summaryrefslogtreecommitdiff
path: root/contrib/micromega/coq_micromega.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/micromega/coq_micromega.ml')
-rw-r--r--contrib/micromega/coq_micromega.ml1290
1 files changed, 1290 insertions, 0 deletions
diff --git a/contrib/micromega/coq_micromega.ml b/contrib/micromega/coq_micromega.ml
new file mode 100644
index 00000000..29e2a183
--- /dev/null
+++ b/contrib/micromega/coq_micromega.ml
@@ -0,0 +1,1290 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* *)
+(************************************************************************)
+
+open Mutils
+let debug = false
+
+let time str f x =
+ let t0 = (Unix.times()).Unix.tms_utime in
+ let res = f x in
+ let t1 = (Unix.times()).Unix.tms_utime in
+ (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ;
+ flush stdout);
+ res
+
+type ('a,'b) formula =
+ | TT
+ | FF
+ | X of 'b
+ | A of 'a * Names.name
+ | C of ('a,'b) formula * ('a,'b) formula * Names.name
+ | D of ('a,'b) formula * ('a,'b) formula * Names.name
+ | N of ('a,'b) formula * Names.name
+ | I of ('a,'b) formula * ('a,'b) formula * Names.name
+
+let none = Names.Anonymous
+
+let tag_formula t f =
+ match f with
+ | A(x,_) -> A(x,t)
+ | C(x,y,_) -> C(x,y,t)
+ | D(x,y,_) -> D(x,y,t)
+ | N(x,_) -> N(x,t)
+ | I(x,y,_) -> I(x,y,t)
+ | _ -> f
+
+let tt = []
+let ff = [ [] ]
+
+
+type ('constant,'contr) sentence =
+ ('constant Micromega.formula, 'contr) formula
+
+let cnf negate normalise f =
+ let negate a =
+ CoqToCaml.list (fun cl -> CoqToCaml.list (fun x -> x) cl) (negate a) in
+
+ let normalise a =
+ CoqToCaml.list (fun cl -> CoqToCaml.list (fun x -> x) cl) (normalise a) in
+
+ let and_cnf x y = x @ y in
+ let or_clause_cnf t f = List.map (fun x -> t@x ) f in
+
+ let rec or_cnf f f' =
+ match f with
+ | [] -> tt
+ | e :: rst -> (or_cnf rst f') @ (or_clause_cnf e f') in
+
+ let rec xcnf (pol : bool) f =
+ match f with
+ | TT -> if pol then tt else ff (* ?? *)
+ | FF -> if pol then ff else tt (* ?? *)
+ | X p -> if pol then ff else ff (* ?? *)
+ | A(x,t) -> if pol then normalise x else negate x
+ | N(e,t) -> xcnf (not pol) e
+ | C(e1,e2,t) ->
+ (if pol then and_cnf else or_cnf) (xcnf pol e1) (xcnf pol e2)
+ | D(e1,e2,t) ->
+ (if pol then or_cnf else and_cnf) (xcnf pol e1) (xcnf pol e2)
+ | I(e1,e2,t) ->
+ (if pol then or_cnf else and_cnf) (xcnf (not pol) e1) (xcnf pol e2) in
+
+ xcnf true f
+
+
+
+module M =
+struct
+ open Coqlib
+ open Term
+ (* let constant = gen_constant_in_modules "Omicron" coq_modules*)
+
+
+ let logic_dir = ["Coq";"Logic";"Decidable"]
+ let coq_modules =
+ init_modules @
+ [logic_dir] @ arith_modules @ zarith_base_modules @
+ [ ["Coq";"Lists";"List"];
+ ["ZMicromega"];
+ ["Tauto"];
+ ["RingMicromega"];
+ ["EnvRing"];
+ ["Coq"; "micromega"; "ZMicromega"];
+ ["Coq" ; "micromega" ; "Tauto"];
+ ["Coq" ; "micromega" ; "RingMicromega"];
+ ["Coq" ; "micromega" ; "EnvRing"];
+ ["Coq";"QArith"; "QArith_base"];
+ ["Coq";"Reals" ; "Rdefinitions"];
+ ["LRing_normalise"]]
+
+ let constant = gen_constant_in_modules "ZMicromega" coq_modules
+
+ let coq_and = lazy (constant "and")
+ let coq_or = lazy (constant "or")
+ let coq_not = lazy (constant "not")
+ let coq_iff = lazy (constant "iff")
+ let coq_True = lazy (constant "True")
+ let coq_False = lazy (constant "False")
+
+ let coq_cons = lazy (constant "cons")
+ let coq_nil = lazy (constant "nil")
+ let coq_list = lazy (constant "list")
+
+ let coq_O = lazy (constant "O")
+ let coq_S = lazy (constant "S")
+ let coq_nat = lazy (constant "nat")
+
+ let coq_NO = lazy
+ (gen_constant_in_modules "N" [ ["Coq";"NArith";"BinNat" ]] "N0")
+ let coq_Npos = lazy
+ (gen_constant_in_modules "N" [ ["Coq";"NArith"; "BinNat"]] "Npos")
+ (* let coq_n = lazy (constant "N")*)
+
+ let coq_pair = lazy (constant "pair")
+ let coq_None = lazy (constant "None")
+ let coq_option = lazy (constant "option")
+ let coq_positive = lazy (constant "positive")
+ let coq_xH = lazy (constant "xH")
+ let coq_xO = lazy (constant "xO")
+ let coq_xI = lazy (constant "xI")
+
+ let coq_N0 = lazy (constant "N0")
+ let coq_N0 = lazy (constant "Npos")
+
+
+ let coq_Z = lazy (constant "Z")
+ let coq_Q = lazy (constant "Q")
+ let coq_R = lazy (constant "R")
+
+ let coq_ZERO = lazy (constant "Z0")
+ let coq_POS = lazy (constant "Zpos")
+ let coq_NEG = lazy (constant "Zneg")
+
+ let coq_QWitness = lazy
+ (gen_constant_in_modules "QMicromega"
+ [["Coq"; "micromega"; "QMicromega"]] "QWitness")
+ let coq_ZWitness = lazy
+ (gen_constant_in_modules "QMicromega"
+ [["Coq"; "micromega"; "ZMicromega"]] "ZWitness")
+
+
+ let coq_Build_Witness = lazy (constant "Build_Witness")
+
+
+ let coq_Qmake = lazy (constant "Qmake")
+
+ let coq_proofTerm = lazy (constant "ProofTerm")
+ let coq_ratProof = lazy (constant "RatProof")
+ let coq_cutProof = lazy (constant "CutProof")
+ let coq_enumProof = lazy (constant "EnumProof")
+
+ let coq_Zgt = lazy (constant "Zgt")
+ let coq_Zge = lazy (constant "Zge")
+ let coq_Zle = lazy (constant "Zle")
+ let coq_Zlt = lazy (constant "Zlt")
+ let coq_Eq = lazy (constant "eq")
+
+ let coq_Zplus = lazy (constant "Zplus")
+ let coq_Zminus = lazy (constant "Zminus")
+ let coq_Zopp = lazy (constant "Zopp")
+ let coq_Zmult = lazy (constant "Zmult")
+ let coq_N_of_Z = lazy
+ (gen_constant_in_modules "ZArithRing"
+ [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")
+
+
+ let coq_PEX = lazy (constant "PEX" )
+ let coq_PEc = lazy (constant"PEc")
+ let coq_PEadd = lazy (constant "PEadd")
+ let coq_PEopp = lazy (constant "PEopp")
+ let coq_PEmul = lazy (constant "PEmul")
+ let coq_PEsub = lazy (constant "PEsub")
+ let coq_PEpow = lazy (constant "PEpow")
+
+
+ let coq_OpEq = lazy (constant "OpEq")
+ let coq_OpNEq = lazy (constant "OpNEq")
+ let coq_OpLe = lazy (constant "OpLe")
+ let coq_OpLt = lazy (constant "OpLt")
+ let coq_OpGe = lazy (constant "OpGe")
+ let coq_OpGt = lazy (constant "OpGt")
+
+
+ let coq_S_In = lazy (constant "S_In")
+ let coq_S_Square = lazy (constant "S_Square")
+ let coq_S_Monoid = lazy (constant "S_Monoid")
+ let coq_S_Ideal = lazy (constant "S_Ideal")
+ let coq_S_Mult = lazy (constant "S_Mult")
+ let coq_S_Add = lazy (constant "S_Add")
+ let coq_S_Pos = lazy (constant "S_Pos")
+ let coq_S_Z = lazy (constant "S_Z")
+ let coq_coneMember = lazy (constant "coneMember")
+
+
+ let coq_make_impl = lazy
+ (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
+ let coq_make_conj = lazy
+ (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")
+
+ let coq_Build = lazy
+ (gen_constant_in_modules "RingMicromega"
+ [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ]
+ "Build_Formula")
+ let coq_Cstr = lazy
+ (gen_constant_in_modules "RingMicromega"
+ [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")
+
+ type parse_error =
+ | Ukn
+ | BadStr of string
+ | BadNum of int
+ | BadTerm of Term.constr
+ | Msg of string
+ | Goal of (Term.constr list ) * Term.constr * parse_error
+
+ let string_of_error = function
+ | Ukn -> "ukn"
+ | BadStr s -> s
+ | BadNum i -> string_of_int i
+ | BadTerm _ -> "BadTerm"
+ | Msg s -> s
+ | Goal _ -> "Goal"
+
+
+ exception ParseError
+
+
+
+
+ let get_left_construct term =
+ match Term.kind_of_term term with
+ | Term.Construct(_,i) -> (i,[| |])
+ | Term.App(l,rst) ->
+ (match Term.kind_of_term l with
+ | Term.Construct(_,i) -> (i,rst)
+ | _ -> raise ParseError
+ )
+ | _ -> raise ParseError
+
+ module Mc = Micromega
+
+ let rec parse_nat term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.O
+ | 2 -> Mc.S (parse_nat (c.(0)))
+ | i -> raise ParseError
+
+
+ let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n)
+
+
+ let rec dump_nat x =
+ match x with
+ | Mc.O -> Lazy.force coq_O
+ | Mc.S p -> Term.mkApp(Lazy.force coq_S,[| dump_nat p |])
+
+
+ let rec parse_positive term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.XI (parse_positive c.(0))
+ | 2 -> Mc.XO (parse_positive c.(0))
+ | 3 -> Mc.XH
+ | i -> raise ParseError
+
+
+ let rec dump_positive x =
+ match x with
+ | Mc.XH -> Lazy.force coq_xH
+ | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_positive p |])
+ | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_positive p |])
+
+ let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x)
+
+
+ let rec dump_n x =
+ match x with
+ | Mc.N0 -> Lazy.force coq_N0
+ | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p|])
+
+ let rec dump_index x =
+ match x with
+ | Mc.XH -> Lazy.force coq_xH
+ | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_index p |])
+ | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_index p |])
+
+
+ let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
+
+ let rec dump_n x =
+ match x with
+ | Mc.N0 -> Lazy.force coq_NO
+ | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p |])
+
+ let rec pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
+
+ let dump_pair t1 t2 dump_t1 dump_t2 (Mc.Pair (x,y)) =
+ Term.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])
+
+
+ let rec parse_z term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.Z0
+ | 2 -> Mc.Zpos (parse_positive c.(0))
+ | 3 -> Mc.Zneg (parse_positive c.(0))
+ | i -> raise ParseError
+
+ let dump_z x =
+ match x with
+ | Mc.Z0 ->Lazy.force coq_ZERO
+ | Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|])
+ | Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|])
+
+ let pp_z o x = Printf.fprintf o "%i" (CoqToCaml.z x)
+
+let dump_num bd1 =
+ Term.mkApp(Lazy.force coq_Qmake,
+ [|dump_z (CamlToCoq.bigint (numerator bd1)) ;
+ dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])
+
+
+let dump_q q =
+ Term.mkApp(Lazy.force coq_Qmake,
+ [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])
+
+let parse_q term =
+ match Term.kind_of_term term with
+ | Term.App(c, args) ->
+ (
+ match Term.kind_of_term c with
+ Term.Construct((n,j),i) ->
+ if Names.string_of_kn n = "Coq.QArith.QArith_base#<>#Q"
+ then {Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) }
+ else raise ParseError
+ | _ -> raise ParseError
+ )
+ | _ -> raise ParseError
+
+ let rec parse_list parse_elt term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.Nil
+ | 2 -> Mc.Cons(parse_elt c.(1), parse_list parse_elt c.(2))
+ | i -> raise ParseError
+
+
+ let rec dump_list typ dump_elt l =
+ match l with
+ | Mc.Nil -> Term.mkApp(Lazy.force coq_nil,[| typ |])
+ | Mc.Cons(e,l) -> Term.mkApp(Lazy.force coq_cons,
+ [| typ; dump_elt e;dump_list typ dump_elt l|])
+
+ let rec dump_ml_list typ dump_elt l =
+ match l with
+ | [] -> Term.mkApp(Lazy.force coq_nil,[| typ |])
+ | e::l -> Term.mkApp(Lazy.force coq_cons,
+ [| typ; dump_elt e;dump_ml_list typ dump_elt l|])
+
+
+
+ let pp_list op cl elt o l =
+ let rec _pp o l =
+ match l with
+ | Mc.Nil -> ()
+ | Mc.Cons(e,Mc.Nil) -> Printf.fprintf o "%a" elt e
+ | Mc.Cons(e,l) -> Printf.fprintf o "%a ,%a" elt e _pp l in
+ Printf.fprintf o "%s%a%s" op _pp l cl
+
+
+
+ let pp_var = pp_positive
+ let dump_var = dump_positive
+
+ let rec pp_expr o e =
+ match e with
+ | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
+ | Mc.PEc z -> pp_z o z
+ | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
+ | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
+ | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n n
+
+
+ let dump_expr typ dump_z e =
+ let rec dump_expr e =
+ match e with
+ | Mc.PEX n -> mkApp(Lazy.force coq_PEX,[| typ; dump_var n |])
+ | Mc.PEc z -> mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |])
+ | Mc.PEadd(e1,e2) -> mkApp(Lazy.force coq_PEadd,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEsub(e1,e2) -> mkApp(Lazy.force coq_PEsub,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEopp e -> mkApp(Lazy.force coq_PEopp,
+ [| typ; dump_expr e|])
+ | Mc.PEmul(e1,e2) -> mkApp(Lazy.force coq_PEmul,
+ [| typ; dump_expr e1;dump_expr e2|])
+ | Mc.PEpow(e,n) -> mkApp(Lazy.force coq_PEpow,
+ [| typ; dump_expr e; dump_n n|])
+ in
+ dump_expr e
+
+ let rec dump_monoid l = dump_list (Lazy.force coq_nat) dump_nat l
+
+ let rec dump_cone typ dump_z e =
+ let z = Lazy.force typ in
+ let rec dump_cone e =
+ match e with
+ | Mc.S_In n -> mkApp(Lazy.force coq_S_In,[| z; dump_nat n |])
+ | Mc.S_Ideal(e,c) -> mkApp(Lazy.force coq_S_Ideal,
+ [| z; dump_expr z dump_z e ; dump_cone c |])
+ | Mc.S_Square e -> mkApp(Lazy.force coq_S_Square,
+ [| z;dump_expr z dump_z e|])
+ | Mc.S_Monoid l -> mkApp (Lazy.force coq_S_Monoid,
+ [|z; dump_monoid l|])
+ | Mc.S_Add(e1,e2) -> mkApp(Lazy.force coq_S_Add,
+ [| z; dump_cone e1; dump_cone e2|])
+ | Mc.S_Mult(e1,e2) -> mkApp(Lazy.force coq_S_Mult,
+ [| z; dump_cone e1; dump_cone e2|])
+ | Mc.S_Pos p -> mkApp(Lazy.force coq_S_Pos,[| z; dump_z p|])
+ | Mc.S_Z -> mkApp( Lazy.force coq_S_Z,[| z|]) in
+ dump_cone e
+
+
+ let pp_cone pp_z o e =
+ let rec pp_cone o e =
+ match e with
+ | Mc.S_In n ->
+ Printf.fprintf o "(S_In %a)%%nat" pp_nat n
+ | Mc.S_Ideal(e,c) ->
+ Printf.fprintf o "(S_Ideal %a %a)" pp_expr e pp_cone c
+ | Mc.S_Square e ->
+ Printf.fprintf o "(S_Square %a)" pp_expr e
+ | Mc.S_Monoid l ->
+ Printf.fprintf o "(S_Monoid %a)" (pp_list "[" "]" pp_nat) l
+ | Mc.S_Add(e1,e2) ->
+ Printf.fprintf o "(S_Add %a %a)" pp_cone e1 pp_cone e2
+ | Mc.S_Mult(e1,e2) ->
+ Printf.fprintf o "(S_Mult %a %a)" pp_cone e1 pp_cone e2
+ | Mc.S_Pos p ->
+ Printf.fprintf o "(S_Pos %a)%%positive" pp_z p
+ | Mc.S_Z ->
+ Printf.fprintf o "S_Z" in
+ pp_cone o e
+
+
+
+
+ let rec parse_op term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.OpEq
+ | 2 -> Mc.OpLe
+ | 3 -> Mc.OpGe
+ | 4 -> Mc.OpGt
+ | 5 -> Mc.OpLt
+ | i -> raise ParseError
+
+
+ let rec dump_op = function
+ | Mc.OpEq-> Lazy.force coq_OpEq
+ | Mc.OpNEq-> Lazy.force coq_OpNEq
+ | Mc.OpLe -> Lazy.force coq_OpLe
+ | Mc.OpGe -> Lazy.force coq_OpGe
+ | Mc.OpGt-> Lazy.force coq_OpGt
+ | Mc.OpLt-> Lazy.force coq_OpLt
+
+
+
+ let pp_op o e=
+ match e with
+ | Mc.OpEq-> Printf.fprintf o "="
+ | Mc.OpNEq-> Printf.fprintf o "<>"
+ | Mc.OpLe -> Printf.fprintf o "=<"
+ | Mc.OpGe -> Printf.fprintf o ">="
+ | Mc.OpGt-> Printf.fprintf o ">"
+ | Mc.OpLt-> Printf.fprintf o "<"
+
+
+
+
+ let pp_cstr o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
+ Printf.fprintf o"(%a %a %a)" pp_expr l pp_op op pp_expr r
+
+ let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
+ Term.mkApp(Lazy.force coq_Build,
+ [| typ; dump_expr typ dump_constant e1 ;
+ dump_op o ;
+ dump_expr typ dump_constant e2|])
+
+
+
+ let parse_zop (op,args) =
+ match kind_of_term op with
+ | Const x ->
+ (match Names.string_of_con x with
+ | "Coq.ZArith.BinInt#<>#Zgt" -> (Mc.OpGt, args.(0), args.(1))
+ | "Coq.ZArith.BinInt#<>#Zge" -> (Mc.OpGe, args.(0), args.(1))
+ | "Coq.ZArith.BinInt#<>#Zlt" -> (Mc.OpLt, args.(0), args.(1))
+ | "Coq.ZArith.BinInt#<>#Zle" -> (Mc.OpLe, args.(0), args.(1))
+ (*| "Coq.Init.Logic#<>#not" -> Mc.OpNEq (* for backward compat *)*)
+ | s -> raise ParseError
+ )
+ | Ind(n,0) ->
+ (match Names.string_of_kn n with
+ | "Coq.Init.Logic#<>#eq" ->
+ if args.(0) <> Lazy.force coq_Z
+ then raise ParseError
+ else (Mc.OpEq, args.(1), args.(2))
+ | _ -> raise ParseError)
+ | _ -> failwith "parse_zop"
+
+
+ let parse_rop (op,args) =
+ try
+ match kind_of_term op with
+ | Const x ->
+ (match Names.string_of_con x with
+ | "Coq.Reals.Rdefinitions#<>#Rgt" -> (Mc.OpGt, args.(0), args.(1))
+ | "Coq.Reals.Rdefinitions#<>#Rge" -> (Mc.OpGe, args.(0), args.(1))
+ | "Coq.Reals.Rdefinitions#<>#Rlt" -> (Mc.OpLt, args.(0), args.(1))
+ | "Coq.Reals.Rdefinitions#<>#Rle" -> (Mc.OpLe, args.(0), args.(1))
+ (*| "Coq.Init.Logic#<>#not"-> Mc.OpNEq (* for backward compat *)*)
+ | s -> raise ParseError
+ )
+ | Ind(n,0) ->
+ (match Names.string_of_kn n with
+ | "Coq.Init.Logic#<>#eq" ->
+ (* if args.(0) <> Lazy.force coq_R
+ then raise ParseError
+ else*) (Mc.OpEq, args.(1), args.(2))
+ | _ -> raise ParseError)
+ | _ -> failwith "parse_rop"
+ with x ->
+ (Pp.pp (Pp.str "parse_rop failure ") ;
+ Pp.pp (Printer.prterm op) ; Pp.pp_flush ())
+ ; raise x
+
+
+ let parse_qop (op,args) =
+ (
+ (match kind_of_term op with
+ | Const x ->
+ (match Names.string_of_con x with
+ | "Coq.QArith.QArith_base#<>#Qgt" -> Mc.OpGt
+ | "Coq.QArith.QArith_base#<>#Qge" -> Mc.OpGe
+ | "Coq.QArith.QArith_base#<>#Qlt" -> Mc.OpLt
+ | "Coq.QArith.QArith_base#<>#Qle" -> Mc.OpLe
+ | "Coq.QArith.QArith_base#<>#Qeq" -> Mc.OpEq
+ | s -> raise ParseError
+ )
+ | _ -> failwith "parse_zop") , args.(0) , args.(1))
+
+
+ module Env =
+ struct
+ type t = constr list
+
+ let compute_rank_add env v =
+ let rec _add env n v =
+ match env with
+ | [] -> ([v],n)
+ | e::l ->
+ if eq_constr e v
+ then (env,n)
+ else
+ let (env,n) = _add l ( n+1) v in
+ (e::env,n) in
+ let (env, n) = _add env 1 v in
+ (env, CamlToCoq.idx n)
+
+
+ let empty = []
+
+ let elements env = env
+
+ end
+
+
+ let is_constant t = (* This is an approx *)
+ match kind_of_term t with
+ | Construct(i,_) -> true
+ | _ -> false
+
+
+ type 'a op =
+ | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr)
+ | Opp
+ | Power
+ | Ukn of string
+
+
+ let parse_expr parse_constant parse_exp ops_spec env term =
+ if debug
+ then (Pp.pp (Pp.str "parse_expr: ");
+ Pp.pp_flush ();Pp.pp (Printer.prterm term); Pp.pp_flush ());
+
+ let constant_or_variable env term =
+ try
+ ( Mc.PEc (parse_constant term) , env)
+ with ParseError ->
+ let (env,n) = Env.compute_rank_add env term in
+ (Mc.PEX n , env) in
+
+ let rec parse_expr env term =
+ let combine env op (t1,t2) =
+ let (expr1,env) = parse_expr env t1 in
+ let (expr2,env) = parse_expr env t2 in
+ (op expr1 expr2,env) in
+ match kind_of_term term with
+ | App(t,args) ->
+ (
+ match kind_of_term t with
+ | Const c ->
+ ( match ops_spec (Names.string_of_con c) with
+ | Binop f -> combine env f (args.(0),args.(1))
+ | Opp -> let (expr,env) = parse_expr env args.(0) in
+ (Mc.PEopp expr, env)
+ | Power ->
+ let (expr,env) = parse_expr env args.(0) in
+ let exp = (parse_exp args.(1)) in
+ (Mc.PEpow(expr, exp) , env)
+ | Ukn s ->
+ if debug
+ then (Printf.printf "unknown op: %s\n" s; flush stdout;);
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ )
+ | _ -> constant_or_variable env term
+ )
+ | _ -> constant_or_variable env term in
+ parse_expr env term
+
+
+let zop_spec = function
+ | "Coq.ZArith.BinInt#<>#Zplus" -> Binop (fun x y -> Mc.PEadd(x,y))
+ | "Coq.ZArith.BinInt#<>#Zminus" -> Binop (fun x y -> Mc.PEsub(x,y))
+ | "Coq.ZArith.BinInt#<>#Zmult" -> Binop (fun x y -> Mc.PEmul (x,y))
+ | "Coq.ZArith.BinInt#<>#Zopp" -> Opp
+ | "Coq.ZArith.Zpow_def#<>#Zpower" -> Power
+ | s -> Ukn s
+
+let qop_spec = function
+ | "Coq.QArith.QArith_base#<>#Qplus" -> Binop (fun x y -> Mc.PEadd(x,y))
+ | "Coq.QArith.QArith_base#<>#Qminus" -> Binop (fun x y -> Mc.PEsub(x,y))
+ | "Coq.QArith.QArith_base#<>#Qmult" -> Binop (fun x y -> Mc.PEmul (x,y))
+ | "Coq.QArith.QArith_base#<>#Qopp" -> Opp
+ | "Coq.QArith.QArith_base#<>#Qpower" -> Power
+ | s -> Ukn s
+
+let rop_spec = function
+ | "Coq.Reals.Rdefinitions#<>#Rplus" -> Binop (fun x y -> Mc.PEadd(x,y))
+ | "Coq.Reals.Rdefinitions#<>#Rminus" -> Binop (fun x y -> Mc.PEsub(x,y))
+ | "Coq.Reals.Rdefinitions#<>#Rmult" -> Binop (fun x y -> Mc.PEmul (x,y))
+ | "Coq.Reals.Rdefinitions#<>#Ropp" -> Opp
+ | "Coq.Reals.Rpow_def#<>#pow" -> Power
+ | s -> Ukn s
+
+
+
+
+
+let zconstant = parse_z
+let qconstant = parse_q
+
+
+let rconstant term =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "rconstant: ");
+ Pp.pp (Printer.prterm term); Pp.pp_flush ());
+ match Term.kind_of_term term with
+ | Const x ->
+ (match Names.string_of_con x with
+ | "Coq.Reals.Rdefinitions#<>#R0" -> Mc.Z0
+ | "Coq.Reals.Rdefinitions#<>#R1" -> Mc.Zpos Mc.XH
+ | _ -> raise ParseError
+ )
+ | _ -> raise ParseError
+
+
+let parse_zexpr =
+ parse_expr zconstant (fun x -> Mc.n_of_Z (parse_z x)) zop_spec
+let parse_qexpr =
+ parse_expr qconstant (fun x -> Mc.n_of_Z (parse_z x)) qop_spec
+let parse_rexpr =
+ parse_expr rconstant (fun x -> Mc.n_of_nat (parse_nat x)) rop_spec
+
+
+ let parse_arith parse_op parse_expr env cstr =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "parse_arith: ");
+ Pp.pp (Printer.prterm cstr);
+ Pp.pp_flush ());
+ match kind_of_term cstr with
+ | App(op,args) ->
+ let (op,lhs,rhs) = parse_op (op,args) in
+ let (e1,env) = parse_expr env lhs in
+ let (e2,env) = parse_expr env rhs in
+ ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env)
+ | _ -> failwith "error : parse_arith(2)"
+
+ let parse_zarith = parse_arith parse_zop parse_zexpr
+
+ let parse_qarith = parse_arith parse_qop parse_qexpr
+
+ let parse_rarith = parse_arith parse_rop parse_rexpr
+
+
+ (* generic parsing of arithmetic expressions *)
+
+ let rec parse_conj parse_arith env term =
+ match kind_of_term term with
+ | App(l,rst) ->
+ (match kind_of_term l with
+ | Ind (n,_) ->
+ ( match Names.string_of_kn n with
+ | "Coq.Init.Logic#<>#and" ->
+ let (e1,env) = parse_arith env rst.(0) in
+ let (e2,env) = parse_conj parse_arith env rst.(1) in
+ (Mc.Cons(e1,e2),env)
+ | _ -> (* This might be an equality *)
+ let (e,env) = parse_arith env term in
+ (Mc.Cons(e,Mc.Nil),env))
+ | _ -> (* This is an arithmetic expression *)
+ let (e,env) = parse_arith env term in
+ (Mc.Cons(e,Mc.Nil),env))
+ | _ -> failwith "parse_conj(2)"
+
+
+
+ let rec f2f = function
+ | TT -> Mc.TT
+ | FF -> Mc.FF
+ | X _ -> Mc.X
+ | A (x,_) -> Mc.A x
+ | C (a,b,_) -> Mc.Cj(f2f a,f2f b)
+ | D (a,b,_) -> Mc.D(f2f a,f2f b)
+ | N (a,_) -> Mc.N(f2f a)
+ | I(a,b,_) -> Mc.I(f2f a,f2f b)
+
+ let is_prop t =
+ match t with
+ | Names.Anonymous -> true (* Not quite right *)
+ | Names.Name x -> false
+
+ let mkC f1 f2 = C(f1,f2,none)
+ let mkD f1 f2 = D(f1,f2,none)
+ let mkIff f1 f2 = C(I(f1,f2,none),I(f2,f2,none),none)
+ let mkI f1 f2 = I(f1,f2,none)
+
+ let mkformula_binary g term f1 f2 =
+ match f1 , f2 with
+ | X _ , X _ -> X(term)
+ | _ -> g f1 f2
+
+ let parse_formula parse_atom env term =
+ let parse_atom env t = try let (at,env) = parse_atom env t in (A(at,none), env) with _ -> (X(t),env) in
+
+ let rec xparse_formula env term =
+ match kind_of_term term with
+ | App(l,rst) ->
+ (match rst with
+ | [|a;b|] when l = Lazy.force coq_and ->
+ let f,env = xparse_formula env a in
+ let g,env = xparse_formula env b in
+ mkformula_binary mkC term f g,env
+ | [|a;b|] when l = Lazy.force coq_or ->
+ let f,env = xparse_formula env a in
+ let g,env = xparse_formula env b in
+ mkformula_binary mkD term f g,env
+ | [|a|] when l = Lazy.force coq_not ->
+ let (f,env) = xparse_formula env a in (N(f,none), env)
+ | [|a;b|] when l = Lazy.force coq_iff ->
+ let f,env = xparse_formula env a in
+ let g,env = xparse_formula env b in
+ mkformula_binary mkIff term f g,env
+ | _ -> parse_atom env term)
+ | Prod(typ,a,b) when not (Termops.dependent (mkRel 1) b) ->
+ let f,env = xparse_formula env a in
+ let g,env = xparse_formula env b in
+ mkformula_binary mkI term f g,env
+ | _ when term = Lazy.force coq_True -> (TT,env)
+ | _ when term = Lazy.force coq_False -> (FF,env)
+ | _ -> X(term),env in
+ xparse_formula env term
+
+ let coq_TT = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "TT")
+ let coq_FF = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "FF")
+ let coq_And = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "Cj")
+ let coq_Or = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "D")
+ let coq_Neg = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "N")
+ let coq_Atom = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "A")
+ let coq_X = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "X")
+ let coq_Impl = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "I")
+ let coq_Formula = lazy
+ (gen_constant_in_modules "ZMicromega"
+ [["Coq" ; "micromega" ; "Tauto"];["Tauto"]] "BFormula")
+
+ let dump_formula typ dump_atom f =
+ let rec xdump f =
+ match f with
+ | TT -> mkApp(Lazy.force coq_TT,[| typ|])
+ | FF -> mkApp(Lazy.force coq_FF,[| typ|])
+ | C(x,y,_) -> mkApp(Lazy.force coq_And,[| typ ; xdump x ; xdump y|])
+ | D(x,y,_) -> mkApp(Lazy.force coq_Or,[| typ ; xdump x ; xdump y|])
+ | I(x,y,_) -> mkApp(Lazy.force coq_Impl,[| typ ; xdump x ; xdump y|])
+ | N(x,_) -> mkApp(Lazy.force coq_Neg,[| typ ; xdump x|])
+ | A(x,_) -> mkApp(Lazy.force coq_Atom,[| typ ; dump_atom x|])
+ | X(t) -> mkApp(Lazy.force coq_X,[| typ ; t|]) in
+
+ xdump f
+
+
+ (* Backward compat *)
+
+ let rec parse_concl parse_arith env term =
+ match kind_of_term term with
+ | Prod(_,expr,rst) -> (* a -> b *)
+ let (lhs,rhs,env) = parse_concl parse_arith env rst in
+ let (e,env) = parse_arith env expr in
+ (Mc.Cons(e,lhs),rhs,env)
+ | App(_,_) ->
+ let (conj, env) = parse_conj parse_arith env term in
+ (Mc.Nil,conj,env)
+ | Ind(n,_) ->
+ (match (Names.string_of_kn n) with
+ | "Coq.Init.Logic#<>#False" -> (Mc.Nil,Mc.Nil,env)
+ | s ->
+ print_string s ; flush stdout;
+ failwith "parse_concl")
+ | _ -> failwith "parse_concl"
+
+
+ let rec parse_hyps parse_arith env goal_hyps hyps =
+ match hyps with
+ | [] -> ([],goal_hyps,env)
+ | (i,t)::l ->
+ let (li,lt,env) = parse_hyps parse_arith env goal_hyps l in
+ try
+ let (c,env) = parse_arith env t in
+ (i::li, Mc.Cons(c,lt), env)
+ with x ->
+ (*(if debug then Printf.printf "parse_arith : %s\n" x);*)
+ (li,lt,env)
+
+
+ let parse_goal parse_arith env hyps term =
+ try
+ let (lhs,rhs,env) = parse_concl parse_arith env term in
+ let (li,lt,env) = parse_hyps parse_arith env lhs hyps in
+ (li,lt,rhs,env)
+ with Failure x -> raise ParseError
+ (* backward compat *)
+
+
+ (* ! reverse the list of bindings *)
+ let set l concl =
+ let rec _set acc = function
+ | [] -> acc
+ | (e::l) ->
+ let (name,expr,typ) = e in
+ _set (Term.mkNamedLetIn
+ (Names.id_of_string name)
+ expr typ acc) l in
+ _set concl l
+
+
+end
+
+open M
+
+
+let rec sig_of_cone = function
+ | Mc.S_In n -> [CoqToCaml.nat n]
+ | Mc.S_Ideal(e,w) -> sig_of_cone w
+ | Mc.S_Mult(w1,w2) ->
+ (sig_of_cone w1)@(sig_of_cone w2)
+ | Mc.S_Add(w1,w2) -> (sig_of_cone w1)@(sig_of_cone w2)
+ | _ -> []
+
+let same_proof sg cl1 cl2 =
+ let cl1 = CoqToCaml.list (fun x -> x) cl1 in
+ let cl2 = CoqToCaml.list (fun x -> x) cl2 in
+ let rec xsame_proof sg =
+ match sg with
+ | [] -> true
+ | n::sg -> (try List.nth cl1 n = List.nth cl2 n with _ -> false)
+ && (xsame_proof sg ) in
+ xsame_proof sg
+
+
+
+
+let tags_of_clause tgs wit clause =
+ let rec xtags tgs = function
+ | Mc.S_In n -> Names.Idset.union tgs
+ (snd (List.nth clause (CoqToCaml.nat n) ))
+ | Mc.S_Ideal(e,w) -> xtags tgs w
+ | Mc.S_Mult (w1,w2) | Mc.S_Add(w1,w2) -> xtags (xtags tgs w1) w2
+ | _ -> tgs in
+ xtags tgs wit
+
+let tags_of_cnf wits cnf =
+ List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
+ Names.Idset.empty wits cnf
+
+
+let find_witness prover polys1 =
+ let l = CoqToCaml.list (fun x -> x) polys1 in
+ try_any prover l
+
+let rec witness prover l1 l2 =
+ match l2 with
+ | Micromega.Nil -> Some (Micromega.Nil)
+ | Micromega.Cons(e,l2) ->
+ match find_witness prover (Micromega.Cons( e,l1)) with
+ | None -> None
+ | Some w ->
+ (match witness prover l1 l2 with
+ | None -> None
+ | Some l -> Some (Micromega.Cons (w,l))
+ )
+
+
+let rec apply_ids t ids =
+ match ids with
+ | [] -> t
+ | i::ids -> apply_ids (Term.mkApp(t,[| Term.mkVar i |])) ids
+
+
+let coq_Node = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
+let coq_Leaf = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf")
+let coq_Empty = lazy
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty")
+
+
+let btree_of_array typ a =
+ let size_of_a = Array.length a in
+ let semi_size_of_a = size_of_a lsr 1 in
+ let node = Lazy.force coq_Node
+ and leaf = Lazy.force coq_Leaf
+ and empty = Term.mkApp (Lazy.force coq_Empty, [| typ |]) in
+ let rec aux n =
+ if n > size_of_a
+ then empty
+ else if n > semi_size_of_a
+ then Term.mkApp (leaf, [| typ; a.(n-1) |])
+ else Term.mkApp (node, [| typ; aux (2*n); a.(n-1); aux (2*n+1) |])
+ in
+ aux 1
+
+let btree_of_array typ a =
+ try
+ btree_of_array typ a
+ with x ->
+ failwith (Printf.sprintf "btree of array : %s" (Printexc.to_string x))
+
+let dump_varmap typ env =
+ btree_of_array typ (Array.of_list env)
+
+
+let rec pp_varmap o vm =
+ match vm with
+ | Mc.Empty -> output_string o "[]"
+ | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z z
+ | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l pp_z z pp_varmap r
+
+
+
+let rec dump_proof_term = function
+ | Micromega.RatProof cone ->
+ Term.mkApp(Lazy.force coq_ratProof, [|dump_cone coq_Z dump_z cone|])
+ | Micromega.CutProof(e,q,cone,prf) ->
+ Term.mkApp(Lazy.force coq_cutProof,
+ [| dump_expr (Lazy.force coq_Z) dump_z e ;
+ dump_q q ;
+ dump_cone coq_Z dump_z cone ;
+ dump_proof_term prf|])
+ | Micromega.EnumProof( q1,e1,q2,c1,c2,prfs) ->
+ Term.mkApp (Lazy.force coq_enumProof,
+ [| dump_q q1 ; dump_expr (Lazy.force coq_Z) dump_z e1 ; dump_q q2;
+ dump_cone coq_Z dump_z c1 ; dump_cone coq_Z dump_z c2 ;
+ dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])
+
+let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
+
+
+let rec pp_proof_term o = function
+ | Micromega.RatProof cone -> Printf.fprintf o "R[%a]" (pp_cone pp_z) cone
+ | Micromega.CutProof(e,q,_,p) -> failwith "not implemented"
+ | Micromega.EnumProof(q1,e1,q2,c1,c2,rst) ->
+ Printf.fprintf o "EP[%a,%a,%a,%a,%a,%a]"
+ pp_q q1 pp_expr e1 pp_q q2 (pp_cone pp_z) c1 (pp_cone pp_z) c2
+ (pp_list "[" "]" pp_proof_term) rst
+
+let rec parse_hyps parse_arith env hyps =
+ match hyps with
+ | [] -> ([],env)
+ | (i,t)::l ->
+ let (lhyps,env) = parse_hyps parse_arith env l in
+ try
+ let (c,env) = parse_formula parse_arith env t in
+ ((i,c)::lhyps, env)
+ with _ -> (lhyps,env)
+ (*(if debug then Printf.printf "parse_arith : %s\n" x);*)
+
+
+exception ParseError
+
+let parse_goal parse_arith env hyps term =
+ (* try*)
+ let (f,env) = parse_formula parse_arith env term in
+ let (lhyps,env) = parse_hyps parse_arith env hyps in
+ (lhyps,f,env)
+ (* with Failure x -> raise ParseError*)
+
+
+type ('a, 'b) domain_spec = {
+ typ : Term.constr; (* Z, Q , R *)
+ coeff : Term.constr ; (* Z, Q *)
+ dump_coeff : 'a -> Term.constr ;
+ proof_typ : Term.constr ;
+ dump_proof : 'b -> Term.constr
+}
+
+let zz_domain_spec = lazy {
+ typ = Lazy.force coq_Z;
+ coeff = Lazy.force coq_Z;
+ dump_coeff = dump_z ;
+ proof_typ = Lazy.force coq_proofTerm ;
+ dump_proof = dump_proof_term
+}
+
+let qq_domain_spec = lazy {
+ typ = Lazy.force coq_Q;
+ coeff = Lazy.force coq_Q;
+ dump_coeff = dump_q ;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_cone coq_Q dump_q
+}
+
+let rz_domain_spec = lazy {
+ typ = Lazy.force coq_R;
+ coeff = Lazy.force coq_Z;
+ dump_coeff = dump_z;
+ proof_typ = Lazy.force coq_ZWitness ;
+ dump_proof = dump_cone coq_Z dump_z
+}
+
+
+
+
+let micromega_order_change spec cert cert_typ env ff gl =
+ let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
+
+ let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in
+ let vm = dump_varmap ( spec.typ) env in
+ Tactics.change_in_concl None
+ (set
+ [
+ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula ,[| formula_typ |]));
+ ("__varmap", vm , Term.mkApp
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "t", [| spec.typ|]));
+ ("__wit", cert,cert_typ)
+ ]
+ (Tacmach.pf_concl gl )
+
+ )
+ gl
+
+
+let detect_duplicates cnf wit =
+ let cnf = CoqToCaml.list (fun x -> x) cnf in
+ let wit = CoqToCaml.list (fun x -> x) wit in
+
+ let rec xdup cnf wit =
+ match wit with
+ | [] -> []
+ | w :: wit ->
+ let sg = sig_of_cone w in
+ match cnf with
+ | [] -> []
+ | e::cnf ->
+ let (dups,cnf) = (List.partition (fun x -> same_proof sg e x) cnf) in
+ dups@(xdup cnf wit) in
+ xdup cnf wit
+
+let find_witness prover polys1 =
+ try_any prover polys1
+
+
+let witness_list_with_tags prover l =
+
+ let rec xwitness_list l =
+ match l with
+ | [] -> Some([])
+ | e::l ->
+ match find_witness prover (List.map fst e) with
+ | None -> None
+ | Some w ->
+ (match xwitness_list l with
+ | None -> None
+ | Some l -> Some (w::l)
+ ) in
+ xwitness_list l
+
+let witness_list_without_tags prover l =
+
+ let rec xwitness_list l =
+ match l with
+ | [] -> Some([])
+ | e::l ->
+ match find_witness prover e with
+ | None -> None
+ | Some w ->
+ (match xwitness_list l with
+ | None -> None
+ | Some l -> Some (w::l)
+ ) in
+ xwitness_list l
+
+let witness_list prover l =
+ let rec xwitness_list l =
+ match l with
+ | Micromega.Nil -> Some(Micromega.Nil)
+ | Micromega.Cons(e,l) ->
+ match find_witness prover e with
+ | None -> None
+ | Some w ->
+ (match xwitness_list l with
+ | None -> None
+ | Some l -> Some (Micromega.Cons(w,l))
+ ) in
+ xwitness_list l
+
+
+
+
+let is_singleton = function [] -> true | [e] -> true | _ -> false
+
+
+let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
+ let spec = Lazy.force spec in
+ let (ff,ids) =
+ List.fold_right
+ (fun (id,f) (cc,ids) ->
+ match f with
+ X _ -> (cc,ids)
+ | _ -> (I(tag_formula (Names.Name id) f,cc,none), id::ids))
+ polys1 (polys2,[]) in
+
+ let cnf_ff = cnf negate normalise ff in
+
+ if debug then
+ (Pp.pp (Pp.str "Formula....\n") ;
+ let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
+ let ff = dump_formula formula_typ
+ (dump_cstr spec.typ spec.dump_coeff) ff in
+ Pp.pp (Printer.prterm ff) ; Pp.pp_flush ()) ;
+
+ match witness_list_without_tags prover cnf_ff with
+ | None -> Tacticals.tclFAIL 0 (Pp.str "Cannot find witness") gl
+ | Some res -> (*Printf.printf "\nList %i" (List.length res); *)
+ let (ff,res,ids) = (ff,res,List.map Term.mkVar ids) in
+ let res' = dump_ml_list (spec.proof_typ) spec.dump_proof res in
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize ids;
+ micromega_order_change spec res'
+ (Term.mkApp(Lazy.force coq_list,[| spec.proof_typ|])) env ff ;
+ ]) gl
+
+
+let micromega_gen parse_arith negate normalise spec prover gl =
+ let concl = Tacmach.pf_concl gl in
+ let hyps = Tacmach.pf_hyps_types gl in
+ try
+ let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
+ let env = Env.elements env in
+ micromega_tauto negate normalise spec prover env hyps concl gl
+ with
+ | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl
+ | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
+
+
+let lift_ratproof prover l =
+ match prover l with
+ | None -> None
+ | Some c -> Some (Mc.RatProof c)
+
+
+type csdpcert = Certificate.Mc.z Certificate.Mc.coneMember option
+type micromega_polys = (Micromega.z Mc.pExpr, Mc.op1) Micromega.prod list
+type provername = string * int option
+
+let call_csdpcert provername poly =
+ let tmp_to,ch_to = Filename.open_temp_file "csdpcert" ".in" in
+ let tmp_from = Filename.temp_file "csdpcert" ".out" in
+ output_value ch_to (provername,poly : provername * micromega_polys);
+ close_out ch_to;
+ let cmdname =
+ Filename.concat Coq_config.bindir
+ ("csdpcert" ^ Coq_config.exec_extension) in
+ let c = Sys.command (cmdname ^" "^ tmp_to ^" "^ tmp_from) in
+ (try Sys.remove tmp_to with _ -> ());
+ if c <> 0 then Util.error ("Failed to call csdp certificate generator");
+ let ch_from = open_in tmp_from in
+ let cert = (input_value ch_from : csdpcert) in
+ close_in ch_from; Sys.remove tmp_from;
+ cert
+
+let omicron gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [lift_ratproof
+ (Certificate.linear_prover Certificate.z_spec), "fourier refutation" ] gl
+
+
+let qomicron gl =
+ micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec
+ [ Certificate.linear_prover Certificate.q_spec, "fourier refutation" ] gl
+
+let romicron gl =
+ micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec
+ [ Certificate.linear_prover Certificate.z_spec, "fourier refutation" ] gl
+
+
+let rmicromega i gl =
+ micromega_gen parse_rarith Mc.negate Mc.normalise rz_domain_spec
+ [ call_csdpcert ("real_nonlinear_prover", Some i), "fourier refutation" ] gl
+
+
+let micromega i gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [lift_ratproof (call_csdpcert ("real_nonlinear_prover",Some i)),
+ "fourier refutation" ] gl
+
+
+let sos gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [lift_ratproof (call_csdpcert ("pure_sos", None)), "pure sos refutation"] gl
+
+let zomicron gl =
+ micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ [Certificate.zlinear_prover, "zprover"] gl