summaryrefslogtreecommitdiff
path: root/contrib/subtac/equations.ml4
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/subtac/equations.ml4')
-rw-r--r--contrib/subtac/equations.ml41149
1 files changed, 1149 insertions, 0 deletions
diff --git a/contrib/subtac/equations.ml4 b/contrib/subtac/equations.ml4
new file mode 100644
index 00000000..9d120019
--- /dev/null
+++ b/contrib/subtac/equations.ml4
@@ -0,0 +1,1149 @@
+(* -*- compile-command: "make -C ../.. bin/coqtop.byte" -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+(*i camlp4use: "pa_extend.cmo" i*)
+
+(* $Id: subtac_cases.ml 11198 2008-07-01 17:03:43Z msozeau $ *)
+
+open Cases
+open Util
+open Names
+open Nameops
+open Term
+open Termops
+open Declarations
+open Inductiveops
+open Environ
+open Sign
+open Reductionops
+open Typeops
+open Type_errors
+
+open Rawterm
+open Retyping
+open Pretype_errors
+open Evarutil
+open Evarconv
+open List
+open Libnames
+
+type pat =
+ | PRel of int
+ | PCstr of constructor * pat list
+ | PInac of constr
+
+let coq_inacc = lazy (Coqlib.gen_constant "equations" ["Program";"Equality"] "inaccessible_pattern")
+
+let mkInac env c =
+ mkApp (Lazy.force coq_inacc, [| Typing.type_of env Evd.empty c ; c |])
+
+let rec constr_of_pat ?(inacc=true) env = function
+ | PRel i -> mkRel i
+ | PCstr (c, p) ->
+ let c' = mkConstruct c in
+ mkApp (c', Array.of_list (constrs_of_pats ~inacc env p))
+ | PInac r ->
+ if inacc then try mkInac env r with _ -> r else r
+
+and constrs_of_pats ?(inacc=true) env l = map (constr_of_pat ~inacc env) l
+
+let rec pat_vars = function
+ | PRel i -> Intset.singleton i
+ | PCstr (c, p) -> pats_vars p
+ | PInac _ -> Intset.empty
+
+and pats_vars l =
+ fold_left (fun vars p ->
+ let pvars = pat_vars p in
+ let inter = Intset.inter pvars vars in
+ if inter = Intset.empty then
+ Intset.union pvars vars
+ else error ("Non-linear pattern: variable " ^
+ string_of_int (Intset.choose inter) ^ " appears twice"))
+ Intset.empty l
+
+let rec pats_of_constrs l = map pat_of_constr l
+and pat_of_constr c =
+ match kind_of_term c with
+ | Rel i -> PRel i
+ | App (f, [| a ; c |]) when eq_constr f (Lazy.force coq_inacc) ->
+ PInac c
+ | App (f, args) when isConstruct f ->
+ PCstr (destConstruct f, pats_of_constrs (Array.to_list args))
+ | Construct f -> PCstr (f, [])
+ | _ -> PInac c
+
+let inaccs_of_constrs l = map (fun x -> PInac x) l
+
+exception Conflict
+
+let rec pmatch p c =
+ match p, c with
+ | PRel i, t -> [i, t]
+ | PCstr (c, pl), PCstr (c', pl') when c = c' -> pmatches pl pl'
+ | PInac _, _ -> []
+ | _, PInac _ -> []
+ | _, _ -> raise Conflict
+
+and pmatches pl l =
+ match pl, l with
+ | [], [] -> []
+ | hd :: tl, hd' :: tl' ->
+ pmatch hd hd' @ pmatches tl tl'
+ | _ -> raise Conflict
+
+let pattern_matches pl l = try Some (pmatches pl l) with Conflict -> None
+
+let rec pinclude p c =
+ match p, c with
+ | PRel i, t -> true
+ | PCstr (c, pl), PCstr (c', pl') when c = c' -> pincludes pl pl'
+ | PInac _, _ -> true
+ | _, PInac _ -> true
+ | _, _ -> false
+
+and pincludes pl l =
+ match pl, l with
+ | [], [] -> true
+ | hd :: tl, hd' :: tl' ->
+ pinclude hd hd' && pincludes tl tl'
+ | _ -> false
+
+let pattern_includes pl l = pincludes pl l
+
+(** Specialize by a substitution. *)
+
+let subst_tele s = replace_vars (List.map (fun (id, _, t) -> id, t) s)
+
+let subst_rel_subst k s c =
+ let rec aux depth c =
+ match kind_of_term c with
+ | Rel n ->
+ let k = n - depth in
+ if k >= 0 then
+ try lift depth (snd (assoc k s))
+ with Not_found -> c
+ else c
+ | _ -> map_constr_with_binders succ aux depth c
+ in aux k c
+
+let subst_context s ctx =
+ let (_, ctx') = fold_right
+ (fun (id, b, t) (k, ctx') ->
+ (succ k, (id, Option.map (subst_rel_subst k s) b, subst_rel_subst k s t) :: ctx'))
+ ctx (0, [])
+ in ctx'
+
+let subst_rel_context k cstr ctx =
+ let (_, ctx') = fold_right
+ (fun (id, b, t) (k, ctx') ->
+ (succ k, (id, Option.map (substnl [cstr] k) b, substnl [cstr] k t) :: ctx'))
+ ctx (k, [])
+ in ctx'
+
+let rec lift_pat n k p =
+ match p with
+ | PRel i ->
+ if i >= k then PRel (i + n)
+ else p
+ | PCstr(c, pl) -> PCstr (c, lift_pats n k pl)
+ | PInac r -> PInac (liftn n k r)
+
+and lift_pats n k = map (lift_pat n k)
+
+let rec subst_pat env k t p =
+ match p with
+ | PRel i ->
+ if i = k then t
+ else if i > k then PRel (pred i)
+ else p
+ | PCstr(c, pl) ->
+ PCstr (c, subst_pats env k t pl)
+ | PInac r -> PInac (substnl [constr_of_pat ~inacc:false env t] (pred k) r)
+
+and subst_pats env k t = map (subst_pat env k t)
+
+let rec specialize s p =
+ match p with
+ | PRel i ->
+ if mem_assoc i s then
+ let b, t = assoc i s in
+ if b then PInac t
+ else PRel (destRel t)
+ else p
+ | PCstr(c, pl) ->
+ PCstr (c, specialize_pats s pl)
+ | PInac r -> PInac (specialize_constr s r)
+
+and specialize_constr s c = subst_rel_subst 0 s c
+and specialize_pats s = map (specialize s)
+
+let specialize_patterns = function
+ | [] -> fun p -> p
+ | s -> specialize_pats s
+
+let specialize_rel_context s ctx =
+ snd (fold_right (fun (n, b, t) (k, ctx) ->
+ (succ k, (n, Option.map (subst_rel_subst k s) b, subst_rel_subst k s t) :: ctx))
+ ctx (0, []))
+
+let lift_contextn n k sign =
+ let rec liftrec k = function
+ | (na,c,t)::sign ->
+ (na,Option.map (liftn n k) c,liftn n k t)::(liftrec (k-1) sign)
+ | [] -> []
+ in
+ liftrec (rel_context_length sign + k) sign
+
+type program =
+ signature * clause list
+
+and signature = identifier * rel_context * constr
+
+and clause = lhs * (constr, int) rhs
+
+and lhs = rel_context * identifier * pat list
+
+and ('a, 'b) rhs =
+ | Program of 'a
+ | Empty of 'b
+
+type splitting =
+ | Compute of clause
+ | Split of lhs * int * inductive_family *
+ unification_result array * splitting option array
+
+and unification_result =
+ rel_context * int * constr * pat * substitution option
+
+and substitution = (int * (bool * constr)) list
+
+type problem = identifier * lhs
+
+let rels_of_tele tele = rel_list 0 (List.length tele)
+
+let patvars_of_tele tele = map (fun c -> PRel (destRel c)) (rels_of_tele tele)
+
+let split_solves split prob =
+ match split with
+ | Compute (lhs, rhs) -> lhs = prob
+ | Split (lhs, id, indf, us, ls) -> lhs = prob
+
+let ids_of_constr c =
+ let rec aux vars c =
+ match kind_of_term c with
+ | Var id -> Idset.add id vars
+ | _ -> fold_constr aux vars c
+ in aux Idset.empty c
+
+let ids_of_constrs =
+ fold_left (fun acc x -> Idset.union (ids_of_constr x) acc) Idset.empty
+
+let idset_of_list =
+ fold_left (fun s x -> Idset.add x s) Idset.empty
+
+let intset_of_list =
+ fold_left (fun s x -> Intset.add x s) Intset.empty
+
+let solves split (delta, id, pats as prob) =
+ split_solves split prob &&
+ Intset.equal (pats_vars pats) (intset_of_list (map destRel (rels_of_tele delta)))
+
+let check_judgment ctx c t =
+ ignore(Typing.check (push_rel_context ctx (Global.env ())) Evd.empty c t); true
+
+let check_context env ctx =
+ fold_right
+ (fun (_, _, t as decl) env ->
+ ignore(Typing.sort_of env Evd.empty t); push_rel decl env)
+ ctx env
+
+let split_context n c =
+ let after, before = list_chop n c in
+ match before with
+ | hd :: tl -> after, hd, tl
+ | [] -> raise (Invalid_argument "split_context")
+
+let split_tele n (ctx : rel_context) =
+ let rec aux after n l =
+ match n, l with
+ | 0, decl :: before -> before, decl, List.rev after
+ | n, decl :: before -> aux (decl :: after) (pred n) before
+ | _ -> raise (Invalid_argument "split_tele")
+ in aux [] n ctx
+
+let rec add_var_subst env subst n c =
+ if mem_assoc n subst then
+ let t = assoc n subst in
+ if eq_constr t c then subst
+ else unify env subst t c
+ else
+ let rel = mkRel n in
+ if rel = c then subst
+ else if dependent rel c then raise Conflict
+ else (n, c) :: subst
+
+and unify env subst x y =
+ match kind_of_term x, kind_of_term y with
+ | Rel n, _ -> add_var_subst env subst n y
+ | _, Rel n -> add_var_subst env subst n x
+ | App (c, l), App (c', l') when eq_constr c c' ->
+ unify_constrs env subst (Array.to_list l) (Array.to_list l')
+ | _, _ -> if eq_constr x y then subst else raise Conflict
+
+and unify_constrs (env : env) subst l l' =
+ if List.length l = List.length l' then
+ fold_left2 (unify env) subst l l'
+ else raise Conflict
+
+let fold_rel_context_with_binders f ctx init =
+ snd (List.fold_right (fun decl (depth, acc) ->
+ (succ depth, f depth decl acc)) ctx (0, init))
+
+let dependent_rel_context (ctx : rel_context) k =
+ fold_rel_context_with_binders
+ (fun depth (n,b,t) acc ->
+ let r = mkRel (depth + k) in
+ acc || dependent r t ||
+ (match b with
+ | Some b -> dependent r b
+ | None -> false))
+ ctx false
+
+let liftn_between n k p c =
+ let rec aux depth c = match kind_of_term c with
+ | Rel i ->
+ if i <= depth then c
+ else if i-depth > p then c
+ else mkRel (i - n)
+ | _ -> map_constr_with_binders succ aux depth c
+ in aux k c
+
+let liftn_rel_context n k sign =
+ let rec liftrec k = function
+ | (na,c,t)::sign ->
+ (na,Option.map (liftn n k) c,liftn n k t)::(liftrec (k-1) sign)
+ | [] -> []
+ in
+ liftrec (k + rel_context_length sign) sign
+
+let substnl_rel_context n l =
+ map_rel_context_with_binders (fun k -> substnl l (n+k-1))
+
+let reduce_rel_context (ctx : rel_context) (subst : (int * (bool * constr)) list) =
+ let _, s, ctx' =
+ fold_left (fun (k, s, ctx') (n, b, t as decl) ->
+ match b with
+ | None -> (succ k, mkRel k :: s, ctx' @ [decl])
+ | Some t -> (k, lift (pred k) t :: map (substnl [t] (pred k)) s, subst_rel_context 0 t ctx'))
+ (1, [], []) ctx
+ in
+ let s = rev s in
+ let s' = map (fun (korig, (b, knew)) -> korig, (b, substl s knew)) subst in
+ s', ctx'
+
+(* Compute the transitive closure of the dependency relation for a term in a context *)
+
+let rec dependencies_of_rel ctx k =
+ let (n,b,t) = nth ctx (pred k) in
+ let b = Option.map (lift k) b and t = lift k t in
+ let bdeps = match b with Some b -> dependencies_of_term ctx b | None -> Intset.empty in
+ Intset.union (Intset.singleton k) (Intset.union bdeps (dependencies_of_term ctx t))
+
+and dependencies_of_term ctx t =
+ let rels = free_rels t in
+ Intset.fold (fun i -> Intset.union (dependencies_of_rel ctx i)) rels Intset.empty
+
+let subst_telescope k cstr ctx =
+ let (_, ctx') = fold_left
+ (fun (k, ctx') (id, b, t) ->
+ (succ k, (id, Option.map (substnl [cstr] k) b, substnl [cstr] k t) :: ctx'))
+ (k, []) ctx
+ in rev ctx'
+
+let lift_telescope n k sign =
+ let rec liftrec k = function
+ | (na,c,t)::sign ->
+ (na,Option.map (liftn n k) c,liftn n k t)::(liftrec (succ k) sign)
+ | [] -> []
+ in liftrec k sign
+
+type ('a,'b) either = Inl of 'a | Inr of 'b
+
+let strengthen (ctx : rel_context) (t : constr) : rel_context * rel_context * (int * (int, int) either) list =
+ let rels = dependencies_of_term ctx t in
+ let len = length ctx in
+ let nbdeps = Intset.cardinal rels in
+ let lifting = len - nbdeps in (* Number of variables not linked to t *)
+ let rec aux k n acc m rest s = function
+ | decl :: ctx' ->
+ if Intset.mem k rels then
+ let rest' = subst_telescope 0 (mkRel (nbdeps + lifting - pred m)) rest in
+ aux (succ k) (succ n) (decl :: acc) m rest' ((k, Inl n) :: s) ctx'
+ else aux (succ k) n (subst_telescope 0 mkProp acc) (succ m) (decl :: rest) ((k, Inr m) :: s) ctx'
+ | [] -> rev acc, rev rest, s
+ in aux 1 1 [] 1 [] [] ctx
+
+let merge_subst (ctx', rest, s) =
+ let lenrest = length rest in
+ map (function (k, Inl x) -> (k, (false, mkRel (x + lenrest))) | (k, Inr x) -> k, (false, mkRel x)) s
+
+(* let simplify_subst s = *)
+(* fold_left (fun s (k, t) -> *)
+(* match kind_of_term t with *)
+(* | Rel n when n = k -> s *)
+(* | _ -> (k, t) :: s) *)
+(* [] s *)
+
+let compose_subst s' s =
+ map (fun (k, (b, t)) -> (k, (b, specialize_constr s' t))) s
+
+let substitute_in_ctx n c ctx =
+ let rec aux k after = function
+ | [] -> []
+ | (name, b, t as decl) :: before ->
+ if k = n then rev after @ (name, Some c, t) :: before
+ else aux (succ k) (decl :: after) before
+ in aux 1 [] ctx
+
+let rec reduce_subst (ctx : rel_context) (substacc : (int * (bool * constr)) list) (cursubst : (int * (bool * constr)) list) =
+ match cursubst with
+ | [] -> ctx, substacc
+ | (k, (b, t)) :: rest ->
+ if t = mkRel k then reduce_subst ctx substacc rest
+ else if noccur_between 1 k t then
+ (* The term to substitute refers only to previous variables. *)
+ let t' = lift (-k) t in
+ let ctx' = substitute_in_ctx k t' ctx in
+ reduce_subst ctx' substacc rest
+ else (* The term refers to variables declared after [k], so we have
+ to move these dependencies before [k]. *)
+ let (minctx, ctxrest, subst as str) = strengthen ctx t in
+ match assoc k subst with
+ | Inl _ -> error "Occurs check in substituted_context"
+ | Inr k' ->
+ let s = merge_subst str in
+ let ctx' = ctxrest @ minctx in
+ let rest' =
+ let substsubst (k', (b, t')) =
+ match kind_of_term (snd (assoc k' s)) with
+ | Rel k'' -> (k'', (b, specialize_constr s t'))
+ | _ -> error "Non-variable substituted for variable by strenghtening"
+ in map substsubst ((k, (b, t)) :: rest)
+ in
+ reduce_subst ctx' (compose_subst s substacc) rest' (* (compose_subst s ((k, (b, t)) :: rest)) *)
+
+
+let substituted_context (subst : (int * constr) list) (ctx : rel_context) =
+ let _, subst =
+ fold_left (fun (k, s) _ ->
+ try let t = assoc k subst in
+ (succ k, (k, (true, t)) :: s)
+ with Not_found ->
+ (succ k, ((k, (false, mkRel k)) :: s)))
+ (1, []) ctx
+ in
+ let ctx', subst' = reduce_subst ctx subst subst in
+ reduce_rel_context ctx' subst'
+
+let unify_type before ty =
+ try
+ let envb = push_rel_context before (Global.env()) in
+ let IndType (indf, args) = find_rectype envb Evd.empty ty in
+ let ind, params = dest_ind_family indf in
+ let vs = map (Reduction.whd_betadeltaiota envb) args in
+ let cstrs = Inductiveops.arities_of_constructors envb ind in
+ let cstrs =
+ Array.mapi (fun i ty ->
+ let ty = prod_applist ty params in
+ let ctx, ty = decompose_prod_assum ty in
+ let ctx, ids =
+ let ids = ids_of_rel_context ctx in
+ fold_right (fun (n, b, t as decl) (acc, ids) ->
+ match n with Name _ -> (decl :: acc), ids
+ | Anonymous -> let id = next_name_away Anonymous ids in
+ ((Name id, b, t) :: acc), (id :: ids))
+ ctx ([], ids)
+ in
+ let env' = push_rel_context ctx (Global.env ()) in
+ let IndType (indf, args) = find_rectype env' Evd.empty ty in
+ let ind, params = dest_ind_family indf in
+ let constr = applist (mkConstruct (ind, succ i), params @ rels_of_tele ctx) in
+ let constrpat = PCstr ((ind, succ i), inaccs_of_constrs params @ patvars_of_tele ctx) in
+ env', ctx, constr, constrpat, (* params @ *)args)
+ cstrs
+ in
+ let res =
+ Array.map (fun (env', ctxc, c, cpat, us) ->
+ let _beforelen = length before and ctxclen = length ctxc in
+ let fullctx = ctxc @ before in
+ try
+ let fullenv = push_rel_context fullctx (Global.env ()) in
+ let vs' = map (lift ctxclen) vs in
+ let subst = unify_constrs fullenv [] vs' us in
+ let subst', ctx' = substituted_context subst fullctx in
+ (ctx', ctxclen, c, cpat, Some subst')
+ with Conflict ->
+ (fullctx, ctxclen, c, cpat, None)) cstrs
+ in Some (res, indf)
+ with Not_found -> (* not an inductive type *)
+ None
+
+let rec id_of_rel n l =
+ match n, l with
+ | 0, (Name id, _, _) :: tl -> id
+ | n, _ :: tl -> id_of_rel (pred n) tl
+ | _, _ -> raise (Invalid_argument "id_of_rel")
+
+let constrs_of_lhs ?(inacc=true) env (ctx, _, pats) =
+ constrs_of_pats ~inacc (push_rel_context ctx env) pats
+
+let rec valid_splitting (f, delta, t, pats) tree =
+ split_solves tree (delta, f, pats) &&
+ valid_splitting_tree (f, delta, t) tree
+
+and valid_splitting_tree (f, delta, t) = function
+ | Compute (lhs, Program rhs) ->
+ let subst = constrs_of_lhs ~inacc:false (Global.env ()) lhs in
+ ignore(check_judgment (pi1 lhs) rhs (substl subst t)); true
+
+ | Compute ((ctx, id, lhs), Empty split) ->
+ let before, (x, _, ty), after = split_context split ctx in
+ let unify =
+ match unify_type before ty with
+ | Some (unify, _) -> unify
+ | None -> assert false
+ in
+ array_for_all (fun (_, _, _, _, x) -> x = None) unify
+
+ | Split ((ctx, id, lhs), rel, indf, unifs, ls) ->
+ let before, (id, _, ty), after = split_tele (pred rel) ctx in
+ let unify, indf' = Option.get (unify_type before ty) in
+ assert(indf = indf');
+ if not (array_exists (fun (_, _, _, _, x) -> x <> None) unify) then false
+ else
+ let ok, splits =
+ Array.fold_left (fun (ok, splits as acc) (ctx', ctxlen, cstr, cstrpat, subst) ->
+ match subst with
+ | None -> acc
+ | Some subst ->
+(* let env' = push_rel_context ctx' (Global.env ()) in *)
+(* let ctx_correct = *)
+(* ignore(check_context env' (subst_context subst ctxc)); *)
+(* ignore(check_context env' (subst_context subst before)); *)
+(* true *)
+(* in *)
+ let newdelta =
+ subst_context subst (subst_rel_context 0 cstr
+ (lift_contextn ctxlen 0 after)) @ before in
+ let liftpats = lift_pats ctxlen rel lhs in
+ let newpats = specialize_patterns subst (subst_pats (Global.env ()) rel cstrpat liftpats) in
+ (ok, (f, newdelta, newpats) :: splits))
+ (true, []) unify
+ in
+ let subst = List.map2 (fun (id, _, _) x -> out_name id, x) delta
+ (constrs_of_pats ~inacc:false (Global.env ()) lhs)
+ in
+ let t' = replace_vars subst t in
+ ok && for_all
+ (fun (f, delta', pats') ->
+ array_exists (function None -> false | Some tree -> valid_splitting (f, delta', t', pats') tree) ls) splits
+
+let valid_tree (f, delta, t) tree =
+ valid_splitting (f, delta, t, patvars_of_tele delta) tree
+
+let is_constructor c =
+ match kind_of_term (fst (decompose_app c)) with
+ | Construct _ -> true
+ | _ -> false
+
+let find_split (_, _, curpats : lhs) (_, _, patcs : lhs) =
+ let rec find_split_pat curpat patc =
+ match patc with
+ | PRel _ -> None
+ | PCstr (f, args) ->
+ (match curpat with
+ | PCstr (f', args') when f = f' -> (* Already split at this level, continue *)
+ find_split_pats args' args
+ | PRel i -> (* Split on i *) Some i
+ | PInac c when isRel c -> Some (destRel c)
+ | _ -> None)
+ | PInac _ -> None
+
+ and find_split_pats curpats patcs =
+ assert(List.length curpats = List.length patcs);
+ fold_left2 (fun acc ->
+ match acc with
+ | None -> find_split_pat | _ -> fun _ _ -> acc)
+ None curpats patcs
+ in find_split_pats curpats patcs
+
+open Pp
+open Termops
+
+let pr_constr_pat env c =
+ let pr = print_constr_env env c in
+ match kind_of_term c with
+ | App _ -> str "(" ++ pr ++ str ")"
+ | _ -> pr
+
+let pr_pat env c =
+ try
+ let patc = constr_of_pat env c in
+ try pr_constr_pat env patc with _ -> str"pr_constr_pat raised an exception"
+ with _ -> str"constr_of_pat raised an exception"
+
+let pr_context env c =
+ let pr_decl (id,b,_) =
+ let bstr = match b with Some b -> str ":=" ++ spc () ++ print_constr_env env b | None -> mt() in
+ let idstr = match id with Name id -> pr_id id | Anonymous -> str"_" in
+ idstr ++ bstr
+ in
+ prlist_with_sep pr_spc pr_decl (List.rev c)
+(* Printer.pr_rel_context env c *)
+
+let pr_lhs env (delta, f, patcs) =
+ let env = push_rel_context delta env in
+ let ctx = pr_context env delta in
+ (if delta = [] then ctx else str "[" ++ ctx ++ str "]" ++ spc ())
+ ++ pr_id f ++ spc () ++ prlist_with_sep spc (pr_pat env) patcs
+
+let pr_rhs env = function
+ | Empty var -> spc () ++ str ":=!" ++ spc () ++ print_constr_env env (mkRel var)
+ | Program rhs -> spc () ++ str ":=" ++ spc () ++ print_constr_env env rhs
+
+let pr_clause env (lhs, rhs) =
+ pr_lhs env lhs ++
+ (let env' = push_rel_context (pi1 lhs) env in
+ pr_rhs env' rhs)
+
+(* let pr_splitting env = function *)
+(* | Compute cl -> str "Compute " ++ pr_clause env cl *)
+(* | Split (lhs, n, indf, results, splits) -> *)
+
+(* let pr_unification_result (ctx, n, c, pat, subst) = *)
+
+(* unification_result array * splitting option array *)
+
+let pr_clauses env =
+ prlist_with_sep fnl (pr_clause env)
+
+let lhs_includes (delta, _, patcs : lhs) (delta', _, patcs' : lhs) =
+ pattern_includes patcs patcs'
+
+let lhs_matches (delta, _, patcs : lhs) (delta', _, patcs' : lhs) =
+ pattern_matches patcs patcs'
+
+let rec split_on env var (delta, f, curpats as lhs) clauses =
+ let before, (id, _, ty), after = split_tele (pred var) delta in
+ let unify, indf =
+ match unify_type before ty with
+ | Some r -> r
+ | None -> assert false (* We decided... so it better be inductive *)
+ in
+ let clauses = ref clauses in
+ let splits =
+ Array.map (fun (ctx', ctxlen, cstr, cstrpat, s) ->
+ match s with
+ | None -> None
+ | Some s ->
+ (* ctx' |- s cstr, s cstrpat *)
+ let newdelta =
+ subst_context s (subst_rel_context 0 cstr
+ (lift_contextn ctxlen 1 after)) @ ctx' in
+ let liftpats =
+ (* delta |- curpats -> before; ctxc; id; after |- liftpats *)
+ lift_pats ctxlen (succ var) curpats
+ in
+ let liftpat = (* before; ctxc |- cstrpat -> before; ctxc; after |- liftpat *)
+ lift_pat (pred var) 1 cstrpat
+ in
+ let substpat = (* before; ctxc; after |- liftpats[id:=liftpat] *)
+ subst_pats env var liftpat liftpats
+ in
+ let lifts = (* before; ctxc |- s : newdelta ->
+ before; ctxc; after |- lifts : newdelta ; after *)
+ map (fun (k,(b,x)) -> (pred var + k, (b, lift (pred var) x))) s
+ in
+ let newpats = specialize_patterns lifts substpat in
+ let newlhs = (newdelta, f, newpats) in
+ let matching, rest =
+ fold_right (fun (lhs, rhs as clause) (matching, rest) ->
+ if lhs_includes newlhs lhs then
+ (clause :: matching, rest)
+ else (matching, clause :: rest))
+ !clauses ([], [])
+ in
+ clauses := rest;
+ if matching = [] then (
+ (* Try finding a splittable variable *)
+ let (id, _) =
+ fold_right (fun (id, _, ty as decl) (accid, ctx) ->
+ match accid with
+ | Some _ -> (accid, ctx)
+ | None ->
+ match unify_type ctx ty with
+ | Some (unify, indf) ->
+ if array_for_all (fun (_, _, _, _, x) -> x = None) unify then
+ (Some id, ctx)
+ else (None, decl :: ctx)
+ | None -> (None, decl :: ctx))
+ newdelta (None, [])
+ in
+ match id with
+ | None ->
+ errorlabstrm "deppat"
+ (str "Non-exhaustive pattern-matching, no clause found for:" ++ fnl () ++
+ pr_lhs env newlhs)
+ | Some id ->
+ Some (Compute (newlhs, Empty (fst (lookup_rel_id (out_name id) newdelta))))
+ ) else (
+ let splitting = make_split_aux env newlhs matching in
+ Some splitting))
+ unify
+ in
+(* if !clauses <> [] then *)
+(* errorlabstrm "deppat" *)
+(* (str "Impossible clauses:" ++ fnl () ++ pr_clauses env !clauses); *)
+ Split (lhs, var, indf, unify, splits)
+
+and make_split_aux env lhs clauses =
+ let split =
+ fold_left (fun acc (lhs', rhs) ->
+ match acc with
+ | None -> find_split lhs lhs'
+ | _ -> acc) None clauses
+ in
+ match split with
+ | Some var -> split_on env var lhs clauses
+ | None ->
+ (match clauses with
+ | [] -> error "No clauses left"
+ | [(lhs', rhs)] ->
+ (* No need to split anymore, fix the environments so that they are correctly aligned. *)
+ (match lhs_matches lhs' lhs with
+ | Some s ->
+ let s = map (fun (x, p) -> x, (true, constr_of_pat ~inacc:false env p)) s in
+ let rhs' = match rhs with
+ | Program c -> Program (specialize_constr s c)
+ | Empty i -> Empty (destRel (snd (assoc i s)))
+ in Compute ((pi1 lhs, pi2 lhs, specialize_patterns s (pi3 lhs')), rhs')
+ | None -> anomaly "Non-matching clauses at a leaf of the splitting tree")
+ | _ ->
+ errorlabstrm "make_split_aux"
+ (str "Overlapping clauses:" ++ fnl () ++ pr_clauses env clauses))
+
+let make_split env (f, delta, t) clauses =
+ make_split_aux env (delta, f, patvars_of_tele delta) clauses
+
+open Evd
+open Evarutil
+
+let lift_substitution n s = map (fun (k, x) -> (k + n, x)) s
+let map_substitution s t = map (subst_rel_subst 0 s) t
+
+let term_of_tree status isevar env (i, delta, ty) ann tree =
+(* let envrec = match ann with *)
+(* | None -> [] *)
+(* | Some (loc, i) -> *)
+(* let (n, t) = lookup_rel_id i delta in *)
+(* let t' = lift n t in *)
+
+
+(* in *)
+ let rec aux = function
+ | Compute ((ctx, _, pats as lhs), Program rhs) ->
+ let ty' = substl (rev (constrs_of_lhs ~inacc:false env lhs)) ty in
+ let body = it_mkLambda_or_LetIn rhs ctx and typ = it_mkProd_or_LetIn ty' ctx in
+ mkCast(body, DEFAULTcast, typ), typ
+
+ | Compute ((ctx, _, pats as lhs), Empty split) ->
+ let ty' = substl (rev (constrs_of_lhs ~inacc:false env lhs)) ty in
+ let split = (Name (id_of_string "split"),
+ Some (Class_tactics.coq_nat_of_int (1 + (length ctx - split))),
+ Lazy.force Class_tactics.coq_nat)
+ in
+ let ty' = it_mkProd_or_LetIn ty' ctx in
+ let let_ty' = mkLambda_or_LetIn split (lift 1 ty') in
+ let term = e_new_evar isevar env ~src:(dummy_loc, QuestionMark (Define true)) let_ty' in
+ term, ty'
+
+ | Split ((ctx, _, pats as lhs), rel, indf, unif, sp) ->
+ let before, decl, after = split_tele (pred rel) ctx in
+ let ty' = substl (rev (constrs_of_lhs ~inacc:false env lhs)) ty in
+ let branches =
+ array_map2 (fun (ctx', ctxlen, cstr, cstrpat, subst) split ->
+ match split with
+ | Some s -> aux s
+ | None ->
+ (* dead code, inversion will find a proof of False by splitting on the rel'th hyp *)
+ Class_tactics.coq_nat_of_int rel, Lazy.force Class_tactics.coq_nat)
+ unif sp
+ in
+ let branches_ctx =
+ Array.mapi (fun i (br, brt) -> (id_of_string ("m_" ^ string_of_int i), Some br, brt))
+ branches
+ in
+ let n, branches_lets =
+ Array.fold_left (fun (n, lets) (id, b, t) ->
+ (succ n, (Name id, Option.map (lift n) b, lift n t) :: lets))
+ (0, []) branches_ctx
+ in
+ let liftctx = lift_contextn (Array.length branches) 0 ctx in
+ let case =
+ let ty = it_mkProd_or_LetIn ty' liftctx in
+ let ty = it_mkLambda_or_LetIn ty branches_lets in
+ let nbbranches = (Name (id_of_string "branches"),
+ Some (Class_tactics.coq_nat_of_int (length branches_lets)),
+ Lazy.force Class_tactics.coq_nat)
+ in
+ let nbdiscr = (Name (id_of_string "target"),
+ Some (Class_tactics.coq_nat_of_int (length before)),
+ Lazy.force Class_tactics.coq_nat)
+ in
+ let ty = it_mkLambda_or_LetIn (lift 2 ty) [nbbranches;nbdiscr] in
+ let term = e_new_evar isevar env ~src:(dummy_loc, QuestionMark status) ty in
+ term
+ in
+ let casetyp = it_mkProd_or_LetIn ty' ctx in
+ mkCast(case, DEFAULTcast, casetyp), casetyp
+
+ in aux tree
+
+open Topconstr
+open Constrintern
+open Decl_kinds
+
+type equation = constr_expr * (constr_expr, identifier located) rhs
+
+let locate_reference qid =
+ match Nametab.extended_locate qid with
+ | TrueGlobal ref -> true
+ | SyntacticDef kn -> true
+
+let is_global id =
+ try
+ locate_reference (make_short_qualid id)
+ with Not_found ->
+ false
+
+let is_freevar ids env x =
+ try
+ if Idset.mem x ids then false
+ else
+ try ignore(Environ.lookup_named x env) ; false
+ with _ -> not (is_global x)
+ with _ -> true
+
+let ids_of_patc c ?(bound=Idset.empty) l =
+ let found id bdvars l =
+ if not (is_freevar bdvars (Global.env ()) (snd id)) then l
+ else if List.exists (fun (_, id') -> id' = snd id) l then l
+ else id :: l
+ in
+ let rec aux bdvars l c = match c with
+ | CRef (Ident lid) -> found lid bdvars l
+ | CNotation (_, "{ _ : _ | _ }", ((CRef (Ident (_, id))) :: _, _)) when not (Idset.mem id bdvars) ->
+ fold_constr_expr_with_binders (fun a l -> Idset.add a l) aux (Idset.add id bdvars) l c
+ | c -> fold_constr_expr_with_binders (fun a l -> Idset.add a l) aux bdvars l c
+ in aux bound l c
+
+let interp_pats i isevar env impls pat sign recu =
+ let bound = Idset.singleton i in
+ let vars = ids_of_patc pat ~bound [] in
+ let varsctx, env' =
+ fold_right (fun (loc, id) (ctx, env) ->
+ let decl =
+ let ty = e_new_evar isevar env ~src:(loc, BinderType (Name id)) (new_Type ()) in
+ (Name id, None, ty)
+ in
+ decl::ctx, push_rel decl env)
+ vars ([], env)
+ in
+ let pats =
+ let patenv = match recu with None -> env' | Some ty -> push_named (i, None, ty) env' in
+ let patt, _ = interp_constr_evars_impls ~evdref:isevar patenv ~impls:([],[]) pat in
+ match kind_of_term patt with
+ | App (m, args) ->
+ if not (eq_constr m (mkRel (succ (length varsctx)))) then
+ user_err_loc (constr_loc pat, "interp_pats",
+ str "Expecting a pattern for " ++ pr_id i)
+ else Array.to_list args
+ | _ -> user_err_loc (constr_loc pat, "interp_pats",
+ str "Error parsing pattern: unnexpected left-hand side")
+ in
+ isevar := nf_evar_defs !isevar;
+ (nf_rel_context_evar (Evd.evars_of !isevar) varsctx,
+ nf_env_evar (Evd.evars_of !isevar) env',
+ rev_map (nf_evar (Evd.evars_of !isevar)) pats)
+
+let interp_eqn i isevar env impls sign arity recu (pats, rhs) =
+ let ctx, env', patcs = interp_pats i isevar env impls pats sign recu in
+ let rhs' = match rhs with
+ | Program p ->
+ let ty = nf_isevar !isevar (substl patcs arity) in
+ Program (interp_casted_constr_evars isevar env' ~impls p ty)
+ | Empty lid -> Empty (fst (lookup_rel_id (snd lid) ctx))
+ in ((ctx, i, pats_of_constrs (rev patcs)), rhs')
+
+open Entries
+
+open Tacmach
+open Tacexpr
+open Tactics
+open Tacticals
+
+let contrib_tactics_path =
+ make_dirpath (List.map id_of_string ["Equality";"Program";"Coq"])
+
+let tactics_tac s =
+ make_kn (MPfile contrib_tactics_path) (make_dirpath []) (mk_label s)
+
+let equations_tac = lazy
+ (Tacinterp.eval_tactic
+ (TacArg(TacCall(dummy_loc,
+ ArgArg(dummy_loc, tactics_tac "equations"), []))))
+
+let define_by_eqs with_comp i (l,ann) t nt eqs =
+ let env = Global.env () in
+ let isevar = ref (create_evar_defs Evd.empty) in
+ let (env', sign), impls = interp_context_evars isevar env l in
+ let arity = interp_type_evars isevar env' t in
+ let sign = nf_rel_context_evar (Evd.evars_of !isevar) sign in
+ let arity = nf_evar (Evd.evars_of !isevar) arity in
+ let arity =
+ if with_comp then
+ let compid = add_suffix i "_comp" in
+ let ce =
+ { const_entry_body = it_mkLambda_or_LetIn arity sign;
+ const_entry_type = None;
+ const_entry_opaque = false;
+ const_entry_boxed = false}
+ in
+ let c =
+ Declare.declare_constant compid (DefinitionEntry ce, IsDefinition Definition)
+ in mkApp (mkConst c, rel_vect 0 (length sign))
+ else arity
+ in
+ let env = Global.env () in
+ let ty = it_mkProd_or_LetIn arity sign in
+ let data = Command.compute_interning_datas env Constrintern.Recursive [] [i] [ty] [impls] in
+ let fixdecls = [(Name i, None, ty)] in
+ let fixenv = push_rel_context fixdecls env in
+ let equations =
+ States.with_heavy_rollback (fun () ->
+ Option.iter (Command.declare_interning_data data) nt;
+ map (interp_eqn i isevar fixenv data sign arity None) eqs) ()
+ in
+ let sign = nf_rel_context_evar (Evd.evars_of !isevar) sign in
+ let arity = nf_evar (Evd.evars_of !isevar) arity in
+ let prob = (i, sign, arity) in
+ let fixenv = nf_env_evar (Evd.evars_of !isevar) fixenv in
+ let fixdecls = nf_rel_context_evar (Evd.evars_of !isevar) fixdecls in
+ (* let ce = check_evars fixenv Evd.empty !isevar in *)
+ (* List.iter (function (_, _, Program rhs) -> ce rhs | _ -> ()) equations; *)
+ let is_recursive, env' =
+ let occur_eqn ((ctx, _, _), rhs) =
+ match rhs with
+ | Program c -> dependent (mkRel (succ (length ctx))) c
+ | _ -> false
+ in if exists occur_eqn equations then true, fixenv else false, env
+ in
+ let split = make_split env' prob equations in
+ (* if valid_tree prob split then *)
+ let status = (* if is_recursive then Expand else *) Define false in
+ let t, ty = term_of_tree status isevar env' prob ann split in
+ let undef = undefined_evars !isevar in
+ let t, ty = if is_recursive then
+ (it_mkLambda_or_LetIn t fixdecls, it_mkProd_or_LetIn ty fixdecls)
+ else t, ty
+ in
+ let obls, t', ty' =
+ Eterm.eterm_obligations env i !isevar (Evd.evars_of undef) 0 ~status t ty
+ in
+ if is_recursive then
+ ignore(Subtac_obligations.add_mutual_definitions [(i, t', ty', impls, obls)] []
+ ~tactic:(Lazy.force equations_tac)
+ (Command.IsFixpoint [None, CStructRec]))
+ else
+ ignore(Subtac_obligations.add_definition
+ ~implicits:impls i t' ty' ~tactic:(Lazy.force equations_tac) obls)
+
+module Gram = Pcoq.Gram
+module Vernac = Pcoq.Vernac_
+module Tactic = Pcoq.Tactic
+
+module DeppatGram =
+struct
+ let gec s = Gram.Entry.create ("Deppat."^s)
+
+ let deppat_equations : equation list Gram.Entry.e = gec "deppat_equations"
+
+ let binders_let2 : (local_binder list * (identifier located option * recursion_order_expr)) Gram.Entry.e = gec "binders_let2"
+
+(* let where_decl : decl_notation Gram.Entry.e = gec "where_decl" *)
+
+end
+
+open Rawterm
+open DeppatGram
+open Util
+open Pcoq
+open Prim
+open Constr
+open G_vernac
+
+GEXTEND Gram
+ GLOBAL: (* deppat_gallina_loc *) deppat_equations binders_let2;
+
+ deppat_equations:
+ [ [ l = LIST1 equation SEP ";" -> l ] ]
+ ;
+
+ binders_let2:
+ [ [ l = binders_let_fixannot -> l ] ]
+ ;
+
+ equation:
+ [ [ c = Constr.lconstr; r=rhs -> (c, r) ] ]
+ ;
+
+ rhs:
+ [ [ ":=!"; id = identref -> Empty id
+ |":="; c = Constr.lconstr -> Program c
+ ] ]
+ ;
+
+ END
+
+type 'a deppat_equations_argtype = (equation list, 'a) Genarg.abstract_argument_type
+
+let (wit_deppat_equations : Genarg.tlevel deppat_equations_argtype),
+ (globwit_deppat_equations : Genarg.glevel deppat_equations_argtype),
+ (rawwit_deppat_equations : Genarg.rlevel deppat_equations_argtype) =
+ Genarg.create_arg "deppat_equations"
+
+type 'a binders_let2_argtype = (local_binder list * (identifier located option * recursion_order_expr), 'a) Genarg.abstract_argument_type
+
+let (wit_binders_let2 : Genarg.tlevel binders_let2_argtype),
+ (globwit_binders_let2 : Genarg.glevel binders_let2_argtype),
+ (rawwit_binders_let2 : Genarg.rlevel binders_let2_argtype) =
+ Genarg.create_arg "binders_let2"
+
+type 'a decl_notation_argtype = (Vernacexpr.decl_notation, 'a) Genarg.abstract_argument_type
+
+let (wit_decl_notation : Genarg.tlevel decl_notation_argtype),
+ (globwit_decl_notation : Genarg.glevel decl_notation_argtype),
+ (rawwit_decl_notation : Genarg.rlevel decl_notation_argtype) =
+ Genarg.create_arg "decl_notation"
+
+let equations wc i l t nt eqs =
+ try define_by_eqs wc i l t nt eqs
+ with e -> msg (Cerrors.explain_exn e)
+
+VERNAC COMMAND EXTEND Define_equations
+| [ "Equations" ident(i) binders_let2(l) ":" lconstr(t) ":=" deppat_equations(eqs)
+ decl_notation(nt) ] ->
+ [ equations true i l t nt eqs ]
+ END
+
+VERNAC COMMAND EXTEND Define_equations2
+| [ "Equations_nocomp" ident(i) binders_let2(l) ":" lconstr(t) ":=" deppat_equations(eqs)
+ decl_notation(nt) ] ->
+ [ equations false i l t nt eqs ]
+END
+
+let rec int_of_coq_nat c =
+ match kind_of_term c with
+ | App (f, [| arg |]) -> succ (int_of_coq_nat arg)
+ | _ -> 0
+
+let solve_equations_goal destruct_tac tac gl =
+ let concl = pf_concl gl in
+ let targetn, branchesn, targ, brs, b =
+ match kind_of_term concl with
+ | LetIn (Name target, targ, _, b) ->
+ (match kind_of_term b with
+ | LetIn (Name branches, brs, _, b) ->
+ target, branches, int_of_coq_nat targ, int_of_coq_nat brs, b
+ | _ -> error "Unnexpected goal")
+ | _ -> error "Unnexpected goal"
+ in
+ let branches, b =
+ let rec aux n c =
+ if n = 0 then [], c
+ else match kind_of_term c with
+ | LetIn (Name id, br, brt, b) ->
+ let rest, b = aux (pred n) b in
+ (id, br, brt) :: rest, b
+ | _ -> error "Unnexpected goal"
+ in aux brs b
+ in
+ let ids = targetn :: branchesn :: map pi1 branches in
+ let cleantac = tclTHEN (intros_using ids) (thin ids) in
+ let dotac = tclDO (succ targ) intro in
+ let subtacs =
+ tclTHENS destruct_tac
+ (map (fun (id, br, brt) -> tclTHEN (letin_tac None (Name id) br (Some brt) onConcl) tac) branches)
+ in tclTHENLIST [cleantac ; dotac ; subtacs] gl
+
+TACTIC EXTEND solve_equations
+ [ "solve_equations" tactic(destruct) tactic(tac) ] -> [ solve_equations_goal (snd destruct) (snd tac) ]
+ END
+
+let coq_eq = Lazy.lazy_from_fun Coqlib.build_coq_eq
+let coq_eq_refl = lazy ((Coqlib.build_coq_eq_data ()).Coqlib.refl)
+
+let coq_heq = lazy (Coqlib.coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq")
+let coq_heq_refl = lazy (Coqlib.coq_constant "mkHEq" ["Logic";"JMeq"] "JMeq_refl")
+
+let specialize_hyp id gl =
+ let env = pf_env gl in
+ let ty = pf_get_hyp_typ gl id in
+ let evars = ref (create_evar_defs (project gl)) in
+ let rec aux in_eqs acc ty =
+ match kind_of_term ty with
+ | Prod (_, t, b) ->
+ (match kind_of_term t with
+ | App (eq, [| eqty; x; y |]) when eq_constr eq (Lazy.force coq_eq) ->
+ let pt = mkApp (Lazy.force coq_eq, [| eqty; x; x |]) in
+ let p = mkApp (Lazy.force coq_eq_refl, [| eqty; x |]) in
+ if e_conv env evars pt t then
+ aux true (mkApp (acc, [| p |])) (subst1 p b)
+ else error "Unconvertible members of an homogeneous equality"
+ | App (heq, [| eqty; x; eqty'; y |]) when eq_constr heq (Lazy.force coq_heq) ->
+ let pt = mkApp (Lazy.force coq_heq, [| eqty; x; eqty; x |]) in
+ let p = mkApp (Lazy.force coq_heq_refl, [| eqty; x |]) in
+ if e_conv env evars pt t then
+ aux true (mkApp (acc, [| p |])) (subst1 p b)
+ else error "Unconvertible members of an heterogeneous equality"
+ | _ ->
+ if in_eqs then acc, in_eqs, ty
+ else
+ let e = e_new_evar evars env t in
+ aux false (mkApp (acc, [| e |])) (subst1 e b))
+ | t -> acc, in_eqs, ty
+ in
+ try
+ let acc, worked, ty = aux false (mkVar id) ty in
+ let ty = Evarutil.nf_isevar !evars ty in
+ if worked then
+ tclTHENFIRST
+ (fun g -> Tacmach.internal_cut true id ty g)
+ (exact_no_check (Evarutil.nf_isevar !evars acc)) gl
+ else tclFAIL 0 (str "Nothing to do in hypothesis " ++ pr_id id) gl
+ with e -> tclFAIL 0 (Cerrors.explain_exn e) gl
+
+TACTIC EXTEND specialize_hyp
+[ "specialize_hypothesis" constr(c) ] -> [
+ match kind_of_term c with
+ | Var id -> specialize_hyp id
+ | _ -> tclFAIL 0 (str "Not an hypothesis") ]
+END