diff options
Diffstat (limited to 'contrib7/ring/Ring_theory.v')
-rw-r--r-- | contrib7/ring/Ring_theory.v | 384 |
1 files changed, 384 insertions, 0 deletions
diff --git a/contrib7/ring/Ring_theory.v b/contrib7/ring/Ring_theory.v new file mode 100644 index 00000000..85fb7f6c --- /dev/null +++ b/contrib7/ring/Ring_theory.v @@ -0,0 +1,384 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: Ring_theory.v,v 1.1.2.1 2004/07/16 19:30:19 herbelin Exp $ *) + +Require Export Bool. + +Set Implicit Arguments. + +Section Theory_of_semi_rings. + +Variable A : Type. +Variable Aplus : A -> A -> A. +Variable Amult : A -> A -> A. +Variable Aone : A. +Variable Azero : A. +(* There is also a "weakly decidable" equality on A. That means + that if (A_eq x y)=true then x=y but x=y can arise when + (A_eq x y)=false. On an abstract ring the function [x,y:A]false + is a good choice. The proof of A_eq_prop is in this case easy. *) +Variable Aeq : A -> A -> bool. + +Infix 4 "+" Aplus V8only 50 (left associativity). +Infix 4 "*" Amult V8only 40 (left associativity). +Notation "0" := Azero. +Notation "1" := Aone. + +Record Semi_Ring_Theory : Prop := +{ SR_plus_sym : (n,m:A) n + m == m + n; + SR_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; + SR_mult_sym : (n,m:A) n*m == m*n; + SR_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; + SR_plus_zero_left :(n:A) 0 + n == n; + SR_mult_one_left : (n:A) 1*n == n; + SR_mult_zero_left : (n:A) 0*n == 0; + SR_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; + SR_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p; + SR_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y +}. + +Variable T : Semi_Ring_Theory. + +Local plus_sym := (SR_plus_sym T). +Local plus_assoc := (SR_plus_assoc T). +Local mult_sym := ( SR_mult_sym T). +Local mult_assoc := (SR_mult_assoc T). +Local plus_zero_left := (SR_plus_zero_left T). +Local mult_one_left := (SR_mult_one_left T). +Local mult_zero_left := (SR_mult_zero_left T). +Local distr_left := (SR_distr_left T). +Local plus_reg_left := (SR_plus_reg_left T). + +Hints Resolve plus_sym plus_assoc mult_sym mult_assoc + plus_zero_left mult_one_left mult_zero_left distr_left + plus_reg_left. + +(* Lemmas whose form is x=y are also provided in form y=x because Auto does + not symmetry *) +Lemma SR_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). +Symmetry; EAuto. Qed. + +Lemma SR_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). +Symmetry; EAuto. Qed. + +Lemma SR_plus_zero_left2 : (n:A) n == 0 + n. +Symmetry; EAuto. Qed. + +Lemma SR_mult_one_left2 : (n:A) n == 1*n. +Symmetry; EAuto. Qed. + +Lemma SR_mult_zero_left2 : (n:A) 0 == 0*n. +Symmetry; EAuto. Qed. + +Lemma SR_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. +Symmetry; EAuto. Qed. + +Lemma SR_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p). +Intros. +Rewrite -> plus_assoc. +Elim (plus_sym m n). +Rewrite <- plus_assoc. +Reflexivity. +Qed. + +Lemma SR_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). +Intros. +Rewrite -> mult_assoc. +Elim (mult_sym m n). +Rewrite <- mult_assoc. +Reflexivity. +Qed. + +Hints Resolve SR_plus_permute SR_mult_permute. + +Lemma SR_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p). +Intros. +Repeat Rewrite -> (mult_sym n). +EAuto. +Qed. + +Lemma SR_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p). +Symmetry; Apply SR_distr_right. Qed. + +Lemma SR_mult_zero_right : (n:A) n*0 == 0. +Intro; Rewrite mult_sym; EAuto. +Qed. + +Lemma SR_mult_zero_right2 : (n:A) 0 == n*0. +Intro; Rewrite mult_sym; EAuto. +Qed. + +Lemma SR_plus_zero_right :(n:A) n + 0 == n. +Intro; Rewrite plus_sym; EAuto. +Qed. +Lemma SR_plus_zero_right2 :(n:A) n == n + 0. +Intro; Rewrite plus_sym; EAuto. +Qed. + +Lemma SR_mult_one_right : (n:A) n*1 == n. +Intro; Elim mult_sym; Auto. +Qed. + +Lemma SR_mult_one_right2 : (n:A) n == n*1. +Intro; Elim mult_sym; Auto. +Qed. + +Lemma SR_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p. +Intros n m p; Rewrite (plus_sym m n); Rewrite (plus_sym p n); EAuto. +Qed. + +End Theory_of_semi_rings. + +Section Theory_of_rings. + +Variable A : Type. + +Variable Aplus : A -> A -> A. +Variable Amult : A -> A -> A. +Variable Aone : A. +Variable Azero : A. +Variable Aopp : A -> A. +Variable Aeq : A -> A -> bool. + +Infix 4 "+" Aplus V8only 50 (left associativity). +Infix 4 "*" Amult V8only 40 (left associativity). +Notation "0" := Azero. +Notation "1" := Aone. +Notation "- x" := (Aopp x) (at level 0) V8only. + +Record Ring_Theory : Prop := +{ Th_plus_sym : (n,m:A) n + m == m + n; + Th_plus_assoc : (n,m,p:A) n + (m + p) == (n + m) + p; + Th_mult_sym : (n,m:A) n*m == m*n; + Th_mult_assoc : (n,m,p:A) n*(m*p) == (n*m)*p; + Th_plus_zero_left :(n:A) 0 + n == n; + Th_mult_one_left : (n:A) 1*n == n; + Th_opp_def : (n:A) n + (-n) == 0; + Th_distr_left : (n,m,p:A) (n + m)*p == n*p + m*p; + Th_eq_prop : (x,y:A) (Is_true (Aeq x y)) -> x==y +}. + +Variable T : Ring_Theory. + +Local plus_sym := (Th_plus_sym T). +Local plus_assoc := (Th_plus_assoc T). +Local mult_sym := ( Th_mult_sym T). +Local mult_assoc := (Th_mult_assoc T). +Local plus_zero_left := (Th_plus_zero_left T). +Local mult_one_left := (Th_mult_one_left T). +Local opp_def := (Th_opp_def T). +Local distr_left := (Th_distr_left T). + +Hints Resolve plus_sym plus_assoc mult_sym mult_assoc + plus_zero_left mult_one_left opp_def distr_left. + +(* Lemmas whose form is x=y are also provided in form y=x because Auto does + not symmetry *) +Lemma Th_mult_assoc2 : (n,m,p:A) (n * m) * p == n * (m * p). +Symmetry; EAuto. Qed. + +Lemma Th_plus_assoc2 : (n,m,p:A) (n + m) + p == n + (m + p). +Symmetry; EAuto. Qed. + +Lemma Th_plus_zero_left2 : (n:A) n == 0 + n. +Symmetry; EAuto. Qed. + +Lemma Th_mult_one_left2 : (n:A) n == 1*n. +Symmetry; EAuto. Qed. + +Lemma Th_distr_left2 : (n,m,p:A) n*p + m*p == (n + m)*p. +Symmetry; EAuto. Qed. + +Lemma Th_opp_def2 : (n:A) 0 == n + (-n). +Symmetry; EAuto. Qed. + +Lemma Th_plus_permute : (n,m,p:A) n + (m + p) == m + (n + p). +Intros. +Rewrite -> plus_assoc. +Elim (plus_sym m n). +Rewrite <- plus_assoc. +Reflexivity. +Qed. + +Lemma Th_mult_permute : (n,m,p:A) n*(m*p) == m*(n*p). +Intros. +Rewrite -> mult_assoc. +Elim (mult_sym m n). +Rewrite <- mult_assoc. +Reflexivity. +Qed. + +Hints Resolve Th_plus_permute Th_mult_permute. + +Lemma aux1 : (a:A) a + a == a -> a == 0. +Intros. +Generalize (opp_def a). +Pattern 1 a. +Rewrite <- H. +Rewrite <- plus_assoc. +Rewrite -> opp_def. +Elim plus_sym. +Rewrite plus_zero_left. +Trivial. +Qed. + +Lemma Th_mult_zero_left :(n:A) 0*n == 0. +Intros. +Apply aux1. +Rewrite <- distr_left. +Rewrite plus_zero_left. +Reflexivity. +Qed. +Hints Resolve Th_mult_zero_left. + +Lemma Th_mult_zero_left2 : (n:A) 0 == 0*n. +Symmetry; EAuto. Qed. + +Lemma aux2 : (x,y,z:A) x+y==0 -> x+z==0 -> y==z. +Intros. +Rewrite <- (plus_zero_left y). +Elim H0. +Elim plus_assoc. +Elim (plus_sym y z). +Rewrite -> plus_assoc. +Rewrite -> H. +Rewrite plus_zero_left. +Reflexivity. +Qed. + +Lemma Th_opp_mult_left : (x,y:A) -(x*y) == (-x)*y. +Intros. +Apply (aux2 1!x*y); +[ Apply opp_def +| Rewrite <- distr_left; + Rewrite -> opp_def; + Auto]. +Qed. +Hints Resolve Th_opp_mult_left. + +Lemma Th_opp_mult_left2 : (x,y:A) (-x)*y == -(x*y). +Symmetry; EAuto. Qed. + +Lemma Th_mult_zero_right : (n:A) n*0 == 0. +Intro; Elim mult_sym; EAuto. +Qed. + +Lemma Th_mult_zero_right2 : (n:A) 0 == n*0. +Intro; Elim mult_sym; EAuto. +Qed. + +Lemma Th_plus_zero_right :(n:A) n + 0 == n. +Intro; Rewrite plus_sym; EAuto. +Qed. + +Lemma Th_plus_zero_right2 :(n:A) n == n + 0. +Intro; Rewrite plus_sym; EAuto. +Qed. + +Lemma Th_mult_one_right : (n:A) n*1 == n. +Intro;Elim mult_sym; EAuto. +Qed. + +Lemma Th_mult_one_right2 : (n:A) n == n*1. +Intro;Elim mult_sym; EAuto. +Qed. + +Lemma Th_opp_mult_right : (x,y:A) -(x*y) == x*(-y). +Intros; Do 2 Rewrite -> (mult_sym x); Auto. +Qed. + +Lemma Th_opp_mult_right2 : (x,y:A) x*(-y) == -(x*y). +Intros; Do 2 Rewrite -> (mult_sym x); Auto. +Qed. + +Lemma Th_plus_opp_opp : (x,y:A) (-x) + (-y) == -(x+y). +Intros. +Apply (aux2 1! x + y); +[ Elim plus_assoc; + Rewrite -> (Th_plus_permute y (-x)); Rewrite -> plus_assoc; + Rewrite -> opp_def; Rewrite plus_zero_left; Auto +| Auto ]. +Qed. + +Lemma Th_plus_permute_opp: (n,m,p:A) (-m)+(n+p) == n+((-m)+p). +EAuto. Qed. + +Lemma Th_opp_opp : (n:A) -(-n) == n. +Intro; Apply (aux2 1! -n); + [ Auto | Elim plus_sym; Auto ]. +Qed. +Hints Resolve Th_opp_opp. + +Lemma Th_opp_opp2 : (n:A) n == -(-n). +Symmetry; EAuto. Qed. + +Lemma Th_mult_opp_opp : (x,y:A) (-x)*(-y) == x*y. +Intros; Rewrite <- Th_opp_mult_left; Rewrite <- Th_opp_mult_right; Auto. +Qed. + +Lemma Th_mult_opp_opp2 : (x,y:A) x*y == (-x)*(-y). +Symmetry; Apply Th_mult_opp_opp. Qed. + +Lemma Th_opp_zero : -0 == 0. +Rewrite <- (plus_zero_left (-0)). +Auto. Qed. + +Lemma Th_plus_reg_left : (n,m,p:A) n + m == n + p -> m==p. +Intros; Generalize (congr_eqT ? ? [z] (-n)+z ? ? H). +Repeat Rewrite plus_assoc. +Rewrite (plus_sym (-n) n). +Rewrite opp_def. +Repeat Rewrite Th_plus_zero_left; EAuto. +Qed. + +Lemma Th_plus_reg_right : (n,m,p:A) m + n == p + n -> m==p. +Intros. +EApply Th_plus_reg_left with n. +Rewrite (plus_sym n m). +Rewrite (plus_sym n p). +Auto. +Qed. + +Lemma Th_distr_right : (n,m,p:A) n*(m + p) == (n*m) + (n*p). +Intros. +Repeat Rewrite -> (mult_sym n). +EAuto. +Qed. + +Lemma Th_distr_right2 : (n,m,p:A) (n*m) + (n*p) == n*(m + p). +Symmetry; Apply Th_distr_right. +Qed. + +End Theory_of_rings. + +Hints Resolve Th_mult_zero_left Th_plus_reg_left : core. + +Unset Implicit Arguments. + +Definition Semi_Ring_Theory_of : + (A:Type)(Aplus : A -> A -> A)(Amult : A -> A -> A)(Aone : A) + (Azero : A)(Aopp : A -> A)(Aeq : A -> A -> bool) + (Ring_Theory Aplus Amult Aone Azero Aopp Aeq) + ->(Semi_Ring_Theory Aplus Amult Aone Azero Aeq). +Intros until 1; Case H. +Split; Intros; Simpl; EAuto. +Defined. + +(* Every ring can be viewed as a semi-ring : this property will be used + in Abstract_polynom. *) +Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory. + + +Section product_ring. + +End product_ring. + +Section power_ring. + +End power_ring. |