summaryrefslogtreecommitdiff
path: root/contrib/ring/quote.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ring/quote.ml')
-rw-r--r--contrib/ring/quote.ml491
1 files changed, 0 insertions, 491 deletions
diff --git a/contrib/ring/quote.ml b/contrib/ring/quote.ml
deleted file mode 100644
index 7cd22a36..00000000
--- a/contrib/ring/quote.ml
+++ /dev/null
@@ -1,491 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: quote.ml 10790 2008-04-14 22:34:19Z herbelin $ *)
-
-(* The `Quote' tactic *)
-
-(* The basic idea is to automatize the inversion of interpetation functions
- in 2-level approach
-
- Examples are given in \texttt{theories/DEMOS/DemoQuote.v}
-
- Suppose you have a langage \texttt{L} of 'abstract terms'
- and a type \texttt{A} of 'concrete terms'
- and a function \texttt{f : L -> (varmap A L) -> A}.
-
- Then, the tactic \texttt{Quote f} will replace an
- expression \texttt{e} of type \texttt{A} by \texttt{(f vm t)}
- such that \texttt{e} and \texttt{(f vm t)} are convertible.
-
- The problem is then inverting the function f.
-
- The tactic works when:
-
- \begin{itemize}
- \item L is a simple inductive datatype. The constructors of L may
- have one of the three following forms:
-
- \begin{enumerate}
- \item ordinary recursive constructors like: \verb|Cplus : L -> L -> L|
- \item variable leaf like: \verb|Cvar : index -> L|
- \item constant leaf like \verb|Cconst : A -> L|
- \end{enumerate}
-
- The definition of \texttt{L} must contain at most one variable
- leaf and at most one constant leaf.
-
- When there are both a variable leaf and a constant leaf, there is
- an ambiguity on inversion. The term t can be either the
- interpretation of \texttt{(Cconst t)} or the interpretation of
- (\texttt{Cvar}~$i$) in a variables map containing the binding $i
- \rightarrow$~\texttt{t}. How to discriminate between these
- choices ?
-
- To solve the dilemma, one gives to \texttt{Quote} a list of
- \emph{constant constructors}: a term will be considered as a
- constant if it is either a constant constructor of the
- application of a constant constructor to constants. For example
- the list \verb+[S, O]+ defines the closed natural
- numbers. \texttt{(S (S O))} is a constant when \texttt{(S x)} is
- not.
-
- The definition of constants vary for each application of the
- tactic, so it can even be different for two applications of
- \texttt{Quote} with the same function.
-
- \item \texttt{f} is a quite simple fixpoint on
- \texttt{L}. In particular, \texttt{f} must verify:
-
-\begin{verbatim}
- (f (Cvar i)) = (varmap_find vm default_value i)
-\end{verbatim}
-\begin{verbatim}
- (f (Cconst c)) = c
-\end{verbatim}
-
- where \texttt{index} and \texttt{varmap\_find} are those defined
- the \texttt{Quote} module. \emph{The tactic won't work with
- user's own variables map !!} It is mandatory to use the
- variables map defined in module \texttt{Quote}.
-
- \end{itemize}
-
- The method to proceed is then clear:
-
- \begin{itemize}
- \item Start with an empty hashtable of "registed leafs"
- that map constr to integers and a "variable counter" equal to 0.
- \item Try to match the term with every right hand side of the
- definition of f.
-
- If there is one match, returns the correponding left hand
- side and call yourself recursively to get the arguments of this
- left hand side.
-
- If there is no match, we are at a leaf. That is the
- interpretation of either a variable or a constant.
-
- If it is a constant, return \texttt{Cconst} applied to that
- constant.
-
- If not, it is a variable. Look in the hashtable
- if this leaf has been already encountered. If not, increment
- the variables counter and add an entry to the hashtable; then
- return \texttt{(Cvar !variables\_counter)}
- \end{itemize}
-*)
-
-
-(*i*)
-open Pp
-open Util
-open Names
-open Term
-open Pattern
-open Matching
-open Tacmach
-open Tactics
-open Proof_trees
-open Tacexpr
-(*i*)
-
-(*s First, we need to access some Coq constants
- We do that lazily, because this code can be linked before
- the constants are loaded in the environment *)
-
-let constant dir s = Coqlib.gen_constant "Quote" ("ring"::dir) s
-
-let coq_Empty_vm = lazy (constant ["Quote"] "Empty_vm")
-let coq_Node_vm = lazy (constant ["Quote"] "Node_vm")
-let coq_varmap_find = lazy (constant ["Quote"] "varmap_find")
-let coq_Right_idx = lazy (constant ["Quote"] "Right_idx")
-let coq_Left_idx = lazy (constant ["Quote"] "Left_idx")
-let coq_End_idx = lazy (constant ["Quote"] "End_idx")
-
-(*s Then comes the stuff to decompose the body of interpetation function
- and pre-compute the inversion data.
-
-For a function like:
-
-\begin{verbatim}
- Fixpoint interp[vm:(varmap Prop); f:form] :=
- Cases f of
- | (f_and f1 f1 f2) => (interp f1)/\(interp f2)
- | (f_or f1 f1 f2) => (interp f1)\/(interp f2)
- | (f_var i) => (varmap_find Prop default_v i vm)
- | (f_const c) => c
-\end{verbatim}
-
-With the constant constructors \texttt{C1}, \dots, \texttt{Cn}, the
-corresponding scheme will be:
-
-\begin{verbatim}
- {normal_lhs_rhs =
- [ "(f_and ?1 ?2)", "?1 /\ ?2";
- "(f_or ?1 ?2)", " ?1 \/ ?2";];
- return_type = "Prop";
- constants = Some [C1,...Cn];
- variable_lhs = Some "(f_var ?1)";
- constant_lhs = Some "(f_const ?1)"
- }
-\end{verbatim}
-
-If there is no constructor for variables in the type \texttt{form},
-then [variable_lhs] is [None]. Idem for constants and
-[constant_lhs]. Both cannot be equal to [None].
-
-The metas in the RHS must correspond to those in the LHS (one cannot
-exchange ?1 and ?2 in the example above)
-
-*)
-
-module ConstrSet = Set.Make(
- struct
- type t = constr
- let compare = (Pervasives.compare : t->t->int)
- end)
-
-type inversion_scheme = {
- normal_lhs_rhs : (constr * constr_pattern) list;
- variable_lhs : constr option;
- return_type : constr;
- constants : ConstrSet.t;
- constant_lhs : constr option }
-
-(*s [compute_ivs gl f cs] computes the inversion scheme associated to
- [f:constr] with constants list [cs:constr list] in the context of
- goal [gl]. This function uses the auxiliary functions
- [i_can't_do_that], [decomp_term], [compute_lhs] and [compute_rhs]. *)
-
-let i_can't_do_that () = error "Quote: not a simple fixpoint"
-
-let decomp_term c = kind_of_term (strip_outer_cast c)
-
-(*s [compute_lhs typ i nargsi] builds the term \texttt{(C ?nargsi ...
- ?2 ?1)}, where \texttt{C} is the [i]-th constructor of inductive
- type [typ] *)
-
-let coerce_meta_out id =
- let s = string_of_id id in
- int_of_string (String.sub s 1 (String.length s - 1))
-let coerce_meta_in n =
- id_of_string ("M" ^ string_of_int n)
-
-let compute_lhs typ i nargsi =
- match kind_of_term typ with
- | Ind(sp,0) ->
- let argsi = Array.init nargsi (fun j -> mkMeta (nargsi - j)) in
- mkApp (mkConstruct ((sp,0),i+1), argsi)
- | _ -> i_can't_do_that ()
-
-(*s This function builds the pattern from the RHS. Recursive calls are
- replaced by meta-variables ?i corresponding to those in the LHS *)
-
-let compute_rhs bodyi index_of_f =
- let rec aux c =
- match kind_of_term c with
- | App (j, args) when j = mkRel (index_of_f) (* recursive call *) ->
- let i = destRel (array_last args) in
- PMeta (Some (coerce_meta_in i))
- | App (f,args) ->
- PApp (pattern_of_constr f, Array.map aux args)
- | Cast (c,_,_) -> aux c
- | _ -> pattern_of_constr c
- in
- aux bodyi
-
-(*s Now the function [compute_ivs] itself *)
-
-let compute_ivs gl f cs =
- let cst = try destConst f with _ -> i_can't_do_that () in
- let body = Environ.constant_value (Global.env()) cst in
- match decomp_term body with
- | Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) ->
- let (args3, body3) = decompose_lam body2 in
- let nargs3 = List.length args3 in
- begin match decomp_term body3 with
- | Case(_,p,c,lci) -> (* <p> Case c of c1 ... cn end *)
- let n_lhs_rhs = ref []
- and v_lhs = ref (None : constr option)
- and c_lhs = ref (None : constr option) in
- Array.iteri
- (fun i ci ->
- let argsi, bodyi = decompose_lam ci in
- let nargsi = List.length argsi in
- (* REL (narg3 + nargsi + 1) is f *)
- (* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *)
- (* REL 1 to REL nargsi are argsi (reverse order) *)
- (* First we test if the RHS is the RHS for constants *)
- if bodyi = mkRel 1 then
- c_lhs := Some (compute_lhs (snd (List.hd args3))
- i nargsi)
- (* Then we test if the RHS is the RHS for variables *)
- else begin match decompose_app bodyi with
- | vmf, [_; _; a3; a4 ]
- when isRel a3 & isRel a4 &
- pf_conv_x gl vmf
- (Lazy.force coq_varmap_find)->
- v_lhs := Some (compute_lhs
- (snd (List.hd args3))
- i nargsi)
- (* Third case: this is a normal LHS-RHS *)
- | _ ->
- n_lhs_rhs :=
- (compute_lhs (snd (List.hd args3)) i nargsi,
- compute_rhs bodyi (nargs3 + nargsi + 1))
- :: !n_lhs_rhs
- end)
- lci;
-
- if !c_lhs = None & !v_lhs = None then i_can't_do_that ();
-
- (* The Cases predicate is a lambda; we assume no dependency *)
- let p = match kind_of_term p with
- | Lambda (_,_,p) -> Termops.pop p
- | _ -> p
- in
-
- { normal_lhs_rhs = List.rev !n_lhs_rhs;
- variable_lhs = !v_lhs;
- return_type = p;
- constants = List.fold_right ConstrSet.add cs ConstrSet.empty;
- constant_lhs = !c_lhs }
-
- | _ -> i_can't_do_that ()
- end
- |_ -> i_can't_do_that ()
-
-(* TODO for that function:
-\begin{itemize}
-\item handle the case where the return type is an argument of the
- function
-\item handle the case of simple mutual inductive (for example terms
- and lists of terms) formulas with the corresponding mutual
- recursvive interpretation functions.
-\end{itemize}
-*)
-
-(*s Stuff to build variables map, currently implemented as complete
-binary search trees (see file \texttt{Quote.v}) *)
-
-(* First the function to distinghish between constants (closed terms)
- and variables (open terms) *)
-
-let rec closed_under cset t =
- (ConstrSet.mem t cset) or
- (match (kind_of_term t) with
- | Cast(c,_,_) -> closed_under cset c
- | App(f,l) -> closed_under cset f && array_for_all (closed_under cset) l
- | _ -> false)
-
-(*s [btree_of_array [| c1; c2; c3; c4; c5 |]] builds the complete
- binary search tree containing the [ci], that is:
-
-\begin{verbatim}
- c1
- / \
- c2 c3
- / \
- c4 c5
-\end{verbatim}
-
-The second argument is a constr (the common type of the [ci])
-*)
-
-let btree_of_array a ty =
- let size_of_a = Array.length a in
- let semi_size_of_a = size_of_a lsr 1 in
- let node = Lazy.force coq_Node_vm
- and empty = mkApp (Lazy.force coq_Empty_vm, [| ty |]) in
- let rec aux n =
- if n > size_of_a
- then empty
- else if n > semi_size_of_a
- then mkApp (node, [| ty; a.(n-1); empty; empty |])
- else mkApp (node, [| ty; a.(n-1); aux (2*n); aux (2*n+1) |])
- in
- aux 1
-
-(*s [btree_of_array] and [path_of_int] verify the following invariant:\\
- {\tt (varmap\_find A dv }[(path_of_int n)] [(btree_of_array a ty)]
- = [a.(n)]\\
- [n] must be [> 0] *)
-
-let path_of_int n =
- (* returns the list of digits of n in reverse order with
- initial 1 removed *)
- let rec digits_of_int n =
- if n=1 then []
- else (n mod 2 = 1)::(digits_of_int (n lsr 1))
- in
- List.fold_right
- (fun b c -> mkApp ((if b then Lazy.force coq_Right_idx
- else Lazy.force coq_Left_idx),
- [| c |]))
- (List.rev (digits_of_int n))
- (Lazy.force coq_End_idx)
-
-(*s The tactic works with a list of subterms sharing the same
- variables map. We need to sort terms in order to avoid than
- strange things happen during replacement of terms by their
- 'abstract' counterparties. *)
-
-(* [subterm t t'] tests if constr [t'] occurs in [t] *)
-(* This function does not descend under binders (lambda and Cases) *)
-
-let rec subterm gl (t : constr) (t' : constr) =
- (pf_conv_x gl t t') or
- (match (kind_of_term t) with
- | App (f,args) -> array_exists (fun t -> subterm gl t t') args
- | Cast(t,_,_) -> (subterm gl t t')
- | _ -> false)
-
-(*s We want to sort the list according to reverse subterm order. *)
-(* Since it's a partial order the algoritm of Sort.list won't work !! *)
-
-let rec sort_subterm gl l =
- let rec insert c = function
- | [] -> [c]
- | (h::t as l) when c = h -> l (* Avoid doing the same work twice *)
- | h::t -> if subterm gl c h then c::h::t else h::(insert c t)
- in
- match l with
- | [] -> []
- | h::t -> insert h (sort_subterm gl t)
-
-(*s Now we are able to do the inversion itself.
- We destructurate the term and use an imperative hashtable
- to store leafs that are already encountered.
- The type of arguments is:\\
- [ivs : inversion_scheme]\\
- [lc: constr list]\\
- [gl: goal sigma]\\ *)
-
-let quote_terms ivs lc gl =
- Coqlib.check_required_library ["Coq";"ring";"Quote"];
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
- let varlist = ref ([] : constr list) in (* list of variables *)
- let counter = ref 1 in (* number of variables created + 1 *)
- let rec aux c =
- let rec auxl l =
- match l with
- | (lhs, rhs)::tail ->
- begin try
- let s1 = matches rhs c in
- let s2 = List.map (fun (i,c_i) -> (coerce_meta_out i,aux c_i)) s1
- in
- Termops.subst_meta s2 lhs
- with PatternMatchingFailure -> auxl tail
- end
- | [] ->
- begin match ivs.variable_lhs with
- | None ->
- begin match ivs.constant_lhs with
- | Some c_lhs -> Termops.subst_meta [1, c] c_lhs
- | None -> anomaly "invalid inversion scheme for quote"
- end
- | Some var_lhs ->
- begin match ivs.constant_lhs with
- | Some c_lhs when closed_under ivs.constants c ->
- Termops.subst_meta [1, c] c_lhs
- | _ ->
- begin
- try Hashtbl.find varhash c
- with Not_found ->
- let newvar =
- Termops.subst_meta [1, (path_of_int !counter)]
- var_lhs in
- begin
- incr counter;
- varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
- newvar
- end
- end
- end
- end
- in
- auxl ivs.normal_lhs_rhs
- in
- let lp = List.map aux lc in
- (lp, (btree_of_array (Array.of_list (List.rev !varlist))
- ivs.return_type ))
-
-(*s actually we could "quote" a list of terms instead of the
- conclusion of current goal. Ring for example needs that, but Ring doesn't
- uses Quote yet. *)
-
-let quote f lid gl =
- let f = pf_global gl f in
- let cl = List.map (pf_global gl) lid in
- let ivs = compute_ivs gl f cl in
- let (p, vm) = match quote_terms ivs [(pf_concl gl)] gl with
- | [p], vm -> (p,vm)
- | _ -> assert false
- in
- match ivs.variable_lhs with
- | None -> Tactics.convert_concl (mkApp (f, [| p |])) DEFAULTcast gl
- | Some _ -> Tactics.convert_concl (mkApp (f, [| vm; p |])) DEFAULTcast gl
-
-(*i
-
-Just testing ...
-
-#use "include.ml";;
-open Quote;;
-
-let r = raw_constr_of_string;;
-
-let ivs = {
- normal_lhs_rhs =
- [ r "(f_and ?1 ?2)", r "?1/\?2";
- r "(f_not ?1)", r "~?1"];
- variable_lhs = Some (r "(f_atom ?1)");
- return_type = r "Prop";
- constants = ConstrSet.empty;
- constant_lhs = (r "nat")
-};;
-
-let t1 = r "True/\(True /\ ~False)";;
-let t2 = r "True/\~~False";;
-
-quote_term ivs () t1;;
-quote_term ivs () t2;;
-
-let ivs2 =
- normal_lhs_rhs =
- [ r "(f_and ?1 ?2)", r "?1/\?2";
- r "(f_not ?1)", r "~?1"
- r "True", r "f_true"];
- variable_lhs = Some (r "(f_atom ?1)");
- return_type = r "Prop";
- constants = ConstrSet.empty;
- constant_lhs = (r "nat")
-
-i*)