diff options
Diffstat (limited to 'contrib/micromega/EnvRing.v')
-rw-r--r-- | contrib/micromega/EnvRing.v | 1403 |
1 files changed, 0 insertions, 1403 deletions
diff --git a/contrib/micromega/EnvRing.v b/contrib/micromega/EnvRing.v deleted file mode 100644 index 04e68272..00000000 --- a/contrib/micromega/EnvRing.v +++ /dev/null @@ -1,1403 +0,0 @@ -(************************************************************************) -(* V * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) -(* F. Besson: to evaluate polynomials, the original code is using a list. - For big polynomials, this is inefficient -- linear access. - I have modified the code to use binary trees -- logarithmic access. *) - - -Set Implicit Arguments. -Require Import Setoid. -Require Import BinList. -Require Import Env. -Require Import BinPos. -Require Import BinNat. -Require Import BinInt. -Require Export Ring_theory. - -Open Local Scope positive_scope. -Import RingSyntax. - -Section MakeRingPol. - - (* Ring elements *) - Variable R:Type. - Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R). - Variable req : R -> R -> Prop. - - (* Ring properties *) - Variable Rsth : Setoid_Theory R req. - Variable Reqe : ring_eq_ext radd rmul ropp req. - Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req. - - (* Coefficients *) - Variable C: Type. - Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C). - Variable ceqb : C->C->bool. - Variable phi : C -> R. - Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req - cO cI cadd cmul csub copp ceqb phi. - - (* Power coefficients *) - Variable Cpow : Set. - Variable Cp_phi : N -> Cpow. - Variable rpow : R -> Cpow -> R. - Variable pow_th : power_theory rI rmul req Cp_phi rpow. - - - (* R notations *) - Notation "0" := rO. Notation "1" := rI. - Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y). - Notation "x - y " := (rsub x y). Notation "- x" := (ropp x). - Notation "x == y" := (req x y). - - (* C notations *) - Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y). - Notation "x -! y " := (csub x y). Notation "-! x" := (copp x). - Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x). - - (* Usefull tactics *) - Add Setoid R req Rsth as R_set1. - Ltac rrefl := gen_reflexivity Rsth. - Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed. - Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed. - Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed. - Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed. - Ltac rsimpl := gen_srewrite Rsth Reqe ARth. - Ltac add_push := gen_add_push radd Rsth Reqe ARth. - Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth. - - (* Definition of multivariable polynomials with coefficients in C : - Type [Pol] represents [X1 ... Xn]. - The representation is Horner's where a [n] variable polynomial - (C[X1..Xn]) is seen as a polynomial on [X1] which coefficients - are polynomials with [n-1] variables (C[X2..Xn]). - There are several optimisations to make the repr compacter: - - [Pc c] is the constant polynomial of value c - == c*X1^0*..*Xn^0 - - [Pinj j Q] is a polynomial constant w.r.t the [j] first variables. - variable indices are shifted of j in Q. - == X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn} - - [PX P i Q] is an optimised Horner form of P*X^i + Q - with P not the null polynomial - == P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn} - - In addition: - - polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden - since they can be represented by the simpler form (PX P (i+j) Q) - - (Pinj i (Pinj j P)) is (Pinj (i+j) P) - - (Pinj i (Pc c)) is (Pc c) - *) - - Inductive Pol : Type := - | Pc : C -> Pol - | Pinj : positive -> Pol -> Pol - | PX : Pol -> positive -> Pol -> Pol. - - Definition P0 := Pc cO. - Definition P1 := Pc cI. - - Fixpoint Peq (P P' : Pol) {struct P'} : bool := - match P, P' with - | Pc c, Pc c' => c ?=! c' - | Pinj j Q, Pinj j' Q' => - match Pcompare j j' Eq with - | Eq => Peq Q Q' - | _ => false - end - | PX P i Q, PX P' i' Q' => - match Pcompare i i' Eq with - | Eq => if Peq P P' then Peq Q Q' else false - | _ => false - end - | _, _ => false - end. - - Notation " P ?== P' " := (Peq P P'). - - Definition mkPinj j P := - match P with - | Pc _ => P - | Pinj j' Q => Pinj ((j + j'):positive) Q - | _ => Pinj j P - end. - - Definition mkPinj_pred j P:= - match j with - | xH => P - | xO j => Pinj (Pdouble_minus_one j) P - | xI j => Pinj (xO j) P - end. - - Definition mkPX P i Q := - match P with - | Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q - | Pinj _ _ => PX P i Q - | PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q - end. - - Definition mkXi i := PX P1 i P0. - - Definition mkX := mkXi 1. - - (** Opposite of addition *) - - Fixpoint Popp (P:Pol) : Pol := - match P with - | Pc c => Pc (-! c) - | Pinj j Q => Pinj j (Popp Q) - | PX P i Q => PX (Popp P) i (Popp Q) - end. - - Notation "-- P" := (Popp P). - - (** Addition et subtraction *) - - Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol := - match P with - | Pc c1 => Pc (c1 +! c) - | Pinj j Q => Pinj j (PaddC Q c) - | PX P i Q => PX P i (PaddC Q c) - end. - - Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol := - match P with - | Pc c1 => Pc (c1 -! c) - | Pinj j Q => Pinj j (PsubC Q c) - | PX P i Q => PX P i (PsubC Q c) - end. - - Section PopI. - - Variable Pop : Pol -> Pol -> Pol. - Variable Q : Pol. - - Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol := - match P with - | Pc c => mkPinj j (PaddC Q c) - | Pinj j' Q' => - match ZPminus j' j with - | Zpos k => mkPinj j (Pop (Pinj k Q') Q) - | Z0 => mkPinj j (Pop Q' Q) - | Zneg k => mkPinj j' (PaddI k Q') - end - | PX P i Q' => - match j with - | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PaddI (Pdouble_minus_one j) Q') - | xI j => PX P i (PaddI (xO j) Q') - end - end. - - Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol := - match P with - | Pc c => mkPinj j (PaddC (--Q) c) - | Pinj j' Q' => - match ZPminus j' j with - | Zpos k => mkPinj j (Pop (Pinj k Q') Q) - | Z0 => mkPinj j (Pop Q' Q) - | Zneg k => mkPinj j' (PsubI k Q') - end - | PX P i Q' => - match j with - | xH => PX P i (Pop Q' Q) - | xO j => PX P i (PsubI (Pdouble_minus_one j) Q') - | xI j => PX P i (PsubI (xO j) Q') - end - end. - - Variable P' : Pol. - - Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol := - match P with - | Pc c => PX P' i' P - | Pinj j Q' => - match j with - | xH => PX P' i' Q' - | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q') - | xI j => PX P' i' (Pinj (xO j) Q') - end - | PX P i Q' => - match ZPminus i i' with - | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' - | Z0 => mkPX (Pop P P') i Q' - | Zneg k => mkPX (PaddX k P) i Q' - end - end. - - Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol := - match P with - | Pc c => PX (--P') i' P - | Pinj j Q' => - match j with - | xH => PX (--P') i' Q' - | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q') - | xI j => PX (--P') i' (Pinj (xO j) Q') - end - | PX P i Q' => - match ZPminus i i' with - | Zpos k => mkPX (Pop (PX P k P0) P') i' Q' - | Z0 => mkPX (Pop P P') i Q' - | Zneg k => mkPX (PsubX k P) i Q' - end - end. - - - End PopI. - - Fixpoint Padd (P P': Pol) {struct P'} : Pol := - match P' with - | Pc c' => PaddC P c' - | Pinj j' Q' => PaddI Padd Q' j' P - | PX P' i' Q' => - match P with - | Pc c => PX P' i' (PaddC Q' c) - | Pinj j Q => - match j with - | xH => PX P' i' (Padd Q Q') - | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q') - | xI j => PX P' i' (Padd (Pinj (xO j) Q) Q') - end - | PX P i Q => - match ZPminus i i' with - | Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q') - | Z0 => mkPX (Padd P P') i (Padd Q Q') - | Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q') - end - end - end. - Notation "P ++ P'" := (Padd P P'). - - Fixpoint Psub (P P': Pol) {struct P'} : Pol := - match P' with - | Pc c' => PsubC P c' - | Pinj j' Q' => PsubI Psub Q' j' P - | PX P' i' Q' => - match P with - | Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c) - | Pinj j Q => - match j with - | xH => PX (--P') i' (Psub Q Q') - | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q') - | xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q') - end - | PX P i Q => - match ZPminus i i' with - | Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q') - | Z0 => mkPX (Psub P P') i (Psub Q Q') - | Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q') - end - end - end. - Notation "P -- P'" := (Psub P P'). - - (** Multiplication *) - - Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol := - match P with - | Pc c' => Pc (c' *! c) - | Pinj j Q => mkPinj j (PmulC_aux Q c) - | PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c) - end. - - Definition PmulC P c := - if c ?=! cO then P0 else - if c ?=! cI then P else PmulC_aux P c. - - Section PmulI. - Variable Pmul : Pol -> Pol -> Pol. - Variable Q : Pol. - Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol := - match P with - | Pc c => mkPinj j (PmulC Q c) - | Pinj j' Q' => - match ZPminus j' j with - | Zpos k => mkPinj j (Pmul (Pinj k Q') Q) - | Z0 => mkPinj j (Pmul Q' Q) - | Zneg k => mkPinj j' (PmulI k Q') - end - | PX P' i' Q' => - match j with - | xH => mkPX (PmulI xH P') i' (Pmul Q' Q) - | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q') - | xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q') - end - end. - - End PmulI. -(* A symmetric version of the multiplication *) - - Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol := - match P'' with - | Pc c => PmulC P c - | Pinj j' Q' => PmulI Pmul Q' j' P - | PX P' i' Q' => - match P with - | Pc c => PmulC P'' c - | Pinj j Q => - let QQ' := - match j with - | xH => Pmul Q Q' - | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q' - | xI j => Pmul (Pinj (xO j) Q) Q' - end in - mkPX (Pmul P P') i' QQ' - | PX P i Q=> - let QQ' := Pmul Q Q' in - let PQ' := PmulI Pmul Q' xH P in - let QP' := Pmul (mkPinj xH Q) P' in - let PP' := Pmul P P' in - (mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ' - end - end. - -(* Non symmetric *) -(* - Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol := - match P' with - | Pc c' => PmulC P c' - | Pinj j' Q' => PmulI Pmul_aux Q' j' P - | PX P' i' Q' => - (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P) - end. - - Definition Pmul P P' := - match P with - | Pc c => PmulC P' c - | Pinj j Q => PmulI Pmul_aux Q j P' - | PX P i Q => - (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P') - end. -*) - Notation "P ** P'" := (Pmul P P'). - - Fixpoint Psquare (P:Pol) : Pol := - match P with - | Pc c => Pc (c *! c) - | Pinj j Q => Pinj j (Psquare Q) - | PX P i Q => - let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in - let Q2 := Psquare Q in - let P2 := Psquare P in - mkPX (mkPX P2 i P0 ++ twoPQ) i Q2 - end. - - (** Monomial **) - - Inductive Mon: Set := - mon0: Mon - | zmon: positive -> Mon -> Mon - | vmon: positive -> Mon -> Mon. - - Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R := - match M with - mon0 => rI - | zmon j M1 => Mphi (jump j l) M1 - | vmon i M1 => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Mphi (tail l) M1) * xi - end. - - Definition mkZmon j M := - match M with mon0 => mon0 | _ => zmon j M end. - - Definition zmon_pred j M := - match j with xH => M | _ => mkZmon (Ppred j) M end. - - Definition mkVmon i M := - match M with - | mon0 => vmon i mon0 - | zmon j m => vmon i (zmon_pred j m) - | vmon i' m => vmon (i+i') m - end. - - Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol := - match P, M with - _, mon0 => (Pc cO, P) - | Pc _, _ => (P, Pc cO) - | Pinj j1 P1, zmon j2 M1 => - match (j1 ?= j2) Eq with - Eq => let (R,S) := MFactor P1 M1 in - (mkPinj j1 R, mkPinj j1 S) - | Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in - (mkPinj j1 R, mkPinj j1 S) - | Gt => (P, Pc cO) - end - | Pinj _ _, vmon _ _ => (P, Pc cO) - | PX P1 i Q1, zmon j M1 => - let M2 := zmon_pred j M1 in - let (R1, S1) := MFactor P1 M in - let (R2, S2) := MFactor Q1 M2 in - (mkPX R1 i R2, mkPX S1 i S2) - | PX P1 i Q1, vmon j M1 => - match (i ?= j) Eq with - Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in - (mkPX R1 i Q1, S1) - | Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in - (mkPX R1 i Q1, S1) - | Gt => let (R1,S1) := MFactor P1 (mkZmon xH M1) in - (mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO)) - end - end. - - Definition POneSubst (P1: Pol) (M1: Mon) (P2: Pol): option Pol := - let (Q1,R1) := MFactor P1 M1 in - match R1 with - (Pc c) => if c ?=! cO then None - else Some (Padd Q1 (Pmul P2 R1)) - | _ => Some (Padd Q1 (Pmul P2 R1)) - end. - - Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol := - match POneSubst P1 M1 P2 with - Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end - | _ => P1 - end. - - Definition PNSubst (P1: Pol) (M1: Mon) (P2: Pol) (n: nat): option Pol := - match POneSubst P1 M1 P2 with - Some P3 => match n with S n1 => Some (PNSubst1 P3 M1 P2 n1) | _ => None end - | _ => None - end. - - Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: - Pol := - match LM1 with - cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n - | _ => P1 - end. - - Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol := - match LM1 with - cons (M1,P2) LM2 => - match PNSubst P1 M1 P2 n with - Some P3 => Some (PSubstL1 P3 LM2 n) - | None => PSubstL P1 LM2 n - end - | _ => None - end. - - Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol := - match PSubstL P1 LM1 n with - Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end - | _ => P1 - end. - - (** Evaluation of a polynomial towards R *) - - Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R := - match P with - | Pc c => [c] - | Pinj j Q => Pphi (jump j l) Q - | PX P i Q => - let x := hd 0 l in - let xi := pow_pos rmul x i in - (Pphi l P) * xi + (Pphi (tail l) Q) - end. - - Reserved Notation "P @ l " (at level 10, no associativity). - Notation "P @ l " := (Pphi l P). - (** Proofs *) - Lemma ZPminus_spec : forall x y, - match ZPminus x y with - | Z0 => x = y - | Zpos k => x = (y + k)%positive - | Zneg k => y = (x + k)%positive - end. - Proof. - induction x;destruct y. - replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - simpl;trivial. - replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial. - apply Pplus_xI_double_minus_one. - replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial. - assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial. - replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial. - replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial. - rewrite <- Pplus_one_succ_l. - rewrite Psucc_o_double_minus_one_eq_xO;trivial. - simpl;trivial. - Qed. - - Lemma Peq_ok : forall P P', - (P ?== P') = true -> forall l, P@l == P'@ l. - Proof. - induction P;destruct P';simpl;intros;try discriminate;trivial. - apply (morph_eq CRmorph);trivial. - assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq); - try discriminate H. - rewrite (IHP P' H); rewrite H1;trivial;rrefl. - assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq); - try discriminate H. - rewrite H1;trivial. clear H1. - assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2); - destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H] - |discriminate H]. - rewrite (H1 H);rewrite (H2 H);rrefl. - Qed. - - Lemma Pphi0 : forall l, P0@l == 0. - Proof. - intros;simpl;apply (morph0 CRmorph). - Qed. - -Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) -> - p @ e1 = p @ e2. -Proof. - induction p ; simpl. - reflexivity. - intros. - apply IHp. - intros. - unfold jump. - apply H. - intros. - rewrite (IHp1 e1 e2) ; auto. - rewrite (IHp2 (tail e1) (tail e2)) ; auto. - unfold hd. unfold nth. rewrite H. reflexivity. - unfold tail. unfold jump. intros ; apply H. -Qed. - -Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)). -Proof. - intros. apply env_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. -Qed. - -Lemma Pjump_xO_tail : forall P p l, - P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l). -Proof. - intros. - apply env_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. -Qed. - -Lemma Pjump_Pdouble_minus_one : forall P p l, - P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l). -Proof. - intros. - apply env_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. -Qed. - - - - Lemma Pphi1 : forall l, P1@l == 1. - Proof. - intros;simpl;apply (morph1 CRmorph). - Qed. - - Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l). - Proof. - intros j l p;destruct p;simpl;rsimpl. - rewrite Pjump_Pplus. - reflexivity. - Qed. - - Let pow_pos_Pplus := - pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc). - - Lemma mkPX_ok : forall l P i Q, - (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l). - Proof. - intros l P i Q;unfold mkPX. - destruct P;try (simpl;rrefl). - assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl. - rewrite (H (refl_equal true));rewrite (morph0 CRmorph). - rewrite mkPinj_ok;rsimpl;simpl;rrefl. - assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl. - rewrite (H (refl_equal true));trivial. - rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl. - Qed. - - - Ltac Esimpl := - repeat (progress ( - match goal with - | |- context [P0@?l] => rewrite (Pphi0 l) - | |- context [P1@?l] => rewrite (Pphi1 l) - | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P) - | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q) - | |- context [[cO]] => rewrite (morph0 CRmorph) - | |- context [[cI]] => rewrite (morph1 CRmorph) - | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y) - | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y) - | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y) - | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x) - end)); - rsimpl; simpl. - - Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c]. - Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP2;rsimpl. - Qed. - - Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c]. - Proof. - induction P;simpl;intros. - Esimpl. - rewrite IHP;rsimpl. - rewrite IHP2;rsimpl. - Qed. - - Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c]. - Proof. - induction P;simpl;intros;Esimpl;trivial. - rewrite IHP1;rewrite IHP2;rsimpl. - mul_push ([c]);rrefl. - Qed. - - Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c]. - Proof. - intros c P l; unfold PmulC. - assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO). - rewrite (H (refl_equal true));Esimpl. - assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI). - rewrite (H1 (refl_equal true));Esimpl. - apply PmulC_aux_ok. - Qed. - - Lemma Popp_ok : forall P l, (--P)@l == - P@l. - Proof. - induction P;simpl;intros. - Esimpl. - apply IHP. - rewrite IHP1;rewrite IHP2;rsimpl. - Qed. - - Ltac Esimpl2 := - Esimpl; - repeat (progress ( - match goal with - | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l) - | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l) - | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l) - | |- context [(--?P)@?l] => rewrite (Popp_ok P l) - end)); Esimpl. - - - - - Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l. - Proof. - induction P';simpl;intros;Esimpl2. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rrefl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite Pjump_Pplus. rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite Pjump_Pplus. rrefl. - destruct p0;simpl. - rewrite IHP2;simpl. rsimpl. - rewrite Pjump_xO_tail. Esimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one. - rsimpl. - rewrite IHP'. - rsimpl. - destruct P;simpl. - Esimpl2;add_push [c];rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl. - rewrite Pjump_xO_tail. - rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;simpl. - rewrite Pjump_Pdouble_minus_one. rsimpl. - add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl. - rewrite IHP'2;rsimpl. - unfold tail. - add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1;rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1;rewrite IHP'2;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros;try apply (ARadd_comm ARth). - destruct p2; simpl; try apply (ARadd_comm ARth). - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth). - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth). - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2. - rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl. - rewrite IHP'1;simpl;Esimpl. - rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - Qed. - - Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l. - Proof. - induction P';simpl;intros;Esimpl2;trivial. - generalize P p l;clear P p l. - induction P;simpl;intros. - Esimpl2;apply (ARadd_comm ARth). - assert (H := ZPminus_spec p p0);destruct (ZPminus p p0). - rewrite H;Esimpl. rewrite IHP';rsimpl. - rewrite H;Esimpl. rewrite IHP';Esimpl. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - rewrite H;Esimpl. rewrite IHP. - rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl. - destruct p0;simpl. - rewrite IHP2;simpl; try rewrite Pjump_xO_tail ; rsimpl. - rewrite IHP2;simpl. - rewrite Pjump_Pdouble_minus_one;rsimpl. - unfold tail ; rsimpl. - rewrite IHP';rsimpl. - destruct P;simpl. - repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl. - destruct p0;simpl;Esimpl2. - rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial. - rewrite Pjump_xO_tail. - add_push (P @ ((jump (xI p0) l)));rrefl. - rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl. - add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl. - unfold tail. - rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl. - assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2. - rewrite IHP'1; rewrite IHP'2;rsimpl. - add_push (P3 @ (tail l));rewrite H;rrefl. - rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl. - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - add_push (P3 @ (tail l));rrefl. - assert (forall P k l, - (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k). - induction P;simpl;intros. - rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial. - destruct p2;simpl; rewrite Popp_ok;rsimpl. - rewrite Pjump_xO_tail. - apply (ARadd_comm ARth);trivial. - rewrite Pjump_Pdouble_minus_one. - apply (ARadd_comm ARth);trivial. - apply (ARadd_comm ARth);trivial. - assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl. - rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl. - rewrite IHP'1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;Esimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite IHP1;rewrite H1;rewrite Pplus_comm. - rewrite pow_pos_Pplus;simpl;rsimpl. - add_push (P5 @ (tail l0));rrefl. - rewrite H0;rsimpl. - rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)). - rewrite H;rewrite Pplus_comm. - rewrite pow_pos_Pplus;rsimpl. - Qed. -(* Proof for the symmetric version *) - - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : Env R), (Pmul P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : Env R), - (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l). - Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pjump_Pplus;simpl;rrefl. - rewrite H1. - rewrite Pjump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;rsimpl. - rewrite Pjump_xO_tail. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one. - rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. - Qed. - -(* - Lemma PmulI_ok : - forall P', - (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) -> - forall (P : Pol) (p : positive) (l : list R), - (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l). - Proof. - induction P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2. - rewrite H1; rewrite H;rrefl. - rewrite H1; rewrite H. - rewrite Pplus_comm. - rewrite jump_Pplus;simpl;rrefl. - rewrite H1;rewrite Pplus_comm. - rewrite jump_Pplus;rewrite IHP;rrefl. - destruct p0;Esimpl2. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p);rrefl. - rewrite IHP1;rewrite IHP2;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl. - rewrite IHP1;simpl;rsimpl. - mul_push (pow_pos rmul (hd 0 l) p). - rewrite H;rrefl. - Qed. - - Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l. - Proof. - induction P';simpl;intros. - Esimpl2;trivial. - apply PmulI_ok;trivial. - rewrite Padd_ok;Esimpl2. - rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl. - Qed. -*) - -(* Proof for the symmetric version *) - Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. - Proof. - intros P P';generalize P;clear P;induction P';simpl;intros. - apply PmulC_ok. apply PmulI_ok;trivial. - destruct P. - rewrite (ARmul_comm ARth);Esimpl2;Esimpl2. - Esimpl2. rewrite IHP'1;Esimpl2. - assert (match p0 with - | xI j => Pinj (xO j) P ** P'2 - | xO j => Pinj (Pdouble_minus_one j) P ** P'2 - | 1 => P ** P'2 - end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)). - destruct p0;rewrite IHP'2;Esimpl. - rewrite Pjump_xO_tail. reflexivity. - rewrite Pjump_Pdouble_minus_one;Esimpl. - rewrite H;Esimpl. - rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2. - repeat (rewrite IHP'1 || rewrite IHP'2);simpl. - rewrite PmulI_ok;trivial. - unfold tail. - mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl. - Qed. - -(* -Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l. - Proof. - destruct P;simpl;intros. - Esimpl2;apply (ARmul_comm ARth). - rewrite (PmulI_ok P (Pmul_aux_ok P)). - apply (ARmul_comm ARth). - rewrite Padd_ok; Esimpl2. - rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial. - rewrite Pmul_aux_ok;mul_push (P' @ l). - rewrite (ARmul_comm ARth (P' @ l));rrefl. - Qed. -*) - - Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l. - Proof. - induction P;simpl;intros;Esimpl2. - apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2. - rewrite IHP1;rewrite IHP2. - mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l). - rrefl. - Qed. - - Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) -> - Mphi env P = Mphi env' P. - Proof. - induction P ; simpl. - reflexivity. - intros. - apply IHP. - intros. - unfold jump. - apply H. - (**) - intros. - replace (Mphi (tail env) P) with (Mphi (tail env') P). - unfold hd. unfold nth. - rewrite H. - reflexivity. - apply IHP. - unfold tail,jump. - intros. symmetry. apply H. - Qed. - -Lemma Mjump_xO_tail : forall M p l, - Mphi (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M. -Proof. - intros. - apply Mphi_morph. - intros. - rewrite (@jump_simpl R (xI p)). - rewrite (@jump_simpl R (xO p)). - reflexivity. -Qed. - -Lemma Mjump_Pdouble_minus_one : forall M p l, - Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M. -Proof. - intros. - apply Mphi_morph. - intros. - rewrite jump_Pdouble_minus_one. - rewrite (@jump_simpl R (xO p)). - reflexivity. -Qed. - -Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M. -Proof. - intros. apply Mphi_morph. intros. rewrite <- jump_Pplus. - rewrite Pplus_comm. - reflexivity. -Qed. - - - - Lemma mkZmon_ok: forall M j l, - Mphi l (mkZmon j M) == Mphi l (zmon j M). - intros M j l; case M; simpl; intros; rsimpl. - Qed. - - Lemma zmon_pred_ok : forall M j l, - Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M). - Proof. - destruct j; simpl;intros l; rsimpl. - rewrite mkZmon_ok;rsimpl. - simpl. - rewrite Mjump_xO_tail. - reflexivity. - rewrite mkZmon_ok;simpl. - rewrite Mjump_Pdouble_minus_one; rsimpl. - Qed. - - Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i. - Proof. - destruct M;simpl;intros;rsimpl. - rewrite zmon_pred_ok;simpl;rsimpl. - rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl. - Qed. - - - Lemma Mphi_ok: forall P M l, - let (Q,R) := MFactor P M in - P@l == Q@l + (Mphi l M) * (R@l). - Proof. - intros P; elim P; simpl; auto; clear P. - intros c M l; case M; simpl; auto; try intro p; try intro m; - try rewrite (morph0 CRmorph); rsimpl. - - intros i P Hrec M l; case M; simpl; clear M. - rewrite (morph0 CRmorph); rsimpl. - intros j M. - case_eq ((i ?= j) Eq); intros He; simpl. - rewrite (Pcompare_Eq_eq _ _ He). - generalize (Hrec M (jump j l)); case (MFactor P M); - simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - generalize (Hrec (zmon (j -i) M) (jump i l)); - case (MFactor P (zmon (j -i) M)); simpl. - intros P2 Q2 H; repeat rewrite mkPinj_ok; auto. - rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)). - rewrite Mjump_Pplus; auto. - rewrite (morph0 CRmorph); rsimpl. - intros P2 m; rewrite (morph0 CRmorph); rsimpl. - - intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto. - rewrite (morph0 CRmorph); rsimpl. - intros j M1. - generalize (Hrec1 (zmon j M1) l); - case (MFactor P2 (zmon j M1)). - intros R1 S1 H1. - generalize (Hrec2 (zmon_pred j M1) (tail l)); - case (MFactor Q2 (zmon_pred j M1)); simpl. - intros R2 S2 H2; rewrite H1; rewrite H2. - repeat rewrite mkPX_ok; simpl. - rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - rewrite zmon_pred_ok;rsimpl. - intros j M1. - case_eq ((i ?= j) Eq); intros He; simpl. - rewrite (Pcompare_Eq_eq _ _ He). - generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite mkZmon_ok. - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - generalize (Hrec1 (vmon (j - i) M1) l); - case (MFactor P2 (vmon (j - i) M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl. - generalize (Hrec1 (mkZmon 1 M1) l); - case (MFactor P2 (mkZmon 1 M1)); - simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto. - rewrite H; rsimpl. - rewrite mkPX_ok; rsimpl. - repeat (rewrite <-(ARadd_assoc ARth)). - apply radd_ext; rsimpl. - rewrite (ARadd_comm ARth); rsimpl. - apply radd_ext; rsimpl. - rewrite mkZmon_ok. - repeat (rewrite <-(ARmul_assoc ARth)). - apply rmul_ext; rsimpl. - rewrite (ARmul_comm ARth); rsimpl. - rewrite mkPX_ok; simpl; rsimpl. - rewrite (morph0 CRmorph); rsimpl. - repeat (rewrite <-(ARmul_assoc ARth)). - rewrite (ARmul_comm ARth (Q3@l)); rsimpl. - apply rmul_ext; rsimpl. - rewrite <- pow_pos_Pplus. - rewrite (Pplus_minus _ _ He); rsimpl. - Qed. - -(* Proof for the symmetric version *) - - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. - Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - (* new version *) - rewrite Padd_ok; rewrite PmulC_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - assert (P4 = Q1 ++ P3 ** PX i P5 P6). - injection H2; intros; subst;trivial. - rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl. -Qed. -(* - Lemma POneSubst_ok: forall P1 M1 P2 P3 l, - POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. -Proof. - intros P2 M1 P3 P4 l; unfold POneSubst. - generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto. - intros Q1 R1; case R1. - intros c H; rewrite H. - generalize (morph_eq CRmorph c cO); - case (c ?=! cO); simpl; auto. - intros H1 H2; rewrite H1; auto; rsimpl. - discriminate. - intros _ H1 H2; injection H1; intros; subst. - rewrite H2; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok; rsimpl. - intros i P5 H; rewrite H. - intros HH H1; injection HH; intros; subst; rsimpl. - rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl. - intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3. - injection H2; intros; subst; rsimpl. - rewrite Padd_ok. - rewrite Pmul_ok; rsimpl. - Qed. -*) - Lemma PNSubst1_ok: forall n P1 M1 P2 l, - Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l. - Proof. - intros n; elim n; simpl; auto. - intros P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl. - intros n1 Hrec P2 M1 P3 l H. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; rsimpl]. - intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl. - Qed. - - Lemma PNSubst_ok: forall n P1 M1 P2 l P3, - PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l. - Proof. - intros n P2 M1 P3 l P4; unfold PNSubst. - generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l); - case (POneSubst P2 M1 P3); [idtac | intros; discriminate]. - intros P5 H1; case n; try (intros; discriminate). - intros n1 H2; injection H2; intros; subst. - rewrite <- PNSubst1_ok; auto. - Qed. - - Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop := - match LM1 with - cons (M1,P2) LM2 => (Mphi l M1 == P2@l) /\ (MPcond LM2 l) - | _ => True - end. - - Lemma PSubstL1_ok: forall n LM1 P1 l, - MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l. - Proof. - intros n LM1; elim LM1; simpl; auto. - intros; rsimpl. - intros (M2,P2) LM2 Hrec P3 l [H H1]. - rewrite <- Hrec; auto. - apply PNSubst1_ok; auto. - Qed. - - Lemma PSubstL_ok: forall n LM1 P1 P2 l, - PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l. - Proof. - intros n LM1; elim LM1; simpl; auto. - intros; discriminate. - intros (M2,P2) LM2 Hrec P3 P4 l. - generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n). - intros P5 H0 H1 [H2 H3]; injection H1; intros; subst. - rewrite <- PSubstL1_ok; auto. - intros l1 H [H1 H2]; auto. - Qed. - - Lemma PNSubstL_ok: forall m n LM1 P1 l, - MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l. - Proof. - intros m; elim m; simpl; auto. - intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - intros m1 Hrec n LM1 P2 l H. - generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l); - case (PSubstL P2 LM1 n); intros; rsimpl; auto. - rewrite <- Hrec; auto. - Qed. - - (** Definition of polynomial expressions *) - - Inductive PExpr : Type := - | PEc : C -> PExpr - | PEX : positive -> PExpr - | PEadd : PExpr -> PExpr -> PExpr - | PEsub : PExpr -> PExpr -> PExpr - | PEmul : PExpr -> PExpr -> PExpr - | PEopp : PExpr -> PExpr - | PEpow : PExpr -> N -> PExpr. - - (** evaluation of polynomial expressions towards R *) - Definition mk_X j := mkPinj_pred j mkX. - - (** evaluation of polynomial expressions towards R *) - - Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R := - match pe with - | PEc c => phi c - | PEX j => nth j l - | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2) - | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2) - | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2) - | PEopp pe1 => - (PEeval l pe1) - | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n) - end. - - (** Correctness proofs *) - - Lemma mkX_ok : forall p l, nth p l == (mk_X p) @ l. - Proof. - destruct p;simpl;intros;Esimpl;trivial. - rewrite nth_spec ; auto. - unfold hd. - rewrite <- nth_Pdouble_minus_one. - rewrite (nth_jump (Pdouble_minus_one p) l 1). - reflexivity. - Qed. - - Ltac Esimpl3 := - repeat match goal with - | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l) - | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l) - end;Esimpl2;try rrefl;try apply (ARadd_comm ARth). - -(* Power using the chinise algorithm *) -(*Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => P - | xO p => subst_l (Psquare (Ppow_pos P p)) - | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p))) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok P. - induction p;simpl;intros;try rrefl;try rewrite subst_l_ok. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed. - - End POWER. *) - -Section POWER. - Variable subst_l : Pol -> Pol. - Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol := - match p with - | xH => subst_l (Pmul res P) - | xO p => Ppow_pos (Ppow_pos res P p) P p - | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P) - end. - - Definition Ppow_N P n := - match n with - | N0 => P1 - | Npos p => Ppow_pos P1 P p - end. - - Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l. - Proof. - intros l subst_l_ok res P p. generalize res;clear res. - induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp. - rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl. - Qed. - - Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) -> - forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l. - Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl. auto. Qed. - - End POWER. - - (** Normalization and rewriting *) - - Section NORM_SUBST_REC. - Variable n : nat. - Variable lmp:list (Mon*Pol). - Let subst_l P := PNSubstL P lmp n n. - Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2). - Let Ppow_subst := Ppow_N subst_l. - - Fixpoint norm_aux (pe:PExpr) : Pol := - match pe with - | PEc c => Pc c - | PEX j => mk_X j - | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_aux pe1) (norm_aux pe2) - | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2) - | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2) - | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2) - | PEopp pe1 => Popp (norm_aux pe1) - | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n - end. - - Definition norm_subst pe := subst_l (norm_aux pe). - - (* - Fixpoint norm_subst (pe:PExpr) : Pol := - match pe with - | PEc c => Pc c - | PEX j => subst_l (mk_X j) - | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1) - | PEadd pe1 (PEopp pe2) => - Psub (norm_subst pe1) (norm_subst pe2) - | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2) - | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2) - | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2) - | PEopp pe1 => Popp (norm_subst pe1) - | PEpow pe1 n => Ppow_subst (norm_subst pe1) n - end. - - Lemma norm_subst_spec : - forall l pe, MPcond lmp l -> - PEeval l pe == (norm_subst pe)@l. - Proof. - intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l). - unfold subst_l;intros. - rewrite <- PNSubstL_ok;trivial. rrefl. - assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l). - intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl. - induction pe;simpl;Esimpl3. - rewrite subst_l_ok;apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe;rrefl. - unfold Ppow_subst. rewrite Ppow_N_ok. trivial. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. - Qed. -*) - Lemma norm_aux_spec : - forall l pe, (*MPcond lmp l ->*) - PEeval l pe == (norm_aux pe)@l. - Proof. - intros. - induction pe;simpl;Esimpl3. - apply mkX_ok. - rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3. - rewrite IHpe1;rewrite IHpe2;rrefl. - rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl. - rewrite IHpe;rrefl. - rewrite Ppow_N_ok by reflexivity. - rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3. - induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok; - repeat rewrite Pmul_ok;rrefl. - Qed. - - - End NORM_SUBST_REC. - - -End MakeRingPol. - |