diff options
Diffstat (limited to 'contrib/omega/coq_omega.ml')
-rw-r--r-- | contrib/omega/coq_omega.ml | 1824 |
1 files changed, 0 insertions, 1824 deletions
diff --git a/contrib/omega/coq_omega.ml b/contrib/omega/coq_omega.ml deleted file mode 100644 index 58873c2d..00000000 --- a/contrib/omega/coq_omega.ml +++ /dev/null @@ -1,1824 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(**************************************************************************) -(* *) -(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *) -(* *) -(* Pierre Crégut (CNET, Lannion, France) *) -(* *) -(**************************************************************************) - -(* $Id: coq_omega.ml 11735 2009-01-02 17:22:31Z herbelin $ *) - -open Util -open Pp -open Reduction -open Proof_type -open Names -open Nameops -open Term -open Termops -open Declarations -open Environ -open Sign -open Inductive -open Tacticals -open Tacmach -open Evar_refiner -open Tactics -open Clenv -open Logic -open Libnames -open Nametab -open Contradiction - -module OmegaSolver = Omega.MakeOmegaSolver (Bigint) -open OmegaSolver - -(* Added by JCF, 09/03/98 *) - -let elim_id id gl = simplest_elim (pf_global gl id) gl -let resolve_id id gl = apply (pf_global gl id) gl - -let timing timer_name f arg = f arg - -let display_time_flag = ref false -let display_system_flag = ref false -let display_action_flag = ref false -let old_style_flag = ref false - -let read f () = !f -let write f x = f:=x - -open Goptions - -let _ = - declare_bool_option - { optsync = false; - optname = "Omega system time displaying flag"; - optkey = SecondaryTable ("Omega","System"); - optread = read display_system_flag; - optwrite = write display_system_flag } - -let _ = - declare_bool_option - { optsync = false; - optname = "Omega action display flag"; - optkey = SecondaryTable ("Omega","Action"); - optread = read display_action_flag; - optwrite = write display_action_flag } - -let _ = - declare_bool_option - { optsync = false; - optname = "Omega old style flag"; - optkey = SecondaryTable ("Omega","OldStyle"); - optread = read old_style_flag; - optwrite = write old_style_flag } - - -let all_time = timing "Omega " -let solver_time = timing "Solver " -let exact_time = timing "Rewrites " -let elim_time = timing "Elim " -let simpl_time = timing "Simpl " -let generalize_time = timing "Generalize" - -let new_identifier = - let cpt = ref 0 in - (fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s) - -let new_identifier_state = - let cpt = ref 0 in - (fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s) - -let new_identifier_var = - let cpt = ref 0 in - (fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s) - -let new_id = - let cpt = ref 0 in fun () -> incr cpt; !cpt - -let new_var_num = - let cpt = ref 1000 in (fun () -> incr cpt; !cpt) - -let new_var = - let cpt = ref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt) - -let display_var i = Printf.sprintf "X%d" i - -let intern_id,unintern_id = - let cpt = ref 0 in - let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in - (fun (name : identifier) -> - try Hashtbl.find table name with Not_found -> - let idx = !cpt in - Hashtbl.add table name idx; - Hashtbl.add co_table idx name; - incr cpt; idx), - (fun idx -> - try Hashtbl.find co_table idx with Not_found -> - let v = new_var () in - Hashtbl.add table v idx; Hashtbl.add co_table idx v; v) - -let mk_then = tclTHENLIST - -let exists_tac c = constructor_tac false (Some 1) 1 (Rawterm.ImplicitBindings [c]) - -let generalize_tac t = generalize_time (generalize t) -let elim t = elim_time (simplest_elim t) -let exact t = exact_time (Tactics.refine t) -let unfold s = Tactics.unfold_in_concl [all_occurrences, Lazy.force s] - -let rev_assoc k = - let rec loop = function - | [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l - in - loop - -let tag_hypothesis,tag_of_hyp, hyp_of_tag = - let l = ref ([]:(identifier * int) list) in - (fun h id -> l := (h,id):: !l), - (fun h -> try List.assoc h !l with Not_found -> failwith "tag_hypothesis"), - (fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis") - -let hide_constr,find_constr,clear_tables,dump_tables = - let l = ref ([]:(constr * (identifier * identifier * bool)) list) in - (fun h id eg b -> l := (h,(id,eg,b)):: !l), - (fun h -> try List.assoc h !l with Not_found -> failwith "find_contr"), - (fun () -> l := []), - (fun () -> !l) - -(* Lazy evaluation is used for Coq constants, because this code - is evaluated before the compiled modules are loaded. - To use the constant Zplus, one must type "Lazy.force coq_Zplus" - This is the right way to access to Coq constants in tactics ML code *) - -open Coqlib - -let logic_dir = ["Coq";"Logic";"Decidable"] -let init_arith_modules = init_modules @ arith_modules -let coq_modules = - init_arith_modules @ [logic_dir] @ zarith_base_modules - @ [["Coq"; "omega"; "OmegaLemmas"]] - -let init_arith_constant = gen_constant_in_modules "Omega" init_arith_modules -let constant = gen_constant_in_modules "Omega" coq_modules - -(* Zarith *) -let coq_xH = lazy (constant "xH") -let coq_xO = lazy (constant "xO") -let coq_xI = lazy (constant "xI") -let coq_Z0 = lazy (constant "Z0") -let coq_Zpos = lazy (constant "Zpos") -let coq_Zneg = lazy (constant "Zneg") -let coq_Z = lazy (constant "Z") -let coq_comparison = lazy (constant "comparison") -let coq_Gt = lazy (constant "Gt") -let coq_Zplus = lazy (constant "Zplus") -let coq_Zmult = lazy (constant "Zmult") -let coq_Zopp = lazy (constant "Zopp") -let coq_Zminus = lazy (constant "Zminus") -let coq_Zsucc = lazy (constant "Zsucc") -let coq_Zgt = lazy (constant "Zgt") -let coq_Zle = lazy (constant "Zle") -let coq_Z_of_nat = lazy (constant "Z_of_nat") -let coq_inj_plus = lazy (constant "inj_plus") -let coq_inj_mult = lazy (constant "inj_mult") -let coq_inj_minus1 = lazy (constant "inj_minus1") -let coq_inj_minus2 = lazy (constant "inj_minus2") -let coq_inj_S = lazy (constant "inj_S") -let coq_inj_le = lazy (constant "inj_le") -let coq_inj_lt = lazy (constant "inj_lt") -let coq_inj_ge = lazy (constant "inj_ge") -let coq_inj_gt = lazy (constant "inj_gt") -let coq_inj_neq = lazy (constant "inj_neq") -let coq_inj_eq = lazy (constant "inj_eq") -let coq_fast_Zplus_assoc_reverse = lazy (constant "fast_Zplus_assoc_reverse") -let coq_fast_Zplus_assoc = lazy (constant "fast_Zplus_assoc") -let coq_fast_Zmult_assoc_reverse = lazy (constant "fast_Zmult_assoc_reverse") -let coq_fast_Zplus_permute = lazy (constant "fast_Zplus_permute") -let coq_fast_Zplus_comm = lazy (constant "fast_Zplus_comm") -let coq_fast_Zmult_comm = lazy (constant "fast_Zmult_comm") -let coq_Zmult_le_approx = lazy (constant "Zmult_le_approx") -let coq_OMEGA1 = lazy (constant "OMEGA1") -let coq_OMEGA2 = lazy (constant "OMEGA2") -let coq_OMEGA3 = lazy (constant "OMEGA3") -let coq_OMEGA4 = lazy (constant "OMEGA4") -let coq_OMEGA5 = lazy (constant "OMEGA5") -let coq_OMEGA6 = lazy (constant "OMEGA6") -let coq_OMEGA7 = lazy (constant "OMEGA7") -let coq_OMEGA8 = lazy (constant "OMEGA8") -let coq_OMEGA9 = lazy (constant "OMEGA9") -let coq_fast_OMEGA10 = lazy (constant "fast_OMEGA10") -let coq_fast_OMEGA11 = lazy (constant "fast_OMEGA11") -let coq_fast_OMEGA12 = lazy (constant "fast_OMEGA12") -let coq_fast_OMEGA13 = lazy (constant "fast_OMEGA13") -let coq_fast_OMEGA14 = lazy (constant "fast_OMEGA14") -let coq_fast_OMEGA15 = lazy (constant "fast_OMEGA15") -let coq_fast_OMEGA16 = lazy (constant "fast_OMEGA16") -let coq_OMEGA17 = lazy (constant "OMEGA17") -let coq_OMEGA18 = lazy (constant "OMEGA18") -let coq_OMEGA19 = lazy (constant "OMEGA19") -let coq_OMEGA20 = lazy (constant "OMEGA20") -let coq_fast_Zred_factor0 = lazy (constant "fast_Zred_factor0") -let coq_fast_Zred_factor1 = lazy (constant "fast_Zred_factor1") -let coq_fast_Zred_factor2 = lazy (constant "fast_Zred_factor2") -let coq_fast_Zred_factor3 = lazy (constant "fast_Zred_factor3") -let coq_fast_Zred_factor4 = lazy (constant "fast_Zred_factor4") -let coq_fast_Zred_factor5 = lazy (constant "fast_Zred_factor5") -let coq_fast_Zred_factor6 = lazy (constant "fast_Zred_factor6") -let coq_fast_Zmult_plus_distr_l = lazy (constant "fast_Zmult_plus_distr_l") -let coq_fast_Zmult_opp_comm = lazy (constant "fast_Zmult_opp_comm") -let coq_fast_Zopp_plus_distr = lazy (constant "fast_Zopp_plus_distr") -let coq_fast_Zopp_mult_distr_r = lazy (constant "fast_Zopp_mult_distr_r") -let coq_fast_Zopp_eq_mult_neg_1 = lazy (constant "fast_Zopp_eq_mult_neg_1") -let coq_fast_Zopp_involutive = lazy (constant "fast_Zopp_involutive") -let coq_Zegal_left = lazy (constant "Zegal_left") -let coq_Zne_left = lazy (constant "Zne_left") -let coq_Zlt_left = lazy (constant "Zlt_left") -let coq_Zge_left = lazy (constant "Zge_left") -let coq_Zgt_left = lazy (constant "Zgt_left") -let coq_Zle_left = lazy (constant "Zle_left") -let coq_new_var = lazy (constant "new_var") -let coq_intro_Z = lazy (constant "intro_Z") - -let coq_dec_eq = lazy (constant "dec_eq") -let coq_dec_Zne = lazy (constant "dec_Zne") -let coq_dec_Zle = lazy (constant "dec_Zle") -let coq_dec_Zlt = lazy (constant "dec_Zlt") -let coq_dec_Zgt = lazy (constant "dec_Zgt") -let coq_dec_Zge = lazy (constant "dec_Zge") - -let coq_not_Zeq = lazy (constant "not_Zeq") -let coq_Znot_le_gt = lazy (constant "Znot_le_gt") -let coq_Znot_lt_ge = lazy (constant "Znot_lt_ge") -let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt") -let coq_Znot_gt_le = lazy (constant "Znot_gt_le") -let coq_neq = lazy (constant "neq") -let coq_Zne = lazy (constant "Zne") -let coq_Zle = lazy (constant "Zle") -let coq_Zgt = lazy (constant "Zgt") -let coq_Zge = lazy (constant "Zge") -let coq_Zlt = lazy (constant "Zlt") - -(* Peano/Datatypes *) -let coq_le = lazy (init_arith_constant "le") -let coq_lt = lazy (init_arith_constant "lt") -let coq_ge = lazy (init_arith_constant "ge") -let coq_gt = lazy (init_arith_constant "gt") -let coq_minus = lazy (init_arith_constant "minus") -let coq_plus = lazy (init_arith_constant "plus") -let coq_mult = lazy (init_arith_constant "mult") -let coq_pred = lazy (init_arith_constant "pred") -let coq_nat = lazy (init_arith_constant "nat") -let coq_S = lazy (init_arith_constant "S") -let coq_O = lazy (init_arith_constant "O") - -(* Compare_dec/Peano_dec/Minus *) -let coq_pred_of_minus = lazy (constant "pred_of_minus") -let coq_le_gt_dec = lazy (constant "le_gt_dec") -let coq_dec_eq_nat = lazy (constant "dec_eq_nat") -let coq_dec_le = lazy (constant "dec_le") -let coq_dec_lt = lazy (constant "dec_lt") -let coq_dec_ge = lazy (constant "dec_ge") -let coq_dec_gt = lazy (constant "dec_gt") -let coq_not_eq = lazy (constant "not_eq") -let coq_not_le = lazy (constant "not_le") -let coq_not_lt = lazy (constant "not_lt") -let coq_not_ge = lazy (constant "not_ge") -let coq_not_gt = lazy (constant "not_gt") - -(* Logic/Decidable *) -let coq_eq_ind_r = lazy (constant "eq_ind_r") - -let coq_dec_or = lazy (constant "dec_or") -let coq_dec_and = lazy (constant "dec_and") -let coq_dec_imp = lazy (constant "dec_imp") -let coq_dec_iff = lazy (constant "dec_iff") -let coq_dec_not = lazy (constant "dec_not") -let coq_dec_False = lazy (constant "dec_False") -let coq_dec_not_not = lazy (constant "dec_not_not") -let coq_dec_True = lazy (constant "dec_True") - -let coq_not_or = lazy (constant "not_or") -let coq_not_and = lazy (constant "not_and") -let coq_not_imp = lazy (constant "not_imp") -let coq_not_iff = lazy (constant "not_iff") -let coq_not_not = lazy (constant "not_not") -let coq_imp_simp = lazy (constant "imp_simp") -let coq_iff = lazy (constant "iff") - -(* uses build_coq_and, build_coq_not, build_coq_or, build_coq_ex *) - -(* For unfold *) -open Closure -let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with - | Const kn when Tacred.is_evaluable (Global.env()) (EvalConstRef kn) -> - EvalConstRef kn - | _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant") - -let sp_Zsucc = lazy (evaluable_ref_of_constr "Zsucc" coq_Zsucc) -let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus) -let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle) -let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt) -let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge) -let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt) -let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ()))) - -let mk_var v = mkVar (id_of_string v) -let mk_plus t1 t2 = mkApp (Lazy.force coq_Zplus, [| t1; t2 |]) -let mk_times t1 t2 = mkApp (Lazy.force coq_Zmult, [| t1; t2 |]) -let mk_minus t1 t2 = mkApp (Lazy.force coq_Zminus, [| t1;t2 |]) -let mk_eq t1 t2 = mkApp (build_coq_eq (), [| Lazy.force coq_Z; t1; t2 |]) -let mk_le t1 t2 = mkApp (Lazy.force coq_Zle, [| t1; t2 |]) -let mk_gt t1 t2 = mkApp (Lazy.force coq_Zgt, [| t1; t2 |]) -let mk_inv t = mkApp (Lazy.force coq_Zopp, [| t |]) -let mk_and t1 t2 = mkApp (build_coq_and (), [| t1; t2 |]) -let mk_or t1 t2 = mkApp (build_coq_or (), [| t1; t2 |]) -let mk_not t = mkApp (build_coq_not (), [| t |]) -let mk_eq_rel t1 t2 = mkApp (build_coq_eq (), - [| Lazy.force coq_comparison; t1; t2 |]) -let mk_inj t = mkApp (Lazy.force coq_Z_of_nat, [| t |]) - -let mk_integer n = - let rec loop n = - if n =? one then Lazy.force coq_xH else - mkApp((if n mod two =? zero then Lazy.force coq_xO else Lazy.force coq_xI), - [| loop (n/two) |]) - in - if n =? zero then Lazy.force coq_Z0 - else mkApp ((if n >? zero then Lazy.force coq_Zpos else Lazy.force coq_Zneg), - [| loop (abs n) |]) - -type omega_constant = - | Zplus | Zmult | Zminus | Zsucc | Zopp - | Plus | Mult | Minus | Pred | S | O - | Zpos | Zneg | Z0 | Z_of_nat - | Eq | Neq - | Zne | Zle | Zlt | Zge | Zgt - | Z | Nat - | And | Or | False | True | Not | Iff - | Le | Lt | Ge | Gt - | Other of string - -type omega_proposition = - | Keq of constr * constr * constr - | Kn - -type result = - | Kvar of identifier - | Kapp of omega_constant * constr list - | Kimp of constr * constr - | Kufo - -let destructurate_prop t = - let c, args = decompose_app t in - match kind_of_term c, args with - | _, [_;_;_] when c = build_coq_eq () -> Kapp (Eq,args) - | _, [_;_] when c = Lazy.force coq_neq -> Kapp (Neq,args) - | _, [_;_] when c = Lazy.force coq_Zne -> Kapp (Zne,args) - | _, [_;_] when c = Lazy.force coq_Zle -> Kapp (Zle,args) - | _, [_;_] when c = Lazy.force coq_Zlt -> Kapp (Zlt,args) - | _, [_;_] when c = Lazy.force coq_Zge -> Kapp (Zge,args) - | _, [_;_] when c = Lazy.force coq_Zgt -> Kapp (Zgt,args) - | _, [_;_] when c = build_coq_and () -> Kapp (And,args) - | _, [_;_] when c = build_coq_or () -> Kapp (Or,args) - | _, [_;_] when c = Lazy.force coq_iff -> Kapp (Iff, args) - | _, [_] when c = build_coq_not () -> Kapp (Not,args) - | _, [] when c = build_coq_False () -> Kapp (False,args) - | _, [] when c = build_coq_True () -> Kapp (True,args) - | _, [_;_] when c = Lazy.force coq_le -> Kapp (Le,args) - | _, [_;_] when c = Lazy.force coq_lt -> Kapp (Lt,args) - | _, [_;_] when c = Lazy.force coq_ge -> Kapp (Ge,args) - | _, [_;_] when c = Lazy.force coq_gt -> Kapp (Gt,args) - | Const sp, args -> - Kapp (Other (string_of_id (id_of_global (ConstRef sp))),args) - | Construct csp , args -> - Kapp (Other (string_of_id (id_of_global (ConstructRef csp))), args) - | Ind isp, args -> - Kapp (Other (string_of_id (id_of_global (IndRef isp))),args) - | Var id,[] -> Kvar id - | Prod (Anonymous,typ,body), [] -> Kimp(typ,body) - | Prod (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal" - | _ -> Kufo - -let destructurate_type t = - let c, args = decompose_app t in - match kind_of_term c, args with - | _, [] when c = Lazy.force coq_Z -> Kapp (Z,args) - | _, [] when c = Lazy.force coq_nat -> Kapp (Nat,args) - | _ -> Kufo - -let destructurate_term t = - let c, args = decompose_app t in - match kind_of_term c, args with - | _, [_;_] when c = Lazy.force coq_Zplus -> Kapp (Zplus,args) - | _, [_;_] when c = Lazy.force coq_Zmult -> Kapp (Zmult,args) - | _, [_;_] when c = Lazy.force coq_Zminus -> Kapp (Zminus,args) - | _, [_] when c = Lazy.force coq_Zsucc -> Kapp (Zsucc,args) - | _, [_] when c = Lazy.force coq_Zopp -> Kapp (Zopp,args) - | _, [_;_] when c = Lazy.force coq_plus -> Kapp (Plus,args) - | _, [_;_] when c = Lazy.force coq_mult -> Kapp (Mult,args) - | _, [_;_] when c = Lazy.force coq_minus -> Kapp (Minus,args) - | _, [_] when c = Lazy.force coq_pred -> Kapp (Pred,args) - | _, [_] when c = Lazy.force coq_S -> Kapp (S,args) - | _, [] when c = Lazy.force coq_O -> Kapp (O,args) - | _, [_] when c = Lazy.force coq_Zpos -> Kapp (Zneg,args) - | _, [_] when c = Lazy.force coq_Zneg -> Kapp (Zpos,args) - | _, [] when c = Lazy.force coq_Z0 -> Kapp (Z0,args) - | _, [_] when c = Lazy.force coq_Z_of_nat -> Kapp (Z_of_nat,args) - | Var id,[] -> Kvar id - | _ -> Kufo - -let recognize_number t = - let rec loop t = - match decompose_app t with - | f, [t] when f = Lazy.force coq_xI -> one + two * loop t - | f, [t] when f = Lazy.force coq_xO -> two * loop t - | f, [] when f = Lazy.force coq_xH -> one - | _ -> failwith "not a number" - in - match decompose_app t with - | f, [t] when f = Lazy.force coq_Zpos -> loop t - | f, [t] when f = Lazy.force coq_Zneg -> neg (loop t) - | f, [] when f = Lazy.force coq_Z0 -> zero - | _ -> failwith "not a number" - -type constr_path = - | P_APP of int - (* Abstraction and product *) - | P_BODY - | P_TYPE - (* Case *) - | P_BRANCH of int - | P_ARITY - | P_ARG - -let context operation path (t : constr) = - let rec loop i p0 t = - match (p0,kind_of_term t) with - | (p, Cast (c,k,t)) -> mkCast (loop i p c,k,t) - | ([], _) -> operation i t - | ((P_APP n :: p), App (f,v)) -> - let v' = Array.copy v in - v'.(pred n) <- loop i p v'.(pred n); mkApp (f, v') - | ((P_BRANCH n :: p), Case (ci,q,c,v)) -> - (* avant, y avait mkApp... anyway, BRANCH seems nowhere used *) - let v' = Array.copy v in - v'.(n) <- loop i p v'.(n); (mkCase (ci,q,c,v')) - | ((P_ARITY :: p), App (f,l)) -> - appvect (loop i p f,l) - | ((P_ARG :: p), App (f,v)) -> - let v' = Array.copy v in - v'.(0) <- loop i p v'.(0); mkApp (f,v') - | (p, Fix ((_,n as ln),(tys,lna,v))) -> - let l = Array.length v in - let v' = Array.copy v in - v'.(n)<- loop (Pervasives.(+) i l) p v.(n); (mkFix (ln,(tys,lna,v'))) - | ((P_BODY :: p), Prod (n,t,c)) -> - (mkProd (n,t,loop (succ i) p c)) - | ((P_BODY :: p), Lambda (n,t,c)) -> - (mkLambda (n,t,loop (succ i) p c)) - | ((P_BODY :: p), LetIn (n,b,t,c)) -> - (mkLetIn (n,b,t,loop (succ i) p c)) - | ((P_TYPE :: p), Prod (n,t,c)) -> - (mkProd (n,loop i p t,c)) - | ((P_TYPE :: p), Lambda (n,t,c)) -> - (mkLambda (n,loop i p t,c)) - | ((P_TYPE :: p), LetIn (n,b,t,c)) -> - (mkLetIn (n,b,loop i p t,c)) - | (p, _) -> - ppnl (Printer.pr_lconstr t); - failwith ("abstract_path " ^ string_of_int(List.length p)) - in - loop 1 path t - -let occurence path (t : constr) = - let rec loop p0 t = match (p0,kind_of_term t) with - | (p, Cast (c,_,_)) -> loop p c - | ([], _) -> t - | ((P_APP n :: p), App (f,v)) -> loop p v.(pred n) - | ((P_BRANCH n :: p), Case (_,_,_,v)) -> loop p v.(n) - | ((P_ARITY :: p), App (f,_)) -> loop p f - | ((P_ARG :: p), App (f,v)) -> loop p v.(0) - | (p, Fix((_,n) ,(_,_,v))) -> loop p v.(n) - | ((P_BODY :: p), Prod (n,t,c)) -> loop p c - | ((P_BODY :: p), Lambda (n,t,c)) -> loop p c - | ((P_BODY :: p), LetIn (n,b,t,c)) -> loop p c - | ((P_TYPE :: p), Prod (n,term,c)) -> loop p term - | ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term - | ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term - | (p, _) -> - ppnl (Printer.pr_lconstr t); - failwith ("occurence " ^ string_of_int(List.length p)) - in - loop path t - -let abstract_path typ path t = - let term_occur = ref (mkRel 0) in - let abstract = context (fun i t -> term_occur:= t; mkRel i) path t in - mkLambda (Name (id_of_string "x"), typ, abstract), !term_occur - -let focused_simpl path gl = - let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in - convert_concl_no_check newc DEFAULTcast gl - -let focused_simpl path = simpl_time (focused_simpl path) - -type oformula = - | Oplus of oformula * oformula - | Oinv of oformula - | Otimes of oformula * oformula - | Oatom of identifier - | Oz of bigint - | Oufo of constr - -let rec oprint = function - | Oplus(t1,t2) -> - print_string "("; oprint t1; print_string "+"; - oprint t2; print_string ")" - | Oinv t -> print_string "~"; oprint t - | Otimes (t1,t2) -> - print_string "("; oprint t1; print_string "*"; - oprint t2; print_string ")" - | Oatom s -> print_string (string_of_id s) - | Oz i -> print_string (string_of_bigint i) - | Oufo f -> print_string "?" - -let rec weight = function - | Oatom c -> intern_id c - | Oz _ -> -1 - | Oinv c -> weight c - | Otimes(c,_) -> weight c - | Oplus _ -> failwith "weight" - | Oufo _ -> -1 - -let rec val_of = function - | Oatom c -> mkVar c - | Oz c -> mk_integer c - | Oinv c -> mkApp (Lazy.force coq_Zopp, [| val_of c |]) - | Otimes (t1,t2) -> mkApp (Lazy.force coq_Zmult, [| val_of t1; val_of t2 |]) - | Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |]) - | Oufo c -> c - -let compile name kind = - let rec loop accu = function - | Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r - | Oz n -> - let id = new_id () in - tag_hypothesis name id; - {kind = kind; body = List.rev accu; constant = n; id = id} - | _ -> anomaly "compile_equation" - in - loop [] - -let rec decompile af = - let rec loop = function - | ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r) - | [] -> Oz af.constant - in - loop af.body - -let mkNewMeta () = mkMeta (Evarutil.new_meta()) - -let clever_rewrite_base_poly typ p result theorem gl = - let full = pf_concl gl in - let (abstracted,occ) = abstract_path typ (List.rev p) full in - let t = - applist - (mkLambda - (Name (id_of_string "P"), - mkArrow typ mkProp, - mkLambda - (Name (id_of_string "H"), - applist (mkRel 1,[result]), - mkApp (Lazy.force coq_eq_ind_r, - [| typ; result; mkRel 2; mkRel 1; occ; theorem |]))), - [abstracted]) - in - exact (applist(t,[mkNewMeta()])) gl - -let clever_rewrite_base p result theorem gl = - clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl - -let clever_rewrite_base_nat p result theorem gl = - clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl - -let clever_rewrite_gen p result (t,args) = - let theorem = applist(t, args) in - clever_rewrite_base p result theorem - -let clever_rewrite_gen_nat p result (t,args) = - let theorem = applist(t, args) in - clever_rewrite_base_nat p result theorem - -let clever_rewrite p vpath t gl = - let full = pf_concl gl in - let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in - let vargs = List.map (fun p -> occurence p occ) vpath in - let t' = applist(t, (vargs @ [abstracted])) in - exact (applist(t',[mkNewMeta()])) gl - -let rec shuffle p (t1,t2) = - match t1,t2 with - | Oplus(l1,r1), Oplus(l2,r2) -> - if weight l1 > weight l2 then - let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in - (clever_rewrite p [[P_APP 1;P_APP 1]; - [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc_reverse) - :: tac, - Oplus(l1,t')) - else - let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in - (clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]] - (Lazy.force coq_fast_Zplus_permute) - :: tac, - Oplus(l2,t')) - | Oplus(l1,r1), t2 -> - if weight l1 > weight t2 then - let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in - clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc_reverse) - :: tac, - Oplus(l1, t') - else - [clever_rewrite p [[P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zplus_comm)], - Oplus(t2,t1) - | t1,Oplus(l2,r2) -> - if weight l2 > weight t1 then - let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in - clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]] - (Lazy.force coq_fast_Zplus_permute) - :: tac, - Oplus(l2,t') - else [],Oplus(t1,t2) - | Oz t1,Oz t2 -> - [focused_simpl p], Oz(Bigint.add t1 t2) - | t1,t2 -> - if weight t1 < weight t2 then - [clever_rewrite p [[P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zplus_comm)], - Oplus(t2,t1) - else [],Oplus(t1,t2) - -let rec shuffle_mult p_init k1 e1 k2 e2 = - let rec loop p = function - | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') -> - if v1 = v2 then - let tac = - clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 1; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA10) - in - if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then - let tac' = - clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zred_factor5) in - tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' :: - loop p (l1,l2) - else tac :: loop (P_APP 2 :: p) (l1,l2) - else if v1 > v2 then - clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 1; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 1; P_APP 2]; - [P_APP 2]; - [P_APP 1; P_APP 2]] - (Lazy.force coq_fast_OMEGA11) :: - loop (P_APP 2 :: p) (l1,l2') - else - clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA12) :: - loop (P_APP 2 :: p) (l1',l2) - | ({c=c1;v=v1}::l1), [] -> - clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 1; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 1; P_APP 2]; - [P_APP 2]; - [P_APP 1; P_APP 2]] - (Lazy.force coq_fast_OMEGA11) :: - loop (P_APP 2 :: p) (l1,[]) - | [],({c=c2;v=v2}::l2) -> - clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA12) :: - loop (P_APP 2 :: p) ([],l2) - | [],[] -> [focused_simpl p_init] - in - loop p_init (e1,e2) - -let rec shuffle_mult_right p_init e1 k2 e2 = - let rec loop p = function - | (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') -> - if v1 = v2 then - let tac = - clever_rewrite p - [[P_APP 1; P_APP 1; P_APP 1]; - [P_APP 1; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 2]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA15) - in - if Bigint.add c1 (Bigint.mult k2 c2) =? zero then - let tac' = - clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zred_factor5) - in - tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' :: - loop p (l1,l2) - else tac :: loop (P_APP 2 :: p) (l1,l2) - else if v1 > v2 then - clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc_reverse) :: - loop (P_APP 2 :: p) (l1,l2') - else - clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA12) :: - loop (P_APP 2 :: p) (l1',l2) - | ({c=c1;v=v1}::l1), [] -> - clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc_reverse) :: - loop (P_APP 2 :: p) (l1,[]) - | [],({c=c2;v=v2}::l2) -> - clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 2; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1]; - [P_APP 2; P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]] - (Lazy.force coq_fast_OMEGA12) :: - loop (P_APP 2 :: p) ([],l2) - | [],[] -> [focused_simpl p_init] - in - loop p_init (e1,e2) - -let rec shuffle_cancel p = function - | [] -> [focused_simpl p] - | ({c=c1}::l1) -> - let tac = - clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2]; - [P_APP 2; P_APP 2]; - [P_APP 1; P_APP 1; P_APP 2; P_APP 1]] - (if c1 >? zero then - (Lazy.force coq_fast_OMEGA13) - else - (Lazy.force coq_fast_OMEGA14)) - in - tac :: shuffle_cancel p l1 - -let rec scalar p n = function - | Oplus(t1,t2) -> - let tac1,t1' = scalar (P_APP 1 :: p) n t1 and - tac2,t2' = scalar (P_APP 2 :: p) n t2 in - clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zmult_plus_distr_l) :: - (tac1 @ tac2), Oplus(t1',t2') - | Oinv t -> - [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zmult_opp_comm); - focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(neg n)) - | Otimes(t1,Oz x) -> - [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zmult_assoc_reverse); - focused_simpl (P_APP 2 :: p)], - Otimes(t1,Oz (n*x)) - | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products" - | (Oatom _ as t) -> [], Otimes(t,Oz n) - | Oz i -> [focused_simpl p],Oz(n*i) - | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |])) - -let rec scalar_norm p_init = - let rec loop p = function - | [] -> [focused_simpl p_init] - | (_::l) -> - clever_rewrite p - [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l - in - loop p_init - -let rec norm_add p_init = - let rec loop p = function - | [] -> [focused_simpl p_init] - | _:: l -> - clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc_reverse) :: - loop (P_APP 2 :: p) l - in - loop p_init - -let rec scalar_norm_add p_init = - let rec loop p = function - | [] -> [focused_simpl p_init] - | _ :: l -> - clever_rewrite p - [[P_APP 1; P_APP 1; P_APP 1; P_APP 1]; - [P_APP 1; P_APP 1; P_APP 1; P_APP 2]; - [P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]] - (Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l - in - loop p_init - -let rec negate p = function - | Oplus(t1,t2) -> - let tac1,t1' = negate (P_APP 1 :: p) t1 and - tac2,t2' = negate (P_APP 2 :: p) t2 in - clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]] - (Lazy.force coq_fast_Zopp_plus_distr) :: - (tac1 @ tac2), - Oplus(t1',t2') - | Oinv t -> - [clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_involutive)], t - | Otimes(t1,Oz x) -> - [clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]] - (Lazy.force coq_fast_Zopp_mult_distr_r); - focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (neg x)) - | Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products" - | (Oatom _ as t) -> - let r = Otimes(t,Oz(negone)) in - [clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1)], r - | Oz i -> [focused_simpl p],Oz(neg i) - | Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |])) - -let rec transform p t = - let default isnat t' = - try - let v,th,_ = find_constr t' in - [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v - with _ -> - let v = new_identifier_var () - and th = new_identifier () in - hide_constr t' v th isnat; - [clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v - in - try match destructurate_term t with - | Kapp(Zplus,[t1;t2]) -> - let tac1,t1' = transform (P_APP 1 :: p) t1 - and tac2,t2' = transform (P_APP 2 :: p) t2 in - let tac,t' = shuffle p (t1',t2') in - tac1 @ tac2 @ tac, t' - | Kapp(Zminus,[t1;t2]) -> - let tac,t = - transform p - (mkApp (Lazy.force coq_Zplus, - [| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in - unfold sp_Zminus :: tac,t - | Kapp(Zsucc,[t1]) -> - let tac,t = transform p (mkApp (Lazy.force coq_Zplus, - [| t1; mk_integer one |])) in - unfold sp_Zsucc :: tac,t - | Kapp(Zmult,[t1;t2]) -> - let tac1,t1' = transform (P_APP 1 :: p) t1 - and tac2,t2' = transform (P_APP 2 :: p) t2 in - begin match t1',t2' with - | (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t' - | (Oz n,_) -> - let sym = - clever_rewrite p [[P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zmult_comm) in - let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t' - | _ -> default false t - end - | Kapp((Zpos|Zneg|Z0),_) -> - (try ([],Oz(recognize_number t)) with _ -> default false t) - | Kvar s -> [],Oatom s - | Kapp(Zopp,[t]) -> - let tac,t' = transform (P_APP 1 :: p) t in - let tac',t'' = negate p t' in - tac @ tac', t'' - | Kapp(Z_of_nat,[t']) -> default true t' - | _ -> default false t - with e when catchable_exception e -> default false t - -let shrink_pair p f1 f2 = - match f1,f2 with - | Oatom v,Oatom _ -> - let r = Otimes(Oatom v,Oz two) in - clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r - | Oatom v, Otimes(_,c2) -> - let r = Otimes(Oatom v,Oplus(c2,Oz one)) in - clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]] - (Lazy.force coq_fast_Zred_factor2), r - | Otimes (v1,c1),Oatom v -> - let r = Otimes(Oatom v,Oplus(c1,Oz one)) in - clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]] - (Lazy.force coq_fast_Zred_factor3), r - | Otimes (Oatom v,c1),Otimes (v2,c2) -> - let r = Otimes(Oatom v,Oplus(c1,c2)) in - clever_rewrite p - [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]] - (Lazy.force coq_fast_Zred_factor4),r - | t1,t2 -> - begin - oprint t1; print_newline (); oprint t2; print_newline (); - flush Pervasives.stdout; error "shrink.1" - end - -let reduce_factor p = function - | Oatom v -> - let r = Otimes(Oatom v,Oz one) in - [clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r - | Otimes(Oatom v,Oz n) as f -> [],f - | Otimes(Oatom v,c) -> - let rec compute = function - | Oz n -> n - | Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2) - | _ -> error "condense.1" - in - [focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c)) - | t -> oprint t; error "reduce_factor.1" - -let rec condense p = function - | Oplus(f1,(Oplus(f2,r) as t)) -> - if weight f1 = weight f2 then begin - let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in - let assoc_tac = - clever_rewrite p - [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]] - (Lazy.force coq_fast_Zplus_assoc) in - let tac_list,t' = condense p (Oplus(t,r)) in - (assoc_tac :: shrink_tac :: tac_list), t' - end else begin - let tac,f = reduce_factor (P_APP 1 :: p) f1 in - let tac',t' = condense (P_APP 2 :: p) t in - (tac @ tac'), Oplus(f,t') - end - | Oplus(f1,Oz n) -> - let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n) - | Oplus(f1,f2) -> - if weight f1 = weight f2 then begin - let tac_shrink,t = shrink_pair p f1 f2 in - let tac,t' = condense p t in - tac_shrink :: tac,t' - end else begin - let tac,f = reduce_factor (P_APP 1 :: p) f1 in - let tac',t' = condense (P_APP 2 :: p) f2 in - (tac @ tac'),Oplus(f,t') - end - | Oz _ as t -> [],t - | t -> - let tac,t' = reduce_factor p t in - let final = Oplus(t',Oz zero) in - let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in - tac @ [tac'], final - -let rec clear_zero p = function - | Oplus(Otimes(Oatom v,Oz n),r) when n =? zero -> - let tac = - clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]] - (Lazy.force coq_fast_Zred_factor5) in - let tac',t = clear_zero p r in - tac :: tac',t - | Oplus(f,r) -> - let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t) - | t -> [],t - -let replay_history tactic_normalisation = - let aux = id_of_string "auxiliary" in - let aux1 = id_of_string "auxiliary_1" in - let aux2 = id_of_string "auxiliary_2" in - let izero = mk_integer zero in - let rec loop t = - match t with - | HYP e :: l -> - begin - try - tclTHEN - (List.assoc (hyp_of_tag e.id) tactic_normalisation) - (loop l) - with Not_found -> loop l end - | NEGATE_CONTRADICT (e2,e1,b) :: l -> - let eq1 = decompile e1 - and eq2 = decompile e2 in - let id1 = hyp_of_tag e1.id - and id2 = hyp_of_tag e2.id in - let k = if b then negone else one in - let p_initial = [P_APP 1;P_TYPE] in - let tac= shuffle_mult_right p_initial e1.body k e2.body in - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_OMEGA17, [| - val_of eq1; - val_of eq2; - mk_integer k; - mkVar id1; mkVar id2 |])]); - (mk_then tac); - (intros_using [aux]); - (resolve_id aux); - reflexivity - ] - | CONTRADICTION (e1,e2) :: l -> - let eq1 = decompile e1 - and eq2 = decompile e2 in - let p_initial = [P_APP 2;P_TYPE] in - let tac = shuffle_cancel p_initial e1.body in - let solve_le = - let not_sup_sup = mkApp (build_coq_eq (), [| - Lazy.force coq_comparison; - Lazy.force coq_Gt; - Lazy.force coq_Gt |]) - in - tclTHENS - (tclTHENLIST [ - (unfold sp_Zle); - (simpl_in_concl); - intro; - (absurd not_sup_sup) ]) - [ assumption ; reflexivity ] - in - let theorem = - mkApp (Lazy.force coq_OMEGA2, [| - val_of eq1; val_of eq2; - mkVar (hyp_of_tag e1.id); - mkVar (hyp_of_tag e2.id) |]) - in - tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le) - | DIVIDE_AND_APPROX (e1,e2,k,d) :: l -> - let id = hyp_of_tag e1.id in - let eq1 = val_of(decompile e1) - and eq2 = val_of(decompile e2) in - let kk = mk_integer k - and dd = mk_integer d in - let rhs = mk_plus (mk_times eq2 kk) dd in - let state_eg = mk_eq eq1 rhs in - let tac = scalar_norm_add [P_APP 3] e2.body in - tclTHENS - (cut state_eg) - [ tclTHENS - (tclTHENLIST [ - (intros_using [aux]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA1, - [| eq1; rhs; mkVar aux; mkVar id |])]); - (clear [aux;id]); - (intros_using [id]); - (cut (mk_gt kk dd)) ]) - [ tclTHENS - (cut (mk_gt kk izero)) - [ tclTHENLIST [ - (intros_using [aux1; aux2]); - (generalize_tac - [mkApp (Lazy.force coq_Zmult_le_approx, - [| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]); - (clear [aux1;aux2;id]); - (intros_using [id]); - (loop l) ]; - tclTHENLIST [ - (unfold sp_Zgt); - (simpl_in_concl); - reflexivity ] ]; - tclTHENLIST [ (unfold sp_Zgt); simpl_in_concl; reflexivity ] - ]; - tclTHEN (mk_then tac) reflexivity ] - - | NOT_EXACT_DIVIDE (e1,k) :: l -> - let c = floor_div e1.constant k in - let d = Bigint.sub e1.constant (Bigint.mult c k) in - let e2 = {id=e1.id; kind=EQUA;constant = c; - body = map_eq_linear (fun c -> c / k) e1.body } in - let eq2 = val_of(decompile e2) in - let kk = mk_integer k - and dd = mk_integer d in - let tac = scalar_norm_add [P_APP 2] e2.body in - tclTHENS - (cut (mk_gt dd izero)) - [ tclTHENS (cut (mk_gt kk dd)) - [tclTHENLIST [ - (intros_using [aux2;aux1]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA4, - [| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]); - (clear [aux1;aux2]); - (unfold sp_not); - (intros_using [aux]); - (resolve_id aux); - (mk_then tac); - assumption ] ; - tclTHENLIST [ - (unfold sp_Zgt); - simpl_in_concl; - reflexivity ] ]; - tclTHENLIST [ - (unfold sp_Zgt); - simpl_in_concl; - reflexivity ] ] - | EXACT_DIVIDE (e1,k) :: l -> - let id = hyp_of_tag e1.id in - let e2 = map_eq_afine (fun c -> c / k) e1 in - let eq1 = val_of(decompile e1) - and eq2 = val_of(decompile e2) in - let kk = mk_integer k in - let state_eq = mk_eq eq1 (mk_times eq2 kk) in - if e1.kind = DISE then - let tac = scalar_norm [P_APP 3] e2.body in - tclTHENS - (cut state_eq) - [tclTHENLIST [ - (intros_using [aux1]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA18, - [| eq1;eq2;kk;mkVar aux1; mkVar id |])]); - (clear [aux1;id]); - (intros_using [id]); - (loop l) ]; - tclTHEN (mk_then tac) reflexivity ] - else - let tac = scalar_norm [P_APP 3] e2.body in - tclTHENS (cut state_eq) - [ - tclTHENS - (cut (mk_gt kk izero)) - [tclTHENLIST [ - (intros_using [aux2;aux1]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA3, - [| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]); - (clear [aux1;aux2;id]); - (intros_using [id]); - (loop l) ]; - tclTHENLIST [ - (unfold sp_Zgt); - simpl_in_concl; - reflexivity ] ]; - tclTHEN (mk_then tac) reflexivity ] - | (MERGE_EQ(e3,e1,e2)) :: l -> - let id = new_identifier () in - tag_hypothesis id e3; - let id1 = hyp_of_tag e1.id - and id2 = hyp_of_tag e2 in - let eq1 = val_of(decompile e1) - and eq2 = val_of (decompile (negate_eq e1)) in - let tac = - clever_rewrite [P_APP 3] [[P_APP 1]] - (Lazy.force coq_fast_Zopp_eq_mult_neg_1) :: - scalar_norm [P_APP 3] e1.body - in - tclTHENS - (cut (mk_eq eq1 (mk_inv eq2))) - [tclTHENLIST [ - (intros_using [aux]); - (generalize_tac [mkApp (Lazy.force coq_OMEGA8, - [| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]); - (clear [id1;id2;aux]); - (intros_using [id]); - (loop l) ]; - tclTHEN (mk_then tac) reflexivity] - - | STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l -> - let id = new_identifier () - and id2 = hyp_of_tag orig.id in - tag_hypothesis id e.id; - let eq1 = val_of(decompile def) - and eq2 = val_of(decompile orig) in - let vid = unintern_id v in - let theorem = - mkApp (build_coq_ex (), [| - Lazy.force coq_Z; - mkLambda - (Name vid, - Lazy.force coq_Z, - mk_eq (mkRel 1) eq1) |]) - in - let mm = mk_integer m in - let p_initial = [P_APP 2;P_TYPE] in - let tac = - clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial) - [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1) :: - shuffle_mult_right p_initial - orig.body m ({c= negone;v= v}::def.body) in - tclTHENS - (cut theorem) - [tclTHENLIST [ - (intros_using [aux]); - (elim_id aux); - (clear [aux]); - (intros_using [vid; aux]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA9, - [| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]); - (mk_then tac); - (clear [aux]); - (intros_using [id]); - (loop l) ]; - tclTHEN (exists_tac (inj_open eq1)) reflexivity ] - | SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l -> - let id1 = new_identifier () - and id2 = new_identifier () in - tag_hypothesis id1 e1; tag_hypothesis id2 e2; - let id = hyp_of_tag e.id in - let tac1 = norm_add [P_APP 2;P_TYPE] e.body in - let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in - let eq = val_of(decompile e) in - tclTHENS - (simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id]))) - [tclTHENLIST [ (mk_then tac1); (intros_using [id1]); (loop act1) ]; - tclTHENLIST [ (mk_then tac2); (intros_using [id2]); (loop act2) ]] - | SUM(e3,(k1,e1),(k2,e2)) :: l -> - let id = new_identifier () in - tag_hypothesis id e3; - let id1 = hyp_of_tag e1.id - and id2 = hyp_of_tag e2.id in - let eq1 = val_of(decompile e1) - and eq2 = val_of(decompile e2) in - if k1 =? one & e2.kind = EQUA then - let tac_thm = - match e1.kind with - | EQUA -> Lazy.force coq_OMEGA5 - | INEQ -> Lazy.force coq_OMEGA6 - | DISE -> Lazy.force coq_OMEGA20 - in - let kk = mk_integer k2 in - let p_initial = - if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in - let tac = shuffle_mult_right p_initial e1.body k2 e2.body in - tclTHENLIST [ - (generalize_tac - [mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]); - (mk_then tac); - (intros_using [id]); - (loop l) - ] - else - let kk1 = mk_integer k1 - and kk2 = mk_integer k2 in - let p_initial = [P_APP 2;P_TYPE] in - let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in - tclTHENS (cut (mk_gt kk1 izero)) - [tclTHENS - (cut (mk_gt kk2 izero)) - [tclTHENLIST [ - (intros_using [aux2;aux1]); - (generalize_tac - [mkApp (Lazy.force coq_OMEGA7, [| - eq1;eq2;kk1;kk2; - mkVar aux1;mkVar aux2; - mkVar id1;mkVar id2 |])]); - (clear [aux1;aux2]); - (mk_then tac); - (intros_using [id]); - (loop l) ]; - tclTHENLIST [ - (unfold sp_Zgt); - simpl_in_concl; - reflexivity ] ]; - tclTHENLIST [ - (unfold sp_Zgt); - simpl_in_concl; - reflexivity ] ] - | CONSTANT_NOT_NUL(e,k) :: l -> - tclTHEN (generalize_tac [mkVar (hyp_of_tag e)]) Equality.discrConcl - | CONSTANT_NUL(e) :: l -> - tclTHEN (resolve_id (hyp_of_tag e)) reflexivity - | CONSTANT_NEG(e,k) :: l -> - tclTHENLIST [ - (generalize_tac [mkVar (hyp_of_tag e)]); - (unfold sp_Zle); - simpl_in_concl; - (unfold sp_not); - (intros_using [aux]); - (resolve_id aux); - reflexivity - ] - | _ -> tclIDTAC - in - loop - -let normalize p_initial t = - let (tac,t') = transform p_initial t in - let (tac',t'') = condense p_initial t' in - let (tac'',t''') = clear_zero p_initial t'' in - tac @ tac' @ tac'' , t''' - -let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) = - let p_initial = [P_APP pos ;P_TYPE] in - let (tac,t') = normalize p_initial t in - let shift_left = - tclTHEN - (generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ]) - (tclTRY (clear [id])) - in - if tac <> [] then - let id' = new_identifier () in - ((id',(tclTHENLIST [ (shift_left); (mk_then tac); (intros_using [id']) ])) - :: tactic, - compile id' flag t' :: defs) - else - (tactic,defs) - -let destructure_omega gl tac_def (id,c) = - if atompart_of_id id = "State" then - tac_def - else - try match destructurate_prop c with - | Kapp(Eq,[typ;t1;t2]) - when destructurate_type (pf_nf gl typ) = Kapp(Z,[]) -> - let t = mk_plus t1 (mk_inv t2) in - normalize_equation - id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def - | Kapp(Zne,[t1;t2]) -> - let t = mk_plus t1 (mk_inv t2) in - normalize_equation - id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def - | Kapp(Zle,[t1;t2]) -> - let t = mk_plus t2 (mk_inv t1) in - normalize_equation - id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def - | Kapp(Zlt,[t1;t2]) -> - let t = mk_plus (mk_plus t2 (mk_integer negone)) (mk_inv t1) in - normalize_equation - id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def - | Kapp(Zge,[t1;t2]) -> - let t = mk_plus t1 (mk_inv t2) in - normalize_equation - id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def - | Kapp(Zgt,[t1;t2]) -> - let t = mk_plus (mk_plus t1 (mk_integer negone)) (mk_inv t2) in - normalize_equation - id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def - | _ -> tac_def - with e when catchable_exception e -> tac_def - -let reintroduce id = - (* [id] cannot be cleared if dependent: protect it by a try *) - tclTHEN (tclTRY (clear [id])) (intro_using id) - -let coq_omega gl = - clear_tables (); - let tactic_normalisation, system = - List.fold_left (destructure_omega gl) ([],[]) (pf_hyps_types gl) in - let prelude,sys = - List.fold_left - (fun (tac,sys) (t,(v,th,b)) -> - if b then - let id = new_identifier () in - let i = new_id () in - tag_hypothesis id i; - (tclTHENLIST [ - (simplest_elim (applist (Lazy.force coq_intro_Z, [t]))); - (intros_using [v; id]); - (elim_id id); - (clear [id]); - (intros_using [th;id]); - tac ]), - {kind = INEQ; - body = [{v=intern_id v; c=one}]; - constant = zero; id = i} :: sys - else - (tclTHENLIST [ - (simplest_elim (applist (Lazy.force coq_new_var, [t]))); - (intros_using [v;th]); - tac ]), - sys) - (tclIDTAC,[]) (dump_tables ()) - in - let system = system @ sys in - if !display_system_flag then display_system display_var system; - if !old_style_flag then begin - try - let _ = simplify (new_id,new_var_num,display_var) false system in - tclIDTAC gl - with UNSOLVABLE -> - let _,path = depend [] [] (history ()) in - if !display_action_flag then display_action display_var path; - (tclTHEN prelude (replay_history tactic_normalisation path)) gl - end else begin - try - let path = simplify_strong (new_id,new_var_num,display_var) system in - if !display_action_flag then display_action display_var path; - (tclTHEN prelude (replay_history tactic_normalisation path)) gl - with NO_CONTRADICTION -> error "Omega can't solve this system" - end - -let coq_omega = solver_time coq_omega - -let nat_inject gl = - let rec explore p t = - try match destructurate_term t with - | Kapp(Plus,[t1;t2]) -> - tclTHENLIST [ - (clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2)) - ((Lazy.force coq_inj_plus),[t1;t2])); - (explore (P_APP 1 :: p) t1); - (explore (P_APP 2 :: p) t2) - ] - | Kapp(Mult,[t1;t2]) -> - tclTHENLIST [ - (clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2)) - ((Lazy.force coq_inj_mult),[t1;t2])); - (explore (P_APP 1 :: p) t1); - (explore (P_APP 2 :: p) t2) - ] - | Kapp(Minus,[t1;t2]) -> - let id = new_identifier () in - tclTHENS - (tclTHEN - (simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1]))) - (intros_using [id])) - [ - tclTHENLIST [ - (clever_rewrite_gen p - (mk_minus (mk_inj t1) (mk_inj t2)) - ((Lazy.force coq_inj_minus1),[t1;t2;mkVar id])); - (loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]); - (explore (P_APP 1 :: p) t1); - (explore (P_APP 2 :: p) t2) ]; - (tclTHEN - (clever_rewrite_gen p (mk_integer zero) - ((Lazy.force coq_inj_minus2),[t1;t2;mkVar id])) - (loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])])) - ] - | Kapp(S,[t']) -> - let rec is_number t = - try match destructurate_term t with - Kapp(S,[t]) -> is_number t - | Kapp(O,[]) -> true - | _ -> false - with e when catchable_exception e -> false - in - let rec loop p t = - try match destructurate_term t with - Kapp(S,[t]) -> - (tclTHEN - (clever_rewrite_gen p - (mkApp (Lazy.force coq_Zsucc, [| mk_inj t |])) - ((Lazy.force coq_inj_S),[t])) - (loop (P_APP 1 :: p) t)) - | _ -> explore p t - with e when catchable_exception e -> explore p t - in - if is_number t' then focused_simpl p else loop p t - | Kapp(Pred,[t]) -> - let t_minus_one = - mkApp (Lazy.force coq_minus, [| t; - mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in - tclTHEN - (clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one - ((Lazy.force coq_pred_of_minus),[t])) - (explore p t_minus_one) - | Kapp(O,[]) -> focused_simpl p - | _ -> tclIDTAC - with e when catchable_exception e -> tclIDTAC - - and loop = function - | [] -> tclIDTAC - | (i,t)::lit -> - begin try match destructurate_prop t with - Kapp(Le,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 1; P_TYPE] t1); - (explore [P_APP 2; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - | Kapp(Lt,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 1; P_TYPE] t1); - (explore [P_APP 2; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - | Kapp(Ge,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 1; P_TYPE] t1); - (explore [P_APP 2; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - | Kapp(Gt,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_gt, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 1; P_TYPE] t1); - (explore [P_APP 2; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - | Kapp(Neq,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_neq, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 1; P_TYPE] t1); - (explore [P_APP 2; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - | Kapp(Eq,[typ;t1;t2]) -> - if pf_conv_x gl typ (Lazy.force coq_nat) then - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]); - (explore [P_APP 2; P_TYPE] t1); - (explore [P_APP 3; P_TYPE] t2); - (reintroduce i); - (loop lit) - ] - else loop lit - | _ -> loop lit - with e when catchable_exception e -> loop lit end - in - loop (List.rev (pf_hyps_types gl)) gl - -let rec decidability gl t = - match destructurate_prop t with - | Kapp(Or,[t1;t2]) -> - mkApp (Lazy.force coq_dec_or, [| t1; t2; - decidability gl t1; decidability gl t2 |]) - | Kapp(And,[t1;t2]) -> - mkApp (Lazy.force coq_dec_and, [| t1; t2; - decidability gl t1; decidability gl t2 |]) - | Kapp(Iff,[t1;t2]) -> - mkApp (Lazy.force coq_dec_iff, [| t1; t2; - decidability gl t1; decidability gl t2 |]) - | Kimp(t1,t2) -> - mkApp (Lazy.force coq_dec_imp, [| t1; t2; - decidability gl t1; decidability gl t2 |]) - | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1; - decidability gl t1 |]) - | Kapp(Eq,[typ;t1;t2]) -> - begin match destructurate_type (pf_nf gl typ) with - | Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |]) - | Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |]) - | _ -> errorlabstrm "decidability" - (str "Omega: Can't solve a goal with equality on " ++ - Printer.pr_lconstr typ) - end - | Kapp(Zne,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zne, [| t1;t2 |]) - | Kapp(Zle,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zle, [| t1;t2 |]) - | Kapp(Zlt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zlt, [| t1;t2 |]) - | Kapp(Zge,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zge, [| t1;t2 |]) - | Kapp(Zgt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zgt, [| t1;t2 |]) - | Kapp(Le, [t1;t2]) -> mkApp (Lazy.force coq_dec_le, [| t1;t2 |]) - | Kapp(Lt, [t1;t2]) -> mkApp (Lazy.force coq_dec_lt, [| t1;t2 |]) - | Kapp(Ge, [t1;t2]) -> mkApp (Lazy.force coq_dec_ge, [| t1;t2 |]) - | Kapp(Gt, [t1;t2]) -> mkApp (Lazy.force coq_dec_gt, [| t1;t2 |]) - | Kapp(False,[]) -> Lazy.force coq_dec_False - | Kapp(True,[]) -> Lazy.force coq_dec_True - | Kapp(Other t,_::_) -> error - ("Omega: Unrecognized predicate or connective: "^t) - | Kapp(Other t,[]) -> error ("Omega: Unrecognized atomic proposition: "^t) - | Kvar _ -> error "Omega: Can't solve a goal with proposition variables" - | _ -> error "Omega: Unrecognized proposition" - -let onClearedName id tac = - (* We cannot ensure that hyps can be cleared (because of dependencies), *) - (* so renaming may be necessary *) - tclTHEN - (tclTRY (clear [id])) - (fun gl -> - let id = fresh_id [] id gl in - tclTHEN (introduction id) (tac id) gl) - -let destructure_hyps gl = - let rec loop = function - | [] -> (tclTHEN nat_inject coq_omega) - | (i,body,t)::lit -> - begin try match destructurate_prop t with - | Kapp(False,[]) -> elim_id i - | Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit - | Kapp(Or,[t1;t2]) -> - (tclTHENS - (elim_id i) - [ onClearedName i (fun i -> (loop ((i,None,t1)::lit))); - onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ]) - | Kapp(And,[t1;t2]) -> - tclTHENLIST [ - (elim_id i); - (tclTRY (clear [i])); - (fun gl -> - let i1 = fresh_id [] (add_suffix i "_left") gl in - let i2 = fresh_id [] (add_suffix i "_right") gl in - tclTHENLIST [ - (introduction i1); - (introduction i2); - (loop ((i1,None,t1)::(i2,None,t2)::lit)) ] gl) - ] - | Kapp(Iff,[t1;t2]) -> - tclTHENLIST [ - (elim_id i); - (tclTRY (clear [i])); - (fun gl -> - let i1 = fresh_id [] (add_suffix i "_left") gl in - let i2 = fresh_id [] (add_suffix i "_right") gl in - tclTHENLIST [ - introduction i1; - generalize_tac - [mkApp (Lazy.force coq_imp_simp, - [| t1; t2; decidability gl t1; mkVar i1|])]; - onClearedName i1 (fun i1 -> - tclTHENLIST [ - introduction i2; - generalize_tac - [mkApp (Lazy.force coq_imp_simp, - [| t2; t1; decidability gl t2; mkVar i2|])]; - onClearedName i2 (fun i2 -> - loop - ((i1,None,mk_or (mk_not t1) t2):: - (i2,None,mk_or (mk_not t2) t1)::lit)) - ])] gl) - ] - | Kimp(t1,t2) -> - if - is_Prop (pf_type_of gl t1) & - is_Prop (pf_type_of gl t2) & - closed0 t2 - then - tclTHENLIST [ - (generalize_tac [mkApp (Lazy.force coq_imp_simp, - [| t1; t2; decidability gl t1; mkVar i|])]); - (onClearedName i (fun i -> - (loop ((i,None,mk_or (mk_not t1) t2)::lit)))) - ] - else - loop lit - | Kapp(Not,[t]) -> - begin match destructurate_prop t with - Kapp(Or,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]); - (onClearedName i (fun i -> - (loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit)))) - ] - | Kapp(And,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_and, [| t1; t2; - decidability gl t1; mkVar i|])]); - (onClearedName i (fun i -> - (loop ((i,None,mk_or (mk_not t1) (mk_not t2))::lit)))) - ] - | Kapp(Iff,[t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_iff, [| t1; t2; - decidability gl t1; decidability gl t2; mkVar i|])]); - (onClearedName i (fun i -> - (loop ((i,None, - mk_or (mk_and t1 (mk_not t2)) - (mk_and (mk_not t1) t2))::lit)))) - ] - | Kimp(t1,t2) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_imp, [| t1; t2; - decidability gl t1;mkVar i |])]); - (onClearedName i (fun i -> - (loop ((i,None,mk_and t1 (mk_not t2)) :: lit)))) - ] - | Kapp(Not,[t]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_not, [| t; - decidability gl t; mkVar i |])]); - (onClearedName i (fun i -> (loop ((i,None,t)::lit)))) - ] - | Kapp(Zle, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_Znot_le_gt, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Zge, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_Znot_ge_lt, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Zlt, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_Znot_lt_ge, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Zgt, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_Znot_gt_le, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Le, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_le, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Ge, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_ge, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Lt, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_lt, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Gt, [t1;t2]) -> - tclTHENLIST [ - (generalize_tac - [mkApp (Lazy.force coq_not_gt, [| t1;t2;mkVar i|])]); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Eq,[typ;t1;t2]) -> - if !old_style_flag then begin - match destructurate_type (pf_nf gl typ) with - | Kapp(Nat,_) -> - tclTHENLIST [ - (simplest_elim - (mkApp - (Lazy.force coq_not_eq, [|t1;t2;mkVar i|]))); - (onClearedName i (fun _ -> loop lit)) - ] - | Kapp(Z,_) -> - tclTHENLIST [ - (simplest_elim - (mkApp - (Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|]))); - (onClearedName i (fun _ -> loop lit)) - ] - | _ -> loop lit - end else begin - match destructurate_type (pf_nf gl typ) with - | Kapp(Nat,_) -> - (tclTHEN - (convert_hyp_no_check - (i,body, - (mkApp (Lazy.force coq_neq, [| t1;t2|])))) - (loop lit)) - | Kapp(Z,_) -> - (tclTHEN - (convert_hyp_no_check - (i,body, - (mkApp (Lazy.force coq_Zne, [| t1;t2|])))) - (loop lit)) - | _ -> loop lit - end - | _ -> loop lit - end - | _ -> loop lit - with e when catchable_exception e -> loop lit - end - in - loop (pf_hyps gl) gl - -let destructure_goal gl = - let concl = pf_concl gl in - let rec loop t = - match destructurate_prop t with - | Kapp(Not,[t]) -> - (tclTHEN - (tclTHEN (unfold sp_not) intro) - destructure_hyps) - | Kimp(a,b) -> (tclTHEN intro (loop b)) - | Kapp(False,[]) -> destructure_hyps - | _ -> - (tclTHEN - (tclTHEN - (Tactics.refine - (mkApp (Lazy.force coq_dec_not_not, [| t; - decidability gl t; mkNewMeta () |]))) - intro) - (destructure_hyps)) - in - (loop concl) gl - -let destructure_goal = all_time (destructure_goal) - -let omega_solver gl = - Coqlib.check_required_library ["Coq";"omega";"Omega"]; - let result = destructure_goal gl in - (* if !display_time_flag then begin text_time (); - flush Pervasives.stdout end; *) - result |