summaryrefslogtreecommitdiff
path: root/doc/refman/RefMan-ind.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/refman/RefMan-ind.tex')
-rw-r--r--doc/refman/RefMan-ind.tex510
1 files changed, 0 insertions, 510 deletions
diff --git a/doc/refman/RefMan-ind.tex b/doc/refman/RefMan-ind.tex
deleted file mode 100644
index 95944240..00000000
--- a/doc/refman/RefMan-ind.tex
+++ /dev/null
@@ -1,510 +0,0 @@
-
-%\documentstyle[11pt]{article}
-%\input{title}
-
-%\include{macros}
-%\makeindex
-
-%\begin{document}
-%\coverpage{The module {\tt Equality}}{Cristina CORNES}
-
-%\tableofcontents
-
-\chapter[Tactics for inductive types and families]{Tactics for inductive types and families\label{Addoc-equality}}
-
-This chapter details a few special tactics useful for inferring facts
-from inductive hypotheses. They can be considered as tools that
-macro-generate complicated uses of the basic elimination tactics for
-inductive types.
-
-Sections \ref{inversion_introduction} to \ref{inversion_using} present
-inversion tactics and Section~\ref{scheme} describes
-a command {\tt Scheme} for automatic generation of induction schemes
-for mutual inductive types.
-
-%\end{document}
-%\documentstyle[11pt]{article}
-%\input{title}
-
-%\begin{document}
-%\coverpage{Module Inv: Inversion Tactics}{Cristina CORNES}
-
-\section[Generalities about inversion]{Generalities about inversion\label{inversion_introduction}}
-When working with (co)inductive predicates, we are very often faced to
-some of these situations:
-\begin{itemize}
-\item we have an inconsistent instance of an inductive predicate in the
- local context of hypotheses. Thus, the current goal can be trivially
- proved by absurdity.
-
-\item we have a hypothesis that is an instance of an inductive
- predicate, and the instance has some variables whose constraints we
- would like to derive.
-\end{itemize}
-
-The inversion tactics are very useful to simplify the work in these
-cases. Inversion tools can be classified in three groups:
-\begin{enumerate}
-\item tactics for inverting an instance without stocking the inversion
- lemma in the context:
- (\texttt{Dependent}) \texttt{Inversion} and
- (\texttt{Dependent}) \texttt{Inversion\_clear}.
-\item commands for generating and stocking in the context the inversion
- lemma corresponding to an instance: \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion}, \texttt{Derive}
- (\texttt{Dependent}) \texttt{Inversion\_clear}.
-\item tactics for inverting an instance using an already defined
- inversion lemma: \texttt{Inversion \ldots using}.
-\end{enumerate}
-
-These tactics work for inductive types of arity $(\vec{x}:\vec{T})s$
-where $s \in \{Prop,Set,Type\}$. Sections \ref{inversion_primitive},
-\ref{inversion_derivation} and \ref{inversion_using}
-describe respectively each group of tools.
-
-As inversion proofs may be large in size, we recommend the user to
-stock the lemmas whenever the same instance needs to be inverted
-several times.\\
-
-Let's consider the relation \texttt{Le} over natural numbers and the
-following variables:
-
-\begin{coq_eval}
-Restore State "Initial".
-\end{coq_eval}
-
-\begin{coq_example*}
-Inductive Le : nat -> nat -> Set :=
- | LeO : forall n:nat, Le 0%N n
- | LeS : forall n m:nat, Le n m -> Le (S n) (S m).
-Variable P : nat -> nat -> Prop.
-Variable Q : forall n m:nat, Le n m -> Prop.
-\end{coq_example*}
-
-For example purposes we defined \verb+Le: nat->nat->Set+
- but we may have defined
-it \texttt{Le} of type \verb+nat->nat->Prop+ or \verb+nat->nat->Type+.
-
-
-\section[Inverting an instance]{Inverting an instance\label{inversion_primitive}}
-\subsection{The non dependent case}
-\begin{itemize}
-
-\item \texttt{Inversion\_clear} \ident~\\
-\index{Inversion-clear@{\tt Inversion\_clear}}
- Let the type of \ident~ in the local context be $(I~\vec{t})$,
- where $I$ is a (co)inductive predicate. Then,
- \texttt{Inversion} applied to \ident~ derives for each possible
- constructor $c_i$ of $(I~\vec{t})$, {\bf all} the necessary
- conditions that should hold for the instance $(I~\vec{t})$ to be
- proved by $c_i$. Finally it erases \ident~ from the context.
-
-
-
-For example, consider the goal:
-\begin{coq_eval}
-Lemma ex : forall n m:nat, Le (S n) m -> P n m.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-To prove the goal we may need to reason by cases on \texttt{H} and to
- derive that \texttt{m} is necessarily of
-the form $(S~m_0)$ for certain $m_0$ and that $(Le~n~m_0)$.
-Deriving these conditions corresponds to prove that the
-only possible constructor of \texttt{(Le (S n) m)} is
-\texttt{LeS} and that we can invert the
-\texttt{->} in the type of \texttt{LeS}.
-This inversion is possible because \texttt{Le} is the smallest set closed by
-the constructors \texttt{LeO} and \texttt{LeS}.
-
-
-\begin{coq_example}
-inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{m} has been substituted in the goal for \texttt{(S m0)}
-and that the hypothesis \texttt{(Le n m0)} has been added to the
-context.
-
-\item \texttt{Inversion} \ident~\\
-\index{Inversion@{\tt Inversion}}
- This tactic differs from {\tt Inversion\_clear} in the fact that
- it adds the equality constraints in the context and
- it does not erase the hypothesis \ident.
-
-
-In the previous example, {\tt Inversion\_clear}
-has substituted \texttt{m} by \texttt{(S m0)}. Sometimes it is
-interesting to have the equality \texttt{m=(S m0)} in the
-context to use it after. In that case we can use \texttt{Inversion} that
-does not clear the equalities:
-
-\begin{coq_example*}
-Undo.
-\end{coq_example*}
-\begin{coq_example}
-inversion H.
-\end{coq_example}
-
-\begin{coq_eval}
-Undo.
-\end{coq_eval}
-
-Note that the hypothesis \texttt{(S m0)=m} has been deduced and
-\texttt{H} has not been cleared from the context.
-
-\end{itemize}
-
-\begin{Variants}
-
-\item \texttt{Inversion\_clear } \ident~ \texttt{in} \ident$_1$ \ldots
- \ident$_n$\\
-\index{Inversion_clear...in@{\tt Inversion\_clear...in}}
- Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
- {\tt Inversion\_clear}.
-
-\item \texttt{Inversion } \ident~ \texttt{in} \ident$_1$ \ldots \ident$_n$\\
-\index{Inversion ... in@{\tt Inversion ... in}}
- Let \ident$_1$ \ldots \ident$_n$, be identifiers in the local context. This
- tactic behaves as generalizing \ident$_1$ \ldots \ident$_n$, and then performing
- \texttt{Inversion}.
-
-
-\item \texttt{Simple Inversion} \ident~ \\
-\index{Simple Inversion@{\tt Simple Inversion}}
- It is a very primitive inversion tactic that derives all the necessary
- equalities but it does not simplify
- the constraints as \texttt{Inversion} and
- {\tt Inversion\_clear} do.
-
-\end{Variants}
-
-
-\subsection{The dependent case}
-\begin{itemize}
-\item \texttt{Dependent Inversion\_clear} \ident~\\
-\index{Dependent Inversion-clear@{\tt Dependent Inversion\_clear}}
- Let the type of \ident~ in the local context be $(I~\vec{t})$,
- where $I$ is a (co)inductive predicate, and let the goal depend both on
- $\vec{t}$ and \ident. Then,
- \texttt{Dependent Inversion\_clear} applied to \ident~ derives
- for each possible constructor $c_i$ of $(I~\vec{t})$, {\bf all} the
- necessary conditions that should hold for the instance $(I~\vec{t})$ to be
- proved by $c_i$. It also substitutes \ident~ for the corresponding
- term in the goal and it erases \ident~ from the context.
-
-
-For example, consider the goal:
-\begin{coq_eval}
-Lemma ex_dep : forall (n m:nat) (H:Le (S n) m), Q (S n) m H.
-intros.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-
-As \texttt{H} occurs in the goal, we may want to reason by cases on its
-structure and so, we would like inversion tactics to
-substitute \texttt{H} by the corresponding term in constructor form.
-Neither \texttt{Inversion} nor {\tt Inversion\_clear} make such a
-substitution. To have such a behavior we use the dependent inversion tactics:
-
-\begin{coq_example}
-dependent inversion_clear H.
-\end{coq_example}
-
-Note that \texttt{H} has been substituted by \texttt{(LeS n m0 l)} and
-\texttt{m} by \texttt{(S m0)}.
-
-
-\end{itemize}
-
-\begin{Variants}
-
-\item \texttt{Dependent Inversion\_clear } \ident~ \texttt{ with } \term\\
-\index{Dependent Inversion_clear...with@{\tt Dependent Inversion\_clear...with}}
- \noindent Behaves as \texttt{Dependent Inversion\_clear} but allows to give
- explicitly the good generalization of the goal. It is useful when
- the system fails to generalize the goal automatically. If
- \ident~ has type $(I~\vec{t})$ and $I$ has type
- $(\vec{x}:\vec{T})s$, then \term~ must be of type
- $I:(\vec{x}:\vec{T})(I~\vec{x})\rightarrow s'$ where $s'$ is the
- type of the goal.
-
-
-
-\item \texttt{Dependent Inversion} \ident~\\
-\index{Dependent Inversion@{\tt Dependent Inversion}}
- This tactic differs from \texttt{Dependent Inversion\_clear} in the fact that
- it also adds the equality constraints in the context and
- it does not erase the hypothesis \ident~.
-
-\item \texttt{Dependent Inversion } \ident~ \texttt{ with } \term \\
-\index{Dependent Inversion...with@{\tt Dependent Inversion...with}}
- Analogous to \texttt{Dependent Inversion\_clear .. with..} above.
-\end{Variants}
-
-
-
-\section[Deriving the inversion lemmas]{Deriving the inversion lemmas\label{inversion_derivation}}
-\subsection{The non dependent case}
-
-The tactics (\texttt{Dependent}) \texttt{Inversion} and (\texttt{Dependent})
-{\tt Inversion\_clear} work on a
-certain instance $(I~\vec{t})$ of an inductive predicate. At each
-application, they inspect the given instance and derive the
-corresponding inversion lemma. If we have to invert the same
-instance several times it is recommended to stock the lemma in the
-context and to reuse it whenever we need it.
-
-The families of commands \texttt{Derive Inversion}, \texttt{Derive
-Dependent Inversion}, \texttt{Derive} \\ {\tt Inversion\_clear} and \texttt{Derive Dependent Inversion\_clear}
-allow to generate inversion lemmas for given instances and sorts. Next
-section describes the tactic \texttt{Inversion}$\ldots$\texttt{using} that refines the
-goal with a specified inversion lemma.
-
-\begin{itemize}
-
-\item \texttt{Derive Inversion\_clear} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Inversion_clear...with@{\tt Derive Inversion\_clear...with}}
- Let $I$ be an inductive predicate and $\vec{x}$ the variables
- occurring in $\vec{t}$. This command generates and stocks
- the inversion lemma for the sort \sort~ corresponding to the instance
- $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
- global} environment. When applied it is equivalent to have
- inverted the instance with the tactic {\tt Inversion\_clear}.
-
-
- For example, to generate the inversion lemma for the instance
- \texttt{(Le (S n) m)} and the sort \texttt{Prop} we do:
-\begin{coq_example}
-Derive Inversion_clear leminv with (forall n m:nat, Le (S n) m) Sort
- Prop.
-\end{coq_example}
-
-Let us inspect the type of the generated lemma:
-\begin{coq_example}
-Check leminv.
-\end{coq_example}
-
-
-
-\end{itemize}
-
-%\variants
-%\begin{enumerate}
-%\item \verb+Derive Inversion_clear+ \ident$_1$ \ident$_2$ \\
-%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
-% Let \ident$_1$ have type $(I~\vec{t})$ in the local context ($I$
-% an inductive predicate). Then, this command has the same semantics
-% as \verb+Derive Inversion_clear+ \ident$_2$~ \verb+with+
-% $(\vec{x}:\vec{T})(I~\vec{t})$ \verb+Sort Prop+ where $\vec{x}$ are the free
-% variables of $(I~\vec{t})$ declared in the local context (variables
-% of the global context are considered as constants).
-%\item \verb+Derive Inversion+ \ident$_1$~ \ident$_2$~\\
-%\index{Derive Inversion@{\tt Derive Inversion}}
-% Analogous to the previous command.
-%\item \verb+Derive Inversion+ $num$ \ident~ \ident~ \\
-%\index{Derive Inversion@{\tt Derive Inversion}}
-% This command behaves as \verb+Derive Inversion+ \ident~ {\it
-% namehyp} performed on the goal number $num$.
-%
-%\item \verb+Derive Inversion_clear+ $num$ \ident~ \ident~ \\
-%\index{Derive Inversion_clear@{\tt Derive Inversion\_clear}}
-% This command behaves as \verb+Derive Inversion_clear+ \ident~
-% \ident~ performed on the goal number $num$.
-%\end{enumerate}
-
-
-
-A derived inversion lemma is adequate for inverting the instance
-with which it was generated, \texttt{Derive} applied to
-different instances yields different lemmas. In general, if we generate
-the inversion lemma with
-an instance $(\vec{x}:\vec{T})(I~\vec{t})$ and a sort $s$, the inversion lemma will
-expect a predicate of type $(\vec{x}:\vec{T})s$ as first argument. \\
-
-\begin{Variant}
-\item \texttt{Derive Inversion} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort\\
-\index{Derive Inversion...with@{\tt Derive Inversion...with}}
- Analogous of \texttt{Derive Inversion\_clear .. with ..} but
- when applied it is equivalent to having
- inverted the instance with the tactic \texttt{Inversion}.
-\end{Variant}
-
-\subsection{The dependent case}
-\begin{itemize}
-\item \texttt{Derive Dependent Inversion\_clear} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Dependent Inversion\_clear...with@{\tt Derive Dependent Inversion\_clear...with}}
- Let $I$ be an inductive predicate. This command generates and stocks
- the dependent inversion lemma for the sort \sort~ corresponding to the instance
- $(\vec{x}:\vec{T})(I~\vec{t})$ with the name \ident~ in the {\bf
- global} environment. When applied it is equivalent to having
- inverted the instance with the tactic \texttt{Dependent Inversion\_clear}.
-\end{itemize}
-
-\begin{coq_example}
-Derive Dependent Inversion_clear leminv_dep with
- (forall n m:nat, Le (S n) m) Sort Prop.
-\end{coq_example}
-
-\begin{coq_example}
-Check leminv_dep.
-\end{coq_example}
-
-\begin{Variants}
-\item \texttt{Derive Dependent Inversion} \ident~ \texttt{with}
- $(\vec{x}:\vec{T})(I~\vec{t})$ \texttt{Sort} \sort~ \\
-\index{Derive Dependent Inversion...with@{\tt Derive Dependent Inversion...with}}
- Analogous to \texttt{Derive Dependent Inversion\_clear}, but when
- applied it is equivalent to having
- inverted the instance with the tactic \texttt{Dependent Inversion}.
-
-\end{Variants}
-
-\section[Using already defined inversion lemmas]{Using already defined inversion lemmas\label{inversion_using}}
-\begin{itemize}
-\item \texttt{Inversion} \ident \texttt{ using} \ident$'$ \\
-\index{Inversion...using@{\tt Inversion...using}}
- Let \ident~ have type $(I~\vec{t})$ ($I$ an inductive
- predicate) in the local context, and \ident$'$ be a (dependent) inversion
- lemma. Then, this tactic refines the current goal with the specified
- lemma.
-
-
-\begin{coq_eval}
-Abort.
-\end{coq_eval}
-
-\begin{coq_example}
-Show.
-\end{coq_example}
-\begin{coq_example}
-inversion H using leminv.
-\end{coq_example}
-
-
-\end{itemize}
-\variant
-\begin{enumerate}
-\item \texttt{Inversion} \ident~ \texttt{using} \ident$'$ \texttt{in} \ident$_1$\ldots \ident$_n$\\
-\index{Inversion...using...in@{\tt Inversion...using...in}}
-This tactic behaves as generalizing \ident$_1$\ldots \ident$_n$,
-then doing \texttt{Use Inversion} \ident~\ident$'$.
-\end{enumerate}
-
-\section[\tt Scheme ...]{\tt Scheme ...\index{Scheme@{\tt Scheme}}\label{Scheme}
-\label{scheme}}
-The {\tt Scheme} command is a high-level tool for generating
-automatically (possibly mutual) induction principles for given types
-and sorts. Its syntax follows the schema :
-
-\noindent
-{\tt Scheme {\ident$_1$} := Induction for \term$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} .. \\
- with {\ident$_m$} := Induction for {\term$_m$} Sort
- {\sort$_m$}}\\
-\term$_1$ \ldots \term$_m$ are different inductive types belonging to
-the same package of mutual inductive definitions. This command
-generates {\ident$_1$}\ldots{\ident$_m$} to be mutually recursive
-definitions. Each term {\ident$_i$} proves a general principle
-of mutual induction for objects in type {\term$_i$}.
-
-\Example
-The definition of principle of mutual induction for {\tt tree} and
-{\tt forest} over the sort {\tt Set} is defined by the command:
-\begin{coq_eval}
-Restore State "Initial".
-Variables A B : Set.
-Inductive tree : Set :=
- node : A -> forest -> tree
-with forest : Set :=
- | leaf : B -> forest
- | cons : tree -> forest -> forest.
-\end{coq_eval}
-\begin{coq_example*}
-Scheme tree_forest_rec := Induction for tree
- Sort Set
- with forest_tree_rec := Induction for forest Sort Set.
-\end{coq_example*}
-You may now look at the type of {\tt tree\_forest\_rec} :
-\begin{coq_example}
-Check tree_forest_rec.
-\end{coq_example}
-This principle involves two different predicates for {\tt trees} and
-{\tt forests}; it also has three premises each one corresponding to a
-constructor of one of the inductive definitions.
-
-The principle {\tt tree\_forest\_rec} shares exactly the same
-premises, only the conclusion now refers to the property of forests.
-\begin{coq_example}
-Check forest_tree_rec.
-\end{coq_example}
-
-\begin{Variant}
-\item {\tt Scheme {\ident$_1$} := Minimality for \term$_1$ Sort {\sort$_1$} \\
- with\\
- \mbox{}\hspace{0.1cm} .. \\
- with {\ident$_m$} := Minimality for {\term$_m$} Sort
- {\sort$_m$}}\\
-Same as before but defines a non-dependent elimination principle more
-natural in case of inductively defined relations.
-\end{Variant}
-
-\Example
-With the predicates {\tt odd} and {\tt even} inductively defined as:
-% \begin{coq_eval}
-% Restore State "Initial".
-% \end{coq_eval}
-\begin{coq_example*}
-Inductive odd : nat -> Prop :=
- oddS : forall n:nat, even n -> odd (S n)
-with even : nat -> Prop :=
- | evenO : even 0%N
- | evenS : forall n:nat, odd n -> even (S n).
-\end{coq_example*}
-The following command generates a powerful elimination
-principle:
-\begin{coq_example*}
-Scheme odd_even := Minimality for odd Sort Prop
- with even_odd := Minimality for even Sort Prop.
-\end{coq_example*}
-The type of {\tt odd\_even} for instance will be:
-\begin{coq_example}
-Check odd_even.
-\end{coq_example}
-The type of {\tt even\_odd} shares the same premises but the
-conclusion is {\tt (n:nat)(even n)->(Q n)}.
-
-\subsection[\tt Combined Scheme ...]{\tt Combined Scheme ...\index{CombinedScheme@{\tt Combined Scheme}}\label{CombinedScheme}
-\label{combinedscheme}}
-The {\tt Combined Scheme} command is a tool for combining
-induction principles generated by the {\tt Scheme} command.
-Its syntax follows the schema :
-
-\noindent
-{\tt Combined Scheme {\ident$_0$} from {\ident$_1$}, .., {\ident$_n$}}\\
-\ident$_1$ \ldots \ident$_n$ are different inductive principles that must belong to
-the same package of mutual inductive principle definitions. This command
-generates {\ident$_0$} to be the conjunction of the principles: it is
-build from the common premises of the principles and concluded by the
-conjunction of their conclusions. For exemple, we can combine the
-induction principles for trees and forests:
-
-\begin{coq_example*}
-Combined Scheme tree_forest_mutind from tree_ind, forest_ind.
-Check tree_forest_mutind.
-\end{coq_example*}
-
-%\end{document}
-