diff options
Diffstat (limited to 'contrib/micromega/mfourier.ml')
-rw-r--r-- | contrib/micromega/mfourier.ml | 667 |
1 files changed, 0 insertions, 667 deletions
diff --git a/contrib/micromega/mfourier.ml b/contrib/micromega/mfourier.ml deleted file mode 100644 index 415d3a3e..00000000 --- a/contrib/micromega/mfourier.ml +++ /dev/null @@ -1,667 +0,0 @@ -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* *) -(* Micromega: A reflexive tactic using the Positivstellensatz *) -(* *) -(* Frédéric Besson (Irisa/Inria) 2006-2008 *) -(* *) -(************************************************************************) - -(* Yet another implementation of Fourier *) -open Num - -module Cmp = - (* How to compare pairs, lists ... *) -struct - let rec compare_lexical l = - match l with - | [] -> 0 (* Equal *) - | f::l -> - let cmp = f () in - if cmp = 0 then compare_lexical l else cmp - - let rec compare_list cmp l1 l2 = - match l1 , l2 with - | [] , [] -> 0 - | [] , _ -> -1 - | _ , [] -> 1 - | e1::l1 , e2::l2 -> - let c = cmp e1 e2 in - if c = 0 then compare_list cmp l1 l2 else c - - let hash_list hash l = - let rec xhash res l = - match l with - | [] -> res - | e::l -> xhash ((hash e) lxor res) l in - xhash (Hashtbl.hash []) l - -end - -module Interval = -struct - (** The type of intervals. **) - type intrvl = Empty | Point of num | Itv of num option * num option - - (** - Different intervals can denote the same set of variables e.g., - Point n && Itv (Some n, Some n) - Itv (Some x) (Some y) && Empty if x > y - see the 'belongs_to' function. - **) - - (* The set of numerics that belong to an interval *) - let belongs_to n = function - | Empty -> false - | Point x -> n =/ x - | Itv(Some x, Some y) -> x <=/ n && n <=/ y - | Itv(None,Some y) -> n <=/ y - | Itv(Some x,None) -> x <=/ n - | Itv(None,None) -> true - - let string_of_bound = function - | None -> "oo" - | Some n -> Printf.sprintf "Bd(%s)" (string_of_num n) - - let string_of_intrvl = function - | Empty -> "[]" - | Point n -> Printf.sprintf "[%s]" (string_of_num n) - | Itv(bd1,bd2) -> - Printf.sprintf "[%s,%s]" (string_of_bound bd1) (string_of_bound bd2) - - let pick_closed_to_zero = function - | Empty -> None - | Point n -> Some n - | Itv(None,None) -> Some (Int 0) - | Itv(None,Some i) -> - Some (if (Int 0) <=/ (floor_num i) then Int 0 else floor_num i) - | Itv(Some i,None) -> - Some (if i <=/ (Int 0) then Int 0 else ceiling_num i) - | Itv(Some i,Some j) -> - Some ( - if i <=/ Int 0 && Int 0 <=/ j - then Int 0 - else if ceiling_num i <=/ floor_num j - then ceiling_num i (* why not *) else i) - - type status = - | O | Qonly | Z | Q - - let interval_kind = function - | Empty -> O - | Point n -> if ceiling_num n =/ n then Z else Qonly - | Itv(None,None) -> Z - | Itv(None,Some i) -> if ceiling_num i <>/ i then Q else Z - | Itv(Some i,None) -> if ceiling_num i <>/ i then Q else Z - | Itv(Some i,Some j) -> - if ceiling_num i <>/ i or floor_num j <>/ j then Q else Z - - let empty_z = function - | Empty -> true - | Point n -> ceiling_num n <>/ n - | Itv(None,None) | Itv(None,Some _) | Itv(Some _,None) -> false - | Itv(Some i,Some j) -> ceiling_num i >/ floor_num j - - - let normalise b1 b2 = - match b1 , b2 with - | Some i , Some j -> - (match compare_num i j with - | 1 -> Empty - | 0 -> Point i - | _ -> Itv(b1,b2) - ) - | _ -> Itv(b1,b2) - - - - let min x y = - match x , y with - | None , x | x , None -> x - | Some i , Some j -> Some (min_num i j) - - let max x y = - match x , y with - | None , x | x , None -> x - | Some i , Some j -> Some (max_num i j) - - let inter i1 i2 = - match i1,i2 with - | Empty , _ -> Empty - | _ , Empty -> Empty - | Point n , Point m -> if n =/ m then i1 else Empty - | Point n , Itv (mn,mx) | Itv (mn,mx) , Point n-> - if (match mn with - | None -> true - | Some mn -> mn <=/ n) && - (match mx with - | None -> true - | Some mx -> n <=/ mx) then Point n else Empty - | Itv (min1,max1) , Itv (min2,max2) -> - let bmin = max min1 min2 - and bmax = min max1 max2 in - normalise bmin bmax - - (* a.x >= b*) - let bound_of_constraint (a,b) = - match compare_num a (Int 0) with - | 0 -> - if compare_num b (Int 0) = 1 - then Empty - (*actually this is a contradiction failwith "bound_of_constraint" *) - else Itv (None,None) - | 1 -> Itv (Some (div_num b a),None) - | -1 -> Itv (None, Some (div_num b a)) - | x -> failwith "bound_of_constraint(2)" - - - let bounded x = - match x with - | Itv(None,_) | Itv(_,None) -> false - | _ -> true - - - let range = function - | Empty -> Some (Int 0) - | Point n -> Some (Int (if ceiling_num n =/ n then 1 else 0)) - | Itv(None,_) | Itv(_,None)-> None - | Itv(Some i,Some j) -> Some (floor_num j -/ceiling_num i +/ (Int 1)) - - (* Returns the interval of smallest range *) - let smaller_itv i1 i2 = - match range i1 , range i2 with - | None , _ -> false - | _ , None -> true - | Some i , Some j -> i <=/ j - -end -open Interval - -(* A set of constraints *) -module Sys(V:Vector.S) (* : Vector.SystemS with module Vect = V*) = -struct - - module Vect = V - - module Cstr = Vector.Cstr(V) - open Cstr - - - module CMap = Map.Make( - struct - type t = Vect.t - let compare = Vect.compare - end) - - module CstrBag = - struct - - type mut_itv = { mutable itv : intrvl} - - type t = mut_itv CMap.t - - exception Contradiction - - let cstr_to_itv cstr = - let (n,l) = V.normalise cstr.coeffs in - if n =/ (Int 0) - then (Vect.null, bound_of_constraint (Int 0,cstr.cst)) (* Might be empty *) - else - match cstr.op with - | Eq -> let n = cstr.cst // n in (l, Point n) - | Ge -> - match compare_num n (Int 0) with - | 0 -> failwith "intrvl_of_constraint" - | 1 -> (l,Itv (Some (cstr.cst // n), None)) - | -1 -> (l, Itv(None,Some (cstr.cst // n))) - | _ -> failwith "cstr_to_itv" - - - let empty = CMap.empty - - - - - let is_empty = CMap.is_empty - - let find_vect v bag = - try - (bag,CMap.find v bag) - with Not_found -> let x = { itv = Itv(None,None)} in (CMap.add v x bag ,x) - - - let add (v,b) bag = - match b with - | Empty -> raise Contradiction - | Itv(None,None) -> bag - | _ -> - let (bag,intrl) = find_vect v bag in - match inter b intrl.itv with - | Empty -> raise Contradiction - | itv -> intrl.itv <- itv ; bag - - exception Found of cstr - - let find_equation bag = - try - CMap.fold (fun v i () -> - match i.itv with - | Point n -> let e = {coeffs = v ; op = Eq ; cst = n} - in raise (Found e) - | _ -> () ) bag () ; None - with Found c -> Some c - - - let fold f bag acc = - CMap.fold (fun v itv acc -> - match itv.itv with - | Empty | Itv(None,None) -> failwith "fold Empty" - | Itv(None ,Some i) -> - f {coeffs = V.mul (Int (-1)) v ; op = Ge ; cst = minus_num i} acc - | Point n -> f {coeffs = v ; op = Eq ; cst = n} acc - | Itv(x,y) -> - (match x with - | None -> (fun x -> x) - | Some i -> f {coeffs = v ; op = Ge ; cst = i}) - (match y with - | None -> acc - | Some i -> - f {coeffs = V.mul (Int (-1)) v ; op = Ge ; cst = minus_num i} acc - ) ) bag acc - - - let remove l _ = failwith "remove:Not implemented" - - module Map = - Map.Make( - struct - type t = int - let compare : int -> int -> int = Pervasives.compare - end) - - let split f (t:t) = - let res = - fold (fun e m -> let i = f e in - Map.add i (add (cstr_to_itv e) - (try Map.find i m with - Not_found -> empty)) m) t Map.empty in - (fun i -> try Map.find i res with Not_found -> empty) - - type map = (int list * int list) Map.t - - - let status (b:t) = - let _ , map = fold (fun c ( (idx:int),(res: map)) -> - ( idx + 1, - List.fold_left (fun (res:map) (pos,s) -> - let (lp,ln) = try Map.find pos res with Not_found -> ([],[]) in - match s with - | Vect.Pos -> Map.add pos (idx::lp,ln) res - | Vect.Neg -> - Map.add pos (lp, idx::ln) res) res - (Vect.status c.coeffs))) b (0,Map.empty) in - Map.fold (fun k e res -> (k,e)::res) map [] - - - type it = num CMap.t - - let iterator x = x - - let element it = failwith "element:Not implemented" - - end -end - -module Fourier(Vect : Vector.S) = -struct - module Vect = Vect - module Sys = Sys( Vect) - module Cstr = Sys.Cstr - module Bag = Sys.CstrBag - - open Cstr - open Sys - - let debug = false - - let print_bag msg b = - print_endline msg; - CstrBag.fold (fun e () -> print_endline (Cstr.string_of_cstr e)) b () - - let print_bag_file file msg b = - let f = open_out file in - output_string f msg; - CstrBag.fold (fun e () -> - Printf.fprintf f "%s\n" (Cstr.string_of_cstr e)) b () - - - (* A system with only inequations -- - *) - let partition i m = - let splitter cstr = compare_num (Vect.get i cstr.coeffs ) (Int 0) in - let split = CstrBag.split splitter m in - (split (-1) , split 0, split 1) - - - (* op of the result is arbitrary Ge *) - let lin_comb n1 c1 n2 c2 = - { coeffs = Vect.lin_comb n1 c1.coeffs n2 c2.coeffs ; - op = Ge ; - cst = (n1 */ c1.cst) +/ (n2 */ c2.cst)} - - (* BUG? : operator of the result ? *) - - let combine_project i c1 c2 = - let p = Vect.get i c1.coeffs - and n = Vect.get i c2.coeffs in - assert (n </ Int 0 && p >/ Int 0) ; - let nopp = minus_num n in - let c =lin_comb nopp c1 p c2 in - let op = if c1.op = Ge || c2.op = Ge then Ge else Eq in - CstrBag.cstr_to_itv {coeffs = c.coeffs ; op = op ; cst= c.cst } - - - let project i m = - let (neg,zero,pos) = partition i m in - let project1 cpos acc = - CstrBag.fold (fun cneg res -> - CstrBag.add (combine_project i cpos cneg) res) neg acc in - (CstrBag.fold project1 pos zero) - - (* Given a vector [x1 -> v1; ... ; xn -> vn] - and a constraint {x1 ; .... xn >= c } - *) - let evaluate_constraint i map cstr = - let {coeffs = _coeffs ; op = _op ; cst = _cst} = cstr in - let vi = Vect.get i _coeffs in - let v = Vect.set i (Int 0) _coeffs in - (vi, _cst -/ Vect.dotp map v) - - - let rec bounds m itv = - match m with - | [] -> itv - | e::m -> bounds m (inter itv (bound_of_constraint e)) - - - - let compare_status (i,(lp,ln)) (i',(lp',ln')) = - let cmp = Pervasives.compare - ((List.length lp) * (List.length ln)) - ((List.length lp') * (List.length ln')) in - if cmp = 0 - then Pervasives.compare i i' - else cmp - - let cardinal m = CstrBag.fold (fun _ x -> x + 1) m 0 - - let lightest_projection l c m = - let bound = c in - if debug then (Printf.printf "l%i" bound; flush stdout) ; - let rec xlight best l = - match l with - | [] -> best - | i::l -> - let proj = (project i m) in - let cproj = cardinal proj in - (*Printf.printf " p %i " cproj; flush stdout;*) - match best with - | None -> - if cproj < bound - then Some(cproj,proj,i) - else xlight (Some(cproj,proj,i)) l - | Some (cbest,_,_) -> - if cproj < cbest - then - if cproj < bound then Some(cproj,proj,i) - else xlight (Some(cproj,proj,i)) l - else xlight best l in - match xlight None l with - | None -> None - | Some(_,p,i) -> Some (p,i) - - - - exception Equality of cstr - - let find_equality m = Bag.find_equation m - - - - let pivot (n,v) eq ge = - assert (eq.op = Eq) ; - let res = - match - compare_num v (Int 0), - compare_num (Vect.get n ge.coeffs) (Int 0) - with - | 0 , _ -> failwith "Buggy" - | _ ,0 -> (CstrBag.cstr_to_itv ge) - | 1 , -1 -> combine_project n eq ge - | -1 , 1 -> combine_project n ge eq - | 1 , 1 -> - combine_project n ge - {coeffs = Vect.mul (Int (-1)) eq.coeffs; - op = eq.op ; - cst = minus_num eq.cst} - | -1 , -1 -> - combine_project n - {coeffs = Vect.mul (Int (-1)) eq.coeffs; - op = eq.op ; cst = minus_num eq.cst} ge - | _ -> failwith "pivot" in - res - - let check_cstr v c = - let {coeffs = _coeffs ; op = _op ; cst = _cst} = c in - let vl = Vect.dotp v _coeffs in - match _op with - | Eq -> vl =/ _cst - | Ge -> vl >= _cst - - - let forall p sys = - try - CstrBag.fold (fun c () -> if p c then () else raise Not_found) sys (); true - with Not_found -> false - - - let check_sys v sys = forall (check_cstr v) sys - - let check_null_cstr c = - let {coeffs = _coeffs ; op = _op ; cst = _cst} = c in - match _op with - | Eq -> (Int 0) =/ _cst - | Ge -> (Int 0) >= _cst - - let check_null sys = forall check_null_cstr sys - - - let optimise_ge - quick_check choose choose_idx return_empty return_ge return_eq m = - let c = cardinal m in - let bound = 2 * c in - if debug then (Printf.printf "optimise_ge: %i\n" c; flush stdout); - - let rec xoptimise m = - if debug then (Printf.printf "x%i" (cardinal m) ; flush stdout); - if debug then (print_bag "xoptimise" m ; flush stdout); - if quick_check m - then return_empty m - else - match find_equality m with - | None -> xoptimise_ge m - | Some eq -> xoptimise_eq eq m - - and xoptimise_ge m = - begin - let c = cardinal m in - let l = List.map fst (List.sort compare_status (CstrBag.status m)) in - let idx = choose bound l c m in - match idx with - | None -> return_empty m - | Some (proj,i) -> - match xoptimise proj with - | None -> None - | Some mapping -> return_ge m i mapping - end - and xoptimise_eq eq m = - let l = List.map fst (Vect.status eq.coeffs) in - match choose_idx l with - | None -> (*if l = [] then None else*) return_empty m - | Some i -> - let p = (i,Vect.get i eq.coeffs) in - let m' = CstrBag.fold - (fun ge res -> CstrBag.add (pivot p eq ge) res) m CstrBag.empty in - match xoptimise ( m') with - | None -> None - | Some mapp -> return_eq m eq i mapp in - try - let res = xoptimise m in res - with CstrBag.Contradiction -> (*print_string "contradiction" ;*) None - - - - let minimise m = - let opt_zero_choose bound l c m = - if c > bound - then lightest_projection l c m - else match l with - | [] -> None - | i::_ -> Some (project i m, i) in - - let choose_idx = function [] -> None | x::l -> Some x in - - let opt_zero_return_empty m = Some Vect.null in - - - let opt_zero_return_ge m i mapping = - let (it:intrvl) = CstrBag.fold (fun cstr itv -> Interval.inter - (bound_of_constraint (evaluate_constraint i mapping cstr)) itv) m - (Itv (None, None)) in - match pick_closed_to_zero it with - | None -> print_endline "Cannot pick" ; None - | Some v -> - let res = (Vect.set i v mapping) in - if debug - then Printf.printf "xoptimise res %i [%s]" i (Vect.string res) ; - Some res in - - let opt_zero_return_eq m eq i mapp = - let (a,b) = evaluate_constraint i mapp eq in - Some (Vect.set i (div_num b a) mapp) in - - optimise_ge check_null opt_zero_choose - choose_idx opt_zero_return_empty opt_zero_return_ge opt_zero_return_eq m - - let normalise cstr = [CstrBag.cstr_to_itv cstr] - - let find_point l = - (* List.iter (fun e -> print_endline (Cstr.string_of_cstr e)) l;*) - try - let m = List.fold_left (fun sys e -> CstrBag.add (CstrBag.cstr_to_itv e) sys) - CstrBag.empty l in - match minimise m with - | None -> None - | Some res -> - if debug then Printf.printf "[%s]" (Vect.string res); - Some res - with CstrBag.Contradiction -> None - - - let find_q_interval_for x m = - if debug then Printf.printf "find_q_interval_for %i\n" x ; - - let choose bound l c m = - let rec xchoose l = - match l with - | [] -> None - | i::l -> if i = x then xchoose l else Some (project i m,i) in - xchoose l in - - let rec choose_idx = function - [] -> None - | e::l -> if e = x then choose_idx l else Some e in - - let return_empty m = (* Beurk *) - (* returns the interval of x *) - Some (CstrBag.fold (fun cstr itv -> - let i = if cstr.op = Eq - then Point (cstr.cst // Vect.get x cstr.coeffs) - else if Vect.is_null (Vect.set x (Int 0) cstr.coeffs) - then bound_of_constraint (Vect.get x cstr.coeffs , cstr.cst) - else itv - in - Interval.inter i itv) m (Itv (None, None))) in - - let return_ge m i res = Some res in - - let return_eq m eq i res = Some res in - - try - optimise_ge - (fun x -> false) choose choose_idx return_empty return_ge return_eq m - with CstrBag.Contradiction -> None - - - let find_q_intervals sys = - let variables = - List.map fst (List.sort compare_status (CstrBag.status sys)) in - List.map (fun x -> (x,find_q_interval_for x sys)) variables - - let pp_option f o = function - None -> Printf.fprintf o "None" - | Some x -> Printf.fprintf o "Some %a" f x - - let optimise vect sys = - (* we have to modify the system with a dummy variable *) - let fresh = - List.fold_left (fun fr c -> Pervasives.max fr (Vect.fresh c.coeffs)) 0 sys in - assert (List.for_all (fun x -> Vect.get fresh x.coeffs =/ Int 0) sys); - let cstr = { - coeffs = Vect.set fresh (Int (-1)) vect ; - op = Eq ; - cst = (Int 0)} in - try - find_q_interval_for fresh - (List.fold_left - (fun bg c -> CstrBag.add (CstrBag.cstr_to_itv c) bg) - CstrBag.empty (cstr::sys)) - with CstrBag.Contradiction -> None - - - let optimise vect sys = - let res = optimise vect sys in - if debug - then Printf.printf "optimise %s -> %a\n" - (Vect.string vect) (pp_option (fun o x -> Printf.printf "%s" (string_of_intrvl x))) res - ; res - - let find_Q_interval sys = - try - let sys = - (List.fold_left - (fun bg c -> CstrBag.add (CstrBag.cstr_to_itv c) bg) CstrBag.empty sys) in - let candidates = - List.fold_left - (fun l (x,i) -> match i with - None -> (x,Empty)::l - | Some i -> (x,i)::l) [] (find_q_intervals sys) in - match List.fold_left - (fun (x1,i1) (x2,i2) -> - if smaller_itv i1 i2 - then (x1,i1) else (x2,i2)) (-1,Itv(None,None)) candidates - with - | (i,Empty) -> None - | (x,Itv(Some i, Some j)) -> Some(i,x,j) - | (x,Point n) -> Some(n,x,n) - | _ -> None - with CstrBag.Contradiction -> None - - -end - |