT,=[O8o:RO9P]HO8tB(!:>mJ!:c-N!</&[!90+?!</&[!</&[!<%uZ!<&#Z -!!85^!<%uZ!<%uZ!</&[!:c-N!</&[!;)?X!0E9BOH9I(JcE.Xs*+MDr4<"0GlG=+s+13$s6K^a -])hqVrk![~> -rmh2Of)ME0O8o:OO9#?CrW)VQrW!+`!!&)\!8Wb9!!&,[!99.A!0I0[r/gjWr/^mYrf@*[r/gjW -rfI$XooT.Q!0I0[p5o7R"cr]aO8o93s0_n,TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7XmK!=UrW)WZrW!,i!!)Ee!8[)B!!)Hd!9<JJ!:Kgdr9jL`r9aObrpBadr9jL` -rpK[ap$VeZ!:Kgdp?qn["mu?jmJm6<s0_n,P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:OO9#?CrW)VQrW!+`!!&)\!8Wb9!!&,[!99.A!0I0[r/gjWr/^mYrf@*[r/gjW -rfI$XooT.Q!0I0[p5o7R"cr]aO8o93s0_n,GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o9AO8o9dOFdG>s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm6JmJm6mmXbDGs8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o9AO8o9dOFdG>s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME0O8o9AO8o9dOFdG>s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm6JmJm6mmXbDGs8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o9AO8o9dOFdG>s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCoOSY(;!47i=s0_n,TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYmeZAM!4;0Fs0_n,P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,OSY(;!47i=s0_n,GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDqOT,=SOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X![mf*:\mXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-.OT,=SOFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDpO8o:SOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!ZmJm7\mXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm--O8o:SOFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDpO8o:SOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!ZmJm7\mXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm--O8o:SOFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0OT#7ZOT,:\OT#7XOT#4\O9#!9JcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkQFc2X!omf!4cmf*7emf!4amf!1emJutKJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr:4]Dm-BOT#7ZOT,:\OT#7XOT#4\O9#!9JcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh2Of)ME1O8o:[O8o:[OT,=[O8o:[O8o:[OT,=SOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8 -!WShlepm~> -rlkQFc2X!pmJm7dmJm7dmf*:dmJm7dmJm7dmf*:\mXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/ -!WSA_c%#~> -rjr:4]Dm-CO8o:[O8o:[OT,=[O8o:[O8o:[OT,=SOFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr -!WRED]79~> -rmh2Of)ME2O8o:YO95KEO9#6@!s"FE!;qoY!;;M*s+136s8S_l!;tCKs.KABJcC<$JcG'9rmh,M -T`3Mm~> -rlkQFc2X!qmJm7bmK3IWmK!4R!s%cW!;u6b!;>i3s+136s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKD -PQ&gW~> -rjr:4]Dm-DO8o:YO95KEO9#6@!s"FE!;qoY!;;M*s+136s8R<D!;sG0s*4OTJcC<$JcG'9rjr42 -GlG=*~> -rmh2Of)ME2OSStWO8o:ZO95KEO9#3?!!)_SJcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkQFc2X!qmeQq`mJm7cmK3IWmK!1Q!!)`\JcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr:4]Dm-DOSStWO8o:ZO95KEO9#3?!!)_SJcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh2Of)ME2O8o:VO8o:ZO95KEO9#3?!!)_SJcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkQFc2X!qmJm7_mJm7cmK3IWmK!1Q!!)`\JcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr:4]Dm-DO8o:VO8o:ZO95KEO9#3?!!)_SJcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh2Of)ME1O8o:ZO95KEO9#6@!!*"[!!*"[rrDtYrrE"ZJcC<$PQ1ZU!!)rJ!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkQFc2X!pmJm7cmK3IWmK!4R!!*#d!!*#drrDubrrE#cJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr:4]Dm-CO8o:ZO95KEO9#6@!!*"[!!*"[rrDtYrrE"ZJcC<$PQ1Z-!!)r/!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh2Of)ME0OSo1ZOT#7[OT#7ZOT#4]O8o:ZOT,=ZOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8 -!WShlepm~> -rlkQFc2X!omem.cmf!4dmf!4cmf!1fmJm7cmf*:cmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/ -!WSA_c%#~> -rjr:4]Dm-BOSo1ZOT#7[OT#7ZOT#4]O8o:ZOT,=ZOFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr -!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoOF`MPOFdH1s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYmXafbmXbE:s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,OF`MPOFdH1s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MDiO8o:=O95KEO9!Ug!s"FE!7d/2!3;1]!:l5&s8DutTE"uiecGfDrmlZ#JcC<$li6t8 -!WShlepm~> -rlkQFc2X!SmJm7FmK3IWmJtT$!s%cW!7gK;!3>Mf!:oQ/s8DutP5kU\blRj.rlp#oJcC<$li6t/ -!WSA_c%#~> -rjr:4]Dm-&O8o:=O95KEO9!Ug!s"FE!7d/2!3;1]!:l5&s8DutGQ7aA])hqVrk!a]JcC<$li6sr -!WRED]79~> -rmh2Of)MEB!<8/[!;2ER!:Z'M!;DQT!8rq@!0E9Bk`>cEl&YuIOH9InO8o9[O8o:POFdH1s8S_l -!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X",!<;Kd!;5a[!:]CV!;Gm]!9!8I!:K7TkjAENl0\WRmd:)+mJm6dmJm7YmXbE:s8S8_ -!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-T!<8/[!;2ER!:Z'M!;DQT!8rq@!0E9Bk`>cEl&YuIOH9InO8o9[O8o:POFdH1s8R<D -!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh;Rf)MD)!!*"[!!)YQ!!)MM!!(Q2!s"FE!9oRH!0@3GO95KEO9!jn!!'![!!)VPJcG]Ks.B>l -r71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkZIc2X!q!!*#d!!)ZZ!!)NV!!(R;!s%cW!9rnQ!:BjPmK3IWmJti+!!'"d!!)WYJcG]Ks-!E_ -r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjrC7]Dm,;!!*"[!!)YQ!!)MM!!(Q2!s"FE!9oRH!0@3GO95KEO9!jn!!'![!!)VPJcG]Ks*+MD -r4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmhGVf)MD)!0@2BO9#6@r;chYqZ-PUr;chYqZ-PUrW)hWr;chYrr<%\rW)PO!s"FE!</)Z!!&,[ -!:u9R!0@3ROT,:\OT#7XO95KEO9"j5rrD8E!!)qYrr<%\rW)kXr;chYrW)qZrW)qZrW)nYrrE(\ -rrDbSrVuq[rW)YRrr<%\rW)eV!!)YQJcG]Ks.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkfMc2X!q!:BjTmK!4Rr;cibqZ-Q^r;cibqZ-Q^rW)i`r;cibrr<&erW)QX!s%cW!<2Ec!!)Hd -!;#U[!:Bj[mf*7emf!4amK3IWmJuhGrrD9N!!)rbrr<&erW)lar;cibrW)rcrW)rcrW)obrrE)e -rrDc\rVurdrW)Z[rr<&erW)f_!!)ZZJcG]Ks-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjrO;]Dm,;!0@2BO9#6@r;chYqZ-PUr;chYqZ-PUrW)hWr;chYrr<%\rW)PO!s"FE!</)Z!!&,[ -!:u9R!0@3ROT,:\OT#7XO95KEO9"j5rrD8E!!)qYrr<%\rW)kXr;chYrW)qZrW)qZrW)nYrrE(\ -rrDbSrVuq[rW)YRrr<%\rW)eV!!)YQJcG]Ks*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmhGVf)MD)!0@2BO9#9A!!)tZ!!)tZ!!)kW!!)tZ!!)tZ!!)bT!!)qY!!)tZ!!*"[rrE%[!!)AI -!!*"[!!)VP!!*"[!!)\RrrE%[!!);GrrDtYq>g/L!!)nXrrE%[!!*"[!!)tZ!!*"[!!)qY!!*"[ -!!*"[!!)tZ"TXVaOH9J9O8o:[O8o:QOT,=[O8o:XO8o:QOFdH1s8S_l!;tCKs.KABJcC<$JcG'9 -rmh,MT`3Mm~> -rlkfMc2X!q!:BjTmK!7S!!)uc!!)uc!!)l`!!)uc!!)uc!!)c]!!)rb!!)uc!!*#drrE&d!!)BR -!!*#d!!)WY!!*#d!!)][rrE&d!!)<PrrDubq>g0U!!)oarrE&d!!*#d!!)uc!!*#d!!)rb!!*#d -!!*#d!!)uc"T[rjmd:)KmJm7dmJm7Zmf*:dmJm7amJm7ZmXbE:s8S8_!;t(Bs-*H,JcC<$JcG'9 -rlkKDPQ&gW~> -rjrO;]Dm,;!0@2BO9#9A!!)tZ!!)tZ!!)kW!!)tZ!!)tZ!!)bT!!)qY!!)tZ!!*"[rrE%[!!)AI -!!*"[!!)VP!!*"[!!)\RrrE%[!!);GrrDtYq>g/L!!)nXrrE%[!!*"[!!)tZ!!*"[!!)qY!!*"[ -!!*"[!!)tZ"TXVaOH9J9O8o:[O8o:QOT,=[O8o:XO8o:QOFdH1s8R<D!;sG0s*4OTJcC<$JcG'9 -rjr42GlG=*~> -rmhPYf)MD)!0E9BO8tB(!;hiX!</&[!;2ER!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!Zl];/JO9"j5 -!!*"[!!)\R!!)tZ!!(?,!!)nX!!)qY!W\;^qiD3dOH9I(O8tB(!0E9Br/^mYrfI-[nW3ePO9"m6 -!!)tZ!!)nX!!)YQJcG]Ks.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkoPc2X!q!:K7TmJu\C!;l0a!<2Bd!;5a[!<)<c!;Gm]!<)<c!;l0d!:K7TrU'Xclg=fSmJuhG -!!*#d!!)][!!)uc!!(@5!!)oa!!)rb!W_WgqsFjmmd:)CmJu\C!:K7Tr9aObrpKddna6GYmJukH -!!)uc!!)oa!!)ZZJcG]Ks-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjrX>]Dm,;!0E9BO8tB(!;hiX!</&[!;2ER!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!Zl];/JO9"j5 -!!*"[!!)\R!!)tZ!!(?,!!)nX!!)qY!W\;^qiD3dOH9I(O8tB(!0E9Br/^mYrfI-[nW3ePO9"m6 -!!)tZ!!)nX!!)YQJcG]Ks*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmhPYf)MD)!0E9BO8tB(!;hiX!</&[!;V`S!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!ZlAtuGi/dp= -rK%!Zj,j*;oT0%QqiCdXr/^s[O9#0>$NQ9M!0E9BOH9I(OSStVO8o:LO8o:OO8o:ZO8o:XO8o:Q -OFdH1s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkoPc2X!q!:K7TmJu\C!;l0a!<2Bd!;Z'\!<)<c!;Gm]!<)<c!;l0d!:K7TrU'XclL"WPi9gRF -rU'Xcj6laDo^2\ZqsFFar9aUdmK!.P$NTV_!:K7Tmd:)CmeQq_mJm7UmJm7XmJm7cmJm7amJm7Z -mXbE:s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjrX>]Dm,;!0E9BO8tB(!;hiX!</&[!;V`S!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!ZlAtuGi/dp= -rK%!Zj,j*;oT0%QqiCdXr/^s[O9#0>$NQ9M!0E9BOH9I(OSStVO8o:LO8o:OO8o:ZO8o:XO8o:Q -OFdH1s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh8Qf)MD)!</)[!<8,\!;hiX!</&[!;_cW!<%uZ!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!Zl];/J -O9"7$!!)tZ!!(?,!!)nX!!)qY!W\;^qiCdXrf@6_O8t@Brf@*[plGIUn;m\OO9"m6!!)tZ!!)nX -!!)YQJcG]Ks.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkWHc2X!q!<2Ed!<;He!;l0a!<2Bd!;c*`!<)<c!<)<c!;Gm]!<)<c!;l0d!:K7TrU'Xclg=fS -mJu56!!)uc!!(@5!!)oa!!)rb!W_WgqsFFarpBmhmJuYTrpBadq!J+^nEp>XmJukH!!)uc!!)oa -!!)ZZJcG]Ks-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr@6]Dm,;!</)[!<8,\!;hiX!</&[!;_cW!<%uZ!<%uZ!;DQT!<%uZ!;hi[!0E9BrK%!Zl];/J -O9"7$!!)tZ!!(?,!!)nX!!)qY!W\;^qiCdXrf@6_O8t@Brf@*[plGIUn;m\OO9"m6!!)tZ!!)nX -!!)YQJcG]Ks*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh8Qf)MD)!</)[!</&[!<%uZ!<%uZ!</&[!</&[!<%uZ!<%uZ!</&[!;hiX!;qoY!<%uZ!</&[ -!<%uZ!:5dI!</&[!90(?!<%uZ!:#[G!9fLE!;hlX!</&[!</&[!<%uZ!<&#Z!!85^!<%uZ!<%uZ -!</&[!:c-N!</&[!;)?Q!<%uZ!;hiX!;_fW!<&"1s8DutTE"uiecGfDrmlZ#JcC<$li6t8!WShl -epm~> -rlkWHc2X!q!<2Ed!<2Bd!<)<c!<)<c!<2Bd!<2Bd!<)<c!<)<c!<2Bd!;l0a!;u6b!<)<c!<2Bd -!<)<c!:9+R!<2Bd!93DH!<)<c!:'"P!9ihN!;l3a!<2Bd!<2Bd!<)<c!<)?c!!;Qg!<)<c!<)<c -!<2Bd!:fIW!<2Bd!;,[Z!<)<c!;l0a!;c-`!<)>:s8DutP5kU\blRj.rlp#oJcC<$li6t/!WSA_ -c%#~> -rjr@6]Dm,;!</)[!</&[!<%uZ!<%uZ!</&[!</&[!<%uZ!<%uZ!</&[!;hiX!;qoY!<%uZ!</&[ -!<%uZ!:5dI!</&[!90(?!<%uZ!:#[G!9fLE!;hlX!</&[!</&[!<%uZ!<&#Z!!85^!<%uZ!<%uZ -!</&[!:c-N!</&[!;)?Q!<%uZ!;hiX!;_fW!<&"1s8DutGQ7aA])hqVrk!a]JcC<$li6sr!WRED -]79~> -rmh2Of)MEB!</&[!<&#X!;hlW!;qrW!!//]rK.!Yr/ggVrK-sXrfI*Zs,d3[mZ@DJ!0I0[jH0?@ -s,d3[l]D,HkE#ZDr/^pZOT#7XOSo1WO8o:[O8o:YOSo1YOSf+OOT#4[OT#7ROT#7[OT#7YO8o:V -OT,=ZOFdH1s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X",!<2Bd!<)?a!;l3`!;u9`!!2KfrU0Xbr9jI_rU0UarpKacs6fjdmdC&S!:KgdjR3!I -s6fjdlgFcQkO&<Mr9aRcmf!4amem.`mJm7dmJm7bmem.bmed(Xmf!1dmf!4[mf!4dmf!4bmJm7_ -mf*:cmXbE:s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-T!</&[!<&#X!;hlW!;qrW!!//]rK.!Yr/ggVrK-sXrfI*Zs,d3[mZ@DJ!0I0[jH0?@ -s,d3[l]D,HkE#ZDr/^pZOT#7XOSo1WO8o:[O8o:YOSo1YOSf+OOT#4[OT#7ROT#7[OT#7YO8o:V -OT,=ZOFdH1s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCoONERa!;qoY!3_Ia!:u;'s8DutTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYm`Fks!;u6b!3bej!;#W0s8DutP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,ONERa!;qoY!3_Ia!:u;'s8DutGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoON<L`!<%uZ!3hOb!:l5&s8DutTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYm`=er!<)<c!3kkk!:oQ/s8DutP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,ON<L`!<%uZ!3hOb!:l5&s8DutGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoOMm7Z!2>R+s8DutTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYm_nPl!2An4s8DutP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,OMm7Z!2>R+s8DutGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoOR\E`s+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYmd]^rs+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,OR\E`s+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME<OT5?3OSk2ks+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"&mf,_,melL(s+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-NOT,<3OSk2ks+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh5Pf)MD)qZ$SW!<9ruqZ#92!<;;FJcC<$mJm3Z!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkTGc2X!qqF1GP!(FfnqF0-+!(H/?JcC<$mJm3M!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr=5]Dm,;q>gPW!!'ouq>f62!!)8FJcC<$mJm32!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmhSZf)MD)s,`?BOHBL(OT31Z!<<"Z!<:c7!<;;FJcC<$mJm3Z!!)rJ!WShleq*jPs+149s8LRM -s.KABJ,~> -rlkrQc2X!q7IKS4md<O3mR>"\!(HkS!(GW0!(H/?JcC<$mJm3M!!)rA!WSA_c%5nGs+149s8L7D -s-*H,J,~> -rjr[?]Dm,;!0E9BOH9I(O9!.Z!!)tZ!!(`7!!)8FJcC<$mJm32!!)r/!WRED]7L!5s+149s8KV2 -s*4OTJ,~> -rmhV[f)MD)s,`?BOHBL(OT1FAs8.oWs87uWs8A&Zs8S2\s87uXs8J,[rrnMas,d9\ooK1RrK%$Z -rK.$YrK.'Zs,d9\s,d9\"d&caOT5@[OT#4YOSf(KOT,=ZOFdF_s6]jdTE"uiecGfDrmlZ#JcC<$ -li6t8!WShlepm~> -rlkuRc2X!q7IKS4md<O3mR?RC7JlNP7JuTP7K)ZS7K;fU7JuTQ7K2`T70W*J7IET5p$MfKrU'YS -rU0YRrU0\Ss6fnUs6fnU"n"fJmR9SDmeoTRme]HDmf*:cmXbChs6]jdP5kU\blRj.rlp#oJcC<$ -li6t/!WSA_c%#~> -rjr^@]Dm,;!0E9BOH9I(O8tCA!;hlW!;qrW!<&#Z!<8/\!;qrX!</)[!!SGa!0@0\ooK.RrK%!Z -rK.!YrK.$Zs,d6\s,d6\"cr]aO8o:[OSo1YOS]%KOT,=ZOFdF_s6]jdGQ7aA])hqVrk!a]JcC<$ -li6sr!WRED]79~> -rmh2Of)MEAO9#=YOT5@[O9#=ZO9#=[O9#=[O9#=ZO9#=ZO9PZGs,`?Brf@-[rf@-[rfI0["H`Z` -OT5!8"94IEs87rYs8J)[s8A#ks,d8BOT1E(s8S2\s,d8BOT59@!<<"Z!<;MLrrE"ZJcC<$mJm3Z -!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X"+mJo]Rmf,`TmJo]SmJo]TmJo]TmJo]SmJo]SmKH&I7IKS4rpBbTrpBbTrpKeT"R\]I -mR?g:"%DYG7JuQR7K2]T7K)Wd7IEV4mR?R377HW57IEV4mR@*B!(HkS!(HAErrE#cJcC<$mJm3M -!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-SO8o:YOT,=[O8o:ZO8o:[O8o:[O8o:ZO8o:ZO9GWG!0E9Brf@*[rf@*[rfI-["HWT` -O9"s8!s"FE!;qoY!</&[!<%uk!0@2BO8tB(!!&)\!0@2BO9#6@!!)tZ!!)JLrrE"ZJcC<$mJm32 -!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)MEAO9#=YO9#=ZO9#=[O9#=YO95HDs8.lXs8J,[s8.lXs87rbs,`?BOHBL(OT5!8rVuhX -!<;tY!<<%[s8VtX#60dHs,`?BqN(^WrK%$Zl&^JrJcG-;s.B>lr71oKT`3Mns+13$s6K^aecGfD -rmlT~> -rlkQFc2X"+mJo]RmJo]SmJo]TmJo]RmK,iF7JlKQ7K2`T7JlKQ7JuQ[7IKS4md<O3mR?g:rC-\Q -!(HhR!(HnTs$chQ#"@tJ7IKS4qX+>PrU'YSl0a-&JcG-;s-!E_r659BPQ&gXs+13$s6K^ablRj. -rlor~> -rjr:4]Dm-SO8o:YO8o:ZO8o:[O8o:YO9,ED!;hiX!</)[!;hiX!;qob!0E9BOH9I(O9"s8r;ceX -!!)qY!!*"[rrDqX"osaH!0E9BqN([WrK%!Zl&^JrJcG-;s*+MDr4<"0GlG=+s+13$s6K^a])hqV -rk![~> -rmh2Of)MEAO9#=YO9#=ZO9#=[OS\tXOT53>!<<%[!<;nWqZ$SW#60dHs,`?BooK:UOHBM@OS]"V -O9#=WO9Y`HOT1E(s8J,Xs8A#Zs65Vrs+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+mJo]RmJo]SmJo]TmeT?QmR@$@!(HnT!(HbPqF1GP#"@tJ7IKS4p$MoNmd<OBmeTBO -mJo]PmKQ,JmR?R37K2`Q7K)WS7Hs5ks+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-SO8o:YO8o:ZO8o:[OSSqXO9#0>!!*"[!!)kWq>gPW"osaH!0E9BooK7UOH9J@OSStV -O8o:WO9P]HO8tB(!</)X!<%uZ!9oSrs+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MEAO9#=YO9#=ZO9#=[O9#=WO9#=XO9#=[O9#=WO9#=VO9Y`HOT1E(s7MHRs8%fWs7hZU -s8%f`s,`?BOHBL(OT59@!<<"Z!<;;FJcC<$mJm3Z!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X"+mJo]RmJo]SmJo]TmJo]PmJo]QmJo]TmJo]PmJo]OmKQ,JmR?R37J6'K7JcEP7JQ9N -7JcEY7IKS4md<O3mR@*B!(HkS!(H/?JcC<$mJm3M!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-SO8o:YO8o:ZO8o:[O8o:WO8o:XO8o:[O8o:WO8o:VO9P]HO8tB(!;2ER!;_cW!;MWU -!;_c`!0E9BOH9I(O9#6@!!)tZ!!)8FJcC<$mJm32!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)MEAO9#=YO9#=ZO9#=ZO9#=ZO9>NEOT59@!<<"Z!<;kV!<<"Z$3-*Ks,`?BOHBM8O9#=V -O9#=ZO9#=[O9#=WO9trKOT1E(s,`?BrK%$ZrK%$Zrf@-[o8rtPrK)U1JcG-;s.B>lr71oKT`3Mn -s+13$s6K^aecGfDrmlT~> -rlkQFc2X"+mJo]RmJo]SmJo]SmJo]SmK5oGmR@*B!(HkS!(H_O!(HkS#t=:M7IKS4md<O:mJo]O -mJo]SmJo]TmJo]PmKl>MmR?R37IKS4rU'YSrU'YSrpBbToBuVYrU,7:JcG-;s-!E_r659BPQ&gX -s+13$s6K^ablRj.rlor~> -rjr:4]Dm-SO8o:YO8o:ZO8o:ZO8o:ZO95KEO9#6@!!)tZ!!)hV!!)tZ#lp'K!0E9BOH9J8O8o:V -O8o:ZO8o:[O8o:WO9koKO8tB(!0E9BrK%!ZrK%!Zrf@*[o8rtPrK)U1JcG-;s*+MDr4<"0GlG=+ -s+13$s6K^a])hqVrk![~> -rmh8Qf)MD)OSo.YOT,:[OT,:YOT#4XOT#4XOSo.UOT#4ZOT,7`OT5?Bs8VhTrVu_UrVukYr;ZbX -rr34bs8S2\s,`?@rrJ5]rK.$YnrWkOrK)U1JcG-;s.B>lr71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkWHc2X!qmefNRmf#ZTmf#ZRmeoTQmeoTQmefNNmeoTSmf#WYmR9S477Ht=rC-SNrC-_Rr'gVQ -r^@([77HW57IKUB702gFrU0YRo'ZMXrU,7:JcG-;s-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr@6]Dm,;OSf+YOT#7[OT#7YOSo1XOSo1XOSf+UOSo1ZOT#4`O8o9B!!)bTr;c\Ur;chYquH_X -rW!1b!!&)\!0E<@!!//]rK.!YnrWkOrK)U1JcG-;s*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)MCoOR\E`s+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYmd]^rs+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,OR\E`s+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCoOR\E`s+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYmd]^rs+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,OR\E`s+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCoOR\E`s+14;s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYmd]^rs+14;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,OR\E`s+14;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCoOF`LEOPZ'$s.H"br71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2WuYmXaeWmb[@6s-&WHr659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm,,OF`LEOPZ'$s*/bgr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)ME.O8o:WOSo1>OT#7WOT#62OF`M&OT#7WO9P]HOT1uH!;tCKs.KABJcC<$JcG'9rmh,M -T`3Mm~> -rlkQFc2X!mmJm7`mem.Gmf!4`mf!3;mXaf8mf!4`mKN[Zmf/K7!;t(Bs-*H,JcC<$JcG'9rlkKD -PQ&gW~> -rjr:4]Dm-@O8o:WOSo1>OT#7WOT#62OF`M&OT#7WO9P]HOT0QM!;sG0s*4OTJcC<$JcG'9rjr42 -GlG=*~> -rmh2Of)ME/O8o:WO8o::O8o:VO8o9JO8o:9O8o:;O8o:)O8o9TO8o:[O8o:XO9GWGs.H"br71oK -T`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2X!nmJm7`mJm7CmJm7_mJm6SmJm7BmJm7DmJm72mJm6]mJm7dmJm7amKEUYs-&WHr659B -PQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm-AO8o:WO8o::O8o:VO8o9JO8o:9O8o:;O8o:)O8o9TO8o:[O8o:XO9GWGs*/bgr4<"0 -GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)ME/O8o:WO8o::O8o:VO8o9JO8o::O9,ED!:c-N!:c-P!0@3+O9,ED!90+?!8EV8!:5dI -!</&[!;hi]!0I5RTE+o@!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!nmJm7`mJm7CmJm7_mJm6SmJm7CmK*CV!:fIW!:fIY!:Bj4mK*CV!93GH!8HrA!:9+R -!<2Bd!;l0f!:KlNP5tO*!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-AO8o:WO8o::O8o:VO8o9JO8o::O9,ED!:c-N!:c-P!0@3+O9,ED!90+?!8EV8!:5dI -!</&[!;hi]!0I5*GQ@ZR!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME0O8o:XOS]%VOSo1XOT,=\OT,=ZOSo1UO8o:VO8o:QOT#4[OT#7ROT#7[OT#7QOSf+P -OT,:\OT#7WOT,=ZOT,:\OT#7XOSo1YOS]%EOT#4[OT#7XO9,ED!</)[!!&,[!;_cW!<&#Y!<8/[ -!<%u\!0@3[OT,:\OT#7=OSf+VO9,ED!</)[!!&,[!9oUF!;)BQ!!&,[!:l6O!9T@C!;_c[!<8^b -!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm7ame["_mem.amf*:emf*:cmem.^mJm7_mJm7Zmf!1dmf!4[mf!4dmf!4Zmed(Y -mf*7emf!4`mf*:cmf*7emf!4amem.bme["Nmf!1dmf!4amK*CV!<2Ed!!)Hd!;c*`!<)?b!<;Kd -!<)<e!:Bjdmf*7emf!4Fmed(_mK*CV!<2Ed!!)Hd!9rqO!;,^Z!!)Hd!:oRX!9W\L!;c*d!<87H -!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o:XOS]%VOSo1XOT,=\OT,=ZOSo1UO8o:VO8o:QOT#4[OT#7ROT#7[OT#7QOSf+P -OT,:\OT#7WOT,=ZOT,:\OT#7XOSo1YOS]%EOT#4[OT#7XO9,ED!</)[!!&,[!;_cW!<&#Y!<8/[ -!<%u\!0@3[OT,:\OT#7=OSf+VO9,ED!</)[!!&,[!9oUF!;)BQ!!&,[!:l6O!9T@C!;_c[!<7:g -!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME0O8o:VO8o:XO8o:ZO8o:ZO9biJ!0E9BOH9J@O8o:XO8o:VO8o:PO8o:[O8o:QO8o:Z -O8o:QO8o:[O8o:ROT,=[O8o:YOT,=YOT,=[O8o:[O8o:ZO8o:ZO8o:EO8o:[O8o:YO8o:[O8o:[ -OT,=[O8o:XO8o:YO8o:ZO8o:ZO8o:[O8o:[OT,=[O8o:ROSStMO8o:[O8o:ZO8o:[O8o:[OT,=[ -O8o:EOT,=ROT,=[O8o:ROT,=WOSStKO8o:VO9>R`TV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7_mJm7amJm7cmJm7cmK`g\!:K7Tmd:)RmJm7amJm7_mJm7YmJm7dmJm7ZmJm7c -mJm7ZmJm7dmJm7[mf*:dmJm7bmf*:bmf*:dmJm7dmJm7cmJm7cmJm7NmJm7dmJm7bmJm7dmJm7d -mf*:dmJm7amJm7bmJm7cmJm7cmJm7dmJm7dmf*:dmJm7[meQqVmJm7dmJm7cmJm7dmJm7dmf*:d -mJm7Nmf*:[mf*:dmJm7[mf*:`meQqTmJm7_mK<OiPEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:VO8o:XO8o:ZO8o:ZO9biJ!0E9BOH9J@O8o:XO8o:VO8o:PO8o:[O8o:QO8o:Z -O8o:QO8o:[O8o:ROT,=[O8o:YOT,=YOT,=[O8o:[O8o:ZO8o:ZO8o:EO8o:[O8o:YO8o:[O8o:[ -OT,=[O8o:XO8o:YO8o:ZO8o:ZO8o:[O8o:[OT,=[O8o:ROSStMO8o:[O8o:ZO8o:[O8o:[OT,=[ -O8o:EOT,=ROT,=[O8o:ROT,=WOSStKO8o:VO9>R`G^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o:VO8o:YO8o:XO8o:[OT,=SO8o:XO8o:VO8o:OO9,ED!:u9P!<%uZ!:c-N!;)?Q -!<%uZ!;2ER!<%uZ!;V]V!<%uZ!9]FF!0@3XO8o:[O8o:[O8o:ZO8o:[OSStWO8o:ZO8o:ZO8o:[ -O8o:[O8o:ZO8o:<O8o:YO8o:[O8o:[O8o:ZO8o:ROS]%QO8o:SO8o:ZO8o:SO8o:AO8o:UO9>R` -TV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7_mJm7bmJm7amJm7dmf*:\mJm7amJm7_mJm7XmK*CV!;#UY!<)<c!:fIW!;,[Z -!<)<c!;5a[!<)<c!;Z$_!<)<c!9`bO!:BjamJm7dmJm7dmJm7cmJm7dmeQq`mJm7cmJm7cmJm7d -mJm7dmJm7cmJm7EmJm7bmJm7dmJm7dmJm7cmJm7[me["ZmJm7\mJm7cmJm7\mJm7JmJm7^mK<Oi -PEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:VO8o:YO8o:XO8o:[OT,=SO8o:XO8o:VO8o:OO9,ED!:u9P!<%uZ!:c-N!;)?Q -!<%uZ!;2ER!<%uZ!;V]V!<%uZ!9]FF!0@3XO8o:[O8o:[O8o:ZO8o:[OSStWO8o:ZO8o:ZO8o:[ -O8o:[O8o:ZO8o:<O8o:YO8o:[O8o:[O8o:ZO8o:ROS]%QO8o:SO8o:ZO8o:SO8o:AO8o:UO9>R` -G^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME0O8o:VO8o:YO8o:XO8o:[O8o:VOSf+UO8o:VO8o:NO8o:NO95KEO9"g4!!)VP!!)tZ -!!)\R!!)tZ!!)tZquH\W!!)/C!!)SO!!)tZ!!)nX!!)nX!s"FE!;)?Q!<%uZ!;2HM!:u9P!:u9P -!<%uZ!9fOE!;2ER!<%uZ!;2HR!;_fR!;2ER!;DQX!<8^b!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X!omJm7_mJm7bmJm7amJm7dmJm7_med(^mJm7_mJm7WmJm7WmK3IWmJueF!!)WY!!)uc -!!)][!!)uc!!)ucquH]`!!)0L!!)TX!!)uc!!)oa!!)oa!s%cW!;,[Z!<)<c!;5dV!;#UY!;#UY -!<)<c!9ikN!;5a[!<)<c!;5d[!;c-[!;5a[!;Gma!<87H!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-BO8o:VO8o:YO8o:XO8o:[O8o:VOSf+UO8o:VO8o:NO8o:NO95KEO9"g4!!)VP!!)tZ -!!)\R!!)tZ!!)tZquH\W!!)/C!!)SO!!)tZ!!)nX!!)nX!s"FE!;)?Q!<%uZ!;2HM!:u9P!:u9P -!<%uZ!9fOE!;2ER!<%uZ!;2HR!;_fR!;2ER!;DQX!<7:g!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)ME0O8o:VO8o:YO8o:XO8o:[O8o:WO8o:ZO8o:XO8o:VO8o:OO9,ED!:l3R!0E9BnrNhO -nrNhOrK%!ZooK.RrK%!Zrf@*[rK%!ZrK%!ZkE#`FO9"m6!!)tZ!!)nX!!)nX!s"FE!;)?Q!<%uZ -!9'">!:l3O!<%uZ!:#[G!:u9P!<%uZ!:u<P!:#XG!;;KW!<8^b!;tCKs.KABJcC<$JcG'9rmh,M -T`3Mm~> -rlkQFc2X!omJm7_mJm7bmJm7amJm7dmJm7`mJm7cmJm7amJm7_mJm7XmK*CV!:oO[!:K7To'QJX -o'QJXrU'Xcp$Me[rU'XcrpBadrU'XcrU'XckO&BOmJukH!!)uc!!)oa!!)oa!s%cW!;,[Z!<)<c -!9*>G!:oOX!<)<c!:'"P!;#UY!<)<c!;#XY!:&tP!;>g`!<87H!;t(Bs-*H,JcC<$JcG'9rlkKD -PQ&gW~> -rjr:4]Dm-BO8o:VO8o:YO8o:XO8o:[O8o:WO8o:ZO8o:XO8o:VO8o:OO9,ED!:l3R!0E9BnrNhO -nrNhOrK%!ZooK.RrK%!Zrf@*[rK%!ZrK%!ZkE#`FO9"m6!!)tZ!!)nX!!)nX!s"FE!;)?Q!<%uZ -!9'">!:l3O!<%uZ!:#[G!:u9P!<%uZ!:u<P!:#XG!;;KW!<7:g!;sG0s*4OTJcC<$JcG'9rjr42 -GlG=*~> -rmh2Of)ME0O8o:VO8o:XO8o:ZO8o:ZO8o:WO8o:ZO8o:XO8o:VO8o:PO8o:[O8o:OOT,=OO8o:[ -O8o:RO8o:ZO8o:YOT,=YO8o:ZO8o:[O8o:ZO8o:ZO8o:[O8o:YOT,=PO8o:[O8o:QO8o:ZO8o:X -O8o:WOT,=PO8o:ZO8o:?O8o:[O8o:RO8o:ZO8o:IOT,=NO8o:ZO8o:NOT,=IO8o:[O8o:WO9>R` -TV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!omJm7_mJm7amJm7cmJm7cmJm7`mJm7cmJm7amJm7_mJm7YmJm7dmJm7Xmf*:XmJm7d -mJm7[mJm7cmJm7bmf*:bmJm7cmJm7dmJm7cmJm7cmJm7dmJm7bmf*:YmJm7dmJm7ZmJm7cmJm7a -mJm7`mf*:YmJm7cmJm7HmJm7dmJm7[mJm7cmJm7Rmf*:WmJm7cmJm7Wmf*:RmJm7dmJm7`mK<Oi -PEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-BO8o:VO8o:XO8o:ZO8o:ZO8o:WO8o:ZO8o:XO8o:VO8o:PO8o:[O8o:OOT,=OO8o:[ -O8o:RO8o:ZO8o:YOT,=YO8o:ZO8o:[O8o:ZO8o:ZO8o:[O8o:YOT,=PO8o:[O8o:QO8o:ZO8o:X -O8o:WOT,=PO8o:ZO8o:?O8o:[O8o:RO8o:ZO8o:IOT,=NO8o:ZO8o:NOT,=IO8o:[O8o:WO9>R` -G^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)ME/O8o:YOSf+VOSo1XOSf+VOSo.[O9#9AquH\WquHGPrVuq[rW)MN!!)SOquHGPrW)t[ -rW)nYrrE"ZrW)t[rW)qZr;Zk[!<&#Y!;hlX!;)BP!!&,[!;;NR!<8/[!:u9P!;)BP!<8/[!991= -!;;NR!<8/[!8N\8!<8/[!8EV5!;hi]!0I5RTE+o@!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!nmJm7bmed(_mem.amed(_mem+dmK!7SquH]`quHHYrVurdrW)NW!!)TXquHHYrW)ud -rW)obrrE#crW)udrW)rcr;Zld!<)?b!;l3a!;,^Y!!)Hd!;>j[!<;Kd!;#UY!;,^Y!<;Kd!9<MF -!;>j[!<;Kd!8R#A!<;Kd!8Hr>!;l0f!:KlNP5tO*!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-AO8o:YOSf+VOSo1XOSf+VOSo.[O9#9AquH\WquHGPrVuq[rW)MN!!)SOquHGPrW)t[ -rW)nYrrE"ZrW)t[rW)qZr;Zk[!<&#Y!;hlX!;)BP!!&,[!;;NR!<8/[!:u9P!;)BP!<8/[!991= -!;;NR!<8/[!8N\8!<8/[!8EV5!;hi]!0I5*GQ@ZR!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME/O8o9[O8o9dOT,=)O8o93OOoQt!0I5RTE+o@!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2X!nmJm6dmJm6mmf*:2mJm6<mapk1!:KlNP5tO*!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-AO8o9[O8o9dOT,=)O8o93OOoQt!0I5*GQ@ZR!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)ME.O8o9\O8o9dO8o:(O8o93OP#X!!0E<BTV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!mmJm6emJm6mmJm71mJm6<mb$q3!:K:TPEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-@O8o9\O8o9dO8o:(O8o93OP#X!!0E<BG^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD-OSo01OT(@?!.g6_O9>NUTE+o@!WShleq*jPs+149s8LRMs.KABJ,~> -rlkQFc2Wulmem-:mf)YQ!.jRhmK<KQP5tO*!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm,?OSo01OT(@?!.g6_O9>N-GQ@ZR!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDrOSo1ROFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!\mem.[mXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-/OT#4ROFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh5Pf)MD)qZ,T:!!)VPJcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkTGc2X!qqZ,UC!!)WYJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr=5]Dm,;qu>W:!<;YPJcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh;Rf)MD)O9#6@!!)#?!!)VPJcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRMs.KABJ,~> -rlkZIc2X!qmK!4R!!)$H!!)WYJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjrC7]Dm,;OT59@!<;&?!<;YPJcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh;Rf)MD)O9#6@#QTsJ!!&+B!!)tZr;cbWr;ceXqZ->OJcC<$PQ1ZU!!)rJ!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkZIc2X!qmK!4R#QX;\!!)HT!!)ucr;cc`r;cfaqZ-?XJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjrC7]Dm,;OT59@#lg!Js8S1Bs8W%ZrVueWrVuhXqu?AOJcC<$PQ1Z-!!)r/!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh;Rf)MD)O9#6@!!*"[#QTqdOH9I(O9#6@!!*"[!!)tZ!!)qY!!)VPJcC<$PQ1ZU!!)rJ!WShl -eq*jPs+149s8LRMs.KABJ,~> -rlkZIc2X!qmK!4R!!*#d#QX8mmd:)CmK!4R!!*#d!!)uc!!)rb!!)WYJcC<$PQ1ZH!!)rA!WSA_ -c%5nGs+149s8L7Ds-*H,J,~> -rjrC7]Dm,;OT59@!<<%[#lg"dOHBL(OT59@!<<%[!<<"Z!<;tY!<;YPJcC<$PQ1Z-!!)r/!WRED -]7L!5s+149s8KV2s*4OTJ,~> -rmh;Rf)MD)O9#6@!!*"[rrDtY!!)nX!W\;^qiCdXrK%!Zo8nP'JcCr6s.B>lr71oKT`3Mns+13$ -s6K^aecGfDrmlT~> -rlkZIc2X!qmK!4R!!*#drrDub!!)oa!W_WgqsFFarU'XcoBq20JcCr6s-!E_r659BPQ&gXs+13$ -s6K^ablRj.rlor~> -rjrC7]Dm,;OT59@!<<%[s8W"Y!<;qX!rnA^qiCgXrK%$Zo8nP'JcCr6s*+MDr4<"0GlG=+s+13$ -s6K^a])hqVrk![~> -rmh8Qf)MD)OSf+WO8o:XO8o:XO9,ED!;hiX!<%uZ!:u;'s+136s8S_l!;tCKs.KABJcC<$JcG'9 -rmh,MT`3Mm~> -rlkWHc2X!qmed(`mJm7amJm7amK*CV!;l0a!<)<c!;#W0s+136s8S8_!;t(Bs-*H,JcC<$JcG'9 -rlkKDPQ&gW~> -rjr@6]Dm,;OSo.WO9#=XO9#=XO95HDs8.lXs8A#Zs7;>'s+136s8R<D!;sG0s*4OTJcC<$JcG'9 -rjr42GlG=*~> -rmh;Rf)MD)O9#*<!!)nX!!)nX!W\;^qiCdXrK%!Zo8nP'JcCr6s.B>lr71oKT`3Mns+13$s6K^a -ecGfDrmlT~> -rlkZIc2X!qmK!(N!!)oa!!)oa!W_WgqsFFarU'XcoBq20JcCr6s-!E_r659BPQ&gXs+13$s6K^a -blRj.rlor~> -rjrC7]Dm,;OT5-<!<;qX!<;qX!rnA^qiCgXrK%$Zo8nP'JcCr6s*+MDr4<"0GlG=+s+13$s6K^a -])hqVrk![~> -rmh;Rf)MD)O9#*<!!)kW!!)tZ!!*"[!!)tZ!!)qY!!)hVrrE"ZJcC<$PQ1ZU!!)rJ!WShleq*jP -s+149s8LRMs.KABJ,~> -rlkZIc2X!qmK!(N!!)l`!!)uc!!*#d!!)uc!!)rb!!)i_rrE#cJcC<$PQ1ZH!!)rA!WSA_c%5nG -s+149s8L7Ds-*H,J,~> -rjrC7]Dm,;OT5-<!<;nW!<<"Z!<<%[!<<"Z!<;tY!<;kVrrE"ZJcC<$PQ1Z-!!)r/!WRED]7L!5 -s+149s8KV2s*4OTJ,~> -rmh5Pf)MD)r;cbWquHYVr;cbWr;ceXquHVUrrE"ZJcC<$PQ1ZU!!)rJ!WShleq*jPs+149s8LRM -s.KABJ,~> -rlkTGc2X!qr;cc`quHZ_r;cc`r;cfaquHW^rrE#cJcC<$PQ1ZH!!)rA!WSA_c%5nGs+149s8L7D -s-*H,J,~> -rjr=5]Dm,;rVueWr;Z\VrVueWrVuhXr;ZYUrrE"ZJcC<$PQ1Z-!!)r/!WRED]7L!5s+149s8KV2 -s*4OTJ,~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MDdOFdF_s-*K_TE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!NmXbChs-*K_P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-!OFdF_s-*K_GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X!ms8N)Wrr<%Ms+13;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-@s8N)Wrr<%Ms+13;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkWHc2X"-s82ldrr<&brr<&nrr<%Ms+13;s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr@6]Dm-Us82ldrr<&brr<&nrr<%Ms+13;s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X"+rr<&err<&brr<%Ms+130s8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-Srr<&err<&brr<%Ms+130s8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MD@s8N'!s8E"Ls+13`s8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+rr<&ts8N'!s8E#rs8E!%rrE*!!!*#urrDusrW!$"!<;orr;Z`rqu?Tprr;uu!<<#u -p&G$l!<<#uJcC<$^&S+r!!)rA!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr:4]Dm-Srr<&ts8N'!s8E#rs8E!%rrE*!!!*#urrDusrW!$"!<;orr;Z`rqu?Tprr;uu!<<#u -p&G$l!<<#uJcC<$^&S+W!!)r/!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)MD?s8N)urr<%Ms+13as8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+rr<&ss8N)urr<&urr<&us8N)urr<&trr<&trr<&us8N)urr<&nrr<&srr<&trr<&u -s8N)urr<&ls8N)urr<%Ms+13as8S8_!;t(Bs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm-Srr<&ss8N)urr<&urr<&us8N)urr<&trr<&trr<&us8N)urr<&nrr<&srr<&trr<&u -s8N)urr<&ls8N)urr<%Ms+13as8R<D!;sG0s*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MD?rr<&trr<%Ms+13as8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+rr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)rs!!*#u!!)cn!!)ut!!)or!s&B$ -!<)ot!;6?l!<)ot!.k0$s1\O5P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-Srr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)rs!!*#u!!)cn!!)ut!!)or!s&B$ -!<)ot!;6?l!<)ot!.k0$s1\O5GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD?rr<&trr<%Ms+13as8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+rr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)fo!!)cn!!)ut!!)or!s&B$!<)ot -!;6?l!<)ot!.k0$s1\O5P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-Srr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)fo!!)cn!!)ut!!)or!s&B$!<)ot -!;6?l!<)ot!.k0$s1\O5GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD?rr<&trr<%Ms+13as8S_l!;tCKs.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2X"+rr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)fo!!)cn!!)ut!!)or!s&B$!<)ot -!;6?l!<)ot!.k0$s1\O5P5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-Srr<&srr<&trrW9$rrDus!!*#u!!)ut!!*#u!!)fo!!)cn!!)ut!!)or!s&B$!<)ot -!;6?l!<)ot!.k0$s1\O5GQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD?rr<&trr<&ss8N(Ms+13hs8S_s!7q2Mf%0kormlZ#JcC<$li6t8!WShlepm~> -rlkQFc2X"+rr<&srr<&trr<&urr<&us8N)urr<&us8N)trr<&trr<&urr<&urr<&rrr<&srr<&t -rr<&urr<&trr<&lrr<&trr<&ss8N(Ms+13hs8S8f!6tQDc-?9Prlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm-Srr<&srr<&trr<&urr<&us8N)urr<&us8N)trr<&trr<&urr<&urr<&rrr<&srr<&t -rr<&urr<&trr<&lrr<&trr<&ss8N(Ms+13hs8R<K!5&:2]=\)frk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MD@s8E#us8E#ss8N(Ms+13hs8S_s!7q2$!7q1CrmlZ#JcC<$li6t8!WShlepm~> -rlkWHc2X"-s82lss8E#us8E#ts8E!"rr<&us8E!"rr<&ts8;rqs8E#rs82lqs8;rss8E#us8E#m -s8E#us8E#ss8N(Ms+13hs8S8f!6tPg!6tP-rlp#oJcC<$li6t/!WSA_c%#~> -rjr@6]Dm-Us82lss8E#us8E#ts8E!"rr<&us8E!"rr<&ts8;rqs8E#rs82lqs8;rss8E#us8E#m -s8E#us8E#ss8N(Ms+13hs8R<K!5&9C!5&8Urk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkTGc2X"-YlK@TJcDnQs-!E_r659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr=5]Dm-UYlK@TJcDnQs*+MDr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkTGc2X"-YlK@TJcDnQs-!Zfc2[ggc2X",c%5nGs+149s8L7Ds-*H,J,~> -rjr=5]Dm-UYlK@TJcDnQs*+bK]DqoC]Dm-T]7L!5s+149s8KV2s*4OTJ,~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s8U?gs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s8T^Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s8U?gs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s8T^Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s8U?gs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s8T^Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s8U?gs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s8T^Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTEbJJs8U[$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s8U?gs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s8T^Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJs4.2$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4s31Pgs-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\s189Cs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTEbJJec5^$s.KABJcC<$JcG'9rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP6V*4bl@ags-*H,JcC<$JcG'9rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGR"5\])ViCs*4OTJcC<$JcG'9rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDJ_#D'J_&r6!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.J^&bjJ^*<$!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVJ\-KFJ\1$U!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDJ_%]hs8W)Ls8W)Ls8W)Ls8W)Ls8W)Ls8W)Ls8RZ$`7=th -T`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.J^)'Vs8W)Cs8W)Cs8W)Cs8W)Cs8W)Cs8W)Cs8RYp`6A>_ -PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVJ\/e2s8W)1s8W)1s8W)1s8W)1s8W)1s8W)1s8RY^`4H'M -GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDJ_%]h+TL!mf%0lP!7oa$ec=:Ps4.2$f)O;$f%0lP!7oa$ -ec:9P`RY(iT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.J^)'V+TK[dc-?:5!6rdgblH#5s31Pgc2Z#gc-?:5!6rdg -blE=>`Q\G`PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVJ\/e2+TK%R]=\*T!5#lC])]ITs189C]DoJC]=\*T!5#lC -])[Do`Oc0NGlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDJ_%ZgrrE&LrrE&LrrE&LrrE&LrrE&LrrE&Lrr@W$`RY(i -T`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.J^)$UrrE&CrrE&CrrE&CrrE&CrrE&CrrE&Crr@Vp`Q\G` -PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVJ\/b1rrE&1rrE&1rrE&1rrE&1rrE&1rrE&1rr@V^`Oc0N -GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDJ_#D'J_&r6!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.J^&bjJ^*<$!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVJ\-KFJ\1$U!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmnX[rrCLIr;`ktrrD!W!!&>br;bdUrrD`lrmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlr"RrrCLIr;`ktrrD!W!!&>br;bdUrrD`lrlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk#`@rrCLIr;`ktrrD!W!!&>br;bdUrrD`lrjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmh)Lq>eY;q>gQq!!(LJ!!'Y2quH6d!!)?b!!)cn!!'&! -!!)Kf!!(dR!!)]lrmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlkHCq>eY;q>gQq!!(LJ!!'Y2quH6d!!)?b!!)cn!!'&! -!!)Kf!!(dR!!)]lrlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrjr11q>eY;q>gQq!!(LJ!!'Y2quH6d!!)?b!!)cn!!'&! -!!)Kf!!(dR!!)]lrjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!!)ut!!(.@#lt#*!<<'!s8N)Jrr<&0rr<&err<&b -rr<%krr<&frr<&Rrr<&ls8LRMs.KABJ,~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!!)ut!!(.@#lt#*!<<'!s8N)Jrr<&0rr<&err<&b -rr<%krr<&frr<&Rrr<&ls8L7Ds-*H,J,~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!!)ut!!(.@#lt#*!<<'!s8N)Jrr<&0rr<&err<&b -rr<%krr<&frr<&Rrr<&ls8KV2s*4OTJ,~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!!)ut#QXo)!!*'!!!*#urrE*!rrE#tr;cfrrrE*! -rrDusrrDZj$3:,+!<<'!s8N*!rW)iqrW)TjrrE*!rrDusrW)osqZ-QorW)osrrE*!rrDusrW)rt -rr<'!rW)iqrW!!!!<)rs!:g'h!<)rt!!*&u!;ulr!!WB&s8N'!rr;uur;Z`r!ri9#qZ-QorW)iq -r;cisrr<'!rW)WkrW)rtrW)uur;ccqquHHjrr<'!rW)lrr;cisqZ-9gqZ-Tpr;cisrrE&urrE*! -rr<'!rW)lrrW!!!!;6BkecGfDrmlT~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!!)ut#QXo)!!*'!!!*#urrE*!rrE#tr;cfrrrE*! -rrDusrrDZj$3:,+!<<'!s8N*!rW)iqrW)TjrrE*!rrDusrW)osqZ-QorW)osrrE*!rrDusrW)rt -rr<'!rW)iqrW!!!!<)rs!:g'h!<)rt!!*&u!;ulr!!WB&s8N'!rr;uur;Z`r!ri9#qZ-QorW)iq -r;cisrr<'!rW)WkrW)rtrW)uur;ccqquHHjrr<'!rW)lrr;cisqZ-9gqZ-Tpr;cisrrE&urrE*! -rr<'!rW)lrrW!!!!;6BkblRj.rlor~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!!)ut#QXo)!!*'!!!*#urrE*!rrE#tr;cfrrrE*! -rrDusrrDZj$3:,+!<<'!s8N*!rW)iqrW)TjrrE*!rrDusrW)osqZ-QorW)osrrE*!rrDusrW)rt -rr<'!rW)iqrW!!!!<)rs!:g'h!<)rt!!*&u!;ulr!!WB&s8N'!rr;uur;Z`r!ri9#qZ-QorW)iq -r;cisrr<'!rW)WkrW)rtrW)uur;ccqquHHjrr<'!rW)lrr;cisqZ-9gqZ-Tpr;cisrrE&urrE*! -rr<'!rW)lrrW!!!!;6Bk])hqVrk![~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!s&B$!;uj#!<3'!rrE&u#QXl)s8N*!rrE#t!!)ut -"T\Q&s8N)ts8N)grr<&ss8N)urr<&trr<&urr<&krriE&!<<'!rr2rurr2rur;Q`sqYpNqrr2ru -rVm$$rrE*!!<2uu!<2uu!<3#u!<2uu!<)ot!<3#u!<2uu!<2uu!:p-i!;uls!<2uu!<2uu!<3#u -!<2uu!<)ot!<)ot!<3#u!<2uu!;HKn!;uis!<)ot!<3#u!<2uu!;6?l!;uj!!<<'!rVlitrr2ru -rVlitp&G$lrr2rurr2rurVlitrVlitn,E@fqu6WrrVlitrr2rurVlitrr;uurr2rurr2rurr;uu -p&G$B!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!s&B$!;uj#!<3'!rrE&u#QXl)s8N*!rrE#t!!)ut -"T\Q&s8N)ts8N)grr<&ss8N)urr<&trr<&urr<&krriE&!<<'!rr2rurr2rur;Q`sqYpNqrr2ru -rVm$$rrE*!!<2uu!<2uu!<3#u!<2uu!<)ot!<3#u!<2uu!<2uu!:p-i!;uls!<2uu!<2uu!<3#u -!<2uu!<)ot!<)ot!<3#u!<2uu!;HKn!;uis!<)ot!<3#u!<2uu!;6?l!;uj!!<<'!rVlitrr2ru -rVlitp&G$lrr2rurr2rurVlitrVlitn,E@fqu6WrrVlitrr2rurVlitrr;uurr2rurr2rurr;uu -p&G$9!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!s&B$!;uj#!<3'!rrE&u#QXl)s8N*!rrE#t!!)ut -"T\Q&s8N)ts8N)grr<&ss8N)urr<&trr<&urr<&krriE&!<<'!rr2rurr2rur;Q`sqYpNqrr2ru -rVm$$rrE*!!<2uu!<2uu!<3#u!<2uu!<)ot!<3#u!<2uu!<2uu!:p-i!;uls!<2uu!<2uu!<3#u -!<2uu!<)ot!<)ot!<3#u!<2uu!;HKn!;uis!<)ot!<3#u!<2uu!;6?l!;uj!!<<'!rVlitrr2ru -rVlitp&G$lrr2rurr2rurVlitrVlitn,E@fqu6WrrVlitrr2rurVlitrr;uurr2rurr2rurr;uu -p&G$'!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,Lr;ccqrrDoqrrDus!!)or!!*#urrD3]!!)rs!!)ut -!!*#u!!)rs!!)]lrrDrr!!)rs!!)ut!!)or!!)rs!!*#urrDrr!!)rs!s&B$!<)ot!<2uu!;uj! -!<<'!r;Q`soD\djr;Q`srVls"s8N)srr<&urr<&trr<&urr<&srr<&urr<&nrr<&trr<&rrrW9$ -rrE#t!!)]l"p"]'!<<'!qYpNqrr2runG`IgrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t -!!*#u!!)ut!s&B$!;uis!;6BkecGfDrmlT~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKCr;ccqrrDoqrrDus!!)or!!*#urrD3]!!)rs!!)ut -!!*#u!!)rs!!)]lrrDrr!!)rs!!)ut!!)or!!)rs!!*#urrDrr!!)rs!s&B$!<)ot!<2uu!;uj! -!<<'!r;Q`soD\djr;Q`srVls"s8N)srr<&urr<&trr<&urr<&srr<&urr<&nrr<&trr<&rrrW9$ -rrE#t!!)]l"p"]'!<<'!qYpNqrr2runG`IgrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t -!!*#u!!)ut!s&B$!;uis!;6BkblRj.rlor~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41r;ccqrrDoqrrDus!!)or!!*#urrD3]!!)rs!!)ut -!!*#u!!)rs!!)]lrrDrr!!)rs!!)ut!!)or!!)rs!!*#urrDrr!!)rs!s&B$!<)ot!<2uu!;uj! -!<<'!r;Q`soD\djr;Q`srVls"s8N)srr<&urr<&trr<&urr<&srr<&urr<&nrr<&trr<&rrrW9$ -rrE#t!!)]l"p"]'!<<'!qYpNqrr2runG`IgrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t -!!*#u!!)ut!s&B$!;uis!;6Bk])hqVrk![~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!s&B$!;uis!;ZWp!;lcr!;lcr!<2uu!9O4\!;uis -!<)ot!<3#p!;6?l!;c`l!<)ot!;lfm!<2uu!;c`l!<<'!!<)ot!<2uu!;ZZk!;$3j!;uis!<)p" -!<<'!r;Q`srr2rurVlitrr2ruq#:<op\t3nrVlitqu6`us8N)trr<&lrrrK'rrE*!!<3#r!<)rr -!;-9k!<)p"!<<'!qu6Wrrr2run,E@fr;Q`squ6`us8N)trr<&urr<&trrW9$rrDus!!)]lrmh,M -T`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!s&B$!;uis!;ZWp!;lcr!;lcr!<2uu!9O4\!;uis -!<)ot!<3#p!;6?l!;c`l!<)ot!;lfm!<2uu!;c`l!<<'!!<)ot!<2uu!;ZZk!;$3j!;uis!<)p" -!<<'!r;Q`srr2rurVlitrr2ruq#:<op\t3nrVlitqu6`us8N)trr<&lrrrK'rrE*!!<3#r!<)rr -!;-9k!<)p"!<<'!qu6Wrrr2run,E@fr;Q`squ6`us8N)trr<&urr<&trrW9$rrDus!!)]lrlkKD -PQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!s&B$!;uis!;ZWp!;lcr!;lcr!<2uu!9O4\!;uis -!<)ot!<3#p!;6?l!;c`l!<)ot!;lfm!<2uu!;c`l!<<'!!<)ot!<2uu!;ZZk!;$3j!;uis!<)p" -!<<'!r;Q`srr2rurVlitrr2ruq#:<op\t3nrVlitqu6`us8N)trr<&lrrrK'rrE*!!<3#r!<)rr -!;-9k!<)p"!<<'!qu6Wrrr2run,E@fr;Q`squ6`us8N)trr<&urr<&trrW9$rrDus!!)]lrjr42 -GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!!)ut!!*#u!!)ip!!)or!!)or!!*#u!!)-\!!)rs -!!)ut!!*#u!!)Kf!!)lq!!)cn!!)or!!)fo!!)lq!!)ip!!)ut!!*#u!!)ip!!)Ed!!)rs!!)ut -!s&B$!;uis!<2uu!<)ot!<2uu!;QQo!;HKn!<)ot!;lcu!<<'!rVlito`#$orrE'!rr2rurVlit -q>UEpp&>!lrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t!!*#u!!)ut!s&B$!;uis!;6Bk -ecGfDrmlT~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!!)ut!!*#u!!)ip!!)or!!)or!!*#u!!)-\!!)rs -!!)ut!!*#u!!)Kf!!)lq!!)cn!!)or!!)fo!!)lq!!)ip!!)ut!!*#u!!)ip!!)Ed!!)rs!!)ut -!s&B$!;uis!<2uu!<)ot!<2uu!;QQo!;HKn!<)ot!;lcu!<<'!rVlito`#$orrE'!rr2rurVlit -q>UEpp&>!lrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t!!*#u!!)ut!s&B$!;uis!;6Bk -blRj.rlor~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!!)ut!!*#u!!)ip!!)or!!)or!!*#u!!)-\!!)rs -!!)ut!!*#u!!)Kf!!)lq!!)cn!!)or!!)fo!!)lq!!)ip!!)ut!!*#u!!)ip!!)Ed!!)rs!!)ut -!s&B$!;uis!<2uu!<)ot!<2uu!;QQo!;HKn!<)ot!;lcu!<<'!rVlito`#$orrE'!rr2rurVlit -q>UEpp&>!lrVls"s8N)rrr<&urr<&frr<&srr<&rrrW9$rrE#t!!*#u!!)ut!s&B$!;uis!;6Bk -])hqVrk![~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,L!!)ut!!*#u!!)ip!!)lq!!)ut!!)ut!!)forrDQg -!!)rs!!)ut!!)ut!!)ut!!)]l!!)ip!!)ut!!)ut!!)lq!!)ut!!*#u!!)ip!!)ut!s&B$!<)ot -!<)ot!<)ot!<2uu!<)ot!;$3j!;uis!<)ot!<2uu!<3#u!<2uu!<3#u!<)ot!<)ot!<2uu!<2uu -!;lcr!;uis!<)ot!<2uu!<)ot!;-<k!!<0#!<2uu!<)ot!<2uu!<)ot!;6?l!<)ot!<2uu!<)ot -!<)ot!<2uu!;$3j!;lcr!<)ot!<2uu!<3#u!<2uu!<)ot!<2uu!<3#u!;6BkecGfDrmlT~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKC!!)ut!!*#u!!)ip!!)lq!!)ut!!)ut!!)forrDQg -!!)rs!!)ut!!)ut!!)ut!!)]l!!)ip!!)ut!!)ut!!)lq!!)ut!!*#u!!)ip!!)ut!s&B$!<)ot -!<)ot!<)ot!<2uu!<)ot!;$3j!;uis!<)ot!<2uu!<3#u!<2uu!<3#u!<)ot!<)ot!<2uu!<2uu -!;lcr!;uis!<)ot!<2uu!<)ot!;-<k!!<0#!<2uu!<)ot!<2uu!<)ot!;6?l!<)ot!<2uu!<)ot -!<)ot!<2uu!;$3j!;lcr!<)ot!<2uu!<3#u!<2uu!<)ot!<2uu!<3#u!;6BkblRj.rlor~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41!!)ut!!*#u!!)ip!!)lq!!)ut!!)ut!!)forrDQg -!!)rs!!)ut!!)ut!!)ut!!)]l!!)ip!!)ut!!)ut!!)lq!!)ut!!*#u!!)ip!!)ut!s&B$!<)ot -!<)ot!<)ot!<2uu!<)ot!;$3j!;uis!<)ot!<2uu!<3#u!<2uu!<3#u!<)ot!<)ot!<2uu!<2uu -!;lcr!;uis!<)ot!<2uu!<)ot!;-<k!!<0#!<2uu!<)ot!<2uu!<)ot!;6?l!<)ot!<2uu!<)ot -!<)ot!<2uu!;$3j!;lcr!<)ot!<2uu!<3#u!<2uu!<)ot!<2uu!<3#u!;6Bk])hqVrk![~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmh)Lq>gQqquH]qquHZpr;cfrquHWorrDWiquHcsrW)uu -rW)osr;cNjquHWor;cisquHWor;cisquHWor;cltrW)uurW)osr;ccqr;cKiquHcsrW)uurW)rt -rW!$"!!*#urW!$"!!)utr;ccqrW)lrquH]qr;cisrW)uurW)Wk!!*#u!!)utr;Zs"!<<)s!;6Bk -!<<)u!<3#s!;lfq!;-<h!;ulq!;ulr!!E6$!<<#us8W&urr;rt!ri6#pAb-C!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlkHCq>gQqquH]qquHZpr;cfrquHWorrDWiquHcsrW)uu -rW)osr;cNjquHWor;cisquHWor;cisquHWor;cltrW)uurW)osr;ccqr;cKiquHcsrW)uurW)rt -rW!$"!!*#urW!$"!!)utr;ccqrW)lrquH]qr;cisrW)uurW)Wk!!*#u!!)utr;Zs"!<<)s!;6Bk -!<<)u!<3#s!;lfq!;-<h!;ulq!;ulr!!E6$!<<#us8W&urr;rt!ri6#pAb-:!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrjr11q>gQqquH]qquHZpr;cfrquHWorrDWiquHcsrW)uu -rW)osr;cNjquHWor;cisquHWor;cisquHWor;cltrW)uurW)osr;ccqr;cKiquHcsrW)uurW)rt -rW!$"!!*#urW!$"!!)utr;ccqrW)lrquH]qr;cisrW)uurW)Wk!!*#u!!)utr;Zs"!<<)s!;6Bk -!<<)u!<3#s!;lfq!;-<h!;ulq!;ulr!!E6$!<<#us8W&urr;rt!ri6#pAb-(!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)$Yrr@WM!!%TMP5kO4!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)$Yrr@WM!!%TMP5kO+!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)$Yrr@WM!!%TMP5kNn!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)9`!!)lq!!'8'!!(LJ!!("<!!%TMci=!q!WShl -epm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)9`!!)lq!!'8'!!(LJ!!("<!!%TMci=!h!WSA_ -c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)9`!!)lq!!'8'!!(LJ!!("<!!%TMci=!V!WRED -]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmp01!!)lq!!'8'!!&>b!!%TMci=!q!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlsO(!!)lq!!'8'!!&>b!!%TMci=!h!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk%7k!!)lq!!'8'!!&>b!!%TMci=!V!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,LrW)osrr<'!rW)WkqZ-Tp!<E0!!;lfq!:p0h!!N<% -rr<&us8N)us8N*!s8N)us8N*!s8N)ss8E#ts8N'!s8E#ts8)fes8E#ts8N'!s8E#ts8E#us8E#t -s8E#rs8N*!s8N)ts8;rss8N'!s8E#ts8N'&rr<'!!!)utrW)rtrr<'!rW)rtqZ)3Idf9<t!WShl -epm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKCrW)osrr<'!rW)WkqZ-Tp!<E0!!;lfq!:p0h!!N<% -rr<&us8N)us8N*!s8N)us8N*!s8N)ss8E#ts8N'!s8E#ts8)fes8E#ts8N'!s8E#ts8E#us8E#t -s8E#rs8N*!s8N)ts8;rss8N'!s8E#ts8N'&rr<'!!!)utrW)rtrr<'!rW)rtqZ)3Idf9<k!WSA_ -c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41rW)osrr<'!rW)WkqZ-Tp!<E0!!;lfq!:p0h!!N<% -rr<&us8N)us8N*!s8N)us8N*!s8N)ss8E#ts8N'!s8E#ts8)fes8E#ts8N'!s8E#ts8E#us8E#t -s8E#rs8N*!s8N)ts8;rss8N'!s8E#ts8N'&rr<'!!!)utrW)rtrr<'!rW)rtqZ)3Idf9<Y!WRED -]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)rsrrE&u!!)Zk!!)lqrrE&u!!)ut!!*#u!!)Zk -!!*#urrE*!!!)ut!!)ut"T\Q&s8N)urriE&!<<'!rr2rurr2rurr;uurr2rurVlitnG`Igrr2ru -rr;uurr2rurr2rurVlitqu6Wrqu6p%rrE*!!<<'!rVlitrr;uurr2rurr;uu"TJH%rrE&u!!*#u -!!*#urrE&u!!)ut!!%TMci=!q!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)rsrrE&u!!)Zk!!)lqrrE&u!!)ut!!*#u!!)Zk -!!*#urrE*!!!)ut!!)ut"T\Q&s8N)urriE&!<<'!rr2rurr2rurr;uurr2rurVlitnG`Igrr2ru -rr;uurr2rurr2rurVlitqu6Wrqu6p%rrE*!!<<'!rVlitrr;uurr2rurr;uu"TJH%rrE&u!!*#u -!!*#urrE&u!!)ut!!%TMci=!h!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)rsrrE&u!!)Zk!!)lqrrE&u!!)ut!!*#u!!)Zk -!!*#urrE*!!!)ut!!)ut"T\Q&s8N)urriE&!<<'!rr2rurr2rurr;uurr2rurVlitnG`Igrr2ru -rr;uurr2rurr2rurVlitqu6Wrqu6p%rrE*!!<<'!rVlitrr;uurr2rurr;uu"TJH%rrE&u!!*#u -!!*#urrE&u!!)ut!!%TMci=!V!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)rs!!)`m -!!)rs!s&B$!<)ot!<)rt!;c`q!;lcr!;uj!!<<'!rVlitrVlitnc&Rhr;Qj!s8N)trr<&urr<&t -rr<&rrr<&rs8N)srr<&rrrW9$rrE#t!!*#u#lt#*!<<'!s8N)srrW9$rrE#t!!)ut!!%TMci=!q -!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)rs!!)`m -!!)rs!s&B$!<)ot!<)rt!;c`q!;lcr!;uj!!<<'!rVlitrVlitnc&Rhr;Qj!s8N)trr<&urr<&t -rr<&rrr<&rs8N)srr<&rrrW9$rrE#t!!*#u#lt#*!<<'!s8N)srrW9$rrE#t!!)ut!!%TMci=!h -!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)rs!!)`m -!!)rs!s&B$!<)ot!<)rt!;c`q!;lcr!;uj!!<<'!rVlitrVlitnc&Rhr;Qj!s8N)trr<&urr<&t -rr<&rrr<&rs8N)srr<&rrrW9$rrE#t!!*#u#lt#*!<<'!s8N)srrW9$rrE#t!!)ut!!%TMci=!V -!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#uq>g6h!!)ip -!!)ut!!)ut!!)ip!!)lqq>gQq!!)ut!!)ut!!)Qhq>gQq!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr36(s8N*!rrE*!q>gQq!!)ut!!)ut!!%TMci=!q!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#uq>g6h!!)ip -!!)ut!!)ut!!)ip!!)lqq>gQq!!)ut!!)ut!!)Qhq>gQq!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr36(s8N*!rrE*!q>gQq!!)ut!!)ut!!%TMci=!h!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#uq>g6h!!)ip -!!)ut!!)ut!!)ip!!)lqq>gQq!!)ut!!)ut!!)Qhq>gQq!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr36(s8N*!rrE*!q>gQq!!)ut!!)ut!!%TMci=!V!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)Ng!!)ip -!!)ut!!)ut!!)ip!!)lq!!)ip!!)ut!!)ut!!)Qh!!)ip!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr39)s8N*!rrE*!!;ZWp!<)ot!<)ot!.k0rs8LRMs.KABJ,~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)Ng!!)ip -!!)ut!!)ut!!)ip!!)lq!!)ip!!)ut!!)ut!!)Qh!!)ip!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr39)s8N*!rrE*!!;ZWp!<)ot!<)ot!.k0rs8L7Ds-*H,J,~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)rs!!)ut!!)Zk!!)lq!!)ut!!*#u!!)Ng!!)ip -!!)ut!!)ut!!)ip!!)lq!!)ip!!)ut!!)ut!!)Qh!!)ip!!)ut!!)ut!s&B$!;c]q!;lcr!;lcr -!;lcu!<<'!rVlitrr39)s8N*!rrE*!!;ZWp!<)ot!<)ot!.k0rs8KV2s*4OTJ,~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq&J!!)rs!!)ut!!)Zk!!*#u!!*#u!!)ut!!)ut!!)ut -!!)]l!!)ut!s&B$!<3#u!<)ot!;ZWp!;ZWp!<)p"!<<'!rVlitrVlitrr2ruo`"mkrVls"s8N)t -rr<&ss8N)prr<&rrr<&qrr<&trr<&urr<&trr<&urrrK'rrE*!!<2uu!<)p"!<<'!rVlitrVlit -rr2ruJcF4!rmh,MT`3Mm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltEA!!)rs!!)ut!!)Zk!!*#u!!*#u!!)ut!!)ut!!)ut -!!)]l!!)ut!s&B$!<3#u!<)ot!;ZWp!;ZWp!<)p"!<<'!rVlitrVlitrr2ruo`"mkrVls"s8N)t -rr<&ss8N)prr<&rrr<&qrr<&trr<&urr<&trr<&urrrK'rrE*!!<2uu!<)p"!<<'!rVlitrVlit -rr2ruJcF4!rlkKDPQ&gW~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&./!!)rs!!)ut!!)Zk!!*#u!!*#u!!)ut!!)ut!!)ut -!!)]l!!)ut!s&B$!<3#u!<)ot!;ZWp!;ZWp!<)p"!<<'!rVlitrVlitrr2ruo`"mkrVls"s8N)t -rr<&ss8N)prr<&rrr<&qrr<&trr<&urr<&trr<&urrrK'rrE*!!<2uu!<)p"!<<'!rVlitrVlit -rr2ruJcF4!rjr42GlG=*~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmq,LquHcsrW)uurW)TjrW)rtrW)uurW)osr;cHhr;cfr -rW!*$!!*'!quH]qquHWor;cltrW)uurW)osrW)Nhr;cltrW)uurW)osrrDrrquH`rquHZpr;cis -rW)uurVururW!-%!!*$!!<3#s!<<)u!<<)u!<)rs!.k0us8LRMs.KABJ,~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rltKCquHcsrW)uurW)TjrW)rtrW)uurW)osr;cHhr;cfr -rW!*$!!*'!quH]qquHWor;cltrW)uurW)osrW)Nhr;cltrW)uurW)osrrDrrquH`rquHZpr;cis -rW)uurVururW!-%!!*$!!<3#s!<<)u!<<)u!<)rs!.k0us8L7Ds-*H,J,~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk&41quHcsrW)uurW)TjrW)rtrW)uurW)osr;cHhr;cfr -rW!*$!!*'!quH]qquHWor;cltrW)uurW)osrW)Nhr;cltrW)uurW)osrrDrrquH`rquHZpr;cis -rW)uurVururW!-%!!*$!!<3#s!<<)u!<<)u!<)rs!.k0us8KV2s*4OTJ,~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCos+13$s5!_TTE"uiecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkQFc2WuYs+13$s5!_TP5kU\blRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr:4]Dm,,s+13$s5!_TGQ7aA])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh2Of)MCoeq)D'f&"s[s.H"br71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2WuYc%4,jc/-\Is-&WHr659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm,,]7ISF]AC.%s*/bgr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)MCoeq)D'f&"s[s.H"br71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2WuYc%4,jc/-\Is-&WHr659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm,,]7ISF]AC.%s*/bgr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)MCoeq)D'f&"s[s.H"br71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2WuYc%4,jc/-\Is-&WHr659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm,,]7ISF]AC.%s*/bgr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh2Of)MCoIt<*#J)5YWs.H"br71oKT`3Mns+13$s6K^aecGfDrmlT~> -rlkQFc2WuYH%C6lH/<fKs-&WHr659BPQ&gXs+13$s6K^ablRj.rlor~> -rjr:4]Dm,,COp8PCYih/s*/bgr4<"0GlG=+s+13$s6K^a])hqVrk![~> -rmh5Pf)MCmJcC<$JcGTHos42h"Q9<QTE+o@!WShleq*jPs+149s8LRMs.KABJ,~> -rlkTGc2WuQJcC<$JcGTHorI]a"Pj$@P5tO*!WSA_c%5nGs+149s8L7Ds-*H,J,~> -rjr=5]Dm+kJcC<$JcGTHopkXR"OmBqGQ@ZR!WRED]7L!5s+149s8KV2s*4OTJ,~> -rmh8Qf)MCms7OqD!<7W$J_#_0!!)\t!<;`C"T[K\TV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkWHc2WuQs7OV;!<7VpJ^'(s!!)\m!<;`:"T[?XPEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr@6]Dm+ks7Nu)!<7V^J\-fO!!)\^!<;`("T[$OG^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh8Qf)MCms7Y"FTE,"Ceq)D1ecDEDos+Stp=9G@!9!mMTE+o@!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4,tblO".orA)mp<<f*!8RU<P5tO*!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7ISP])d-Vopc$^p:CNR!7UsmGQ@ZR!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh8Qf)MCms81@I!<(IMTE,"Ceq)D1ecDEDos+StrRLrKqpktE!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs81%@!<(.DP5tW6c%4,tblO".orA)mrQP<Bqoo>/!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks80D.!<'M2GQ@bp]7ISP])d-Vopc$^rOW%0qn!&W!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms8:IJ!<(IMTE,"Ceq)D1ecDEDos+StrRUuKr72(F!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs8:.A!<(.DP5tW6c%4,tblO".orA)mrQY?Br65G0!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks89M/!<'M2GQ@bp]7ISP])d-Vopc$^rO`(0r4</X!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms8COJ!<(IMTE,"Ceq)D1ecDEDos+StrRUrJrRM1G!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs8C4A!<(.DP5tW6c%4,tblO".orA)mrQY<ArQPP1!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8BS/!<'M2GQ@bp]7ISP])d-Vopc$^rO`%/rOW8Y!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms8LUJ!<(IMTE,"Ceq)D1ecDEDos+StrRUoIrmh:H!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs8L:A!<(.DP5tW6c%4,tblO".orA)mrQY9@rlkY2!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8KY/!<'M2GQ@bp]7ISP])d-Vopc$^rO`".rjrAZ!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms8COJ!<(IMTE,"Ceq)D1ecDEDos+StrRUrJrRM1G!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs8C4A!<(.DP5tW6c%4,tblO".orA)mrQY<ArQPP1!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks8BS/!<'M2GQ@bp]7ISP])d-Vopc$^rO`%/rOW8Y!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms8:IJ!<(IMTE,"Ceq)D1ecDEDos+StrRUuKr72(F!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs8:.A!<(.DP5tW6c%4,tblO".orA)mrQY?Br65G0!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks89M/!<'M2GQ@bp]7ISP])d-Vopc$^rO`(0r4</X!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms81@I!<(IMTE,"Ceq)D1ecDEDos+StrRLrKqpktE!9!mMTE+o@!WShleq*jPs+149 -s8LRMs.KABJ,~> -rlkWHc2WuQs81%@!<(.DP5tW6c%4,tblO".orA)mrQP<Bqoo>/!8RU<P5tO*!WSA_c%5nGs+149 -s8L7Ds-*H,J,~> -rjr@6]Dm+ks80D.!<'M2GQ@bp]7ISP])d-Vopc$^rOW%0qn!&W!7UsmGQ@ZR!WRED]7L!5s+149 -s8KV2s*4OTJ,~> -rmh8Qf)MCms7Y"FTE,"Ceq)D1ecDEDos+Stp=9G@!9!mMTE+o@!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4,tblO".orA)mp<<f*!8RU<P5tO*!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7ISP])d-Vopc$^p:CNR!7UsmGQ@ZR!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh8Qf)MCms7Y"FTE,"Ceq)D1ecDEDos+Stp=9G@!9!mMTE+o@!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkWHc2WuQs7X\=P5tW6c%4,tblO".orA)mp<<f*!8RU<P5tO*!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjr@6]Dm+ks7X&+GQ@bp]7ISP])d-Vopc$^p:CNR!7UsmGQ@ZR!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh;Rf)MCms46n:!W`8OJY7ReMkC%Mos+Vuf(Pa?!9!mMTE+o@!WShleq*jPs+149s8LRMs.KAB -J,~> -rlkZIc2WuQs3:8$!W`8FJWkYKMj",@orA,nc1[>)!8RU<P5tO*!WSA_c%5nGs+149s8L7Ds-*H, -J,~> -rjrC7]Dm+ks1@uL!W`84JTu`jMg,4%opc'_]CpIQ!7UsmGQ@ZR!WRED]7L!5s+149s8KV2s*4OT -J,~> -rmh8Qf)MCms7?9ks+(0$!/U^KZ2jps!!M6[TV);_ecGfDrmlZ#JcC<$li6t8!WShlepm~> -rlkWHc2WuQs7?9ks+(0$!/U^KWrW1l!!M*WPEQ"EblRj.rlp#oJcC<$li6t/!WSA_c%#~> -rjr@6]Dm+ks7?9ks+(0$!/U^KS,iT]!!LdNG^'5d])hqVrk!a]JcC<$li6sr!WRED]79~> -rmh5Pf)MCmJ`)+;J`,GD"95$e!;tCKs.FqoJ_#D'jjjJ4T`3Mm~> -rlkTGc2WuQJ_Yh3J_]/<"94RK!;t(Bs-&#YJ^&bjjimi+PQ&gW~> -rjr=5]Dm+kJ^]2!J^`N*"93Uj!;sG0s*0+,J\-KFjgtQnGlG=*~> -rmh,Meq*jPs+14)s8S_l!;tCKs.FqoJ_#D'jjjJ4T`3Mm~> -rlkKDc%5nGs+14)s8S8_!;t(Bs-&#YJ^&bjjimi+PQ&gW~> -rjr42]7L!5s+14)s8R<D!;sG0s*0+,J\-KFjgtQnGlG=*~> -rmh,Meq'KFTRichTE"uiecGfDJ_#D'J_&r6!WShlepm~> -rlkKDc%2(0PC\qNP5kU\blRj.J^&bjJ^*<$!WSA_c%#~> -rjr42]7G3XG_(+mGQ7aA])hqVJ\-KFJ\1$U!WRED]79~> -rmh)LJY7ReJY:Yg!!)rJJcC<$JcFa0!20>BJ,~> -rlkHCJWkYKJWn`M!!)rAJcC<$JcFa0!0dE,J,~> -rjr11JTu`jJU#gl!!)r/JcC<$JcFa0!-nLTJ,~> -rmlW#JH16$ec>X!JY7ReJY:tprmlT~> -rlouoJH16$ec>WmJWkYKJWo&Vrlor~> -rk!^]JH16$ec>W[JTu`jJU$-urk![~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -J_#D'J_#D'J_#D'X4De~> -J^&bjJ^&bjJ^&bjX3H.~> -J\-KFJ\-KFJ\-KFX1Nl~> -JY7ReJY7Rerh+hn`7BL4l_&b~> -JWkYKJWkYKrf_oX`6Ejsl]Zi~> -JTu`jJTu`jrcj"+`4LSFlZdp~> -!2+lCJH16$JH,]Ns+/b>ec;@of'V#gs*t~> -!0_s6JH16$JH,]Ns+/G5blErYc0`aUs*t~> -!-j%pJH16$JH,]Ns+.f#])[),]C!31s*t~> -!MBFDeq)D'eq)BPs+/b>ec;@of'V#gs*t~> -!L!M7c%4,jc%4+>s+/G5blErYc0`aUs*t~> -!I+Tq]7ISF]7IQos+.f#])[),]C!31s*t~> -!MBGOf)G`_ec5]$eq)D'f'1`cs+/b>ec;@of'V#gs*t~> -!L!NBc2RdVbl@`pc%4,jc0<IQs+/G5blErYc0`aUs*t~> -!I+V']DhlD])Vh^]7ISF]BQp-s+.f#])[),]C!31s*t~> -!20/gk10M4][d&_iR[i*g=?6(J_#D'\CLZ[J_%cj!2+nomFD:;J,~> -!0d6Zk03l+]ZgEViQ_3!g<BTtJ^&bj\BP$RJ^)-X!0_uYmEGY2J,~> -!-n>?k.:Tn]Xn.DiOepdg:I=bJ\-KF\@Vb@J\/k4!-j(,mCNAuJ,~> -"/#YF!<(IK!9_o5!1MI=!<(IK!8?!(!.i^Pf!s92s+/b>ec;@of'V#gs*t~> -"-W`0!<(.B!9_T,!1M.4!<(.B!8>Zt!.iCGc+)!us+/G5blErYc0`aUs*t~> -"*agX!<'M0!9^ro!1LM"!<'M0!8>$b!.hb5]=>HQs+.f#])[),]C!31s*t~> -"/#YF!<(IK!;tFI!;tFH!;tFI!!CdPf%0g#s47/LmahC<!7q,LrRUuKs472MrRUoIrmq&Ks47/L -rmq&KrRUuK!7q,Lr7:iI!nI>Op!s*CrRLrKrRUrJrRUuKs472Ms472M"kEYRec5^Lf)5UJf)#Gu -eq)Daec>`$f#6,>T[)-g!4(2U!;"bAs*t~> -"-W`0!<(.B!;t+@!;t+?!;t+@!!CIGc-?4fs3:NCm`kb3!6tKCrQY?Bs3:QDrQY9@rltEBs3:NC -rltEBrQY?B!6tKCr6>3@!mL]Fp!!I:rQP<BrQY<ArQY?Bs3:QDs3:QD"jI#Ibl@bCc2@YAc2.Kl -c%4-OblIcpc,@j,PKqGQ!4'lL!;"G8s*t~> -"*agX!<'M0!;sJ.!;sJ-!;sJ.!!Bh5]=\%Bs1A71m^rK!!5&41rO`(0s1A:2rO`".rk&.0s1A71 -rk&.0rO`(0!5&41r4Dq.!kSF4ot(2(rOW%0rO`%/rO`(0s1A:2s1A:2"hOa7])Vj1]DVa/]DDSZ -]7IT+])_k^]>V;]Gg<r$!4'6:!;!f&s*t~> -"/#YF!<(IK!<(IK!<1OL!<1OL!<(IK!<1OL!<1RL!<1OL!<(IK!:8;:!<1OL!<(IS!7h/$ec=:P -!<(IK!<1OL!<(IK!;k=I!;tFJ!<1OL!<1OL!<1RL!;+hE!7o^$r71iJrmh&LrRMP\ec=:P!7o^$ -!7h,Mec=:P!<(IK!<(IK!.i^Pf"'B3s7FkB!5$e^!;Y4F!:8;:!5[4d!;tCJT_-h7!!1XNm+2(7 -q:5NGimn)0kLKV5m+).:o@<pAJ,~> -"-W`0!<(.B!<(.B!<14C!<14C!<(.B!<14C!<17C!<14C!<(.B!:7u1!<14C!<(.J!6kMgblH#5 -!<(.B!<14C!<(.B!;k"@!;t+A!<14C!<14C!<17C!;+M<!6ragr653ArlkECrQPoSblH#5!6rag -!6kKDblH#5!<(.B!<(.B!.iCGc+2+!s7FP9!5$JU!;Xn=!:7u1!5Zn[!;t(APP!-!!!1=Em*5G. -q98m>ilqH'kKNu,m*,M1o?@:8J,~> -"*agX!<'M0!<'M0!<0S1!<0S1!<'M0!<0S1!<0V1!<0S1!<'M0!:7>t!<0S1!<'M8!4r6C])]IT -!<'M0!<0S1!<'M0!;jA.!;sJ/!<0S1!<0S1!<0V1!;*l*!5#iCr4;q/rjr.1rOWXA])]IT!5#iC -!4r42])]IT!<'M0!<'M0!.hb5]=GQRs7Eo'!5#iC!;X8+!:7>t!5Z8I!;sG/GkAWI!!0\3m(</q -q7?V,ik#0jkIU]om(35to=G#&J,~> -"/#YF!<1OL!<(IK!;tCJ!;b7K!7o^$r71iJrmh&LrRLrKm+).:r71iJrmq)Lr71iJqpkiLf%'j" -ec5^Iec5^Jec5^KecPp'ec>X!!!)ZBr;cfI!!)rJ!!*#LrrDrI"p!6*!7o^$qUPWHrRLrKJ_#D' -]%-r_T`=oiq:5NG][m)_qUPWHrmh&Lo@Em@"P*S(ec<S<rrDuJ!20#9!!*#LrrD?8!!)cE!!)$0 -!!)35!!)B:!!)WA!<7Q~> -"-W`0!<14C!<(.B!;t(A!;aqB!6ragr653ArlkECrQP<Bm*,M1r653ArltHCr653Aqoo3Cc-67e -bl@b@bl@bAbl@bBbl[sjblI[d!!)Z9r;cf@!!)rA!!*#CrrDr@"ouom!6ragqTT!?rQP<BJ^&bj -]$1<VPQ1O\q98m>]ZpHVqTT!?rlkECo?I77"O-qkblGW*rrDuA!0d*#!!*#CrrD?/!!)c<!!)$' -!!)3,!!)B1!!)W8!<7Q~> -"*agX!<0S1!<'M0!;sG/!;a;0!5#iCr4;q/rjr.1rOW%0m(35tr4;q/rk&11r4;q/qmuq1]=S(A -])Vj.])Vj/])Vj0])r&F])_c@!!)Z'r;cf.!!)r/!!*#1rrDr."ou9I!5#iCqRZ_-rOW%0J\-KF -]"8%DGlR[Aq7?V,]Y"1DqRZ_-rjr.1o=Ou%"M4ZG])]^[rrDu/!-n1K!!*#1rrD>r!!)c*!!)#j -!!)2o!!)At!!)W&!<7Q~> -!h]PEr;ccHq>gNGquHcJ!!)rJ!!)uK!s$p'!:/29!;tCJ!<1OL!;k=I!;k=I!<1OO!7o^$qUPWH -r71iJrRM&Nf%'j!ec5^BecPp'ec>["q>gNG!!)lH"p!6*!7o^$rmpuIrRLrKJ_#D']@I2dTV2>9 -ec<#,!W^dOp=93Do[X!Brmq)Ls4./M_q"khec>X!!20&:!!)rJ!!*#Lr;ccHrW!#N!!)rJ!!)oI -rVuuM!;tFI!;"e>!<:XI!;tFH!<(LK!<:XM!<:XI!;k@H!;tFI!!1XNo@<pAJ,~> -!g<W/r;cc?q>gN>quHcA!!)rA!!)uB!s$Tj!:.l0!;t(A!<14C!;k"@!;k"@!<14F!6ragqTT!? -r653ArQPEEc-67dbl@b9bl[sjblI^eq>gN>!!)l?"ouom!6ragrlt?@rQP<BJ^&bj]?LQ[PEZ$k -blG&o!W^IFp<<R;oZ[@9rltHCs31ND_p&5_blI[d!0d-$!!)rA!!*#Cr;cc?rW!#E!!)rA!!)o@ -rVuuD!;t+@!;"J5!<:=@!;t+?!<(1B!<:=D!<:=@!;k%?!;t+@!!1=Eo?@:8J,~> -!dF^Wr;cc-q>gN,quHc/!!)r/!!)u0!s#sF!:.5s!;sG/!<0S1!;jA.!;jA.!<0S4!5#iCqRZ_- -r4;q/rOW.3]=S(@])Vj'])r&F])_fAq>gN,!!)l-"ou9I!5#iCrk&(.rOW%0J\-KF]=S:IG^08# -])].K!W]h4p:C;)oXb)'rk&11s1872_n,sM])_c@!-n4L!!)r/!!*#1r;cc-rW!#3!!)r/!!)o. -rVuu2!;sJ.!;!i#!<9\.!;sJ-!<'P0!<9\2!<9\.!;jD-!;sJ.!!0\3o=G#&J,~> -"/#YF!<1OL!<(IK!;Y1G!<(IN!7o^$r71iJrRM&Nf%'ieec5^Jec5^Lec5^Iec5^Iec5^LecPp' -ec>Qt!!)rJ!!)uK!s$p'!;tCJ!;+hB!;b7H!;P+F!;b7Q!7o^$f%'iPec>["!!)uK!!%T$J_%Kb -#QLHif)O=P!;Y4F!<(LK!!(UL!;k@H!;k@I!7o^$!;=tD!;4nC!;tCN!7o^$f)>[If)5UIf)GaM -f)GaJf)Ga-ec5^Jec;B:ec5^Gec5^Kec5^Lec5^Lf)GaIec5^Jec5^Lf)GaKec5^Lec5^Cec5^K -ec5^Kec5^Hec5^Kec5^Kecc')!7o^$rmh&Lq:5NGrmh&Lrmh&Lrmq)Lo@<pAJ,~> -"-W`0!<14C!<(.B!;Xk>!<(.E!6ragr653ArQPEEc-67Sbl@bAbl@bCbl@b@bl@b@bl@bCbl[sj -blIUb!!)rA!!)uB!s$Tj!;t(A!;+M9!;aq?!;Oe=!;aqH!6ragc-675blI^e!!)uB!!%SpJ^(jP -#QL!Oc2Z&5!;Xn=!<(1B!!(:C!;k%?!;k%@!7oBp!;=Y;!;4S:!;t(E!6ragc2I_@c2@Y@c2ReD -c2ReAc2Re$bl@bAblEt$bl@b>bl@bBbl@bCbl@bCc2Re@bl@bAbl@bCc2ReBbl@bCbl@b:bl@bB -bl@bBbl@b?bl@bBbl@bBbln*l!6ragrlkECq98m>rlkECrlkECrltHCo?@:8J,~> -"*agX!<0S1!<'M0!;X5,!<'M3!5#iCr4;q/rOW.3]=S(/])Vj/])Vj1])Vj.])Vj.])Vj1])r&F -])_]>!!)r/!!)u0!s#sF!;sG/!;*l'!;a;-!;O/+!;a;6!5#iC]=S'T])_fA!!)u0!!%S^J\/S, -#QK$n]DoLT!;X8+!<'P0!!'Y1!;jD-!;jD.!7na^!;=#)!;3r(!;sG3!5#iC]D_g.]DVa.]Dhm2 -]Dhm/]Dhlg])Vj/])[*L])Vj,])Vj0])Vj1])Vj1]Dhm.])Vj/])Vj1]Dhm0])Vj1])Vj(])Vj0 -])Vj0])Vj-])Vj0])Vj0]*/2H!5#iCrjr.1q7?V,rjr.1rjr.1rk&11o=G#&J,~> -"/#YF!<(IK!<(IK!<(IN!7o^$rRLrKrmh&Lrmq)Lr7:lJqUYZHo@EpArmh&LrRLrKqUPWHrRLrK -r7:lJq:5NGr71iJrRLrKrmh&Lrmq)Lo[X!Bq:5NGrRLrKrmh&LqUPrQf%'iPec=:P!<(IK!<(IK -!<1OL!.i^Pf"ooCs.H%9f)O=P!;G%E!;tFJ!<1OL!<(IK!<1OL!;tFJ!7o^$!;P.F!;+hB!;Y4G -!<1OL!<1OL!<(IK!<(IP!7h/$ec>["rrCs-!!)rJ!20&:!!)lH!!)oI!W^dOr71iJqpk`IrRLrK -r71iJrmh&Lr71iJp=93DpsoEFp!s*CrRUuKqUPWHqUPWHr71oLec>X!!!)WA!<7Q~> -"-W`0!<(.B!<(.B!<(.E!6ragrQP<BrlkECrltHCr6>6AqT]$?o?I:8rlkECrQP<BqTT!?rQP<B -r6>6Aq98m>r653ArQP<BrlkECrltHCoZ[@9q98m>rQP<BrlkECqTT<Hc-675blH#5!<(.B!<(.B -!<14C!.iCGc,%X1s-&Ykc2Z&5!;F_<!;t+A!<14C!<(.B!<14C!;t+A!7oBp!;Oh=!;+M9!;Xn> -!<14C!<14C!<(.B!<(.G!6kMgblI^errCs$!!)rA!0d-$!!)l?!!)o@!W^IFr653Aqoo*@rQP<B -r653ArlkECr653Ap<<R;prrd=p!!I:rQY?BqTT!?qTT!?r659CblI[d!!)W8!<7Q~> -"*agX!<'M0!<'M0!<'M3!5#iCrOW%0rjr.1rk&11r4Dt/qRcb-o=P#&rjr.1rOW%0qRZ_-rOW%0 -r4Dt/q7?V,r4;q/rOW%0rjr.1rk&11oXb)'q7?V,rOW%0rjr.1qR[%6]=S'T])]IT!<'M0!<'M0 -!<0S1!.hb5]>;)bs*/e#]DoLT!;F)*!;sJ/!<0S1!<'M0!<0S1!;sJ/!7na^!;O2+!;*l'!;X8, -!<0S1!<0S1!<'M0!<'M5!4r6C])_fArrCrg!!)r/!-n4L!!)l-!!)o.!W]h4r4;q/qmuh.rOW%0 -r4;q/rjr.1r4;q/p:C;)pq$M+ot(2(rO`(0qRZ_-qRZ_-r4<"1])_c@!!)W&!<7Q~> -!208jrRLrKrRUoIrRUoI!S.8Mf)>XNec5^Jec5^Hf)GaAec>d%rW)oJquHZGr;c`GrrDrIquHcJ -rW)uLrW)rKrVuuM!;4qA!;b:F!<1RI!<1RK!!h'T!7h,Mf%0d"!S.8Lf)>Z#eq)Dged;ALT[q]o -s45a$pXT<Er71iJrRLrKrmh&Lr71iJd+/0sp=93Dp!s*Cq:5NGrRLrKq:5NGrRUuKe^a^#r71k@ -p=93DqUPWHqpkfKec>X!!!)oI!!)uK!!)rJ!!*#Lq>g3>r;ccH!!)iGquH]H!!)iG!!)lHq>^QI -!;tCJ!;"bAs*t~> -!0d?]rQP<BrQY9@rQY9@!R1WDc2I\Ebl@bAbl@b?c2Re8blIghrW)oAquHZ>r;c`>rrDr@quHcA -rW)uCrW)rBrVuuD!;4V8!;at=!<17@!<17B!!gaK!6kKDc-?1e!R1WCc2I]oc%4-UbmFE6PKhAP -s38dgpWW[<r653ArQP<BrlkECr653Ad*2Ojp<<R;p!!I:q98m>rQP<Bq98m>rQY?Be]e'or655* -p<<R;qTT!?qoo0BblI[d!!)o@!!)uB!!)rA!!*#Cq>g35r;cc?!!)i>quH]?!!)i>!!)l?q>^Q@ -!;t(A!;"G8s*t~> -!-nGBrOW%0rO`".rO`".!P8@2]D_d3])Vj/])Vj-]Dhm&])_oDrW)o/quHZ,r;c`,rrDr.quHc/ -rW)u1rW)r0rVuu2!;3u&!;a>+!<0V.!<0V0!!g+9!4r42]=\"A!P8@1]D_e]]7IT1]*\L^Ge:Tf -s1>lCpU^D*r4;q/rOW%0rjr.1r4;q/d(98Xp:C;)ot(2(q7?V,rOW%0q7?V,rO`(0e[ke]r4;rR -p:C;)qRZ_-qmun0])_c@!!)o.!!)u0!!)r/!!*#1q>g3#r;cc-!!)i,quH]-!!)i,!!)l-q>^Q. -!;sG/!;!f&s*t~> -!MBGHec5^Hf)Ga@ec5]jec5]$eq)D*edDGMT[q]oT`<To!<(IK!;tCJ!;tCJ!<(IK!<1RG!799s -!;=tD!;4nC!;Y1G!<(IK!<(LH!<(IK!7]R"!;tCJT_?q:!;b7H!;k=K!7h/Jec5^Iec5^Kec5^J -ec5^Lec5^9ec5^Kec5^Hec5^Kec5^Kec5^Gec5^Hec5^Hec5^Jec5^Aec>`#~> -!L!N;bl@b?c2Re7bl@aabl@`pc%4,mbmOK7PKhAPPQ/nP!<(.B!;t(A!;t(A!<(.B!<17>!78sj -!;=Y;!;4S:!;Xk>!<(.B!<(1?!<(.B!7]6n!;t(APP36$!;aq?!;k"B!6kNAbl@b@bl@bBbl@bA -bl@bCbl@b0bl@bBbl@b?bl@bBbl@bBbl@b>bl@b?bl@b?bl@bAbl@b8blIco~> -!I+Uu])Vj-]Dhm%])ViO])Vh^]7ISI]*eR_Ge:TfGlPCf!<'M0!;sG/!;sG/!<'M0!<0V,!78=X -!;=#)!;3r(!;X5,!<'M0!<'P-!<'M0!7\U\!;sG/GkS`L!;a;-!;jA0!4r7/])Vj.])Vj0])Vj/ -])Vj1])Vis])Vj0])Vj-])Vj0])Vj0])Vj,])Vj-])Vj-])Vj/])Vj&])_k]~> -!MBGHec5^Hec5^?ec5]kec5]$eq)D*edMMNT[q]oTV2>9ec>["!!)rJ!!)rJ!!)uK!!*#L!!(0m -!!)`D!!)]C!!)iG!!)uK!!*#L!!)uK!!)uK!!(O"!!)rJ!20#9!!)uK!s$p'!<(IK!<1OL!<1RL -!;k=I!;tCJ!<1RL!<(IK!<(IK!;=tD!<(IK!<(IK!<1OL!<1OL!<(IK!<(IK!;Y1G!<1OL!<(IK -!<(IN!7o^$rmq)Lo@<pAJ,~> -!L!N;bl@b?bl@b6bl@abbl@`pc%4,mbmXQ8PKhAPPEZ$kblI^e!!)rA!!)rA!!)uB!!*#C!!(0d -!!)`;!!)]:!!)i>!!)uB!!*#C!!)uB!!)uB!!(Nn!!)rA!0d*#!!)uB!s$Tj!<(.B!<14C!<17C -!;k"@!;t(A!<17C!<(.B!<(.B!;=Y;!<(.B!<(.B!<14C!<14C!<(.B!<(.B!;Xk>!<14C!<(.B -!<(.E!6ragrltHCo?@:8J,~> -!I+Uu])Vj-])Vj$])ViP])Vh^]7ISI]*nX`Ge:TfG^08#])_fA!!)r/!!)r/!!)u0!!*#1!!(0R -!!)`)!!)](!!)i,!!)u0!!*#1!!)u0!!)u0!!(N\!!)r/!-n1K!!)u0!s#sF!<'M0!<0S1!<0V1 -!;jA.!;sG/!<0V1!<'M0!<'M0!;=#)!<'M0!<'M0!<0S1!<0S1!<'M0!<'M0!;X5,!<0S1!<'M0 -!<'M3!5#iCrk&11o=G#&J,~> -!MBGJf)5U7f)5Tof)5T"eq)D*edVSOT[q]oTV0m9f%'j"ec5^Jec5^Jec5^Kec5^Kec5^Kec5^K -f)Ga$ec5^Iec5^Kec5^Bec5^KecPp'ec>["!!*#L!!)uK!!)uK!!)fFrrCs-!!)rJ!2/u8r;cfI -r;ccHrVuuM!<(LH!<(LJ!!:^O!<(LI!;4q@!;k@H!;tFH!!CdPf%0a!qpt`Hqpt]GrRUrJ!nI>O -o[X$BJ,~> -!L!N=c2@Y.c2@Xfc2@Wnc%4,mbmaW9PKhAPPEX8kc-67ebl@bAbl@bAbl@bBbl@bBbl@bBbl@bB -c2Rdpbl@b@bl@bBbl@b9bl@bBbl[sjblI^e!!*#C!!)uB!!)uB!!)f=rrCs$!!)rA!0d'"r;cf@ -r;cc?rVuuD!<(1?!<(1A!!:CF!<(1@!;4V7!;k%?!;t+?!!CIGc-?.dqp#*?qp#'>rQY<A!mL]F -oZ[C9J,~> -!I+V"]DV`q]DV`T]DV_\]7ISI]+"^aGe:TfG^-k#]=S(A])Vj/])Vj/])Vj0])Vj0])Vj0])Vj0 -]Dhl^])Vj.])Vj0])Vj'])Vj0])r&F])_fA!!*#1!!)u0!!)u0!!)f+rrCrg!!)r/!-n.Jr;cf. -r;cc-rVuu2!<'P-!<'P/!!9b4!<'P.!;3u%!;jD-!;sJ-!!Bh5]=[t@qn)h-qn)e,rO`%/!kSF4 -oXb,'J,~> -!MBFDeq)D'er/)ds.H%9f)MD9f%0ls!<1RI!<:XL!<:XL!<(LI!;tFJ!8,m#!;tFH!:n_>!<:XL -!<:XL!<1RJ!!CdPf%0a!qptcIiR[o,rmh(Bhpqc-OOaF3J,~> -!L!M7c%4,jc&9gRs-&Ykc2Wukc-?:a!<17@!<:=C!<:=C!<(1@!;t+A!8,Qo!;t+?!:nD5!<:=C -!<:=C!<17A!!CIGc-?.dqp#-@iQ_9#rlkG,hou-$ONde*J,~> -!I+Tq]7ISF]8O9.s*/e#]Dm,#]=\+=!<0V.!<9\1!<9\1!<'P.!;sJ/!8+p]!;sJ-!:mc#!<9\1 -!<9\1!<0V/!!Bh5]=[t@qn)k.iOf!frjr/Thn&jgOLkMmJ,~> -!MBFDeq)D'er8/fs.H%9f)MD9f%0m$J_%cj!2/6#!!&,3!<7Q~> -!L!M7c%4,jc&BmTs-&Ykc2Wukc-?:gJ^)-X!0c<b!!&,*!<7Q~> -!I+Tq]7ISF]8X?0s*/e#]Dm,#]=\+CJ\/k4!-mD5!!&+m!<7Q~> -!MBFDeq)D'erA5hs.H%9f)MD9f%0kos+/b>ec;B%f)5T2ec>`#~> -!L!M7c%4,jc&KsVs-&Ykc2Wukc-?9Ps+/G5blEsdc2@X)blIco~> -!I+Tq]7ISF]8aE2s*/e#]Dm,#]=\)fs+.f#])[*7]DV_l])_k]~> -!MBFDeq)D'erJ;js.H%9f)MD9f%0koT`9So`7=p]J_'5>!<7Q~> -!L!M7c%4,jc&U$Xs-&Ykc2Wukc-?9PPQ-3Y`6A:GJ^*T,!<7Q~> -!I+Tq]7ISF]8jK4s*/e#]Dm,#]=\)fGlN?,`4H"oJ\1<]!<7Q~> -!MBFDeq)D'erSAls.H%9f)MD9f%0koT[s-of#6,>TRk\]ec>`#~> -!L!M7c%4,jc&^*Zs-&Ykc2Wukc-?9PPKj,Yc,@j,PC_!GblIco~> -!I+Tq]7ISF]8sQ6s*/e#]Dm,#]=\)fGe=!,]>V;]G_*Ko])_k]~> -!MBFDeq)D'er\Gns.H%9f)MD9f%0koT[q]oJ_%cj!2+nomFD:;J,~> -!L!M7c%4,jc&g0\s-&Ykc2Wukc-?9PPKhAPJ^)-X!0_uYmEGY2J,~> -!I+Tq]7ISF]9'W8s*/e#]Dm,#]=\)fGe:TfJ\/k4!-j(,mCNAuJ,~> -!MBFDeq)D'ereMls.H%9f)MD9f%0koT`3LBs+/b>ec;@of'V#gs*t~> -!L!M7c%4,jc&p6Zs-&Ykc2Wukc-?9PPQ&f,s+/G5blErYc0`aUs*t~> -!I+Tq]7ISF]90]6s*/e#]Dm,#]=\)fGlG;Ts+.f#])[),]C!31s*t~> -!MBFDeq)D'ernSms.H%9f)MD9f%0koT`*FAs+/b>ec;@of'V#gs*t~> -!L!M7c%4,jc'$<[s-&Ykc2Wukc-?9PPPr`+s+/G5blErYc0`aUs*t~> -!I+Tq]7ISF]99c7s*/e#]Dm,#]=\)fGl>5Ss+.f#])[),]C!31s*t~> -!2+oCJcC<$JcGcMJ_%cj!2+oCm/MS~> -!0`!6JcC<$JcGcMJ^)-X!0`!6m/MS~> -!-j(pJcC<$JcGcMJ\/k4!-j(pm/MS~> -%%EndData -showpage -%%Trailer -end -%%EOF diff --git a/doc/refman/coqide.png b/doc/refman/coqide.png Binary files differdeleted file mode 100644 index a6a0f585..00000000 --- a/doc/refman/coqide.png +++ /dev/null diff --git a/doc/refman/headers.hva b/doc/refman/headers.hva deleted file mode 100644 index f65e1c10..00000000 --- a/doc/refman/headers.hva +++ /dev/null @@ -1,42 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% File headers.hva -% Hevea version of headers.sty -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Commands for indexes -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{index} -\makeindex -\newindex{tactic}{tacidx}{tacind}{% -\protect\addcontentsline{toc}{chapter}{Tactics Index}Tactics Index} - -\newindex{command}{comidx}{comind}{% -\protect\addcontentsline{toc}{chapter}{Vernacular Commands Index}% -Vernacular Commands Index} - -\newindex{error}{erridx}{errind}{% -\protect\addcontentsline{toc}{chapter}{Index of Error Messages}Index of Error Messages} - -\renewindex{default}{idx}{ind}{% -\protect\addcontentsline{toc}{chapter}{Global Index}% -Global Index} - -\newcommand{\tacindex}[1]{% -\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}} -\newcommand{\comindex}[1]{% -\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}} -\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}} -\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}} -\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% For the Addendum table of contents -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip} % 3 \bigskip's that were here originally - % may be good for LaTeX but too much for HTML -\newcommand{\atableofcontents}{} -\newcommand{\achapter}[1]{\chapter{#1}} -\newcommand{\asection}{\section} -\newcommand{\asubsection}{\subsection} -\newcommand{\asubsubsection}{\subsubsection} diff --git a/doc/refman/headers.sty b/doc/refman/headers.sty deleted file mode 100644 index bc5f5c6c..00000000 --- a/doc/refman/headers.sty +++ /dev/null @@ -1,87 +0,0 @@ -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% File headers.sty -% Commands for pretty headers, multiple indexes, and the appendix. -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{fancyhdr} - -\setlength{\headheight}{14pt} - -\pagestyle{fancyplain} - -\newcommand{\coqfooter}{\tiny Coq Reference Manual, V\coqversion{}, \today} - -\cfoot{} -\lfoot[{\coqfooter}]{} -\rfoot[]{{\coqfooter}} - -\newcommand{\setheaders}[1]{\rhead[\fancyplain{}{\textbf{#1}}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\textbf{#1}}}} -\newcommand{\defaultheaders}{\rhead[\fancyplain{}{\leftmark}]{\fancyplain{}{\thepage}}\lhead[\fancyplain{}{\thepage}]{\fancyplain{}{\rightmark}}} - -\renewcommand{\chaptermark}[1]{\markboth{{\bf \thechapter~#1}}{}} -\renewcommand{\sectionmark}[1]{\markright{\thesection~#1}} -\renewcommand{\contentsname}{% -\protect\setheaders{Table of contents}Table of contents} -\renewcommand{\bibname}{\protect\setheaders{Bibliography}% -\protect\RefManCutCommand{BEGINBIBLIO=\thepage}% -\protect\addcontentsline{toc}{chapter}{Bibliography}Bibliography} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Commands for indexes -%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\usepackage{index} -\makeindex -\newindex{tactic}{tacidx}{tacind}{% -\protect\setheaders{Tactics Index}% -\protect\addcontentsline{toc}{chapter}{Tactics Index}Tactics Index} - -\newindex{command}{comidx}{comind}{% -\protect\setheaders{Vernacular Commands Index}% -\protect\addcontentsline{toc}{chapter}{Vernacular Commands Index}% -Vernacular Commands Index} - -\newindex{error}{erridx}{errind}{% -\protect\setheaders{Index of Error Messages}% -\protect\addcontentsline{toc}{chapter}{Index of Error Messages}Index of Error Messages} - -\renewindex{default}{idx}{ind}{% -\protect\addcontentsline{toc}{chapter}{Global Index}% -\protect\setheaders{Global Index}Global Index} - -\newcommand{\tacindex}[1]{% -\index{#1@\texttt{#1}}\index[tactic]{#1@\texttt{#1}}} -\newcommand{\comindex}[1]{% -\index{#1@\texttt{#1}}\index[command]{#1@\texttt{#1}}} -\newcommand{\errindex}[1]{\texttt{#1}\index[error]{#1}} -\newcommand{\errindexbis}[2]{\texttt{#1}\index[error]{#2}} -\newcommand{\ttindex}[1]{\index{#1@\texttt{#1}}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% For the Addendum table of contents -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\newcommand{\aauthor}[1]{{\LARGE \bf #1} \bigskip \bigskip \bigskip} -\newcommand{\atableofcontents}{\section*{Contents}\@starttoc{atoc}} -\newcommand{\achapter}[1]{ - \chapter{#1}\addcontentsline{atoc}{chapter}{#1}} -\newcommand{\asection}[1]{ - \section{#1}\addcontentsline{atoc}{section}{#1}} -\newcommand{\asubsection}[1]{ - \subsection{#1}\addcontentsline{atoc}{subsection}{#1}} -\newcommand{\asubsubsection}[1]{ - \subsubsection{#1}\addcontentsline{atoc}{subsubsection}{#1}} - -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -% Reference-Manual.sh is generated to cut the Postscript -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -%\@starttoc{sh} -\newwrite\RefManCut@out% -\immediate\openout\RefManCut@out\jobname.sh -\newcommand{\RefManCutCommand}[1]{% -\immediate\write\RefManCut@out{#1}} -\newcommand{\RefManCutClose}{% -\immediate\closeout\RefManCut@out} - - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: diff --git a/doc/refman/hevea.sty b/doc/refman/hevea.sty deleted file mode 100644 index 6d49aa8c..00000000 --- a/doc/refman/hevea.sty +++ /dev/null @@ -1,78 +0,0 @@ -% hevea : hevea.sty -% This is a very basic style file for latex document to be processed -% with hevea. It contains definitions of LaTeX environment which are -% processed in a special way by the translator. -% Mostly : -% - latexonly, not processed by hevea, processed by latex. -% - htmlonly , the reverse. -% - rawhtml, to include raw HTML in hevea output. -% - toimage, to send text to the image file. -% The package also provides hevea logos, html related commands (ahref -% etc.), void cutting and image commands. -\NeedsTeXFormat{LaTeX2e} -\ProvidesPackage{hevea}[2002/01/11] -\RequirePackage{comment} -\newif\ifhevea\heveafalse -\@ifundefined{ifimagen}{\newif\ifimagen\imagenfalse} -\makeatletter% -\newcommand{\heveasmup}[2]{% -\raise #1\hbox{$\m@th$% - \csname S@\f@size\endcsname - \fontsize\sf@size 0% - \math@fontsfalse\selectfont -#2% -}}% -\DeclareRobustCommand{\hevea}{H\kern-.15em\heveasmup{.2ex}{E}\kern-.15emV\kern-.15em\heveasmup{.2ex}{E}\kern-.15emA}% -\DeclareRobustCommand{\hacha}{H\kern-.15em\heveasmup{.2ex}{A}\kern-.15emC\kern-.1em\heveasmup{.2ex}{H}\kern-.15emA}% -\DeclareRobustCommand{\html}{\protect\heveasmup{0.ex}{HTML}} -%%%%%%%%% Hyperlinks hevea style -\newcommand{\ahref}[2]{{#2}} -\newcommand{\ahrefloc}[2]{{#2}} -\newcommand{\aname}[2]{{#2}} -\newcommand{\ahrefurl}[1]{\texttt{#1}} -\newcommand{\footahref}[2]{#2\footnote{\texttt{#1}}} -\newcommand{\mailto}[1]{\texttt{#1}} -\newcommand{\imgsrc}[2][]{} -\newcommand{\home}[1]{\protect\raisebox{-.75ex}{\char126}#1} -\AtBeginDocument -{\@ifundefined{url} -{%url package is not loaded -\let\url\ahref\let\oneurl\ahrefurl\let\footurl\footahref} -{}} -%% Void cutting instructions -\newcounter{cuttingdepth} -\newcommand{\tocnumber}{} -\newcommand{\notocnumber}{} -\newcommand{\cuttingunit}{} -\newcommand{\cutdef}[2][]{} -\newcommand{\cuthere}[2]{} -\newcommand{\cutend}{} -\newcommand{\htmlhead}[1]{} -\newcommand{\htmlfoot}[1]{} -\newcommand{\htmlprefix}[1]{} -\newenvironment{cutflow}[1]{}{} -\newcommand{\cutname}[1]{} -\newcommand{\toplinks}[3]{} -%%%% Html only -\excludecomment{rawhtml} -\newcommand{\rawhtmlinput}[1]{} -\excludecomment{htmlonly} -%%%% Latex only -\newenvironment{latexonly}{}{} -\newenvironment{verblatex}{}{} -%%%% Image file stuff -\def\toimage{\endgroup} -\def\endtoimage{\begingroup\def\@currenvir{toimage}} -\def\verbimage{\endgroup} -\def\endverbimage{\begingroup\def\@currenvir{verbimage}} -\newcommand{\imageflush}[1][]{} -%%% Bgcolor definition -\newsavebox{\@bgcolorbin} -\newenvironment{bgcolor}[2][] - {\newcommand{\@mycolor}{#2}\begin{lrbox}{\@bgcolorbin}\vbox\bgroup} - {\egroup\end{lrbox}% - \begin{flushleft}% - \colorbox{\@mycolor}{\usebox{\@bgcolorbin}}% - \end{flushleft}} -%%% Postlude -\makeatother diff --git a/doc/refman/index.html b/doc/refman/index.html deleted file mode 100644 index 9b5250ab..00000000 --- a/doc/refman/index.html +++ /dev/null @@ -1,14 +0,0 @@ -<HTML> - -<HEAD> - -<TITLE>The Coq Proof Assistant Reference Manual</TITLE> - -</HEAD> - -<FRAMESET ROWS=90%,*> - <FRAME SRC="cover.html" NAME="UP"> - <FRAME SRC="menu.html"> -</FRAMESET> - -</HTML>
\ No newline at end of file diff --git a/doc/refman/menu.html b/doc/refman/menu.html deleted file mode 100644 index db19678f..00000000 --- a/doc/refman/menu.html +++ /dev/null @@ -1,29 +0,0 @@ -<HTML> - -<BODY> - -<CENTER> - -<TABLE BORDER="0" CELLPADDING=10> -<TR> -<TD><CENTER><A HREF="cover.html" TARGET="UP"><FONT SIZE=2>Cover page</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="toc.html" TARGET="UP"><FONT SIZE=2>Table of contents</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="biblio.html" TARGET="UP"><FONT SIZE=2> -Bibliography</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="general-index.html" TARGET="UP"><FONT SIZE=2> -Global Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="tactic-index.html" TARGET="UP"><FONT SIZE=2> -Tactics Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="command-index.html" TARGET="UP"><FONT SIZE=2> -Vernacular Commands Index -</FONT></A></CENTER></TD> -<TD><CENTER><A HREF="error-index.html" TARGET="UP"><FONT SIZE=2> -Index of Error Messages -</FONT></A></CENTER></TD> -</TABLE> - -</CENTER> - -</BODY></HTML>
\ No newline at end of file |