summaryrefslogtreecommitdiff
path: root/contrib/ring/LegacyRing_theory.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ring/LegacyRing_theory.v')
-rw-r--r--contrib/ring/LegacyRing_theory.v376
1 files changed, 0 insertions, 376 deletions
diff --git a/contrib/ring/LegacyRing_theory.v b/contrib/ring/LegacyRing_theory.v
deleted file mode 100644
index d15d18a6..00000000
--- a/contrib/ring/LegacyRing_theory.v
+++ /dev/null
@@ -1,376 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(* $Id: LegacyRing_theory.v 9370 2006-11-13 09:21:31Z herbelin $ *)
-
-Require Export Bool.
-
-Set Implicit Arguments.
-
-Section Theory_of_semi_rings.
-
-Variable A : Type.
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-(* There is also a "weakly decidable" equality on A. That means
- that if (A_eq x y)=true then x=y but x=y can arise when
- (A_eq x y)=false. On an abstract ring the function [x,y:A]false
- is a good choice. The proof of A_eq_prop is in this case easy. *)
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-
-Record Semi_Ring_Theory : Prop :=
- {SR_plus_comm : forall n m:A, n + m = m + n;
- SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
- SR_mult_comm : forall n m:A, n * m = m * n;
- SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
- SR_plus_zero_left : forall n:A, 0 + n = n;
- SR_mult_one_left : forall n:A, 1 * n = n;
- SR_mult_zero_left : forall n:A, 0 * n = 0;
- SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
-(* SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;*)
- SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
-
-Variable T : Semi_Ring_Theory.
-
-Let plus_comm := SR_plus_comm T.
-Let plus_assoc := SR_plus_assoc T.
-Let mult_comm := SR_mult_comm T.
-Let mult_assoc := SR_mult_assoc T.
-Let plus_zero_left := SR_plus_zero_left T.
-Let mult_one_left := SR_mult_one_left T.
-Let mult_zero_left := SR_mult_zero_left T.
-Let distr_left := SR_distr_left T.
-(*Let plus_reg_left := SR_plus_reg_left T.*)
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left mult_zero_left distr_left (*plus_reg_left*).
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
-
-Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
-intros.
-rewrite plus_assoc.
-elim (plus_comm m n).
-rewrite <- plus_assoc.
-reflexivity.
-Qed.
-
-Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
-intros.
-rewrite mult_assoc.
-elim (mult_comm m n).
-rewrite <- mult_assoc.
-reflexivity.
-Qed.
-
-Hint Resolve SR_plus_permute SR_mult_permute.
-
-Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
-intros.
-repeat rewrite (mult_comm n).
-eauto.
-Qed.
-
-Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply SR_distr_right. Qed.
-
-Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
-intro; rewrite mult_comm; eauto.
-Qed.
-
-Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
-intro; rewrite mult_comm; eauto.
-Qed.
-
-Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
-intro; rewrite plus_comm; eauto.
-Qed.
-Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma SR_mult_one_right : forall n:A, n * 1 = n.
-intro; elim mult_comm; auto.
-Qed.
-
-Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
-intro; elim mult_comm; auto.
-Qed.
-(*
-Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
-intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
-Qed.
-*)
-End Theory_of_semi_rings.
-
-Section Theory_of_rings.
-
-Variable A : Type.
-
-Variable Aplus : A -> A -> A.
-Variable Amult : A -> A -> A.
-Variable Aone : A.
-Variable Azero : A.
-Variable Aopp : A -> A.
-Variable Aeq : A -> A -> bool.
-
-Infix "+" := Aplus (at level 50, left associativity).
-Infix "*" := Amult (at level 40, left associativity).
-Notation "0" := Azero.
-Notation "1" := Aone.
-Notation "- x" := (Aopp x).
-
-Record Ring_Theory : Prop :=
- {Th_plus_comm : forall n m:A, n + m = m + n;
- Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
- Th_mult_comm : forall n m:A, n * m = m * n;
- Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
- Th_plus_zero_left : forall n:A, 0 + n = n;
- Th_mult_one_left : forall n:A, 1 * n = n;
- Th_opp_def : forall n:A, n + - n = 0;
- Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
- Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
-
-Variable T : Ring_Theory.
-
-Let plus_comm := Th_plus_comm T.
-Let plus_assoc := Th_plus_assoc T.
-Let mult_comm := Th_mult_comm T.
-Let mult_assoc := Th_mult_assoc T.
-Let plus_zero_left := Th_plus_zero_left T.
-Let mult_one_left := Th_mult_one_left T.
-Let opp_def := Th_opp_def T.
-Let distr_left := Th_distr_left T.
-
-Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
- mult_one_left opp_def distr_left.
-
-(* Lemmas whose form is x=y are also provided in form y=x because Auto does
- not symmetry *)
-Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
-intros.
-rewrite plus_assoc.
-elim (plus_comm m n).
-rewrite <- plus_assoc.
-reflexivity.
-Qed.
-
-Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
-intros.
-rewrite mult_assoc.
-elim (mult_comm m n).
-rewrite <- mult_assoc.
-reflexivity.
-Qed.
-
-Hint Resolve Th_plus_permute Th_mult_permute.
-
-Lemma aux1 : forall a:A, a + a = a -> a = 0.
-intros.
-generalize (opp_def a).
-pattern a at 1 in |- *.
-rewrite <- H.
-rewrite <- plus_assoc.
-rewrite opp_def.
-elim plus_comm.
-rewrite plus_zero_left.
-trivial.
-Qed.
-
-Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
-intros.
-apply aux1.
-rewrite <- distr_left.
-rewrite plus_zero_left.
-reflexivity.
-Qed.
-Hint Resolve Th_mult_zero_left.
-
-Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
-
-Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
-intros.
-rewrite <- (plus_zero_left y).
-elim H0.
-elim plus_assoc.
-elim (plus_comm y z).
-rewrite plus_assoc.
-rewrite H.
-rewrite plus_zero_left.
-reflexivity.
-Qed.
-
-Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
-intros.
-apply (aux2 (x:=(x * y)));
- [ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
-Qed.
-Hint Resolve Th_opp_mult_left.
-
-Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
-intro; rewrite plus_comm; eauto.
-Qed.
-
-Lemma Th_mult_one_right : forall n:A, n * 1 = n.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
-intro; elim mult_comm; eauto.
-Qed.
-
-Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
-intros; do 2 rewrite (mult_comm x); auto.
-Qed.
-
-Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
-intros; do 2 rewrite (mult_comm x); auto.
-Qed.
-
-Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
-intros.
-apply (aux2 (x:=(x + y)));
- [ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
- rewrite opp_def; rewrite plus_zero_left; auto
- | auto ].
-Qed.
-
-Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
-eauto. Qed.
-
-Lemma Th_opp_opp : forall n:A, - - n = n.
-intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
-Qed.
-Hint Resolve Th_opp_opp.
-
-Lemma Th_opp_opp2 : forall n:A, n = - - n.
-symmetry in |- *; eauto. Qed.
-
-Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
-intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
-Qed.
-
-Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
-symmetry in |- *; apply Th_mult_opp_opp. Qed.
-
-Lemma Th_opp_zero : - 0 = 0.
-rewrite <- (plus_zero_left (- 0)).
-auto. Qed.
-(*
-Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
-intros; generalize (f_equal (fun z => - n + z) H).
-repeat rewrite plus_assoc.
-rewrite (plus_comm (- n) n).
-rewrite opp_def.
-repeat rewrite Th_plus_zero_left; eauto.
-Qed.
-
-Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
-intros.
-eapply Th_plus_reg_left with n.
-rewrite (plus_comm n m).
-rewrite (plus_comm n p).
-auto.
-Qed.
-*)
-Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
-intros.
-repeat rewrite (mult_comm n).
-eauto.
-Qed.
-
-Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply Th_distr_right.
-Qed.
-
-End Theory_of_rings.
-
-Hint Resolve Th_mult_zero_left (*Th_plus_reg_left*): core.
-
-Unset Implicit Arguments.
-
-Definition Semi_Ring_Theory_of :
- forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
- (Aopp:A -> A) (Aeq:A -> A -> bool),
- Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
- Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
-intros until 1; case H.
-split; intros; simpl in |- *; eauto.
-Defined.
-
-(* Every ring can be viewed as a semi-ring : this property will be used
- in Abstract_polynom. *)
-Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
-
-
-Section product_ring.
-
-End product_ring.
-
-Section power_ring.
-
-End power_ring.