diff options
Diffstat (limited to 'contrib7/correctness/ArrayPermut.v')
-rw-r--r-- | contrib7/correctness/ArrayPermut.v | 183 |
1 files changed, 183 insertions, 0 deletions
diff --git a/contrib7/correctness/ArrayPermut.v b/contrib7/correctness/ArrayPermut.v new file mode 100644 index 00000000..4a0025ca --- /dev/null +++ b/contrib7/correctness/ArrayPermut.v @@ -0,0 +1,183 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* Certification of Imperative Programs / Jean-Christophe Filliātre *) + +(* $Id: ArrayPermut.v,v 1.1.2.1 2004/07/16 19:30:16 herbelin Exp $ *) + +(****************************************************************************) +(* Permutations of elements in arrays *) +(* Definition and properties *) +(****************************************************************************) + +Require ProgInt. +Require Arrays. +Require Export Exchange. + +Require Omega. + +Set Implicit Arguments. + +(* We define "permut" as the smallest equivalence relation which contains + * transpositions i.e. exchange of two elements. + *) + +Inductive permut [n:Z; A:Set] : (array n A)->(array n A)->Prop := + exchange_is_permut : + (t,t':(array n A))(i,j:Z)(exchange t t' i j) -> (permut t t') + | permut_refl : + (t:(array n A))(permut t t) + | permut_sym : + (t,t':(array n A))(permut t t') -> (permut t' t) + | permut_trans : + (t,t',t'':(array n A)) + (permut t t') -> (permut t' t'') -> (permut t t''). + +Hints Resolve exchange_is_permut permut_refl permut_sym permut_trans : v62 datatypes. + +(* We also define the permutation on a segment of an array, "sub_permut", + * the other parts of the array being unchanged + * + * One again we define it as the smallest equivalence relation containing + * transpositions on the given segment. + *) + +Inductive sub_permut [n:Z; A:Set; g,d:Z] : (array n A)->(array n A)->Prop := + exchange_is_sub_permut : + (t,t':(array n A))(i,j:Z)`g <= i <= d` -> `g <= j <= d` + -> (exchange t t' i j) -> (sub_permut g d t t') + | sub_permut_refl : + (t:(array n A))(sub_permut g d t t) + | sub_permut_sym : + (t,t':(array n A))(sub_permut g d t t') -> (sub_permut g d t' t) + | sub_permut_trans : + (t,t',t'':(array n A)) + (sub_permut g d t t') -> (sub_permut g d t' t'') + -> (sub_permut g d t t''). + +Hints Resolve exchange_is_sub_permut sub_permut_refl sub_permut_sym sub_permut_trans + : v62 datatypes. + +(* To express that some parts of arrays are equal we introduce the + * property "array_id" which says that a segment is the same on two + * arrays. + *) + +Definition array_id := [n:Z][A:Set][t,t':(array n A)][g,d:Z] + (i:Z) `g <= i <= d` -> #t[i] = #t'[i]. + +(* array_id is an equivalence relation *) + +Lemma array_id_refl : + (n:Z)(A:Set)(t:(array n A))(g,d:Z) + (array_id t t g d). +Proof. +Unfold array_id. +Auto with datatypes. +Save. + +Hints Resolve array_id_refl : v62 datatypes. + +Lemma array_id_sym : + (n:Z)(A:Set)(t,t':(array n A))(g,d:Z) + (array_id t t' g d) + -> (array_id t' t g d). +Proof. +Unfold array_id. Intros. +Symmetry; Auto with datatypes. +Save. + +Hints Resolve array_id_sym : v62 datatypes. + +Lemma array_id_trans : + (n:Z)(A:Set)(t,t',t'':(array n A))(g,d:Z) + (array_id t t' g d) + -> (array_id t' t'' g d) + -> (array_id t t'' g d). +Proof. +Unfold array_id. Intros. +Apply trans_eq with y:=#t'[i]; Auto with datatypes. +Save. + +Hints Resolve array_id_trans: v62 datatypes. + +(* Outside the segment [g,d] the elements are equal *) + +Lemma sub_permut_id : + (n:Z)(A:Set)(t,t':(array n A))(g,d:Z) + (sub_permut g d t t') -> + (array_id t t' `0` `g-1`) /\ (array_id t t' `d+1` `n-1`). +Proof. +Intros n A t t' g d. Induction 1; Intros. +Elim H2; Intros. +Unfold array_id; Split; Intros. +Apply H7; Omega. +Apply H7; Omega. +Auto with datatypes. +Decompose [and] H1; Auto with datatypes. +Decompose [and] H1; Decompose [and] H3; EAuto with datatypes. +Save. + +Hints Resolve sub_permut_id. + +Lemma sub_permut_eq : + (n:Z)(A:Set)(t,t':(array n A))(g,d:Z) + (sub_permut g d t t') -> + (i:Z) (`0<=i<g` \/ `d<i<n`) -> #t[i]=#t'[i]. +Proof. +Intros n A t t' g d Htt' i Hi. +Elim (sub_permut_id Htt'). Unfold array_id. +Intros. +Elim Hi; [ Intro; Apply H; Omega | Intro; Apply H0; Omega ]. +Save. + +(* sub_permut is a particular case of permutation *) + +Lemma sub_permut_is_permut : + (n:Z)(A:Set)(t,t':(array n A))(g,d:Z) + (sub_permut g d t t') -> + (permut t t'). +Proof. +Intros n A t t' g d. Induction 1; Intros; EAuto with datatypes. +Save. + +Hints Resolve sub_permut_is_permut. + +(* If we have a sub-permutation on an empty segment, then we have a + * sub-permutation on any segment. + *) + +Lemma sub_permut_void : + (N:Z)(A:Set)(t,t':(array N A)) + (g,g',d,d':Z) `d < g` + -> (sub_permut g d t t') -> (sub_permut g' d' t t'). +Proof. +Intros N A t t' g g' d d' Hdg. +(Induction 1; Intros). +(Absurd `g <= d`; Omega). +Auto with datatypes. +Auto with datatypes. +EAuto with datatypes. +Save. + +(* A sub-permutation on a segment may be extended to any segment that + * contains the first one. + *) + +Lemma sub_permut_extension : + (N:Z)(A:Set)(t,t':(array N A)) + (g,g',d,d':Z) `g' <= g` -> `d <= d'` + -> (sub_permut g d t t') -> (sub_permut g' d' t t'). +Proof. +Intros N A t t' g g' d d' Hgg' Hdd'. +(Induction 1; Intros). +Apply exchange_is_sub_permut with i:=i j:=j; [ Omega | Omega | Assumption ]. +Auto with datatypes. +Auto with datatypes. +EAuto with datatypes. +Save. |