summaryrefslogtreecommitdiff
path: root/doc/RecTutorial/RecTutorial.v
diff options
context:
space:
mode:
Diffstat (limited to 'doc/RecTutorial/RecTutorial.v')
-rw-r--r--doc/RecTutorial/RecTutorial.v1232
1 files changed, 0 insertions, 1232 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v
deleted file mode 100644
index 7bede173..00000000
--- a/doc/RecTutorial/RecTutorial.v
+++ /dev/null
@@ -1,1232 +0,0 @@
-Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3).
-
-
-
-Inductive nat : Set :=
- | O : nat
- | S : nat->nat.
-Check nat.
-Check O.
-Check S.
-
-Reset nat.
-Print nat.
-
-
-Print le.
-
-Theorem zero_leq_three: 0 <= 3.
-
-Proof.
- constructor 2.
- constructor 2.
- constructor 2.
- constructor 1.
-
-Qed.
-
-Print zero_leq_three.
-
-
-Lemma zero_leq_three': 0 <= 3.
- repeat constructor.
-Qed.
-
-
-Lemma zero_lt_three : 0 < 3.
-Proof.
- repeat constructor.
-Qed.
-
-Print zero_lt_three.
-
-Inductive le'(n:nat):nat -> Prop :=
- | le'_n : le' n n
- | le'_S : forall p, le' (S n) p -> le' n p.
-
-Hint Constructors le'.
-
-
-Require Import List.
-
-Print list.
-
-Check list.
-
-Check (nil (A:=nat)).
-
-Check (nil (A:= nat -> nat)).
-
-Check (fun A: Type => (cons (A:=A))).
-
-Check (cons 3 (cons 2 nil)).
-
-Check (nat :: bool ::nil).
-
-Check ((3<=4) :: True ::nil).
-
-Check (Prop::Set::nil).
-
-Require Import Bvector.
-
-Print vector.
-
-Check (Vnil nat).
-
-Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)).
-
-Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))).
-
-Lemma eq_3_3 : 2 + 1 = 3.
-Proof.
- reflexivity.
-Qed.
-Print eq_3_3.
-
-Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4).
-Proof.
- reflexivity.
-Qed.
-Print eq_proof_proof.
-
-Lemma eq_lt_le : ( 2 < 4) = (3 <= 4).
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_nat_nat : nat = nat.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_Set_Set : Set = Set.
-Proof.
- reflexivity.
-Qed.
-
-Lemma eq_Type_Type : Type = Type.
-Proof.
- reflexivity.
-Qed.
-
-
-Check (2 + 1 = 3).
-
-
-Check (Type = Type).
-
-Goal Type = Type.
-reflexivity.
-Qed.
-
-
-Print or.
-
-Print and.
-
-
-Print sumbool.
-
-Print ex.
-
-Require Import ZArith.
-Require Import Compare_dec.
-
-Check le_lt_dec.
-
-Definition max (n p :nat) := match le_lt_dec n p with
- | left _ => p
- | right _ => n
- end.
-
-Theorem le_max : forall n p, n <= p -> max n p = p.
-Proof.
- intros n p ; unfold max ; case (le_lt_dec n p); simpl.
- trivial.
- intros; absurd (p < p); eauto with arith.
-Qed.
-
-Extraction max.
-
-
-
-
-
-
-Inductive tree(A:Type) : Type :=
- node : A -> forest A -> tree A
-with
- forest (A: Type) : Type :=
- nochild : forest A |
- addchild : tree A -> forest A -> forest A.
-
-
-
-
-
-Inductive
- even : nat->Prop :=
- evenO : even O |
- evenS : forall n, odd n -> even (S n)
-with
- odd : nat->Prop :=
- oddS : forall n, even n -> odd (S n).
-
-Lemma odd_49 : odd (7 * 7).
- simpl; repeat constructor.
-Qed.
-
-
-
-Definition nat_case :=
- fun (Q : Type)(g0 : Q)(g1 : nat -> Q)(n:nat) =>
- match n return Q with
- | 0 => g0
- | S p => g1 p
- end.
-
-Eval simpl in (nat_case nat 0 (fun p => p) 34).
-
-Eval simpl in (fun g0 g1 => nat_case nat g0 g1 34).
-
-Eval simpl in (fun g0 g1 => nat_case nat g0 g1 0).
-
-
-Definition pred (n:nat) := match n with O => O | S m => m end.
-
-Eval simpl in pred 56.
-
-Eval simpl in pred 0.
-
-Eval simpl in fun p => pred (S p).
-
-
-Definition xorb (b1 b2:bool) :=
-match b1, b2 with
- | false, true => true
- | true, false => true
- | _ , _ => false
-end.
-
-
- Definition pred_spec (n:nat) := {m:nat | n=0 /\ m=0 \/ n = S m}.
-
-
- Definition predecessor : forall n:nat, pred_spec n.
- intro n;case n.
- unfold pred_spec;exists 0;auto.
- unfold pred_spec; intro n0;exists n0; auto.
- Defined.
-
-Print predecessor.
-
-Extraction predecessor.
-
-Theorem nat_expand :
- forall n:nat, n = match n with 0 => 0 | S p => S p end.
- intro n;case n;simpl;auto.
-Qed.
-
-Check (fun p:False => match p return 2=3 with end).
-
-Theorem fromFalse : False -> 0=1.
- intro absurd.
- contradiction.
-Qed.
-
-Section equality_elimination.
- Variables (A: Type)
- (a b : A)
- (p : a = b)
- (Q : A -> Type).
- Check (fun H : Q a =>
- match p in (eq _ y) return Q y with
- refl_equal => H
- end).
-
-End equality_elimination.
-
-
-Theorem trans : forall n m p:nat, n=m -> m=p -> n=p.
-Proof.
- intros n m p eqnm.
- case eqnm.
- trivial.
-Qed.
-
-Lemma Rw : forall x y: nat, y = y * x -> y * x * x = y.
- intros x y e; do 2 rewrite <- e.
- reflexivity.
-Qed.
-
-
-Require Import Arith.
-
-Check mult_1_l.
-(*
-mult_1_l
- : forall n : nat, 1 * n = n
-*)
-
-Check mult_plus_distr_r.
-(*
-mult_plus_distr_r
- : forall n m p : nat, (n + m) * p = n * p + m * p
-
-*)
-
-Lemma mult_distr_S : forall n p : nat, n * p + p = (S n)* p.
- simpl;auto with arith.
-Qed.
-
-Lemma four_n : forall n:nat, n+n+n+n = 4*n.
- intro n;rewrite <- (mult_1_l n).
-
- Undo.
- intro n; pattern n at 1.
-
-
- rewrite <- mult_1_l.
- repeat rewrite mult_distr_S.
- trivial.
-Qed.
-
-
-Section Le_case_analysis.
- Variables (n p : nat)
- (H : n <= p)
- (Q : nat -> Prop)
- (H0 : Q n)
- (HS : forall m, n <= m -> Q (S m)).
- Check (
- match H in (_ <= q) return (Q q) with
- | le_n => H0
- | le_S m Hm => HS m Hm
- end
- ).
-
-
-End Le_case_analysis.
-
-
-Lemma predecessor_of_positive : forall n, 1 <= n -> exists p:nat, n = S p.
-Proof.
- intros n H; case H.
- exists 0; trivial.
- intros m Hm; exists m;trivial.
-Qed.
-
-Definition Vtail_total
- (A : Type) (n : nat) (v : vector A n) : vector A (pred n):=
-match v in (vector _ n0) return (vector A (pred n0)) with
-| Vnil => Vnil A
-| Vcons _ n0 v0 => v0
-end.
-
-Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n).
- intros A n v; case v.
- simpl.
- exact (Vnil A).
- simpl.
- auto.
-Defined.
-
-(*
-Inductive Lambda : Set :=
- lambda : (Lambda -> False) -> Lambda.
-
-
-Error: Non strictly positive occurrence of "Lambda" in
- "(Lambda -> False) -> Lambda"
-
-*)
-
-Section Paradox.
- Variable Lambda : Set.
- Variable lambda : (Lambda -> False) ->Lambda.
-
- Variable matchL : Lambda -> forall Q:Prop, ((Lambda ->False) -> Q) -> Q.
- (*
- understand matchL Q l (fun h : Lambda -> False => t)
-
- as match l return Q with lambda h => t end
- *)
-
- Definition application (f x: Lambda) :False :=
- matchL f False (fun h => h x).
-
- Definition Delta : Lambda := lambda (fun x : Lambda => application x x).
-
- Definition loop : False := application Delta Delta.
-
- Theorem two_is_three : 2 = 3.
- Proof.
- elim loop.
- Qed.
-
-End Paradox.
-
-
-Require Import ZArith.
-
-
-
-Inductive itree : Set :=
-| ileaf : itree
-| inode : Z-> (nat -> itree) -> itree.
-
-Definition isingle l := inode l (fun i => ileaf).
-
-Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))).
-
-Definition t2 := inode 0
- (fun n : nat =>
- inode (Z_of_nat n)
- (fun p => isingle (Z_of_nat (n*p)))).
-
-
-Inductive itree_le : itree-> itree -> Prop :=
- | le_leaf : forall t, itree_le ileaf t
- | le_node : forall l l' s s',
- Zle l l' ->
- (forall i, exists j:nat, itree_le (s i) (s' j)) ->
- itree_le (inode l s) (inode l' s').
-
-
-Theorem itree_le_trans :
- forall t t', itree_le t t' ->
- forall t'', itree_le t' t'' -> itree_le t t''.
- induction t.
- constructor 1.
-
- intros t'; case t'.
- inversion 1.
- intros z0 i0 H0.
- intro t'';case t''.
- inversion 1.
- intros.
- inversion_clear H1.
- constructor 2.
- inversion_clear H0;eauto with zarith.
- inversion_clear H0.
- intro i2; case (H4 i2).
- intros.
- generalize (H i2 _ H0).
- intros.
- case (H3 x);intros.
- generalize (H5 _ H6).
- exists x0;auto.
-Qed.
-
-
-
-Inductive itree_le' : itree-> itree -> Prop :=
- | le_leaf' : forall t, itree_le' ileaf t
- | le_node' : forall l l' s s' g,
- Zle l l' ->
- (forall i, itree_le' (s i) (s' (g i))) ->
- itree_le' (inode l s) (inode l' s').
-
-
-
-
-
-Lemma t1_le_t2 : itree_le t1 t2.
- unfold t1, t2.
- constructor.
- auto with zarith.
- intro i; exists (2 * i).
- unfold isingle.
- constructor.
- auto with zarith.
- exists i;constructor.
-Qed.
-
-
-
-Lemma t1_le'_t2 : itree_le' t1 t2.
- unfold t1, t2.
- constructor 2 with (fun i : nat => 2 * i).
- auto with zarith.
- unfold isingle;
- intro i ; constructor 2 with (fun i :nat => i).
- auto with zarith.
- constructor .
-Qed.
-
-
-Require Import List.
-
-Inductive ltree (A:Set) : Set :=
- lnode : A -> list (ltree A) -> ltree A.
-
-Inductive prop : Prop :=
- prop_intro : Prop -> prop.
-
-Check (prop_intro prop).
-
-Inductive ex_Prop (P : Prop -> Prop) : Prop :=
- exP_intro : forall X : Prop, P X -> ex_Prop P.
-
-Lemma ex_Prop_inhabitant : ex_Prop (fun P => P -> P).
-Proof.
- exists (ex_Prop (fun P => P -> P)).
- trivial.
-Qed.
-
-
-
-
-(*
-
-Check (fun (P:Prop->Prop)(p: ex_Prop P) =>
- match p with exP_intro X HX => X end).
-Error:
-Incorrect elimination of "p" in the inductive type
-"ex_Prop", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs
-
-*)
-
-
-Inductive typ : Type :=
- typ_intro : Type -> typ.
-
-Definition typ_inject: typ.
-split.
-exact typ.
-(*
-Defined.
-
-Error: Universe Inconsistency.
-*)
-Abort.
-(*
-
-Inductive aSet : Set :=
- aSet_intro: Set -> aSet.
-
-
-User error: Large non-propositional inductive types must be in Type
-
-*)
-
-Inductive ex_Set (P : Set -> Prop) : Type :=
- exS_intro : forall X : Set, P X -> ex_Set P.
-
-
-Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop :=
- c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p).
-
-Goal (comes_from_the_left _ _ (or_introl True I)).
-split.
-Qed.
-
-Goal ~(comes_from_the_left _ _ (or_intror True I)).
- red;inversion 1.
- (* discriminate H0.
- *)
-Abort.
-
-Reset comes_from_the_left.
-
-(*
-
-
-
-
-
-
- Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop :=
- match H with
- | or_introl p => True
- | or_intror q => False
- end.
-
-Error:
-Incorrect elimination of "H" in the inductive type
-"or", the return type has sort "Type" while it should be
-"Prop"
-
-Elimination of an inductive object of sort "Prop"
-is not allowed on a predicate in sort "Type"
-because proofs can be eliminated only to build proofs
-
-*)
-
-Definition comes_from_the_left_sumbool
- (P Q:Prop)(x:{P}+{Q}): Prop :=
- match x with
- | left p => True
- | right q => False
- end.
-
-
-
-
-Close Scope Z_scope.
-
-
-
-
-
-Theorem S_is_not_O : forall n, S n <> 0.
-
-Definition Is_zero (x:nat):= match x with
- | 0 => True
- | _ => False
- end.
- Lemma O_is_zero : forall m, m = 0 -> Is_zero m.
- Proof.
- intros m H; subst m.
- (*
- ============================
- Is_zero 0
- *)
- simpl;trivial.
- Qed.
-
- red; intros n Hn.
- apply O_is_zero with (m := S n).
- assumption.
-Qed.
-
-Theorem disc2 : forall n, S (S n) <> 1.
-Proof.
- intros n Hn; discriminate.
-Qed.
-
-
-Theorem disc3 : forall n, S (S n) = 0 -> forall Q:Prop, Q.
-Proof.
- intros n Hn Q.
- discriminate.
-Qed.
-
-
-
-Theorem inj_succ : forall n m, S n = S m -> n = m.
-Proof.
-
-
-Lemma inj_pred : forall n m, n = m -> pred n = pred m.
-Proof.
- intros n m eq_n_m.
- rewrite eq_n_m.
- trivial.
-Qed.
-
- intros n m eq_Sn_Sm.
- apply inj_pred with (n:= S n) (m := S m); assumption.
-Qed.
-
-Lemma list_inject : forall (A:Type)(a b :A)(l l':list A),
- a :: b :: l = b :: a :: l' -> a = b /\ l = l'.
-Proof.
- intros A a b l l' e.
- injection e.
- auto.
-Qed.
-
-
-Theorem not_le_Sn_0 : forall n:nat, ~ (S n <= 0).
-Proof.
- red; intros n H.
- case H.
-Undo.
-
-Lemma not_le_Sn_0_with_constraints :
- forall n p , S n <= p -> p = 0 -> False.
-Proof.
- intros n p H; case H ;
- intros; discriminate.
-Qed.
-
-eapply not_le_Sn_0_with_constraints; eauto.
-Qed.
-
-
-Theorem not_le_Sn_0' : forall n:nat, ~ (S n <= 0).
-Proof.
- red; intros n H ; inversion H.
-Qed.
-
-Derive Inversion le_Sn_0_inv with (forall n :nat, S n <= 0).
-Check le_Sn_0_inv.
-
-Theorem le_Sn_0'' : forall n p : nat, ~ S n <= 0 .
-Proof.
- intros n p H;
- inversion H using le_Sn_0_inv.
-Qed.
-
-Derive Inversion_clear le_Sn_0_inv' with (forall n :nat, S n <= 0).
-Check le_Sn_0_inv'.
-
-
-Theorem le_reverse_rules :
- forall n m:nat, n <= m ->
- n = m \/
- exists p, n <= p /\ m = S p.
-Proof.
- intros n m H; inversion H.
- left;trivial.
- right; exists m0; split; trivial.
-Restart.
- intros n m H; inversion_clear H.
- left;trivial.
- right; exists m0; split; trivial.
-Qed.
-
-Inductive ArithExp : Set :=
- Zero : ArithExp
- | Succ : ArithExp -> ArithExp
- | Plus : ArithExp -> ArithExp -> ArithExp.
-
-Inductive RewriteRel : ArithExp -> ArithExp -> Prop :=
- RewSucc : forall e1 e2 :ArithExp,
- RewriteRel e1 e2 -> RewriteRel (Succ e1) (Succ e2)
- | RewPlus0 : forall e:ArithExp,
- RewriteRel (Plus Zero e) e
- | RewPlusS : forall e1 e2:ArithExp,
- RewriteRel e1 e2 ->
- RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)).
-
-
-
-Fixpoint plus (n p:nat) {struct n} : nat :=
- match n with
- | 0 => p
- | S m => S (plus m p)
- end.
-
-Fixpoint plus' (n p:nat) {struct p} : nat :=
- match p with
- | 0 => n
- | S q => S (plus' n q)
- end.
-
-Fixpoint plus'' (n p:nat) {struct n} : nat :=
- match n with
- | 0 => p
- | S m => plus'' m (S p)
- end.
-
-
-Fixpoint even_test (n:nat) : bool :=
- match n
- with 0 => true
- | 1 => false
- | S (S p) => even_test p
- end.
-
-
-Reset even_test.
-
-Fixpoint even_test (n:nat) : bool :=
- match n
- with
- | 0 => true
- | S p => odd_test p
- end
-with odd_test (n:nat) : bool :=
- match n
- with
- | 0 => false
- | S p => even_test p
- end.
-
-
-
-Eval simpl in even_test.
-
-
-
-Eval simpl in (fun x : nat => even_test x).
-
-Eval simpl in (fun x : nat => plus 5 x).
-Eval simpl in (fun x : nat => even_test (plus 5 x)).
-
-Eval simpl in (fun x : nat => even_test (plus x 5)).
-
-
-Section Principle_of_Induction.
-Variable P : nat -> Prop.
-Hypothesis base_case : P 0.
-Hypothesis inductive_step : forall n:nat, P n -> P (S n).
-Fixpoint nat_ind (n:nat) : (P n) :=
- match n return P n with
- | 0 => base_case
- | S m => inductive_step m (nat_ind m)
- end.
-
-End Principle_of_Induction.
-
-Scheme Even_induction := Minimality for even Sort Prop
-with Odd_induction := Minimality for odd Sort Prop.
-
-Theorem even_plus_four : forall n:nat, even n -> even (4+n).
-Proof.
- intros n H.
- elim H using Even_induction with (P0 := fun n => odd (4+n));
- simpl;repeat constructor;assumption.
-Qed.
-
-
-Section Principle_of_Double_Induction.
-Variable P : nat -> nat ->Prop.
-Hypothesis base_case1 : forall x:nat, P 0 x.
-Hypothesis base_case2 : forall x:nat, P (S x) 0.
-Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
-Fixpoint nat_double_ind (n m:nat){struct n} : P n m :=
- match n, m return P n m with
- | 0 , x => base_case1 x
- | (S x), 0 => base_case2 x
- | (S x), (S y) => inductive_step x y (nat_double_ind x y)
- end.
-End Principle_of_Double_Induction.
-
-Section Principle_of_Double_Recursion.
-Variable P : nat -> nat -> Type.
-Hypothesis base_case1 : forall x:nat, P 0 x.
-Hypothesis base_case2 : forall x:nat, P (S x) 0.
-Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m).
-Fixpoint nat_double_rect (n m:nat){struct n} : P n m :=
- match n, m return P n m with
- | 0 , x => base_case1 x
- | (S x), 0 => base_case2 x
- | (S x), (S y) => inductive_step x y (nat_double_rect x y)
- end.
-End Principle_of_Double_Recursion.
-
-Definition min : nat -> nat -> nat :=
- nat_double_rect (fun (x y:nat) => nat)
- (fun (x:nat) => 0)
- (fun (y:nat) => 0)
- (fun (x y r:nat) => S r).
-
-Eval compute in (min 5 8).
-Eval compute in (min 8 5).
-
-
-
-Lemma not_circular : forall n:nat, n <> S n.
-Proof.
- intro n.
- apply nat_ind with (P:= fun n => n <> S n).
- discriminate.
- red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial.
-Qed.
-
-Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}.
-Proof.
- intros n p.
- apply nat_double_rect with (P:= fun (n q:nat) => {q=p}+{q <> p}).
-Undo.
- pattern p,n.
- elim n using nat_double_rect.
- destruct x; auto.
- destruct x; auto.
- intros n0 m H; case H.
- intro eq; rewrite eq ; auto.
- intro neg; right; red ; injection 1; auto.
-Defined.
-
-Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}.
- decide equality.
-Defined.
-
-
-
-Require Import Le.
-Lemma le'_le : forall n p, le' n p -> n <= p.
-Proof.
- induction 1;auto with arith.
-Qed.
-
-Lemma le'_n_Sp : forall n p, le' n p -> le' n (S p).
-Proof.
- induction 1;auto.
-Qed.
-
-Hint Resolve le'_n_Sp.
-
-
-Lemma le_le' : forall n p, n<=p -> le' n p.
-Proof.
- induction 1;auto with arith.
-Qed.
-
-
-Print Acc.
-
-
-Require Import Minus.
-
-(*
-Fixpoint div (x y:nat){struct x}: nat :=
- if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then x
- else S (div (x-y) y).
-
-Error:
-Recursive definition of div is ill-formed.
-In environment
-div : nat -> nat -> nat
-x : nat
-y : nat
-_ : x <> 0
-_ : y <> 0
-
-Recursive call to div has principal argument equal to
-"x - y"
-instead of a subterm of x
-
-*)
-
-Lemma minus_smaller_S: forall x y:nat, x - y < S x.
-Proof.
- intros x y; pattern y, x;
- elim x using nat_double_ind.
- destruct x0; auto with arith.
- simpl; auto with arith.
- simpl; auto with arith.
-Qed.
-
-Lemma minus_smaller_positive : forall x y:nat, x <>0 -> y <> 0 ->
- x - y < x.
-Proof.
- destruct x; destruct y;
- ( simpl;intros; apply minus_smaller_S ||
- intros; absurd (0=0); auto).
-Qed.
-
-Definition minus_decrease : forall x y:nat, Acc lt x ->
- x <> 0 ->
- y <> 0 ->
- Acc lt (x-y).
-Proof.
- intros x y H; case H.
- intros Hz posz posy.
- apply Hz; apply minus_smaller_positive; assumption.
-Defined.
-
-Print minus_decrease.
-
-
-
-Definition div_aux (x y:nat)(H: Acc lt x):nat.
- fix 3.
- intros.
- refine (if eq_nat_dec x 0
- then 0
- else if eq_nat_dec y 0
- then y
- else div_aux (x-y) y _).
- apply (minus_decrease x y H);assumption.
-Defined.
-
-
-Print div_aux.
-(*
-div_aux =
-(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat :=
- match eq_nat_dec x 0 with
- | left _ => 0
- | right _ =>
- match eq_nat_dec y 0 with
- | left _ => y
- | right _0 => div_aux (x - y) y (minus_decrease x y H _ _0)
- end
- end)
- : forall x : nat, nat -> Acc lt x -> nat
-*)
-
-Require Import Wf_nat.
-Definition div x y := div_aux x y (lt_wf x).
-
-Extraction div.
-(*
-let div x y =
- div_aux x y
-*)
-
-Extraction div_aux.
-
-(*
-let rec div_aux x y =
- match eq_nat_dec x O with
- | Left -> O
- | Right ->
- (match eq_nat_dec y O with
- | Left -> y
- | Right -> div_aux (minus x y) y)
-*)
-
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
-Proof.
- intros A v;inversion v.
-Abort.
-
-(*
- Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> v = Vnil A.
-
-Toplevel input, characters 40281-40287
-> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A.
-> ^^^^^^
-Error: In environment
-A : Set
-n : nat
-v : vector A n
-e : n = 0
-The term "Vnil A" has type "vector A 0" while it is expected to have type
- "vector A n"
-*)
- Require Import JMeq.
-
-
-(* On devrait changer Set en Type ? *)
-
-Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n),
- n= 0 -> JMeq v (Vnil A).
-Proof.
- destruct v.
- auto.
- intro; discriminate.
-Qed.
-
-Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A.
-Proof.
- intros a v;apply JMeq_eq.
- apply vector0_is_vnil_aux.
- trivial.
-Qed.
-
-
-Implicit Arguments Vcons [A n].
-Implicit Arguments Vnil [A].
-Implicit Arguments Vhead [A n].
-Implicit Arguments Vtail [A n].
-
-Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n.
-Proof.
- destruct n; intro v.
- exact Vnil.
- exact (Vcons (Vhead v) (Vtail v)).
-Defined.
-
-Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)).
-
-Eval simpl in (fun (A:Type)(v:vector A 0) => v).
-
-
-
-Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v).
-Proof.
- destruct v.
- reflexivity.
- reflexivity.
-Defined.
-
-Theorem zero_nil : forall A (v:vector A 0), v = Vnil.
-Proof.
- intros.
- change (Vnil (A:=A)) with (Vid _ 0 v).
- apply Vid_eq.
-Defined.
-
-
-Theorem decomp :
- forall (A : Type) (n : nat) (v : vector A (S n)),
- v = Vcons (Vhead v) (Vtail v).
-Proof.
- intros.
- change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v).
- apply Vid_eq.
-Defined.
-
-
-
-Definition vector_double_rect :
- forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type),
- P 0 Vnil Vnil ->
- (forall n (v1 v2 : vector A n) a b, P n v1 v2 ->
- P (S n) (Vcons a v1) (Vcons b v2)) ->
- forall n (v1 v2 : vector A n), P n v1 v2.
- induction n.
- intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2).
- auto.
- intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2).
- apply X0; auto.
-Defined.
-
-Require Import Bool.
-
-Definition bitwise_or n v1 v2 : vector bool n :=
- vector_double_rect bool (fun n v1 v2 => vector bool n)
- Vnil
- (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2.
-
-
-Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v}
- : option A :=
- match n,v with
- _ , Vnil => None
- | 0 , Vcons b _ _ => Some b
- | S n', Vcons _ p' v' => vector_nth A n' p' v'
- end.
-
-Implicit Arguments vector_nth [A p].
-
-
-Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b,
- vector_nth i v1 = Some a ->
- vector_nth i v2 = Some b ->
- vector_nth i (bitwise_or _ v1 v2) = Some (orb a b).
-Proof.
- intros n v1 v2; pattern n,v1,v2.
- apply vector_double_rect.
- simpl.
- destruct i; discriminate 1.
- destruct i; simpl;auto.
- injection 1; injection 2;intros; subst a; subst b; auto.
-Qed.
-
- Set Implicit Arguments.
-
- CoInductive Stream (A:Type) : Type :=
- | Cons : A -> Stream A -> Stream A.
-
- CoInductive LList (A: Type) : Type :=
- | LNil : LList A
- | LCons : A -> LList A -> LList A.
-
-
-
-
-
- Definition head (A:Type)(s : Stream A) := match s with Cons a s' => a end.
-
- Definition tail (A : Type)(s : Stream A) :=
- match s with Cons a s' => s' end.
-
- CoFixpoint repeat (A:Type)(a:A) : Stream A := Cons a (repeat a).
-
- CoFixpoint iterate (A: Type)(f: A -> A)(a : A) : Stream A:=
- Cons a (iterate f (f a)).
-
- CoFixpoint map (A B:Type)(f: A -> B)(s : Stream A) : Stream B:=
- match s with Cons a tl => Cons (f a) (map f tl) end.
-
-Eval simpl in (fun (A:Type)(a:A) => repeat a).
-
-Eval simpl in (fun (A:Type)(a:A) => head (repeat a)).
-
-
-CoInductive EqSt (A: Type) : Stream A -> Stream A -> Prop :=
- eqst : forall s1 s2: Stream A,
- head s1 = head s2 ->
- EqSt (tail s1) (tail s2) ->
- EqSt s1 s2.
-
-
-Section Parks_Principle.
-Variable A : Type.
-Variable R : Stream A -> Stream A -> Prop.
-Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 ->
- head s1 = head s2.
-Hypothesis bisim2 : forall s1 s2:Stream A, R s1 s2 ->
- R (tail s1) (tail s2).
-
-CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 ->
- EqSt s1 s2 :=
- fun s1 s2 (p : R s1 s2) =>
- eqst s1 s2 (bisim1 p)
- (park_ppl (bisim2 p)).
-End Parks_Principle.
-
-
-Theorem map_iterate : forall (A:Type)(f:A->A)(x:A),
- EqSt (iterate f (f x)) (map f (iterate f x)).
-Proof.
- intros A f x.
- apply park_ppl with
- (R:= fun s1 s2 => exists x: A,
- s1 = iterate f (f x) /\ s2 = map f (iterate f x)).
-
- intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity.
- intros s1 s2 (x0,(eqs1,eqs2)).
- exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity.
- exists x;split; reflexivity.
-Qed.
-
-Ltac infiniteproof f :=
- cofix f; constructor; [clear f| simpl; try (apply f; clear f)].
-
-
-Theorem map_iterate' : forall (A:Type)(f:A->A)(x:A),
- EqSt (iterate f (f x)) (map f (iterate f x)).
-infiniteproof map_iterate'.
- reflexivity.
-Qed.
-
-
-Implicit Arguments LNil [A].
-
-Lemma Lnil_not_Lcons : forall (A:Type)(a:A)(l:LList A),
- LNil <> (LCons a l).
- intros;discriminate.
-Qed.
-
-Lemma injection_demo : forall (A:Type)(a b : A)(l l': LList A),
- LCons a (LCons b l) = LCons b (LCons a l') ->
- a = b /\ l = l'.
-Proof.
- intros A a b l l' e; injection e; auto.
-Qed.
-
-
-Inductive Finite (A:Type) : LList A -> Prop :=
-| Lnil_fin : Finite (LNil (A:=A))
-| Lcons_fin : forall a l, Finite l -> Finite (LCons a l).
-
-CoInductive Infinite (A:Type) : LList A -> Prop :=
-| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l).
-
-Lemma LNil_not_Infinite : forall (A:Type), ~ Infinite (LNil (A:=A)).
-Proof.
- intros A H;inversion H.
-Qed.
-
-Lemma Finite_not_Infinite : forall (A:Type)(l:LList A),
- Finite l -> ~ Infinite l.
-Proof.
- intros A l H; elim H.
- apply LNil_not_Infinite.
- intros a l0 F0 I0' I1.
- case I0'; inversion_clear I1.
- trivial.
-Qed.
-
-Lemma Not_Finite_Infinite : forall (A:Type)(l:LList A),
- ~ Finite l -> Infinite l.
-Proof.
- cofix H.
- destruct l.
- intro; absurd (Finite (LNil (A:=A)));[auto|constructor].
- constructor.
- apply H.
- red; intro H1;case H0.
- constructor.
- trivial.
-Qed.
-
-
-