summaryrefslogtreecommitdiff
path: root/contrib7/fourier/Fourier_util.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib7/fourier/Fourier_util.v')
-rw-r--r--contrib7/fourier/Fourier_util.v236
1 files changed, 0 insertions, 236 deletions
diff --git a/contrib7/fourier/Fourier_util.v b/contrib7/fourier/Fourier_util.v
deleted file mode 100644
index be22e2ff..00000000
--- a/contrib7/fourier/Fourier_util.v
+++ /dev/null
@@ -1,236 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: Fourier_util.v,v 1.2.2.1 2004/07/16 19:30:17 herbelin Exp $ *)
-
-Require Export Rbase.
-Comments "Lemmas used by the tactic Fourier".
-
-Open Scope R_scope.
-
-Lemma Rfourier_lt:
- (x1, y1, a : R) (Rlt x1 y1) -> (Rlt R0 a) -> (Rlt (Rmult a x1) (Rmult a y1)).
-Intros; Apply Rlt_monotony; Assumption.
-Qed.
-
-Lemma Rfourier_le:
- (x1, y1, a : R) (Rle x1 y1) -> (Rlt R0 a) -> (Rle (Rmult a x1) (Rmult a y1)).
-Red.
-Intros.
-Case H; Auto with real.
-Qed.
-
-Lemma Rfourier_lt_lt:
- (x1, y1, x2, y2, a : R)
- (Rlt x1 y1) ->
- (Rlt x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Apply Rplus_lt.
-Try Exact H.
-Apply Rfourier_lt.
-Try Exact H0.
-Try Exact H1.
-Qed.
-
-Lemma Rfourier_lt_le:
- (x1, y1, x2, y2, a : R)
- (Rlt x1 y1) ->
- (Rle x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H0; Intros.
-Apply Rplus_lt.
-Try Exact H.
-Apply Rfourier_lt; Auto with real.
-Rewrite H2.
-Rewrite (Rplus_sym y1 (Rmult a y2)).
-Rewrite (Rplus_sym x1 (Rmult a y2)).
-Apply Rlt_compatibility.
-Try Exact H.
-Qed.
-
-Lemma Rfourier_le_lt:
- (x1, y1, x2, y2, a : R)
- (Rle x1 y1) ->
- (Rlt x2 y2) ->
- (Rlt R0 a) -> (Rlt (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H; Intros.
-Apply Rfourier_lt_le; Auto with real.
-Rewrite H2.
-Apply Rlt_compatibility.
-Apply Rfourier_lt; Auto with real.
-Qed.
-
-Lemma Rfourier_le_le:
- (x1, y1, x2, y2, a : R)
- (Rle x1 y1) ->
- (Rle x2 y2) ->
- (Rlt R0 a) -> (Rle (Rplus x1 (Rmult a x2)) (Rplus y1 (Rmult a y2))).
-Intros x1 y1 x2 y2 a H H0 H1; Try Assumption.
-Case H0; Intros.
-Red.
-Left; Try Assumption.
-Apply Rfourier_le_lt; Auto with real.
-Rewrite H2.
-Case H; Intros.
-Red.
-Left; Try Assumption.
-Rewrite (Rplus_sym x1 (Rmult a y2)).
-Rewrite (Rplus_sym y1 (Rmult a y2)).
-Apply Rlt_compatibility.
-Try Exact H3.
-Rewrite H3.
-Red.
-Right; Try Assumption.
-Auto with real.
-Qed.
-
-Lemma Rlt_zero_pos_plus1: (x : R) (Rlt R0 x) -> (Rlt R0 (Rplus R1 x)).
-Intros x H; Try Assumption.
-Rewrite Rplus_sym.
-Apply Rlt_r_plus_R1.
-Red; Auto with real.
-Qed.
-
-Lemma Rlt_mult_inv_pos:
- (x, y : R) (Rlt R0 x) -> (Rlt R0 y) -> (Rlt R0 (Rmult x (Rinv y))).
-Intros x y H H0; Try Assumption.
-Replace R0 with (Rmult x R0).
-Apply Rlt_monotony; Auto with real.
-Ring.
-Qed.
-
-Lemma Rlt_zero_1: (Rlt R0 R1).
-Exact Rlt_R0_R1.
-Qed.
-
-Lemma Rle_zero_pos_plus1: (x : R) (Rle R0 x) -> (Rle R0 (Rplus R1 x)).
-Intros x H; Try Assumption.
-Case H; Intros.
-Red.
-Left; Try Assumption.
-Apply Rlt_zero_pos_plus1; Auto with real.
-Rewrite <- H0.
-Replace (Rplus R1 R0) with R1.
-Red; Left.
-Exact Rlt_zero_1.
-Ring.
-Qed.
-
-Lemma Rle_mult_inv_pos:
- (x, y : R) (Rle R0 x) -> (Rlt R0 y) -> (Rle R0 (Rmult x (Rinv y))).
-Intros x y H H0; Try Assumption.
-Case H; Intros.
-Red; Left.
-Apply Rlt_mult_inv_pos; Auto with real.
-Rewrite <- H1.
-Red; Right; Ring.
-Qed.
-
-Lemma Rle_zero_1: (Rle R0 R1).
-Red; Left.
-Exact Rlt_zero_1.
-Qed.
-
-Lemma Rle_not_lt:
- (n, d : R) (Rle R0 (Rmult n (Rinv d))) -> ~ (Rlt R0 (Rmult (Ropp n) (Rinv d))).
-Intros n d H; Red; Intros H0; Try Exact H0.
-Generalize (Rle_not R0 (Rmult n (Rinv d))).
-Intros H1; Elim H1; Try Assumption.
-Replace (Rmult n (Rinv d)) with (Ropp (Ropp (Rmult n (Rinv d)))).
-Replace R0 with (Ropp (Ropp R0)).
-Replace (Ropp (Rmult n (Rinv d))) with (Rmult (Ropp n) (Rinv d)).
-Replace (Ropp R0) with R0.
-Red.
-Apply Rgt_Ropp.
-Red.
-Exact H0.
-Ring.
-Ring.
-Ring.
-Ring.
-Qed.
-
-Lemma Rnot_lt0: (x : R) ~ (Rlt R0 (Rmult R0 x)).
-Intros x; Try Assumption.
-Replace (Rmult R0 x) with R0.
-Apply Rlt_antirefl.
-Ring.
-Qed.
-
-Lemma Rlt_not_le:
- (n, d : R) (Rlt R0 (Rmult n (Rinv d))) -> ~ (Rle R0 (Rmult (Ropp n) (Rinv d))).
-Intros n d H; Try Assumption.
-Apply Rle_not.
-Replace R0 with (Ropp R0).
-Replace (Rmult (Ropp n) (Rinv d)) with (Ropp (Rmult n (Rinv d))).
-Apply Rlt_Ropp.
-Try Exact H.
-Ring.
-Ring.
-Qed.
-
-Lemma Rnot_lt_lt: (x, y : R) ~ (Rlt R0 (Rminus y x)) -> ~ (Rlt x y).
-Unfold not; Intros.
-Apply H.
-Apply Rlt_anti_compatibility with x.
-Replace (Rplus x R0) with x.
-Replace (Rplus x (Rminus y x)) with y.
-Try Exact H0.
-Ring.
-Ring.
-Qed.
-
-Lemma Rnot_le_le: (x, y : R) ~ (Rle R0 (Rminus y x)) -> ~ (Rle x y).
-Unfold not; Intros.
-Apply H.
-Case H0; Intros.
-Left.
-Apply Rlt_anti_compatibility with x.
-Replace (Rplus x R0) with x.
-Replace (Rplus x (Rminus y x)) with y.
-Try Exact H1.
-Ring.
-Ring.
-Right.
-Rewrite H1; Ring.
-Qed.
-
-Lemma Rfourier_gt_to_lt: (x, y : R) (Rgt y x) -> (Rlt x y).
-Unfold Rgt; Intros; Assumption.
-Qed.
-
-Lemma Rfourier_ge_to_le: (x, y : R) (Rge y x) -> (Rle x y).
-Intros x y; Exact (Rge_le y x).
-Qed.
-
-Lemma Rfourier_eqLR_to_le: (x, y : R) x == y -> (Rle x y).
-Exact eq_Rle.
-Qed.
-
-Lemma Rfourier_eqRL_to_le: (x, y : R) y == x -> (Rle x y).
-Exact eq_Rle_sym.
-Qed.
-
-Lemma Rfourier_not_ge_lt: (x, y : R) ((Rge x y) -> False) -> (Rlt x y).
-Exact not_Rge.
-Qed.
-
-Lemma Rfourier_not_gt_le: (x, y : R) ((Rgt x y) -> False) -> (Rle x y).
-Exact Rgt_not_le.
-Qed.
-
-Lemma Rfourier_not_le_gt: (x, y : R) ((Rle x y) -> False) -> (Rgt x y).
-Exact not_Rle.
-Qed.
-
-Lemma Rfourier_not_lt_ge: (x, y : R) ((Rlt x y) -> False) -> (Rge x y).
-Exact Rlt_not_ge.
-Qed.