summaryrefslogtreecommitdiff
path: root/contrib7/ring
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/ring')
-rw-r--r--contrib7/ring/ArithRing.v81
-rw-r--r--contrib7/ring/NArithRing.v44
-rw-r--r--contrib7/ring/Quote.v85
-rw-r--r--contrib7/ring/Ring.v34
-rw-r--r--contrib7/ring/Ring_abstract.v699
-rw-r--r--contrib7/ring/Ring_normalize.v893
-rw-r--r--contrib7/ring/Ring_theory.v384
-rw-r--r--contrib7/ring/Setoid_ring.v13
-rw-r--r--contrib7/ring/Setoid_ring_normalize.v1141
-rw-r--r--contrib7/ring/Setoid_ring_theory.v429
-rw-r--r--contrib7/ring/ZArithRing.v35
11 files changed, 0 insertions, 3838 deletions
diff --git a/contrib7/ring/ArithRing.v b/contrib7/ring/ArithRing.v
deleted file mode 100644
index c2abc4d1..00000000
--- a/contrib7/ring/ArithRing.v
+++ /dev/null
@@ -1,81 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: ArithRing.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-(* Instantiation of the Ring tactic for the naturals of Arith $*)
-
-Require Export Ring.
-Require Export Arith.
-Require Eqdep_dec.
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Fixpoint nateq [n,m:nat] : bool :=
- Cases n m of
- | O O => true
- | (S n') (S m') => (nateq n' m')
- | _ _ => false
- end.
-
-Lemma nateq_prop : (n,m:nat)(Is_true (nateq n m))->n==m.
-Proof.
- Induction n; Induction m; Intros; Try Contradiction.
- Trivial.
- Unfold Is_true in H1.
- Rewrite (H n1 H1).
- Trivial.
-Save.
-
-Hints Resolve nateq_prop eq2eqT : arithring.
-
-Definition NatTheory : (Semi_Ring_Theory plus mult (1) (0) nateq).
- Split; Intros; Auto with arith arithring.
- Apply eq2eqT; Apply simpl_plus_l with n:=n.
- Apply eqT2eq; Trivial.
-Defined.
-
-
-Add Semi Ring nat plus mult (1) (0) nateq NatTheory [O S].
-
-Goal (n:nat)(S n)=(plus (S O) n).
-Intro; Reflexivity.
-Save S_to_plus_one.
-
-(* Replace all occurrences of (S exp) by (plus (S O) exp), except when
- exp is already O and only for those occurrences than can be reached by going
- down plus and mult operations *)
-Recursive Meta Definition S_to_plus t :=
- Match t With
- | [(S O)] -> '(S O)
- | [(S ?1)] -> Let t1 = (S_to_plus ?1) In
- '(plus (S O) t1)
- | [(plus ?1 ?2)] -> Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- '(plus t1 t2)
- | [(mult ?1 ?2)] -> Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- '(mult t1 t2)
- | [?] -> 't.
-
-(* Apply S_to_plus on both sides of an equality *)
-Tactic Definition S_to_plus_eq :=
- Match Context With
- | [ |- ?1 = ?2 ] ->
- (**) Try (**)
- Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- Change t1=t2
- | [ |- ?1 == ?2 ] ->
- (**) Try (**)
- Let t1 = (S_to_plus ?1)
- And t2 = (S_to_plus ?2) In
- Change (t1==t2).
-
-Tactic Definition NatRing := S_to_plus_eq;Ring.
diff --git a/contrib7/ring/NArithRing.v b/contrib7/ring/NArithRing.v
deleted file mode 100644
index f4548bbb..00000000
--- a/contrib7/ring/NArithRing.v
+++ /dev/null
@@ -1,44 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: NArithRing.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-(* Instantiation of the Ring tactic for the binary natural numbers *)
-
-Require Export Ring.
-Require Export ZArith_base.
-Require NArith.
-Require Eqdep_dec.
-
-Definition Neq := [n,m:entier]
- Cases (Ncompare n m) of
- EGAL => true
- | _ => false
- end.
-
-Lemma Neq_prop : (n,m:entier)(Is_true (Neq n m)) -> n=m.
- Intros n m H; Unfold Neq in H.
- Apply Ncompare_Eq_eq.
- NewDestruct (Ncompare n m); [Reflexivity | Contradiction | Contradiction ].
-Save.
-
-Definition NTheory : (Semi_Ring_Theory Nplus Nmult (Pos xH) Nul Neq).
- Split.
- Apply Nplus_comm.
- Apply Nplus_assoc.
- Apply Nmult_comm.
- Apply Nmult_assoc.
- Apply Nplus_0_l.
- Apply Nmult_1_l.
- Apply Nmult_0_l.
- Apply Nmult_plus_distr_r.
- Apply Nplus_reg_l.
- Apply Neq_prop.
-Save.
-
-Add Semi Ring entier Nplus Nmult (Pos xH) Nul Neq NTheory [Pos Nul xO xI xH].
diff --git a/contrib7/ring/Quote.v b/contrib7/ring/Quote.v
deleted file mode 100644
index 12a51c9f..00000000
--- a/contrib7/ring/Quote.v
+++ /dev/null
@@ -1,85 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Quote.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-(***********************************************************************
- The "abstract" type index is defined to represent variables.
-
- index : Set
- index_eq : index -> bool
- index_eq_prop: (n,m:index)(index_eq n m)=true -> n=m
- index_lt : index -> bool
- varmap : Type -> Type.
- varmap_find : (A:Type)A -> index -> (varmap A) -> A.
-
- The first arg. of varmap_find is the default value to take
- if the object is not found in the varmap.
-
- index_lt defines a total well-founded order, but we don't prove that.
-
-***********************************************************************)
-
-Set Implicit Arguments.
-
-Section variables_map.
-
-Variable A : Type.
-
-Inductive varmap : Type :=
- Empty_vm : varmap
-| Node_vm : A->varmap->varmap->varmap.
-
-Inductive index : Set :=
-| Left_idx : index -> index
-| Right_idx : index -> index
-| End_idx : index
-.
-
-Fixpoint varmap_find [default_value:A; i:index; v:varmap] : A :=
- Cases i v of
- End_idx (Node_vm x _ _) => x
- | (Right_idx i1) (Node_vm x v1 v2) => (varmap_find default_value i1 v2)
- | (Left_idx i1) (Node_vm x v1 v2) => (varmap_find default_value i1 v1)
- | _ _ => default_value
- end.
-
-Fixpoint index_eq [n,m:index] : bool :=
- Cases n m of
- | End_idx End_idx => true
- | (Left_idx n') (Left_idx m') => (index_eq n' m')
- | (Right_idx n') (Right_idx m') => (index_eq n' m')
- | _ _ => false
- end.
-
-Fixpoint index_lt[n,m:index] : bool :=
- Cases n m of
- | End_idx (Left_idx _) => true
- | End_idx (Right_idx _) => true
- | (Left_idx n') (Right_idx m') => true
- | (Right_idx n') (Right_idx m') => (index_lt n' m')
- | (Left_idx n') (Left_idx m') => (index_lt n' m')
- | _ _ => false
- end.
-
-Lemma index_eq_prop : (n,m:index)(index_eq n m)=true -> n=m.
- Induction n; Induction m; Simpl; Intros.
- Rewrite (H i0 H1); Reflexivity.
- Discriminate.
- Discriminate.
- Discriminate.
- Rewrite (H i0 H1); Reflexivity.
- Discriminate.
- Discriminate.
- Discriminate.
- Reflexivity.
-Save.
-
-End variables_map.
-
-Unset Implicit Arguments.
diff --git a/contrib7/ring/Ring.v b/contrib7/ring/Ring.v
deleted file mode 100644
index 860dda13..00000000
--- a/contrib7/ring/Ring.v
+++ /dev/null
@@ -1,34 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-Require Export Bool.
-Require Export Ring_theory.
-Require Export Quote.
-Require Export Ring_normalize.
-Require Export Ring_abstract.
-
-(* As an example, we provide an instantation for bool. *)
-(* Other instatiations are given in ArithRing and ZArithRing in the
- same directory *)
-
-Definition BoolTheory : (Ring_Theory xorb andb true false [b:bool]b eqb).
-Split; Simpl.
-NewDestruct n; NewDestruct m; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct n; NewDestruct m; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; Reflexivity.
-NewDestruct n; NewDestruct m; NewDestruct p; Reflexivity.
-NewDestruct x; NewDestruct y; Reflexivity Orelse Simpl; Tauto.
-Defined.
-
-Add Ring bool xorb andb true false [b:bool]b eqb BoolTheory [ true false ].
diff --git a/contrib7/ring/Ring_abstract.v b/contrib7/ring/Ring_abstract.v
deleted file mode 100644
index 55bb31da..00000000
--- a/contrib7/ring/Ring_abstract.v
+++ /dev/null
@@ -1,699 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_abstract.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-Require Ring_theory.
-Require Quote.
-Require Ring_normalize.
-
-Section abstract_semi_rings.
-
-Inductive Type aspolynomial :=
- ASPvar : index -> aspolynomial
-| ASP0 : aspolynomial
-| ASP1 : aspolynomial
-| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
-| ASPmult : aspolynomial -> aspolynomial -> aspolynomial
-.
-
-Inductive abstract_sum : Type :=
-| Nil_acs : abstract_sum
-| Cons_acs : varlist -> abstract_sum -> abstract_sum
-.
-
-Fixpoint abstract_sum_merge [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
-Cases s1 of
-| (Cons_acs l1 t1) =>
- Fix asm_aux{asm_aux[s2:abstract_sum] : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 (abstract_sum_merge t1 s2))
- else (Cons_acs l2 (asm_aux t2))
- | Nil_acs => s1
- end}
-| Nil_acs => [s2]s2
-end.
-
-Fixpoint abstract_varlist_insert [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) =>
- if (varlist_lt l1 l2)
- then (Cons_acs l1 s2)
- else (Cons_acs l2 (abstract_varlist_insert l1 t2))
- | Nil_acs => (Cons_acs l1 Nil_acs)
- end.
-
-Fixpoint abstract_sum_scalar [l1:varlist; s2:abstract_sum]
- : abstract_sum :=
- Cases s2 of
- | (Cons_acs l2 t2) => (abstract_varlist_insert (varlist_merge l1 l2)
- (abstract_sum_scalar l1 t2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint abstract_sum_prod [s1:abstract_sum]
- : abstract_sum -> abstract_sum :=
- [s2]Cases s1 of
- | (Cons_acs l1 t1) =>
- (abstract_sum_merge (abstract_sum_scalar l1 s2)
- (abstract_sum_prod t1 s2))
- | Nil_acs => Nil_acs
- end.
-
-Fixpoint aspolynomial_normalize[p:aspolynomial] : abstract_sum :=
- Cases p of
- | (ASPvar i) => (Cons_acs (Cons_var i Nil_var) Nil_acs)
- | ASP1 => (Cons_acs Nil_var Nil_acs)
- | ASP0 => Nil_acs
- | (ASPplus l r) => (abstract_sum_merge (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- | (ASPmult l r) => (abstract_sum_prod (aspolynomial_normalize l)
- (aspolynomial_normalize r))
- end.
-
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-
-Fixpoint interp_asp [p:aspolynomial] : A :=
- Cases p of
- | (ASPvar i) => (interp_var Azero vm i)
- | ASP0 => Azero
- | ASP1 => Aone
- | (ASPplus l r) => (Aplus (interp_asp l) (interp_asp r))
- | (ASPmult l r) => (Amult (interp_asp l) (interp_asp r))
- end.
-
-(* Local *) Definition iacs_aux := Fix iacs_aux{iacs_aux [a:A; s:abstract_sum] : A :=
- Cases s of
- | Nil_acs => a
- | (Cons_acs l t) => (Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t))
- end}.
-
-Definition interp_acs [s:abstract_sum] : A :=
- Cases s of
- | (Cons_acs l t) => (iacs_aux (interp_vl Amult Aone Azero vm l) t)
- | Nil_acs => Azero
- end.
-
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-Remark iacs_aux_ok : (x:A)(s:abstract_sum)
- (iacs_aux x s)==(Aplus x (interp_acs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
-Save.
-
-Hint rew_iacs_aux : core := Extern 10 (eqT A ? ?) Rewrite iacs_aux_ok.
-
-Lemma abstract_varlist_insert_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_varlist_insert l s))
- ==(Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s)).
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Elim (varlist_lt l v); Simpl.
- EAuto.
- Rewrite iacs_aux_ok.
- Rewrite H; Auto.
-
-Save.
-
-Lemma abstract_sum_merge_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_merge x y))
- ==(Aplus (interp_acs x) (interp_acs y)).
-
-Proof.
- Induction x.
- Trivial.
- Induction y; Intros.
-
- Auto.
-
- Simpl; Elim (varlist_lt v v0); Simpl.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H; Simpl; Auto.
-
- Simpl in H0.
- Repeat Rewrite iacs_aux_ok.
- Rewrite H0. Simpl; Auto.
-Save.
-
-Lemma abstract_sum_scalar_ok : (l:varlist)(s:abstract_sum)
- (interp_acs (abstract_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_acs s)).
-Proof.
- Induction s.
- Simpl; EAuto.
-
- Simpl; Intros.
- Rewrite iacs_aux_ok.
- Rewrite abstract_varlist_insert_ok.
- Rewrite H.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Auto.
-Save.
-
-Lemma abstract_sum_prod_ok : (x,y:abstract_sum)
- (interp_acs (abstract_sum_prod x y))
- == (Amult (interp_acs x) (interp_acs y)).
-
-Proof.
- Induction x.
- Intros; Simpl; EAuto.
-
- NewDestruct y; Intros.
-
- Simpl; Rewrite H; EAuto.
-
- Unfold abstract_sum_prod; Fold abstract_sum_prod.
- Rewrite abstract_sum_merge_ok.
- Rewrite abstract_sum_scalar_ok.
- Rewrite H; Simpl; Auto.
-Save.
-
-Theorem aspolynomial_normalize_ok : (x:aspolynomial)
- (interp_asp x)==(interp_acs (aspolynomial_normalize x)).
-Proof.
- Induction x; Simpl; Intros; Trivial.
- Rewrite abstract_sum_merge_ok.
- Rewrite H; Rewrite H0; EAuto.
- Rewrite abstract_sum_prod_ok.
- Rewrite H; Rewrite H0; EAuto.
-Save.
-
-End abstract_semi_rings.
-
-Section abstract_rings.
-
-(* In abstract polynomials there is no constants other
- than 0 and 1. An abstract ring is a ring whose operations plus,
- and mult are not functions but constructors. In other words,
- when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
- term. "closed" mean here "without plus and mult". *)
-
-(* this section is not parametrized by a (semi-)ring.
- Nevertheless, they are two different types for semi-rings and rings
- and there will be 2 correction theorems *)
-
-Inductive Type apolynomial :=
- APvar : index -> apolynomial
-| AP0 : apolynomial
-| AP1 : apolynomial
-| APplus : apolynomial -> apolynomial -> apolynomial
-| APmult : apolynomial -> apolynomial -> apolynomial
-| APopp : apolynomial -> apolynomial
-.
-
-(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
- Invariant : the list is sorted and there is no varlist is present
- with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
-
-Inductive signed_sum : Type :=
-| Nil_varlist : signed_sum
-| Plus_varlist : varlist -> signed_sum -> signed_sum
-| Minus_varlist : varlist -> signed_sum -> signed_sum
-.
-
-Fixpoint signed_sum_merge [s1:signed_sum]
- : signed_sum -> signed_sum :=
-Cases s1 of
-| (Plus_varlist l1 t1) =>
- Fix ssm_aux{ssm_aux[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux t2))
- | Nil_varlist => s1
- end}
-| (Minus_varlist l1 t1) =>
- Fix ssm_aux2{ssm_aux2[s2:signed_sum] : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (signed_sum_merge t1 t2)
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Plus_varlist l2 (ssm_aux2 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 (signed_sum_merge t1 s2))
- else (Minus_varlist l2 (ssm_aux2 t2))
- | Nil_varlist => s1
- end}
-| Nil_varlist => [s2]s2
-end.
-
-Fixpoint plus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Plus_varlist l2 (plus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Plus_varlist l1 s2)
- else (Minus_varlist l2 (plus_varlist_insert l1 t2))
- | Nil_varlist => (Plus_varlist l1 Nil_varlist)
- end.
-
-Fixpoint minus_varlist_insert [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then t2
- else if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Plus_varlist l2 (minus_varlist_insert l1 t2))
- | (Minus_varlist l2 t2) =>
- if (varlist_lt l1 l2)
- then (Minus_varlist l1 s2)
- else (Minus_varlist l2 (minus_varlist_insert l1 t2))
- | Nil_varlist => (Minus_varlist l1 Nil_varlist)
- end.
-
-Fixpoint signed_sum_opp [s:signed_sum] : signed_sum :=
- Cases s of
- | (Plus_varlist l2 t2) => (Minus_varlist l2 (signed_sum_opp t2))
- | (Minus_varlist l2 t2) => (Plus_varlist l2 (signed_sum_opp t2))
- | Nil_varlist => Nil_varlist
- end.
-
-
-Fixpoint plus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (plus_sum_scalar l1 t2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint minus_sum_scalar [l1:varlist; s2:signed_sum]
- : signed_sum :=
- Cases s2 of
- | (Plus_varlist l2 t2) => (minus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | (Minus_varlist l2 t2) => (plus_varlist_insert (varlist_merge l1 l2)
- (minus_sum_scalar l1 t2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint signed_sum_prod [s1:signed_sum]
- : signed_sum -> signed_sum :=
- [s2]Cases s1 of
- | (Plus_varlist l1 t1) =>
- (signed_sum_merge (plus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | (Minus_varlist l1 t1) =>
- (signed_sum_merge (minus_sum_scalar l1 s2)
- (signed_sum_prod t1 s2))
- | Nil_varlist => Nil_varlist
- end.
-
-Fixpoint apolynomial_normalize[p:apolynomial] : signed_sum :=
- Cases p of
- | (APvar i) => (Plus_varlist (Cons_var i Nil_var) Nil_varlist)
- | AP1 => (Plus_varlist Nil_var Nil_varlist)
- | AP0 => Nil_varlist
- | (APplus l r) => (signed_sum_merge (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APmult l r) => (signed_sum_prod (apolynomial_normalize l)
- (apolynomial_normalize r))
- | (APopp q) => (signed_sum_opp (apolynomial_normalize q))
- end.
-
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp :A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-(* Local *) Definition isacs_aux := Fix isacs_aux{isacs_aux [a:A; s:signed_sum] : A :=
- Cases s of
- | Nil_varlist => a
- | (Plus_varlist l t) =>
- (Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t))
- | (Minus_varlist l t) =>
- (Aplus a (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t))
- end}.
-
-Definition interp_sacs [s:signed_sum] : A :=
- Cases s of
- | (Plus_varlist l t) => (isacs_aux (interp_vl Amult Aone Azero vm l) t)
- | (Minus_varlist l t) =>
- (isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
- | Nil_varlist => Azero
- end.
-
-Fixpoint interp_ap [p:apolynomial] : A :=
- Cases p of
- | (APvar i) => (interp_var Azero vm i)
- | AP0 => Azero
- | AP1 => Aone
- | (APplus l r) => (Aplus (interp_ap l) (interp_ap r))
- | (APmult l r) => (Amult (interp_ap l) (interp_ap r))
- | (APopp q) => (Aopp (interp_ap q))
- end.
-
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-Lemma isacs_aux_ok : (x:A)(s:signed_sum)
- (isacs_aux x s)==(Aplus x (interp_sacs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
-
-Hint rew_isacs_aux : core := Extern 10 (eqT A ? ?) Rewrite isacs_aux_ok.
-
-Tactic Definition Solve1 v v0 H H0 :=
- Simpl; Elim (varlist_lt v v0); Simpl; Rewrite isacs_aux_ok;
- [Rewrite H; Simpl; Auto
- |Simpl in H0; Rewrite H0; Auto ].
-
-Lemma signed_sum_merge_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_merge x y))
- ==(Aplus (interp_sacs x) (interp_sacs y)).
-
- Induction x.
- Intro; Simpl; Auto.
-
- Induction y; Intros.
-
- Auto.
-
- Solve1 v v0 H H0.
-
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v0))
- (interp_vl Amult Aone Azero vm v0)).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve1 v v0 H H0.
-
- Induction y; Intros.
-
- Auto.
-
- Simpl; Generalize (varlist_eq_prop v v0).
- Elim (varlist_eq v v0); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Rewrite H.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (Th_plus_permute T).
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve1 v v0 H H0.
-
- Solve1 v v0 H H0.
-
-Save.
-
-Tactic Definition Solve2 l v H :=
- Elim (varlist_lt l v); Simpl; Rewrite isacs_aux_ok;
- [ Auto
- | Rewrite H; Auto ].
-
-Lemma plus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_varlist_insert l s))
- == (Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Solve2 l v H.
-
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_opp_def T).
- Rewrite (Th_plus_zero_left T).
- Reflexivity.
-
- Solve2 l v H.
-
-Save.
-
-Lemma minus_varlist_insert_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_varlist_insert l s))
- == (Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Generalize (varlist_eq_prop l v).
- Elim (varlist_eq l v); Simpl.
-
- Intro Heq; Rewrite (Heq I).
- Repeat Rewrite isacs_aux_ok.
- Repeat Rewrite (Th_plus_assoc T).
- Rewrite (Th_plus_sym T (Aopp (interp_vl Amult Aone Azero vm v))
- (interp_vl Amult Aone Azero vm v)).
- Rewrite (Th_opp_def T).
- Auto.
-
- Simpl; Intros.
- Solve2 l v H.
-
- Simpl; Intros; Solve2 l v H.
-
-Save.
-
-Lemma signed_sum_opp_ok : (s:signed_sum)
- (interp_sacs (signed_sum_opp s))
- == (Aopp (interp_sacs s)).
-Proof.
-
- Induction s; Simpl; Intros.
-
- Symmetry; Apply (Th_opp_zero T).
-
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma plus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (plus_sum_scalar l s))
- == (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
-Proof.
-
- Induction s.
- Trivial.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Reflexivity.
-
-Save.
-
-Lemma minus_sum_scalar_ok : (l:varlist)(s:signed_sum)
- (interp_sacs (minus_sum_scalar l s))
- == (Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s))).
-Proof.
-
- Induction s; Simpl; Intros.
-
- Rewrite (Th_mult_zero_right T); Symmetry; Apply (Th_opp_zero T).
-
- Simpl; Intros.
- Rewrite minus_varlist_insert_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite (Th_plus_opp_opp T).
- Reflexivity.
-
- Simpl; Intros.
- Rewrite plus_varlist_insert_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
- Rewrite H.
- Rewrite (Th_distr_right T).
- Rewrite <- (Th_opp_mult_right T).
- Rewrite <- (Th_plus_opp_opp T).
- Rewrite (Th_opp_opp T).
- Reflexivity.
-
-Save.
-
-Lemma signed_sum_prod_ok : (x,y:signed_sum)
- (interp_sacs (signed_sum_prod x y)) ==
- (Amult (interp_sacs x) (interp_sacs y)).
-Proof.
-
- Induction x.
-
- Simpl; EAuto 1.
-
- Intros; Simpl.
- Rewrite signed_sum_merge_ok.
- Rewrite plus_sum_scalar_ok.
- Repeat Rewrite isacs_aux_ok.
- Rewrite H.
- Auto.
-
- Intros; Simpl.
- Repeat Rewrite isacs_aux_ok.
- Rewrite signed_sum_merge_ok.
- Rewrite minus_sum_scalar_ok.
- Rewrite H.
- Rewrite (Th_distr_left T).
- Rewrite (Th_opp_mult_left T).
- Reflexivity.
-
-Save.
-
-Theorem apolynomial_normalize_ok : (p:apolynomial)
- (interp_sacs (apolynomial_normalize p))==(interp_ap p).
-Proof.
- Induction p; Simpl; Auto 1.
- Intros.
- Rewrite signed_sum_merge_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_prod_ok.
- Rewrite H; Rewrite H0; Reflexivity.
- Intros.
- Rewrite signed_sum_opp_ok.
- Rewrite H; Reflexivity.
-Save.
-
-End abstract_rings.
diff --git a/contrib7/ring/Ring_normalize.v b/contrib7/ring/Ring_normalize.v
deleted file mode 100644
index 1dbd9d56..00000000
--- a/contrib7/ring/Ring_normalize.v
+++ /dev/null
@@ -1,893 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_normalize.v,v 1.1.2.1 2004/07/16 19:30:18 herbelin Exp $ *)
-
-Require Ring_theory.
-Require Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
-Proof.
- Intros.
- Apply Quote.index_eq_prop.
- Generalize H.
- Case (index_eq n m); Simpl; Trivial; Intros.
- Contradiction.
-Save.
-
-Section semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aeq : A -> A -> bool.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
-
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
- end.
-
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
- end.
-
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-ring polynomials *)
-Inductive Type spolynomial :=
- SPvar : index -> spolynomial
-| SPconst : A -> spolynomial
-| SPplus : spolynomial -> spolynomial -> spolynomial
-| SPmult : spolynomial -> spolynomial -> spolynomial.
-
-Fixpoint spolynomial_normalize[p:spolynomial] : canonical_sum :=
- Cases p of
- | (SPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SPplus l r) => (canonical_sum_merge (spolynomial_normalize l)
- (spolynomial_normalize r))
- | (SPmult l r) => (canonical_sum_prod (spolynomial_normalize l)
- (spolynomial_normalize r))
- end.
-
-(* Deletion of useless 0 and 1 in canonical sums *)
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
- | Nil_monom => Nil_monom
- end.
-
-Definition spolynomial_simplify :=
- [x:spolynomial](canonical_sum_simplify (spolynomial_normalize x)).
-
-(* End definitions. *)
-
-(* Section interpretation. *)
-
-(*** Here a variable map is defined and the interpetation of a spolynom
- acording to a certain variables map. Once again the choosen definition
- is generic and could be changed ****)
-
-Variable vm : (varmap A).
-
-(* Interpretation of list of variables
- * [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
- * The unbound variables are mapped to 0. Normally this case sould
- * never occur. Since we want only to prove correctness theorems, which form
- * is : for any varmap and any spolynom ... this is a safe and pain-saving
- * choice *)
-Definition interp_var [i:index] := (varmap_find Azero i vm).
-
-(* Local *) Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
-
-Definition interp_vl := [l:varlist]
- Cases l of
- | Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
- end.
-
-(* Local *) Definition interp_m := [c:A][l:varlist]
- Cases l of
- | Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
- end.
-
-(* Local *) Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
-
-(* Interpretation of a canonical sum *)
-Definition interp_cs : canonical_sum -> A :=
- [s]Cases s of
- | Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
- end.
-
-Fixpoint interp_sp [p:spolynomial] : A :=
- Cases p of
- (SPconst c) => c
- | (SPvar i) => (interp_var i)
- | (SPplus p1 p2) => (Aplus (interp_sp p1) (interp_sp p2))
- | (SPmult p1 p2) => (Amult (interp_sp p1) (interp_sp p2))
- end.
-
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : (Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-
-Hint SR_plus_sym_T := Resolve (SR_plus_sym T).
-Hint SR_plus_assoc_T := Resolve (SR_plus_assoc T).
-Hint SR_plus_assoc2_T := Resolve (SR_plus_assoc2 T).
-Hint SR_mult_sym_T := Resolve (SR_mult_sym T).
-Hint SR_mult_assoc_T := Resolve (SR_mult_assoc T).
-Hint SR_mult_assoc2_T := Resolve (SR_mult_assoc2 T).
-Hint SR_plus_zero_left_T := Resolve (SR_plus_zero_left T).
-Hint SR_plus_zero_left2_T := Resolve (SR_plus_zero_left2 T).
-Hint SR_mult_one_left_T := Resolve (SR_mult_one_left T).
-Hint SR_mult_one_left2_T := Resolve (SR_mult_one_left2 T).
-Hint SR_mult_zero_left_T := Resolve (SR_mult_zero_left T).
-Hint SR_mult_zero_left2_T := Resolve (SR_mult_zero_left2 T).
-Hint SR_distr_left_T := Resolve (SR_distr_left T).
-Hint SR_distr_left2_T := Resolve (SR_distr_left2 T).
-Hint SR_plus_reg_left_T := Resolve (SR_plus_reg_left T).
-Hint SR_plus_permute_T := Resolve (SR_plus_permute T).
-Hint SR_mult_permute_T := Resolve (SR_mult_permute T).
-Hint SR_distr_right_T := Resolve (SR_distr_right T).
-Hint SR_distr_right2_T := Resolve (SR_distr_right2 T).
-Hint SR_mult_zero_right_T := Resolve (SR_mult_zero_right T).
-Hint SR_mult_zero_right2_T := Resolve (SR_mult_zero_right2 T).
-Hint SR_plus_zero_right_T := Resolve (SR_plus_zero_right T).
-Hint SR_plus_zero_right2_T := Resolve (SR_plus_zero_right2 T).
-Hint SR_mult_one_right_T := Resolve (SR_mult_one_right T).
-Hint SR_mult_one_right2_T := Resolve (SR_mult_one_right2 T).
-Hint SR_plus_reg_right_T := Resolve (SR_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
-Hints Immediate T.
-
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
-Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (ivl_aux i v)==(Amult (interp_var i) (interp_vl v)).
-Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite H; Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (interp_vl (varlist_merge x y))
- ==(Amult (interp_vl x) (interp_vl y)).
-Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H. Simpl.
- Rewrite ivl_aux_ok.
- EAuto.
-
- Repeat Rewrite ivl_aux_ok.
- Rewrite H0.
- Rewrite ivl_aux_ok.
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (ics_aux x s)==(Aplus x (interp_cs s)).
-Proof.
- Induction s; Simpl; Intros.
- Trivial.
- Reflexivity.
- Reflexivity.
-Save.
-
-Remark interp_m_ok : (x:A)(l:varlist)
- (interp_m x l)==(Amult x (interp_vl l)).
-Proof.
- NewDestruct l.
- Simpl; Trivial.
- Reflexivity.
-Save.
-
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_merge x y))
- ==(Aplus (interp_cs x) (interp_cs y)).
-
-Induction x; Simpl.
-Trivial.
-
-Induction y; Simpl; Intros.
-(* monom and nil *)
-EAuto.
-
-(* monom and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-(* monom and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Apply congr_eqT with f:=(Aplus (Amult a (interp_vl v0))).
-Rewrite (SR_mult_one_left T).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-Induction y; Simpl; Intros.
-(* varlist and nil *)
-Trivial.
-
-(* varlist and monom *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-
-(* varlist and varlist *)
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl; Repeat Rewrite ics_aux_ok; Rewrite H.
-Repeat Rewrite interp_m_ok.
-Rewrite (SR_distr_left T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_one_left T).
-Apply congr_eqT with f:=(Aplus (interp_vl v0)).
-Trivial.
-
-Elim (varlist_lt v v0); Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite H; Simpl; Rewrite ics_aux_ok; EAuto.
-Rewrite ics_aux_ok; Rewrite H0; Repeat Rewrite ics_aux_ok; Simpl; EAuto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (interp_cs (monom_insert a l s))
- == (Aplus (Amult a (interp_vl l)) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Rewrite interp_m_ok; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
-
-Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (interp_cs (varlist_insert l s))
- == (Aplus (interp_vl l) (interp_cs s)).
-Intros; Generalize s; Induction s0.
-
-Simpl; Trivial.
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok; Rewrite interp_m_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-
-Simpl; Intros.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl; Rewrite interp_m_ok;
- Repeat Rewrite ics_aux_ok;
- Rewrite (SR_distr_left T); Rewrite (SR_mult_one_left T); EAuto.
-Elim (varlist_lt l v); Simpl;
-[ Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok; EAuto
-| Repeat Rewrite interp_m_ok; Rewrite ics_aux_ok;
- Rewrite H; Rewrite ics_aux_ok; EAuto].
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (interp_cs (canonical_sum_scalar a s))
- ==(Amult a (interp_cs s)).
-Induction s.
-Simpl; EAuto.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar2 l s))
- ==(Amult (interp_vl l) (interp_cs s)).
-Induction s.
-Simpl; Trivial.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite varlist_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (interp_cs (canonical_sum_scalar3 c l s))
- ==(Amult c (Amult (interp_vl l) (interp_cs s))).
-Induction s.
-Simpl; Repeat Rewrite (SR_mult_zero_right T); Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
-Reflexivity.
-
-Simpl; Intros.
-Rewrite monom_insert_ok.
-Repeat Rewrite ics_aux_ok.
-Repeat Rewrite interp_m_ok.
-Rewrite H.
-Rewrite varlist_merge_ok.
-Repeat Rewrite (SR_distr_right T).
-Repeat Rewrite <- (SR_mult_assoc T).
-Repeat Rewrite <- (SR_plus_assoc T).
-Rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
-Reflexivity.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (interp_cs (canonical_sum_prod x y))
- ==(Amult (interp_cs x) (interp_cs y)).
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar3_ok.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-Symmetry.
-EAuto.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite canonical_sum_scalar2_ok.
-Rewrite ics_aux_ok.
-Rewrite H.
-Trivial.
-Save.
-
-Theorem spolynomial_normalize_ok : (p:spolynomial)
- (interp_cs (spolynomial_normalize p)) == (interp_sp p).
-Induction p; Simpl; Intros.
-
-Reflexivity.
-Reflexivity.
-
-Rewrite canonical_sum_merge_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-
-Rewrite canonical_sum_prod_ok.
-Rewrite H; Rewrite H0.
-Reflexivity.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (interp_cs (canonical_sum_simplify s)) == (interp_cs s).
-Induction s.
-
-Reflexivity.
-
-(* cons_monom *)
-Simpl; Intros.
-Generalize (SR_eq_prop T 8!a 9!Azero).
-Elim (Aeq a Azero).
-Intro Heq; Rewrite (Heq I).
-Rewrite H.
-Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite (SR_mult_zero_left T).
-Trivial.
-
-Intros; Simpl.
-Generalize (SR_eq_prop T 8!a 9!Aone).
-Elim (Aeq a Aone).
-Intro Heq; Rewrite (Heq I).
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Rewrite (SR_mult_one_left T).
-Reflexivity.
-
-Simpl.
-Repeat Rewrite ics_aux_ok.
-Rewrite interp_m_ok.
-Rewrite H.
-Reflexivity.
-
-(* cons_varlist *)
-Simpl; Intros.
-Repeat Rewrite ics_aux_ok.
-Rewrite H.
-Reflexivity.
-
-Save.
-
-Theorem spolynomial_simplify_ok : (p:spolynomial)
- (interp_cs (spolynomial_simplify p)) == (interp_sp p).
-Intro.
-Unfold spolynomial_simplify.
-Rewrite canonical_sum_simplify_ok.
-Apply spolynomial_normalize_ok.
-Save.
-
-(* End properties. *)
-End semi_rings.
-
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SPconst.
-Implicits SPplus.
-Implicits SPmult.
-
-Section rings.
-
-(* Here the coercion between Ring and Semi-Ring will be useful *)
-
-Set Implicit Arguments.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-Variable vm : (varmap A).
-Variable T : (Ring_Theory Aplus Amult Aone Azero Aopp Aeq).
-
-Hint Th_plus_sym_T := Resolve (Th_plus_sym T).
-Hint Th_plus_assoc_T := Resolve (Th_plus_assoc T).
-Hint Th_plus_assoc2_T := Resolve (Th_plus_assoc2 T).
-Hint Th_mult_sym_T := Resolve (Th_mult_sym T).
-Hint Th_mult_assoc_T := Resolve (Th_mult_assoc T).
-Hint Th_mult_assoc2_T := Resolve (Th_mult_assoc2 T).
-Hint Th_plus_zero_left_T := Resolve (Th_plus_zero_left T).
-Hint Th_plus_zero_left2_T := Resolve (Th_plus_zero_left2 T).
-Hint Th_mult_one_left_T := Resolve (Th_mult_one_left T).
-Hint Th_mult_one_left2_T := Resolve (Th_mult_one_left2 T).
-Hint Th_mult_zero_left_T := Resolve (Th_mult_zero_left T).
-Hint Th_mult_zero_left2_T := Resolve (Th_mult_zero_left2 T).
-Hint Th_distr_left_T := Resolve (Th_distr_left T).
-Hint Th_distr_left2_T := Resolve (Th_distr_left2 T).
-Hint Th_plus_reg_left_T := Resolve (Th_plus_reg_left T).
-Hint Th_plus_permute_T := Resolve (Th_plus_permute T).
-Hint Th_mult_permute_T := Resolve (Th_mult_permute T).
-Hint Th_distr_right_T := Resolve (Th_distr_right T).
-Hint Th_distr_right2_T := Resolve (Th_distr_right2 T).
-Hint Th_mult_zero_right_T := Resolve (Th_mult_zero_right T).
-Hint Th_mult_zero_right2_T := Resolve (Th_mult_zero_right2 T).
-Hint Th_plus_zero_right_T := Resolve (Th_plus_zero_right T).
-Hint Th_plus_zero_right2_T := Resolve (Th_plus_zero_right2 T).
-Hint Th_mult_one_right_T := Resolve (Th_mult_one_right T).
-Hint Th_mult_one_right2_T := Resolve (Th_mult_one_right2 T).
-Hint Th_plus_reg_right_T := Resolve (Th_plus_reg_right T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-(*** Definitions *)
-
-Inductive Type polynomial :=
- Pvar : index -> polynomial
-| Pconst : A -> polynomial
-| Pplus : polynomial -> polynomial -> polynomial
-| Pmult : polynomial -> polynomial -> polynomial
-| Popp : polynomial -> polynomial.
-
-Fixpoint polynomial_normalize [x:polynomial] : (canonical_sum A) :=
- Cases x of
- (Pplus l r) => (canonical_sum_merge Aplus Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pmult l r) => (canonical_sum_prod Aplus Amult Aone
- (polynomial_normalize l)
- (polynomial_normalize r))
- | (Pconst c) => (Cons_monom c Nil_var (Nil_monom A))
- | (Pvar i) => (Cons_varlist (Cons_var i Nil_var) (Nil_monom A))
- | (Popp p) => (canonical_sum_scalar3 Aplus Amult Aone
- (Aopp Aone) Nil_var
- (polynomial_normalize p))
- end.
-
-Definition polynomial_simplify :=
- [x:polynomial](canonical_sum_simplify Aone Azero Aeq
- (polynomial_normalize x)).
-
-Fixpoint spolynomial_of [x:polynomial] : (spolynomial A) :=
- Cases x of
- (Pplus l r) => (SPplus (spolynomial_of l) (spolynomial_of r))
- | (Pmult l r) => (SPmult (spolynomial_of l) (spolynomial_of r))
- | (Pconst c) => (SPconst c)
- | (Pvar i) => (SPvar A i)
- | (Popp p) => (SPmult (SPconst (Aopp Aone)) (spolynomial_of p))
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_p [p:polynomial] : A :=
- Cases p of
- (Pconst c) => c
- | (Pvar i) => (varmap_find Azero i vm)
- | (Pplus p1 p2) => (Aplus (interp_p p1) (interp_p p2))
- | (Pmult p1 p2) => (Amult (interp_p p1) (interp_p p2))
- | (Popp p1) => (Aopp (interp_p p1))
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma spolynomial_of_ok : (p:polynomial)
- (interp_p p)==(interp_sp Aplus Amult Azero vm (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H.
-Rewrite (Th_opp_mult_left2 T).
-Rewrite (Th_mult_one_left T).
-Reflexivity.
-Save.
-
-Theorem polynomial_normalize_ok : (p:polynomial)
- (polynomial_normalize p)
- ==(spolynomial_normalize Aplus Amult Aone (spolynomial_of p)).
-Induction p; Reflexivity Orelse (Simpl; Intros).
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
- (spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
-[ Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity
-| Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem polynomial_simplify_ok : (p:polynomial)
- (interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p))
- ==(interp_p p).
-Intro.
-Unfold polynomial_simplify.
-Rewrite spolynomial_of_ok.
-Rewrite polynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
-Rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
-Reflexivity.
-Save.
-
-End rings.
-
-V8Infix "+" Pplus : ring_scope.
-V8Infix "*" Pmult : ring_scope.
-V8Notation "- x" := (Popp x) : ring_scope.
-V8Notation "[ x ]" := (Pvar x) (at level 1) : ring_scope.
-
-Delimits Scope ring_scope with ring.
diff --git a/contrib7/ring/Ring_theory.v b/contrib7/ring/Ring_theory.v
deleted file mode 100644
index 85fb7f6c..00000000
--- a/contrib7/ring/Ring_theory.v
+++ /dev/null
@@ -1,384 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_theory.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Export Bool.
-
-Set Implicit Arguments.
-
-Section Theory_of_semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-(* There is also a "weakly decidable" equality on A. That means
- that if (A_eq x y)=true then x=y but x=y can arise when
- (A_eq x y)=false. On an abstract ring the function [x,y:A]false
- is a good choice. The proof of A_eq_prop is in this case easy. *)
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-
-Record Semi_Ring_Theory : Prop :=
-{ SR_plus_sym : (n,m:A) n + m == m + n;
- SR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SR_mult_sym : (n,m:A) n*m == m*n;
- SR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SR_plus_zero_left :(n:A) 0 + n == n;
- SR_mult_one_left : (n:A) 1*n == n;
- SR_mult_zero_left : (n:A) 0*n == 0;
- SR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SR_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p;
- SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-
-Variable T : Semi_Ring_Theory.
-
-Local plus_sym := (SR_plus_sym T).
-Local plus_assoc := (SR_plus_assoc T).
-Local mult_sym := ( SR_mult_sym T).
-Local mult_assoc := (SR_mult_assoc T).
-Local plus_zero_left := (SR_plus_zero_left T).
-Local mult_one_left := (SR_mult_one_left T).
-Local mult_zero_left := (SR_mult_zero_left T).
-Local distr_left := (SR_distr_left T).
-Local plus_reg_left := (SR_plus_reg_left T).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma SR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
-Qed.
-
-Lemma SR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
-Qed.
-
-Hints Resolve SR_plus_permute SR_mult_permute.
-
-Lemma SR_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
-Qed.
-
-Lemma SR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply SR_distr_right. Qed.
-
-Lemma SR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite mult_sym; EAuto.
-Qed.
-
-Lemma SR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite mult_sym; EAuto.
-Qed.
-
-Lemma SR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-Lemma SR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma SR_mult_one_right : (n:A) n*1 == n.
-Intro; Elim mult_sym; Auto.
-Qed.
-
-Lemma SR_mult_one_right2 : (n:A) n == n*1.
-Intro; Elim mult_sym; Auto.
-Qed.
-
-Lemma SR_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n); EAuto.
-Qed.
-
-End Theory_of_semi_rings.
-
-Section Theory_of_rings.
-
-Variable A : Type.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
-
-Record Ring_Theory : Prop :=
-{ Th_plus_sym : (n,m:A) n + m == m + n;
- Th_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- Th_mult_sym : (n,m:A) n*m == m*n;
- Th_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- Th_plus_zero_left :(n:A) 0 + n == n;
- Th_mult_one_left : (n:A) 1*n == n;
- Th_opp_def : (n:A) n + (-n) == 0;
- Th_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-
-Variable T : Ring_Theory.
-
-Local plus_sym := (Th_plus_sym T).
-Local plus_assoc := (Th_plus_assoc T).
-Local mult_sym := ( Th_mult_sym T).
-Local mult_assoc := (Th_mult_assoc T).
-Local plus_zero_left := (Th_plus_zero_left T).
-Local mult_one_left := (Th_mult_one_left T).
-Local opp_def := (Th_opp_def T).
-Local distr_left := (Th_distr_left T).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma Th_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
-
-Lemma Th_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
-
-Lemma Th_opp_def2 : (n:A) 0 == n + (-n).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
-Qed.
-
-Lemma Th_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
-Qed.
-
-Hints Resolve Th_plus_permute Th_mult_permute.
-
-Lemma aux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Generalize (opp_def a).
-Pattern 1 a.
-Rewrite <- H.
-Rewrite <- plus_assoc.
-Rewrite -> opp_def.
-Elim plus_sym.
-Rewrite plus_zero_left.
-Trivial.
-Qed.
-
-Lemma Th_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply aux1.
-Rewrite <- distr_left.
-Rewrite plus_zero_left.
-Reflexivity.
-Qed.
-Hints Resolve Th_mult_zero_left.
-
-Lemma Th_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
-
-Lemma aux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y==z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Elim H0.
-Elim plus_assoc.
-Elim (plus_sym y z).
-Rewrite -> plus_assoc.
-Rewrite -> H.
-Rewrite plus_zero_left.
-Reflexivity.
-Qed.
-
-Lemma Th_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply (aux2 1!x*y);
-[ Apply opp_def
-| Rewrite <- distr_left;
- Rewrite -> opp_def;
- Auto].
-Qed.
-Hints Resolve Th_opp_mult_left.
-
-Lemma Th_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y).
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_zero_right : (n:A) n*0 == 0.
-Intro; Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma Th_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma Th_mult_one_right : (n:A) n*1 == n.
-Intro;Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_mult_one_right2 : (n:A) n == n*1.
-Intro;Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
-Qed.
-
-Lemma Th_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
-Qed.
-
-Lemma Th_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply (aux2 1! x + y);
-[ Elim plus_assoc;
- Rewrite -> (Th_plus_permute y (-x)); Rewrite -> plus_assoc;
- Rewrite -> opp_def; Rewrite plus_zero_left; Auto
-| Auto ].
-Qed.
-
-Lemma Th_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-EAuto. Qed.
-
-Lemma Th_opp_opp : (n:A) -(-n) == n.
-Intro; Apply (aux2 1! -n);
- [ Auto | Elim plus_sym; Auto ].
-Qed.
-Hints Resolve Th_opp_opp.
-
-Lemma Th_opp_opp2 : (n:A) n == -(-n).
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros; Rewrite <- Th_opp_mult_left; Rewrite <- Th_opp_mult_right; Auto.
-Qed.
-
-Lemma Th_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Symmetry; Apply Th_mult_opp_opp. Qed.
-
-Lemma Th_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (-0)).
-Auto. Qed.
-
-Lemma Th_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p.
-Intros; Generalize (congr_eqT ? ? [z] (-n)+z ? ? H).
-Repeat Rewrite plus_assoc.
-Rewrite (plus_sym (-n) n).
-Rewrite opp_def.
-Repeat Rewrite Th_plus_zero_left; EAuto.
-Qed.
-
-Lemma Th_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros.
-EApply Th_plus_reg_left with n.
-Rewrite (plus_sym n m).
-Rewrite (plus_sym n p).
-Auto.
-Qed.
-
-Lemma Th_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
-Qed.
-
-Lemma Th_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply Th_distr_right.
-Qed.
-
-End Theory_of_rings.
-
-Hints Resolve Th_mult_zero_left Th_plus_reg_left : core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Ring_Theory_of :
- (A:Type)(Aplus : A -> A -> A)(Amult : A -> A -> A)(Aone : A)
- (Azero : A)(Aopp : A -> A)(Aeq : A -> A -> bool)
- (Ring_Theory Aplus Amult Aone Azero Aopp Aeq)
- ->(Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
-Defined.
-
-(* Every ring can be viewed as a semi-ring : this property will be used
- in Abstract_polynom. *)
-Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
diff --git a/contrib7/ring/Setoid_ring.v b/contrib7/ring/Setoid_ring.v
deleted file mode 100644
index 222104e5..00000000
--- a/contrib7/ring/Setoid_ring.v
+++ /dev/null
@@ -1,13 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Setoid_ring.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Export Setoid_ring_theory.
-Require Export Quote.
-Require Export Setoid_ring_normalize.
diff --git a/contrib7/ring/Setoid_ring_normalize.v b/contrib7/ring/Setoid_ring_normalize.v
deleted file mode 100644
index b6b79dae..00000000
--- a/contrib7/ring/Setoid_ring_normalize.v
+++ /dev/null
@@ -1,1141 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Setoid_ring_normalize.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Setoid_ring_theory.
-Require Quote.
-
-Set Implicit Arguments.
-
-Lemma index_eq_prop: (n,m:index)(Is_true (index_eq n m)) -> n=m.
-Proof.
- Induction n; Induction m; Simpl; Try (Reflexivity Orelse Contradiction).
- Intros; Rewrite (H i0); Trivial.
- Intros; Rewrite (H i0); Trivial.
-Save.
-
-Section setoid.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Variable S : (Setoid_Theory A Aequiv).
-
-Add Setoid A Aequiv S.
-
-Variable plus_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Aplus a a1) (Aplus a0 a2)).
-Variable mult_morph : (a,a0,a1,a2:A)
- (Aequiv a a0)->(Aequiv a1 a2)->(Aequiv (Amult a a1) (Amult a0 a2)).
-Variable opp_morph : (a,a0:A)
- (Aequiv a a0)->(Aequiv (Aopp a) (Aopp a0)).
-
-Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
-
-Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
-
-Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
-
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve equiv_refl equiv_trans.
-Hints Immediate equiv_sym.
-
-Section semi_setoid_rings.
-
-(* Section definitions. *)
-
-
-(******************************************)
-(* Normal abtract Polynomials *)
-(******************************************)
-(* DEFINITIONS :
-- A varlist is a sorted product of one or more variables : x, x*y*z
-- A monom is a constant, a varlist or the product of a constant by a varlist
- variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
-- A canonical sum is either a monom or an ordered sum of monoms
- (the order on monoms is defined later)
-- A normal polynomial it either a constant or a canonical sum or a constant
- plus a canonical sum
-*)
-
-(* varlist is isomorphic to (list var), but we built a special inductive
- for efficiency *)
-Inductive varlist : Type :=
-| Nil_var : varlist
-| Cons_var : index -> varlist -> varlist
-.
-
-Inductive canonical_sum : Type :=
-| Nil_monom : canonical_sum
-| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
-| Cons_varlist : varlist -> canonical_sum -> canonical_sum
-.
-
-(* Order on monoms *)
-
-(* That's the lexicographic order on varlist, extended by :
- - A constant is less than every monom
- - The relation between two varlist is preserved by multiplication by a
- constant.
-
- Examples :
- 3 < x < y
- x*y < x*y*y*z
- 2*x*y < x*y*y*z
- x*y < 54*x*y*y*z
- 4*x*y < 59*x*y*y*z
-*)
-
-Fixpoint varlist_eq [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var Nil_var => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- (andb (index_eq i j) (varlist_eq xrest yrest))
- | _ _ => false
- end.
-
-Fixpoint varlist_lt [x,y:varlist] : bool :=
- Cases x y of
- | Nil_var (Cons_var _ _) => true
- | (Cons_var i xrest) (Cons_var j yrest) =>
- if (index_lt i j) then true
- else (andb (index_eq i j) (varlist_lt xrest yrest))
- | _ _ => false
- end.
-
-(* merges two variables lists *)
-Fixpoint varlist_merge [l1:varlist] : varlist -> varlist :=
- Cases l1 of
- | (Cons_var v1 t1) =>
- Fix vm_aux {vm_aux [l2:varlist] : varlist :=
- Cases l2 of
- | (Cons_var v2 t2) =>
- if (index_lt v1 v2)
- then (Cons_var v1 (varlist_merge t1 l2))
- else (Cons_var v2 (vm_aux t2))
- | Nil_var => l1
- end}
- | Nil_var => [l2]l2
- end.
-
-(* returns the sum of two canonical sums *)
-Fixpoint canonical_sum_merge [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
-Cases s1 of
-| (Cons_monom c1 l1 t1) =>
- Fix csm_aux{csm_aux[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux t2))
- | Nil_monom => s1
- end}
-| (Cons_varlist l1 t1) =>
- Fix csm_aux2{csm_aux2[s2:canonical_sum] : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1
- (canonical_sum_merge t1 t2))
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 (canonical_sum_merge t1 s2))
- else (Cons_varlist l2 (csm_aux2 t2))
- | Nil_monom => s1
- end}
-| Nil_monom => [s2]s2
-end.
-
-(* Insertion of a monom in a canonical sum *)
-Fixpoint monom_insert [c1:A; l1:varlist; s2 : canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_monom c2 l2 (monom_insert c1 l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus c1 Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_monom c1 l1 s2)
- else (Cons_varlist l2 (monom_insert c1 l1 t2))
- | Nil_monom => (Cons_monom c1 l1 Nil_monom)
- end.
-
-Fixpoint varlist_insert [l1:varlist; s2:canonical_sum]
- : canonical_sum :=
- Cases s2 of
- | (Cons_monom c2 l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone c2) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_monom c2 l2 (varlist_insert l1 t2))
- | (Cons_varlist l2 t2) =>
- if (varlist_eq l1 l2)
- then (Cons_monom (Aplus Aone Aone) l1 t2)
- else if (varlist_lt l1 l2)
- then (Cons_varlist l1 s2)
- else (Cons_varlist l2 (varlist_insert l1 t2))
- | Nil_monom => (Cons_varlist l1 Nil_monom)
- end.
-
-(* Computes c0*s *)
-Fixpoint canonical_sum_scalar [c0:A; s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t))
- | (Cons_varlist l t) =>
- (Cons_monom c0 l (canonical_sum_scalar c0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes l0*s *)
-Fixpoint canonical_sum_scalar2 [l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | (Cons_varlist l t) =>
- (varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* Computes c0*l0*s *)
-Fixpoint canonical_sum_scalar3 [c0:A;l0:varlist; s:canonical_sum]
- : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- (monom_insert (Amult c0 c) (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | (Cons_varlist l t) =>
- (monom_insert c0 (varlist_merge l0 l)
- (canonical_sum_scalar3 c0 l0 t))
- | Nil_monom => Nil_monom
- end.
-
-(* returns the product of two canonical sums *)
-Fixpoint canonical_sum_prod [s1:canonical_sum]
- : canonical_sum -> canonical_sum :=
- [s2]Cases s1 of
- | (Cons_monom c1 l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
- (canonical_sum_prod t1 s2))
- | (Cons_varlist l1 t1) =>
- (canonical_sum_merge (canonical_sum_scalar2 l1 s2)
- (canonical_sum_prod t1 s2))
- | Nil_monom => Nil_monom
- end.
-
-(* The type to represent concrete semi-setoid-ring polynomials *)
-
-Inductive Type setspolynomial :=
- SetSPvar : index -> setspolynomial
-| SetSPconst : A -> setspolynomial
-| SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
-| SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
-
-Fixpoint setspolynomial_normalize [p:setspolynomial] : canonical_sum :=
- Cases p of
- | (SetSPplus l r) => (canonical_sum_merge (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPmult l r) => (canonical_sum_prod (setspolynomial_normalize l) (setspolynomial_normalize r))
- | (SetSPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetSPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- end.
-
-Fixpoint canonical_sum_simplify [ s:canonical_sum] : canonical_sum :=
- Cases s of
- | (Cons_monom c l t) =>
- if (Aeq c Azero)
- then (canonical_sum_simplify t)
- else if (Aeq c Aone)
- then (Cons_varlist l (canonical_sum_simplify t))
- else (Cons_monom c l (canonical_sum_simplify t))
- | (Cons_varlist l t) => (Cons_varlist l (canonical_sum_simplify t))
- | Nil_monom => Nil_monom
- end.
-
-Definition setspolynomial_simplify :=
- [x:setspolynomial] (canonical_sum_simplify (setspolynomial_normalize x)).
-
-Variable vm : (varmap A).
-
-Definition interp_var [i:index] := (varmap_find Azero i vm).
-
-Definition ivl_aux := Fix ivl_aux {ivl_aux[x:index; t:varlist] : A :=
- Cases t of
- | Nil_var => (interp_var x)
- | (Cons_var x' t') => (Amult (interp_var x) (ivl_aux x' t'))
- end}.
-
-Definition interp_vl := [l:varlist]
- Cases l of
- | Nil_var => Aone
- | (Cons_var x t) => (ivl_aux x t)
- end.
-
-Definition interp_m := [c:A][l:varlist]
- Cases l of
- | Nil_var => c
- | (Cons_var x t) =>
- (Amult c (ivl_aux x t))
- end.
-
-Definition ics_aux := Fix ics_aux{ics_aux[a:A; s:canonical_sum] : A :=
- Cases s of
- | Nil_monom => a
- | (Cons_varlist l t) => (Aplus a (ics_aux (interp_vl l) t))
- | (Cons_monom c l t) => (Aplus a (ics_aux (interp_m c l) t))
- end}.
-
-Definition interp_setcs : canonical_sum -> A :=
- [s]Cases s of
- | Nil_monom => Azero
- | (Cons_varlist l t) =>
- (ics_aux (interp_vl l) t)
- | (Cons_monom c l t) =>
- (ics_aux (interp_m c l) t)
- end.
-
-Fixpoint interp_setsp [p:setspolynomial] : A :=
- Cases p of
- | (SetSPconst c) => c
- | (SetSPvar i) => (interp_var i)
- | (SetSPplus p1 p2) => (Aplus (interp_setsp p1) (interp_setsp p2))
- | (SetSPmult p1 p2) => (Amult (interp_setsp p1) (interp_setsp p2))
- end.
-
-(* End interpretation. *)
-
-Unset Implicit Arguments.
-
-(* Section properties. *)
-
-Variable T : (Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq).
-
-Hint SSR_plus_sym_T := Resolve (SSR_plus_sym T).
-Hint SSR_plus_assoc_T := Resolve (SSR_plus_assoc T).
-Hint SSR_plus_assoc2_T := Resolve (SSR_plus_assoc2 S T).
-Hint SSR_mult_sym_T := Resolve (SSR_mult_sym T).
-Hint SSR_mult_assoc_T := Resolve (SSR_mult_assoc T).
-Hint SSR_mult_assoc2_T := Resolve (SSR_mult_assoc2 S T).
-Hint SSR_plus_zero_left_T := Resolve (SSR_plus_zero_left T).
-Hint SSR_plus_zero_left2_T := Resolve (SSR_plus_zero_left2 S T).
-Hint SSR_mult_one_left_T := Resolve (SSR_mult_one_left T).
-Hint SSR_mult_one_left2_T := Resolve (SSR_mult_one_left2 S T).
-Hint SSR_mult_zero_left_T := Resolve (SSR_mult_zero_left T).
-Hint SSR_mult_zero_left2_T := Resolve (SSR_mult_zero_left2 S T).
-Hint SSR_distr_left_T := Resolve (SSR_distr_left T).
-Hint SSR_distr_left2_T := Resolve (SSR_distr_left2 S T).
-Hint SSR_plus_reg_left_T := Resolve (SSR_plus_reg_left T).
-Hint SSR_plus_permute_T := Resolve (SSR_plus_permute S plus_morph T).
-Hint SSR_mult_permute_T := Resolve (SSR_mult_permute S mult_morph T).
-Hint SSR_distr_right_T := Resolve (SSR_distr_right S plus_morph T).
-Hint SSR_distr_right2_T := Resolve (SSR_distr_right2 S plus_morph T).
-Hint SSR_mult_zero_right_T := Resolve (SSR_mult_zero_right S T).
-Hint SSR_mult_zero_right2_T := Resolve (SSR_mult_zero_right2 S T).
-Hint SSR_plus_zero_right_T := Resolve (SSR_plus_zero_right S T).
-Hint SSR_plus_zero_right2_T := Resolve (SSR_plus_zero_right2 S T).
-Hint SSR_mult_one_right_T := Resolve (SSR_mult_one_right S T).
-Hint SSR_mult_one_right2_T := Resolve (SSR_mult_one_right2 S T).
-Hint SSR_plus_reg_right_T := Resolve (SSR_plus_reg_right S T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-Lemma varlist_eq_prop : (x,y:varlist)
- (Is_true (varlist_eq x y))->x==y.
-Proof.
- Induction x; Induction y; Contradiction Orelse Try Reflexivity.
- Simpl; Intros.
- Generalize (andb_prop2 ? ? H1); Intros; Elim H2; Intros.
- Rewrite (index_eq_prop H3); Rewrite (H v0 H4); Reflexivity.
-Save.
-
-Remark ivl_aux_ok : (v:varlist)(i:index)
- (Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v))).
-Proof.
- Induction v; Simpl; Intros.
- Trivial.
- Rewrite (H i); Trivial.
-Save.
-
-Lemma varlist_merge_ok : (x,y:varlist)
- (Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y))).
-Proof.
- Induction x.
- Simpl; Trivial.
- Induction y.
- Simpl; Trivial.
- Simpl; Intros.
- Elim (index_lt i i0); Simpl; Intros.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
- Rewrite (H (Cons_var i0 v0)).
- Simpl.
- Rewrite (ivl_aux_ok v0 i0).
- EAuto.
-
- Rewrite (ivl_aux_ok v i).
- Rewrite (ivl_aux_ok v0 i0).
- Rewrite (ivl_aux_ok
- (Fix vm_aux
- {vm_aux [l2:varlist] : varlist :=
- Cases (l2) of
- Nil_var => (Cons_var i v)
- | (Cons_var v2 t2) =>
- (if (index_lt i v2)
- then (Cons_var i (varlist_merge v l2))
- else (Cons_var v2 (vm_aux t2)))
- end} v0) i0).
- Rewrite H0.
- Rewrite (ivl_aux_ok v i).
- EAuto.
-Save.
-
-Remark ics_aux_ok : (x:A)(s:canonical_sum)
- (Aequiv (ics_aux x s) (Aplus x (interp_setcs s))).
-Proof.
- Induction s; Simpl; Intros;Trivial.
-Save.
-
-Remark interp_m_ok : (x:A)(l:varlist)
- (Aequiv (interp_m x l) (Amult x (interp_vl l))).
-Proof.
- NewDestruct l;Trivial.
-Save.
-
-Hint ivl_aux_ok_ := Resolve ivl_aux_ok.
-Hint ics_aux_ok_ := Resolve ics_aux_ok.
-Hint interp_m_ok_ := Resolve interp_m_ok.
-
-(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
-
-Lemma canonical_sum_merge_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_merge x y))
- (Aplus (interp_setcs x) (interp_setcs y))).
-Proof.
-Induction x; Simpl.
-Trivial.
-
-Induction y; Simpl; Intros.
-EAuto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v0)
- (canonical_sum_merge c c0)).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a a0) v0).
-Rewrite (interp_m_ok a v0).
-Rewrite (interp_m_ok a0 v0).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult a0 (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult a0 (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c)
- (Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_monom a0 v0 c0))).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (ics_aux_ok (interp_m a0 v0) c0).
-Rewrite (H (Cons_monom a0 v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_m a0 v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)).
-Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_m a0 v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_m a v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H c0).
-Rewrite (interp_m_ok (Aplus a Aone) v0).
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v0))
- with (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0))).
-Setoid_replace (Aplus
- (Aplus (Amult a (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0)))).
-Setoid_replace (Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0).
-Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Intro.
-Rewrite (ics_aux_ok (interp_m a v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0).
-Auto.
-
-Intro.
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux
- {csm_aux [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_monom a v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus a Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_monom a v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_m a v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl.
-Auto.
-
-Induction y; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0).
-Intros; Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone a) v0);
-Rewrite (interp_m_ok a v0).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult a (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult a (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c)
- (Aplus (Amult a (interp_vl v0)) (interp_setcs c0)))).
-Auto.
-
-Elim (varlist_lt v v0); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_monom a v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0).
-Rewrite (H (Cons_monom a v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_m a v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_m a v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_m a v0) c0); Simpl; Auto.
-
-Generalize (varlist_eq_prop v v0).
-Elim (varlist_eq v v0); Intros.
-Rewrite (H1 I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v0)
- (canonical_sum_merge c c0));
-Rewrite (ics_aux_ok (interp_vl v0) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Rewrite (
-H c0).
-Rewrite (interp_m_ok (Aplus Aone Aone) v0).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0))
- with (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
-Setoid_replace (Aplus
- (Aplus (Amult Aone (interp_vl v0))
- (Amult Aone (interp_vl v0)))
- (Aplus (interp_setcs c) (interp_setcs c0)))
- with (Aplus (Amult Aone (interp_vl v0))
- (Aplus (Amult Aone (interp_vl v0))
- (Aplus (interp_setcs c) (interp_setcs c0))));
-Setoid_replace (Aplus (Aplus (interp_vl v0) (interp_setcs c))
- (Aplus (interp_vl v0) (interp_setcs c0)))
- with (Aplus (interp_vl v0)
- (Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0)))).
-Setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); Auto.
-
-Elim (varlist_lt v v0); Simpl.
-Rewrite (ics_aux_ok (interp_vl v)
- (canonical_sum_merge c (Cons_varlist v0 c0)));
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0);
-Rewrite (H (Cons_varlist v0 c0)); Simpl.
-Rewrite (ics_aux_ok (interp_vl v0) c0); Auto.
-
-Rewrite (ics_aux_ok (interp_vl v0)
- (Fix csm_aux2
- {csm_aux2 [s2:canonical_sum] : canonical_sum :=
- Cases (s2) of
- Nil_monom => (Cons_varlist v c)
- | (Cons_monom c2 l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone c2) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_monom c2 l2 (csm_aux2 t2))))
- | (Cons_varlist l2 t2) =>
- (if (varlist_eq v l2)
- then
- (Cons_monom (Aplus Aone Aone) v
- (canonical_sum_merge c t2))
- else
- (if (varlist_lt v l2)
- then
- (Cons_varlist v
- (canonical_sum_merge c s2))
- else (Cons_varlist l2 (csm_aux2 t2))))
- end} c0)); Rewrite H0.
-Rewrite (ics_aux_ok (interp_vl v) c);
-Rewrite (ics_aux_ok (interp_vl v0) c0); Simpl; Auto.
-Save.
-
-Lemma monom_insert_ok: (a:A)(l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (monom_insert a l s))
- (Aplus (Amult a (interp_vl l)) (interp_setcs s))).
-Proof.
-Induction s; Intros.
-Simpl; Rewrite (interp_m_ok a l); Trivial.
-
-Simpl; Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Aplus a a0) v);
-Rewrite (interp_m_ok a0 v).
-Setoid_replace (Amult (Aplus a a0) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v))).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros.
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok a0 v); Rewrite (interp_m_ok a l).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
-Rewrite (ics_aux_ok (interp_m a0 v) c); Rewrite H.
-Auto.
-
-Simpl.
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus a Aone) v).
-Setoid_replace (Amult (Aplus a Aone) (interp_vl v))
- with (Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v).
-Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c));
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
-
-Lemma varlist_insert_ok :
- (l:varlist)(s:canonical_sum)
- (Aequiv (interp_setcs (varlist_insert l s))
- (Aplus (interp_vl l) (interp_setcs s))).
-Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok (Aplus Aone a) v);
-Rewrite (interp_m_ok a v).
-Setoid_replace (Amult (Aplus Aone a) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H; Auto.
-
-Generalize (varlist_eq_prop l v); Elim (varlist_eq l v).
-Intro Hr; Rewrite (Hr I); Simpl.
-Rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (interp_m_ok (Aplus Aone Aone) v).
-Setoid_replace (Amult (Aplus Aone Aone) (interp_vl v))
- with (Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v))).
-Setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); Auto.
-
-Elim (varlist_lt l v); Simpl; Intros; Auto.
-Rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
-Rewrite H.
-Rewrite (ics_aux_ok (interp_vl v) c); Auto.
-Save.
-
-Lemma canonical_sum_scalar_ok : (a:A)(s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar a s)) (Amult a (interp_setcs s))).
-Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Rewrite (ics_aux_ok (interp_m (Amult a a0) v)
- (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_m a0 v) c).
-Rewrite (interp_m_ok (Amult a a0) v);
-Rewrite (interp_m_ok a0 v).
-Rewrite H.
-Setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c))).
-Auto.
-
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
-Rewrite (ics_aux_ok (interp_vl v) c); Rewrite H.
-Rewrite (interp_m_ok a v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar2_ok : (l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar2 l s)) (Amult (interp_vl l) (interp_setcs s))).
-Proof.
-Induction s; Simpl; Intros; Auto.
-Rewrite (monom_insert_ok a (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c))).
-Auto.
-
-Rewrite (varlist_insert_ok (varlist_merge l v)
- (canonical_sum_scalar2 l c)).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Auto.
-Save.
-
-Lemma canonical_sum_scalar3_ok : (c:A; l:varlist; s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_scalar3 c l s)) (Amult c (Amult (interp_vl l) (interp_setcs s)))).
-Proof.
-Induction s; Simpl; Intros.
-Rewrite (SSR_mult_zero_right S T (interp_vl l)).
-Auto.
-
-Rewrite (monom_insert_ok (Amult c a) (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_m a v) c0).
-Rewrite (interp_m_ok a v).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Amult (interp_vl l)
- (Aplus (Amult a (interp_vl v)) (interp_setcs c0)))
- with (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))).
-Setoid_replace (Amult c
- (Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
- (Amult (interp_vl l) (interp_setcs c0))))
- with (Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
- (Amult c (Amult (interp_vl l) (interp_setcs c0)))).
-Setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v)))
- with (Amult c (Amult a (Amult (interp_vl l) (interp_vl v)))).
-Auto.
-
-Rewrite (monom_insert_ok c (varlist_merge l v)
- (canonical_sum_scalar3 c l c0)).
-Rewrite (ics_aux_ok (interp_vl v) c0).
-Rewrite H.
-Rewrite (varlist_merge_ok l v).
-Setoid_replace (Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
- (Amult c (Amult (interp_vl l) (interp_setcs c0))))
- with (Amult c
- (Aplus (Amult (interp_vl l) (interp_vl v))
- (Amult (interp_vl l) (interp_setcs c0)))).
-Auto.
-Save.
-
-Lemma canonical_sum_prod_ok : (x,y:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_prod x y)) (Amult (interp_setcs x) (interp_setcs y))).
-Proof.
-Induction x; Simpl; Intros.
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar3_ok a v y).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H y).
-Setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y)))
- with (Amult (Amult a (interp_vl v)) (interp_setcs y)).
-Setoid_replace (Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c))
- (interp_setcs y))
- with (Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
- (Amult (interp_setcs c) (interp_setcs y))).
-Trivial.
-
-Rewrite (canonical_sum_merge_ok (canonical_sum_scalar2 v y)
- (canonical_sum_prod c y)).
-Rewrite (canonical_sum_scalar2_ok v y).
-Rewrite (ics_aux_ok (interp_vl v) c).
-Rewrite (H y).
-Trivial.
-Save.
-
-Theorem setspolynomial_normalize_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p)).
-Proof.
-Induction p; Simpl; Intros; Trivial.
-Rewrite (canonical_sum_merge_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-
-Rewrite (canonical_sum_prod_ok (setspolynomial_normalize s)
- (setspolynomial_normalize s0)).
-Rewrite H; Rewrite H0; Trivial.
-Save.
-
-Lemma canonical_sum_simplify_ok : (s:canonical_sum)
- (Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s)).
-Proof.
-Induction s; Simpl; Intros.
-Trivial.
-
-Generalize (SSR_eq_prop T 9!a 10!Azero).
-Elim (Aeq a Azero).
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H0 I).
-Setoid_replace (Amult Azero (interp_vl v)) with Azero.
-Rewrite H.
-Trivial.
-
-Intros; Simpl.
-Generalize (SSR_eq_prop T 9!a 10!Aone).
-Elim (Aeq a Aone).
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite (interp_m_ok a v).
-Rewrite (H1 I).
-Simpl.
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-
-Simpl.
-Intros.
-Rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
-Rewrite (ics_aux_ok (interp_m a v) c).
-Rewrite H; Trivial.
-
-Rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
-Rewrite H.
-Auto.
-Save.
-
-Theorem setspolynomial_simplify_ok : (p:setspolynomial)
- (Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p)).
-Proof.
-Intro.
-Unfold setspolynomial_simplify.
-Rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
-Exact (setspolynomial_normalize_ok p).
-Save.
-
-End semi_setoid_rings.
-
-Implicits Cons_varlist.
-Implicits Cons_monom.
-Implicits SetSPconst.
-Implicits SetSPplus.
-Implicits SetSPmult.
-
-
-
-Section setoid_rings.
-
-Set Implicit Arguments.
-
-Variable vm : (varmap A).
-Variable T : (Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq).
-
-Hint STh_plus_sym_T := Resolve (STh_plus_sym T).
-Hint STh_plus_assoc_T := Resolve (STh_plus_assoc T).
-Hint STh_plus_assoc2_T := Resolve (STh_plus_assoc2 S T).
-Hint STh_mult_sym_T := Resolve (STh_mult_sym T).
-Hint STh_mult_assoc_T := Resolve (STh_mult_assoc T).
-Hint STh_mult_assoc2_T := Resolve (STh_mult_assoc2 S T).
-Hint STh_plus_zero_left_T := Resolve (STh_plus_zero_left T).
-Hint STh_plus_zero_left2_T := Resolve (STh_plus_zero_left2 S T).
-Hint STh_mult_one_left_T := Resolve (STh_mult_one_left T).
-Hint STh_mult_one_left2_T := Resolve (STh_mult_one_left2 S T).
-Hint STh_mult_zero_left_T := Resolve (STh_mult_zero_left S plus_morph mult_morph T).
-Hint STh_mult_zero_left2_T := Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
-Hint STh_distr_left_T := Resolve (STh_distr_left T).
-Hint STh_distr_left2_T := Resolve (STh_distr_left2 S T).
-Hint STh_plus_reg_left_T := Resolve (STh_plus_reg_left S plus_morph T).
-Hint STh_plus_permute_T := Resolve (STh_plus_permute S plus_morph T).
-Hint STh_mult_permute_T := Resolve (STh_mult_permute S mult_morph T).
-Hint STh_distr_right_T := Resolve (STh_distr_right S plus_morph T).
-Hint STh_distr_right2_T := Resolve (STh_distr_right2 S plus_morph T).
-Hint STh_mult_zero_right_T := Resolve (STh_mult_zero_right S plus_morph mult_morph T).
-Hint STh_mult_zero_right2_T := Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
-Hint STh_plus_zero_right_T := Resolve (STh_plus_zero_right S T).
-Hint STh_plus_zero_right2_T := Resolve (STh_plus_zero_right2 S T).
-Hint STh_mult_one_right_T := Resolve (STh_mult_one_right S T).
-Hint STh_mult_one_right2_T := Resolve (STh_mult_one_right2 S T).
-Hint STh_plus_reg_right_T := Resolve (STh_plus_reg_right S plus_morph T).
-Hints Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
-Hints Immediate T.
-
-
-(*** Definitions *)
-
-Inductive Type setpolynomial :=
- SetPvar : index -> setpolynomial
-| SetPconst : A -> setpolynomial
-| SetPplus : setpolynomial -> setpolynomial -> setpolynomial
-| SetPmult : setpolynomial -> setpolynomial -> setpolynomial
-| SetPopp : setpolynomial -> setpolynomial.
-
-Fixpoint setpolynomial_normalize [x:setpolynomial] : canonical_sum :=
- Cases x of
- | (SetPplus l r) => (canonical_sum_merge
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPmult l r) => (canonical_sum_prod
- (setpolynomial_normalize l)
- (setpolynomial_normalize r))
- | (SetPconst c) => (Cons_monom c Nil_var Nil_monom)
- | (SetPvar i) => (Cons_varlist (Cons_var i Nil_var) Nil_monom)
- | (SetPopp p) => (canonical_sum_scalar3
- (Aopp Aone) Nil_var
- (setpolynomial_normalize p))
- end.
-
-Definition setpolynomial_simplify :=
- [x:setpolynomial](canonical_sum_simplify (setpolynomial_normalize x)).
-
-Fixpoint setspolynomial_of [x:setpolynomial] : setspolynomial :=
- Cases x of
- | (SetPplus l r) => (SetSPplus (setspolynomial_of l) (setspolynomial_of r))
- | (SetPmult l r) => (SetSPmult (setspolynomial_of l) (setspolynomial_of r))
- | (SetPconst c) => (SetSPconst c)
- | (SetPvar i) => (SetSPvar i)
- | (SetPopp p) => (SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p))
- end.
-
-(*** Interpretation *)
-
-Fixpoint interp_setp [p:setpolynomial] : A :=
- Cases p of
- | (SetPconst c) => c
- | (SetPvar i) => (varmap_find Azero i vm)
- | (SetPplus p1 p2) => (Aplus (interp_setp p1) (interp_setp p2))
- | (SetPmult p1 p2) => (Amult (interp_setp p1) (interp_setp p2))
- | (SetPopp p1) => (Aopp (interp_setp p1))
- end.
-
-(*** Properties *)
-
-Unset Implicit Arguments.
-
-Lemma setspolynomial_of_ok : (p:setpolynomial)
- (Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p))).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H; Rewrite H0; Trivial.
-Rewrite H.
-Rewrite (STh_opp_mult_left2 S plus_morph mult_morph T Aone
- (interp_setsp vm (setspolynomial_of s))).
-Rewrite (STh_mult_one_left T
- (interp_setsp vm (setspolynomial_of s))).
-Trivial.
-Save.
-
-Theorem setpolynomial_normalize_ok : (p:setpolynomial)
- (setpolynomial_normalize p)
- ==(setspolynomial_normalize (setspolynomial_of p)).
-Induction p; Trivial; Simpl; Intros.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Rewrite H0; Reflexivity.
-Rewrite H; Simpl.
-Elim (canonical_sum_scalar3 (Aopp Aone) Nil_var
- (setspolynomial_normalize (setspolynomial_of s)));
- [ Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity
- | Simpl; Intros; Rewrite H0; Reflexivity ].
-Save.
-
-Theorem setpolynomial_simplify_ok : (p:setpolynomial)
- (Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p)).
-Intro.
-Unfold setpolynomial_simplify.
-Rewrite (setspolynomial_of_ok p).
-Rewrite setpolynomial_normalize_ok.
-Rewrite (canonical_sum_simplify_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T)
- (setspolynomial_normalize (setspolynomial_of p))).
-Rewrite (setspolynomial_normalize_ok vm
- (Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp
- Aeq plus_morph mult_morph T) (setspolynomial_of p)).
-Trivial.
-Save.
-
-End setoid_rings.
-
-End setoid.
diff --git a/contrib7/ring/Setoid_ring_theory.v b/contrib7/ring/Setoid_ring_theory.v
deleted file mode 100644
index 13afc5ee..00000000
--- a/contrib7/ring/Setoid_ring_theory.v
+++ /dev/null
@@ -1,429 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Setoid_ring_theory.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Export Bool.
-Require Export Setoid.
-
-Set Implicit Arguments.
-
-Section Setoid_rings.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-
-Infix Local "==" Aequiv (at level 5, no associativity).
-
-Variable S : (Setoid_Theory A Aequiv).
-
-Add Setoid A Aequiv S.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
-
-Variable plus_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a+a1 == a0+a2.
-Variable mult_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a*a1 == a0*a2.
-Variable opp_morph : (a,a0:A) a == a0 -> -a == -a0.
-
-Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
-
-Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
-
-Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
-
-Section Theory_of_semi_setoid_rings.
-
-Record Semi_Setoid_Ring_Theory : Prop :=
-{ SSR_plus_sym : (n,m:A) n + m == m + n;
- SSR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SSR_mult_sym : (n,m:A) n*m == m*n;
- SSR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SSR_plus_zero_left :(n:A) 0 + n == n;
- SSR_mult_one_left : (n:A) 1*n == n;
- SSR_mult_zero_left : (n:A) 0*n == 0;
- SSR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SSR_plus_reg_left : (n,m,p:A)n + m == n + p -> m == p;
- SSR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
-
-Variable T : Semi_Setoid_Ring_Theory.
-
-Local plus_sym := (SSR_plus_sym T).
-Local plus_assoc := (SSR_plus_assoc T).
-Local mult_sym := ( SSR_mult_sym T).
-Local mult_assoc := (SSR_mult_assoc T).
-Local plus_zero_left := (SSR_plus_zero_left T).
-Local mult_one_left := (SSR_mult_one_left T).
-Local mult_zero_left := (SSR_mult_zero_left T).
-Local distr_left := (SSR_distr_left T).
-Local plus_reg_left := (SSR_plus_reg_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left equiv_refl (*equiv_sym*).
-Hints Immediate equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because
- Auto does not symmetry *)
-Lemma SSR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma SSR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma SSR_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma SSR_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma SSR_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto. Save.
-
-Lemma SSR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma SSR_plus_permute : (n,m,p:A) n+(m+p) == m+(n+p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma SSR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve SSR_plus_permute SSR_mult_permute.
-
-Lemma SSR_distr_right : (n,m,p:A) n*(m+p) == (n*m) + (n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Auto.
-Save.
-
-Lemma SSR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Intros.
-Apply equiv_sym.
-Apply SSR_distr_right.
-Save.
-
-Lemma SSR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n).
-Intro; Apply plus_reg_left with n; Trivial.
-Save.
-
-End Theory_of_semi_setoid_rings.
-
-Section Theory_of_setoid_rings.
-
-Record Setoid_Ring_Theory : Prop :=
-{ STh_plus_sym : (n,m:A) n + m == m + n;
- STh_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- STh_mult_sym : (n,m:A) n*m == m*n;
- STh_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- STh_plus_zero_left :(n:A) 0 + n == n;
- STh_mult_one_left : (n:A) 1*n == n;
- STh_opp_def : (n:A) n + (-n) == 0;
- STh_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- STh_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
-
-Variable T : Setoid_Ring_Theory.
-
-Local plus_sym := (STh_plus_sym T).
-Local plus_assoc := (STh_plus_assoc T).
-Local mult_sym := (STh_mult_sym T).
-Local mult_assoc := (STh_mult_assoc T).
-Local plus_zero_left := (STh_plus_zero_left T).
-Local mult_one_left := (STh_mult_one_left T).
-Local opp_def := (STh_opp_def T).
-Local distr_left := (STh_distr_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left
- equiv_refl equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-
-Lemma STh_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma STh_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma STh_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma STh_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma STh_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma STh_opp_def2 : (n:A) 0 == n + (-n).
-Auto. Save.
-
-Lemma STh_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma STh_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve STh_plus_permute STh_mult_permute.
-
-Lemma Saux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Rewrite <- (plus_zero_left a).
-Rewrite (plus_sym Azero a).
-Setoid_replace (Aplus a Azero) with (Aplus a (Aplus a (Aopp a))); Auto.
-Rewrite (plus_assoc a a (Aopp a)).
-Rewrite H.
-Apply opp_def.
-Save.
-
-Lemma STh_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply Saux1.
-Rewrite <- (distr_left Azero Azero n).
-Rewrite (plus_zero_left Azero).
-Trivial.
-Save.
-Hints Resolve STh_mult_zero_left.
-
-Lemma STh_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto.
-Save.
-
-Lemma Saux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y == z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Rewrite <- H0.
-Rewrite <- (plus_assoc x z y).
-Rewrite (plus_sym z y).
-Rewrite (plus_assoc x y z).
-Rewrite H.
-Auto.
-Save.
-
-Lemma STh_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply Saux2 with (Amult x y); Auto.
-Rewrite <- (distr_left x (Aopp x) y).
-Rewrite (opp_def x).
-Auto.
-Save.
-Hints Resolve STh_opp_mult_left.
-
-Lemma STh_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y) .
-Auto.
-Save.
-
-Lemma STh_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply Saux2 with (Aplus x y); Auto.
-Rewrite (STh_plus_permute (Aplus x y) (Aopp x) (Aopp y)).
-Rewrite <- (plus_assoc x y (Aopp y)).
-Rewrite (opp_def y); Rewrite (STh_plus_zero_right x).
-Rewrite (STh_opp_def2 x); Trivial.
-Save.
-
-Lemma STh_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-Auto.
-Save.
-
-Lemma STh_opp_opp : (n:A) -(-n) == n.
-Intro.
-Apply Saux2 with (Aopp n); Auto.
-Rewrite (plus_sym (Aopp n) n); Auto.
-Save.
-Hints Resolve STh_opp_opp.
-
-Lemma STh_opp_opp2 : (n:A) n == -(-n).
-Auto.
-Save.
-
-Lemma STh_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros.
-Rewrite (STh_opp_mult_left2 x (Aopp y)).
-Rewrite (STh_opp_mult_right2 x y).
-Trivial.
-Save.
-
-Lemma STh_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Intros.
-Apply equiv_sym.
-Apply STh_mult_opp_opp.
-Save.
-
-Lemma STh_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (Aopp Azero)).
-Trivial.
-Save.
-
-Lemma STh_plus_reg_left : (n,m,p:A) n+m == n+p -> m==p.
-Intros.
-Rewrite <- (plus_zero_left m).
-Rewrite <- (plus_zero_left p).
-Rewrite <- (opp_def n).
-Rewrite (plus_sym n (Aopp n)).
-Rewrite <- (plus_assoc (Aopp n) n m).
-Rewrite <- (plus_assoc (Aopp n) n p).
-Auto.
-Save.
-
-Lemma STh_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros.
-Apply STh_plus_reg_left with n.
-Rewrite (plus_sym n m); Rewrite (plus_sym n p);
-Assumption.
-Save.
-
-Lemma STh_distr_right : (n,m,p:A) n*(m+p) == (n*m)+(n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Trivial.
-Save.
-
-Lemma STh_distr_right2 : (n,m,p:A) (n*m)+(n*p) == n*(m+p).
-Intros.
-Apply equiv_sym.
-Apply STh_distr_right.
-Save.
-
-End Theory_of_setoid_rings.
-
-Hints Resolve STh_mult_zero_left STh_plus_reg_left : core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
-Defined.
-
-Coercion Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory >-> Semi_Setoid_Ring_Theory.
-
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
-
-End Setoid_rings.
diff --git a/contrib7/ring/ZArithRing.v b/contrib7/ring/ZArithRing.v
deleted file mode 100644
index fc7ef29f..00000000
--- a/contrib7/ring/ZArithRing.v
+++ /dev/null
@@ -1,35 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: ZArithRing.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-(* Instantiation of the Ring tactic for the binary integers of ZArith *)
-
-Require Export ArithRing.
-Require Export ZArith_base.
-Require Eqdep_dec.
-
-Definition Zeq := [x,y:Z]
- Cases `x ?= y ` of
- EGAL => true
- | _ => false
- end.
-
-Lemma Zeq_prop : (x,y:Z)(Is_true (Zeq x y)) -> x==y.
- Intros x y H; Unfold Zeq in H.
- Apply Zcompare_EGAL_eq.
- NewDestruct (Zcompare x y); [Reflexivity | Contradiction | Contradiction ].
-Save.
-
-Definition ZTheory : (Ring_Theory Zplus Zmult `1` `0` Zopp Zeq).
- Split; Intros; Apply eq2eqT; EAuto with zarith.
- Apply eqT2eq; Apply Zeq_prop; Assumption.
-Save.
-
-(* NatConstants and NatTheory are defined in Ring_theory.v *)
-Add Ring Z Zplus Zmult `1` `0` Zopp Zeq ZTheory [POS NEG ZERO xO xI xH].