diff options
Diffstat (limited to 'doc/refman/RefMan-tacex.tex')
-rw-r--r-- | doc/refman/RefMan-tacex.tex | 1505 |
1 files changed, 0 insertions, 1505 deletions
diff --git a/doc/refman/RefMan-tacex.tex b/doc/refman/RefMan-tacex.tex deleted file mode 100644 index 8330a434..00000000 --- a/doc/refman/RefMan-tacex.tex +++ /dev/null @@ -1,1505 +0,0 @@ -\chapter[Detailed examples of tactics]{Detailed examples of tactics\label{Tactics-examples}} - -This chapter presents detailed examples of certain tactics, to -illustrate their behavior. - -\section[\tt refine]{\tt refine\tacindex{refine} -\label{refine-example}} - -This tactic applies to any goal. It behaves like {\tt exact} with a -big difference : the user can leave some holes (denoted by \texttt{\_} or -{\tt (\_:}{\it type}{\tt )}) in the term. -{\tt refine} will generate as many -subgoals as they are holes in the term. The type of holes must be -either synthesized by the system or declared by an -explicit cast like \verb|(\_:nat->Prop)|. This low-level -tactic can be useful to advanced users. - -%\firstexample -\Example - -\begin{coq_example*} -Inductive Option : Set := - | Fail : Option - | Ok : bool -> Option. -\end{coq_example} -\begin{coq_example} -Definition get : forall x:Option, x <> Fail -> bool. -refine - (fun x:Option => - match x return x <> Fail -> bool with - | Fail => _ - | Ok b => fun _ => b - end). -intros; absurd (Fail = Fail); trivial. -\end{coq_example} -\begin{coq_example*} -Defined. -\end{coq_example*} - -% \example{Using Refine to build a poor-man's ``Cases'' tactic} - -% \texttt{Refine} is actually the only way for the user to do -% a proof with the same structure as a {\tt Cases} definition. Actually, -% the tactics \texttt{case} (see \ref{case}) and \texttt{Elim} (see -% \ref{elim}) only allow one step of elementary induction. - -% \begin{coq_example*} -% Require Bool. -% Require Arith. -% \end{coq_example*} -% %\begin{coq_eval} -% %Abort. -% %\end{coq_eval} -% \begin{coq_example} -% Definition one_two_or_five := [x:nat] -% Cases x of -% (1) => true -% | (2) => true -% | (5) => true -% | _ => false -% end. -% Goal (x:nat)(Is_true (one_two_or_five x)) -> x=(1)\/x=(2)\/x=(5). -% \end{coq_example} - -% A traditional script would be the following: - -% \begin{coq_example*} -% Destruct x. -% Tauto. -% Destruct n. -% Auto. -% Destruct n0. -% Auto. -% Destruct n1. -% Tauto. -% Destruct n2. -% Tauto. -% Destruct n3. -% Auto. -% Intros; Inversion H. -% \end{coq_example*} - -% With the tactic \texttt{Refine}, it becomes quite shorter: - -% \begin{coq_example*} -% Restart. -% \end{coq_example*} -% \begin{coq_example} -% Refine [x:nat] -% <[y:nat](Is_true (one_two_or_five y))->(y=(1)\/y=(2)\/y=(5))> -% Cases x of -% (1) => [H]? -% | (2) => [H]? -% | (5) => [H]? -% | n => [H](False_ind ? H) -% end; Auto. -% \end{coq_example} -% \begin{coq_eval} -% Abort. -% \end{coq_eval} - -\section[\tt eapply]{\tt eapply\tacindex{eapply} -\label{eapply-example}} -\Example -Assume we have a relation on {\tt nat} which is transitive: - -\begin{coq_example*} -Variable R : nat -> nat -> Prop. -Hypothesis Rtrans : forall x y z:nat, R x y -> R y z -> R x z. -Variables n m p : nat. -Hypothesis Rnm : R n m. -Hypothesis Rmp : R m p. -\end{coq_example*} - -Consider the goal {\tt (R n p)} provable using the transitivity of -{\tt R}: - -\begin{coq_example*} -Goal R n p. -\end{coq_example*} - -The direct application of {\tt Rtrans} with {\tt apply} fails because -no value for {\tt y} in {\tt Rtrans} is found by {\tt apply}: - -\begin{coq_eval} -Set Printing Depth 50. -(********** The following is not correct and should produce **********) -(**** Error: generated subgoal (R n ?17) has metavariables in it *****) -\end{coq_eval} -\begin{coq_example} -apply Rtrans. -\end{coq_example} - -A solution is to rather apply {\tt (Rtrans n m p)}. - -\begin{coq_example} -apply (Rtrans n m p). -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -More elegantly, {\tt apply Rtrans with (y:=m)} allows to only mention -the unknown {\tt m}: - -\begin{coq_example} - - apply Rtrans with (y := m). -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -Another solution is to mention the proof of {\tt (R x y)} in {\tt -Rtrans}... - -\begin{coq_example} - - apply Rtrans with (1 := Rnm). -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -... or the proof of {\tt (R y z)}: - -\begin{coq_example} - - apply Rtrans with (2 := Rmp). -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -On the opposite, one can use {\tt eapply} which postpone the problem -of finding {\tt m}. Then one can apply the hypotheses {\tt Rnm} and {\tt -Rmp}. This instantiates the existential variable and completes the proof. - -\begin{coq_example} -eapply Rtrans. -apply Rnm. -apply Rmp. -\end{coq_example} - -\begin{coq_eval} -Reset R. -\end{coq_eval} - -\section[{\tt Scheme}]{{\tt Scheme}\comindex{Scheme} -\label{Scheme-examples}} - -\firstexample -\example{Induction scheme for \texttt{tree} and \texttt{forest}} - -The definition of principle of mutual induction for {\tt tree} and -{\tt forest} over the sort {\tt Set} is defined by the command: - -\begin{coq_eval} -Reset Initial. -Variables A B : - Set. -\end{coq_eval} - -\begin{coq_example*} -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | leaf : B -> forest - | cons : tree -> forest -> forest. - -Scheme tree_forest_rec := Induction for tree Sort Set - with forest_tree_rec := Induction for forest Sort Set. -\end{coq_example*} - -You may now look at the type of {\tt tree\_forest\_rec}: - -\begin{coq_example} -Check tree_forest_rec. -\end{coq_example} - -This principle involves two different predicates for {\tt trees} and -{\tt forests}; it also has three premises each one corresponding to a -constructor of one of the inductive definitions. - -The principle {\tt forest\_tree\_rec} shares exactly the same -premises, only the conclusion now refers to the property of forests. - -\begin{coq_example} -Check forest_tree_rec. -\end{coq_example} - -\example{Predicates {\tt odd} and {\tt even} on naturals} - -Let {\tt odd} and {\tt even} be inductively defined as: - -% Reset Initial. -\begin{coq_eval} -Open Scope nat_scope. -\end{coq_eval} - -\begin{coq_example*} -Inductive odd : nat -> Prop := - oddS : forall n:nat, even n -> odd (S n) -with even : nat -> Prop := - | evenO : even 0 - | evenS : forall n:nat, odd n -> even (S n). -\end{coq_example*} - -The following command generates a powerful elimination -principle: - -\begin{coq_example} -Scheme odd_even := Minimality for odd Sort Prop - with even_odd := Minimality for even Sort Prop. -\end{coq_example} - -The type of {\tt odd\_even} for instance will be: - -\begin{coq_example} -Check odd_even. -\end{coq_example} - -The type of {\tt even\_odd} shares the same premises but the -conclusion is {\tt (n:nat)(even n)->(Q n)}. - -\subsection[{\tt Combined Scheme}]{{\tt Combined Scheme}\comindex{Combined Scheme} -\label{CombinedScheme-examples}} - -We can define the induction principles for trees and forests using: -\begin{coq_example} -Scheme tree_forest_ind := Induction for tree Sort Prop - with forest_tree_ind := Induction for forest Sort Prop. -\end{coq_example} - -Then we can build the combined induction principle which gives the -conjunction of the conclusions of each individual principle: -\begin{coq_example} -Combined Scheme tree_forest_mutind from tree_forest_ind, forest_tree_ind. -\end{coq_example} - -The type of {\tt tree\_forest\_mutrec} will be: -\begin{coq_example} -Check tree_forest_mutind. -\end{coq_example} - -\section[{\tt Functional Scheme} and {\tt functional induction}]{{\tt Functional Scheme} and {\tt functional induction}\comindex{Functional Scheme}\tacindex{functional induction} -\label{FunScheme-examples}} - -\firstexample -\example{Induction scheme for \texttt{div2}} - -We define the function \texttt{div2} as follows: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{coq_example*} -Require Import Arith. -Fixpoint div2 (n:nat) : nat := - match n with - | O => 0 - | S O => 0 - | S (S n') => S (div2 n') - end. -\end{coq_example*} - -The definition of a principle of induction corresponding to the -recursive structure of \texttt{div2} is defined by the command: - -\begin{coq_example} -Functional Scheme div2_ind := Induction for div2 Sort Prop. -\end{coq_example} - -You may now look at the type of {\tt div2\_ind}: - -\begin{coq_example} -Check div2_ind. -\end{coq_example} - -We can now prove the following lemma using this principle: - - -\begin{coq_example*} -Lemma div2_le' : forall n:nat, div2 n <= n. -intro n. - pattern n , (div2 n). -\end{coq_example*} - - -\begin{coq_example} -apply div2_ind; intros. -\end{coq_example} - -\begin{coq_example*} -auto with arith. -auto with arith. -simpl; auto with arith. -Qed. -\end{coq_example*} - -We can use directly the \texttt{functional induction} -(\ref{FunInduction}) tactic instead of the pattern/apply trick: - -\begin{coq_example*} -Reset div2_le'. -Lemma div2_le : forall n:nat, div2 n <= n. -intro n. -\end{coq_example*} - -\begin{coq_example} -functional induction (div2 n). -\end{coq_example} - -\begin{coq_example*} -auto with arith. -auto with arith. -auto with arith. -Qed. -\end{coq_example*} - -\Rem There is a difference between obtaining an induction scheme for a -function by using \texttt{Function} (see Section~\ref{Function}) and by -using \texttt{Functional Scheme} after a normal definition using -\texttt{Fixpoint} or \texttt{Definition}. See \ref{Function} for -details. - - -\example{Induction scheme for \texttt{tree\_size}} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -We define trees by the following mutual inductive type: - -\begin{coq_example*} -Variable A : Set. -Inductive tree : Set := - node : A -> forest -> tree -with forest : Set := - | empty : forest - | cons : tree -> forest -> forest. -\end{coq_example*} - -We define the function \texttt{tree\_size} that computes the size -of a tree or a forest. Note that we use \texttt{Function} which -generally produces better principles. - -\begin{coq_example*} -Function tree_size (t:tree) : nat := - match t with - | node A f => S (forest_size f) - end - with forest_size (f:forest) : nat := - match f with - | empty => 0 - | cons t f' => (tree_size t + forest_size f') - end. -\end{coq_example*} - -Remark: \texttt{Function} generates itself non mutual induction -principles {\tt tree\_size\_ind} and {\tt forest\_size\_ind}: - -\begin{coq_example} -Check tree_size_ind. -\end{coq_example} - -The definition of mutual induction principles following the recursive -structure of \texttt{tree\_size} and \texttt{forest\_size} is defined -by the command: - -\begin{coq_example*} -Functional Scheme tree_size_ind2 := Induction for tree_size Sort Prop -with forest_size_ind2 := Induction for forest_size Sort Prop. -\end{coq_example*} - -You may now look at the type of {\tt tree\_size\_ind2}: - -\begin{coq_example} -Check tree_size_ind2. -\end{coq_example} - - - - -\section[{\tt inversion}]{{\tt inversion}\tacindex{inversion} -\label{inversion-examples}} - -\subsection*{Generalities about inversion} - -When working with (co)inductive predicates, we are very often faced to -some of these situations: -\begin{itemize} -\item we have an inconsistent instance of an inductive predicate in the - local context of hypotheses. Thus, the current goal can be trivially - proved by absurdity. -\item we have a hypothesis that is an instance of an inductive - predicate, and the instance has some variables whose constraints we - would like to derive. -\end{itemize} - -The inversion tactics are very useful to simplify the work in these -cases. Inversion tools can be classified in three groups: - -\begin{enumerate} -\item tactics for inverting an instance without stocking the inversion - lemma in the context; this includes the tactics - (\texttt{dependent}) \texttt{inversion} and - (\texttt{dependent}) \texttt{inversion\_clear}. -\item commands for generating and stocking in the context the inversion - lemma corresponding to an instance; this includes \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion} and \texttt{Derive} - (\texttt{Dependent}) \texttt{Inversion\_clear}. -\item tactics for inverting an instance using an already defined - inversion lemma; this includes the tactic \texttt{inversion \ldots using}. -\end{enumerate} - -As inversion proofs may be large in size, we recommend the user to -stock the lemmas whenever the same instance needs to be inverted -several times. - -\firstexample -\example{Non-dependent inversion} - -Let's consider the relation \texttt{Le} over natural numbers and the -following variables: - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\begin{coq_example*} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0 n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_example*} - -For example, consider the goal: - -\begin{coq_eval} -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -To prove the goal we may need to reason by cases on \texttt{H} and to - derive that \texttt{m} is necessarily of -the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$. -Deriving these conditions corresponds to prove that the -only possible constructor of \texttt{(Le (S n) m)} is -\texttt{LeS} and that we can invert the -\texttt{->} in the type of \texttt{LeS}. -This inversion is possible because \texttt{Le} is the smallest set closed by -the constructors \texttt{LeO} and \texttt{LeS}. - -\begin{coq_example} -inversion_clear H. -\end{coq_example} - -Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)} -and that the hypothesis \texttt{(Le n m0)} has been added to the -context. - -Sometimes it is -interesting to have the equality \texttt{m=(S m0)} in the -context to use it after. In that case we can use \texttt{inversion} that -does not clear the equalities: - -\begin{coq_example*} -Undo. -\end{coq_example*} - -\begin{coq_example} -inversion H. -\end{coq_example} - -\begin{coq_eval} -Undo. -\end{coq_eval} - -\example{Dependent Inversion} - -Let us consider the following goal: - -\begin{coq_eval} -Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H. -intros. -\end{coq_eval} - -\begin{coq_example} -Show. -\end{coq_example} - -As \texttt{H} occurs in the goal, we may want to reason by cases on its -structure and so, we would like inversion tactics to -substitute \texttt{H} by the corresponding term in constructor form. -Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a -substitution. -To have such a behavior we use the dependent inversion tactics: - -\begin{coq_example} -dependent inversion_clear H. -\end{coq_example} - -Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and -\texttt{m} by \texttt{(S m0)}. - -\example{using already defined inversion lemmas} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -For example, to generate the inversion lemma for the instance -\texttt{(Le (S n) m)} and the sort \texttt{Prop} we do: - -\begin{coq_example*} -Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort - Prop. -\end{coq_example*} - -\begin{coq_example} -Check leminv. -\end{coq_example} - -Then we can use the proven inversion lemma: - -\begin{coq_example} -Show. -\end{coq_example} - -\begin{coq_example} -inversion H using leminv. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\section[\tt dependent induction]{\tt dependent induction\label{dependent-induction-example}} -\def\depind{{\tt dependent induction}~} -\def\depdestr{{\tt dependent destruction}~} - -The tactics \depind and \depdestr are another solution for inverting -inductive predicate instances and potentially doing induction at the -same time. It is based on the \texttt{BasicElim} tactic of Conor McBride which -works by abstracting each argument of an inductive instance by a variable -and constraining it by equalities afterwards. This way, the usual -{\tt induction} and {\tt destruct} tactics can be applied to the -abstracted instance and after simplification of the equalities we get -the expected goals. - -The abstracting tactic is called {\tt generalize\_eqs} and it takes as -argument an hypothesis to generalize. It uses the {\tt JMeq} datatype -defined in {\tt Coq.Logic.JMeq}, hence we need to require it before. -For example, revisiting the first example of the inversion documentation above: - -\begin{coq_example*} -Require Import Coq.Logic.JMeq. -\end{coq_example*} -\begin{coq_eval} -Require Import Coq.Program.Equality. -\end{coq_eval} - -\begin{coq_eval} -Inductive Le : nat -> nat -> Set := - | LeO : forall n:nat, Le 0 n - | LeS : forall n m:nat, Le n m -> Le (S n) (S m). -Variable P : nat -> nat -> Prop. -Variable Q : forall n m:nat, Le n m -> Prop. -\end{coq_eval} - -\begin{coq_example*} -Goal forall n m:nat, Le (S n) m -> P n m. -intros n m H. -\end{coq_example*} -\begin{coq_example} -generalize_eqs H. -\end{coq_example} - -The index {\tt S n} gets abstracted by a variable here, but a -corresponding equality is added under the abstract instance so that no -information is actually lost. The goal is now almost amenable to do induction -or case analysis. One should indeed first move {\tt n} into the goal to -strengthen it before doing induction, or {\tt n} will be fixed in -the inductive hypotheses (this does not matter for case analysis). -As a rule of thumb, all the variables that appear inside constructors in -the indices of the hypothesis should be generalized. This is exactly -what the \texttt{generalize\_eqs\_vars} variant does: - -\begin{coq_eval} -Undo 1. -\end{coq_eval} -\begin{coq_example} -generalize_eqs_vars H. -induction H. -\end{coq_example} - -As the hypothesis itself did not appear in the goal, we did not need to -use an heterogeneous equality to relate the new hypothesis to the old -one (which just disappeared here). However, the tactic works just a well -in this case, e.g.: - -\begin{coq_eval} -Admitted. -\end{coq_eval} - -\begin{coq_example} -Goal forall n m (p : Le (S n) m), Q (S n) m p. -intros n m p ; generalize_eqs_vars p. -\end{coq_example} - -One drawback of this approach is that in the branches one will have to -substitute the equalities back into the instance to get the right -assumptions. Sometimes injection of constructors will also be needed to -recover the needed equalities. Also, some subgoals should be directly -solved because of inconsistent contexts arising from the constraints on -indexes. The nice thing is that we can make a tactic based on -discriminate, injection and variants of substitution to automatically -do such simplifications (which may involve the K axiom). -This is what the {\tt simplify\_dep\_elim} tactic from -{\tt Coq.Program.Equality} does. For example, we might simplify the -previous goals considerably: -% \begin{coq_eval} -% Abort. -% Goal forall n m:nat, Le (S n) m -> P n m. -% intros n m H ; generalize_eqs_vars H. -% \end{coq_eval} - -\begin{coq_example} -induction p ; simplify_dep_elim. -\end{coq_example} - -The higher-order tactic {\tt do\_depind} defined in {\tt - Coq.Program.Equality} takes a tactic and combines the -building blocks we have seen with it: generalizing by equalities -calling the given tactic with the -generalized induction hypothesis as argument and cleaning the subgoals -with respect to equalities. Its most important instantiations are -\depind and \depdestr that do induction or simply case analysis on the -generalized hypothesis. For example we can redo what we've done manually -with \depdestr: - -\begin{coq_eval} -Abort. -\end{coq_eval} -\begin{coq_example*} -Require Import Coq.Program.Equality. -Lemma ex : forall n m:nat, Le (S n) m -> P n m. -intros n m H. -\end{coq_example*} -\begin{coq_example} -dependent destruction H. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -This gives essentially the same result as inversion. Now if the -destructed hypothesis actually appeared in the goal, the tactic would -still be able to invert it, contrary to {\tt dependent - inversion}. Consider the following example on vectors: - -\begin{coq_example*} -Require Import Coq.Program.Equality. -Set Implicit Arguments. -Variable A : Set. -Inductive vector : nat -> Type := -| vnil : vector 0 -| vcons : A -> forall n, vector n -> vector (S n). -Goal forall n, forall v : vector (S n), - exists v' : vector n, exists a : A, v = vcons a v'. - intros n v. -\end{coq_example*} -\begin{coq_example} - dependent destruction v. -\end{coq_example} -\begin{coq_eval} -Abort. -\end{coq_eval} - -In this case, the {\tt v} variable can be replaced in the goal by the -generalized hypothesis only when it has a type of the form {\tt vector - (S n)}, that is only in the second case of the {\tt destruct}. The -first one is dismissed because {\tt S n <> 0}. - -\subsection{A larger example} - -Let's see how the technique works with {\tt induction} on inductive -predicates on a real example. We will develop an example application to the -theory of simply-typed lambda-calculus formalized in a dependently-typed style: - -\begin{coq_example*} -Inductive type : Type := -| base : type -| arrow : type -> type -> type. -Notation " t --> t' " := (arrow t t') (at level 20, t' at next level). -Inductive ctx : Type := -| empty : ctx -| snoc : ctx -> type -> ctx. -Notation " G , tau " := (snoc G tau) (at level 20, t at next level). -Fixpoint conc (G D : ctx) : ctx := - match D with - | empty => G - | snoc D' x => snoc (conc G D') x - end. -Notation " G ; D " := (conc G D) (at level 20). -Inductive term : ctx -> type -> Type := -| ax : forall G tau, term (G, tau) tau -| weak : forall G tau, - term G tau -> forall tau', term (G, tau') tau -| abs : forall G tau tau', - term (G , tau) tau' -> term G (tau --> tau') -| app : forall G tau tau', - term G (tau --> tau') -> term G tau -> term G tau'. -\end{coq_example*} - -We have defined types and contexts which are snoc-lists of types. We -also have a {\tt conc} operation that concatenates two contexts. -The {\tt term} datatype represents in fact the possible typing -derivations of the calculus, which are isomorphic to the well-typed -terms, hence the name. A term is either an application of: -\begin{itemize} -\item the axiom rule to type a reference to the first variable in a context, -\item the weakening rule to type an object in a larger context -\item the abstraction or lambda rule to type a function -\item the application to type an application of a function to an argument -\end{itemize} - -Once we have this datatype we want to do proofs on it, like weakening: - -\begin{coq_example*} -Lemma weakening : forall G D tau, term (G ; D) tau -> - forall tau', term (G , tau' ; D) tau. -\end{coq_example*} -\begin{coq_eval} - Abort. -\end{coq_eval} - -The problem here is that we can't just use {\tt induction} on the typing -derivation because it will forget about the {\tt G ; D} constraint -appearing in the instance. A solution would be to rewrite the goal as: -\begin{coq_example*} -Lemma weakening' : forall G' tau, term G' tau -> - forall G D, (G ; D) = G' -> - forall tau', term (G, tau' ; D) tau. -\end{coq_example*} -\begin{coq_eval} - Abort. -\end{coq_eval} - -With this proper separation of the index from the instance and the right -induction loading (putting {\tt G} and {\tt D} after the inducted-on -hypothesis), the proof will go through, but it is a very tedious -process. One is also forced to make a wrapper lemma to get back the -more natural statement. The \depind tactic alleviates this trouble by -doing all of this plumbing of generalizing and substituting back automatically. -Indeed we can simply write: - -\begin{coq_example*} -Require Import Coq.Program.Tactics. -Lemma weakening : forall G D tau, term (G ; D) tau -> - forall tau', term (G , tau' ; D) tau. -Proof with simpl in * ; simpl_depind ; auto. - intros G D tau H. dependent induction H generalizing G D ; intros. -\end{coq_example*} - -This call to \depind has an additional arguments which is a list of -variables appearing in the instance that should be generalized in the -goal, so that they can vary in the induction hypotheses. By default, all -variables appearing inside constructors (except in a parameter position) -of the instantiated hypothesis will be generalized automatically but -one can always give the list explicitly. - -\begin{coq_example} - Show. -\end{coq_example} - -The {\tt simpl\_depind} tactic includes an automatic tactic that tries -to simplify equalities appearing at the beginning of induction -hypotheses, generally using trivial applications of -reflexivity. In cases where the equality is not between constructor -forms though, one must help the automation by giving -some arguments, using the {\tt specialize} tactic. - -\begin{coq_example*} -destruct D... apply weak ; apply ax. apply ax. -destruct D... -\end{coq_example*} -\begin{coq_example} -Show. -\end{coq_example} -\begin{coq_example} - specialize (IHterm G empty). -\end{coq_example} - -Then the automation can find the needed equality {\tt G = G} to narrow -the induction hypothesis further. This concludes our example. - -\begin{coq_example} - simpl_depind. -\end{coq_example} - -\SeeAlso The induction \ref{elim}, case \ref{case} and inversion \ref{inversion} tactics. - -\section[\tt autorewrite]{\tt autorewrite\label{autorewrite-example}} - -Here are two examples of {\tt autorewrite} use. The first one ({\em Ackermann -function}) shows actually a quite basic use where there is no conditional -rewriting. The second one ({\em Mac Carthy function}) involves conditional -rewritings and shows how to deal with them using the optional tactic of the -{\tt Hint~Rewrite} command. - -\firstexample -\example{Ackermann function} -%Here is a basic use of {\tt AutoRewrite} with the Ackermann function: - -\begin{coq_example*} -Reset Initial. -Require Import Arith. -Variable Ack : - nat -> nat -> nat. -Axiom Ack0 : - forall m:nat, Ack 0 m = S m. -Axiom Ack1 : forall n:nat, Ack (S n) 0 = Ack n 1. -Axiom Ack2 : forall n m:nat, Ack (S n) (S m) = Ack n (Ack (S n) m). -\end{coq_example*} - -\begin{coq_example} -Hint Rewrite Ack0 Ack1 Ack2 : base0. -Lemma ResAck0 : - Ack 3 2 = 29. -autorewrite with base0 using try reflexivity. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\example{Mac Carthy function} -%The Mac Carthy function shows a more complex case: - -\begin{coq_example*} -Require Import Omega. -Variable g : - nat -> nat -> nat. -Axiom g0 : - forall m:nat, g 0 m = m. -Axiom - g1 : - forall n m:nat, - (n > 0) -> (m > 100) -> g n m = g (pred n) (m - 10). -Axiom - g2 : - forall n m:nat, - (n > 0) -> (m <= 100) -> g n m = g (S n) (m + 11). -\end{coq_example*} - -\begin{coq_example} -Hint Rewrite g0 g1 g2 using omega : base1. -Lemma Resg0 : - g 1 110 = 100. -autorewrite with base1 using reflexivity || simpl. -\end{coq_example} - -\begin{coq_eval} -Abort. -\end{coq_eval} - -\begin{coq_example} -Lemma Resg1 : g 1 95 = 91. -autorewrite with base1 using reflexivity || simpl. -\end{coq_example} - -\begin{coq_eval} -Reset Initial. -\end{coq_eval} - -\section[\tt quote]{\tt quote\tacindex{quote} -\label{quote-examples}} - -The tactic \texttt{quote} allows to use Barendregt's so-called -2-level approach without writing any ML code. Suppose you have a -language \texttt{L} of -'abstract terms' and a type \texttt{A} of 'concrete terms' -and a function \texttt{f : L -> A}. If \texttt{L} is a simple -inductive datatype and \texttt{f} a simple fixpoint, \texttt{quote f} -will replace the head of current goal by a convertible term of the form -\texttt{(f t)}. \texttt{L} must have a constructor of type: \texttt{A - -> L}. - -Here is an example: - -\begin{coq_example} -Require Import Quote. -Parameters A B C : Prop. -Inductive formula : Type := - | f_and : formula -> formula -> formula (* binary constructor *) - | f_or : formula -> formula -> formula - | f_not : formula -> formula (* unary constructor *) - | f_true : formula (* 0-ary constructor *) - | f_const : Prop -> formula (* constructor for constants *). -Fixpoint interp_f (f: - formula) : Prop := - match f with - | f_and f1 f2 => interp_f f1 /\ interp_f f2 - | f_or f1 f2 => interp_f f1 \/ interp_f f2 - | f_not f1 => ~ interp_f f1 - | f_true => True - | f_const c => c - end. -Goal A /\ (A \/ True) /\ ~ B /\ (A <-> A). -quote interp_f. -\end{coq_example} - -The algorithm to perform this inversion is: try to match the -term with right-hand sides expression of \texttt{f}. If there is a -match, apply the corresponding left-hand side and call yourself -recursively on sub-terms. If there is no match, we are at a leaf: -return the corresponding constructor (here \texttt{f\_const}) applied -to the term. - -\begin{ErrMsgs} -\item \errindex{quote: not a simple fixpoint} \\ - Happens when \texttt{quote} is not able to perform inversion properly. -\end{ErrMsgs} - -\subsection{Introducing variables map} - -The normal use of \texttt{quote} is to make proofs by reflection: one -defines a function \texttt{simplify : formula -> formula} and proves a -theorem \texttt{simplify\_ok: (f:formula)(interp\_f (simplify f)) -> - (interp\_f f)}. Then, one can simplify formulas by doing: -\begin{verbatim} - quote interp_f. - apply simplify_ok. - compute. -\end{verbatim} -But there is a problem with leafs: in the example above one cannot -write a function that implements, for example, the logical simplifications -$A \land A \ra A$ or $A \land \lnot A \ra \texttt{False}$. This is -because the \Prop{} is impredicative. - -It is better to use that type of formulas: - -\begin{coq_eval} -Reset formula. -\end{coq_eval} -\begin{coq_example} -Inductive formula : Set := - | f_and : formula -> formula -> formula - | f_or : formula -> formula -> formula - | f_not : formula -> formula - | f_true : formula - | f_atom : index -> formula. -\end{coq_example*} - -\texttt{index} is defined in module \texttt{quote}. Equality on that -type is decidable so we are able to simplify $A \land A$ into $A$ at -the abstract level. - -When there are variables, there are bindings, and \texttt{quote} -provides also a type \texttt{(varmap A)} of bindings from -\texttt{index} to any set \texttt{A}, and a function -\texttt{varmap\_find} to search in such maps. The interpretation -function has now another argument, a variables map: - -\begin{coq_example} -Fixpoint interp_f (vm: - varmap Prop) (f:formula) {struct f} : Prop := - match f with - | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2 - | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2 - | f_not f1 => ~ interp_f vm f1 - | f_true => True - | f_atom i => varmap_find True i vm - end. -\end{coq_example} - -\noindent\texttt{quote} handles this second case properly: - -\begin{coq_example} -Goal A /\ (B \/ A) /\ (A \/ ~ B). -quote interp_f. -\end{coq_example} - -It builds \texttt{vm} and \texttt{t} such that \texttt{(f vm t)} is -convertible with the conclusion of current goal. - -\subsection{Combining variables and constants} - -One can have both variables and constants in abstracts terms; that is -the case, for example, for the \texttt{ring} tactic (chapter -\ref{ring}). Then one must provide to \texttt{quote} a list of -\emph{constructors of constants}. For example, if the list is -\texttt{[O S]} then closed natural numbers will be considered as -constants and other terms as variables. - -Example: - -\begin{coq_eval} -Reset formula. -\end{coq_eval} -\begin{coq_example*} -Inductive formula : Type := - | f_and : formula -> formula -> formula - | f_or : formula -> formula -> formula - | f_not : formula -> formula - | f_true : formula - | f_const : Prop -> formula (* constructor for constants *) - | f_atom : index -> formula. -Fixpoint interp_f - (vm: (* constructor for variables *) - varmap Prop) (f:formula) {struct f} : Prop := - match f with - | f_and f1 f2 => interp_f vm f1 /\ interp_f vm f2 - | f_or f1 f2 => interp_f vm f1 \/ interp_f vm f2 - | f_not f1 => ~ interp_f vm f1 - | f_true => True - | f_const c => c - | f_atom i => varmap_find True i vm - end. -Goal -A /\ (A \/ True) /\ ~ B /\ (C <-> C). -\end{coq_example*} - -\begin{coq_example} -quote interp_f [ A B ]. -Undo. - quote interp_f [ B C iff ]. -\end{coq_example} - -\Warning Since function inversion -is undecidable in general case, don't expect miracles from it! - -\begin{Variants} - -\item {\tt quote {\ident} in {\term} using {\tac}} - - \tac\ must be a functional tactic (starting with {\tt fun x =>}) - and will be called with the quoted version of \term\ according to - \ident. - -\item {\tt quote {\ident} [ \ident$_1$ \dots\ \ident$_n$ ] in {\term} using {\tac}} - - Same as above, but will use \ident$_1$, \dots, \ident$_n$ to - chose which subterms are constants (see above). - -\end{Variants} - -% \SeeAlso file \texttt{theories/DEMOS/DemoQuote.v} - -\SeeAlso comments of source file \texttt{plugins/quote/quote.ml} - -\SeeAlso the \texttt{ring} tactic (Chapter~\ref{ring}) - - - -\section{Using the tactical language} - -\subsection{About the cardinality of the set of natural numbers} - -A first example which shows how to use the pattern matching over the proof -contexts is the proof that natural numbers have more than two elements. The -proof of such a lemma can be done as %shown on Figure~\ref{cnatltac}. -follows: -%\begin{figure} -%\begin{centerframe} -\begin{coq_eval} -Reset Initial. -Require Import Arith. -Require Import List. -\end{coq_eval} -\begin{coq_example*} -Lemma card_nat : - ~ (exists x : nat, exists y : nat, forall z:nat, x = z \/ y = z). -Proof. -red; intros (x, (y, Hy)). -elim (Hy 0); elim (Hy 1); elim (Hy 2); intros; - match goal with - | [_:(?a = ?b),_:(?a = ?c) |- _ ] => - cut (b = c); [ discriminate | apply trans_equal with a; auto ] - end. -Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{A proof on cardinality of natural numbers} -%\label{cnatltac} -%\end{figure} - -We can notice that all the (very similar) cases coming from the three -eliminations (with three distinct natural numbers) are successfully solved by -a {\tt match goal} structure and, in particular, with only one pattern (use -of non-linear matching). - -\subsection{Permutation on closed lists} - -Another more complex example is the problem of permutation on closed lists. The -aim is to show that a closed list is a permutation of another one. - -First, we define the permutation predicate as shown in table~\ref{permutpred}. - -\begin{figure} -\begin{centerframe} -\begin{coq_example*} -Section Sort. -Variable A : Set. -Inductive permut : list A -> list A -> Prop := - | permut_refl : forall l, permut l l - | permut_cons : - forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1) - | permut_append : forall a l, permut (a :: l) (l ++ a :: nil) - | permut_trans : - forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2. -End Sort. -\end{coq_example*} -\end{centerframe} -\caption{Definition of the permutation predicate} -\label{permutpred} -\end{figure} - -A more complex example is the problem of permutation on closed lists. -The aim is to show that a closed list is a permutation of another one. -First, we define the permutation predicate as shown on -Figure~\ref{permutpred}. - -\begin{figure} -\begin{centerframe} -\begin{coq_example} -Ltac Permut n := - match goal with - | |- (permut _ ?l ?l) => apply permut_refl - | |- (permut _ (?a :: ?l1) (?a :: ?l2)) => - let newn := eval compute in (length l1) in - (apply permut_cons; Permut newn) - | |- (permut ?A (?a :: ?l1) ?l2) => - match eval compute in n with - | 1 => fail - | _ => - let l1' := constr:(l1 ++ a :: nil) in - (apply (permut_trans A (a :: l1) l1' l2); - [ apply permut_append | compute; Permut (pred n) ]) - end - end. -Ltac PermutProve := - match goal with - | |- (permut _ ?l1 ?l2) => - match eval compute in (length l1 = length l2) with - | (?n = ?n) => Permut n - end - end. -\end{coq_example} -\end{centerframe} -\caption{Permutation tactic} -\label{permutltac} -\end{figure} - -Next, we can write naturally the tactic and the result can be seen on -Figure~\ref{permutltac}. We can notice that we use two toplevel -definitions {\tt PermutProve} and {\tt Permut}. The function to be -called is {\tt PermutProve} which computes the lengths of the two -lists and calls {\tt Permut} with the length if the two lists have the -same length. {\tt Permut} works as expected. If the two lists are -equal, it concludes. Otherwise, if the lists have identical first -elements, it applies {\tt Permut} on the tail of the lists. Finally, -if the lists have different first elements, it puts the first element -of one of the lists (here the second one which appears in the {\tt - permut} predicate) at the end if that is possible, i.e., if the new -first element has been at this place previously. To verify that all -rotations have been done for a list, we use the length of the list as -an argument for {\tt Permut} and this length is decremented for each -rotation down to, but not including, 1 because for a list of length -$n$, we can make exactly $n-1$ rotations to generate at most $n$ -distinct lists. Here, it must be noticed that we use the natural -numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we -can see that it is possible to use usual natural numbers but they are -only used as arguments for primitive tactics and they cannot be -handled, in particular, we cannot make computations with them. So, a -natural choice is to use {\Coq} data structures so that {\Coq} makes -the computations (reductions) by {\tt eval compute in} and we can get -the terms back by {\tt match}. - -With {\tt PermutProve}, we can now prove lemmas as -% shown on Figure~\ref{permutlem}. -follows: -%\begin{figure} -%\begin{centerframe} - -\begin{coq_example*} -Lemma permut_ex1 : - permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil). -Proof. PermutProve. Qed. -Lemma permut_ex2 : - permut nat - (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil) - (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil). -Proof. PermutProve. Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Examples of {\tt PermutProve} use} -%\label{permutlem} -%\end{figure} - - -\subsection{Deciding intuitionistic propositional logic} - -\begin{figure}[b] -\begin{centerframe} -\begin{coq_example} -Ltac Axioms := - match goal with - | |- True => trivial - | _:False |- _ => elimtype False; assumption - | _:?A |- ?A => auto - end. -\end{coq_example} -\end{centerframe} -\caption{Deciding intuitionistic propositions (1)} -\label{tautoltaca} -\end{figure} - - -\begin{figure} -\begin{centerframe} -\begin{coq_example} -Ltac DSimplif := - repeat - (intros; - match goal with - | id:(~ _) |- _ => red in id - | id:(_ /\ _) |- _ => - elim id; do 2 intro; clear id - | id:(_ \/ _) |- _ => - elim id; intro; clear id - | id:(?A /\ ?B -> ?C) |- _ => - cut (A -> B -> C); - [ intro | intros; apply id; split; assumption ] - | id:(?A \/ ?B -> ?C) |- _ => - cut (B -> C); - [ cut (A -> C); - [ intros; clear id - | intro; apply id; left; assumption ] - | intro; apply id; right; assumption ] - | id0:(?A -> ?B),id1:?A |- _ => - cut B; [ intro; clear id0 | apply id0; assumption ] - | |- (_ /\ _) => split - | |- (~ _) => red - end). -Ltac TautoProp := - DSimplif; - Axioms || - match goal with - | id:((?A -> ?B) -> ?C) |- _ => - cut (B -> C); - [ intro; cut (A -> B); - [ intro; cut C; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; intro; assumption ]; TautoProp - | id:(~ ?A -> ?B) |- _ => - cut (False -> B); - [ intro; cut (A -> False); - [ intro; cut B; - [ intro; clear id | apply id; assumption ] - | clear id ] - | intro; apply id; red; intro; assumption ]; TautoProp - | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp) - end. -\end{coq_example} -\end{centerframe} -\caption{Deciding intuitionistic propositions (2)} -\label{tautoltacb} -\end{figure} - -The pattern matching on goals allows a complete and so a powerful -backtracking when returning tactic values. An interesting application -is the problem of deciding intuitionistic propositional logic. -Considering the contraction-free sequent calculi {\tt LJT*} of -Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic -using the tactic language as shown on Figures~\ref{tautoltaca} -and~\ref{tautoltacb}. The tactic {\tt Axioms} tries to conclude using -usual axioms. The tactic {\tt DSimplif} applies all the reversible -rules of Dyckhoff's system. Finally, the tactic {\tt TautoProp} (the -main tactic to be called) simplifies with {\tt DSimplif}, tries to -conclude with {\tt Axioms} and tries several paths using the -backtracking rules (one of the four Dyckhoff's rules for the left -implication to get rid of the contraction and the right or). - -For example, with {\tt TautoProp}, we can prove tautologies like - those: -% on Figure~\ref{tautolem}. -%\begin{figure}[tbp] -%\begin{centerframe} -\begin{coq_example*} -Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B. -Proof. TautoProp. Qed. -Lemma tauto_ex2 : - forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B. -Proof. TautoProp. Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Proofs of tautologies with {\tt TautoProp}} -%\label{tautolem} -%\end{figure} - -\subsection{Deciding type isomorphisms} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given by -table~\ref{isosax}. - -\begin{figure} -\begin{centerframe} -\begin{coq_eval} -Reset Initial. -\end{coq_eval} -\begin{coq_example*} -Open Scope type_scope. -Section Iso_axioms. -Variables A B C : Set. -Axiom Com : A * B = B * A. -Axiom Ass : A * (B * C) = A * B * C. -Axiom Cur : (A * B -> C) = (A -> B -> C). -Axiom Dis : (A -> B * C) = (A -> B) * (A -> C). -Axiom P_unit : A * unit = A. -Axiom AR_unit : (A -> unit) = unit. -Axiom AL_unit : (unit -> A) = A. -Lemma Cons : B = C -> A * B = A * C. -Proof. -intro Heq; rewrite Heq; apply refl_equal. -Qed. -End Iso_axioms. -\end{coq_example*} -\end{centerframe} -\caption{Type isomorphism axioms} -\label{isosax} -\end{figure} - -A more tricky problem is to decide equalities between types and modulo -isomorphisms. Here, we choose to use the isomorphisms of the simply typed -$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example, -\cite{RC95}). The axioms of this $\lb{}$-calculus are given on -Figure~\ref{isosax}. - -\begin{figure}[ht] -\begin{centerframe} -\begin{coq_example} -Ltac DSimplif trm := - match trm with - | (?A * ?B * ?C) => - rewrite <- (Ass A B C); try MainSimplif - | (?A * ?B -> ?C) => - rewrite (Cur A B C); try MainSimplif - | (?A -> ?B * ?C) => - rewrite (Dis A B C); try MainSimplif - | (?A * unit) => - rewrite (P_unit A); try MainSimplif - | (unit * ?B) => - rewrite (Com unit B); try MainSimplif - | (?A -> unit) => - rewrite (AR_unit A); try MainSimplif - | (unit -> ?B) => - rewrite (AL_unit B); try MainSimplif - | (?A * ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - | (?A -> ?B) => - (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif) - end - with MainSimplif := - match goal with - | |- (?A = ?B) => try DSimplif A; try DSimplif B - end. -Ltac Length trm := - match trm with - | (_ * ?B) => let succ := Length B in constr:(S succ) - | _ => constr:1 - end. -Ltac assoc := repeat rewrite <- Ass. -\end{coq_example} -\end{centerframe} -\caption{Type isomorphism tactic (1)} -\label{isosltac1} -\end{figure} - -\begin{figure}[ht] -\begin{centerframe} -\begin{coq_example} -Ltac DoCompare n := - match goal with - | [ |- (?A = ?A) ] => apply refl_equal - | [ |- (?A * ?B = ?A * ?C) ] => - apply Cons; let newn := Length B in - DoCompare newn - | [ |- (?A * ?B = ?C) ] => - match eval compute in n with - | 1 => fail - | _ => - pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n) - end - end. -Ltac CompareStruct := - match goal with - | [ |- (?A = ?B) ] => - let l1 := Length A - with l2 := Length B in - match eval compute in (l1 = l2) with - | (?n = ?n) => DoCompare n - end - end. -Ltac IsoProve := MainSimplif; CompareStruct. -\end{coq_example} -\end{centerframe} -\caption{Type isomorphism tactic (2)} -\label{isosltac2} -\end{figure} - -The tactic to judge equalities modulo this axiomatization can be written as -shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite -simple. Types are reduced using axioms that can be oriented (this done by {\tt -MainSimplif}). The normal forms are sequences of Cartesian -products without Cartesian product in the left component. These normal forms -are then compared modulo permutation of the components (this is done by {\tt -CompareStruct}). The main tactic to be called and realizing this algorithm is -{\tt IsoProve}. - -% Figure~\ref{isoslem} gives -Here are examples of what can be solved by {\tt IsoProve}. -%\begin{figure}[ht] -%\begin{centerframe} -\begin{coq_example*} -Lemma isos_ex1 : - forall A B:Set, A * unit * B = B * (unit * A). -Proof. -intros; IsoProve. -Qed. - -Lemma isos_ex2 : - forall A B C:Set, - (A * unit -> B * (C * unit)) = - (A * unit -> (C -> unit) * C) * (unit -> A -> B). -Proof. -intros; IsoProve. -Qed. -\end{coq_example*} -%\end{centerframe} -%\caption{Type equalities solved by {\tt IsoProve}} -%\label{isoslem} -%\end{figure} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "Reference-Manual" -%%% End: |