summaryrefslogtreecommitdiff
path: root/contrib/micromega/Env.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/micromega/Env.v')
-rw-r--r--contrib/micromega/Env.v182
1 files changed, 0 insertions, 182 deletions
diff --git a/contrib/micromega/Env.v b/contrib/micromega/Env.v
deleted file mode 100644
index 40db9e46..00000000
--- a/contrib/micromega/Env.v
+++ /dev/null
@@ -1,182 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(* *)
-(* Micromega: A reflexive tactic using the Positivstellensatz *)
-(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
-(* *)
-(************************************************************************)
-
-Require Import ZArith.
-Require Import Coq.Arith.Max.
-Require Import List.
-Set Implicit Arguments.
-
-(* I have addded a Leaf constructor to the varmap data structure (/contrib/ring/Quote.v)
- -- this is harmless and spares a lot of Empty.
- This means smaller proof-terms.
- BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
-*)
-
-Section S.
-
- Variable D :Type.
-
- Definition Env := positive -> D.
-
- Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j).
-
- Definition nth (n:positive) (e : Env ) := e n.
-
- Definition hd (x:D) (e: Env) := nth xH e.
-
- Definition tail (e: Env) := jump xH e.
-
- Lemma psucc : forall p, (match p with
- | xI y' => xO (Psucc y')
- | xO y' => xI y'
- | 1%positive => 2%positive
- end) = (p+1)%positive.
- Proof.
- destruct p.
- auto with zarith.
- rewrite xI_succ_xO.
- auto with zarith.
- reflexivity.
- Qed.
-
- Lemma jump_Pplus : forall i j l,
- forall x, jump (i + j) l x = jump i (jump j l) x.
- Proof.
- unfold jump.
- intros.
- rewrite Pplus_assoc.
- reflexivity.
- Qed.
-
- Lemma jump_simpl : forall p l,
- forall x, jump p l x =
- match p with
- | xH => tail l x
- | xO p => jump p (jump p l) x
- | xI p => jump p (jump p (tail l)) x
- end.
- Proof.
- destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
- (* xI p = p + p + 1 *)
- rewrite xI_succ_xO.
- rewrite Pplus_diag.
- rewrite <- Pplus_one_succ_r.
- reflexivity.
- (* xO p = p + p *)
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
- Ltac jump_s :=
- repeat
- match goal with
- | |- context [jump xH ?e] => rewrite (jump_simpl xH)
- | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
- | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
- end.
-
- Lemma jump_tl : forall j l, forall x, tail (jump j l) x = jump j (tail l) x.
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Psucc : forall j l,
- forall x, (jump (Psucc j) l x) = (jump 1 (jump j l) x).
- Proof.
- intros.
- rewrite <- jump_Pplus.
- rewrite Pplus_one_succ_r.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Pdouble_minus_one : forall i l,
- forall x, (jump (Pdouble_minus_one i) (tail l)) x = (jump i (jump i l)) x.
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite <- Pplus_one_succ_r.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
- Qed.
-
- Lemma jump_x0_tail : forall p l, forall x, jump (xO p) (tail l) x = jump (xI p) l x.
- Proof.
- intros.
- unfold jump.
- unfold tail.
- unfold jump.
- rewrite <- Pplus_assoc.
- simpl.
- reflexivity.
- Qed.
-
- Lemma nth_spec : forall p l x,
- nth p l =
- match p with
- | xH => hd x l
- | xO p => nth p (jump p l)
- | xI p => nth p (jump p (tail l))
- end.
- Proof.
- unfold nth.
- destruct p.
- intros.
- unfold jump, tail.
- unfold jump.
- rewrite Pplus_diag.
- rewrite xI_succ_xO.
- simpl.
- reflexivity.
- unfold jump.
- rewrite Pplus_diag.
- reflexivity.
- unfold hd.
- unfold nth.
- reflexivity.
- Qed.
-
-
- Lemma nth_jump : forall p l x, nth p (tail l) = hd x (jump p l).
- Proof.
- unfold tail.
- unfold hd.
- unfold jump.
- unfold nth.
- intros.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma nth_Pdouble_minus_one :
- forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
- Proof.
- intros.
- unfold tail.
- unfold nth, jump.
- rewrite Pplus_diag.
- rewrite <- Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_one_succ_r.
- reflexivity.
- Qed.
-
-End S.
-