summaryrefslogtreecommitdiff
path: root/contrib7/ring/Ring_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/ring/Ring_theory.v')
-rw-r--r--contrib7/ring/Ring_theory.v384
1 files changed, 0 insertions, 384 deletions
diff --git a/contrib7/ring/Ring_theory.v b/contrib7/ring/Ring_theory.v
deleted file mode 100644
index 85fb7f6c..00000000
--- a/contrib7/ring/Ring_theory.v
+++ /dev/null
@@ -1,384 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Ring_theory.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *)
-
-Require Export Bool.
-
-Set Implicit Arguments.
-
-Section Theory_of_semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-(* There is also a "weakly decidable" equality on A. That means
- that if (A_eq x y)=true then x=y but x=y can arise when
- (A_eq x y)=false. On an abstract ring the function [x,y:A]false
- is a good choice. The proof of A_eq_prop is in this case easy. *)
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-
-Record Semi_Ring_Theory : Prop :=
-{ SR_plus_sym : (n,m:A) n + m == m + n;
- SR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- SR_mult_sym : (n,m:A) n*m == m*n;
- SR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- SR_plus_zero_left :(n:A) 0 + n == n;
- SR_mult_one_left : (n:A) 1*n == n;
- SR_mult_zero_left : (n:A) 0*n == 0;
- SR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- SR_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p;
- SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-
-Variable T : Semi_Ring_Theory.
-
-Local plus_sym := (SR_plus_sym T).
-Local plus_assoc := (SR_plus_assoc T).
-Local mult_sym := ( SR_mult_sym T).
-Local mult_assoc := (SR_mult_assoc T).
-Local plus_zero_left := (SR_plus_zero_left T).
-Local mult_one_left := (SR_mult_one_left T).
-Local mult_zero_left := (SR_mult_zero_left T).
-Local distr_left := (SR_distr_left T).
-Local plus_reg_left := (SR_plus_reg_left T).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left mult_zero_left distr_left
- plus_reg_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma SR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
-
-Lemma SR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
-
-Lemma SR_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
-Qed.
-
-Lemma SR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
-Qed.
-
-Hints Resolve SR_plus_permute SR_mult_permute.
-
-Lemma SR_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
-Qed.
-
-Lemma SR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply SR_distr_right. Qed.
-
-Lemma SR_mult_zero_right : (n:A) n*0 == 0.
-Intro; Rewrite mult_sym; EAuto.
-Qed.
-
-Lemma SR_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Rewrite mult_sym; EAuto.
-Qed.
-
-Lemma SR_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-Lemma SR_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma SR_mult_one_right : (n:A) n*1 == n.
-Intro; Elim mult_sym; Auto.
-Qed.
-
-Lemma SR_mult_one_right2 : (n:A) n == n*1.
-Intro; Elim mult_sym; Auto.
-Qed.
-
-Lemma SR_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n); EAuto.
-Qed.
-
-End Theory_of_semi_rings.
-
-Section Theory_of_rings.
-
-Variable A : Type.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix 4 "+" Aplus V8only 50 (left associativity).
-Infix 4 "*" Amult V8only 40 (left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x) (at level 0) V8only.
-
-Record Ring_Theory : Prop :=
-{ Th_plus_sym : (n,m:A) n + m == m + n;
- Th_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p;
- Th_mult_sym : (n,m:A) n*m == m*n;
- Th_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p;
- Th_plus_zero_left :(n:A) 0 + n == n;
- Th_mult_one_left : (n:A) 1*n == n;
- Th_opp_def : (n:A) n + (-n) == 0;
- Th_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p;
- Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y
-}.
-
-Variable T : Ring_Theory.
-
-Local plus_sym := (Th_plus_sym T).
-Local plus_assoc := (Th_plus_assoc T).
-Local mult_sym := ( Th_mult_sym T).
-Local mult_assoc := (Th_mult_assoc T).
-Local plus_zero_left := (Th_plus_zero_left T).
-Local mult_one_left := (Th_mult_one_left T).
-Local opp_def := (Th_opp_def T).
-Local distr_left := (Th_distr_left T).
-
-Hints Resolve plus_sym plus_assoc mult_sym mult_assoc
- plus_zero_left mult_one_left opp_def distr_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma Th_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_zero_left2 : (n:A) n == 0 + n.
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_one_left2 : (n:A) n == 1*n.
-Symmetry; EAuto. Qed.
-
-Lemma Th_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p.
-Symmetry; EAuto. Qed.
-
-Lemma Th_opp_def2 : (n:A) 0 == n + (-n).
-Symmetry; EAuto. Qed.
-
-Lemma Th_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p).
-Intros.
-Rewrite -> plus_assoc.
-Elim (plus_sym m n).
-Rewrite <- plus_assoc.
-Reflexivity.
-Qed.
-
-Lemma Th_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p).
-Intros.
-Rewrite -> mult_assoc.
-Elim (mult_sym m n).
-Rewrite <- mult_assoc.
-Reflexivity.
-Qed.
-
-Hints Resolve Th_plus_permute Th_mult_permute.
-
-Lemma aux1 : (a:A) a + a == a -> a == 0.
-Intros.
-Generalize (opp_def a).
-Pattern 1 a.
-Rewrite <- H.
-Rewrite <- plus_assoc.
-Rewrite -> opp_def.
-Elim plus_sym.
-Rewrite plus_zero_left.
-Trivial.
-Qed.
-
-Lemma Th_mult_zero_left :(n:A) 0*n == 0.
-Intros.
-Apply aux1.
-Rewrite <- distr_left.
-Rewrite plus_zero_left.
-Reflexivity.
-Qed.
-Hints Resolve Th_mult_zero_left.
-
-Lemma Th_mult_zero_left2 : (n:A) 0 == 0*n.
-Symmetry; EAuto. Qed.
-
-Lemma aux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y==z.
-Intros.
-Rewrite <- (plus_zero_left y).
-Elim H0.
-Elim plus_assoc.
-Elim (plus_sym y z).
-Rewrite -> plus_assoc.
-Rewrite -> H.
-Rewrite plus_zero_left.
-Reflexivity.
-Qed.
-
-Lemma Th_opp_mult_left : (x,y:A) -(x*y) == (-x)*y.
-Intros.
-Apply (aux2 1!x*y);
-[ Apply opp_def
-| Rewrite <- distr_left;
- Rewrite -> opp_def;
- Auto].
-Qed.
-Hints Resolve Th_opp_mult_left.
-
-Lemma Th_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y).
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_zero_right : (n:A) n*0 == 0.
-Intro; Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_mult_zero_right2 : (n:A) 0 == n*0.
-Intro; Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_plus_zero_right :(n:A) n + 0 == n.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma Th_plus_zero_right2 :(n:A) n == n + 0.
-Intro; Rewrite plus_sym; EAuto.
-Qed.
-
-Lemma Th_mult_one_right : (n:A) n*1 == n.
-Intro;Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_mult_one_right2 : (n:A) n == n*1.
-Intro;Elim mult_sym; EAuto.
-Qed.
-
-Lemma Th_opp_mult_right : (x,y:A) -(x*y) == x*(-y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
-Qed.
-
-Lemma Th_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y).
-Intros; Do 2 Rewrite -> (mult_sym x); Auto.
-Qed.
-
-Lemma Th_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y).
-Intros.
-Apply (aux2 1! x + y);
-[ Elim plus_assoc;
- Rewrite -> (Th_plus_permute y (-x)); Rewrite -> plus_assoc;
- Rewrite -> opp_def; Rewrite plus_zero_left; Auto
-| Auto ].
-Qed.
-
-Lemma Th_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p).
-EAuto. Qed.
-
-Lemma Th_opp_opp : (n:A) -(-n) == n.
-Intro; Apply (aux2 1! -n);
- [ Auto | Elim plus_sym; Auto ].
-Qed.
-Hints Resolve Th_opp_opp.
-
-Lemma Th_opp_opp2 : (n:A) n == -(-n).
-Symmetry; EAuto. Qed.
-
-Lemma Th_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y.
-Intros; Rewrite <- Th_opp_mult_left; Rewrite <- Th_opp_mult_right; Auto.
-Qed.
-
-Lemma Th_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y).
-Symmetry; Apply Th_mult_opp_opp. Qed.
-
-Lemma Th_opp_zero : -0 == 0.
-Rewrite <- (plus_zero_left (-0)).
-Auto. Qed.
-
-Lemma Th_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p.
-Intros; Generalize (congr_eqT ? ? [z] (-n)+z ? ? H).
-Repeat Rewrite plus_assoc.
-Rewrite (plus_sym (-n) n).
-Rewrite opp_def.
-Repeat Rewrite Th_plus_zero_left; EAuto.
-Qed.
-
-Lemma Th_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p.
-Intros.
-EApply Th_plus_reg_left with n.
-Rewrite (plus_sym n m).
-Rewrite (plus_sym n p).
-Auto.
-Qed.
-
-Lemma Th_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p).
-Intros.
-Repeat Rewrite -> (mult_sym n).
-EAuto.
-Qed.
-
-Lemma Th_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p).
-Symmetry; Apply Th_distr_right.
-Qed.
-
-End Theory_of_rings.
-
-Hints Resolve Th_mult_zero_left Th_plus_reg_left : core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Ring_Theory_of :
- (A:Type)(Aplus : A -> A -> A)(Amult : A -> A -> A)(Aone : A)
- (Azero : A)(Aopp : A -> A)(Aeq : A -> A -> bool)
- (Ring_Theory Aplus Amult Aone Azero Aopp Aeq)
- ->(Semi_Ring_Theory Aplus Amult Aone Azero Aeq).
-Intros until 1; Case H.
-Split; Intros; Simpl; EAuto.
-Defined.
-
-(* Every ring can be viewed as a semi-ring : this property will be used
- in Abstract_polynom. *)
-Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.