summaryrefslogtreecommitdiff
path: root/doc/refman/Coercion.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/refman/Coercion.tex')
-rw-r--r--doc/refman/Coercion.tex564
1 files changed, 0 insertions, 564 deletions
diff --git a/doc/refman/Coercion.tex b/doc/refman/Coercion.tex
deleted file mode 100644
index 3b6c949b..00000000
--- a/doc/refman/Coercion.tex
+++ /dev/null
@@ -1,564 +0,0 @@
-\achapter{Implicit Coercions}
-\aauthor{Amokrane Saïbi}
-
-\label{Coercions-full}
-\index{Coercions!presentation}
-
-\asection{General Presentation}
-
-This section describes the inheritance mechanism of {\Coq}. In {\Coq} with
-inheritance, we are not interested in adding any expressive power to
-our theory, but only convenience. Given a term, possibly not typable,
-we are interested in the problem of determining if it can be well
-typed modulo insertion of appropriate coercions. We allow to write:
-
-\begin{itemize}
-\item $f~a$ where $f:forall~ x:A, B$ and $a:A'$ when $A'$ can
- be seen in some sense as a subtype of $A$.
-\item $x:A$ when $A$ is not a type, but can be seen in
- a certain sense as a type: set, group, category etc.
-\item $f~a$ when $f$ is not a function, but can be seen in a certain sense
- as a function: bijection, functor, any structure morphism etc.
-\end{itemize}
-
-\asection{Classes}
-\index{Coercions!classes}
- A class with $n$ parameters is any defined name with a type
-$forall~ (x_1:A_1)..(x_n:A_n), s$ where $s$ is a sort. Thus a class with
-parameters is considered as a single class and not as a family of
-classes. An object of a class $C$ is any term of type $C~t_1
-.. t_n$. In addition to these user-classes, we have two abstract
-classes:
-
-\begin{itemize}
-\item {\tt Sortclass}, the class of sorts;
- its objects are the terms whose type is a sort.
-\item {\tt Funclass}, the class of functions;
- its objects are all the terms with a functional
- type, i.e. of form $forall~ x:A, B$.
-\end{itemize}
-
-Formally, the syntax of a classes is defined on Figure~\ref{fig:classes}.
-\begin{figure}
-\begin{centerframe}
-\begin{tabular}{lcl}
-{\class} & ::= & {\qualid} \\
- & $|$ & {\tt Sortclass} \\
- & $|$ & {\tt Funclass}
-\end{tabular}
-\end{centerframe}
-\caption{Syntax of classes}
-\label{fig:classes}
-\end{figure}
-
-\asection{Coercions}
-\index{Coercions!Funclass}
-\index{Coercions!Sortclass}
- A name $f$ can be declared as a coercion between a source user-class
-$C$ with $n$ parameters and a target class $D$ if one of these
-conditions holds:
-
-\newcommand{\oftype}{\!:\!}
-
-\begin{itemize}
-\item $D$ is a user-class, then the type of $f$ must have the form
- $forall~ (x_1 \oftype A_1)..(x_n \oftype A_n)(y\oftype C~x_1..x_n), D~u_1..u_m$ where $m$
- is the number of parameters of $D$.
-\item $D$ is {\tt Funclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n)(x:A), B$.
-\item $D$ is {\tt Sortclass}, then the type of $f$ must have the form
- $forall~ (x_1\oftype A_1)..(x_n\oftype A_n)(y\oftype C~x_1..x_n), s$ with $s$ a sort.
-\end{itemize}
-
-We then write $f:C \mbox{\texttt{>->}} D$. The restriction on the type
-of coercions is called {\em the uniform inheritance condition}.
-Remark that the abstract classes {\tt Funclass} and {\tt Sortclass}
-cannot be source classes.
-
-To coerce an object $t:C~t_1..t_n$ of $C$ towards $D$, we have to
-apply the coercion $f$ to it; the obtained term $f~t_1..t_n~t$ is
-then an object of $D$.
-
-\asection{Identity Coercions}
-\index{Coercions!identity}
-
- Identity coercions are special cases of coercions used to go around
-the uniform inheritance condition. Let $C$ and $D$ be two classes
-with respectively $n$ and $m$ parameters and
-$f:forall~(x_1:T_1)..(x_k:T_k)(y:C~u_1..u_n), D~v_1..v_m$ a function which
-does not verify the uniform inheritance condition. To declare $f$ as
-coercion, one has first to declare a subclass $C'$ of $C$:
-
-$$C' := fun~ (x_1:T_1)..(x_k:T_k) => C~u_1..u_n$$
-
-\noindent We then define an {\em identity coercion} between $C'$ and $C$:
-\begin{eqnarray*}
-Id\_C'\_C & := & fun~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k) => (y:C~u_1..u_n)\\
-\end{eqnarray*}
-
-We can now declare $f$ as coercion from $C'$ to $D$, since we can
-``cast'' its type as
-$forall~ (x_1:T_1)..(x_k:T_k)(y:C'~x_1..x_k),D~v_1..v_m$.\\ The identity
-coercions have a special status: to coerce an object $t:C'~t_1..t_k$
-of $C'$ towards $C$, we does not have to insert explicitly $Id\_C'\_C$
-since $Id\_C'\_C~t_1..t_k~t$ is convertible with $t$. However we
-``rewrite'' the type of $t$ to become an object of $C$; in this case,
-it becomes $C~u_1^*..u_k^*$ where each $u_i^*$ is the result of the
-substitution in $u_i$ of the variables $x_j$ by $t_j$.
-
-
-\asection{Inheritance Graph}
-\index{Coercions!inheritance graph}
-Coercions form an inheritance graph with classes as nodes. We call
-{\em coercion path} an ordered list of coercions between two nodes of
-the graph. A class $C$ is said to be a subclass of $D$ if there is a
-coercion path in the graph from $C$ to $D$; we also say that $C$
-inherits from $D$. Our mechanism supports multiple inheritance since a
-class may inherit from several classes, contrary to simple inheritance
-where a class inherits from at most one class. However there must be
-at most one path between two classes. If this is not the case, only
-the {\em oldest} one is valid and the others are ignored. So the order
-of declaration of coercions is important.
-
-We extend notations for coercions to coercion paths. For instance
-$[f_1;..;f_k]:C \mbox{\texttt{>->}} D$ is the coercion path composed
-by the coercions $f_1..f_k$. The application of a coercion path to a
-term consists of the successive application of its coercions.
-
-\asection{Declaration of Coercions}
-
-%%%%% "Class" is useless, since classes are implicitely defined via coercions.
-
-% \asubsection{\tt Class {\qualid}.}\comindex{Class}
-% Declares {\qualid} as a new class.
-
-% \begin{ErrMsgs}
-% \item {\qualid} \errindex{not declared}
-% \item {\qualid} \errindex{is already a class}
-% \item \errindex{Type of {\qualid} does not end with a sort}
-% \end{ErrMsgs}
-
-% \begin{Variant}
-% \item {\tt Class Local {\qualid}.} \\
-% Declares the construction denoted by {\qualid} as a new local class to
-% the current section.
-% \end{Variant}
-
-% END "Class" is useless
-
-\asubsection{\tt Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Coercion}
-
-Declares the construction denoted by {\qualid} as a coercion between
-{\class$_1$} and {\class$_2$}.
-
-% Useless information
-% The classes {\class$_1$} and {\class$_2$} are first declared if necessary.
-
-\begin{ErrMsgs}
-\item {\qualid} \errindex{not declared}
-\item {\qualid} \errindex{is already a coercion}
-\item \errindex{Funclass cannot be a source class}
-\item \errindex{Sortclass cannot be a source class}
-\item {\qualid} \errindex{is not a function}
-\item \errindex{Cannot find the source class of {\qualid}}
-\item \errindex{Cannot recognize {\class$_1$} as a source class of {\qualid}}
-\item {\qualid} \errindex{does not respect the uniform inheritance condition}
-\item \errindex{Found target class {\class} instead of {\class$_2$}}
-
-\end{ErrMsgs}
-
-When the coercion {\qualid} is added to the inheritance graph, non
-valid coercion paths are ignored; they are signaled by a warning.
-\\[0.3cm]
-\noindent {\bf Warning :}
-\begin{enumerate}
-\item \begin{tabbing}
-{\tt Ambiguous paths: }\= $[f_1^1;..;f_{n_1}^1] : C_1\mbox{\tt >->}D_1$\\
- \> ... \\
- \>$[f_1^m;..;f_{n_m}^m] : C_m\mbox{\tt >->}D_m$
- \end{tabbing}
-\end{enumerate}
-
-\begin{Variants}
-\item {\tt Local Coercion {\qualid} : {\class$_1$} >-> {\class$_2$}.}
-\comindex{Local Coercion}\\
- Declares the construction denoted by {\qualid} as a coercion local to
- the current section.
-
-\item {\tt Coercion {\ident} := {\term}}\comindex{Coercion}\\
- This defines {\ident} just like \texttt{Definition {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item {\tt Coercion {\ident} := {\term} : {\type}}\\
- This defines {\ident} just like
- \texttt{Definition {\ident} : {\type} := {\term}}, and then
- declares {\ident} as a coercion between it source and its target.
-
-\item {\tt Local Coercion {\ident} := {\term}}\comindex{Local Coercion}\\
- This defines {\ident} just like \texttt{Let {\ident} :=
- {\term}}, and then declares {\ident} as a coercion between it
- source and its target.
-
-\item Assumptions can be declared as coercions at declaration
-time. This extends the grammar of assumptions from
-Figure~\ref{sentences-syntax} as follows:
-\comindex{Variable \mbox{\rm (and coercions)}}
-\comindex{Axiom \mbox{\rm (and coercions)}}
-\comindex{Parameter \mbox{\rm (and coercions)}}
-\comindex{Hypothesis \mbox{\rm (and coercions)}}
-
-\begin{tabular}{lcl}
-%% Declarations
-{\assumption} & ::= & {\assumptionkeyword} {\assums} {\tt .} \\
-&&\\
-{\assums} & ::= & {\simpleassums} \\
- & $|$ & \nelist{{\tt (} \simpleassums {\tt )}}{} \\
-&&\\
-{\simpleassums} & ::= & \nelist{\ident}{} {\tt :}\zeroone{{\tt >}} {\term}\\
-\end{tabular}
-
-If the extra {\tt >} is present before the type of some assumptions, these
-assumptions are declared as coercions.
-
-\item Constructors of inductive types can be declared as coercions at
-definition time of the inductive type. This extends and modifies the
-grammar of inductive types from Figure \ref{sentences-syntax} as follows:
-\comindex{Inductive \mbox{\rm (and coercions)}}
-\comindex{CoInductive \mbox{\rm (and coercions)}}
-
-\begin{center}
-\begin{tabular}{lcl}
-%% Inductives
-{\inductive} & ::= &
- {\tt Inductive} \nelist{\inductivebody}{with} {\tt .} \\
- & $|$ & {\tt CoInductive} \nelist{\inductivebody}{with} {\tt .} \\
- & & \\
-{\inductivebody} & ::= &
- {\ident} \zeroone{\binders} {\tt :} {\term} {\tt :=} \\
- && ~~~\zeroone{\zeroone{\tt |} \nelist{\constructor}{|}} \\
- & & \\
-{\constructor} & ::= & {\ident} \zeroone{\binders} \zeroone{{\tt :}\zeroone{\tt >} {\term}} \\
-\end{tabular}
-\end{center}
-
-Especially, if the extra {\tt >} is present in a constructor
-declaration, this constructor is declared as a coercion.
-\end{Variants}
-
-\asubsection{\tt Identity Coercion {\ident}:{\class$_1$} >-> {\class$_2$}.}
-\comindex{Identity Coercion}
-
-We check that {\class$_1$} is a constant with a value of the form
-$fun~ (x_1:T_1)..(x_n:T_n) => (\mbox{\class}_2~t_1..t_m)$ where $m$ is the
-number of parameters of \class$_2$. Then we define an identity
-function with the type
-$forall~ (x_1:T_1)..(x_n:T_n)(y:\mbox{\class}_1~x_1..x_n),
-{\mbox{\class}_2}~t_1..t_m$, and we declare it as an identity
-coercion between {\class$_1$} and {\class$_2$}.
-
-\begin{ErrMsgs}
-\item {\class$_1$} \errindex{must be a transparent constant}
-\end{ErrMsgs}
-
-\begin{Variants}
-\item {\tt Local Identity Coercion {\ident}:{\ident$_1$} >-> {\ident$_2$}.} \\
-Idem but locally to the current section.
-
-\item {\tt SubClass {\ident} := {\type}.} \\
-\comindex{SubClass}
- If {\type} is a class
-{\ident'} applied to some arguments then {\ident} is defined and an
-identity coercion of name {\tt Id\_{\ident}\_{\ident'}} is
-declared. Otherwise said, this is an abbreviation for
-
-{\tt Definition {\ident} := {\type}.}
-
- followed by
-
-{\tt Identity Coercion Id\_{\ident}\_{\ident'}:{\ident} >-> {\ident'}}.
-
-\item {\tt Local SubClass {\ident} := {\type}.} \\
-Same as before but locally to the current section.
-
-\end{Variants}
-
-\asection{Displaying Available Coercions}
-
-\asubsection{\tt Print Classes.}
-\comindex{Print Classes}
-Print the list of declared classes in the current context.
-
-\asubsection{\tt Print Coercions.}
-\comindex{Print Coercions}
-Print the list of declared coercions in the current context.
-
-\asubsection{\tt Print Graph.}
-\comindex{Print Graph}
-Print the list of valid coercion paths in the current context.
-
-\asubsection{\tt Print Coercion Paths {\class$_1$} {\class$_2$}.}
-\comindex{Print Coercion Paths}
-Print the list of valid coercion paths from {\class$_1$} to {\class$_2$}.
-
-\asection{Activating the Printing of Coercions}
-
-\asubsection{\tt Set Printing Coercions.}
-\comindex{Set Printing Coercions}
-\comindex{Unset Printing Coercions}
-
-This command forces all the coercions to be printed.
-Conversely, to skip the printing of coercions, use
- {\tt Unset Printing Coercions}.
-By default, coercions are not printed.
-
-\asubsection{\tt Set Printing Coercion {\qualid}.}
-\comindex{Set Printing Coercion}
-\comindex{Unset Printing Coercion}
-
-This command forces coercion denoted by {\qualid} to be printed.
-To skip the printing of coercion {\qualid}, use
- {\tt Unset Printing Coercion {\qualid}}.
-By default, a coercion is never printed.
-
-\asection{Classes as Records}
-\label{Coercions-and-records}
-\index{Coercions!and records}
-We allow the definition of {\em Structures with Inheritance} (or
-classes as records) by extending the existing {\tt Record} macro
-(see Section~\ref{Record}). Its new syntax is:
-
-\begin{center}
-\begin{tabular}{l}
-{\tt Record \zeroone{>}~{\ident} \zeroone{\binders} : {\sort} := \zeroone{\ident$_0$} \verb+{+} \\
-~~~~\begin{tabular}{l}
- {\tt \ident$_1$ $[$:$|$:>$]$ \term$_1$ ;} \\
- ... \\
- {\tt \ident$_n$ $[$:$|$:>$]$ \term$_n$ \verb+}+. }
- \end{tabular}
-\end{tabular}
-\end{center}
-The identifier {\ident} is the name of the defined record and {\sort}
-is its type. The identifier {\ident$_0$} is the name of its
-constructor. The identifiers {\ident$_1$}, .., {\ident$_n$} are the
-names of its fields and {\term$_1$}, .., {\term$_n$} their respective
-types. The alternative {\tt $[$:$|$:>$]$} is ``{\tt :}'' or ``{\tt
-:>}''. If {\tt {\ident$_i$}:>{\term$_i$}}, then {\ident$_i$} is
-automatically declared as coercion from {\ident} to the class of
-{\term$_i$}. Remark that {\ident$_i$} always verifies the uniform
-inheritance condition. If the optional ``{\tt >}'' before {\ident} is
-present, then {\ident$_0$} (or the default name {\tt Build\_{\ident}}
-if {\ident$_0$} is omitted) is automatically declared as a coercion
-from the class of {\term$_n$} to {\ident} (this may fail if the
-uniform inheritance condition is not satisfied).
-
-\Rem The keyword {\tt Structure}\comindex{Structure} is a synonym of {\tt
-Record}.
-
-\asection{Coercions and Sections}
-\index{Coercions!and sections}
- The inheritance mechanism is compatible with the section
-mechanism. The global classes and coercions defined inside a section
-are redefined after its closing, using their new value and new
-type. The classes and coercions which are local to the section are
-simply forgotten.
-Coercions with a local source class or a local target class, and
-coercions which do not verify the uniform inheritance condition any longer
-are also forgotten.
-
-\asection{Coercions and Modules}
-\index{Coercions!and modules}
-
-From Coq version 8.3, the coercions present in a module are activated
-only when the module is explicitly imported. Formerly, the coercions
-were activated as soon as the module was required, whatever it was
-imported or not.
-
-To recover the behavior of the versions of Coq prior to 8.3, use the
-following command:
-
-\comindex{Set Automatic Coercions Import}
-\comindex{Unset Automatic Coercions Import}
-\begin{verbatim}
-Set Automatic Coercions Import.
-\end{verbatim}
-
-To cancel the effect of the option, use instead:
-
-\begin{verbatim}
-Unset Automatic Coercions Import.
-\end{verbatim}
-
-\asection{Examples}
-
- There are three situations:
-
-\begin{itemize}
-\item $f~a$ is ill-typed where $f:forall~x:A,B$ and $a:A'$. If there is a
- coercion path between $A'$ and $A$, $f~a$ is transformed into
- $f~a'$ where $a'$ is the result of the application of this
- coercion path to $a$.
-
-We first give an example of coercion between atomic inductive types
-
-%\begin{\small}
-\begin{coq_example}
-Definition bool_in_nat (b:bool) := if b then 0 else 1.
-Coercion bool_in_nat : bool >-> nat.
-Check (0 = true).
-Set Printing Coercions.
-Check (0 = true).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\Warning ``\verb|Check true=O.|'' fails. This is ``normal'' behaviour of
-coercions. To validate \verb|true=O|, the coercion is searched from
-\verb=nat= to \verb=bool=. There is none.
-
-We give an example of coercion between classes with parameters.
-
-%\begin{\small}
-\begin{coq_example}
-Parameters
- (C : nat -> Set) (D : nat -> bool -> Set) (E : bool -> Set).
-Parameter f : forall n:nat, C n -> D (S n) true.
-Coercion f : C >-> D.
-Parameter g : forall (n:nat) (b:bool), D n b -> E b.
-Coercion g : D >-> E.
-Parameter c : C 0.
-Parameter T : E true -> nat.
-Check (T c).
-Set Printing Coercions.
-Check (T c).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-We give now an example using identity coercions.
-
-%\begin{small}
-\begin{coq_example}
-Definition D' (b:bool) := D 1 b.
-Identity Coercion IdD'D : D' >-> D.
-Print IdD'D.
-Parameter d' : D' true.
-Check (T d').
-Set Printing Coercions.
-Check (T d').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-
- In the case of functional arguments, we use the monotonic rule of
-sub-typing. Approximatively, to coerce $t:forall~x:A, B$ towards
-$forall~x:A',B'$, one have to coerce $A'$ towards $A$ and $B$ towards
-$B'$. An example is given below:
-
-%\begin{small}
-\begin{coq_example}
-Parameters (A B : Set) (h : A -> B).
-Coercion h : A >-> B.
-Parameter U : (A -> E true) -> nat.
-Parameter t : B -> C 0.
-Check (U t).
-Set Printing Coercions.
-Check (U t).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
- Remark the changes in the result following the modification of the
-previous example.
-
-%\begin{small}
-\begin{coq_example}
-Parameter U' : (C 0 -> B) -> nat.
-Parameter t' : E true -> A.
-Check (U' t').
-Set Printing Coercions.
-Check (U' t').
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item An assumption $x:A$ when $A$ is not a type, is ill-typed. It is
- replaced by $x:A'$ where $A'$ is the result of the application
- to $A$ of the coercion path between the class of $A$ and {\tt
- Sortclass} if it exists. This case occurs in the abstraction
- $fun~ x:A => t$, universal quantification $forall~x:A, B$,
- global variables and parameters of (co-)inductive definitions
- and functions. In $forall~x:A, B$, such a coercion path may be
- applied to $B$ also if necessary.
-
-%\begin{small}
-\begin{coq_example}
-Parameter Graph : Type.
-Parameter Node : Graph -> Type.
-Coercion Node : Graph >-> Sortclass.
-Parameter G : Graph.
-Parameter Arrows : G -> G -> Type.
-Check Arrows.
-Parameter fg : G -> G.
-Check fg.
-Set Printing Coercions.
-Check fg.
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-\item $f~a$ is ill-typed because $f:A$ is not a function. The term
- $f$ is replaced by the term obtained by applying to $f$ the
- coercion path between $A$ and {\tt Funclass} if it exists.
-
-%\begin{small}
-\begin{coq_example}
-Parameter bij : Set -> Set -> Set.
-Parameter ap : forall A B:Set, bij A B -> A -> B.
-Coercion ap : bij >-> Funclass.
-Parameter b : bij nat nat.
-Check (b 0).
-Set Printing Coercions.
-Check (b 0).
-\end{coq_example}
-%\end{small}
-
-\begin{coq_eval}
-Unset Printing Coercions.
-\end{coq_eval}
-
-Let us see the resulting graph of this session.
-
-%\begin{small}
-\begin{coq_example}
-Print Graph.
-\end{coq_example}
-%\end{small}
-
-\end{itemize}
-
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "Reference-Manual"
-%%% End: