diff options
Diffstat (limited to 'contrib/ring/quote.ml')
-rw-r--r-- | contrib/ring/quote.ml | 491 |
1 files changed, 0 insertions, 491 deletions
diff --git a/contrib/ring/quote.ml b/contrib/ring/quote.ml deleted file mode 100644 index 7cd22a36..00000000 --- a/contrib/ring/quote.ml +++ /dev/null @@ -1,491 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(* $Id: quote.ml 10790 2008-04-14 22:34:19Z herbelin $ *) - -(* The `Quote' tactic *) - -(* The basic idea is to automatize the inversion of interpetation functions - in 2-level approach - - Examples are given in \texttt{theories/DEMOS/DemoQuote.v} - - Suppose you have a langage \texttt{L} of 'abstract terms' - and a type \texttt{A} of 'concrete terms' - and a function \texttt{f : L -> (varmap A L) -> A}. - - Then, the tactic \texttt{Quote f} will replace an - expression \texttt{e} of type \texttt{A} by \texttt{(f vm t)} - such that \texttt{e} and \texttt{(f vm t)} are convertible. - - The problem is then inverting the function f. - - The tactic works when: - - \begin{itemize} - \item L is a simple inductive datatype. The constructors of L may - have one of the three following forms: - - \begin{enumerate} - \item ordinary recursive constructors like: \verb|Cplus : L -> L -> L| - \item variable leaf like: \verb|Cvar : index -> L| - \item constant leaf like \verb|Cconst : A -> L| - \end{enumerate} - - The definition of \texttt{L} must contain at most one variable - leaf and at most one constant leaf. - - When there are both a variable leaf and a constant leaf, there is - an ambiguity on inversion. The term t can be either the - interpretation of \texttt{(Cconst t)} or the interpretation of - (\texttt{Cvar}~$i$) in a variables map containing the binding $i - \rightarrow$~\texttt{t}. How to discriminate between these - choices ? - - To solve the dilemma, one gives to \texttt{Quote} a list of - \emph{constant constructors}: a term will be considered as a - constant if it is either a constant constructor of the - application of a constant constructor to constants. For example - the list \verb+[S, O]+ defines the closed natural - numbers. \texttt{(S (S O))} is a constant when \texttt{(S x)} is - not. - - The definition of constants vary for each application of the - tactic, so it can even be different for two applications of - \texttt{Quote} with the same function. - - \item \texttt{f} is a quite simple fixpoint on - \texttt{L}. In particular, \texttt{f} must verify: - -\begin{verbatim} - (f (Cvar i)) = (varmap_find vm default_value i) -\end{verbatim} -\begin{verbatim} - (f (Cconst c)) = c -\end{verbatim} - - where \texttt{index} and \texttt{varmap\_find} are those defined - the \texttt{Quote} module. \emph{The tactic won't work with - user's own variables map !!} It is mandatory to use the - variables map defined in module \texttt{Quote}. - - \end{itemize} - - The method to proceed is then clear: - - \begin{itemize} - \item Start with an empty hashtable of "registed leafs" - that map constr to integers and a "variable counter" equal to 0. - \item Try to match the term with every right hand side of the - definition of f. - - If there is one match, returns the correponding left hand - side and call yourself recursively to get the arguments of this - left hand side. - - If there is no match, we are at a leaf. That is the - interpretation of either a variable or a constant. - - If it is a constant, return \texttt{Cconst} applied to that - constant. - - If not, it is a variable. Look in the hashtable - if this leaf has been already encountered. If not, increment - the variables counter and add an entry to the hashtable; then - return \texttt{(Cvar !variables\_counter)} - \end{itemize} -*) - - -(*i*) -open Pp -open Util -open Names -open Term -open Pattern -open Matching -open Tacmach -open Tactics -open Proof_trees -open Tacexpr -(*i*) - -(*s First, we need to access some Coq constants - We do that lazily, because this code can be linked before - the constants are loaded in the environment *) - -let constant dir s = Coqlib.gen_constant "Quote" ("ring"::dir) s - -let coq_Empty_vm = lazy (constant ["Quote"] "Empty_vm") -let coq_Node_vm = lazy (constant ["Quote"] "Node_vm") -let coq_varmap_find = lazy (constant ["Quote"] "varmap_find") -let coq_Right_idx = lazy (constant ["Quote"] "Right_idx") -let coq_Left_idx = lazy (constant ["Quote"] "Left_idx") -let coq_End_idx = lazy (constant ["Quote"] "End_idx") - -(*s Then comes the stuff to decompose the body of interpetation function - and pre-compute the inversion data. - -For a function like: - -\begin{verbatim} - Fixpoint interp[vm:(varmap Prop); f:form] := - Cases f of - | (f_and f1 f1 f2) => (interp f1)/\(interp f2) - | (f_or f1 f1 f2) => (interp f1)\/(interp f2) - | (f_var i) => (varmap_find Prop default_v i vm) - | (f_const c) => c -\end{verbatim} - -With the constant constructors \texttt{C1}, \dots, \texttt{Cn}, the -corresponding scheme will be: - -\begin{verbatim} - {normal_lhs_rhs = - [ "(f_and ?1 ?2)", "?1 /\ ?2"; - "(f_or ?1 ?2)", " ?1 \/ ?2";]; - return_type = "Prop"; - constants = Some [C1,...Cn]; - variable_lhs = Some "(f_var ?1)"; - constant_lhs = Some "(f_const ?1)" - } -\end{verbatim} - -If there is no constructor for variables in the type \texttt{form}, -then [variable_lhs] is [None]. Idem for constants and -[constant_lhs]. Both cannot be equal to [None]. - -The metas in the RHS must correspond to those in the LHS (one cannot -exchange ?1 and ?2 in the example above) - -*) - -module ConstrSet = Set.Make( - struct - type t = constr - let compare = (Pervasives.compare : t->t->int) - end) - -type inversion_scheme = { - normal_lhs_rhs : (constr * constr_pattern) list; - variable_lhs : constr option; - return_type : constr; - constants : ConstrSet.t; - constant_lhs : constr option } - -(*s [compute_ivs gl f cs] computes the inversion scheme associated to - [f:constr] with constants list [cs:constr list] in the context of - goal [gl]. This function uses the auxiliary functions - [i_can't_do_that], [decomp_term], [compute_lhs] and [compute_rhs]. *) - -let i_can't_do_that () = error "Quote: not a simple fixpoint" - -let decomp_term c = kind_of_term (strip_outer_cast c) - -(*s [compute_lhs typ i nargsi] builds the term \texttt{(C ?nargsi ... - ?2 ?1)}, where \texttt{C} is the [i]-th constructor of inductive - type [typ] *) - -let coerce_meta_out id = - let s = string_of_id id in - int_of_string (String.sub s 1 (String.length s - 1)) -let coerce_meta_in n = - id_of_string ("M" ^ string_of_int n) - -let compute_lhs typ i nargsi = - match kind_of_term typ with - | Ind(sp,0) -> - let argsi = Array.init nargsi (fun j -> mkMeta (nargsi - j)) in - mkApp (mkConstruct ((sp,0),i+1), argsi) - | _ -> i_can't_do_that () - -(*s This function builds the pattern from the RHS. Recursive calls are - replaced by meta-variables ?i corresponding to those in the LHS *) - -let compute_rhs bodyi index_of_f = - let rec aux c = - match kind_of_term c with - | App (j, args) when j = mkRel (index_of_f) (* recursive call *) -> - let i = destRel (array_last args) in - PMeta (Some (coerce_meta_in i)) - | App (f,args) -> - PApp (pattern_of_constr f, Array.map aux args) - | Cast (c,_,_) -> aux c - | _ -> pattern_of_constr c - in - aux bodyi - -(*s Now the function [compute_ivs] itself *) - -let compute_ivs gl f cs = - let cst = try destConst f with _ -> i_can't_do_that () in - let body = Environ.constant_value (Global.env()) cst in - match decomp_term body with - | Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) -> - let (args3, body3) = decompose_lam body2 in - let nargs3 = List.length args3 in - begin match decomp_term body3 with - | Case(_,p,c,lci) -> (* <p> Case c of c1 ... cn end *) - let n_lhs_rhs = ref [] - and v_lhs = ref (None : constr option) - and c_lhs = ref (None : constr option) in - Array.iteri - (fun i ci -> - let argsi, bodyi = decompose_lam ci in - let nargsi = List.length argsi in - (* REL (narg3 + nargsi + 1) is f *) - (* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *) - (* REL 1 to REL nargsi are argsi (reverse order) *) - (* First we test if the RHS is the RHS for constants *) - if bodyi = mkRel 1 then - c_lhs := Some (compute_lhs (snd (List.hd args3)) - i nargsi) - (* Then we test if the RHS is the RHS for variables *) - else begin match decompose_app bodyi with - | vmf, [_; _; a3; a4 ] - when isRel a3 & isRel a4 & - pf_conv_x gl vmf - (Lazy.force coq_varmap_find)-> - v_lhs := Some (compute_lhs - (snd (List.hd args3)) - i nargsi) - (* Third case: this is a normal LHS-RHS *) - | _ -> - n_lhs_rhs := - (compute_lhs (snd (List.hd args3)) i nargsi, - compute_rhs bodyi (nargs3 + nargsi + 1)) - :: !n_lhs_rhs - end) - lci; - - if !c_lhs = None & !v_lhs = None then i_can't_do_that (); - - (* The Cases predicate is a lambda; we assume no dependency *) - let p = match kind_of_term p with - | Lambda (_,_,p) -> Termops.pop p - | _ -> p - in - - { normal_lhs_rhs = List.rev !n_lhs_rhs; - variable_lhs = !v_lhs; - return_type = p; - constants = List.fold_right ConstrSet.add cs ConstrSet.empty; - constant_lhs = !c_lhs } - - | _ -> i_can't_do_that () - end - |_ -> i_can't_do_that () - -(* TODO for that function: -\begin{itemize} -\item handle the case where the return type is an argument of the - function -\item handle the case of simple mutual inductive (for example terms - and lists of terms) formulas with the corresponding mutual - recursvive interpretation functions. -\end{itemize} -*) - -(*s Stuff to build variables map, currently implemented as complete -binary search trees (see file \texttt{Quote.v}) *) - -(* First the function to distinghish between constants (closed terms) - and variables (open terms) *) - -let rec closed_under cset t = - (ConstrSet.mem t cset) or - (match (kind_of_term t) with - | Cast(c,_,_) -> closed_under cset c - | App(f,l) -> closed_under cset f && array_for_all (closed_under cset) l - | _ -> false) - -(*s [btree_of_array [| c1; c2; c3; c4; c5 |]] builds the complete - binary search tree containing the [ci], that is: - -\begin{verbatim} - c1 - / \ - c2 c3 - / \ - c4 c5 -\end{verbatim} - -The second argument is a constr (the common type of the [ci]) -*) - -let btree_of_array a ty = - let size_of_a = Array.length a in - let semi_size_of_a = size_of_a lsr 1 in - let node = Lazy.force coq_Node_vm - and empty = mkApp (Lazy.force coq_Empty_vm, [| ty |]) in - let rec aux n = - if n > size_of_a - then empty - else if n > semi_size_of_a - then mkApp (node, [| ty; a.(n-1); empty; empty |]) - else mkApp (node, [| ty; a.(n-1); aux (2*n); aux (2*n+1) |]) - in - aux 1 - -(*s [btree_of_array] and [path_of_int] verify the following invariant:\\ - {\tt (varmap\_find A dv }[(path_of_int n)] [(btree_of_array a ty)] - = [a.(n)]\\ - [n] must be [> 0] *) - -let path_of_int n = - (* returns the list of digits of n in reverse order with - initial 1 removed *) - let rec digits_of_int n = - if n=1 then [] - else (n mod 2 = 1)::(digits_of_int (n lsr 1)) - in - List.fold_right - (fun b c -> mkApp ((if b then Lazy.force coq_Right_idx - else Lazy.force coq_Left_idx), - [| c |])) - (List.rev (digits_of_int n)) - (Lazy.force coq_End_idx) - -(*s The tactic works with a list of subterms sharing the same - variables map. We need to sort terms in order to avoid than - strange things happen during replacement of terms by their - 'abstract' counterparties. *) - -(* [subterm t t'] tests if constr [t'] occurs in [t] *) -(* This function does not descend under binders (lambda and Cases) *) - -let rec subterm gl (t : constr) (t' : constr) = - (pf_conv_x gl t t') or - (match (kind_of_term t) with - | App (f,args) -> array_exists (fun t -> subterm gl t t') args - | Cast(t,_,_) -> (subterm gl t t') - | _ -> false) - -(*s We want to sort the list according to reverse subterm order. *) -(* Since it's a partial order the algoritm of Sort.list won't work !! *) - -let rec sort_subterm gl l = - let rec insert c = function - | [] -> [c] - | (h::t as l) when c = h -> l (* Avoid doing the same work twice *) - | h::t -> if subterm gl c h then c::h::t else h::(insert c t) - in - match l with - | [] -> [] - | h::t -> insert h (sort_subterm gl t) - -(*s Now we are able to do the inversion itself. - We destructurate the term and use an imperative hashtable - to store leafs that are already encountered. - The type of arguments is:\\ - [ivs : inversion_scheme]\\ - [lc: constr list]\\ - [gl: goal sigma]\\ *) - -let quote_terms ivs lc gl = - Coqlib.check_required_library ["Coq";"ring";"Quote"]; - let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in - let varlist = ref ([] : constr list) in (* list of variables *) - let counter = ref 1 in (* number of variables created + 1 *) - let rec aux c = - let rec auxl l = - match l with - | (lhs, rhs)::tail -> - begin try - let s1 = matches rhs c in - let s2 = List.map (fun (i,c_i) -> (coerce_meta_out i,aux c_i)) s1 - in - Termops.subst_meta s2 lhs - with PatternMatchingFailure -> auxl tail - end - | [] -> - begin match ivs.variable_lhs with - | None -> - begin match ivs.constant_lhs with - | Some c_lhs -> Termops.subst_meta [1, c] c_lhs - | None -> anomaly "invalid inversion scheme for quote" - end - | Some var_lhs -> - begin match ivs.constant_lhs with - | Some c_lhs when closed_under ivs.constants c -> - Termops.subst_meta [1, c] c_lhs - | _ -> - begin - try Hashtbl.find varhash c - with Not_found -> - let newvar = - Termops.subst_meta [1, (path_of_int !counter)] - var_lhs in - begin - incr counter; - varlist := c :: !varlist; - Hashtbl.add varhash c newvar; - newvar - end - end - end - end - in - auxl ivs.normal_lhs_rhs - in - let lp = List.map aux lc in - (lp, (btree_of_array (Array.of_list (List.rev !varlist)) - ivs.return_type )) - -(*s actually we could "quote" a list of terms instead of the - conclusion of current goal. Ring for example needs that, but Ring doesn't - uses Quote yet. *) - -let quote f lid gl = - let f = pf_global gl f in - let cl = List.map (pf_global gl) lid in - let ivs = compute_ivs gl f cl in - let (p, vm) = match quote_terms ivs [(pf_concl gl)] gl with - | [p], vm -> (p,vm) - | _ -> assert false - in - match ivs.variable_lhs with - | None -> Tactics.convert_concl (mkApp (f, [| p |])) DEFAULTcast gl - | Some _ -> Tactics.convert_concl (mkApp (f, [| vm; p |])) DEFAULTcast gl - -(*i - -Just testing ... - -#use "include.ml";; -open Quote;; - -let r = raw_constr_of_string;; - -let ivs = { - normal_lhs_rhs = - [ r "(f_and ?1 ?2)", r "?1/\?2"; - r "(f_not ?1)", r "~?1"]; - variable_lhs = Some (r "(f_atom ?1)"); - return_type = r "Prop"; - constants = ConstrSet.empty; - constant_lhs = (r "nat") -};; - -let t1 = r "True/\(True /\ ~False)";; -let t2 = r "True/\~~False";; - -quote_term ivs () t1;; -quote_term ivs () t2;; - -let ivs2 = - normal_lhs_rhs = - [ r "(f_and ?1 ?2)", r "?1/\?2"; - r "(f_not ?1)", r "~?1" - r "True", r "f_true"]; - variable_lhs = Some (r "(f_atom ?1)"); - return_type = r "Prop"; - constants = ConstrSet.empty; - constant_lhs = (r "nat") - -i*) |