summaryrefslogtreecommitdiff
path: root/contrib7/ring/Setoid_ring_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/ring/Setoid_ring_theory.v')
-rw-r--r--contrib7/ring/Setoid_ring_theory.v429
1 files changed, 0 insertions, 429 deletions
diff --git a/contrib7/ring/Setoid_ring_theory.v b/contrib7/ring/Setoid_ring_theory.v
deleted file mode 100644
index 13afc5ee..00000000
--- a/contrib7/ring/Setoid_ring_theory.v
+++ /dev/null
@@ -1,429 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Setoid_ring_theory.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Export Bool.
-Require Export Setoid.
-
-Set Implicit Arguments.
-
-Section Setoid_rings.
-
-Variable A : Type.
-Variable Aequiv : A -> A -> Prop.
-
-Infix Local "==" Aequiv (at level 5, no associativity).
-
-Variable S : (Setoid_Theory A Aequiv).
-
-Add Setoid A Aequiv S.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
-
-Variable plus_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a+a1 == a0+a2.
-Variable mult_morph : (a,a0,a1,a2:A) a == a0 -> a1 == a2 -> a*a1 == a0*a2.
-Variable opp_morph : (a,a0:A) a == a0 -> -a == -a0.
-
-Add Morphism Aplus : Aplus_ext.
-Exact plus_morph.
-Save.
-
-Add Morphism Amult : Amult_ext.
-Exact mult_morph.
-Save.
-
-Add Morphism Aopp : Aopp_ext.
-Exact opp_morph.
-Save.
-
-Section Theory_of_semi_setoid_rings.
-
-Record Semi_Setoid_Ring_Theory : Prop :=
-{ SSR_plus_sym : (n,m:A) n + m == m + n;
- SSR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SSR_mult_sym : (n,m:A) n*m == m*n;
- SSR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SSR_plus_zero_left :(n:A) 0 + n == n;
- SSR_mult_one_left : (n:A) 1*n == n;
- SSR_mult_zero_left : (n:A) 0*n == 0;
- SSR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SSR_plus_reg_left : (n,m,p:A)n + m == n + p -> m == p;
- SSR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
-
-Variable T : Semi_Setoid_Ring_Theory.
-
-Local plus_sym := (SSR_plus_sym T).
-Local plus_assoc := (SSR_plus_assoc T).
-Local mult_sym := ( SSR_mult_sym T).
-Local mult_assoc := (SSR_mult_assoc T).
-Local plus_zero_left := (SSR_plus_zero_left T).
-Local mult_one_left := (SSR_mult_one_left T).
-Local mult_zero_left := (SSR_mult_zero_left T).
-Local distr_left := (SSR_distr_left T).
-Local plus_reg_left := (SSR_plus_reg_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left equiv_refl (*equiv_sym*).
-Hints Immediate equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because
- Auto does not symmetry *)
-Lemma SSR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma SSR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma SSR_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma SSR_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma SSR_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto. Save.
-
-Lemma SSR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma SSR_plus_permute : (n,m,p:A) n+(m+p) == m+(n+p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma SSR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve SSR_plus_permute SSR_mult_permute.
-
-Lemma SSR_distr_right : (n,m,p:A) n*(m+p) == (n*m) + (n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Auto.
-Save.
-
-Lemma SSR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Intros.
-Apply equiv_sym.
-Apply SSR_distr_right.
-Save.
-
-Lemma SSR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma SSR_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma SSR_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n).
-Intro; Apply plus_reg_left with n; Trivial.
-Save.
-
-End Theory_of_semi_setoid_rings.
-
-Section Theory_of_setoid_rings.
-
-Record Setoid_Ring_Theory : Prop :=
-{ STh_plus_sym : (n,m:A) n + m == m + n;
- STh_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- STh_mult_sym : (n,m:A) n*m == m*n;
- STh_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- STh_plus_zero_left :(n:A) 0 + n == n;
- STh_mult_one_left : (n:A) 1*n == n;
- STh_opp_def : (n:A) n + (-n) == 0;
- STh_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- STh_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x == y
-}.
-
-Variable T : Setoid_Ring_Theory.
-
-Local plus_sym := (STh_plus_sym T).
-Local plus_assoc := (STh_plus_assoc T).
-Local mult_sym := (STh_mult_sym T).
-Local mult_assoc := (STh_mult_assoc T).
-Local plus_zero_left := (STh_plus_zero_left T).
-Local mult_one_left := (STh_mult_one_left T).
-Local opp_def := (STh_opp_def T).
-Local distr_left := (STh_distr_left T).
-Local equiv_refl := (Seq_refl A Aequiv S).
-Local equiv_sym := (Seq_sym A Aequiv S).
-Local equiv_trans := (Seq_trans A Aequiv S).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left
- equiv_refl equiv_sym.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-
-Lemma STh_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Auto. Save.
-
-Lemma STh_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Auto. Save.
-
-Lemma STh_plus_zero_left2 : (n:A) n == 0 + n.
-Auto. Save.
-
-Lemma STh_mult_one_left2 : (n:A) n == 1*n.
-Auto. Save.
-
-Lemma STh_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Auto. Save.
-
-Lemma STh_opp_def2 : (n:A) 0 == n + (-n).
-Auto. Save.
-
-Lemma STh_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite (plus_assoc n m p).
-Rewrite (plus_sym n m).
-Rewrite <- (plus_assoc m n p).
-Trivial.
-Save.
-
-Lemma STh_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite (mult_assoc n m p).
-Rewrite (mult_sym n m).
-Rewrite <- (mult_assoc m n p).
-Trivial.
-Save.
-
-Hints Resolve STh_plus_permute STh_mult_permute.
-
-Lemma Saux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Rewrite <- (plus_zero_left a).
-Rewrite (plus_sym Azero a).
-Setoid_replace (Aplus a Azero) with (Aplus a (Aplus a (Aopp a))); Auto.
-Rewrite (plus_assoc a a (Aopp a)).
-Rewrite H.
-Apply opp_def.
-Save.
-
-Lemma STh_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply Saux1.
-Rewrite <- (distr_left Azero Azero n).
-Rewrite (plus_zero_left Azero).
-Trivial.
-Save.
-Hints Resolve STh_mult_zero_left.
-
-Lemma STh_mult_zero_left2 : (n:A) 0 == 0*n.
-Auto.
-Save.
-
-Lemma Saux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y == z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Rewrite <- H0.
-Rewrite <- (plus_assoc x z y).
-Rewrite (plus_sym z y).
-Rewrite (plus_assoc x y z).
-Rewrite H.
-Auto.
-Save.
-
-Lemma STh_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply Saux2 with (Amult x y); Auto.
-Rewrite <- (distr_left x (Aopp x) y).
-Rewrite (opp_def x).
-Auto.
-Save.
-Hints Resolve STh_opp_mult_left.
-
-Lemma STh_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y) .
-Auto.
-Save.
-
-Lemma STh_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite (mult_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite (plus_sym n Azero); Auto.
-Save.
-
-Lemma STh_mult_one_right : (n:A) n*1 == n.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_mult_one_right2 : (n:A) n == n*1.
-Intro; Rewrite (mult_sym n Aone); Auto.
-Save.
-
-Lemma STh_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros.
-Rewrite (mult_sym x y).
-Rewrite (mult_sym x (Aopp y)).
-Auto.
-Save.
-
-Lemma STh_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply Saux2 with (Aplus x y); Auto.
-Rewrite (STh_plus_permute (Aplus x y) (Aopp x) (Aopp y)).
-Rewrite <- (plus_assoc x y (Aopp y)).
-Rewrite (opp_def y); Rewrite (STh_plus_zero_right x).
-Rewrite (STh_opp_def2 x); Trivial.
-Save.
-
-Lemma STh_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-Auto.
-Save.
-
-Lemma STh_opp_opp : (n:A) -(-n) == n.
-Intro.
-Apply Saux2 with (Aopp n); Auto.
-Rewrite (plus_sym (Aopp n) n); Auto.
-Save.
-Hints Resolve STh_opp_opp.
-
-Lemma STh_opp_opp2 : (n:A) n == -(-n).
-Auto.
-Save.
-
-Lemma STh_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros.
-Rewrite (STh_opp_mult_left2 x (Aopp y)).
-Rewrite (STh_opp_mult_right2 x y).
-Trivial.
-Save.
-
-Lemma STh_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Intros.
-Apply equiv_sym.
-Apply STh_mult_opp_opp.
-Save.
-
-Lemma STh_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (Aopp Azero)).
-Trivial.
-Save.
-
-Lemma STh_plus_reg_left : (n,m,p:A) n+m == n+p -> m==p.
-Intros.
-Rewrite <- (plus_zero_left m).
-Rewrite <- (plus_zero_left p).
-Rewrite <- (opp_def n).
-Rewrite (plus_sym n (Aopp n)).
-Rewrite <- (plus_assoc (Aopp n) n m).
-Rewrite <- (plus_assoc (Aopp n) n p).
-Auto.
-Save.
-
-Lemma STh_plus_reg_right : (n,m,p:A) m+n == p+n -> m==p.
-Intros.
-Apply STh_plus_reg_left with n.
-Rewrite (plus_sym n m); Rewrite (plus_sym n p);
-Assumption.
-Save.
-
-Lemma STh_distr_right : (n,m,p:A) n*(m+p) == (n*m)+(n*p).
-Intros.
-Rewrite (mult_sym n (Aplus m p)).
-Rewrite (mult_sym n m).
-Rewrite (mult_sym n p).
-Trivial.
-Save.
-
-Lemma STh_distr_right2 : (n,m,p:A) (n*m)+(n*p) == n*(m+p).
-Intros.
-Apply equiv_sym.
-Apply STh_distr_right.
-Save.
-
-End Theory_of_setoid_rings.
-
-Hints Resolve STh_mult_zero_left STh_plus_reg_left : core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
-Defined.
-
-Coercion Semi_Setoid_Ring_Theory_of :
- Setoid_Ring_Theory >-> Semi_Setoid_Ring_Theory.
-
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.
-
-End Setoid_rings.