diff options
Diffstat (limited to 'doc/RecTutorial/RecTutorial.v')
-rw-r--r-- | doc/RecTutorial/RecTutorial.v | 1232 |
1 files changed, 0 insertions, 1232 deletions
diff --git a/doc/RecTutorial/RecTutorial.v b/doc/RecTutorial/RecTutorial.v deleted file mode 100644 index 28aaf752..00000000 --- a/doc/RecTutorial/RecTutorial.v +++ /dev/null @@ -1,1232 +0,0 @@ -Check (forall A:Type, (exists x:A, forall (y:A), x <> y) -> 2 = 3). - - - -Inductive nat : Set := - | O : nat - | S : nat->nat. -Check nat. -Check O. -Check S. - -Reset nat. -Print nat. - - -Print le. - -Theorem zero_leq_three: 0 <= 3. - -Proof. - constructor 2. - constructor 2. - constructor 2. - constructor 1. - -Qed. - -Print zero_leq_three. - - -Lemma zero_leq_three': 0 <= 3. - repeat constructor. -Qed. - - -Lemma zero_lt_three : 0 < 3. -Proof. - repeat constructor. -Qed. - -Print zero_lt_three. - -Inductive le'(n:nat):nat -> Prop := - | le'_n : le' n n - | le'_S : forall p, le' (S n) p -> le' n p. - -Hint Constructors le'. - - -Require Import List. - -Print list. - -Check list. - -Check (nil (A:=nat)). - -Check (nil (A:= nat -> nat)). - -Check (fun A: Type => (cons (A:=A))). - -Check (cons 3 (cons 2 nil)). - -Check (nat :: bool ::nil). - -Check ((3<=4) :: True ::nil). - -Check (Prop::Set::nil). - -Require Import Bvector. - -Print vector. - -Check (Vnil nat). - -Check (fun (A:Type)(a:A)=> Vcons _ a _ (Vnil _)). - -Check (Vcons _ 5 _ (Vcons _ 3 _ (Vnil _))). - -Lemma eq_3_3 : 2 + 1 = 3. -Proof. - reflexivity. -Qed. -Print eq_3_3. - -Lemma eq_proof_proof : refl_equal (2*6) = refl_equal (3*4). -Proof. - reflexivity. -Qed. -Print eq_proof_proof. - -Lemma eq_lt_le : ( 2 < 4) = (3 <= 4). -Proof. - reflexivity. -Qed. - -Lemma eq_nat_nat : nat = nat. -Proof. - reflexivity. -Qed. - -Lemma eq_Set_Set : Set = Set. -Proof. - reflexivity. -Qed. - -Lemma eq_Type_Type : Type = Type. -Proof. - reflexivity. -Qed. - - -Check (2 + 1 = 3). - - -Check (Type = Type). - -Goal Type = Type. -reflexivity. -Qed. - - -Print or. - -Print and. - - -Print sumbool. - -Print ex. - -Require Import ZArith. -Require Import Compare_dec. - -Check le_lt_dec. - -Definition max (n p :nat) := match le_lt_dec n p with - | left _ => p - | right _ => n - end. - -Theorem le_max : forall n p, n <= p -> max n p = p. -Proof. - intros n p ; unfold max ; case (le_lt_dec n p); simpl. - trivial. - intros; absurd (p < p); eauto with arith. -Qed. - -Extraction max. - - - - - - -Inductive tree(A:Type) : Type := - node : A -> forest A -> tree A -with - forest (A: Type) : Type := - nochild : forest A | - addchild : tree A -> forest A -> forest A. - - - - - -Inductive - even : nat->Prop := - evenO : even O | - evenS : forall n, odd n -> even (S n) -with - odd : nat->Prop := - oddS : forall n, even n -> odd (S n). - -Lemma odd_49 : odd (7 * 7). - simpl; repeat constructor. -Qed. - - - -Definition nat_case := - fun (Q : Type)(g0 : Q)(g1 : nat -> Q)(n:nat) => - match n return Q with - | 0 => g0 - | S p => g1 p - end. - -Eval simpl in (nat_case nat 0 (fun p => p) 34). - -Eval simpl in (fun g0 g1 => nat_case nat g0 g1 34). - -Eval simpl in (fun g0 g1 => nat_case nat g0 g1 0). - - -Definition pred (n:nat) := match n with O => O | S m => m end. - -Eval simpl in pred 56. - -Eval simpl in pred 0. - -Eval simpl in fun p => pred (S p). - - -Definition xorb (b1 b2:bool) := -match b1, b2 with - | false, true => true - | true, false => true - | _ , _ => false -end. - - - Definition pred_spec (n:nat) := {m:nat | n=0 /\ m=0 \/ n = S m}. - - - Definition predecessor : forall n:nat, pred_spec n. - intro n;case n. - unfold pred_spec;exists 0;auto. - unfold pred_spec; intro n0;exists n0; auto. - Defined. - -Print predecessor. - -Extraction predecessor. - -Theorem nat_expand : - forall n:nat, n = match n with 0 => 0 | S p => S p end. - intro n;case n;simpl;auto. -Qed. - -Check (fun p:False => match p return 2=3 with end). - -Theorem fromFalse : False -> 0=1. - intro absurd. - contradiction. -Qed. - -Section equality_elimination. - Variables (A: Type) - (a b : A) - (p : a = b) - (Q : A -> Type). - Check (fun H : Q a => - match p in (eq _ y) return Q y with - refl_equal => H - end). - -End equality_elimination. - - -Theorem trans : forall n m p:nat, n=m -> m=p -> n=p. -Proof. - intros n m p eqnm. - case eqnm. - trivial. -Qed. - -Lemma Rw : forall x y: nat, y = y * x -> y * x * x = y. - intros x y e; do 2 rewrite <- e. - reflexivity. -Qed. - - -Require Import Arith. - -Check mult_1_l. -(* -mult_1_l - : forall n : nat, 1 * n = n -*) - -Check mult_plus_distr_r. -(* -mult_plus_distr_r - : forall n m p : nat, (n + m) * p = n * p + m * p - -*) - -Lemma mult_distr_S : forall n p : nat, n * p + p = (S n)* p. - simpl;auto with arith. -Qed. - -Lemma four_n : forall n:nat, n+n+n+n = 4*n. - intro n;rewrite <- (mult_1_l n). - - Undo. - intro n; pattern n at 1. - - - rewrite <- mult_1_l. - repeat rewrite mult_distr_S. - trivial. -Qed. - - -Section Le_case_analysis. - Variables (n p : nat) - (H : n <= p) - (Q : nat -> Prop) - (H0 : Q n) - (HS : forall m, n <= m -> Q (S m)). - Check ( - match H in (_ <= q) return (Q q) with - | le_n => H0 - | le_S m Hm => HS m Hm - end - ). - - -End Le_case_analysis. - - -Lemma predecessor_of_positive : forall n, 1 <= n -> exists p:nat, n = S p. -Proof. - intros n H; case H. - exists 0; trivial. - intros m Hm; exists m;trivial. -Qed. - -Definition Vtail_total - (A : Type) (n : nat) (v : vector A n) : vector A (pred n):= -match v in (vector _ n0) return (vector A (pred n0)) with -| Vnil => Vnil A -| Vcons _ n0 v0 => v0 -end. - -Definition Vtail' (A:Type)(n:nat)(v:vector A n) : vector A (pred n). - intros A n v; case v. - simpl. - exact (Vnil A). - simpl. - auto. -Defined. - -(* -Inductive Lambda : Set := - lambda : (Lambda -> False) -> Lambda. - - -Error: Non strictly positive occurrence of "Lambda" in - "(Lambda -> False) -> Lambda" - -*) - -Section Paradox. - Variable Lambda : Set. - Variable lambda : (Lambda -> False) ->Lambda. - - Variable matchL : Lambda -> forall Q:Prop, ((Lambda ->False) -> Q) -> Q. - (* - understand matchL Q l (fun h : Lambda -> False => t) - - as match l return Q with lambda h => t end - *) - - Definition application (f x: Lambda) :False := - matchL f False (fun h => h x). - - Definition Delta : Lambda := lambda (fun x : Lambda => application x x). - - Definition loop : False := application Delta Delta. - - Theorem two_is_three : 2 = 3. - Proof. - elim loop. - Qed. - -End Paradox. - - -Require Import ZArith. - - - -Inductive itree : Set := -| ileaf : itree -| inode : Z-> (nat -> itree) -> itree. - -Definition isingle l := inode l (fun i => ileaf). - -Definition t1 := inode 0 (fun n => isingle (Z_of_nat (2*n))). - -Definition t2 := inode 0 - (fun n : nat => - inode (Z_of_nat n) - (fun p => isingle (Z_of_nat (n*p)))). - - -Inductive itree_le : itree-> itree -> Prop := - | le_leaf : forall t, itree_le ileaf t - | le_node : forall l l' s s', - Zle l l' -> - (forall i, exists j:nat, itree_le (s i) (s' j)) -> - itree_le (inode l s) (inode l' s'). - - -Theorem itree_le_trans : - forall t t', itree_le t t' -> - forall t'', itree_le t' t'' -> itree_le t t''. - induction t. - constructor 1. - - intros t'; case t'. - inversion 1. - intros z0 i0 H0. - intro t'';case t''. - inversion 1. - intros. - inversion_clear H1. - constructor 2. - inversion_clear H0;eauto with zarith. - inversion_clear H0. - intro i2; case (H4 i2). - intros. - generalize (H i2 _ H0). - intros. - case (H3 x);intros. - generalize (H5 _ H6). - exists x0;auto. -Qed. - - - -Inductive itree_le' : itree-> itree -> Prop := - | le_leaf' : forall t, itree_le' ileaf t - | le_node' : forall l l' s s' g, - Zle l l' -> - (forall i, itree_le' (s i) (s' (g i))) -> - itree_le' (inode l s) (inode l' s'). - - - - - -Lemma t1_le_t2 : itree_le t1 t2. - unfold t1, t2. - constructor. - auto with zarith. - intro i; exists (2 * i). - unfold isingle. - constructor. - auto with zarith. - exists i;constructor. -Qed. - - - -Lemma t1_le'_t2 : itree_le' t1 t2. - unfold t1, t2. - constructor 2 with (fun i : nat => 2 * i). - auto with zarith. - unfold isingle; - intro i ; constructor 2 with (fun i :nat => i). - auto with zarith. - constructor . -Qed. - - -Require Import List. - -Inductive ltree (A:Set) : Set := - lnode : A -> list (ltree A) -> ltree A. - -Inductive prop : Prop := - prop_intro : Prop -> prop. - -Check (prop_intro prop). - -Inductive ex_Prop (P : Prop -> Prop) : Prop := - exP_intro : forall X : Prop, P X -> ex_Prop P. - -Lemma ex_Prop_inhabitant : ex_Prop (fun P => P -> P). -Proof. - exists (ex_Prop (fun P => P -> P)). - trivial. -Qed. - - - - -(* - -Check (fun (P:Prop->Prop)(p: ex_Prop P) => - match p with exP_intro X HX => X end). -Error: -Incorrect elimination of "p" in the inductive type -"ex_Prop", the return type has sort "Type" while it should be -"Prop" - -Elimination of an inductive object of sort "Prop" -is not allowed on a predicate in sort "Type" -because proofs can be eliminated only to build proofs - -*) - - -Inductive typ : Type := - typ_intro : Type -> typ. - -Definition typ_inject: typ. -split. -exact typ. -(* -Defined. - -Error: Universe Inconsistency. -*) -Abort. -(* - -Inductive aSet : Set := - aSet_intro: Set -> aSet. - - -User error: Large non-propositional inductive types must be in Type - -*) - -Inductive ex_Set (P : Set -> Prop) : Type := - exS_intro : forall X : Set, P X -> ex_Set P. - - -Inductive comes_from_the_left (P Q:Prop): P \/ Q -> Prop := - c1 : forall p, comes_from_the_left P Q (or_introl (A:=P) Q p). - -Goal (comes_from_the_left _ _ (or_introl True I)). -split. -Qed. - -Goal ~(comes_from_the_left _ _ (or_intror True I)). - red;inversion 1. - (* discriminate H0. - *) -Abort. - -Reset comes_from_the_left. - -(* - - - - - - - Definition comes_from_the_left (P Q:Prop)(H:P \/ Q): Prop := - match H with - | or_introl p => True - | or_intror q => False - end. - -Error: -Incorrect elimination of "H" in the inductive type -"or", the return type has sort "Type" while it should be -"Prop" - -Elimination of an inductive object of sort "Prop" -is not allowed on a predicate in sort "Type" -because proofs can be eliminated only to build proofs - -*) - -Definition comes_from_the_left_sumbool - (P Q:Prop)(x:{P}+{Q}): Prop := - match x with - | left p => True - | right q => False - end. - - - - -Close Scope Z_scope. - - - - - -Theorem S_is_not_O : forall n, S n <> 0. - -Definition Is_zero (x:nat):= match x with - | 0 => True - | _ => False - end. - Lemma O_is_zero : forall m, m = 0 -> Is_zero m. - Proof. - intros m H; subst m. - (* - ============================ - Is_zero 0 - *) - simpl;trivial. - Qed. - - red; intros n Hn. - apply O_is_zero with (m := S n). - assumption. -Qed. - -Theorem disc2 : forall n, S (S n) <> 1. -Proof. - intros n Hn; discriminate. -Qed. - - -Theorem disc3 : forall n, S (S n) = 0 -> forall Q:Prop, Q. -Proof. - intros n Hn Q. - discriminate. -Qed. - - - -Theorem inj_succ : forall n m, S n = S m -> n = m. -Proof. - - -Lemma inj_pred : forall n m, n = m -> pred n = pred m. -Proof. - intros n m eq_n_m. - rewrite eq_n_m. - trivial. -Qed. - - intros n m eq_Sn_Sm. - apply inj_pred with (n:= S n) (m := S m); assumption. -Qed. - -Lemma list_inject : forall (A:Type)(a b :A)(l l':list A), - a :: b :: l = b :: a :: l' -> a = b /\ l = l'. -Proof. - intros A a b l l' e. - injection e. - auto. -Qed. - - -Theorem not_le_Sn_0 : forall n:nat, ~ (S n <= 0). -Proof. - red; intros n H. - case H. -Undo. - -Lemma not_le_Sn_0_with_constraints : - forall n p , S n <= p -> p = 0 -> False. -Proof. - intros n p H; case H ; - intros; discriminate. -Qed. - -eapply not_le_Sn_0_with_constraints; eauto. -Qed. - - -Theorem not_le_Sn_0' : forall n:nat, ~ (S n <= 0). -Proof. - red; intros n H ; inversion H. -Qed. - -Derive Inversion le_Sn_0_inv with (forall n :nat, S n <= 0). -Check le_Sn_0_inv. - -Theorem le_Sn_0'' : forall n p : nat, ~ S n <= 0 . -Proof. - intros n p H; - inversion H using le_Sn_0_inv. -Qed. - -Derive Inversion_clear le_Sn_0_inv' with (forall n :nat, S n <= 0). -Check le_Sn_0_inv'. - - -Theorem le_reverse_rules : - forall n m:nat, n <= m -> - n = m \/ - exists p, n <= p /\ m = S p. -Proof. - intros n m H; inversion H. - left;trivial. - right; exists m0; split; trivial. -Restart. - intros n m H; inversion_clear H. - left;trivial. - right; exists m0; split; trivial. -Qed. - -Inductive ArithExp : Set := - Zero : ArithExp - | Succ : ArithExp -> ArithExp - | Plus : ArithExp -> ArithExp -> ArithExp. - -Inductive RewriteRel : ArithExp -> ArithExp -> Prop := - RewSucc : forall e1 e2 :ArithExp, - RewriteRel e1 e2 -> RewriteRel (Succ e1) (Succ e2) - | RewPlus0 : forall e:ArithExp, - RewriteRel (Plus Zero e) e - | RewPlusS : forall e1 e2:ArithExp, - RewriteRel e1 e2 -> - RewriteRel (Plus (Succ e1) e2) (Succ (Plus e1 e2)). - - - -Fixpoint plus (n p:nat) {struct n} : nat := - match n with - | 0 => p - | S m => S (plus m p) - end. - -Fixpoint plus' (n p:nat) {struct p} : nat := - match p with - | 0 => n - | S q => S (plus' n q) - end. - -Fixpoint plus'' (n p:nat) {struct n} : nat := - match n with - | 0 => p - | S m => plus'' m (S p) - end. - - -Fixpoint even_test (n:nat) : bool := - match n - with 0 => true - | 1 => false - | S (S p) => even_test p - end. - - -Reset even_test. - -Fixpoint even_test (n:nat) : bool := - match n - with - | 0 => true - | S p => odd_test p - end -with odd_test (n:nat) : bool := - match n - with - | 0 => false - | S p => even_test p - end. - - - -Eval simpl in even_test. - - - -Eval simpl in (fun x : nat => even_test x). - -Eval simpl in (fun x : nat => plus 5 x). -Eval simpl in (fun x : nat => even_test (plus 5 x)). - -Eval simpl in (fun x : nat => even_test (plus x 5)). - - -Section Principle_of_Induction. -Variable P : nat -> Prop. -Hypothesis base_case : P 0. -Hypothesis inductive_step : forall n:nat, P n -> P (S n). -Fixpoint nat_ind (n:nat) : (P n) := - match n return P n with - | 0 => base_case - | S m => inductive_step m (nat_ind m) - end. - -End Principle_of_Induction. - -Scheme Even_induction := Minimality for even Sort Prop -with Odd_induction := Minimality for odd Sort Prop. - -Theorem even_plus_four : forall n:nat, even n -> even (4+n). -Proof. - intros n H. - elim H using Even_induction with (P0 := fun n => odd (4+n)); - simpl;repeat constructor;assumption. -Qed. - - -Section Principle_of_Double_Induction. -Variable P : nat -> nat ->Prop. -Hypothesis base_case1 : forall x:nat, P 0 x. -Hypothesis base_case2 : forall x:nat, P (S x) 0. -Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m). -Fixpoint nat_double_ind (n m:nat){struct n} : P n m := - match n, m return P n m with - | 0 , x => base_case1 x - | (S x), 0 => base_case2 x - | (S x), (S y) => inductive_step x y (nat_double_ind x y) - end. -End Principle_of_Double_Induction. - -Section Principle_of_Double_Recursion. -Variable P : nat -> nat -> Type. -Hypothesis base_case1 : forall x:nat, P 0 x. -Hypothesis base_case2 : forall x:nat, P (S x) 0. -Hypothesis inductive_step : forall n m:nat, P n m -> P (S n) (S m). -Fixpoint nat_double_rect (n m:nat){struct n} : P n m := - match n, m return P n m with - | 0 , x => base_case1 x - | (S x), 0 => base_case2 x - | (S x), (S y) => inductive_step x y (nat_double_rect x y) - end. -End Principle_of_Double_Recursion. - -Definition min : nat -> nat -> nat := - nat_double_rect (fun (x y:nat) => nat) - (fun (x:nat) => 0) - (fun (y:nat) => 0) - (fun (x y r:nat) => S r). - -Eval compute in (min 5 8). -Eval compute in (min 8 5). - - - -Lemma not_circular : forall n:nat, n <> S n. -Proof. - intro n. - apply nat_ind with (P:= fun n => n <> S n). - discriminate. - red; intros n0 Hn0 eqn0Sn0;injection eqn0Sn0;trivial. -Qed. - -Definition eq_nat_dec : forall n p:nat , {n=p}+{n <> p}. -Proof. - intros n p. - apply nat_double_rect with (P:= fun (n q:nat) => {q=p}+{q <> p}). -Undo. - pattern p,n. - elim n using nat_double_rect. - destruct x; auto. - destruct x; auto. - intros n0 m H; case H. - intro eq; rewrite eq ; auto. - intro neg; right; red ; injection 1; auto. -Defined. - -Definition eq_nat_dec' : forall n p:nat, {n=p}+{n <> p}. - decide equality. -Defined. - - - -Require Import Le. -Lemma le'_le : forall n p, le' n p -> n <= p. -Proof. - induction 1;auto with arith. -Qed. - -Lemma le'_n_Sp : forall n p, le' n p -> le' n (S p). -Proof. - induction 1;auto. -Qed. - -Hint Resolve le'_n_Sp. - - -Lemma le_le' : forall n p, n<=p -> le' n p. -Proof. - induction 1;auto with arith. -Qed. - - -Print Acc. - - -Require Import Minus. - -(* -Fixpoint div (x y:nat){struct x}: nat := - if eq_nat_dec x 0 - then 0 - else if eq_nat_dec y 0 - then x - else S (div (x-y) y). - -Error: -Recursive definition of div is ill-formed. -In environment -div : nat -> nat -> nat -x : nat -y : nat -_ : x <> 0 -_ : y <> 0 - -Recursive call to div has principal argument equal to -"x - y" -instead of a subterm of x - -*) - -Lemma minus_smaller_S: forall x y:nat, x - y < S x. -Proof. - intros x y; pattern y, x; - elim x using nat_double_ind. - destruct x0; auto with arith. - simpl; auto with arith. - simpl; auto with arith. -Qed. - -Lemma minus_smaller_positive : forall x y:nat, x <>0 -> y <> 0 -> - x - y < x. -Proof. - destruct x; destruct y; - ( simpl;intros; apply minus_smaller_S || - intros; absurd (0=0); auto). -Qed. - -Definition minus_decrease : forall x y:nat, Acc lt x -> - x <> 0 -> - y <> 0 -> - Acc lt (x-y). -Proof. - intros x y H; case H. - intros Hz posz posy. - apply Hz; apply minus_smaller_positive; assumption. -Defined. - -Print minus_decrease. - - - -Definition div_aux (x y:nat)(H: Acc lt x):nat. - fix 3. - intros. - refine (if eq_nat_dec x 0 - then 0 - else if eq_nat_dec y 0 - then y - else div_aux (x-y) y _). - apply (minus_decrease x y H);assumption. -Defined. - - -Print div_aux. -(* -div_aux = -(fix div_aux (x y : nat) (H : Acc lt x) {struct H} : nat := - match eq_nat_dec x 0 with - | left _ => 0 - | right _ => - match eq_nat_dec y 0 with - | left _ => y - | right _0 => div_aux (x - y) y (minus_decrease x y H _ _0) - end - end) - : forall x : nat, nat -> Acc lt x -> nat -*) - -Require Import Wf_nat. -Definition div x y := div_aux x y (lt_wf x). - -Extraction div. -(* -let div x y = - div_aux x y -*) - -Extraction div_aux. - -(* -let rec div_aux x y = - match eq_nat_dec x O with - | Left -> O - | Right -> - (match eq_nat_dec y O with - | Left -> y - | Right -> div_aux (minus x y) y) -*) - -Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A. -Proof. - intros A v;inversion v. -Abort. - -(* - Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n), - n= 0 -> v = Vnil A. - -Toplevel input, characters 40281-40287 -> Lemma vector0_is_vnil_aux : forall (A:Set)(n:nat)(v:vector A n), n= 0 -> v = Vnil A. -> ^^^^^^ -Error: In environment -A : Set -n : nat -v : vector A n -e : n = 0 -The term "Vnil A" has type "vector A 0" while it is expected to have type - "vector A n" -*) - Require Import JMeq. - - -(* On devrait changer Set en Type ? *) - -Lemma vector0_is_vnil_aux : forall (A:Type)(n:nat)(v:vector A n), - n= 0 -> JMeq v (Vnil A). -Proof. - destruct v. - auto. - intro; discriminate. -Qed. - -Lemma vector0_is_vnil : forall (A:Type)(v:vector A 0), v = Vnil A. -Proof. - intros a v;apply JMeq_eq. - apply vector0_is_vnil_aux. - trivial. -Qed. - - -Implicit Arguments Vcons [A n]. -Implicit Arguments Vnil [A]. -Implicit Arguments Vhead [A n]. -Implicit Arguments Vtail [A n]. - -Definition Vid : forall (A : Type)(n:nat), vector A n -> vector A n. -Proof. - destruct n; intro v. - exact Vnil. - exact (Vcons (Vhead v) (Vtail v)). -Defined. - -Eval simpl in (fun (A:Type)(v:vector A 0) => (Vid _ _ v)). - -Eval simpl in (fun (A:Type)(v:vector A 0) => v). - - - -Lemma Vid_eq : forall (n:nat) (A:Type)(v:vector A n), v=(Vid _ n v). -Proof. - destruct v. - reflexivity. - reflexivity. -Defined. - -Theorem zero_nil : forall A (v:vector A 0), v = Vnil. -Proof. - intros. - change (Vnil (A:=A)) with (Vid _ 0 v). - apply Vid_eq. -Defined. - - -Theorem decomp : - forall (A : Type) (n : nat) (v : vector A (S n)), - v = Vcons (Vhead v) (Vtail v). -Proof. - intros. - change (Vcons (Vhead v) (Vtail v)) with (Vid _ (S n) v). - apply Vid_eq. -Defined. - - - -Definition vector_double_rect : - forall (A:Type) (P: forall (n:nat),(vector A n)->(vector A n) -> Type), - P 0 Vnil Vnil -> - (forall n (v1 v2 : vector A n) a b, P n v1 v2 -> - P (S n) (Vcons a v1) (Vcons b v2)) -> - forall n (v1 v2 : vector A n), P n v1 v2. - induction n. - intros; rewrite (zero_nil _ v1); rewrite (zero_nil _ v2). - auto. - intros v1 v2; rewrite (decomp _ _ v1);rewrite (decomp _ _ v2). - apply X0; auto. -Defined. - -Require Import Bool. - -Definition bitwise_or n v1 v2 : vector bool n := - vector_double_rect bool (fun n v1 v2 => vector bool n) - Vnil - (fun n v1 v2 a b r => Vcons (orb a b) r) n v1 v2. - - -Fixpoint vector_nth (A:Type)(n:nat)(p:nat)(v:vector A p){struct v} - : option A := - match n,v with - _ , Vnil => None - | 0 , Vcons b _ _ => Some b - | S n', Vcons _ p' v' => vector_nth A n' p' v' - end. - -Implicit Arguments vector_nth [A p]. - - -Lemma nth_bitwise : forall (n:nat) (v1 v2: vector bool n) i a b, - vector_nth i v1 = Some a -> - vector_nth i v2 = Some b -> - vector_nth i (bitwise_or _ v1 v2) = Some (orb a b). -Proof. - intros n v1 v2; pattern n,v1,v2. - apply vector_double_rect. - simpl. - destruct i; discriminate 1. - destruct i; simpl;auto. - injection 1; injection 2;intros; subst a; subst b; auto. -Qed. - - Set Implicit Arguments. - - CoInductive Stream (A:Type) : Type := - | Cons : A -> Stream A -> Stream A. - - CoInductive LList (A: Type) : Type := - | LNil : LList A - | LCons : A -> LList A -> LList A. - - - - - - Definition head (A:Type)(s : Stream A) := match s with Cons a s' => a end. - - Definition tail (A : Type)(s : Stream A) := - match s with Cons a s' => s' end. - - CoFixpoint repeat (A:Type)(a:A) : Stream A := Cons a (repeat a). - - CoFixpoint iterate (A: Type)(f: A -> A)(a : A) : Stream A:= - Cons a (iterate f (f a)). - - CoFixpoint map (A B:Type)(f: A -> B)(s : Stream A) : Stream B:= - match s with Cons a tl => Cons (f a) (map f tl) end. - -Eval simpl in (fun (A:Type)(a:A) => repeat a). - -Eval simpl in (fun (A:Type)(a:A) => head (repeat a)). - - -CoInductive EqSt (A: Type) : Stream A -> Stream A -> Prop := - eqst : forall s1 s2: Stream A, - head s1 = head s2 -> - EqSt (tail s1) (tail s2) -> - EqSt s1 s2. - - -Section Parks_Principle. -Variable A : Type. -Variable R : Stream A -> Stream A -> Prop. -Hypothesis bisim1 : forall s1 s2:Stream A, R s1 s2 -> - head s1 = head s2. -Hypothesis bisim2 : forall s1 s2:Stream A, R s1 s2 -> - R (tail s1) (tail s2). - -CoFixpoint park_ppl : forall s1 s2:Stream A, R s1 s2 -> - EqSt s1 s2 := - fun s1 s2 (p : R s1 s2) => - eqst s1 s2 (bisim1 p) - (park_ppl (bisim2 p)). -End Parks_Principle. - - -Theorem map_iterate : forall (A:Type)(f:A->A)(x:A), - EqSt (iterate f (f x)) (map f (iterate f x)). -Proof. - intros A f x. - apply park_ppl with - (R:= fun s1 s2 => exists x: A, - s1 = iterate f (f x) /\ s2 = map f (iterate f x)). - - intros s1 s2 (x0,(eqs1,eqs2));rewrite eqs1;rewrite eqs2;reflexivity. - intros s1 s2 (x0,(eqs1,eqs2)). - exists (f x0);split;[rewrite eqs1|rewrite eqs2]; reflexivity. - exists x;split; reflexivity. -Qed. - -Ltac infiniteproof f := - cofix f; constructor; [clear f| simpl; try (apply f; clear f)]. - - -Theorem map_iterate' : forall (A:Type)(f:A->A)(x:A), - EqSt (iterate f (f x)) (map f (iterate f x)). -infiniteproof map_iterate'. - reflexivity. -Qed. - - -Implicit Arguments LNil [A]. - -Lemma Lnil_not_Lcons : forall (A:Type)(a:A)(l:LList A), - LNil <> (LCons a l). - intros;discriminate. -Qed. - -Lemma injection_demo : forall (A:Type)(a b : A)(l l': LList A), - LCons a (LCons b l) = LCons b (LCons a l') -> - a = b /\ l = l'. -Proof. - intros A a b l l' e; injection e; auto. -Qed. - - -Inductive Finite (A:Type) : LList A -> Prop := -| Lnil_fin : Finite (LNil (A:=A)) -| Lcons_fin : forall a l, Finite l -> Finite (LCons a l). - -CoInductive Infinite (A:Type) : LList A -> Prop := -| LCons_inf : forall a l, Infinite l -> Infinite (LCons a l). - -Lemma LNil_not_Infinite : forall (A:Type), ~ Infinite (LNil (A:=A)). -Proof. - intros A H;inversion H. -Qed. - -Lemma Finite_not_Infinite : forall (A:Type)(l:LList A), - Finite l -> ~ Infinite l. -Proof. - intros A l H; elim H. - apply LNil_not_Infinite. - intros a l0 F0 I0' I1. - case I0'; inversion_clear I1. - trivial. -Qed. - -Lemma Not_Finite_Infinite : forall (A:Type)(l:LList A), - ~ Finite l -> Infinite l. -Proof. - cofix H. - destruct l. - intro; absurd (Finite (LNil (A:=A)));[auto|constructor]. - constructor. - apply H. - red; intro H1;case H0. - constructor. - trivial. -Qed. - - - |