summaryrefslogtreecommitdiff
path: root/contrib/micromega/ZCoeff.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/micromega/ZCoeff.v')
-rw-r--r--contrib/micromega/ZCoeff.v173
1 files changed, 173 insertions, 0 deletions
diff --git a/contrib/micromega/ZCoeff.v b/contrib/micromega/ZCoeff.v
new file mode 100644
index 00000000..ced67e39
--- /dev/null
+++ b/contrib/micromega/ZCoeff.v
@@ -0,0 +1,173 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+Require Import OrderedRing.
+Require Import RingMicromega.
+Require Import ZArith.
+Require Import InitialRing.
+Require Import Setoid.
+
+Import OrderedRingSyntax.
+
+Set Implicit Arguments.
+
+Section InitialMorphism.
+
+Variable R : Type.
+Variables rO rI : R.
+Variables rplus rtimes rminus: R -> R -> R.
+Variable ropp : R -> R.
+Variables req rle rlt : R -> R -> Prop.
+
+Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
+
+Notation "0" := rO.
+Notation "1" := rI.
+Notation "x + y" := (rplus x y).
+Notation "x * y " := (rtimes x y).
+Notation "x - y " := (rminus x y).
+Notation "- x" := (ropp x).
+Notation "x == y" := (req x y).
+Notation "x ~= y" := (~ req x y).
+Notation "x <= y" := (rle x y).
+Notation "x < y" := (rlt x y).
+
+Lemma req_refl : forall x, req x x.
+Proof.
+ destruct sor.(SORsetoid).
+ apply Equivalence_Reflexive.
+Qed.
+
+Lemma req_sym : forall x y, req x y -> req y x.
+Proof.
+ destruct sor.(SORsetoid).
+ apply Equivalence_Symmetric.
+Qed.
+
+Lemma req_trans : forall x y z, req x y -> req y z -> req x z.
+Proof.
+ destruct sor.(SORsetoid).
+ apply Equivalence_Transitive.
+Qed.
+
+
+Add Relation R req
+ reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _)
+ symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _)
+ transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _)
+as sor_setoid.
+
+Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
+Proof.
+exact sor.(SORplus_wd).
+Qed.
+Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
+Proof.
+exact sor.(SORtimes_wd).
+Qed.
+Add Morphism ropp with signature req ==> req as ropp_morph.
+Proof.
+exact sor.(SORopp_wd).
+Qed.
+Add Morphism rle with signature req ==> req ==> iff as rle_morph.
+Proof.
+exact sor.(SORle_wd).
+Qed.
+Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
+Proof.
+exact sor.(SORlt_wd).
+Qed.
+Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
+Proof.
+ exact (rminus_morph sor).
+Qed.
+
+Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
+Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
+
+Definition gen_order_phi_Z : Z -> R := gen_phiZ 0 1 rplus rtimes ropp.
+
+Notation phi_pos := (gen_phiPOS 1 rplus rtimes).
+Notation phi_pos1 := (gen_phiPOS1 1 rplus rtimes).
+
+Notation "[ x ]" := (gen_order_phi_Z x).
+
+Lemma ring_ops_wd : ring_eq_ext rplus rtimes ropp req.
+Proof.
+constructor.
+exact rplus_morph.
+exact rtimes_morph.
+exact ropp_morph.
+Qed.
+
+Lemma Zring_morph :
+ ring_morph 0 1 rplus rtimes rminus ropp req
+ 0%Z 1%Z Zplus Zmult Zminus Zopp
+ Zeq_bool gen_order_phi_Z.
+Proof.
+exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)).
+Qed.
+
+Lemma phi_pos1_pos : forall x : positive, 0 < phi_pos1 x.
+Proof.
+induction x as [x IH | x IH |]; simpl;
+try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_pos_pos sor);
+try apply (Rlt_0_1 sor); assumption.
+Qed.
+
+Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Psucc x) == 1 + phi_pos1 x.
+Proof.
+exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd
+ (Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))).
+Qed.
+
+Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y.
+Proof.
+intros x y H. pattern y; apply Plt_ind with x.
+rewrite phi_pos1_succ; apply (Rlt_succ_r sor).
+clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor).
+assumption.
+Qed.
+
+Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y].
+Proof.
+unfold Zlt; intros x y H;
+do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt));
+destruct x; destruct y; simpl in *; try discriminate.
+apply phi_pos1_pos.
+now apply clt_pos_morph.
+apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
+apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
+apply phi_pos1_pos.
+rewrite Pcompare_antisym in H; simpl in H. apply -> (Ropp_lt_mono sor).
+now apply clt_pos_morph.
+Qed.
+
+Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y].
+Proof.
+unfold Zle_bool; intros x y H.
+case_eq (x ?= y)%Z; intro H1; rewrite H1 in H.
+le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1.
+le_less. now apply clt_morph.
+discriminate.
+Qed.
+
+Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y].
+Proof.
+intros x y H. unfold Zeq_bool in H.
+case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H).
+apply (Rlt_neq sor). now apply clt_morph.
+fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1.
+apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph.
+Qed.
+
+End InitialMorphism.
+
+