summaryrefslogtreecommitdiff
path: root/contrib/romega/refl_omega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/romega/refl_omega.ml')
-rw-r--r--contrib/romega/refl_omega.ml1299
1 files changed, 0 insertions, 1299 deletions
diff --git a/contrib/romega/refl_omega.ml b/contrib/romega/refl_omega.ml
deleted file mode 100644
index fc4f7a8f..00000000
--- a/contrib/romega/refl_omega.ml
+++ /dev/null
@@ -1,1299 +0,0 @@
-(*************************************************************************
-
- PROJET RNRT Calife - 2001
- Author: Pierre Crégut - France Télécom R&D
- Licence : LGPL version 2.1
-
- *************************************************************************)
-
-open Util
-open Const_omega
-module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
-open OmegaSolver
-
-(* \section{Useful functions and flags} *)
-(* Especially useful debugging functions *)
-let debug = ref false
-
-let show_goal gl =
- if !debug then Pp.ppnl (Tacmach.pr_gls gl); Tacticals.tclIDTAC gl
-
-let pp i = print_int i; print_newline (); flush stdout
-
-(* More readable than the prefix notation *)
-let (>>) = Tacticals.tclTHEN
-
-let mkApp = Term.mkApp
-
-(* \section{Types}
- \subsection{How to walk in a term}
- To represent how to get to a proposition. Only choice points are
- kept (branch to choose in a disjunction and identifier of the disjunctive
- connector) *)
-type direction = Left of int | Right of int
-
-(* Step to find a proposition (operators are at most binary). A list is
- a path *)
-type occ_step = O_left | O_right | O_mono
-type occ_path = occ_step list
-
-(* chemin identifiant une proposition sous forme du nom de l'hypothèse et
- d'une liste de pas à partir de la racine de l'hypothèse *)
-type occurence = {o_hyp : Names.identifier; o_path : occ_path}
-
-(* \subsection{refiable formulas} *)
-type oformula =
- (* integer *)
- | Oint of Bigint.bigint
- (* recognized binary and unary operations *)
- | Oplus of oformula * oformula
- | Omult of oformula * oformula
- | Ominus of oformula * oformula
- | Oopp of oformula
- (* an atome in the environment *)
- | Oatom of int
- (* weird expression that cannot be translated *)
- | Oufo of oformula
-
-(* Operators for comparison recognized by Omega *)
-type comparaison = Eq | Leq | Geq | Gt | Lt | Neq
-
-(* Type des prédicats réifiés (fragment de calcul propositionnel. Les
- * quantifications sont externes au langage) *)
-type oproposition =
- Pequa of Term.constr * oequation
- | Ptrue
- | Pfalse
- | Pnot of oproposition
- | Por of int * oproposition * oproposition
- | Pand of int * oproposition * oproposition
- | Pimp of int * oproposition * oproposition
- | Pprop of Term.constr
-
-(* Les équations ou proposiitions atomiques utiles du calcul *)
-and oequation = {
- e_comp: comparaison; (* comparaison *)
- e_left: oformula; (* formule brute gauche *)
- e_right: oformula; (* formule brute droite *)
- e_trace: Term.constr; (* tactique de normalisation *)
- e_origin: occurence; (* l'hypothèse dont vient le terme *)
- e_negated: bool; (* vrai si apparait en position nié
- après normalisation *)
- e_depends: direction list; (* liste des points de disjonction dont
- dépend l'accès à l'équation avec la
- direction (branche) pour y accéder *)
- e_omega: afine (* la fonction normalisée *)
- }
-
-(* \subsection{Proof context}
- This environment codes
- \begin{itemize}
- \item the terms and propositions that are given as
- parameters of the reified proof (and are represented as variables in the
- reified goals)
- \item translation functions linking the decision procedure and the Coq proof
- \end{itemize} *)
-
-type environment = {
- (* La liste des termes non reifies constituant l'environnement global *)
- mutable terms : Term.constr list;
- (* La meme chose pour les propositions *)
- mutable props : Term.constr list;
- (* Les variables introduites par omega *)
- mutable om_vars : (oformula * int) list;
- (* Traduction des indices utilisés ici en les indices finaux utilisés par
- * la tactique Omega après dénombrement des variables utiles *)
- real_indices : (int,int) Hashtbl.t;
- mutable cnt_connectors : int;
- equations : (int,oequation) Hashtbl.t;
- constructors : (int, occurence) Hashtbl.t
-}
-
-(* \subsection{Solution tree}
- Définition d'une solution trouvée par Omega sous la forme d'un identifiant,
- d'un ensemble d'équation dont dépend la solution et d'une trace *)
-(* La liste des dépendances est triée et sans redondance *)
-type solution = {
- s_index : int;
- s_equa_deps : int list;
- s_trace : action list }
-
-(* Arbre de solution résolvant complètement un ensemble de systèmes *)
-type solution_tree =
- Leaf of solution
- (* un noeud interne représente un point de branchement correspondant à
- l'élimination d'un connecteur générant plusieurs buts
- (typ. disjonction). Le premier argument
- est l'identifiant du connecteur *)
- | Tree of int * solution_tree * solution_tree
-
-(* Représentation de l'environnement extrait du but initial sous forme de
- chemins pour extraire des equations ou d'hypothèses *)
-
-type context_content =
- CCHyp of occurence
- | CCEqua of int
-
-(* \section{Specific utility functions to handle base types} *)
-(* Nom arbitraire de l'hypothèse codant la négation du but final *)
-let id_concl = Names.id_of_string "__goal__"
-
-(* Initialisation de l'environnement de réification de la tactique *)
-let new_environment () = {
- terms = []; props = []; om_vars = []; cnt_connectors = 0;
- real_indices = Hashtbl.create 7;
- equations = Hashtbl.create 7;
- constructors = Hashtbl.create 7;
-}
-
-(* Génération d'un nom d'équation *)
-let new_connector_id env =
- env.cnt_connectors <- succ env.cnt_connectors; env.cnt_connectors
-
-(* Calcul de la branche complémentaire *)
-let barre = function Left x -> Right x | Right x -> Left x
-
-(* Identifiant associé à une branche *)
-let indice = function Left x | Right x -> x
-
-(* Affichage de l'environnement de réification (termes et propositions) *)
-let print_env_reification env =
- let rec loop c i = function
- [] -> Printf.printf " ===============================\n\n"
- | t :: l ->
- Printf.printf " (%c%02d) := " c i;
- Pp.ppnl (Printer.pr_lconstr t);
- Pp.flush_all ();
- loop c (succ i) l in
- print_newline ();
- Printf.printf " ENVIRONMENT OF PROPOSITIONS :\n\n"; loop 'P' 0 env.props;
- Printf.printf " ENVIRONMENT OF TERMS :\n\n"; loop 'V' 0 env.terms
-
-
-(* \subsection{Gestion des environnements de variable pour Omega} *)
-(* generation d'identifiant d'equation pour Omega *)
-
-let new_omega_eq, rst_omega_eq =
- let cpt = ref 0 in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=0)
-
-(* generation d'identifiant de variable pour Omega *)
-
-let new_omega_var, rst_omega_var =
- let cpt = ref 0 in
- (function () -> incr cpt; !cpt),
- (function () -> cpt:=0)
-
-(* Affichage des variables d'un système *)
-
-let display_omega_var i = Printf.sprintf "OV%d" i
-
-(* Recherche la variable codant un terme pour Omega et crée la variable dans
- l'environnement si il n'existe pas. Cas ou la variable dans Omega représente
- le terme d'un monome (le plus souvent un atome) *)
-
-let intern_omega env t =
- begin try List.assoc t env.om_vars
- with Not_found ->
- let v = new_omega_var () in
- env.om_vars <- (t,v) :: env.om_vars; v
- end
-
-(* Ajout forcé d'un lien entre un terme et une variable Cas où la
- variable est créée par Omega et où il faut la lier après coup à un atome
- réifié introduit de force *)
-let intern_omega_force env t v = env.om_vars <- (t,v) :: env.om_vars
-
-(* Récupère le terme associé à une variable *)
-let unintern_omega env id =
- let rec loop = function
- [] -> failwith "unintern"
- | ((t,j)::l) -> if id = j then t else loop l in
- loop env.om_vars
-
-(* \subsection{Gestion des environnements de variable pour la réflexion}
- Gestion des environnements de traduction entre termes des constructions
- non réifiés et variables des termes reifies. Attention il s'agit de
- l'environnement initial contenant tout. Il faudra le réduire après
- calcul des variables utiles. *)
-
-let add_reified_atom t env =
- try list_index0 t env.terms
- with Not_found ->
- let i = List.length env.terms in
- env.terms <- env.terms @ [t]; i
-
-let get_reified_atom env =
- try List.nth env.terms with _ -> failwith "get_reified_atom"
-
-(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
-(* ajout d'une proposition *)
-let add_prop env t =
- try list_index0 t env.props
- with Not_found ->
- let i = List.length env.props in env.props <- env.props @ [t]; i
-
-(* accès a une proposition *)
-let get_prop v env = try List.nth v env with _ -> failwith "get_prop"
-
-(* \subsection{Gestion du nommage des équations} *)
-(* Ajout d'une equation dans l'environnement de reification *)
-let add_equation env e =
- let id = e.e_omega.id in
- try let _ = Hashtbl.find env.equations id in ()
- with Not_found -> Hashtbl.add env.equations id e
-
-(* accès a une equation *)
-let get_equation env id =
- try Hashtbl.find env.equations id
- with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e
-
-(* Affichage des termes réifiés *)
-let rec oprint ch = function
- | Oint n -> Printf.fprintf ch "%s" (Bigint.to_string n)
- | Oplus (t1,t2) -> Printf.fprintf ch "(%a + %a)" oprint t1 oprint t2
- | Omult (t1,t2) -> Printf.fprintf ch "(%a * %a)" oprint t1 oprint t2
- | Ominus(t1,t2) -> Printf.fprintf ch "(%a - %a)" oprint t1 oprint t2
- | Oopp t1 ->Printf.fprintf ch "~ %a" oprint t1
- | Oatom n -> Printf.fprintf ch "V%02d" n
- | Oufo x -> Printf.fprintf ch "?"
-
-let rec pprint ch = function
- Pequa (_,{ e_comp=comp; e_left=t1; e_right=t2 }) ->
- let connector =
- match comp with
- Eq -> "=" | Leq -> "<=" | Geq -> ">="
- | Gt -> ">" | Lt -> "<" | Neq -> "!=" in
- Printf.fprintf ch "%a %s %a" oprint t1 connector oprint t2
- | Ptrue -> Printf.fprintf ch "TT"
- | Pfalse -> Printf.fprintf ch "FF"
- | Pnot t -> Printf.fprintf ch "not(%a)" pprint t
- | Por (_,t1,t2) -> Printf.fprintf ch "(%a or %a)" pprint t1 pprint t2
- | Pand(_,t1,t2) -> Printf.fprintf ch "(%a and %a)" pprint t1 pprint t2
- | Pimp(_,t1,t2) -> Printf.fprintf ch "(%a => %a)" pprint t1 pprint t2
- | Pprop c -> Printf.fprintf ch "Prop"
-
-let rec weight env = function
- | Oint _ -> -1
- | Oopp c -> weight env c
- | Omult(c,_) -> weight env c
- | Oplus _ -> failwith "weight"
- | Ominus _ -> failwith "weight minus"
- | Oufo _ -> -1
- | Oatom _ as c -> (intern_omega env c)
-
-(* \section{Passage entre oformules et représentation interne de Omega} *)
-
-(* \subsection{Oformula vers Omega} *)
-
-let omega_of_oformula env kind =
- let rec loop accu = function
- | Oplus(Omult(v,Oint n),r) ->
- loop ({v=intern_omega env v; c=n} :: accu) r
- | Oint n ->
- let id = new_omega_eq () in
- (*i tag_equation name id; i*)
- {kind = kind; body = List.rev accu;
- constant = n; id = id}
- | t -> print_string "CO"; oprint stdout t; failwith "compile_equation" in
- loop []
-
-(* \subsection{Omega vers Oformula} *)
-
-let rec oformula_of_omega env af =
- let rec loop = function
- | ({v=v; c=n}::r) ->
- Oplus(Omult(unintern_omega env v,Oint n),loop r)
- | [] -> Oint af.constant in
- loop af.body
-
-let app f v = mkApp(Lazy.force f,v)
-
-(* \subsection{Oformula vers COQ reel} *)
-
-let rec coq_of_formula env t =
- let rec loop = function
- | Oplus (t1,t2) -> app Z.plus [| loop t1; loop t2 |]
- | Oopp t -> app Z.opp [| loop t |]
- | Omult(t1,t2) -> app Z.mult [| loop t1; loop t2 |]
- | Oint v -> Z.mk v
- | Oufo t -> loop t
- | Oatom var ->
- (* attention ne traite pas les nouvelles variables si on ne les
- * met pas dans env.term *)
- get_reified_atom env var
- | Ominus(t1,t2) -> app Z.minus [| loop t1; loop t2 |] in
- loop t
-
-(* \subsection{Oformula vers COQ reifié} *)
-
-let reified_of_atom env i =
- try Hashtbl.find env.real_indices i
- with Not_found ->
- Printf.printf "Atome %d non trouvé\n" i;
- Hashtbl.iter (fun k v -> Printf.printf "%d -> %d\n" k v) env.real_indices;
- raise Not_found
-
-let rec reified_of_formula env = function
- | Oplus (t1,t2) ->
- app coq_t_plus [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Oopp t ->
- app coq_t_opp [| reified_of_formula env t |]
- | Omult(t1,t2) ->
- app coq_t_mult [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Oint v -> app coq_t_int [| Z.mk v |]
- | Oufo t -> reified_of_formula env t
- | Oatom i -> app coq_t_var [| mk_nat (reified_of_atom env i) |]
- | Ominus(t1,t2) ->
- app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
-
-let reified_of_formula env f =
- begin try reified_of_formula env f with e -> oprint stderr f; raise e end
-
-let rec reified_of_proposition env = function
- Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
- app coq_p_eq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa (_,{ e_comp=Leq; e_left=t1; e_right=t2 }) ->
- app coq_p_leq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Geq; e_left=t1; e_right=t2 }) ->
- app coq_p_geq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Gt; e_left=t1; e_right=t2 }) ->
- app coq_p_gt [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Lt; e_left=t1; e_right=t2 }) ->
- app coq_p_lt [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Pequa(_,{ e_comp=Neq; e_left=t1; e_right=t2 }) ->
- app coq_p_neq [| reified_of_formula env t1; reified_of_formula env t2 |]
- | Ptrue -> Lazy.force coq_p_true
- | Pfalse -> Lazy.force coq_p_false
- | Pnot t ->
- app coq_p_not [| reified_of_proposition env t |]
- | Por (_,t1,t2) ->
- app coq_p_or
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pand(_,t1,t2) ->
- app coq_p_and
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pimp(_,t1,t2) ->
- app coq_p_imp
- [| reified_of_proposition env t1; reified_of_proposition env t2 |]
- | Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
-
-let reified_of_proposition env f =
- begin try reified_of_proposition env f
- with e -> pprint stderr f; raise e end
-
-(* \subsection{Omega vers COQ réifié} *)
-
-let reified_of_omega env body constant =
- let coeff_constant =
- app coq_t_int [| Z.mk constant |] in
- let mk_coeff {c=c; v=v} t =
- let coef =
- app coq_t_mult
- [| reified_of_formula env (unintern_omega env v);
- app coq_t_int [| Z.mk c |] |] in
- app coq_t_plus [|coef; t |] in
- List.fold_right mk_coeff body coeff_constant
-
-let reified_of_omega env body c =
- begin try
- reified_of_omega env body c
- with e ->
- display_eq display_omega_var (body,c); raise e
- end
-
-(* \section{Opérations sur les équations}
-Ces fonctions préparent les traces utilisées par la tactique réfléchie
-pour faire des opérations de normalisation sur les équations. *)
-
-(* \subsection{Extractions des variables d'une équation} *)
-(* Extraction des variables d'une équation. *)
-(* Chaque fonction retourne une liste triée sans redondance *)
-
-let (@@) = list_merge_uniq compare
-
-let rec vars_of_formula = function
- | Oint _ -> []
- | Oplus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Omult (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Ominus (e1,e2) -> (vars_of_formula e1) @@ (vars_of_formula e2)
- | Oopp e -> vars_of_formula e
- | Oatom i -> [i]
- | Oufo _ -> []
-
-let rec vars_of_equations = function
- | [] -> []
- | e::l ->
- (vars_of_formula e.e_left) @@
- (vars_of_formula e.e_right) @@
- (vars_of_equations l)
-
-let rec vars_of_prop = function
- | Pequa(_,e) -> vars_of_equations [e]
- | Pnot p -> vars_of_prop p
- | Por(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pand(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pimp(_,p1,p2) -> (vars_of_prop p1) @@ (vars_of_prop p2)
- | Pprop _ | Ptrue | Pfalse -> []
-
-(* \subsection{Multiplication par un scalaire} *)
-
-let rec scalar n = function
- Oplus(t1,t2) ->
- let tac1,t1' = scalar n t1 and
- tac2,t2' = scalar n t2 in
- do_list [Lazy.force coq_c_mult_plus_distr; do_both tac1 tac2],
- Oplus(t1',t2')
- | Oopp t ->
- do_list [Lazy.force coq_c_mult_opp_left], Omult(t,Oint(Bigint.neg n))
- | Omult(t1,Oint x) ->
- do_list [Lazy.force coq_c_mult_assoc_reduced], Omult(t1,Oint (n*x))
- | Omult(t1,t2) ->
- Util.error "Omega: Can't solve a goal with non-linear products"
- | (Oatom _ as t) -> do_list [], Omult(t,Oint n)
- | Oint i -> do_list [Lazy.force coq_c_reduce],Oint(n*i)
- | (Oufo _ as t)-> do_list [], Oufo (Omult(t,Oint n))
- | Ominus _ -> failwith "scalar minus"
-
-(* \subsection{Propagation de l'inversion} *)
-
-let rec negate = function
- Oplus(t1,t2) ->
- let tac1,t1' = negate t1 and
- tac2,t2' = negate t2 in
- do_list [Lazy.force coq_c_opp_plus ; (do_both tac1 tac2)],
- Oplus(t1',t2')
- | Oopp t ->
- do_list [Lazy.force coq_c_opp_opp], t
- | Omult(t1,Oint x) ->
- do_list [Lazy.force coq_c_opp_mult_r], Omult(t1,Oint (Bigint.neg x))
- | Omult(t1,t2) ->
- Util.error "Omega: Can't solve a goal with non-linear products"
- | (Oatom _ as t) ->
- do_list [Lazy.force coq_c_opp_one], Omult(t,Oint(negone))
- | Oint i -> do_list [Lazy.force coq_c_reduce] ,Oint(Bigint.neg i)
- | Oufo c -> do_list [], Oufo (Oopp c)
- | Ominus _ -> failwith "negate minus"
-
-let rec norm l = (List.length l)
-
-(* \subsection{Mélange (fusion) de deux équations} *)
-(* \subsubsection{Version avec coefficients} *)
-let rec shuffle_path k1 e1 k2 e2 =
- let rec loop = function
- (({c=c1;v=v1}::l1) as l1'),
- (({c=c2;v=v2}::l2) as l2') ->
- if v1 = v2 then
- if k1*c1 + k2 * c2 = zero then (
- Lazy.force coq_f_cancel :: loop (l1,l2))
- else (
- Lazy.force coq_f_equal :: loop (l1,l2) )
- else if v1 > v2 then (
- Lazy.force coq_f_left :: loop(l1,l2'))
- else (
- Lazy.force coq_f_right :: loop(l1',l2))
- | ({c=c1;v=v1}::l1), [] ->
- Lazy.force coq_f_left :: loop(l1,[])
- | [],({c=c2;v=v2}::l2) ->
- Lazy.force coq_f_right :: loop([],l2)
- | [],[] -> flush stdout; [] in
- mk_shuffle_list (loop (e1,e2))
-
-(* \subsubsection{Version sans coefficients} *)
-let rec shuffle env (t1,t2) =
- match t1,t2 with
- Oplus(l1,r1), Oplus(l2,r2) ->
- if weight env l1 > weight env l2 then
- let l_action,t' = shuffle env (r1,t2) in
- do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action], Oplus(l1,t')
- else
- let l_action,t' = shuffle env (t1,r2) in
- do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
- | Oplus(l1,r1), t2 ->
- if weight env l1 > weight env t2 then
- let (l_action,t') = shuffle env (r1,t2) in
- do_list [Lazy.force coq_c_plus_assoc_r;do_right l_action],Oplus(l1, t')
- else do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
- | t1,Oplus(l2,r2) ->
- if weight env l2 > weight env t1 then
- let (l_action,t') = shuffle env (t1,r2) in
- do_list [Lazy.force coq_c_plus_permute;do_right l_action], Oplus(l2,t')
- else do_list [],Oplus(t1,t2)
- | Oint t1,Oint t2 ->
- do_list [Lazy.force coq_c_reduce], Oint(t1+t2)
- | t1,t2 ->
- if weight env t1 < weight env t2 then
- do_list [Lazy.force coq_c_plus_comm], Oplus(t2,t1)
- else do_list [],Oplus(t1,t2)
-
-(* \subsection{Fusion avec réduction} *)
-
-let shrink_pair f1 f2 =
- begin match f1,f2 with
- Oatom v,Oatom _ ->
- Lazy.force coq_c_red1, Omult(Oatom v,Oint two)
- | Oatom v, Omult(_,c2) ->
- Lazy.force coq_c_red2, Omult(Oatom v,Oplus(c2,Oint one))
- | Omult (v1,c1),Oatom v ->
- Lazy.force coq_c_red3, Omult(Oatom v,Oplus(c1,Oint one))
- | Omult (Oatom v,c1),Omult (v2,c2) ->
- Lazy.force coq_c_red4, Omult(Oatom v,Oplus(c1,c2))
- | t1,t2 ->
- oprint stdout t1; print_newline (); oprint stdout t2; print_newline ();
- flush Pervasives.stdout; Util.error "shrink.1"
- end
-
-(* \subsection{Calcul d'une sous formule constante} *)
-
-let reduce_factor = function
- Oatom v ->
- let r = Omult(Oatom v,Oint one) in
- [Lazy.force coq_c_red0],r
- | Omult(Oatom v,Oint n) as f -> [],f
- | Omult(Oatom v,c) ->
- let rec compute = function
- Oint n -> n
- | Oplus(t1,t2) -> compute t1 + compute t2
- | _ -> Util.error "condense.1" in
- [Lazy.force coq_c_reduce], Omult(Oatom v,Oint(compute c))
- | t -> Util.error "reduce_factor.1"
-
-(* \subsection{Réordonnancement} *)
-
-let rec condense env = function
- Oplus(f1,(Oplus(f2,r) as t)) ->
- if weight env f1 = weight env f2 then begin
- let shrink_tac,t = shrink_pair f1 f2 in
- let assoc_tac = Lazy.force coq_c_plus_assoc_l in
- let tac_list,t' = condense env (Oplus(t,r)) in
- assoc_tac :: do_left (do_list [shrink_tac]) :: tac_list, t'
- end else begin
- let tac,f = reduce_factor f1 in
- let tac',t' = condense env t in
- [do_both (do_list tac) (do_list tac')], Oplus(f,t')
- end
- | Oplus(f1,Oint n) ->
- let tac,f1' = reduce_factor f1 in
- [do_left (do_list tac)],Oplus(f1',Oint n)
- | Oplus(f1,f2) ->
- if weight env f1 = weight env f2 then begin
- let tac_shrink,t = shrink_pair f1 f2 in
- let tac,t' = condense env t in
- tac_shrink :: tac,t'
- end else begin
- let tac,f = reduce_factor f1 in
- let tac',t' = condense env f2 in
- [do_both (do_list tac) (do_list tac')],Oplus(f,t')
- end
- | (Oint _ as t)-> [],t
- | t ->
- let tac,t' = reduce_factor t in
- let final = Oplus(t',Oint zero) in
- tac @ [Lazy.force coq_c_red6], final
-
-(* \subsection{Elimination des zéros} *)
-
-let rec clear_zero = function
- Oplus(Omult(Oatom v,Oint n),r) when n=zero ->
- let tac',t = clear_zero r in
- Lazy.force coq_c_red5 :: tac',t
- | Oplus(f,r) ->
- let tac,t = clear_zero r in
- (if tac = [] then [] else [do_right (do_list tac)]),Oplus(f,t)
- | t -> [],t;;
-
-(* \subsection{Transformation des hypothèses} *)
-
-let rec reduce env = function
- Oplus(t1,t2) ->
- let t1', trace1 = reduce env t1 in
- let t2', trace2 = reduce env t2 in
- let trace3,t' = shuffle env (t1',t2') in
- t', do_list [do_both trace1 trace2; trace3]
- | Ominus(t1,t2) ->
- let t,trace = reduce env (Oplus(t1, Oopp t2)) in
- t, do_list [Lazy.force coq_c_minus; trace]
- | Omult(t1,t2) as t ->
- let t1', trace1 = reduce env t1 in
- let t2', trace2 = reduce env t2 in
- begin match t1',t2' with
- | (_, Oint n) ->
- let tac,t' = scalar n t1' in
- t', do_list [do_both trace1 trace2; tac]
- | (Oint n,_) ->
- let tac,t' = scalar n t2' in
- t', do_list [do_both trace1 trace2; Lazy.force coq_c_mult_comm; tac]
- | _ -> Oufo t, Lazy.force coq_c_nop
- end
- | Oopp t ->
- let t',trace = reduce env t in
- let trace',t'' = negate t' in
- t'', do_list [do_left trace; trace']
- | (Oint _ | Oatom _ | Oufo _) as t -> t, Lazy.force coq_c_nop
-
-let normalize_linear_term env t =
- let t1,trace1 = reduce env t in
- let trace2,t2 = condense env t1 in
- let trace3,t3 = clear_zero t2 in
- do_list [trace1; do_list trace2; do_list trace3], t3
-
-(* Cette fonction reproduit très exactement le comportement de [p_invert] *)
-let negate_oper = function
- Eq -> Neq | Neq -> Eq | Leq -> Gt | Geq -> Lt | Lt -> Geq | Gt -> Leq
-
-let normalize_equation env (negated,depends,origin,path) (oper,t1,t2) =
- let mk_step t1 t2 f kind =
- let t = f t1 t2 in
- let trace, oterm = normalize_linear_term env t in
- let equa = omega_of_oformula env kind oterm in
- { e_comp = oper; e_left = t1; e_right = t2;
- e_negated = negated; e_depends = depends;
- e_origin = { o_hyp = origin; o_path = List.rev path };
- e_trace = trace; e_omega = equa } in
- try match (if negated then (negate_oper oper) else oper) with
- | Eq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) EQUA
- | Neq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) DISE
- | Leq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o2,Oopp o1)) INEQ
- | Geq -> mk_step t1 t2 (fun o1 o2 -> Oplus (o1,Oopp o2)) INEQ
- | Lt ->
- mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o2,Oint negone),Oopp o1))
- INEQ
- | Gt ->
- mk_step t1 t2 (fun o1 o2 -> Oplus (Oplus(o1,Oint negone),Oopp o2))
- INEQ
- with e when Logic.catchable_exception e -> raise e
-
-(* \section{Compilation des hypothèses} *)
-
-let rec oformula_of_constr env t =
- match Z.parse_term t with
- | Tplus (t1,t2) -> binop env (fun x y -> Oplus(x,y)) t1 t2
- | Tminus (t1,t2) -> binop env (fun x y -> Ominus(x,y)) t1 t2
- | Tmult (t1,t2) when Z.is_scalar t1 || Z.is_scalar t2 ->
- binop env (fun x y -> Omult(x,y)) t1 t2
- | Topp t -> Oopp(oformula_of_constr env t)
- | Tsucc t -> Oplus(oformula_of_constr env t, Oint one)
- | Tnum n -> Oint n
- | _ -> Oatom (add_reified_atom t env)
-
-and binop env c t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
- c t1' t2'
-
-and binprop env (neg2,depends,origin,path)
- add_to_depends neg1 gl c t1 t2 =
- let i = new_connector_id env in
- let depends1 = if add_to_depends then Left i::depends else depends in
- let depends2 = if add_to_depends then Right i::depends else depends in
- if add_to_depends then
- Hashtbl.add env.constructors i {o_hyp = origin; o_path = List.rev path};
- let t1' =
- oproposition_of_constr env (neg1,depends1,origin,O_left::path) gl t1 in
- let t2' =
- oproposition_of_constr env (neg2,depends2,origin,O_right::path) gl t2 in
- (* On numérote le connecteur dans l'environnement. *)
- c i t1' t2'
-
-and mk_equation env ctxt c connector t1 t2 =
- let t1' = oformula_of_constr env t1 in
- let t2' = oformula_of_constr env t2 in
- (* On ajoute l'equation dans l'environnement. *)
- let omega = normalize_equation env ctxt (connector,t1',t2') in
- add_equation env omega;
- Pequa (c,omega)
-
-and oproposition_of_constr env ((negated,depends,origin,path) as ctxt) gl c =
- match Z.parse_rel gl c with
- | Req (t1,t2) -> mk_equation env ctxt c Eq t1 t2
- | Rne (t1,t2) -> mk_equation env ctxt c Neq t1 t2
- | Rle (t1,t2) -> mk_equation env ctxt c Leq t1 t2
- | Rlt (t1,t2) -> mk_equation env ctxt c Lt t1 t2
- | Rge (t1,t2) -> mk_equation env ctxt c Geq t1 t2
- | Rgt (t1,t2) -> mk_equation env ctxt c Gt t1 t2
- | Rtrue -> Ptrue
- | Rfalse -> Pfalse
- | Rnot t ->
- let t' =
- oproposition_of_constr
- env (not negated, depends, origin,(O_mono::path)) gl t in
- Pnot t'
- | Ror (t1,t2) ->
- binprop env ctxt (not negated) negated gl (fun i x y -> Por(i,x,y)) t1 t2
- | Rand (t1,t2) ->
- binprop env ctxt negated negated gl
- (fun i x y -> Pand(i,x,y)) t1 t2
- | Rimp (t1,t2) ->
- binprop env ctxt (not negated) (not negated) gl
- (fun i x y -> Pimp(i,x,y)) t1 t2
- | Riff (t1,t2) ->
- binprop env ctxt negated negated gl
- (fun i x y -> Pand(i,x,y)) (Term.mkArrow t1 t2) (Term.mkArrow t2 t1)
- | _ -> Pprop c
-
-(* Destructuration des hypothèses et de la conclusion *)
-
-let reify_gl env gl =
- let concl = Tacmach.pf_concl gl in
- let t_concl =
- Pnot (oproposition_of_constr env (true,[],id_concl,[O_mono]) gl concl) in
- if !debug then begin
- Printf.printf "REIFED PROBLEM\n\n";
- Printf.printf " CONCL: "; pprint stdout t_concl; Printf.printf "\n"
- end;
- let rec loop = function
- (i,t) :: lhyps ->
- let t' = oproposition_of_constr env (false,[],i,[]) gl t in
- if !debug then begin
- Printf.printf " %s: " (Names.string_of_id i);
- pprint stdout t';
- Printf.printf "\n"
- end;
- (i,t') :: loop lhyps
- | [] ->
- if !debug then print_env_reification env;
- [] in
- let t_lhyps = loop (Tacmach.pf_hyps_types gl) in
- (id_concl,t_concl) :: t_lhyps
-
-let rec destructurate_pos_hyp orig list_equations list_depends = function
- | Pequa (_,e) -> [e :: list_equations]
- | Ptrue | Pfalse | Pprop _ -> [list_equations]
- | Pnot t -> destructurate_neg_hyp orig list_equations list_depends t
- | Por (i,t1,t2) ->
- let s1 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
- | Pand(i,t1,t2) ->
- let list_s1 =
- destructurate_pos_hyp orig list_equations (list_depends) t1 in
- let rec loop = function
- le1 :: ll -> destructurate_pos_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
- | Pimp(i,t1,t2) ->
- let s1 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_pos_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
-
-and destructurate_neg_hyp orig list_equations list_depends = function
- | Pequa (_,e) -> [e :: list_equations]
- | Ptrue | Pfalse | Pprop _ -> [list_equations]
- | Pnot t -> destructurate_pos_hyp orig list_equations list_depends t
- | Pand (i,t1,t2) ->
- let s1 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t1 in
- let s2 =
- destructurate_neg_hyp orig list_equations (i::list_depends) t2 in
- s1 @ s2
- | Por(_,t1,t2) ->
- let list_s1 =
- destructurate_neg_hyp orig list_equations list_depends t1 in
- let rec loop = function
- le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
- | Pimp(_,t1,t2) ->
- let list_s1 =
- destructurate_pos_hyp orig list_equations list_depends t1 in
- let rec loop = function
- le1 :: ll -> destructurate_neg_hyp orig le1 list_depends t2 @ loop ll
- | [] -> [] in
- loop list_s1
-
-let destructurate_hyps syst =
- let rec loop = function
- (i,t) :: l ->
- let l_syst1 = destructurate_pos_hyp i [] [] t in
- let l_syst2 = loop l in
- list_cartesian (@) l_syst1 l_syst2
- | [] -> [[]] in
- loop syst
-
-(* \subsection{Affichage d'un système d'équation} *)
-
-(* Affichage des dépendances de système *)
-let display_depend = function
- Left i -> Printf.printf " L%d" i
- | Right i -> Printf.printf " R%d" i
-
-let display_systems syst_list =
- let display_omega om_e =
- Printf.printf " E%d : %a %s 0\n"
- om_e.id
- (fun _ -> display_eq display_omega_var)
- (om_e.body, om_e.constant)
- (operator_of_eq om_e.kind) in
-
- let display_equation oformula_eq =
- pprint stdout (Pequa (Lazy.force coq_c_nop,oformula_eq)); print_newline ();
- display_omega oformula_eq.e_omega;
- Printf.printf " Depends on:";
- List.iter display_depend oformula_eq.e_depends;
- Printf.printf "\n Path: %s"
- (String.concat ""
- (List.map (function O_left -> "L" | O_right -> "R" | O_mono -> "M")
- oformula_eq.e_origin.o_path));
- Printf.printf "\n Origin: %s (negated : %s)\n\n"
- (Names.string_of_id oformula_eq.e_origin.o_hyp)
- (if oformula_eq.e_negated then "yes" else "no") in
-
- let display_system syst =
- Printf.printf "=SYSTEM===================================\n";
- List.iter display_equation syst in
- List.iter display_system syst_list
-
-(* Extraction des prédicats utilisées dans une trace. Permet ensuite le
- calcul des hypothèses *)
-
-let rec hyps_used_in_trace = function
- | act :: l ->
- begin match act with
- | HYP e -> [e.id] @@ (hyps_used_in_trace l)
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- hyps_used_in_trace act1 @@ hyps_used_in_trace act2
- | _ -> hyps_used_in_trace l
- end
- | [] -> []
-
-(* Extraction des variables déclarées dans une équation. Permet ensuite
- de les déclarer dans l'environnement de la procédure réflexive et
- éviter les créations de variable au vol *)
-
-let rec variable_stated_in_trace = function
- | act :: l ->
- begin match act with
- | STATE action ->
- (*i nlle_equa: afine, def: afine, eq_orig: afine, i*)
- (*i coef: int, var:int i*)
- action :: variable_stated_in_trace l
- | SPLIT_INEQ (_,(_,act1),(_,act2)) ->
- variable_stated_in_trace act1 @ variable_stated_in_trace act2
- | _ -> variable_stated_in_trace l
- end
- | [] -> []
-;;
-
-let add_stated_equations env tree =
- (* Il faut trier les variables par ordre d'introduction pour ne pas risquer
- de définir dans le mauvais ordre *)
- let stated_equations =
- let cmpvar x y = Pervasives.(-) x.st_var y.st_var in
- let rec loop = function
- | Tree(_,t1,t2) -> List.merge cmpvar (loop t1) (loop t2)
- | Leaf s -> List.sort cmpvar (variable_stated_in_trace s.s_trace)
- in loop tree
- in
- let add_env st =
- (* On retransforme la définition de v en formule reifiée *)
- let v_def = oformula_of_omega env st.st_def in
- (* Notez que si l'ordre de création des variables n'est pas respecté,
- * ca va planter *)
- let coq_v = coq_of_formula env v_def in
- let v = add_reified_atom coq_v env in
- (* Le terme qu'il va falloir introduire *)
- let term_to_generalize = app coq_refl_equal [|Lazy.force Z.typ; coq_v|] in
- (* sa représentation sous forme d'équation mais non réifié car on n'a pas
- * l'environnement pour le faire correctement *)
- let term_to_reify = (v_def,Oatom v) in
- (* enregistre le lien entre la variable omega et la variable Coq *)
- intern_omega_force env (Oatom v) st.st_var;
- (v, term_to_generalize,term_to_reify,st.st_def.id) in
- List.map add_env stated_equations
-
-(* Calcule la liste des éclatements à réaliser sur les hypothèses
- nécessaires pour extraire une liste d'équations donnée *)
-
-(* PL: experimentally, the result order of the following function seems
- _very_ crucial for efficiency. No idea why. Do not remove the List.rev
- or modify the current semantics of Util.list_union (some elements of first
- arg, then second arg), unless you know what you're doing. *)
-
-let rec get_eclatement env = function
- i :: r ->
- let l = try (get_equation env i).e_depends with Not_found -> [] in
- list_union (List.rev l) (get_eclatement env r)
- | [] -> []
-
-let select_smaller l =
- let comp (_,x) (_,y) = Pervasives.(-) (List.length x) (List.length y) in
- try List.hd (List.sort comp l) with Failure _ -> failwith "select_smaller"
-
-let filter_compatible_systems required systems =
- let rec select = function
- (x::l) ->
- if List.mem x required then select l
- else if List.mem (barre x) required then failwith "Exit"
- else x :: select l
- | [] -> [] in
- map_succeed (function (sol,splits) -> (sol,select splits)) systems
-
-let rec equas_of_solution_tree = function
- Tree(_,t1,t2) -> (equas_of_solution_tree t1)@@(equas_of_solution_tree t2)
- | Leaf s -> s.s_equa_deps
-
-(* [really_useful_prop] pushes useless props in a new Pprop variable *)
-(* Things get shorter, but may also get wrong, since a Prop is considered
- to be undecidable in ReflOmegaCore.concl_to_hyp, whereas for instance
- Pfalse is decidable. So should not be used on conclusion (??) *)
-
-let really_useful_prop l_equa c =
- let rec real_of = function
- Pequa(t,_) -> t
- | Ptrue -> app coq_True [||]
- | Pfalse -> app coq_False [||]
- | Pnot t1 -> app coq_not [|real_of t1|]
- | Por(_,t1,t2) -> app coq_or [|real_of t1; real_of t2|]
- | Pand(_,t1,t2) -> app coq_and [|real_of t1; real_of t2|]
- (* Attention : implications sur le lifting des variables à comprendre ! *)
- | Pimp(_,t1,t2) -> Term.mkArrow (real_of t1) (real_of t2)
- | Pprop t -> t in
- let rec loop c =
- match c with
- Pequa(_,e) ->
- if List.mem e.e_omega.id l_equa then Some c else None
- | Ptrue -> None
- | Pfalse -> None
- | Pnot t1 ->
- begin match loop t1 with None -> None | Some t1' -> Some (Pnot t1') end
- | Por(i,t1,t2) -> binop (fun (t1,t2) -> Por(i,t1,t2)) t1 t2
- | Pand(i,t1,t2) -> binop (fun (t1,t2) -> Pand(i,t1,t2)) t1 t2
- | Pimp(i,t1,t2) -> binop (fun (t1,t2) -> Pimp(i,t1,t2)) t1 t2
- | Pprop t -> None
- and binop f t1 t2 =
- begin match loop t1, loop t2 with
- None, None -> None
- | Some t1',Some t2' -> Some (f(t1',t2'))
- | Some t1',None -> Some (f(t1',Pprop (real_of t2)))
- | None,Some t2' -> Some (f(Pprop (real_of t1),t2'))
- end in
- match loop c with
- None -> Pprop (real_of c)
- | Some t -> t
-
-let rec display_solution_tree ch = function
- Leaf t ->
- output_string ch
- (Printf.sprintf "%d[%s]"
- t.s_index
- (String.concat " " (List.map string_of_int t.s_equa_deps)))
- | Tree(i,t1,t2) ->
- Printf.fprintf ch "S%d(%a,%a)" i
- display_solution_tree t1 display_solution_tree t2
-
-let rec solve_with_constraints all_solutions path =
- let rec build_tree sol buf = function
- [] -> Leaf sol
- | (Left i :: remainder) ->
- Tree(i,
- build_tree sol (Left i :: buf) remainder,
- solve_with_constraints all_solutions (List.rev(Right i :: buf)))
- | (Right i :: remainder) ->
- Tree(i,
- solve_with_constraints all_solutions (List.rev (Left i :: buf)),
- build_tree sol (Right i :: buf) remainder) in
- let weighted = filter_compatible_systems path all_solutions in
- let (winner_sol,winner_deps) =
- try select_smaller weighted
- with e ->
- Printf.printf "%d - %d\n"
- (List.length weighted) (List.length all_solutions);
- List.iter display_depend path; raise e in
- build_tree winner_sol (List.rev path) winner_deps
-
-let find_path {o_hyp=id;o_path=p} env =
- let rec loop_path = function
- ([],l) -> Some l
- | (x1::l1,x2::l2) when x1 = x2 -> loop_path (l1,l2)
- | _ -> None in
- let rec loop_id i = function
- CCHyp{o_hyp=id';o_path=p'} :: l when id = id' ->
- begin match loop_path (p',p) with
- Some r -> i,r
- | None -> loop_id (succ i) l
- end
- | _ :: l -> loop_id (succ i) l
- | [] -> failwith "find_path" in
- loop_id 0 env
-
-let mk_direction_list l =
- let trans = function
- O_left -> coq_d_left | O_right -> coq_d_right | O_mono -> coq_d_mono in
- mk_list (Lazy.force coq_direction) (List.map (fun d-> Lazy.force(trans d)) l)
-
-
-(* \section{Rejouer l'historique} *)
-
-let get_hyp env_hyp i =
- try list_index0 (CCEqua i) env_hyp
- with Not_found -> failwith (Printf.sprintf "get_hyp %d" i)
-
-let replay_history env env_hyp =
- let rec loop env_hyp t =
- match t with
- | CONTRADICTION (e1,e2) :: l ->
- let trace = mk_nat (List.length e1.body) in
- mkApp (Lazy.force coq_s_contradiction,
- [| trace ; mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
- mkApp (Lazy.force coq_s_div_approx,
- [| Z.mk k; Z.mk d;
- reified_of_omega env e2.body e2.constant;
- mk_nat (List.length e2.body);
- loop env_hyp l; mk_nat (get_hyp env_hyp e1.id) |])
- | NOT_EXACT_DIVIDE (e1,k) :: l ->
- let e2_constant = floor_div e1.constant k in
- let d = e1.constant - e2_constant * k in
- let e2_body = map_eq_linear (fun c -> c / k) e1.body in
- mkApp (Lazy.force coq_s_not_exact_divide,
- [|Z.mk k; Z.mk d;
- reified_of_omega env e2_body e2_constant;
- mk_nat (List.length e2_body);
- mk_nat (get_hyp env_hyp e1.id)|])
- | EXACT_DIVIDE (e1,k) :: l ->
- let e2_body =
- map_eq_linear (fun c -> c / k) e1.body in
- let e2_constant = floor_div e1.constant k in
- mkApp (Lazy.force coq_s_exact_divide,
- [|Z.mk k;
- reified_of_omega env e2_body e2_constant;
- mk_nat (List.length e2_body);
- loop env_hyp l; mk_nat (get_hyp env_hyp e1.id)|])
- | (MERGE_EQ(e3,e1,e2)) :: l ->
- let n1 = get_hyp env_hyp e1.id and n2 = get_hyp env_hyp e2 in
- mkApp (Lazy.force coq_s_merge_eq,
- [| mk_nat (List.length e1.body);
- mk_nat n1; mk_nat n2;
- loop (CCEqua e3:: env_hyp) l |])
- | SUM(e3,(k1,e1),(k2,e2)) :: l ->
- let n1 = get_hyp env_hyp e1.id
- and n2 = get_hyp env_hyp e2.id in
- let trace = shuffle_path k1 e1.body k2 e2.body in
- mkApp (Lazy.force coq_s_sum,
- [| Z.mk k1; mk_nat n1; Z.mk k2;
- mk_nat n2; trace; (loop (CCEqua e3 :: env_hyp) l) |])
- | CONSTANT_NOT_NUL(e,k) :: l ->
- mkApp (Lazy.force coq_s_constant_not_nul,
- [| mk_nat (get_hyp env_hyp e) |])
- | CONSTANT_NEG(e,k) :: l ->
- mkApp (Lazy.force coq_s_constant_neg,
- [| mk_nat (get_hyp env_hyp e) |])
- | STATE {st_new_eq=new_eq; st_def =def;
- st_orig=orig; st_coef=m;
- st_var=sigma } :: l ->
- let n1 = get_hyp env_hyp orig.id
- and n2 = get_hyp env_hyp def.id in
- let v = unintern_omega env sigma in
- let o_def = oformula_of_omega env def in
- let o_orig = oformula_of_omega env orig in
- let body =
- Oplus (o_orig,Omult (Oplus (Oopp v,o_def), Oint m)) in
- let trace,_ = normalize_linear_term env body in
- mkApp (Lazy.force coq_s_state,
- [| Z.mk m; trace; mk_nat n1; mk_nat n2;
- loop (CCEqua new_eq.id :: env_hyp) l |])
- | HYP _ :: l -> loop env_hyp l
- | CONSTANT_NUL e :: l ->
- mkApp (Lazy.force coq_s_constant_nul,
- [| mk_nat (get_hyp env_hyp e) |])
- | NEGATE_CONTRADICT(e1,e2,true) :: l ->
- mkApp (Lazy.force coq_s_negate_contradict,
- [| mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | NEGATE_CONTRADICT(e1,e2,false) :: l ->
- mkApp (Lazy.force coq_s_negate_contradict_inv,
- [| mk_nat (List.length e2.body);
- mk_nat (get_hyp env_hyp e1.id);
- mk_nat (get_hyp env_hyp e2.id) |])
- | SPLIT_INEQ(e,(e1,l1),(e2,l2)) :: l ->
- let i = get_hyp env_hyp e.id in
- let r1 = loop (CCEqua e1 :: env_hyp) l1 in
- let r2 = loop (CCEqua e2 :: env_hyp) l2 in
- mkApp (Lazy.force coq_s_split_ineq,
- [| mk_nat (List.length e.body); mk_nat i; r1 ; r2 |])
- | (FORGET_C _ | FORGET _ | FORGET_I _) :: l ->
- loop env_hyp l
- | (WEAKEN _ ) :: l -> failwith "not_treated"
- | [] -> failwith "no contradiction"
- in loop env_hyp
-
-let rec decompose_tree env ctxt = function
- Tree(i,left,right) ->
- let org =
- try Hashtbl.find env.constructors i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find constructor %d" i) in
- let (index,path) = find_path org ctxt in
- let left_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_left]} in
- let right_hyp = CCHyp{o_hyp=org.o_hyp;o_path=org.o_path @ [O_right]} in
- app coq_e_split
- [| mk_nat index;
- mk_direction_list path;
- decompose_tree env (left_hyp::ctxt) left;
- decompose_tree env (right_hyp::ctxt) right |]
- | Leaf s ->
- decompose_tree_hyps s.s_trace env ctxt s.s_equa_deps
-and decompose_tree_hyps trace env ctxt = function
- [] -> app coq_e_solve [| replay_history env ctxt trace |]
- | (i::l) ->
- let equation =
- try Hashtbl.find env.equations i
- with Not_found ->
- failwith (Printf.sprintf "Cannot find equation %d" i) in
- let (index,path) = find_path equation.e_origin ctxt in
- let full_path = if equation.e_negated then path @ [O_mono] else path in
- let cont =
- decompose_tree_hyps trace env
- (CCEqua equation.e_omega.id :: ctxt) l in
- app coq_e_extract [|mk_nat index;
- mk_direction_list full_path;
- cont |]
-
-(* \section{La fonction principale} *)
- (* Cette fonction construit la
-trace pour la procédure de décision réflexive. A partir des résultats
-de l'extraction des systèmes, elle lance la résolution par Omega, puis
-l'extraction d'un ensemble minimal de solutions permettant la
-résolution globale du système et enfin construit la trace qui permet
-de faire rejouer cette solution par la tactique réflexive. *)
-
-let resolution env full_reified_goal systems_list =
- let num = ref 0 in
- let solve_system list_eq =
- let index = !num in
- let system = List.map (fun eq -> eq.e_omega) list_eq in
- let trace =
- simplify_strong
- (new_omega_eq,new_omega_var,display_omega_var)
- system in
- (* calcule les hypotheses utilisées pour la solution *)
- let vars = hyps_used_in_trace trace in
- let splits = get_eclatement env vars in
- if !debug then begin
- Printf.printf "SYSTEME %d\n" index;
- display_action display_omega_var trace;
- print_string "\n Depend :";
- List.iter (fun i -> Printf.printf " %d" i) vars;
- print_string "\n Split points :";
- List.iter display_depend splits;
- Printf.printf "\n------------------------------------\n"
- end;
- incr num;
- {s_index = index; s_trace = trace; s_equa_deps = vars}, splits in
- if !debug then Printf.printf "\n====================================\n";
- let all_solutions = List.map solve_system systems_list in
- let solution_tree = solve_with_constraints all_solutions [] in
- if !debug then begin
- display_solution_tree stdout solution_tree;
- print_newline()
- end;
- (* calcule la liste de toutes les hypothèses utilisées dans l'arbre de solution *)
- let useful_equa_id = equas_of_solution_tree solution_tree in
- (* recupere explicitement ces equations *)
- let equations = List.map (get_equation env) useful_equa_id in
- let l_hyps' = list_uniquize (List.map (fun e -> e.e_origin.o_hyp) equations) in
- let l_hyps = id_concl :: list_remove id_concl l_hyps' in
- let useful_hyps =
- List.map (fun id -> List.assoc id full_reified_goal) l_hyps in
- let useful_vars =
- let really_useful_vars = vars_of_equations equations in
- let concl_vars = vars_of_prop (List.assoc id_concl full_reified_goal) in
- really_useful_vars @@ concl_vars
- in
- (* variables a introduire *)
- let to_introduce = add_stated_equations env solution_tree in
- let stated_vars = List.map (fun (v,_,_,_) -> v) to_introduce in
- let l_generalize_arg = List.map (fun (_,t,_,_) -> t) to_introduce in
- let hyp_stated_vars = List.map (fun (_,_,_,id) -> CCEqua id) to_introduce in
- (* L'environnement de base se construit en deux morceaux :
- - les variables des équations utiles (et de la conclusion)
- - les nouvelles variables declarées durant les preuves *)
- let all_vars_env = useful_vars @ stated_vars in
- let basic_env =
- let rec loop i = function
- var :: l ->
- let t = get_reified_atom env var in
- Hashtbl.add env.real_indices var i; t :: loop (succ i) l
- | [] -> [] in
- loop 0 all_vars_env in
- let env_terms_reified = mk_list (Lazy.force Z.typ) basic_env in
- (* On peut maintenant généraliser le but : env est a jour *)
- let l_reified_stated =
- List.map (fun (_,_,(l,r),_) ->
- app coq_p_eq [| reified_of_formula env l;
- reified_of_formula env r |])
- to_introduce in
- let reified_concl =
- match useful_hyps with
- (Pnot p) :: _ -> reified_of_proposition env p
- | _ -> reified_of_proposition env Pfalse in
- let l_reified_terms =
- (List.map
- (fun p ->
- reified_of_proposition env (really_useful_prop useful_equa_id p))
- (List.tl useful_hyps)) in
- let env_props_reified = mk_plist env.props in
- let reified_goal =
- mk_list (Lazy.force coq_proposition)
- (l_reified_stated @ l_reified_terms) in
- let reified =
- app coq_interp_sequent
- [| reified_concl;env_props_reified;env_terms_reified;reified_goal|] in
- let normalize_equation e =
- let rec loop = function
- [] -> app (if e.e_negated then coq_p_invert else coq_p_step)
- [| e.e_trace |]
- | ((O_left | O_mono) :: l) -> app coq_p_left [| loop l |]
- | (O_right :: l) -> app coq_p_right [| loop l |] in
- let correct_index =
- let i = list_index0 e.e_origin.o_hyp l_hyps in
- (* PL: it seems that additionnally introduced hyps are in the way during
- normalization, hence this index shifting... *)
- if i=0 then 0 else Pervasives.(+) i (List.length to_introduce)
- in
- app coq_pair_step [| mk_nat correct_index; loop e.e_origin.o_path |] in
- let normalization_trace =
- mk_list (Lazy.force coq_h_step) (List.map normalize_equation equations) in
-
- let initial_context =
- List.map (fun id -> CCHyp{o_hyp=id;o_path=[]}) (List.tl l_hyps) in
- let context =
- CCHyp{o_hyp=id_concl;o_path=[]} :: hyp_stated_vars @ initial_context in
- let decompose_tactic = decompose_tree env context solution_tree in
-
- Tactics.generalize
- (l_generalize_arg @ List.map Term.mkVar (List.tl l_hyps)) >>
- Tactics.change_in_concl None reified >>
- Tactics.apply (app coq_do_omega [|decompose_tactic; normalization_trace|]) >>
- show_goal >>
- Tactics.normalise_vm_in_concl >>
- (*i Alternatives to the previous line:
- - Normalisation without VM:
- Tactics.normalise_in_concl
- - Skip the conversion check and rely directly on the QED:
- Tacmach.convert_concl_no_check (Lazy.force coq_True) Term.VMcast >>
- i*)
- Tactics.apply (Lazy.force coq_I)
-
-let total_reflexive_omega_tactic gl =
- Coqlib.check_required_library ["Coq";"romega";"ROmega"];
- rst_omega_eq ();
- rst_omega_var ();
- try
- let env = new_environment () in
- let full_reified_goal = reify_gl env gl in
- let systems_list = destructurate_hyps full_reified_goal in
- if !debug then display_systems systems_list;
- resolution env full_reified_goal systems_list gl
- with NO_CONTRADICTION -> Util.error "ROmega can't solve this system"
-
-
-(*i let tester = Tacmach.hide_atomic_tactic "TestOmega" test_tactic i*)
-
-