summaryrefslogtreecommitdiff
path: root/contrib/jprover
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/jprover')
-rw-r--r--contrib/jprover/README76
-rw-r--r--contrib/jprover/jall.ml4599
-rw-r--r--contrib/jprover/jall.mli339
-rw-r--r--contrib/jprover/jlogic.ml106
-rw-r--r--contrib/jprover/jlogic.mli40
-rw-r--r--contrib/jprover/jprover.ml4554
-rw-r--r--contrib/jprover/jterm.ml872
-rw-r--r--contrib/jprover/jterm.mli110
-rw-r--r--contrib/jprover/jtunify.ml507
-rw-r--r--contrib/jprover/jtunify.mli35
-rw-r--r--contrib/jprover/opname.ml90
-rw-r--r--contrib/jprover/opname.mli15
12 files changed, 0 insertions, 7343 deletions
diff --git a/contrib/jprover/README b/contrib/jprover/README
deleted file mode 100644
index ec654a03..00000000
--- a/contrib/jprover/README
+++ /dev/null
@@ -1,76 +0,0 @@
-An intuitionistic first-order theorem prover -- JProver.
-
-Usage:
-
-Require JProver.
-Jp [num].
-
-Whem [num] is provided, proof is done automatically with
-the multiplicity limit [num], otherwise no limit is forced
-and JProver may not terminate.
-
-Example:
-
-Require JProver.
-Coq < Goal (P:Prop) P->P.
-1 subgoal
-
-============================
- (P:Prop)P->P
-
-Unnamed_thm < Jp 1.
-Proof is built.
-Subtree proved!
------------------------------------------
-
-Description:
-JProver is a theorem prover for first-order intuitionistic logic.
-It is originally implemented by Stephan Schmitt and then integrated into
-MetaPRL by Aleksey Nogin (see jall.ml). After this, Huang extracted the
-necessary ML-codes from MetaPRL and then integrated it into Coq.
-The MetaPRL URL is http://metaprl.org/. For more information on
-integrating JProver into interactive proof assistants, please refer to
-
- "Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey Nogin,
- Jprover: Integrating connection-based theorem proving into interactive
- proof assistants. In International Joint Conference on Automated
- Reasoning, volume 2083 of Lecture Notes in Artificial Intelligence,
- pages 421-426. Springer-Verlag, 2001" -
- http://www.cs.cornell.edu/nogin/papers/jprover.html
-
-
-Structure of this directory:
-This directory contains
-
- README ------ this file
- jall.ml ------ the main module of JProver
- jtunify.ml ------ string unification procedures for jall.ml
- jlogic.ml ------ interface module of jall.ml
- jterm.ml
- opname.ml ------ implement the infrastructure for jall.ml
- jprover.ml4 ------ the interface of jall.ml to Coq
- JProver.v ------ declaration for Coq
- Makefile ------ the makefile
- go ------ batch file to load JProver to Coq dynamically
-
-
-Comments:
-1. The original <jall.ml> is located in meta-prl/refiner/reflib of the
-MetaPRL directory. Some parts of this file are modified by Huang.
-
-2. <jtunify.ml> is also located in meta-prl/refiner/reflib with no modification.
-
-3. <jlogic.ml> is modified from meta-prl/refiner/reflib/jlogic_sig.mlz.
-
-4. <jterm.ml> and <opname.ml> are modified from the standard term module
-of MetaPRL in meta-prl/refiner/term_std.
-
-5. The Jp tactic currently cannot prove formula such as
- ((x:nat) (P x)) -> (EX y:nat| (P y)), which requires extra constants
-in the domain when the left-All rule is applied.
-
-
-
-by Huang Guan-Shieng (Guan-Shieng.Huang@lri.fr), March 2002.
-
-
diff --git a/contrib/jprover/jall.ml b/contrib/jprover/jall.ml
deleted file mode 100644
index a9ebe5b6..00000000
--- a/contrib/jprover/jall.ml
+++ /dev/null
@@ -1,4599 +0,0 @@
-(*
- * JProver first-order automated prover. See the interface file
- * for more information and a list of references for JProver.
- *
- * ----------------------------------------------------------------
- *
- * This file is part of MetaPRL, a modular, higher order
- * logical framework that provides a logical programming
- * environment for OCaml and other languages.
- *
- * See the file doc/index.html for information on Nuprl,
- * OCaml, and more information about this system.
- *
- * Copyright (C) 2000 Stephan Schmitt
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Author: Stephan Schmitt <schmitts@spmail.slu.edu>
- * Modified by: Aleksey Nogin <nogin@cs.cornell.edu>
- *)
-
-open Jterm
-open Opname
-open Jlogic
-open Jtunify
-
-let ruletable = Jlogic.ruletable
-
-let free_var_op = make_opname ["free_variable"; "Jprover"]
-let jprover_op = make_opname ["jprover"; "string"]
-
-module JProver (JLogic : JLogicSig) =
-struct
- type polarity = I | O
-
- type connective = And | Or | Neg | Imp | All | Ex | At | Null
-
- type ptype = Alpha | Beta | Gamma | Delta | Phi | Psi | PNull
-
- type stype =
- Alpha_1 | Alpha_2 | Beta_1 | Beta_2 | Gamma_0 | Delta_0
- | Phi_0 | Psi_0 | PNull_0
-
- type pos = {name : string;
- address : int list;
- op : connective;
- pol : polarity;
- pt : ptype;
- st : stype;
- label : term}
-
- type 'pos ftree =
- Empty
- | NodeAt of 'pos
- | NodeA of 'pos * ('pos ftree) array
-
- type atom = {aname : string;
- aaddress : int list;
- aprefix : string list;
- apredicate : operator;
- apol : polarity;
- ast : stype;
- alabel : term}
-
- type atom_relations = atom * atom list * atom list
-(* all atoms except atom occur in [alpha_set] and [beta_set] of atom*)
-
-(* beta proofs *)
-
- type bproof = BEmpty
- | RNode of string list * bproof
- | CNode of (string * string)
- | BNode of string * (string list * bproof) * (string list * bproof)
- | AtNode of string * (string * string)
-
-(* Assume only constants for instantiations, not adapted to terms yet *)
- type inf = rule * term * term
-
-(* proof tree for pretty print and permutation *)
- type 'inf ptree =
- PEmpty
- | PNodeAx of 'inf
- | PNodeA of 'inf * 'inf ptree
- | PNodeB of 'inf * 'inf ptree * 'inf ptree
-
- module OrderedAtom =
- struct
- type t = atom
- let compare a1 a2 = if (a1.aname) = (a2.aname) then 0 else
- if (a1.aname) < (a2.aname) then -1 else 1
- end
-
- module AtomSet = Set.Make(OrderedAtom)
-
- module OrderedString =
- struct
- type t = string
- let compare a1 a2 = if a1 = a2 then 0 else
- if a1 < a2 then -1 else 1
- end
-
- module StringSet = Set.Make(OrderedString)
-
-(*i let _ =
- show_loading "Loading Jall%t" i*)
-
- let debug_jprover =
- create_debug (**)
- { debug_name = "jprover";
- debug_description = "Display Jprover operations";
- debug_value = false
- }
-
- let jprover_bug = Invalid_argument "Jprover bug (Jall module)"
-
-(*****************************************************************)
-
-(************* printing function *************************************)
-
-(************ printing T-string unifiers ****************************)
-
-(* ******* printing ********** *)
-
- let rec list_to_string s =
- match s with
- [] -> ""
- | f::r ->
- f^"."^(list_to_string r)
-
- let rec print_eqlist eqlist =
- match eqlist with
- [] ->
- print_endline ""
- | (atnames,f)::r ->
- let (s,t) = f in
- let ls = list_to_string s
- and lt = list_to_string t in
- begin
- print_endline ("Atom names: "^(list_to_string atnames));
- print_endline (ls^" = "^lt);
- print_eqlist r
- end
-
- let print_equations eqlist =
- begin
- Format.open_box 0;
- Format.force_newline ();
- print_endline "Equations:";
- print_eqlist eqlist;
- Format.force_newline ();
- end
-
- let rec print_subst sigma =
- match sigma with
- [] ->
- print_endline ""
- | f::r ->
- let (v,s) = f in
- let ls = list_to_string s in
- begin
- print_endline (v^" = "^ls);
- print_subst r
- end
-
- let print_tunify sigma =
- let (n,subst) = sigma in
- begin
- print_endline " ";
- print_endline ("MaxVar = "^(string_of_int (n-1)));
- print_endline " ";
- print_endline "Substitution:";
- print_subst subst;
- print_endline " "
- end
-
-(*****************************************************)
-
-(********* printing atoms and their relations ***********************)
-
- let print_stype st =
- match st with
- Alpha_1 -> Format.print_string "Alpha_1"
- | Alpha_2 -> Format.print_string "Alpha_2"
- | Beta_1 -> Format.print_string "Beta_1"
- | Beta_2 -> Format.print_string "Beta_2"
- | Gamma_0 -> Format.print_string "Gamma_0"
- | Delta_0 -> Format.print_string "Delta_0"
- | Phi_0 -> Format.print_string "Phi_0"
- | Psi_0 -> Format.print_string "Psi_0"
- | PNull_0 -> Format.print_string "PNull_0"
-
- let print_pol pol =
- if pol = O then
- Format.print_string "O"
- else
- Format.print_string "I"
-
- let rec print_address int_list =
- match int_list with
- [] ->
- Format.print_string ""
- | hd::rest ->
- begin
- Format.print_int hd;
- print_address rest
- end
-
- let rec print_prefix prefix_list =
- match prefix_list with
- [] -> Format.print_string ""
- | f::r ->
- begin
- Format.print_string f;
- print_prefix r
- end
-
- let print_atom at tab =
- let ({aname=x; aaddress=y; aprefix=z; apredicate=p; apol=a; ast=b; alabel=label}) = at in
- begin
- Format.print_string ("{aname="^x^"; address=");
- print_address y;
- Format.print_string "; ";
- Format.force_newline ();
- Format.print_break (tab+1) (tab+1);
- Format.print_string "prefix=";
- print_prefix z;
- Format.print_string "; predicate=<abstr>; ";
- Format.print_break (tab+1) (tab+1);
- Format.print_break (tab+1) (tab+1);
- Format.print_string "pol=";
- print_pol a;
- Format.print_string "; stype=";
- print_stype b;
- Format.print_string "; arguments=[<abstr>]";
- Format.print_string "\n alabel=";
- print_term stdout label;
- Format.print_string "}"
- end
-
- let rec print_atom_list set tab =
- match set with
- [] -> Format.print_string ""
- | (f::r) ->
- begin
- Format.force_newline ();
- Format.print_break (tab) (tab);
- print_atom f tab;
- print_atom_list r (tab)
- end
-
- let rec print_atom_info atom_relation =
- match atom_relation with
- [] -> Format.print_string ""
- | (a,b,c)::r ->
- begin
- Format.print_string "atom:";
- Format.force_newline ();
- Format.print_break 3 3;
- print_atom a 3;
- Format.force_newline ();
- Format.print_break 0 0;
- Format.print_string "alpha_set:";
- print_atom_list b 3;
- Format.force_newline ();
- Format.print_break 0 0;
- Format.print_string "beta_set:";
- print_atom_list c 3;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_break 0 0;
- print_atom_info r
- end
-
-(*************** print formula tree, tree ordering etc. ***********)
-
- let print_ptype pt =
- match pt with
- Alpha -> Format.print_string "Alpha"
- | Beta -> Format.print_string "Beta"
- | Gamma -> Format.print_string "Gamma"
- | Delta -> Format.print_string "Delta"
- | Phi -> Format.print_string "Phi"
- | Psi -> Format.print_string "Psi"
- | PNull -> Format.print_string "PNull"
-
- let print_op op =
- match op with
- At -> Format.print_string "Atom"
- | Neg -> Format.print_string "Neg"
- | And -> Format.print_string "And"
- | Or -> Format.print_string "Or"
- | Imp -> Format.print_string "Imp"
- | Ex -> Format.print_string "Ex"
- | All -> Format.print_string "All"
- | Null -> Format.print_string "Null"
-
- let print_position position tab =
- let ({name=x; address=y; op=z; pol=a; pt=b; st=c; label=t}) = position in
- begin
- Format.print_string ("{name="^x^"; address=");
- print_address y;
- Format.print_string "; ";
- Format.force_newline ();
- Format.print_break (tab+1) 0;
-(* Format.print_break 0 3; *)
- Format.print_string "op=";
- print_op z;
- Format.print_string "; pol=";
- print_pol a;
- Format.print_string "; ptype=";
- print_ptype b;
- Format.print_string "; stype=";
- print_stype c;
- Format.print_string ";";
- Format.force_newline ();
- Format.print_break (tab+1) 0;
- Format.print_string "label=";
- Format.print_break 0 0;
- Format.force_newline ();
- Format.print_break tab 0;
- print_term stdout t;
- Format.print_string "}"
- end
-
- let rec pp_ftree_list tree_list tab =
- let rec pp_ftree ftree new_tab =
- let dummy = String.make (new_tab-2) ' ' in
- match ftree with
- Empty -> Format.print_string ""
- | NodeAt(position) ->
- begin
- Format.force_newline ();
- Format.print_break new_tab 0;
- print_string (dummy^"AtomNode: ");
-(* Format.force_newline ();
- Format.print_break 0 3;
-*)
- print_position position new_tab;
- Format.force_newline ();
- Format.print_break new_tab 0
- end
- | NodeA(position,subtrees) ->
- let tree_list = Array.to_list subtrees in
- begin
- Format.force_newline ();
- Format.print_break new_tab 0;
- Format.print_break 0 0;
- print_string (dummy^"InnerNode: ");
- print_position position new_tab;
- Format.force_newline ();
- Format.print_break 0 0;
- pp_ftree_list tree_list (new_tab-3)
- end
- in
- let new_tab = tab+5 in
- match tree_list with
- [] -> Format.print_string ""
- | first::rest ->
- begin
- pp_ftree first new_tab;
- pp_ftree_list rest tab
- end
-
- let print_ftree ftree =
- begin
- Format.open_box 0;
- Format.print_break 3 0;
- pp_ftree_list [ftree] 0;
- Format.print_flush ()
- end
-
- let rec stringlist_to_string stringlist =
- match stringlist with
- [] -> "."
- | f::r ->
- let rest_s = stringlist_to_string r in
- (f^"."^rest_s)
-
- let rec print_stringlist slist =
- match slist with
- [] ->
- Format.print_string ""
- | f::r ->
- begin
- Format.print_string (f^".");
- print_stringlist r
- end
-
- let rec pp_bproof_list tree_list tab =
- let rec pp_bproof ftree new_tab =
- let dummy = String.make (new_tab-2) ' ' in
- match ftree with
- BEmpty -> Format.print_string ""
- | CNode((c1,c2)) ->
- begin
- Format.open_box 0;
- Format.force_newline ();
- Format.print_break (new_tab-10) 0;
- Format.open_box 0;
- Format.force_newline ();
- Format.print_string (dummy^"CloseNode: connection = ("^c1^","^c2^")");
- Format.print_flush();
-(* Format.force_newline ();
- Format.print_break 0 3;
-*)
- Format.open_box 0;
- Format.print_break new_tab 0;
- Format.print_flush()
- end
- | AtNode(posname,(c1,c2)) ->
- begin
- Format.open_box 0;
- Format.force_newline ();
- Format.print_break (new_tab-10) 0;
- Format.open_box 0;
- Format.force_newline ();
- Format.print_string (dummy^"AtNode: pos = "^posname^" conneciton = ("^c1^","^c2^")");
- Format.print_flush();
-(* Format.force_newline ();
- Format.print_break 0 3;
-*)
- Format.open_box 0;
- Format.print_break new_tab 0;
- Format.print_flush()
- end
- | RNode(alpha_layer,bproof) ->
- let alpha_string = stringlist_to_string alpha_layer in
- begin
- Format.open_box 0;
- Format.force_newline ();
- Format.print_break new_tab 0;
- Format.print_break 0 0;
- Format.force_newline ();
- Format.print_flush();
- Format.open_box 0;
- print_string (dummy^"RootNode: "^alpha_string);
- Format.print_flush();
- Format.open_box 0;
- Format.print_break 0 0;
- Format.print_flush();
- pp_bproof_list [bproof] (new_tab-3)
- end
- | BNode(posname,(alph1,bproof1),(alph2,bproof2)) ->
- let alpha_string1 = stringlist_to_string alph1
- and alpha_string2 = stringlist_to_string alph2 in
- begin
- Format.open_box 0;
- Format.force_newline ();
- Format.print_break new_tab 0;
- Format.print_break 0 0;
- Format.force_newline ();
- Format.print_flush();
- Format.open_box 0;
- print_string (dummy^"BetaNode: pos = "^posname^" layer1 = "^alpha_string1^" layer2 = "^alpha_string2);
- Format.print_flush();
- Format.open_box 0;
- Format.print_break 0 0;
- Format.print_flush();
- pp_bproof_list [bproof1;bproof2] (new_tab-3)
- end
- in
- let new_tab = tab+5 in
- match tree_list with
- [] -> Format.print_string ""
- | first::rest ->
- begin
- pp_bproof first new_tab;
- pp_bproof_list rest tab
- end
-
- let rec print_pairlist pairlist =
- match pairlist with
- [] -> Format.print_string ""
- | (a,b)::rest ->
- begin
- Format.print_break 1 1;
- Format.print_string ("("^a^","^b^")");
- print_pairlist rest
- end
-
- let print_beta_proof bproof =
- begin
- Format.open_box 0;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_break 3 0;
- pp_bproof_list [bproof] 0;
- Format.force_newline ();
- Format.force_newline ();
- Format.force_newline ();
- Format.print_flush ()
- end
-
- let rec print_treelist treelist =
- match treelist with
- [] ->
- print_endline "END";
- | f::r ->
- begin
- print_ftree f;
- Format.open_box 0;
- print_endline "";
- print_endline "";
- print_endline "NEXT TREE";
- print_endline "";
- print_endline "";
- print_treelist r;
- Format.print_flush ()
- end
-
- let rec print_set_list set_list =
- match set_list with
- [] -> ""
- | f::r ->
- (f.aname)^" "^(print_set_list r)
-
- let print_set set =
- let set_list = AtomSet.elements set in
- if set_list = [] then "empty"
- else
- print_set_list set_list
-
- let print_string_set set =
- let set_list = StringSet.elements set in
- print_stringlist set_list
-
- let rec print_list_sets list_of_sets =
- match list_of_sets with
- [] -> Format.print_string ""
- | (pos,fset)::r ->
- begin
- Format.print_string (pos^": "); (* first element = node which successors depend on *)
- print_stringlist (StringSet.elements fset);
- Format.force_newline ();
- print_list_sets r
- end
-
- let print_ordering list_of_sets =
- begin
- Format.open_box 0;
- print_list_sets list_of_sets;
- Format.print_flush ()
- end
-
- let rec print_triplelist triplelist =
- match triplelist with
- [] -> Format.print_string ""
- | ((a,b),i)::rest ->
- begin
- Format.print_break 1 1;
- Format.print_string ("(("^a^","^b^"),"^(string_of_int i)^")");
- print_triplelist rest
- end
-
- let print_pos_n pos_n =
- Format.print_int pos_n
-
- let print_formula_info ftree ordering pos_n =
- begin
- print_ftree ftree;
- Format.open_box 0;
- Format.force_newline ();
- print_ordering ordering;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_string "number of positions: ";
- print_pos_n pos_n;
- Format.force_newline ();
- print_endline "";
- print_endline "";
- Format.print_flush ()
- end
-
-(* print sequent proof tree *)
-
- let pp_rule (pos,r,formula,term) tab =
- let rep = ruletable r in
- if List.mem rep ["Alll";"Allr";"Exl";"Exr"] then
- begin
- Format.open_box 0;
-(* Format.force_newline (); *)
- Format.print_break tab 0;
- Format.print_string (pos^": "^rep^" ");
- Format.print_flush ();
-(* Format.print_break tab 0;
- Format.force_newline ();
- Format.print_break tab 0;
-*)
-
- Format.open_box 0;
- print_term stdout formula;
- Format.print_flush ();
- Format.open_box 0;
- Format.print_string " ";
- Format.print_flush ();
- Format.open_box 0;
- print_term stdout term;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_flush ()
- end
- else
- begin
- Format.open_box 0;
- Format.print_break tab 0;
- Format.print_string (pos^": "^rep^" ");
- Format.print_flush ();
- Format.open_box 0;
-(* Format.print_break tab 0; *)
- Format.force_newline ();
-(* Format.print_break tab 0; *)
- print_term stdout formula;
- Format.force_newline ()
- end
-
- let last addr =
- if addr = ""
- then ""
- else
- String.make 1 (String.get addr (String.length addr-1))
-
- let rest addr =
- if addr = ""
- then ""
- else
- String.sub addr 0 ((String.length addr) - 1)
-
- let rec get_r_chain addr =
- if addr = "" then
- 0
- else
- let l = last addr in
- if l = "l" then
- 0
- else (* l = "r" *)
- let rs = rest addr in
- 1 + (get_r_chain rs)
-
- let rec tpp seqtree tab addr =
- match seqtree with
- | PEmpty -> raise jprover_bug
- | PNodeAx(rule) ->
- let (pos,r,p,pa) = rule in
- begin
- pp_rule (pos,r,p,pa) tab;
-(* Format.force_newline (); *)
-(* let mult = get_r_chain addr in *)
-(* Format.print_break 100 (tab - (3 * mult)) *)
- end
- | PNodeA(rule,left) ->
- let (pos,r,p,pa) = rule in
- begin
- pp_rule (pos,r,p,pa) tab;
- tpp left tab addr
- end
- | PNodeB(rule,left,right) ->
- let (pos,r,p,pa) = rule in
- let newtab = tab + 3 in
- begin
- pp_rule (pos,r,p,pa) tab;
-(* Format.force_newline (); *)
-(* Format.print_break 100 newtab; *)
- (tpp left newtab (addr^"l"));
- (tpp right newtab (addr^"r"))
- end
-
- let tt seqtree =
- begin
- Format.open_box 0;
- tpp seqtree 0 "";
- Format.force_newline ();
- Format.close_box ();
- Format.print_newline ()
- end
-
-(************ END printing functions *********************************)
-
-(************ Beta proofs and redundancy deletion **********************)
-
- let rec remove_dups_connections connection_list =
- match connection_list with
- [] -> []
- | (c1,c2)::r ->
- if (List.mem (c1,c2) r) or (List.mem (c2,c1) r) then
- (* only one direction variant of a connection stays *)
- remove_dups_connections r
- else
- (c1,c2)::(remove_dups_connections r)
-
- let rec remove_dups_list list =
- match list with
- [] -> []
- | f::r ->
- if List.mem f r then
- remove_dups_list r
- else
- f::(remove_dups_list r)
-
- let beta_pure alpha_layer connections beta_expansions =
- let (l1,l2) = List.split connections in
- let test_list = l1 @ l2 @ beta_expansions in
- begin
-(* Format.open_box 0;
- print_endline "";
- print_stringlist alpha_layer;
- Format.print_flush();
- Format.open_box 0;
- print_endline "";
- print_stringlist test_list;
- print_endline "";
- Format.print_flush();
-*)
- not (List.exists (fun x -> (List.mem x test_list)) alpha_layer)
- end
-
- let rec apply_bproof_purity bproof =
- match bproof with
- BEmpty ->
- raise jprover_bug
- | CNode((c1,c2)) ->
- bproof,[(c1,c2)],[]
- | AtNode(_,(c1,c2)) ->
- bproof,[(c1,c2)],[]
- | RNode(alpha_layer,subproof) ->
- let (opt_subproof,min_connections,beta_expansions) =
- apply_bproof_purity subproof in
- (RNode(alpha_layer,opt_subproof),min_connections,beta_expansions)
- | BNode(pos,(alph1,subp1),(alph2,subp2)) ->
- let (opt_subp1,min_conn1,beta_exp1) = apply_bproof_purity subp1 in
- if beta_pure alph1 min_conn1 beta_exp1 then
- begin
-(* print_endline ("Left layer of "^pos); *)
- (opt_subp1,min_conn1,beta_exp1)
- end
- else
- let (opt_subp2,min_conn2,beta_exp2) = apply_bproof_purity subp2 in
- if beta_pure alph2 min_conn2 beta_exp2 then
- begin
-(* print_endline ("Right layer of "^pos); *)
- (opt_subp2,min_conn2,beta_exp2)
- end
- else
- let min_conn = remove_dups_connections (min_conn1 @ min_conn2)
- and beta_exp = remove_dups_list ([pos] @ beta_exp1 @ beta_exp2) in
- (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2)),min_conn,beta_exp)
-
- let bproof_purity bproof =
- let (opt_bproof,min_connections,_) = apply_bproof_purity bproof in
- opt_bproof,min_connections
-
-(*********** split permutation *****************)
-
- let rec apply_permutation bproof rep_name direction act_blayer =
- match bproof with
- BEmpty | RNode(_,_) ->
- raise jprover_bug
- | AtNode(cx,(c1,c2)) ->
- bproof,act_blayer
- | CNode((c1,c2)) ->
- bproof,act_blayer
- | BNode(pos,(alph1,subp1),(alph2,subp2)) ->
- if rep_name = pos then
- let (new_blayer,replace_branch) =
- if direction = "left" then
- (alph1,subp1)
- else (* direciton = "right" *)
- (alph2,subp2)
- in
- (match replace_branch with
- CNode((c1,c2)) ->
- (AtNode(c1,(c1,c2))),new_blayer (* perform atom expansion at c1 *)
- | _ ->
- replace_branch,new_blayer
- )
- else
- let pproof1,new_blayer1 = apply_permutation subp1 rep_name direction act_blayer in
- let pproof2,new_blayer2 = apply_permutation subp2 rep_name direction new_blayer1 in
- (BNode(pos,(alph1,pproof1),(alph2,pproof2))),new_blayer2
-
- let split_permutation pname opt_bproof =
- match opt_bproof with
- RNode(alayer,BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) ->
- if pos = pname then
-(* if topmost beta expansion agrees with pname, then *)
-(* only split the beta proof and give back the two subproofs *)
- let (osubp1,min_con1) = bproof_purity opt_subp1
- and (osubp2,min_con2) = bproof_purity opt_subp2 in
-(* there will be no purity reductions in the beta subproofs. We use this *)
-(* predicate to collect the set of used leaf-connections in each subproof*)
- ((RNode((alayer @ alph1),osubp1),min_con1),
- (RNode((alayer @ alph2),osubp2),min_con2)
- )
-(* we combine the branch after topmost beta expansion at pos into one root alpha layer *)
-(* -- the beta expansion node pos will not be needed in this root layer *)
- else
- let perm_bproof1,balph1 = apply_permutation
- (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "left" []
- and perm_bproof2,balph2 = apply_permutation
- (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "right" [] in
-
- begin
-(* print_endline " ";
- print_beta_proof perm_bproof1;
- print_endline" " ;
- print_beta_proof perm_bproof2;
- print_endline" ";
-*)
- let (osubp1,min_con1) = bproof_purity perm_bproof1
- and (osubp2,min_con2) = bproof_purity perm_bproof2 in
- ((RNode((alayer @ balph1),osubp1),min_con1),
- (RNode((alayer @ balph2),osubp2),min_con2)
- )
- end
-(* we combine the branch after the NEW topmost beta expansion at bpos *)
-(* into one root alpha layer -- the beta expansion node bpos will not be *)
-(* needed in this root layer *)
- | _ ->
- raise jprover_bug
-
-(*********** END split permutation *****************)
-
- let rec list_del list_el el_list =
- match el_list with
- [] ->
- raise jprover_bug
- | f::r ->
- if list_el = f then
- r
- else
- f::(list_del list_el r)
-
- let rec list_diff del_list check_list =
- match del_list with
- [] ->
- []
- | f::r ->
- if List.mem f check_list then
- list_diff r check_list
- else
- f::(list_diff r check_list)
-
-(* let rec compute_alpha_layer ftree_list =
- match ftree_list with
- [] ->
- [],[],[]
- | f::r ->
- (match f with
- Empty ->
- raise jprover_bug
- | NodeAt(pos) ->
- let pn = pos.name
- and (rnode,ratom,borderings) = compute_alpha_layer r in
- ((pn::rnode),(pn::ratom),borderings)
- | NodeA(pos,suctrees) ->
- let pn = pos.name in
- if pos.pt = Beta then
- let (rnode,ratom,borderings) = compute_alpha_layer r in
- ((pn::rnode),(ratom),(f::borderings))
- else
- let suclist = Array.to_list suctrees in
- compute_alpha_layer (suclist @ r)
- )
-
- let rec compute_connection alpha_layer union_atoms connections =
- match connections with
- [] -> ("none","none")
- | (c,d)::r ->
- if (List.mem c union_atoms) & (List.mem d union_atoms) then
- let (c1,c2) =
- if List.mem c alpha_layer then
- (c,d)
- else
- if List.mem d alpha_layer then
- (d,c) (* then, d is supposed to occur in [alpha_layer] *)
- else
- raise (Invalid_argument "Jprover bug: connection match failure")
- in
- (c1,c2)
- else
- compute_connection alpha_layer union_atoms r
-
- let get_beta_suctrees btree =
- match btree with
- Empty | NodeAt(_) -> raise jprover_bug
- | NodeA(pos,suctrees) ->
- let b1tree = suctrees.(0)
- and b2tree = suctrees.(1) in
- (pos.name,b1tree,b2tree)
-
- let rec build_beta_proof alpha_layer union_atoms beta_orderings connections =
- let (c1,c2) = compute_connection alpha_layer union_atoms connections in
-(* [c1] is supposed to occur in the lowmost alpha layer of the branch, *)
-(* i.e. [aplha_layer] *)
- if (c1,c2) = ("none","none") then
- (match beta_orderings with
- [] -> raise jprover_bug
- | btree::r ->
- let (beta_pos,suctree1,suctree2) = get_beta_suctrees btree in
- let (alpha_layer1, atoms1, bordering1) = compute_alpha_layer [suctree1]
- and (alpha_layer2, atoms2, bordering2) = compute_alpha_layer [suctree2] in
- let bproof1,beta1,closure1 =
- build_beta_proof alpha_layer1 (atoms1 @ union_atoms)
- (bordering1 @ r) connections
- in
- let bproof2,beta2,closure2 =
- build_beta_proof alpha_layer2 (atoms2 @ union_atoms)
- (bordering2 @ r) connections in
- (BNode(beta_pos,(alpha_layer1,bproof1),(alpha_layer2,bproof2))),(1+beta1+beta2),(closure1+closure2)
- )
- else
- CNode((c1,c2)),0,1
-
- let construct_beta_proof ftree connections =
- let (root_node,root_atoms,beta_orderings) = compute_alpha_layer [ftree]
- in
- let beta_proof,beta_exp,closures =
- build_beta_proof root_node root_atoms beta_orderings connections in
- (RNode(root_node,beta_proof)),beta_exp,closures
-*)
-
-
-(* *********** New Version with direct computation from extension proof **** *)
-(* follows a DIRECT step from proof histories via pr-connection orderings to opt. beta-proofs *)
-
- let rec compute_alpha_layer ftree_list =
- match ftree_list with
- [] ->
- []
- | f::r ->
- (match f with
- Empty ->
- raise jprover_bug
- | NodeAt(pos) ->
- let rnode = compute_alpha_layer r in
- (pos.name::rnode)
- | NodeA(pos,suctrees) ->
- if pos.pt = Beta then
- let rnode = compute_alpha_layer r in
- (pos.name::rnode)
- else
- let suclist = Array.to_list suctrees in
- compute_alpha_layer (suclist @ r)
- )
-
- let rec compute_beta_difference c1_context c2_context act_context =
- match c1_context,c2_context with
- ([],c2_context) ->
- (list_diff c2_context act_context)
-(* both connection partners in the same submatrix; [c1] already isolated *)
- | ((fc1::rc1),[]) ->
- [] (* [c2] is a reduction step, i.e. isolated before [c1] *)
- | ((fc1::rc1),(fc2::rc2)) ->
- if fc1 = fc2 then (* common initial beta-expansions *)
- compute_beta_difference rc1 rc2 act_context
- else
- (list_diff c2_context act_context)
-
- let rec non_closed beta_proof_list =
- match beta_proof_list with
- [] ->
- false
- | bpf::rbpf ->
- (match bpf with
- RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | BEmpty -> true
- | CNode(_) -> non_closed rbpf
- | BNode(pos,(_,bp1),(_,bp2)) -> non_closed ([bp1;bp2] @ rbpf)
- )
-
- let rec cut_context pos context =
- match context with
- [] ->
- raise (Invalid_argument "Jprover bug: invalid context element")
- | (f,num)::r ->
- if pos = f then
- context
- else
- cut_context pos r
-
- let compute_tree_difference beta_proof c1_context =
- match beta_proof with
- RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | BEmpty -> c1_context
- | BNode(pos,_,_) ->
-(* print_endline ("actual root: "^pos); *)
- cut_context pos c1_context
-
- let print_context conn bcontext =
- begin
- Format.open_box 0;
- Format.print_string conn;
- Format.print_string ": ";
- List.iter (fun x -> let (pos,num) = x in Format.print_string (pos^" "^(string_of_int num)^"")) bcontext;
- print_endline " ";
- Format.print_flush ()
- end
-
- let rec build_opt_beta_proof beta_proof ext_proof beta_atoms beta_layer_list act_context =
- let rec add_c2_tree (c1,c2) c2_diff_context =
- match c2_diff_context with
- [] ->
- (CNode(c1,c2),0)
- | (f,num)::c2_diff_r ->
- let next_beta_proof,next_exp =
- add_c2_tree (c1,c2) c2_diff_r in
- let (layer1,layer2) = List.assoc f beta_layer_list in
- let new_bproof =
- if num = 1 then
- BNode(f,(layer1,next_beta_proof),(layer2,BEmpty))
- else (* num = 2*)
- BNode(f,(layer1,BEmpty),(layer2,next_beta_proof))
- in
- (new_bproof,(next_exp+1))
- in
- let rec add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context new_act_context =
- match c1_diff_context with
- [] ->
- let (n_c1,n_c2) =
- if c2_diff_context = [] then (* make sure that leaf-connection is first element *)
- (c1,c2)
- else
- (c2,c1)
- in
- let c2_bproof,c2_exp = add_c2_tree (n_c1,n_c2) c2_diff_context in
- if c2_exp <> 0 then (* at least one open branch was generated to isloate [c2] *)
- begin
-(* print_endline "start with new beta-proof"; *)
- let new_bproof,new_exp,new_closures,new_rest_proof =
- build_opt_beta_proof c2_bproof rest_ext_proof beta_atoms beta_layer_list (act_context @ new_act_context) in
- (new_bproof,(new_exp+c2_exp),(new_closures+1),new_rest_proof)
- end
- else
- begin
-(* print_endline "proceed with old beta-proof"; *)
- (c2_bproof,c2_exp,1,rest_ext_proof)
- end
- | (f,num)::c1_diff_r ->
- let (layer1,layer2) = List.assoc f beta_layer_list in
- let next_beta_proof,next_exp,next_closures,next_ext_proof =
- add_beta_expansions (c1,c2) rest_ext_proof c1_diff_r c2_diff_context new_act_context in
- let new_bproof =
- if num = 1 then
- BNode(f,(layer1,next_beta_proof),(layer2,BEmpty))
- else (* num = 2*)
- BNode(f,(layer1,BEmpty),(layer2,next_beta_proof))
- in
- (new_bproof,(next_exp+1),next_closures,next_ext_proof)
-
- in
- let rec insert_connection beta_proof (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context =
- begin
-(* print_context c1 c1_diff_context;
- print_endline "";
- print_context c2 c2_diff_context;
- print_endline "";
-*)
- match beta_proof with
- RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | BEmpty ->
- add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context
- | BNode(pos,(layer1,sproof1),(layer2,sproof2)) ->
-(* print_endline (c1^" "^c2^" "^pos); *)
- (match c1_diff_context with
- [] ->
- raise (Invalid_argument "Jprover bug: invalid beta-proof")
- | (f,num)::rest_context -> (* f = pos must hold!! *)
- if num = 1 then
- let (next_bproof,next_exp,next_closure,next_ext_proof) =
- insert_connection sproof1 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in
- (BNode(pos,(layer1,next_bproof),(layer2,sproof2)),next_exp,next_closure,next_ext_proof)
- else (* num = 2 *)
- let (next_bproof,next_exp,next_closure,next_ext_proof) =
- insert_connection sproof2 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in
- (BNode(pos,(layer1,sproof1),(layer2,next_bproof)),next_exp,next_closure,next_ext_proof)
- )
- end
-
- in
- match ext_proof with
- [] ->
- beta_proof,0,0,[]
- | (c1,c2)::rproof ->
-(* print_endline ("actual connection: "^c1^" "^c2); *)
- let c1_context = List.assoc c1 beta_atoms
- and c2_context = List.assoc c2 beta_atoms in
- let c2_diff_context = compute_beta_difference c1_context c2_context act_context
- and c1_diff_context = compute_tree_difference beta_proof c1_context in (* wrt. actual beta-proof *)
- let (next_beta_proof,next_exp,next_closures,next_ext_proof) =
- insert_connection beta_proof (c1,c2) rproof c1_diff_context c2_diff_context c1_diff_context in
- if non_closed [next_beta_proof] then (* at least one branch was generated to isolate [c1] *)
- let rest_beta_proof,rest_exp,rest_closures,rest_ext_proof =
- build_opt_beta_proof next_beta_proof next_ext_proof beta_atoms beta_layer_list act_context in
- rest_beta_proof,(next_exp+rest_exp),(next_closures+rest_closures),rest_ext_proof
- else
- next_beta_proof,next_exp,next_closures,next_ext_proof
-
- let rec annotate_atoms beta_context atlist treelist =
- let rec annotate_tree beta_context tree atlist =
- match tree with
- Empty ->
- (atlist,[],[])
- | NodeAt(pos) ->
- if List.mem pos.name atlist then
- let new_atlist = list_del pos.name atlist in
- (new_atlist,[(pos.name,beta_context)],[])
- else
- (atlist,[],[])
- | NodeA(pos,suctrees) ->
- if pos.pt = Beta then
- let s1,s2 = suctrees.(0),suctrees.(1) in
- let alayer1 = compute_alpha_layer [s1]
- and alayer2 = compute_alpha_layer [s2]
- and new_beta_context1 = beta_context @ [(pos.name,1)]
- and new_beta_context2 = beta_context @ [(pos.name,2)] in
- let atlist1,annotates1,blayer_list1 =
- annotate_atoms new_beta_context1 atlist [s1] in
- let atlist2,annotates2,blayer_list2 =
- annotate_atoms new_beta_context2 atlist1 [s2]
- in
- (atlist2,(annotates1 @ annotates2),((pos.name,(alayer1,alayer2))::(blayer_list1 @ blayer_list2)))
- else
- annotate_atoms beta_context atlist (Array.to_list suctrees)
- in
- match treelist with
- [] -> (atlist,[],[])
- | f::r ->
- let (next_atlist,f_annotates,f_beta_layers) = annotate_tree beta_context f atlist in
- let (rest_atlist,rest_annotates,rest_beta_layers) = (annotate_atoms beta_context next_atlist r)
- in
- (rest_atlist, (f_annotates @ rest_annotates),(f_beta_layers @ rest_beta_layers))
-
- let construct_opt_beta_proof ftree ext_proof =
- let con1,con2 = List.split ext_proof in
- let con_atoms = remove_dups_list (con1 @ con2) in
- let (empty_atoms,beta_atoms,beta_layer_list) = annotate_atoms [] con_atoms [ftree] in
- let root_node = compute_alpha_layer [ftree] in
- let (beta_proof,beta_exp,closures,_) =
- build_opt_beta_proof BEmpty ext_proof beta_atoms beta_layer_list [] in
- (RNode(root_node,beta_proof)),beta_exp,closures
-
-(************* permutation ljmc -> lj *********************************)
-
-(* REAL PERMUTATION STAFF *)
-
- let subf1 n m subrel = List.mem ((n,m),1) subrel
- let subf2 n m subrel = List.mem ((n,m),2) subrel
- let tsubf n m tsubrel = List.mem (n,m) tsubrel
-
-(* Transforms all normal form layers in an LJ proof *)
-
- let rec modify prooftree (subrel,tsubrel) =
- match prooftree with
- PEmpty ->
- raise jprover_bug
- | PNodeAx((pos,inf,form,term)) ->
- prooftree,pos
- | PNodeA((pos,inf,form,term),left) ->
- let t,qpos = modify left (subrel,tsubrel) in
- if List.mem inf [Impr;Negr;Allr] then
- PNodeA((pos,inf,form,term),t),pos (* layer bound *)
- else if qpos = "Orl-True" then
- PNodeA((pos,inf,form,term),t),qpos
- else if List.mem inf [Andl;Alll;Exl] then
- PNodeA((pos,inf,form,term),t),qpos (* simply propagation *)
- else if inf = Exr then
- if (subf1 pos qpos subrel) then
- PNodeA((pos,inf,form,term),t),pos
- else t,qpos
- else if inf = Negl then
- if (subf1 pos qpos subrel) then
- PNodeA((pos,inf,form,term),t),"" (* empty string *)
- else t,qpos
- else (* x = Orr *)
- if (subf1 pos qpos subrel) then
- PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *)
- else if (subf2 pos qpos subrel) then
- PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *)
- else t,qpos
- | PNodeB((pos,inf,form,term),left,right) ->
- let t,qpos = modify left (subrel,tsubrel) in
- if inf = Andr then
- if (or) (qpos = "Orl-True") (subf1 pos qpos subrel) then
- let s,rpos = modify right (subrel,tsubrel) in (* Orl-True -> subf *)
- if (or) (rpos = "Orl-True") (subf2 pos rpos subrel) then
- PNodeB((pos,inf,form,term),t,s),pos
- else s,rpos
- else t,qpos (* not subf -> not Orl-True *)
- else if inf = Impl then
- if (subf1 pos qpos subrel) then
- let s,rpos = modify right (subrel,tsubrel) in
- PNodeB((pos,inf,form,term),t,s),"" (* empty string *)
- else t,qpos
- else (* x = Orl *)
- let s,rpos = modify right (subrel,tsubrel) in
- PNodeB((pos,inf,form,term),t,s),"Orl-True"
-
-(* transforms the subproof into an LJ proof between
- the beta-inference rule (excluded) and
- layer boundary in the branch ptree *)
-
- let rec rec_modify ptree (subrel,tsubrel) =
- match ptree with
- PEmpty ->
- raise jprover_bug
- | PNodeAx((pos,inf,form,term)) ->
- ptree,pos
- | PNodeA((pos,inf,form,term),left) ->
- if List.mem inf [Impr;Negr;Allr] then
- ptree,pos (* layer bound, stop transforming! *)
- else
- let t,qpos = rec_modify left (subrel,tsubrel) in
- if List.mem inf [Andl;Alll;Exl] then
- PNodeA((pos,inf,form,term),t),qpos (* simply propagation*)
- else if inf = Exr then
- if (subf1 pos qpos subrel) then
- PNodeA((pos,inf,form,term),t),pos
- else t,qpos
- else if inf = Negl then
- if (subf1 pos qpos subrel) then
- PNodeA((pos,inf,form,term),t),"" (* empty string *)
- else t,qpos
- else (* x = Orr *)
- if (subf1 pos qpos subrel) then
- PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *)
- else if (subf2 pos qpos subrel) then
- PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *)
- else t,qpos
- | PNodeB((pos,inf,form,term),left,right) ->
- let t,qpos = rec_modify left (subrel,tsubrel) in
- if inf = Andr then
- if (subf1 pos qpos subrel) then
- let s,rpos = rec_modify right (subrel,tsubrel) in
- if (subf2 pos rpos subrel) then
- PNodeB((pos,inf,form,term),t,s),pos
- else s,rpos
- else t,qpos
- else (* x = Impl since x= Orl cannot occur in the partial layer ptree *)
-
- if (subf1 pos qpos subrel) then
- let s,rpos = rec_modify right (subrel,tsubrel) in
- PNodeB((pos,inf,form,term),t,s),"" (* empty string *)
- else t,qpos
-
- let weak_modify rule ptree (subrel,tsubrel) = (* recall rule = or_l *)
- let (pos,inf,formlua,term) = rule in
- if inf = Orl then
- ptree,true
- else
- let ptreem,qpos = rec_modify ptree (subrel,tsubrel) in
- if (subf1 pos qpos subrel) then (* weak_modify will always be applied on left branches *)
- ptreem,true
- else
- ptreem,false
-
-(* Now, the permutation stuff .... *)
-
-(* Permutation schemes *)
-
-(* corresponds to local permutation lemma -- Lemma 3 in the paper -- *)
-(* with eigenvariablen renaming and branch modification *)
-
-(* eigenvariablen renaming and branch modification over *)
-(* the whole proofs, i.e. over layer boundaries, too *)
-
-
-(* global variable vor eigenvariable renaming during permutations *)
-
- let eigen_counter = ref 1
-
-(* append renamed paramater "r" to non-quantifier subformulae
- of renamed quantifier formulae *)
-
- let make_new_eigenvariable term =
- let op = (dest_term term).term_op in
- let opa = (dest_op op).op_params in
- let oppar = dest_param opa in
- match oppar with
- | String ofname::_ ->
- let new_eigen_var = (ofname^"_r"^(string_of_int (!eigen_counter))) in
- eigen_counter := !eigen_counter + 1;
- mk_string_term jprover_op new_eigen_var
- | _ -> raise jprover_bug
-
-
- let replace_subterm term oldt rept =
- let v_term = var_subst term oldt "dummy_var" in
- subst1 v_term "dummy_var" rept
-
- let rec eigen_rename old_parameter new_parameter ptree =
- match ptree with
- PEmpty ->
- raise jprover_bug
- | PNodeAx((pos,inf,form,term)) ->
- let new_form = replace_subterm form old_parameter new_parameter in
- PNodeAx((pos,inf,new_form,term))
- | PNodeA((pos,inf,form,term), left) ->
- let new_form = replace_subterm form old_parameter new_parameter
- and new_term = replace_subterm term old_parameter new_parameter in
- let ren_left = eigen_rename old_parameter new_parameter left in
- PNodeA((pos,inf,new_form,new_term), ren_left)
- | PNodeB((pos,inf,form,term),left, right) ->
- let new_form = replace_subterm form old_parameter new_parameter in
- let ren_left = eigen_rename old_parameter new_parameter left in
- let ren_right = eigen_rename old_parameter new_parameter right in
- PNodeB((pos,inf,new_form,term), ren_left, ren_right)
-
- let rec update_ptree rule subtree direction tsubrel =
- match subtree with
- PEmpty ->
- raise jprover_bug
- | PNodeAx(r) ->
- subtree
- | PNodeA((pos,inf,formula,term), left) ->
- if (pos,inf,formula,term) = rule then
- left
- (* don't delete rule if subformula belongs to renamed instance of quantifiers; *)
- (* but this can never occur now since (renamed) formula is part of rule *)
- else
- let (posn,infn,formn,termn) = rule in
- if (&) (List.mem infn [Exl;Allr] ) (term = termn) then
- (* this can only occur if eigenvariable rule with same term as termn has been permuted; *)
- (* the application of the same eigenvariable introduction on the same subformula with *)
- (* different instantiated variables might occur! *)
- (* termn cannot occur in terms of permuted quantifier rules due to substitution split *)
- (* during reconstruciton of the ljmc proof *)
- let new_term = make_new_eigenvariable term in
-(* print_endline "Eigenvariable renaming!!!"; *)
- eigen_rename termn new_term subtree
- else
- let left_del =
- update_ptree rule left direction tsubrel
- in
- PNodeA((pos,inf,formula,term), left_del)
- | PNodeB((pos,inf,formula,term), left, right) ->
- if (pos,inf,formula,term) = rule then
- if direction = "l" then
- left
- else
- right (* direction = "r" *)
- else
- let left_del = update_ptree rule left direction tsubrel in
- let right_del = update_ptree rule right direction tsubrel in
- PNodeB((pos,inf,formula,term),left_del,right_del)
-
- let permute r1 r2 ptree la tsubrel =
-(* print_endline "permute in"; *)
- match ptree,la with
- PNodeA(r1, PNodeA(r2,left)),la ->
-(* print_endline "1-o-1"; *)
- PNodeA(r2, PNodeA(r1,left))
- (* one-over-one *)
- | PNodeA(r1, PNodeB(r2,left,right)),la ->
-(* print_endline "1-o-2"; *)
- PNodeB(r2, PNodeA(r1,left), PNodeA(r1,right))
- (* one-over-two *)
- | PNodeB(r1, PNodeA(r2,left), right),"l" ->
-(* print_endline "2-o-1 left"; *)
- let right_u = update_ptree r2 right "l" tsubrel in
- PNodeA(r2, PNodeB(r1, left, right_u))
- (* two-over-one left *)
- | PNodeB(r1, left, PNodeA(r2,right)),"r" ->
-(* print_endline "2-o-1 right"; *)
- let left_u = update_ptree r2 left "l" tsubrel in
- PNodeA(r2, PNodeB(r1, left_u, right))
- (* two-over-one right *)
- | PNodeB(r1, PNodeB(r2,left2,right2), right),"l" ->
-(* print_endline "2-o-2 left"; *)
- let right_ul = update_ptree r2 right "l" tsubrel in
- let right_ur = update_ptree r2 right "r" tsubrel in
- PNodeB(r2,PNodeB(r1,left2,right_ul),PNodeB(r1,right2,right_ur))
- (* two-over-two left *)
- | PNodeB(r1, left, PNodeB(r2,left2,right2)),"r" ->
-(* print_endline "2-o-2 right"; *)
- let left_ul = update_ptree r2 left "l" tsubrel in
- let left_ur = update_ptree r2 left "r" tsubrel in
- PNodeB(r2,PNodeB(r1,left_ul,left2),PNodeB(r1,left_ur, right2))
- (* two-over-two right *)
- | _ -> raise jprover_bug
-
-(* permute layers, isolate addmissible branches *)
-
-(* computes if an Andr is d-generatives *)
-
- let layer_bound rule =
- let (pos,inf,formula,term) = rule in
- if List.mem inf [Impr;Negr;Allr] then
- true
- else
- false
-
- let rec orl_free ptree =
- match ptree with
- PEmpty ->
- raise jprover_bug
- | PNodeAx(rule) ->
- true
- | PNodeA(rule,left) ->
- if layer_bound rule then
- true
- else
- orl_free left
- | PNodeB(rule,left,right) ->
- let (pos,inf,formula,term) = rule in
- if inf = Orl then
- false
- else
- (&) (orl_free left) (orl_free right)
-
- let rec dgenerative rule dglist ptree tsubrel =
- let (pos,inf,formula,term) = rule in
- if List.mem inf [Exr;Orr;Negl] then
- true
- else if inf = Andr then
- if dglist = [] then
- false
- else
- let first,rest = (List.hd dglist),(List.tl dglist) in
- let (pos1,inf1,formula1,term1) = first in
- if tsubf pos1 pos tsubrel then
- true
- else
- dgenerative rule rest ptree tsubrel
- else if inf = Impl then
- not (orl_free ptree)
- else
- false
-
-
-(* to compute a topmost addmissible pair r,o with
- the address addr of r in the proof tree
-*)
-
- let rec top_addmissible_pair ptree dglist act_r act_o act_addr tsubrel dummyt =
- let rec search_pair ptree dglist act_r act_o act_addr tsubrel =
- match ptree with
- PEmpty -> raise jprover_bug
- | PNodeAx(_) -> raise jprover_bug
- | PNodeA(rule, left) ->
-(* print_endline "alpha"; *)
- if (dgenerative rule dglist left tsubrel) then (* r = Exr,Orr,Negl *)
- let newdg = (@) [rule] dglist in
- search_pair left newdg act_r rule act_addr tsubrel
- else (* Impr, Allr, Notr only for test *)
- search_pair left dglist act_r act_o act_addr tsubrel
- | PNodeB(rule,left,right) ->
-(* print_endline "beta"; *)
- let (pos,inf,formula,term) = rule in
- if List.mem inf [Andr;Impl] then
- let bool = dgenerative rule dglist left tsubrel in
- let newdg,newrule =
- if bool then
- ((@) [rule] dglist),rule
- else
- dglist,act_o
- in
- if orl_free left then
- search_pair right newdg act_r newrule (act_addr^"r") tsubrel
- else (* not orl_free *)
- let left_r,left_o,left_addr =
- search_pair left newdg act_r newrule (act_addr^"l") tsubrel in
- if left_o = ("",Orr,dummyt,dummyt) then
- top_addmissible_pair right dglist act_r act_o (act_addr^"r") tsubrel dummyt
- else left_r,left_o,left_addr
- else (* r = Orl *)
- if orl_free left then
- top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt
- else
- let left_r,left_o,left_addr
- = search_pair left dglist rule act_o (act_addr^"l") tsubrel in
- if left_o = ("",Orr,dummyt,dummyt) then
- top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt
- else
- left_r,left_o,left_addr
- in
-(* print_endline "top_addmissible_pair in"; *)
- if orl_free ptree then (* there must be a orl BELOW an layer bound *)
- begin
-(* print_endline "orl_free"; *)
- act_r,act_o,act_addr
- end
- else
- begin
-(* print_endline "orl_full"; *)
- search_pair ptree dglist act_r act_o act_addr tsubrel
- end
-
- let next_direction addr act_addr =
- String.make 1 (String.get addr (String.length act_addr))
- (* get starts with count 0*)
-
- let change_last addr d =
- let split = (String.length addr) - 1 in
- let prec,last =
- (String.sub addr 0 split),(String.sub addr split 1) in
- prec^d^last
-
- let last addr =
- if addr = ""
- then ""
- else
- String.make 1 (String.get addr (String.length addr-1))
-
- let rest addr =
- if addr = ""
- then ""
- else
- String.sub addr 0 ((String.length addr) - 1)
-
- let rec permute_layer ptree dglist (subrel,tsubrel) =
- let rec permute_branch r addr act_addr ptree dglist (subrel,tsubrel) =
-(* print_endline "pbranch in"; *)
- let la = last act_addr in (* no ensure uniqueness at 2-over-x *)
- match ptree,la with
- PNodeA(o,PNodeA(rule,left)),la -> (* one-over-one *)
-(* print_endline " one-over-one "; *)
- let permute_result = permute o rule ptree la tsubrel in
- begin match permute_result with
- PNodeA(r2,left2) ->
- let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
- PNodeA(r2,pbleft)
- | _ -> raise jprover_bug
- end
- | PNodeA(o,PNodeB(rule,left,right)),la -> (* one-over-two *)
-(* print_endline " one-over-two "; *)
- if rule = r then (* left,right are or_l free *)
- permute o rule ptree la tsubrel (* first termination case *)
- else
- let d = next_direction addr act_addr in
- if d = "l" then
- let permute_result = permute o rule ptree la tsubrel in
- (match permute_result with
- PNodeB(r2,left2,right2) ->
- let pbleft = permute_branch r addr (act_addr^d) left2 dglist (subrel,tsubrel) in
- let plright = permute_layer right2 dglist (subrel,tsubrel) in
- PNodeB(r2,pbleft,plright)
- | _ -> raise jprover_bug
- )
- else (* d = "r", that is left of rule is or_l free *)
- let left1,bool = weak_modify rule left (subrel,tsubrel) in
- if bool then (* rule is relevant *)
- let permute_result = permute o rule (PNodeA(o,PNodeB(rule,left1,right))) la tsubrel in
- (match permute_result with
- PNodeB(r2,left2,right2) ->
- let pbright = permute_branch r addr (act_addr^d) right2 dglist (subrel,tsubrel) in
- PNodeB(r2,left2,pbright)
- | _ -> raise jprover_bug
- )
- else (* rule is not relevant *)
- PNodeA(o,left1) (* optimized termination case (1) *)
- | PNodeB(o,PNodeA(rule,left),right1),"l" -> (* two-over-one, left *)
-(* print_endline " two-over-one, left "; *)
- let permute_result = permute o rule ptree la tsubrel in
- (match permute_result with
- PNodeA(r2,left2) ->
- let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
- PNodeA(r2,pbleft)
- | _ -> raise jprover_bug
- )
- | PNodeB(o,left1,PNodeA(rule,left)),"r" -> (* two-over-one, right *)
- (* left of o is or_l free *)
-(* print_endline " two-over-one, right"; *)
- let leftm,bool = weak_modify o left1 (subrel,tsubrel) in
- if bool then (* rule is relevant *)
- let permute_result = permute o rule (PNodeB(o,leftm,PNodeA(rule,left))) la tsubrel in
- (match permute_result with
- PNodeA(r2,left2) ->
- let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in
- PNodeA(r2,pbleft)
- | _ -> raise jprover_bug
- )
- else (* rule is not relevant *)
- leftm (* optimized termination case (2) *)
- | PNodeB(o,PNodeB(rule,left,right),right1),"l" -> (* two-over-two, left *)
-(* print_endline " two-over-two, left"; *)
- if rule = r then (* left,right are or_l free *)
- let permute_result = permute o rule ptree la tsubrel in
- (match permute_result with
- PNodeB(r2,PNodeB(r3,left3,right3),PNodeB(r4,left4,right4)) ->
-(* print_endline "permute 2-o-2, left ok"; *)
- let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in
- let leftm4,bool4 = weak_modify r4 left4 (subrel,tsubrel) in
- let plleft,plright =
- if (&) bool3 bool4 then (* r3 and r4 are relevant *)
- (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)),
- (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel))
- else if (&) bool3 (not bool4) then (* only r3 is relevant *)
- begin
-(* print_endline "two-over-two left: bool3 and not bool4"; *)
- (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)),
- leftm4
- end
- else if (&) (not bool3) bool4 then (* only r4 is relevant *)
- leftm3,
- (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel))
- else (* neither r3 nor r4 are relevant *)
- leftm3,leftm4
- in
- PNodeB(r2,plleft,plright)
- | _ -> raise jprover_bug
- )
- else
- let d = next_direction addr act_addr in
- let newadd = change_last act_addr d in
- if d = "l" then
- let permute_result = permute o rule ptree la tsubrel in
- (match permute_result with
- PNodeB(r2,left2,right2) ->
- let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in
- let plright = permute_layer right2 dglist (subrel,tsubrel) in
- PNodeB(r2,pbleft,plright)
- | _ -> raise jprover_bug
- )
- else (* d = "r", that is left is or_l free *)
- let left1,bool = weak_modify rule left (subrel,tsubrel) in
- if bool then (* rule is relevant *)
- let permute_result =
- permute o rule (PNodeB(o,PNodeB(rule,left1,right),right1)) la tsubrel in
- (match permute_result with
- PNodeB(r2,PNodeB(r3,left3,right3),right2) ->
- let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in
- let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in
- let plleft =
- if bool3 (* r3 relevant *) then
- permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)
- else (* r3 redundant *)
- leftm3
- in
- PNodeB(r2,plleft,pbright) (* further opt. NOT possible *)
- | _ -> raise jprover_bug
- )
- else (* rule is not relevant *)
- permute_layer (PNodeB(o,left1,right1)) dglist (subrel,tsubrel) (* further opt. possible *)
- (* combine with orl_free *)
- | PNodeB(o,left1,PNodeB(rule,left,right)),"r" -> (* two-over-two, right *)
-(* print_endline " two-over-two, right"; *)
- let leftm1,bool = weak_modify o left1 (subrel,tsubrel) in (* left1 is or_l free *)
- if bool then (* o is relevant, even after permutations *)
- if rule = r then (* left, right or_l free *)
- permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel
- else
- let d = next_direction addr act_addr in
- let newadd = change_last act_addr d in
- if d = "l" then
- let permute_result =
- permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in
- (match permute_result with
- PNodeB(r2,left2,right2) ->
- let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in
- let plright = permute_layer right2 dglist (subrel,tsubrel) in
- PNodeB(r2,pbleft,plright)
- | _ -> raise jprover_bug
- )
- else (* d = "r", that is left is or_l free *)
- let leftm,bool = weak_modify rule left (subrel,tsubrel) in
- if bool then (* rule is relevant *)
- let permute_result =
- permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in
- (match permute_result with
- PNodeB(r2,left2,right2) ->
- let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in
- PNodeB(r2,left2,pbright) (* left2 or_l free *)
- | _ -> raise jprover_bug
- )
- else (* rule is not relevant *)
- PNodeB(o,leftm1,leftm)
-
- else
- leftm1
- | _ -> raise jprover_bug
- in
- let rec trans_add_branch r o addr act_addr ptree dglist (subrel,tsubrel) =
- match ptree with
- (PEmpty| PNodeAx(_)) -> raise jprover_bug
- | PNodeA(rule,left) ->
- if (dgenerative rule dglist left tsubrel) then
- let newdg = (@) [rule] dglist in
- if rule = o then
- begin
-(* print_endline "one-rule is o"; *)
- permute_branch r addr act_addr ptree dglist (subrel,tsubrel)
- end
- else
- begin
-(* print_endline "alpha - but not o"; *)
- let tptree = trans_add_branch r o addr act_addr left newdg (subrel,tsubrel) in
- permute_layer (PNodeA(rule,tptree)) dglist (subrel,tsubrel)
- (* r may not longer be valid for rule *)
- end
- else
- let tptree = trans_add_branch r o addr act_addr left dglist (subrel,tsubrel) in
- PNodeA(rule,tptree)
- | PNodeB(rule,left,right) ->
- let d = next_direction addr act_addr in
- let bool = (dgenerative rule dglist left tsubrel) in
- if rule = o then
- begin
-(* print_endline "two-rule is o"; *)
- permute_branch r addr (act_addr^d) ptree dglist (subrel,tsubrel)
- end
- else
- begin
-(* print_endline ("beta - but not o: address "^d); *)
- let dbranch =
- if d = "l" then
- left
- else (* d = "r" *)
- right
- in
- let tptree =
- if bool then
- let newdg = (@) [rule] dglist in
- (trans_add_branch r o addr (act_addr^d) dbranch newdg (subrel,tsubrel))
- else
- (trans_add_branch r o addr (act_addr^d) dbranch dglist (subrel,tsubrel))
- in
- if d = "l" then
- permute_layer (PNodeB(rule,tptree,right)) dglist (subrel,tsubrel)
- else (* d = "r" *)
- begin
-(* print_endline "prob. a redundant call"; *)
- let back = permute_layer (PNodeB(rule,left,tptree)) dglist (subrel,tsubrel) in
-(* print_endline "SURELY a redundant call"; *)
- back
- end
- end
- in
-(* print_endline "permute_layer in"; *)
- let dummyt = mk_var_term "dummy" in
- let r,o,addr =
- top_addmissible_pair ptree dglist ("",Orl,dummyt,dummyt) ("",Orr,dummyt,dummyt) "" tsubrel dummyt in
- if r = ("",Orl,dummyt,dummyt) then
- ptree
- else if o = ("",Orr,dummyt,dummyt) then (* Orr is a dummy for no d-gen. rule *)
- ptree
- else
-(*
- let (x1,x2,x3,x4) = r
- and (y1,y2,y3,y4) = o in
- print_endline ("top or_l: "^x1);
- print_endline ("or_l address: "^addr);
- print_endline ("top dgen-rule: "^y1);
-*)
- trans_add_branch r o addr "" ptree dglist (subrel,tsubrel)
-
-(* Isolate layer and outer recursion structure *)
-(* uses weaker layer boundaries: ONLY critical inferences *)
-
- let rec trans_layer ptree (subrel,tsubrel) =
- let rec isol_layer ptree (subrel,tsubrel) =
- match ptree with
- PEmpty -> raise jprover_bug
- | PNodeAx(inf) ->
- ptree
- | PNodeA((pos,rule,formula,term),left) ->
- if List.mem rule [Allr;Impr;Negr] then
- let tptree = trans_layer left (subrel,tsubrel) in
- PNodeA((pos,rule,formula,term),tptree)
- else
- let tptree = isol_layer left (subrel,tsubrel) in
- PNodeA((pos,rule,formula,term),tptree)
- | PNodeB(rule,left,right) ->
- let tptree_l = isol_layer left (subrel,tsubrel)
- and tptree_r = isol_layer right (subrel,tsubrel) in
- PNodeB(rule,tptree_l,tptree_r)
- in
- begin
-(* print_endline "trans_layer in"; *)
- let top_tree = isol_layer ptree (subrel,tsubrel) in
- let back = permute_layer top_tree [] (subrel,tsubrel) in
-(* print_endline "translauer out"; *)
- back
- end
-
-(* REAL PERMUTATION STAFF --- End *)
-
-(* build the proof tree from a list of inference rules *)
-
- let rec unclosed subtree =
- match subtree with
- PEmpty -> true
- | PNodeAx(y) -> false
- | PNodeA(y,left) -> (unclosed left)
- | PNodeB(y,left,right) -> (or) (unclosed left) (unclosed right)
-
- let rec extend prooftree element =
- match prooftree with
- PEmpty ->
- let (pos,rule,formula,term) = element in
- if rule = Ax then
- PNodeAx(element)
- else
- if List.mem rule [Andr; Orl; Impl] then
- PNodeB(element,PEmpty,PEmpty)
- else
- PNodeA(element,PEmpty)
- | PNodeAx(y) ->
- PEmpty (* that's only for exhaustive pattern matching *)
- | PNodeA(y, left) ->
- PNodeA(y, (extend left element))
- | PNodeB(y, left, right) ->
- if (unclosed left) then
- PNodeB(y, (extend left element), right)
- else
- PNodeB(y, left, (extend right element))
-
- let rec bptree prooftree nodelist nax=
- match nodelist with
- [] -> prooftree,nax
- | ((_,pos),(rule,formula,term))::rest -> (* kick away the first argument *)
- let newax =
- if rule = Ax then
- 1
- else
- 0
- in
- bptree (extend prooftree (pos,rule,formula,term)) rest (nax+newax)
-
-
- let bproof nodelist =
- bptree PEmpty nodelist 0
-
- let rec get_successor_pos treelist =
- match treelist with
- [] -> []
- | f::r ->
- (
- match f with
- Empty -> get_successor_pos r
- | NodeAt(_) -> raise jprover_bug
- | NodeA(pos,_) ->
- pos::(get_successor_pos r)
- )
-
- let rec get_formula_tree ftreelist f predflag =
- match ftreelist with
- [] -> raise jprover_bug
- | ftree::rest_trees ->
- (match ftree with
- Empty -> get_formula_tree rest_trees f predflag
- | NodeAt(_) -> get_formula_tree rest_trees f predflag
- | NodeA(pos,suctrees) ->
- if predflag = "pred" then
- if pos.pt = Gamma then
- let succs = get_successor_pos (Array.to_list suctrees) in
- if List.mem f succs then
- NodeA(pos,suctrees),succs
- else
- get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
- else
- get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
- else (* predflag = "" *)
- if pos = f then
- NodeA(pos,suctrees),[]
- else
- get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag
- )
-
- let rec get_formula_treelist ftree po =
- match po with
- [] -> []
- | f::r ->
-(* a posistion in po has either stype Gamma_0,Psi_0,Phi_0 (non-atomic), or it has *)
-(* ptype Alpha (or on the right), since there was a deadlock for proof reconstruction in LJ*)
- if List.mem f.st [Phi_0;Psi_0] then
- let (stree,_) = get_formula_tree [ftree] f "" in
- stree::(get_formula_treelist ftree r)
- else
- if f.st = Gamma_0 then
- let (predtree,succs) = get_formula_tree [ftree] f "pred" in
- let new_po = list_diff r succs in
- predtree::(get_formula_treelist ftree new_po)
- else
- if f.pt = Alpha then (* same as first case, or on the right *)
- let (stree,_) = get_formula_tree [ftree] f "" in
- stree::(get_formula_treelist ftree r)
- else raise (Invalid_argument "Jprover bug: non-admissible open position")
-
- let rec build_formula_rel dir_treelist slist predname =
-
- let rec build_renamed_gamma_rel dtreelist predname posname d =
- match dtreelist with
- [] -> [],[]
- | (x,ft)::rdtlist ->
- let rest_rel,rest_ren = build_renamed_gamma_rel rdtlist predname posname d in
- (
- match ft with
- Empty -> (* may have empty successors due to purity in former reconstruction steps *)
- rest_rel,rest_ren
- | NodeAt(_) ->
- raise jprover_bug (* gamma_0 position never is atomic *)
- | NodeA(spos,suctrees) ->
- if List.mem spos.name slist then
-(* the gamma_0 position is really unsolved *)
-(* this is only relevant for the gamma_0 positions in po *)
- let new_name = (posname^"_"^spos.name) (* make new unique gamma name *) in
- let new_srel_el = ((predname,new_name),d)
- and new_rename_el = (spos.name,new_name) (* gamma_0 position as key first *) in
- let (srel,sren) = build_formula_rel [(x,ft)] slist new_name in
- ((new_srel_el::srel) @ rest_rel),((new_rename_el::sren) @ rest_ren)
- else
- rest_rel,rest_ren
- )
-
-
- in
- match dir_treelist with
- [] -> [],[]
- | (d,f)::dir_r ->
- let (rest_rel,rest_renlist) = build_formula_rel dir_r slist predname in
- match f with
- Empty ->
- print_endline "Hello, an empty subtree!!!!!!";
- rest_rel,rest_renlist
- | NodeAt(pos) ->
- (((predname,pos.name),d)::rest_rel),rest_renlist
- | NodeA(pos,suctrees) ->
- (match pos.pt with
- Alpha | Beta ->
- let dtreelist =
- if (pos.pt = Alpha) & (pos.op = Neg) then
- [(1,suctrees.(0))]
- else
- let st1 = suctrees.(0)
- and st2 = suctrees.(1) in
- [(1,st1);(2,st2)]
- in
- let (srel,sren) = build_formula_rel dtreelist slist pos.name in
- ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
- | Delta ->
- let st1 = suctrees.(0) in
- let (srel,sren) = build_formula_rel [(1,st1)] slist pos.name in
- ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
- | Psi| Phi ->
- let succlist = Array.to_list suctrees in
- let dtreelist = (List.map (fun x -> (d,x)) succlist) in
- let (srel,sren) = build_formula_rel dtreelist slist predname in
- (srel @ rest_rel),(sren @ rest_renlist)
- | Gamma ->
- let succlist = (Array.to_list suctrees) in
- let dtreelist = (List.map (fun x -> (1,x)) succlist) in
-(* if (nonemptys suctrees 0 n) = 1 then
- let (srel,sren) = build_formula_rel dtreelist slist pos.name in
- ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist)
- else (* we have more than one gamma instance, which means renaming *)
-*)
- let (srel,sren) = build_renamed_gamma_rel dtreelist predname pos.name d in
- (srel @ rest_rel),(sren @ rest_renlist)
- | PNull ->
- raise jprover_bug
- )
-
- let rec rename_gamma ljmc_proof rename_list =
- match ljmc_proof with
- [] -> []
- | ((inst,pos),(rule,formula,term))::r ->
- if List.mem rule [Alll;Exr] then
- let new_gamma = List.assoc inst rename_list in
- ((inst,new_gamma),(rule,formula,term))::(rename_gamma r rename_list)
- else
- ((inst,pos),(rule,formula,term))::(rename_gamma r rename_list)
-
- let rec compare_pair (s,sf) list =
- if list = [] then
- list
- else
- let (s_1,sf_1),restlist = (List.hd list),(List.tl list) in
- if sf = s_1 then
- (@) [(s,sf_1)] (compare_pair (s,sf) restlist)
- else
- compare_pair (s,sf) restlist
-
- let rec compare_pairlist list1 list2 =
- if list1 = [] then
- list1
- else
- let (s1,sf1),restlist1 = (List.hd list1),(List.tl list1) in
- (@) (compare_pair (s1,sf1) list2) (compare_pairlist restlist1 list2)
-
- let rec trans_rec pairlist translist =
- let tlist = compare_pairlist pairlist translist in
- if tlist = [] then
- translist
- else
- (@) (trans_rec pairlist tlist) translist
-
- let transitive_closure subrel =
- let pairlist,nlist = List.split subrel in
- trans_rec pairlist pairlist
-
- let pt ptree subrel =
- let tsubrel = transitive_closure subrel in
- let transptree = trans_layer ptree (subrel,tsubrel) in
- print_endline "";
- fst (modify transptree (subrel,tsubrel))
-(* let mtree = fst (modify transptree (subrel,tsubrel)) in *)
-(* pretty_print mtree ax *)
-
- let rec make_node_list ljproof =
- match ljproof with
- PEmpty ->
- raise jprover_bug
- | PNodeAx((pos,inf,form,term)) ->
- [(("",pos),(inf,form,term))]
- | PNodeA((pos,inf,form,term),left) ->
- let left_list = make_node_list left in
- (("",pos),(inf,form,term))::left_list
- | PNodeB((pos,inf,form,term),left,right) ->
- let left_list = make_node_list left
- and right_list = make_node_list right in
- (("",pos),(inf,form,term))::(left_list @ right_list)
-
- let permute_ljmc ftree po slist ljmc_proof =
- (* ftree/po are the formula tree / open positions of the sequent that caused deadlock and permutation *)
-(* print_endline "!!!!!!!!!!!!!Permutation TO DO!!!!!!!!!"; *)
- (* the open positions in po are either phi_0, psi_0, or gamma_0 positions *)
- (* since proof reconstruction was a deadlock in LJ *)
- let po_treelist = get_formula_treelist ftree po in
- let dir_treelist = List.map (fun x -> (1,x)) po_treelist in
- let (formula_rel,rename_list) = build_formula_rel dir_treelist slist "dummy" in
- let renamed_ljmc_proof = rename_gamma ljmc_proof rename_list in
- let (ptree,ax) = bproof renamed_ljmc_proof in
- let ljproof = pt ptree formula_rel in
- (* this is a direct formula relation, comprising left/right subformula *)
- begin
-(* print_treelist po_treelist; *)
-(* print_endline "";
- print_endline "";
-*)
-(* print_triplelist formula_rel; *)
-(* print_endline "";
- print_endline "";
- tt ljproof;
-*)
-(* print_pairlist rename_list; *)
-(* print_endline "";
- print_endline "";
-*)
- make_node_list ljproof
- end
-
-(************** PROOF RECONSTRUCTION without redundancy deletion ******************************)
-
- let rec init_unsolved treelist =
- match treelist with
- [] -> []
- | f::r ->
- begin match f with
- Empty -> []
- | NodeAt(pos) ->
- (pos.name)::(init_unsolved r)
- | NodeA(pos,suctrees) ->
- let new_treelist = (Array.to_list suctrees) @ r in
- (pos.name)::(init_unsolved new_treelist)
- end
-
-(* only the unsolved positions will be represented --> skip additional root position *)
-
- let build_unsolved ftree =
- match ftree with
- Empty | NodeAt _ ->
- raise jprover_bug
- | NodeA(pos,suctrees) ->
- ((pos.name),init_unsolved (Array.to_list suctrees))
-
-(*
- let rec collect_variables tree_list =
- match tree_list with
- [] -> []
- | f::r ->
- begin match f with
- Empty -> []
- | NodeAt(pos) ->
- if pos.st = Gamma_0 then
- pos.name::collect_variables r
- else
- collect_variables r
- | NodeA(pos,suctrees) ->
- let new_tree_list = (Array.to_list suctrees) @ r in
- if pos.st = Gamma_0 then
- pos.name::collect_variables new_tree_list
- else
- collect_variables new_tree_list
- end
-
- let rec extend_sigmaQ sigmaQ vlist =
- match vlist with
- [] -> []
- | f::r ->
- let vf = mk_var_term f in
- if List.exists (fun x -> (fst x = vf)) sigmaQ then
- extend_sigmaQ sigmaQ r
- else
-(* first and second component are var terms in meta-prl *)
- [(vf,vf)] @ (extend_sigmaQ sigmaQ r)
-
- let build_sigmaQ sigmaQ ftree =
- let vlist = collect_variables [ftree] in
- sigmaQ @ (extend_sigmaQ sigmaQ vlist)
-*)
-
-(* subformula relation subrel is assumed to be represented in pairs
- (a,b) *)
-
- let rec delete e list = (* e must not necessarily occur in list *)
- match list with
- [] -> [] (* e must not necessarily occur in list *)
- | first::rest ->
- if e = first then
- rest
- else
- first::(delete e rest)
-
- let rec key_delete fname pos_list = (* in key_delete, f is a pos name (key) but sucs is a list of positions *)
- match pos_list with
- [] -> [] (* the position with name f must not necessarily occur in pos_list *)
- | f::r ->
- if fname = f.name then
- r
- else
- f::(key_delete fname r)
-
- let rec get_roots treelist =
- match treelist with
- [] -> []
- | f::r ->
- match f with
- Empty -> (get_roots r) (* Empty is posible below alpha-nodes after purity *)
- | NodeAt(pos) -> pos::(get_roots r)
- | NodeA(pos,trees) -> pos::(get_roots r)
-
- let rec comp_ps padd ftree =
- match ftree with
- Empty -> raise (Invalid_argument "Jprover bug: empty formula tree")
- | NodeAt(pos) ->
- []
- | NodeA(pos,strees) ->
- match padd with
- [] -> get_roots (Array.to_list strees)
- | f::r ->
- if r = [] then
- pos::(comp_ps r (Array.get strees (f-1)))
- else
- comp_ps r (Array.get strees (f-1))
-
-(* computes a list: first element predecessor, next elements successoes of p *)
-
- let tpredsucc p ftree =
- let padd = p.address in
- comp_ps padd ftree
-
-(* set an element in an array, without side effects *)
-
- let myset array int element =
- let length = Array.length array in
- let firstpart = Array.sub array 0 (int) in
- let secondpart = Array.sub array (int+1) (length-(int+1)) in
- (Array.append firstpart (Array.append [|element|] secondpart))
-
- let rec compute_open treelist slist =
- match treelist with
- [] -> []
- | first::rest ->
- let elements =
- match first with
- Empty -> []
- | NodeAt(pos) ->
- if (List.mem (pos.name) slist) then
- [pos]
- else
- []
- | NodeA(pos,suctrees) ->
- if (List.mem (pos.name) slist) then
- [pos]
- else
- compute_open (Array.to_list suctrees) slist
- in
- elements @ (compute_open rest slist)
-
- let rec select_connection pname connections slist =
- match connections with
- [] -> ("none","none")
- | f::r ->
- let partner =
- if (fst f) = pname then
- (snd f)
- else
- if (snd f) = pname then
- (fst f)
- else
- "none"
- in
- if ((partner = "none") or (List.mem partner slist)) then
- select_connection pname r slist
- else
- f
-
- let rec replace_element element element_set redord =
- match redord with
- [] -> raise jprover_bug (* element occurs in redord *)
- | (f,fset)::r ->
- if f = element then
- (f,element_set)::r
- else
- (f,fset)::(replace_element element element_set r)
-
- let rec collect_succ_sets sucs redord =
- match redord with
- [] -> StringSet.empty
- | (f,fset)::r ->
- let new_sucs = key_delete f sucs in
- if (List.length sucs) = (List.length new_sucs) then (* position with name f did not occur in sucs -- no deletion *)
- (collect_succ_sets sucs r)
- else
- StringSet.union (StringSet.add f fset) (collect_succ_sets new_sucs r)
-
- let replace_ordering psucc_name sucs redord =
- let new_psucc_set = collect_succ_sets sucs redord in
-(* print_string_set new_psucc_set; *)
- replace_element psucc_name new_psucc_set redord
-
- let rec update pname redord =
- match redord with
- [] -> []
- | (f,fset)::r ->
- if pname=f then
- r
- else
- (f,fset)::(update pname r)
-
-(* rule construction *)
-
- let rec selectQ_rec spos_var csigmaQ =
- match csigmaQ with
- [] -> mk_var_term spos_var (* dynamic completion of csigmaQ *)
- | (var,term)::r ->
- if spos_var=var then
- term
- else
- selectQ_rec spos_var r
-
- let selectQ spos_name csigmaQ =
- let spos_var = spos_name^"_jprover" in
- selectQ_rec spos_var csigmaQ
-
- let apply_sigmaQ term sigmaQ =
- let sigma_vars,sigma_terms = List.split sigmaQ in
- (subst term sigma_vars sigma_terms)
-
- let build_rule pos spos csigmaQ orr_flag calculus =
- let inst_label = apply_sigmaQ (pos.label) csigmaQ in
- match pos.op,pos.pol with
- Null,_ -> raise (Invalid_argument "Jprover: no rule")
- | At,O -> Ax,(inst_label),xnil_term (* to give back a term *)
- | At,I -> Ax,(inst_label),xnil_term
- | And,O -> Andr,(inst_label),xnil_term
- | And,I -> Andl,(inst_label),xnil_term
- | Or,O ->
- if calculus = "LJ" then
- let or_rule =
- if orr_flag = 1 then
- Orr1
- else
- Orr2
- in
- or_rule,(inst_label),xnil_term
- else
- Orr,(inst_label),xnil_term
- | Or,I -> Orl,(inst_label),xnil_term
- | Neg,O -> Negr,(inst_label),xnil_term
- | Neg,I -> Negl,(inst_label),xnil_term
- | Imp,O -> Impr,(inst_label),xnil_term
- | Imp,I -> Impl,(inst_label),xnil_term
- | All,I -> Alll,(inst_label),(selectQ spos.name csigmaQ) (* elements of csigmaQ is (string * term) *)
- | Ex,O -> Exr,(inst_label), (selectQ spos.name csigmaQ)
- | All,O -> Allr,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *)
- | Ex,I -> Exl,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *)
-
-
-(* %%%%%%%%%%%%%%%%%%%% Split begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *)
-
- let rec nonemptys treearray j n =
- if j = n then
- 0
- else
- let count =
- if (Array.get treearray j) <> Empty then
- 1
- else
- 0
- in
- count + (nonemptys treearray (j+1) n)
-
- let rec collect_pure ftreelist (flist,slist) =
-
- let rec collect_itpure ftree (flist,slist) =
- match ftree with
- Empty -> (* assumed that not all brother trees are Empty *)
- []
- | NodeAt(pos) -> (* that may NOT longer be an inner node *)
- if ((List.mem (pos.name) flist) or (List.mem (pos.name) slist)) then
- []
- else
- [pos]
- | NodeA(pos,treearray) ->
- collect_pure (Array.to_list treearray) (flist,slist)
- in
- match ftreelist with
- [] -> []
- | f::r ->
- (collect_itpure f (flist,slist)) @ (collect_pure r (flist,slist))
-
- let rec update_list testlist list =
- match testlist with
- [] -> list
- | f::r ->
- let newlist = delete f list in (* f may not occur in list; then newlist=list *)
- update_list r newlist
-
- let rec update_pairlist p pairlist =
- match pairlist with
- [] -> []
- | f::r ->
- if ((fst f) = p) or ((snd f) = p) then
- update_pairlist p r
- else
- f::(update_pairlist p r)
-
- let rec update_connections slist connections =
- match slist with
- [] -> connections
- | f::r ->
- let connew = update_pairlist f connections in
- update_connections r connew
-
- let rec update_redord delset redord = (* delset is the set of positions to be deleted *)
- match redord with
- [] -> []
- | (f,fset)::r ->
- if (StringSet.mem f delset) then
- update_redord delset r (* delete all key elements f from redord which are in delset *)
- else
- let new_fset = StringSet.diff fset delset in (* no successor of f from delset should remain in fset *)
- (f,new_fset)::(update_redord delset r)
-
- let rec get_position_names treelist =
- match treelist with
- [] -> []
- | deltree::rests ->
- match deltree with
- Empty -> get_position_names rests
- | NodeAt(pos) ->
- (pos.name)::get_position_names rests
- | NodeA(pos,strees) ->
- (pos.name)::(get_position_names ((Array.to_list strees) @ rests))
-
- let rec slist_to_set slist =
- match slist with
- [] ->
- StringSet.empty
- | f::r ->
- StringSet.add f (slist_to_set r)
-
- let rec print_purelist pr =
- match pr with
- [] ->
- begin
- print_string ".";
- print_endline " ";
- end
- | f::r ->
- print_string ((f.name)^", ");
- print_purelist r
-
- let update_relations deltree redord connections unsolved_list =
- let pure_names = get_position_names [deltree] in
- begin
-(* print_ftree deltree;
- Format.open_box 0;
- print_endline " ";
- print_stringlist pure_names;
- Format.force_newline ();
- Format.print_flush ();
-*)
- let rednew = update_redord (slist_to_set pure_names) redord
- and connew = update_connections pure_names connections
- and unsolnew = update_list pure_names unsolved_list in
- (rednew,connew,unsolnew)
- end
-
- let rec collect_qpos ftreelist uslist =
- match ftreelist with
- [] -> [],[]
- | ftree::rest ->
- match ftree with
- Empty ->
- collect_qpos rest uslist
- | NodeAt(pos) ->
- let (rest_delta,rest_gamma) = collect_qpos rest uslist in
- if (pos.st = Gamma_0) & (List.mem pos.name uslist) then
- rest_delta,(pos.name::rest_gamma)
- else
- if (pos.st = Delta_0) & (List.mem pos.name uslist) then
- (pos.name::rest_delta),rest_gamma
- else
- rest_delta,rest_gamma
- | NodeA(pos,suctrees) ->
- let (rest_delta,rest_gamma) = collect_qpos ((Array.to_list suctrees) @ rest) uslist in
- if (pos.st = Gamma_0) & (List.mem pos.name uslist) then
- rest_delta,(pos.name::rest_gamma)
- else
- if (pos.st = Delta_0) & (List.mem pos.name uslist) then
- (pos.name::rest_delta),rest_gamma
- else
- rest_delta,rest_gamma
-
- let rec do_split gamma_diff sigmaQ =
- match sigmaQ with
- [] -> []
- | (v,term)::r ->
- if (List.mem (String.sub v 0 (String.index v '_')) gamma_diff) then
- do_split gamma_diff r
- else
- (v,term)::(do_split gamma_diff r)
-
-(* make a term list out of a bterm list *)
-
- let rec collect_subterms = function
- [] -> []
- | bt::r ->
- let dbt = dest_bterm bt in
- (dbt.bterm)::(collect_subterms r)
-
- let rec collect_delta_terms = function
- [] -> []
- | t::r ->
- let dt = dest_term t in
- let top = dt.term_op
- and tterms = dt.term_terms in
- let dop = dest_op top in
- let don = dest_opname dop.op_name in
- let doa = dest_param dop.op_params in
- match don with
- [] ->
- let sub_terms = collect_subterms tterms in
- collect_delta_terms (sub_terms @ r)
- | op1::opr ->
- if op1 = "jprover" then
- match doa with
- [] -> raise (Invalid_argument "Jprover: delta position missing")
- | String delta::_ ->
- delta::(collect_delta_terms r)
- | _ -> raise (Invalid_argument "Jprover: delta position error")
- else
- let sub_terms = collect_subterms tterms in
- collect_delta_terms (sub_terms @ r)
-
-
-
- let rec check_delta_terms (v,term) ass_delta_diff dterms =
- match ass_delta_diff with
- [] -> term,[]
- | (var,dname)::r ->
- if List.mem dname dterms then
- let new_var =
- if var = "" then
- v
- else
- var
- in
- let replace_term = mk_string_term jprover_op dname in
- let next_term = var_subst term replace_term new_var in
- let (new_term,next_diffs) = check_delta_terms (v,next_term) r dterms in
- (new_term,((new_var,dname)::next_diffs))
- else
- let (new_term,next_diffs) = check_delta_terms (v,term) r dterms in
- (new_term,((var,dname)::next_diffs))
-
-
- let rec localize_sigma zw_sigma ass_delta_diff =
- match zw_sigma with
- [] -> []
- | (v,term)::r ->
- let dterms = collect_delta_terms [term] in
- let (new_term,new_ass_delta_diff) = check_delta_terms (v,term) ass_delta_diff dterms in
- (v,new_term)::(localize_sigma r new_ass_delta_diff)
-
- let subst_split ft1 ft2 ftree uslist1 uslist2 uslist sigmaQ =
- let delta,gamma = collect_qpos [ftree] uslist
- and delta1,gamma1 = collect_qpos [ft1] uslist1
- and delta2,gamma2 = collect_qpos [ft2] uslist2 in
- let delta_diff1 = list_diff delta delta1
- and delta_diff2 = list_diff delta delta2
- and gamma_diff1 = list_diff gamma gamma1
- and gamma_diff2 = list_diff gamma gamma2 in
- let zw_sigma1 = do_split gamma_diff1 sigmaQ
- and zw_sigma2 = do_split gamma_diff2 sigmaQ in
- let ass_delta_diff1 = List.map (fun x -> ("",x)) delta_diff1
- and ass_delta_diff2 = List.map (fun x -> ("",x)) delta_diff2 in
- let sigmaQ1 = localize_sigma zw_sigma1 ass_delta_diff1
- and sigmaQ2 = localize_sigma zw_sigma2 ass_delta_diff2 in
- (sigmaQ1,sigmaQ2)
-
- let rec reduce_tree addr actual_node ftree beta_flag =
- match addr with
- [] -> (ftree,Empty,actual_node,beta_flag)
- | a::radd ->
- match ftree with
- Empty ->
- print_endline "Empty purity tree";
- raise jprover_bug
- | NodeAt(_) ->
- print_endline "Atom purity tree";
- raise jprover_bug
- | NodeA(pos,strees) ->
-(* print_endline pos.name; *)
- (* the associated node occurs above f (or the empty address) and hence, is neither atom nor empty tree *)
-
- let nexttree = (Array.get strees (a-1)) in
- if (nonemptys strees 0 (Array.length strees)) < 2 then
- begin
-(* print_endline "strees 1 or non-empties < 2"; *)
- let (ft,dt,an,bf) = reduce_tree radd actual_node nexttree beta_flag in
- let nstrees = myset strees (a-1) ft in
-(* print_endline ("way back "^pos.name); *)
- (NodeA(pos,nstrees),dt,an,bf)
- end
- else (* nonemptys >= 2 *)
- begin
-(* print_endline "nonempties >= 2 "; *)
- let (new_act,new_bf) =
- if pos.pt = Beta then
- (actual_node,true)
- else
- ((pos.name),false)
- in
- let (ft,dt,an,bf) = reduce_tree radd new_act nexttree new_bf in
- if an = pos.name then
- let nstrees = myset strees (a-1) Empty in
-(* print_endline ("way back assocnode "^pos.name); *)
- (NodeA(pos,nstrees),nexttree,an,bf)
- else (* has been replaced / will be replaced below / above pos *)
- let nstrees = myset strees (a-1) ft in
-(* print_endline ("way back "^pos.name); *)
- (NodeA(pos,nstrees),dt,an,bf)
- end
-
- let rec purity ftree redord connections unsolved_list =
-
- let rec purity_reduction pr ftree redord connections unsolved_list =
- begin
-(* Format.open_box 0;
- print_endline " ";
- print_purelist pr;
- Format.force_newline ();
- Format.print_flush ();
-*)
- match pr with
- [] -> (ftree,redord,connections,unsolved_list)
- | f::r ->
-(* print_endline ("pure position "^(f.name)); *)
- let (ftnew,deltree,assocn,beta_flag) = reduce_tree f.address "" ftree false
- in
-(* print_endline ("assoc node "^assocn); *)
- if assocn = "" then
- (Empty,[],[],[]) (* should not occur in the final version *)
- else
- let (rednew,connew,unsolnew) = update_relations deltree redord connections unsolved_list in
- begin
-(* Format.open_box 0;
- print_endline " ";
- print_pairlist connew;
- Format.force_newline ();
- Format.print_flush ();
-*)
- if beta_flag = true then
- begin
-(* print_endline "beta_flag true"; *)
- purity ftnew rednew connew unsolnew
- (* new pure positions may occur; old ones may not longer exist *)
- end
- else
- purity_reduction r ftnew rednew connew unsolnew (* let's finish the old pure positions *)
- end
- end
-
- in
- let flist,slist = List.split connections in
- let pr = collect_pure [ftree] (flist,slist) in
- purity_reduction pr ftree redord connections unsolved_list
-
- let rec betasplit addr ftree redord connections unsolved_list =
- match ftree with
- Empty ->
- print_endline "bsplit Empty tree";
- raise jprover_bug
- | NodeAt(_) ->
- print_endline "bsplit Atom tree";
- raise jprover_bug (* the beta-node should actually occur! *)
- | NodeA(pos,strees) ->
- match addr with
- [] -> (* we are at the beta node under consideration *)
- let st1tree = (Array.get strees 0)
- and st2tree = (Array.get strees 1) in
- let (zw1red,zw1conn,zw1uslist) = update_relations st2tree redord connections unsolved_list
- and (zw2red,zw2conn,zw2uslist) = update_relations st1tree redord connections unsolved_list in
- ((NodeA(pos,[|st1tree;Empty|])),zw1red,zw1conn,zw1uslist),
- ((NodeA(pos,[|Empty;st2tree|])),zw2red,zw2conn,zw2uslist)
- | f::rest ->
- let nexttree = Array.get strees (f-1) in
- let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) =
- betasplit rest nexttree redord connections unsolved_list in
-(* let scopytrees = Array.copy strees in *)
- let zw1trees = myset strees (f-1) zw1ft
- and zw2trees = myset strees (f-1) zw2ft in
- (NodeA(pos,zw1trees),zw1red,zw1conn,zw1uslist),(NodeA(pos,zw2trees),zw2red,zw2conn,zw2uslist)
-
-
-
-
- let split addr pname ftree redord connections unsolved_list opt_bproof =
- let (opt_bp1,min_con1),(opt_bp2,min_con2) = split_permutation pname opt_bproof in
- begin
-(*
- print_endline "Beta proof 1: ";
- print_endline "";
- print_beta_proof opt_bp1;
- print_endline "";
- print_endline ("Beta proof 1 connections: ");
- Format.open_box 0;
- print_pairlist min_con1;
- print_endline ".";
- Format.print_flush();
- print_endline "";
- print_endline "";
- print_endline "Beta proof 2: ";
- print_endline "";
- print_beta_proof opt_bp2;
- print_endline "";
- print_endline ("Beta proof 2 connections: ");
- Format.open_box 0;
- print_pairlist min_con2;
- print_endline ".";
- Format.print_flush();
- print_endline "";
-*)
- let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) =
- betasplit addr ftree redord connections unsolved_list in
-(* zw1conn and zw2conn are not longer needed when using beta proofs *)
-(* print_endline "betasp_out"; *)
- let ft1,red1,conn1,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in
-(* print_endline "purity_one_out"; *)
- let ft2,red2,conn2,uslist2 = purity zw2ft zw2red min_con2 zw2uslist in
-(* print_endline "purity_two_out"; *)
-(* again, min_con1 = conn1 and min_con2 = conn2 should hold *)
- begin
-(* print_endline "";
- print_endline "";
- print_endline ("Purity 1 connections: ");
- Format.open_box 0;
- print_pairlist conn1;
- print_endline ".";
- print_endline "";
- Format.print_flush();
- print_endline "";
- print_endline "";
- print_endline ("Purity 2 connections: ");
- Format.open_box 0;
- print_pairlist conn2;
- print_endline ".";
- print_endline "";
- Format.print_flush();
- print_endline "";
- print_endline "";
-*)
- (ft1,red1,conn1,uslist1,opt_bp1),(ft2,red2,conn2,uslist2,opt_bp2)
- end
- end
-
-
-(* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Splitting end %%%%%%%%%%%%%%%% *)
-
-
-(* for wait labels we collect all solved atoms with pol=0 *)
-
- let rec collect_solved_O_At ftreelist slist =
- match ftreelist with
- [] ->
- []
- | f::r ->
- match f with
- Empty -> (* may become possible after purity *)
- collect_solved_O_At r slist
- | NodeAt(pos) ->
- if ((List.mem (pos.name) slist) or (pos.pol = I)) then (* recall slist is the unsolved list *)
- collect_solved_O_At r slist
- else
- (* here, we have pos solved and pos.pol = O) *)
- pos::(collect_solved_O_At r slist)
- | NodeA(pos,treearray) ->
- collect_solved_O_At ((Array.to_list treearray) @ r) slist
-
- let rec red_ord_block pname redord =
- match redord with
- [] -> false
- | (f,fset)::r ->
- if ((f = pname) or (not (StringSet.mem pname fset))) then
- red_ord_block pname r
- else
- true (* then, we have (StringSet.mem pname fset) *)
-
- let rec check_wait_succ_LJ faddress ftree =
- match ftree with
- Empty -> raise jprover_bug
- | NodeAt(pos) -> raise jprover_bug (* we have an gamma_0 position or an or-formula *)
- | NodeA(pos,strees) ->
- match faddress with
- [] ->
- if pos.op = Or then
- match (strees.(0),strees.(1)) with
- (Empty,Empty) -> raise (Invalid_argument "Jprover: redundancies occur")
- | (Empty,_) -> (false,2) (* determines the Orr2 rule *)
- | (_,Empty) -> (false,1) (* determines the Orr1 ruke *)
- | (_,_) -> (true,0) (* wait-label is set *)
- else
- (false,0)
- | f::r ->
- if r = [] then
- if (pos.pt = Gamma) & ((nonemptys strees 0 (Array.length strees)) > 1) then
- (true,0) (* we are at a gamma position (exr) with one than one successor -- wait label in LJ*)
- else
- check_wait_succ_LJ r (Array.get strees (f-1))
- else
- check_wait_succ_LJ r (Array.get strees (f-1))
-
- let blocked f po redord ftree connections slist logic calculus opt_bproof =
-(* print_endline ("Blocking check "^(f.name)); *)
- if (red_ord_block (f.name) redord) then
- begin
-(* print_endline "wait-1 check positive"; *)
- true,0
- end
- else
- if logic = "C" then
- false,0 (* ready, in C only redord counts *)
- else
- let pa_O = collect_solved_O_At [ftree] slist (* solved atoms in ftree *)
- and po_test = (delete f po) in
- if calculus = "LJmc" then (* we provide dynamic wait labels for both sequent calculi *)
-(* print_endline "wait-2 check"; *)
- if (f.st = Psi_0) & (f.pt <> PNull) &
- ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test)) then
- begin
-(* print_endline "wait-2 positive"; *)
- true,0 (* wait_2 label *)
- end
- else
- begin
-(* print_endline "wait-2 negative"; *)
- false,0
- end
- else (* calculus is supposed to be LJ *)
- if calculus = "LJ" then
- if ((f.st = Phi_0) & ((f.op=Neg) or (f.op=Imp)) &
- ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test))
- )
- (* this would cause an impl or negl rule with an non-empty succedent *)
- then
- if (f.op=Neg) then
- true,0
- else (* (f.op=Imp) *)
- (* In case of an impl rule on A => B, the wait_label must NOT be set
- iff all succedent formulae depend exclusively on B. For this, we
- perform a split operation and determine, if in the A-subgoal
- all succedent formulae are pure, i.e.~have been deleted from treds.
- Otherwise, in case of A-dependent succedent formulae, the
- wait_label must be set.
- *)
- let ((_,min_con1),_) = split_permutation f.name opt_bproof in
- let slist_fake = delete f.name slist in
- let ((zw1ft,zw1red,_,zw1uslist),_) =
- betasplit (f.address) ftree redord connections slist_fake in
- let ft1,_,_,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in
-(* print_endline "wait label purity_one_out"; *)
- let ft1_root = (List.hd (List.tl (tpredsucc f ft1))) in
-(* print_endline ("wait-root "^(ft1_root.name)); *)
- let po_fake = compute_open [ft1] uslist1 in
- let po_fake_test = delete ft1_root po_fake
- and pa_O_fake = collect_solved_O_At [ft1] uslist1 in
-(* print_purelist (po_fake_test @ pa_O_fake); *)
- if ((pa_O_fake <> []) or (List.exists (fun x -> x.pol = O) po_fake_test)) then
- true,0
- else
- false,0
- else
- if ((f.pol=O) & ((f.st=Gamma_0) or (f.op=Or))) then
- let (bool,orr_flag) = check_wait_succ_LJ f.address ftree in
- (bool,orr_flag)
- (* here is determined if orr1 or orr2 will be performed, provided bool=false) *)
- (* orr_flag can be 1 or 2 *)
- else
- false,0
- else
- raise (Invalid_argument "Jprover: calculus should be LJmc or LJ")
-
- let rec get_beta_preference list actual =
- match list with
- [] -> actual
- | (f,int)::r ->
- if f.op = Imp then
- (f,int)
- else
-(* if f.op = Or then
- get_beta_preference r (f,int)
- else
-*)
- get_beta_preference r actual
-
- exception Gamma_deadlock
-
- let rec select_pos search_po po redord ftree connections slist logic calculus candidates
- opt_bproof =
- match search_po with
- [] ->
- (match candidates with
- [] ->
- if calculus = "LJ" then
- raise Gamma_deadlock (* permutation may be necessary *)
- else
- raise (Invalid_argument "Jprover bug: overall deadlock") (* this case should not occur *)
- | c::rest ->
- get_beta_preference (c::rest) c
- )
- | f::r -> (* there exist an open position *)
- let (bool,orr_flag) = (blocked f po redord ftree connections slist logic calculus
- opt_bproof)
- in
- if (bool = true) then
- select_pos r po redord ftree connections slist logic calculus candidates opt_bproof
- else
- if f.pt = Beta then
- (* search for non-splitting rules first *)
-(* let beta_candidate =
- if candidates = []
- then
- [(f,orr_flag)]
- else
- !!!! but preserve first found candidate !!!!!!!
- candidates
- in
- !!!!!!! this strategy is not sure the best -- back to old !!!!!!!!!
-*)
- select_pos r po redord ftree connections slist logic calculus
- ((f,orr_flag)::candidates) opt_bproof
- else
- (f,orr_flag)
-
-(* let rec get_position_in_tree pname treelist =
- match treelist with
- [] -> raise jprover_bug
- | f::r ->
- begin match f with
- Empty -> get_position_in_tree pname r
- | NodeAt(pos) ->
- if pos.name = pname then
- pos
- else
- get_position_in_tree pname r
- | NodeA(pos,suctrees) ->
- get_position_in_tree pname ((Array.to_list suctrees) @ r)
- end
-*)
-
-(* total corresponds to tot in the thesis,
- tot simulates the while-loop, solve is the rest *)
-
- let rec total ftree redord connections csigmaQ slist logic calculus opt_bproof =
- let rec tot ftree redord connections po slist =
- let rec solve ftree redord connections p po slist (pred,succs) orr_flag =
- let newslist = delete (p.name) slist in
- let rback =
- if p.st = Gamma_0 then
- begin
-(* print_endline "that's the gamma rule"; *)
- [((p.name,pred.name),(build_rule pred p csigmaQ orr_flag calculus))]
- end
- else
- []
- in
-(* print_endline "gamma check finish"; *)
- let pnew =
- if p.pt <> Beta then
- succs @ (delete p po)
- else
- po
- in
- match p.pt with
- Gamma ->
- rback @ (tot ftree redord connections pnew newslist)
- | Psi ->
- if p.op = At then
- let succ = List.hd succs in
- rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *)
- else
- rback @ (tot ftree redord connections pnew newslist)
- | Phi ->
- if p.op = At then
- let succ = List.hd succs in
- rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *)
- else
- rback @ (tot ftree redord connections pnew newslist)
- | PNull ->
- let new_redord = update p.name redord in
- let (c1,c2) = select_connection (p.name) connections newslist in
- if (c1= "none" & c2 ="none") then
- rback @ (tot ftree new_redord connections pnew newslist)
- else
- let (ass_pos,inst_pos) =
-(* need the pol=O position ass_pos of the connection for later permutation *)
-(* need the pol=I position inst_pos for NuPRL instantiation *)
- if p.name = c1 then
- if p.pol = O then
- (c1,c2)
- else
- (c2,c1)
- else (* p.name = c2 *)
- if p.pol = O then
- (c2,c1)
- else
- (c1,c2)
- in
- rback @ [(("",ass_pos),(build_rule p p csigmaQ orr_flag calculus))]
- (* one possibility of recursion end *)
- | Alpha ->
- rback @ ((("",p.name),(build_rule p p csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist))
- | Delta ->
- let sp = List.hd succs in
- rback @ ((("",p.name),(build_rule p sp csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist))
- | Beta ->
-(* print_endline "split_in"; *)
- let (ft1,red1,conn1,uslist1,opt_bproof1),(ft2,red2,conn2,uslist2,opt_bproof2) =
- split (p.address) (p.name) ftree redord connections newslist opt_bproof in
- let (sigmaQ1,sigmaQ2) = subst_split ft1 ft2 ftree uslist1 uslist2 newslist csigmaQ in
-(* print_endline "split_out"; *)
- let p1 = total ft1 red1 conn1 sigmaQ1 uslist1 logic calculus opt_bproof1 in
-(* print_endline "compute p1 out"; *)
- let p2 = total ft2 red2 conn2 sigmaQ2 uslist2 logic calculus opt_bproof2 in
-(* print_endline "compute p2 out"; *)
- rback @ [(("",p.name),(build_rule p p csigmaQ orr_flag calculus))] @ p1 @ p2 (* second possibility of recursion end *)
- in
- begin try
- let (p,orr_flag) = select_pos po po redord ftree connections slist logic
- calculus [] opt_bproof
- (* last argument for guiding selection strategy *)
- in
-(* print_endline ((p.name)^" "^(string_of_int orr_flag)); *)
- let predsuccs = tpredsucc p ftree in
- let pred = List.hd predsuccs
- and succs = List.tl predsuccs in
- let redpo = update (p.name) redord in (* deletes the entry (p,psuccset) from the redord *)
- let rednew =
- if (p.pt = Delta) then (* keep the tree ordering for the successor position only *)
- let psucc = List.hd succs in
- let ppsuccs = tpredsucc psucc ftree in
- let sucs = List.tl ppsuccs in
- replace_ordering (psucc.name) sucs redpo (* union the succsets of psucc *)
- else
- redpo
- in
-(* print_endline "update ok"; *)
- solve ftree rednew connections p po slist (pred,succs) orr_flag
- with Gamma_deadlock ->
- let ljmc_subproof = total ftree redord connections csigmaQ slist "J" "LJmc" opt_bproof
- in
- eigen_counter := 1;
- permute_ljmc ftree po slist ljmc_subproof
- (* the permuaiton result will be appended to the lj proof constructed so far *)
- end
- in
- let po = compute_open [ftree] slist in
- tot ftree redord connections po slist
-
- let reconstruct ftree redord sigmaQ ext_proof logic calculus =
- let min_connections = remove_dups_connections ext_proof in
- let (opt_bproof,beta_exp,closures) = construct_opt_beta_proof ftree ext_proof in
-(* let connections = remove_dups_connections ext_proof in
- let bproof,beta_exp,closures = construct_beta_proof ftree connections in
- let (opt_bproof,min_connections) = bproof_purity bproof in
-*)
- if !debug_jprover then
- begin
- print_endline "";
- print_endline ("Beta proof with number of closures = "^(string_of_int closures)^" and number of beta expansions = "^(string_of_int beta_exp));
-(* print_endline "";
- print_endline "";
- print_beta_proof bproof;
- print_endline "";
- print_endline "";
- print_endline "Optimal beta proof: ";
- print_endline "";
- print_endline "";
- print_beta_proof opt_bproof;
- print_endline "";
- print_endline "";
- print_endline ("Beta proof connections: ");
- Format.open_box 0;
- print_pairlist min_connections;
- print_endline ".";
- Format.print_flush(); *)
- print_endline "";
- end;
- let (newroot_name,unsolved_list) = build_unsolved ftree in
- let redord2 = (update newroot_name redord) in (* otherwise we would have a deadlock *)
- let (init_tree,init_redord,init_connections,init_unsolved_list) =
- purity ftree redord2 min_connections unsolved_list in
- begin
-(* print_endline "";
- print_endline "";
- print_endline ("Purity connections: ");
- Format.open_box 0;
- print_pairlist init_connections;
- print_endline ".";
- print_endline "";
- Format.print_flush();
- print_endline "";
- print_endline "";
-*)
-(* it should hold: min_connections = init_connections *)
- total init_tree init_redord init_connections sigmaQ
- init_unsolved_list logic calculus opt_bproof
- end
-
-(* ***************** REDUCTION ORDERING -- both types **************************** *)
-
- exception Reflexive
-
- let rec transitive_irreflexive_closure addset const ordering =
- match ordering with
- [] ->
- []
- | (pos,fset)::r ->
- if (pos = const) or (StringSet.mem const fset) then
-(* check reflexsivity during transitive closure wrt. addset ONLY!!! *)
- if StringSet.mem pos addset then
- raise Reflexive
- else
- (pos,(StringSet.union fset addset))::(transitive_irreflexive_closure addset const r)
- else
- (pos,fset)::(transitive_irreflexive_closure addset const r)
-
- let rec search_set var ordering =
-(* print_endline var; *)
- match ordering with
- [] ->
- raise (Invalid_argument "Jprover: element in ordering missing")
- | (pos,fset)::r ->
- if pos = var then
- StringSet.add pos fset
- else
- search_set var r
-
- let add_sets var const ordering =
- let addset = search_set var ordering in
- transitive_irreflexive_closure addset const ordering
-
-(* ************* J ordering ********************************************** *)
-
- let rec add_arrowsJ (v,vlist) ordering =
- match vlist with
- [] -> ordering
- | f::r ->
- if ((String.get f 0)='c') then
- let new_ordering = add_sets v f ordering in
- add_arrowsJ (v,r) new_ordering
- else
- add_arrowsJ (v,r) ordering
-
- let rec add_substJ replace_vars replace_string ordering atom_rel =
- match replace_vars with
- [] -> ordering
- | v::r ->
- if (String.get v 1 = 'n') (* don't integrate new variables *)
- or (List.exists (fun (x,_,_) -> (x.aname = v)) atom_rel) then (* no reduction ordering at atoms *)
- (add_substJ r replace_string ordering atom_rel)
- else
- let next_ordering = add_arrowsJ (v,replace_string) ordering in
- (add_substJ r replace_string next_ordering atom_rel)
-
- let build_orderingJ replace_vars replace_string ordering atom_rel =
- try
- add_substJ replace_vars replace_string ordering atom_rel
- with Reflexive -> (* only possible in the FO case *)
- raise Not_unifiable (*search for alternative string unifiers *)
-
- let rec build_orderingJ_list substJ ordering atom_rel =
- match substJ with
- [] -> ordering
- | (v,vlist)::r ->
- let next_ordering = build_orderingJ [v] vlist ordering atom_rel in
- build_orderingJ_list r next_ordering atom_rel
-
-(* ************* J ordering END ********************************************** *)
-
-(* ************* quantifier ordering ********************************************** *)
-
- let rec add_arrowsQ v clist ordering =
- match clist with
- [] -> ordering
- | f::r ->
- let new_ordering = add_sets v f ordering in
- add_arrowsQ v r new_ordering
-
- let rec print_sigmaQ sigmaQ =
- match sigmaQ with
- [] ->
- print_endline "."
- | (v,term)::r ->
- begin
- Format.open_box 0;
- print_endline " ";
- print_string (v^" = ");
- print_term stdout term;
- Format.force_newline ();
- Format.print_flush ();
- print_sigmaQ r
- end
-
- let rec print_term_list tlist =
- match tlist with
- [] -> print_string "."
- | t::r ->
- begin
- print_term stdout t;
- print_string " ";
- print_term_list r
- end
-
- let rec add_sigmaQ new_elements ordering =
- match new_elements with
- [] -> ([],ordering)
- | (v,termlist)::r ->
- let dterms = collect_delta_terms termlist in
- begin
- let new_ordering = add_arrowsQ v dterms ordering in
- let (rest_pairs,rest_ordering) = add_sigmaQ r new_ordering in
- ((v,dterms)::rest_pairs),rest_ordering
- end
-
- let build_orderingQ new_elements ordering =
-(* new_elements is of type (string * term list) list, since one variable can receive more than *)
-(* a single term due to substitution multiplication *)
- try
-(* print_endline "build orderingQ in"; *) (* apple *)
- add_sigmaQ new_elements ordering;
- with Reflexive ->
- raise Failed (* new connection, please *)
-
-
-(* ************* quantifier ordering END ********************************************** *)
-
-(* ****** Quantifier unification ************** *)
-
-(* For multiplication we assume always idempotent substitutions sigma, tau! *)
-
- let rec collect_assoc inst_vars tauQ =
- match inst_vars with
- [] -> []
- | f::r ->
- let f_term = List.assoc f tauQ in
- f_term::(collect_assoc r tauQ)
-
- let rec rec_apply sigmaQ tauQ tau_vars tau_terms =
- match sigmaQ with
- [] -> [],[]
- | (v,term)::r ->
- let app_term = subst term tau_vars tau_terms in
- let old_free = free_vars_list term
- and new_free = free_vars_list app_term in
- let inst_vars = list_diff old_free new_free in
- let inst_terms = collect_assoc inst_vars tauQ in
- let (rest_sigma,rest_sigma_ordering) = rec_apply r tauQ tau_vars tau_terms in
- if inst_terms = [] then
- ((v,app_term)::rest_sigma),rest_sigma_ordering
- else
- let ordering_v = String.sub v 0 (String.index v '_') in
- ((v,app_term)::rest_sigma),((ordering_v,inst_terms)::rest_sigma_ordering)
-
-(* let multiply sigmaQ tauQ =
- let tau_vars,tau_terms = List.split tauQ
- and sigma_vars,sigma_terms = List.split sigmaQ in
- let apply_terms = rec_apply sigma_terms tau_vars tau_terms in
- (List.combine sigma_vars apply_terms) @ tauQ
-*)
-
- let multiply sigmaQ tauQ =
- let (tau_vars,tau_terms) = List.split tauQ in
- let (new_sigmaQ,sigma_ordering) = rec_apply sigmaQ tauQ tau_vars tau_terms in
- let tau_ordering_terms = (List.map (fun x -> [x]) tau_terms) (* for extending ordering_elements *) in
- let tau_ordering_vars = (List.map (fun x -> String.sub x 0 (String.index x '_')) tau_vars) in
- let tau_ordering = (List.combine tau_ordering_vars tau_ordering_terms) in
- ((new_sigmaQ @ tauQ),
- (sigma_ordering @ tau_ordering)
- )
-
- let apply_2_sigmaQ term1 term2 sigmaQ =
- let sigma_vars,sigma_terms = List.split sigmaQ in
- (subst term1 sigma_vars sigma_terms),(subst term2 sigma_vars sigma_terms)
-
- let jqunify term1 term2 sigmaQ =
- let app_term1,app_term2 = apply_2_sigmaQ term1 term2 sigmaQ in
- try
- let tauQ = unify_mm app_term1 app_term2 StringSet.empty in
- let (mult,oel) = multiply sigmaQ tauQ in
- (mult,oel)
- with
- RefineError _ -> (* any unification failure *)
-(* print_endline "fo-unification fail"; *)
- raise Failed (* new connection, please *)
-
-(* ************ T-STRING UNIFICATION ******************************** *)
-
- let rec combine subst (ov,oslist) =
- match subst with
- [] -> [],[]
- | f::r ->
- let (v,slist) = f in
- let rest_vlist,rest_combine = (combine r (ov,oslist)) in
- if (List.mem ov slist) then (* subst assumed to be idemponent *)
- let com_element = com_subst slist (ov,oslist) in
- (v::rest_vlist),((v,com_element)::rest_combine)
- else
- (rest_vlist,(f::rest_combine))
-
- let compose sigma one_subst =
- let (n,subst)=sigma
- and (ov,oslist) = one_subst in
- let (trans_vars,com) = combine subst (ov,oslist)
- in
-(* begin
- print_endline "!!!!!!!!!test print!!!!!!!!!!";
- print_subst [one_subst];
- print_subst subst;
- print_endline "!!!!!!!!! END test print!!!!!!!!!!";
-*)
- if List.mem one_subst subst then
- (trans_vars,(n,com))
- else
-(* ov may multiply as variable in subst with DIFFERENT values *)
-(* in order to avoid explicit atom instances!!! *)
- (trans_vars,(n,(com @ [one_subst])))
-(* end *)
-
- let rec apply_element fs ft (v,slist) =
- match (fs,ft) with
- ([],[]) ->
- ([],[])
- | ([],(ft_first::ft_rest)) ->
- let new_ft_first =
- if ft_first = v then
- slist
- else
- [ft_first]
- in
- let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in
- (emptylist,(new_ft_first @ new_ft_rest))
- | ((fs_first::fs_rest),[]) ->
- let new_fs_first =
- if fs_first = v then
- slist
- else
- [fs_first]
- in
- let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in
- ((new_fs_first @ new_fs_rest),emptylist)
- | ((fs_first::fs_rest),(ft_first::ft_rest)) ->
- let new_fs_first =
- if fs_first = v then
- slist
- else
- [fs_first]
- and new_ft_first =
- if ft_first = v then
- slist
- else
- [ft_first]
- in
- let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in
- ((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest))
-
- let rec shorten us ut =
- match (us,ut) with
- ([],_) -> (us,ut)
- | (_,[]) -> (us,ut)
- | ((fs::rs),(ft::rt)) ->
- if fs = ft then
- shorten rs rt
- else
- (us,ut)
-
- let rec apply_subst_list eq_rest (v,slist) =
-
- match eq_rest with
- [] ->
- (true,[])
- | (atomnames,(fs,ft))::r ->
- let (n_fs,n_ft) = apply_element fs ft (v,slist) in
- let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *)
- match (new_fs,new_ft) with
- [],[] ->
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,([],[]))::new_eq_rest))
- | [],(fft::rft) ->
- if (is_const fft) then
- (false,[])
- else
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,([],new_ft))::new_eq_rest))
- | (ffs::rfs),[] ->
- if (is_const ffs) then
- (false,[])
- else
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,(new_fs,[]))::new_eq_rest))
- | (ffs::rfs),(fft::rft) ->
- if (is_const ffs) & (is_const fft) then
- (false,[])
- (* different first constants cause local fail *)
- else
- (* at least one of firsts is a variable *)
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,(new_fs,new_ft))::new_eq_rest))
-
- let apply_subst eq_rest (v,slist) atomnames =
- if (List.mem v atomnames) then (* don't apply subst to atom variables !! *)
- (true,eq_rest)
- else
- apply_subst_list eq_rest (v,slist)
-
- let all_variable_check eqlist = false (* needs some discussion with Jens! -- NOT done *)
-
-(*
- let rec all_variable_check eqlist =
- match eqlist with
- [] -> true
- | ((_,(fs,ft))::rest_eq) ->
- if (fs <> []) & (ft <> []) then
- let fs_first = List.hd fs
- and ft_first = List.hd ft
- in
- if (is_const fs_first) or (is_const ft_first) then
- false
- else
- all_variable_check rest_eq
- else
- false
-*)
-
- let rec tunify_list eqlist init_sigma orderingQ atom_rel =
-
- let rec tunify atomnames fs ft rt rest_eq sigma ordering =
-
- let apply_r1 fs ft rt rest_eq sigma =
-(* print_endline "r1"; *)
- tunify_list rest_eq sigma ordering atom_rel
-
- in
- let apply_r2 fs ft rt rest_eq sigma =
-(* print_endline "r2"; *)
- tunify atomnames rt fs ft rest_eq sigma ordering
-
- in
- let apply_r3 fs ft rt rest_eq sigma =
-(* print_endline "r3"; *)
- let rfs = (List.tl fs)
- and rft = (List.tl rt) in
- tunify atomnames rfs ft rft rest_eq sigma ordering
-
- in
- let apply_r4 fs ft rt rest_eq sigma =
-(* print_endline "r4"; *)
- tunify atomnames rt ft fs rest_eq sigma ordering
-
- in
- let apply_r5 fs ft rt rest_eq sigma =
-(* print_endline "r5"; *)
- let v = (List.hd fs) in
- let (compose_vars,new_sigma) = compose sigma (v,ft) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- let new_ordering = build_orderingJ (v::compose_vars) ft ordering atom_rel in
- tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma new_ordering
-
- in
- let apply_r6 fs ft rt rest_eq sigma =
-(* print_endline "r6"; *)
- let v = (List.hd fs) in
- let (_,new_sigma) = (compose sigma (v,[])) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- (* no relation update since [] has been replaced for v *)
- tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma ordering
-
- in
- let apply_r7 fs ft rt rest_eq sigma =
-(* print_endline "r7"; *)
- let v = (List.hd fs)
- and c1 = (List.hd rt)
- and c2t =(List.tl rt) in
- let (compose_vars,new_sigma) = (compose sigma (v,(ft @ [c1]))) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in
- if bool=false then
- raise Not_unifiable
- else
- let new_ordering = build_orderingJ (v::compose_vars) (ft @ [c1]) ordering atom_rel in
- tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma new_ordering
-
-
- in
- let apply_r8 fs ft rt rest_eq sigma =
-(* print_endline "r8"; *)
- tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma ordering
-
- in
- let apply_r9 fs ft rt rest_eq sigma =
-(* print_endline "r9"; *)
- let v = (List.hd fs)
- and (max,subst) = sigma in
- let v_new = ("vnew"^(string_of_int max)) in
- let (compose_vars,new_sigma) = (compose ((max+1),subst) (v,(ft @ [v_new]))) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- let new_ordering =
- build_orderingJ (v::compose_vars) (ft @ [v_new]) ordering atom_rel in
- tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma new_ordering
-
- in
- let apply_r10 fs ft rt rest_eq sigma =
-(* print_endline "r10"; *)
- let x = List.hd rt in
- tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma ordering
-
- in
- if r_1 fs ft rt then
- apply_r1 fs ft rt rest_eq sigma
- else if r_2 fs ft rt then
- apply_r2 fs ft rt rest_eq sigma
- else if r_3 fs ft rt then
- apply_r3 fs ft rt rest_eq sigma
- else if r_4 fs ft rt then
- apply_r4 fs ft rt rest_eq sigma
- else if r_5 fs ft rt then
- apply_r5 fs ft rt rest_eq sigma
- else if r_6 fs ft rt then
- (try
- apply_r6 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *)
- (try
- apply_r7 fs ft rt rest_eq sigma
- with Not_unifiable ->
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *)
- )
- else
-(* r10 could be represented only once if we would try it before r7.*)
-(* but looking at the transformation rules, r10 should be tried at last in any case *)
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *)
- )
- else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *)
- (try
- apply_r7 fs ft rt rest_eq sigma
- with Not_unifiable ->
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *)
- )
- else if r_8 fs ft rt then
- (try
- apply_r8 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *)
- apply_r10 fs ft rt rest_eq sigma
- else
- raise Not_unifiable (* simply back propagation *)
- )
- else if r_9 fs ft rt then
- (try
- apply_r9 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *)
- apply_r10 fs ft rt rest_eq sigma
- else
- raise Not_unifiable (* simply back propagation *)
- )
-
-
- else
- if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *)
- (* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *)
- apply_r10 fs ft rt rest_eq sigma
- else (* NO rule applicable *)
- raise Not_unifiable
- in
- match eqlist with
- [] ->
- init_sigma,orderingQ
- | f::rest_eq ->
- begin
-(* Format.open_box 0;
- print_equations [f];
- Format.print_flush ();
-*)
- let (atomnames,(fs,ft)) = f in
- tunify atomnames fs [] ft rest_eq init_sigma orderingQ
- end
-
-let rec test_apply_eq atomnames eqs eqt subst =
- match subst with
- [] -> (eqs,eqt)
- | (f,flist)::r ->
- let (first_appl_eqs,first_appl_eqt) =
- if List.mem f atomnames then
- (eqs,eqt)
- else
- (apply_element eqs eqt (f,flist))
- in
- test_apply_eq atomnames first_appl_eqs first_appl_eqt r
-
-let rec test_apply_eqsubst eqlist subst =
- match eqlist with
- [] -> []
- | f::r ->
- let (atomnames,(eqs,eqt)) = f in
- let applied_element = test_apply_eq atomnames eqs eqt subst in
- (atomnames,applied_element)::(test_apply_eqsubst r subst)
-
-let ttest us ut ns nt eqlist orderingQ atom_rel =
- let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *)
- (* to eliminate common beginning *)
- let new_element = ([ns;nt],(short_us,short_ut)) in
- let full_eqlist =
- if List.mem new_element eqlist then
- eqlist
- else
- new_element::eqlist
- in
- let (sigma,_) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in
- let (n,subst) = sigma in
- let test_apply = test_apply_eqsubst full_eqlist subst in
- begin
- print_endline "";
- print_endline "Final equations:";
- print_equations full_eqlist;
- print_endline "";
- print_endline "Final substitution:";
- print_tunify sigma;
- print_endline "";
- print_endline "Applied equations:";
- print_equations test_apply
- end
-
-let do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel qmax =
- let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *)
- let new_element = ([ns;nt],(short_us,short_ut)) in
- let full_eqlist =
- if List.mem new_element equations then
- equations @ fo_eqlist
- else
- (new_element::equations) @ fo_eqlist
- in
- try
-(* print_equations full_eqlist; *)
-(* max-1 new variables have been used for the domain equations *)
- let (new_sigma,new_ordering) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in
-(* sigmaQ will not be returned in eqlist *)
- (new_sigma,(qmax,full_eqlist),new_ordering)
- with Not_unifiable ->
- raise Failed (* new connection please *)
-
-let rec one_equation gprefix dlist delta_0_prefixes n =
- match dlist with
- [] -> ([],n)
- | f::r ->
- let fprefix = List.assoc f delta_0_prefixes in
- let (sf1,sg) = shorten fprefix gprefix
- and v_new = ("vnewq"^(string_of_int n)) in
- let fnew = sf1 @ [v_new] in
- let (rest_equations,new_n) = one_equation gprefix r delta_0_prefixes (n+1) in
- (([],(fnew,sg))::rest_equations),new_n
-
-let rec make_domain_equations fo_pairs (gamma_0_prefixes,delta_0_prefixes) n =
- match fo_pairs with
- [] -> ([],n)
- | (g,dlist)::r ->
- let gprefix = List.assoc g gamma_0_prefixes in
- let (gequations,max) = one_equation gprefix dlist delta_0_prefixes n in
- let (rest_equations,new_max) =
- make_domain_equations r (gamma_0_prefixes,delta_0_prefixes) max in
- (gequations @ rest_equations),new_max
-
-(* type of one unifier: int * ((string * string list) list) *)
-(* global failure: (0,[]) *)
-
-let stringunify ext_atom try_one eqlist fo_pairs logic orderingQ atom_rel qprefixes =
- if logic = "C" then
- ((0,[]),(0,[]),orderingQ)
- else
- let (qmax,equations) = eqlist
- and us = ext_atom.aprefix
- and ut = try_one.aprefix
- and ns = ext_atom.aname
- and nt = try_one.aname in
- if qprefixes = ([],[]) then (* prop case *)
- begin
-(* print_endline "This is the prop case"; *)
- let (new_sigma,new_eqlist) = Jtunify.do_stringunify us ut ns nt equations
- (* prop unification only *)
- in
- (new_sigma,new_eqlist,[]) (* assume the empty reduction ordering during proof search *)
- end
- else
- begin
-(* print_endline "This is the FO case"; *)
-(* fo_eqlist encodes the domain condition on J quantifier substitutions *)
-(* Again, always computed for the whole substitution sigmaQ *)
- let (fo_eqlist,new_max) = make_domain_equations fo_pairs qprefixes qmax in
- begin
-(* Format.open_box 0;
- print_string "domain equations in";
- print_equations fo_eqlist;
- print_string "domain equations out";
- Format.print_flush ();
-*)
- do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel new_max
- end
- end
-
-(**************************************** add multiplicity *********************************)
-
-let rec subst_replace subst_list t =
- match subst_list with
- [] -> t
- | (old_t,new_t)::r ->
- let inter_term = var_subst t old_t "dummy" in
- let new_term = subst1 inter_term "dummy" new_t in
- subst_replace r new_term
-
-let rename_pos x m =
- let pref = String.get x 0 in
- (Char.escaped pref)^(string_of_int m)
-
-let update_position position m replace_n subst_list mult =
- let ({name=x; address=y; op=z; pol=p; pt=a; st=b; label=t}) = position in
- let nx = rename_pos x m in
- let nsubst_list =
- if b=Gamma_0 then
- let vx = mk_var_term (x^"_jprover")
- and vnx = mk_var_term (nx^"_jprover") in
- (vx,vnx)::subst_list
- else
- if b=Delta_0 then
- let sx = mk_string_term jprover_op x
- and snx = mk_string_term jprover_op nx in
- (sx,snx)::subst_list
- else
- subst_list
- in
- let nt = subst_replace nsubst_list t in
- let add_array = Array.of_list y in
- let _ = (add_array.(replace_n) <- mult) in
- let new_add = Array.to_list add_array in
- ({name=nx; address=new_add; op=z; pol=p; pt=a; st=b; label=nt},m,nsubst_list)
-
-let rec append_orderings list_of_lists =
- match list_of_lists with
- [] ->
- []
- | f::r ->
- f @ (append_orderings r)
-
-let rec union_orderings first_orderings =
- match first_orderings with
- [] ->
- StringSet.empty
- | (pos,fset)::r ->
- StringSet.union (StringSet.add pos fset) (union_orderings r)
-
-let rec select_orderings add_orderings =
- match add_orderings with
- [] -> []
- | f::r ->
- (List.hd f)::select_orderings r
-
-let combine_ordering_list add_orderings pos_name =
- let first_orderings = select_orderings add_orderings in
- let pos_succs = union_orderings first_orderings in
- let rest_orderings = append_orderings add_orderings in
- (pos_name,pos_succs)::rest_orderings
-
-let rec copy_and_rename_tree last_tree replace_n pos_n mult subst_list =
-
- let rec rename_subtrees tree_list nposition s_pos_n nsubst_list =
- match tree_list with
- [] -> ([||],[],s_pos_n)
- | f::r ->
- let (f_subtree,f_ordering,f_pos_n) =
- copy_and_rename_tree f replace_n s_pos_n mult nsubst_list in
- let (r_subtrees,r_ordering_list,r_pos_n) = rename_subtrees r nposition f_pos_n nsubst_list in
- ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n)
-
- in
- match last_tree with
- Empty -> raise (Invalid_argument "Jprover: copy tree")
- | NodeAt(position) -> (* can never be a Gamma_0 position -> no replacements *)
- let (nposition,npos_n,_) = update_position position (pos_n+1) replace_n subst_list mult in
- ((NodeAt(nposition)),[(nposition.name,StringSet.empty)],npos_n)
- | NodeA(position, suctrees) ->
- let (nposition,npos_n,nsubst_list) = update_position position (pos_n+1) replace_n subst_list mult in
- let (new_suctrees, new_ordering_list, new_pos_n) =
- rename_subtrees (Array.to_list suctrees) nposition npos_n nsubst_list in
- let new_ordering = combine_ordering_list new_ordering_list (nposition.name) in
- ((NodeA(nposition,new_suctrees)),new_ordering,new_pos_n)
-
-(* we construct for each pos a list orderings representing and correspondning to the array of succtrees *)
-
-let rec add_multiplicity ftree pos_n mult logic =
- let rec parse_subtrees tree_list s_pos_n =
- match tree_list with
- [] -> ([||],[],s_pos_n)
- | f::r ->
- let (f_subtree,f_ordering,f_pos_n) = add_multiplicity f s_pos_n mult logic in
- let (r_subtrees,r_ordering_list,r_pos_n) = parse_subtrees r f_pos_n in
- ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n)
-
- in
- match ftree with
- Empty -> raise (Invalid_argument "Jprover: add mult")
- | NodeAt(pos) -> (ftree,[(pos.name,StringSet.empty)],pos_n)
- | NodeA(pos,suctrees) ->
- let (new_suctrees, new_ordering_list, new_pos_n) = parse_subtrees (Array.to_list suctrees) pos_n in
- if (((pos.pt = Phi) & (((pos.op <> At) & (logic="J")) or ((pos.op = All) & (logic = "C"))))
- (* no explicit atom-instances *)
- or ((pos.pt = Gamma) & (pos.st <> Phi_0))) then (* universal quantifiers are copied *)
- (* at their Phi positions *)
- let replace_n = (List.length pos.address) (* points to the following argument in the array_of_address *)
- and last = (Array.length new_suctrees) - 1 in (* array first element has index 0 *)
- let last_tree = new_suctrees.(last) in
- let (add_tree,add_ordering,final_pos_n) =
- copy_and_rename_tree last_tree replace_n new_pos_n mult [] in
- let final_suctrees = Array.append new_suctrees [|add_tree|]
- and add_orderings = List.append new_ordering_list [add_ordering] in
- let final_ordering = combine_ordering_list add_orderings (pos.name) in
- ((NodeA(pos,final_suctrees)),final_ordering,final_pos_n)
- else
- let final_ordering = combine_ordering_list new_ordering_list (pos.name) in
- ((NodeA(pos,new_suctrees)),final_ordering,new_pos_n)
-
-
-(************** Path checker ****************************************************)
-
-let rec get_sets atom atom_sets =
- match atom_sets with
- [] -> raise (Invalid_argument "Jprover bug: atom not found")
- | f::r ->
- let (a,b,c) = f in
- if atom = a then f
- else
- get_sets atom r
-
-let rec get_connections a alpha tabulist =
- match alpha with
- [] -> []
- | f::r ->
- if (a.apredicate = f.apredicate) & (a.apol <> f.apol) & (not (List.mem f tabulist)) then
- (a,f)::(get_connections a r tabulist)
- else
- (get_connections a r tabulist)
-
-let rec connections atom_rel tabulist =
- match atom_rel with
- [] -> []
- | f::r ->
- let (a,alpha,beta) = f in
- (get_connections a alpha tabulist) @ (connections r (a::tabulist))
-
-let check_alpha_relation atom set atom_sets =
- let (a,alpha,beta) = get_sets atom atom_sets in
- AtomSet.subset set alpha
-
-let rec extset atom_sets path closed =
- match atom_sets with
- [] -> AtomSet.empty
- | f::r ->
- let (at,alpha,beta) = f in
- if (AtomSet.subset path alpha) & (AtomSet.subset closed beta) then
- AtomSet.add at (extset r path closed)
- else
- (extset r path closed)
-
-let rec check_ext_list ext_list fail_set atom_sets = (* fail_set consists of one atom only *)
- match ext_list with
- [] -> AtomSet.empty
- | f::r ->
- if (check_alpha_relation f fail_set atom_sets) then
- AtomSet.add f (check_ext_list r fail_set atom_sets)
- else
- (check_ext_list r fail_set atom_sets)
-
-let fail_ext_set ext_atom ext_set atom_sets =
- let ext_list = AtomSet.elements ext_set
- and fail_set = AtomSet.add ext_atom AtomSet.empty in
- check_ext_list ext_list fail_set atom_sets
-
-let rec ext_partners con path ext_atom (reduction_partners,extension_partners) atom_sets =
- match con with
- [] ->
- (reduction_partners,extension_partners)
- | f::r ->
- let (a,b) = f in
- if List.mem ext_atom [a;b] then
- let ext_partner =
- if ext_atom = a then b else a
- in
- let (new_red_partners,new_ext_partners) =
-(* force reduction steps first *)
- if (AtomSet.mem ext_partner path) then
- ((AtomSet.add ext_partner reduction_partners),extension_partners)
- else
- if (check_alpha_relation ext_partner path atom_sets) then
- (reduction_partners,(AtomSet.add ext_partner extension_partners))
- else
- (reduction_partners,extension_partners)
- in
- ext_partners r path ext_atom (new_red_partners,new_ext_partners) atom_sets
- else
- ext_partners r path ext_atom (reduction_partners,extension_partners) atom_sets
-
-exception Failed_connections
-
-let path_checker atom_rel atom_sets qprefixes init_ordering logic =
-
- let con = connections atom_rel [] in
- let rec provable path closed (orderingQ,reduction_ordering) eqlist (sigmaQ,sigmaJ) =
-
- let rec check_connections (reduction_partners,extension_partners) ext_atom =
- let try_one =
- if reduction_partners = AtomSet.empty then
- if extension_partners = AtomSet.empty then
- raise Failed_connections
- else
- AtomSet.choose extension_partners
- else
- (* force reduction steps always first!! *)
- AtomSet.choose reduction_partners
- in
-(* print_endline ("connection partner "^(try_one.aname)); *)
-(* print_endline ("partner path "^(print_set path));
-*)
- (try
- let (new_sigmaQ,new_ordering_elements) = jqunify (ext_atom.alabel) (try_one.alabel) sigmaQ in
-(* build the orderingQ incrementally from the new added substitution tau of new_sigmaQ *)
- let (relate_pairs,new_orderingQ) = build_orderingQ new_ordering_elements orderingQ in
-(* we make in incremental reflexivity test during the string unification *)
- let (new_sigmaJ,new_eqlist,new_red_ordering) =
-(* new_red_ordering = [] in propositional case *)
- stringunify ext_atom try_one eqlist relate_pairs logic new_orderingQ atom_rel qprefixes
- in
-(* print_endline ("make reduction ordering "^((string_of_int (List.length new_ordering)))); *)
- let new_closed = AtomSet.add ext_atom closed in
- let ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),subproof) =
- if AtomSet.mem try_one path then
- provable path new_closed (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ)
- (* always use old first-order ordering for recursion *)
- else
- let new_path = AtomSet.add ext_atom path
- and extension = AtomSet.add try_one AtomSet.empty in
- let ((norderingQ,nredordering),neqlist,(nsigmaQ,nsigmaJ),p1) =
- provable new_path extension (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ) in
- let ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),p2) =
- provable path new_closed (norderingQ,nredordering) neqlist (nsigmaQ,nsigmaJ) in
- ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),(p1 @ p2))
- (* first the extension subgoals = depth first; then other subgoals in same clause *)
- in
- ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),(((ext_atom.aname),(try_one.aname))::subproof))
- with Failed ->
-(* print_endline ("new connection for "^(ext_atom.aname)); *)
-(* print_endline ("Failed"); *)
- check_connections ((AtomSet.remove try_one reduction_partners),
- (AtomSet.remove try_one extension_partners)
- ) ext_atom
- )
-
- in
- let rec check_extension extset =
- if extset = AtomSet.empty then
- raise Failed (* go directly to a new entry connection *)
- else
- let select_one = AtomSet.choose extset in
-(* print_endline ("extension literal "^(select_one.aname)); *)
-(* print_endline ("extension path "^(print_set path));*)
- let (reduction_partners,extension_partners) =
- ext_partners con path select_one (AtomSet.empty,AtomSet.empty) atom_sets in
- (try
- check_connections (reduction_partners,extension_partners) select_one
- with Failed_connections ->
-(* print_endline ("no connections for subgoal "^(select_one.aname)); *)
-(* print_endline ("Failed_connections"); *)
- let fail_ext_set = fail_ext_set select_one extset atom_sets in
- check_extension fail_ext_set
- )
-
- in
- let extset = extset atom_sets path closed in
- if extset = AtomSet.empty then
- ((orderingQ,reduction_ordering),eqlist,(sigmaQ,sigmaJ),[])
- else
- check_extension extset
- in
- if qprefixes = ([],[]) then
- begin
-(* print_endline "!!!!!!!!!!! prop prover !!!!!!!!!!!!!!!!!!"; *)
-(* in the propositional case, the reduction ordering will be computed AFTER proof search *)
- let (_,eqlist,(_,(n,substJ)),ext_proof) =
- provable AtomSet.empty AtomSet.empty ([],[]) (1,[]) ([],(1,[])) in
- let orderingJ = build_orderingJ_list substJ init_ordering atom_rel in
- ((init_ordering,orderingJ),eqlist,([],(n,substJ)),ext_proof)
- end
- else
- provable AtomSet.empty AtomSet.empty (init_ordering,[]) (1,[]) ([],(1,[]))
-
-(*************************** prepare and init prover *******************************************************)
-
-let rec list_to_set list =
- match list with
- [] -> AtomSet.empty
- | f::r ->
- let rest_set = list_to_set r in
- AtomSet.add f rest_set
-
-let rec make_atom_sets atom_rel =
- match atom_rel with
- [] -> []
- | f::r ->
- let (a,alpha,beta) = f in
- (a,(list_to_set alpha),(list_to_set beta))::(make_atom_sets r)
-
-let rec predecessor address_1 address_2 ftree =
- match ftree with
- Empty -> PNull (* should not occur since every pair of atoms have a common predecessor *)
- | NodeAt(position) -> PNull (* should not occur as above *)
- | NodeA(position,suctrees) ->
- match address_1,address_2 with
- [],_ -> raise (Invalid_argument "Jprover: predecessors left")
- | _,[] -> raise (Invalid_argument "Jprover: predecessors right")
- | (f1::r1),(f2::r2) ->
- if f1 = f2 then
- predecessor r1 r2 (suctrees.(f1-1))
- else
- position.pt
-
-let rec compute_sets element ftree alist =
- match alist with
- [] -> [],[]
- | first::rest ->
- if first = element then
- compute_sets element ftree rest (* element is neithes alpha- nor beta-related to itself*)
- else
- let (alpha_rest,beta_rest) = compute_sets element ftree rest in
- if predecessor (element.aaddress) (first.aaddress) ftree = Beta then
- (alpha_rest,(first::beta_rest))
- else
- ((first::alpha_rest),beta_rest)
-
-let rec compute_atomlist_relations worklist ftree alist = (* last version of alist for total comparison *)
- let rec compute_atom_relations element ftree alist =
- let alpha_set,beta_set = compute_sets element ftree alist in
- (element,alpha_set,beta_set)
- in
- match worklist with
- [] -> []
- | first::rest ->
- let first_relations = compute_atom_relations first ftree alist in
- first_relations::(compute_atomlist_relations rest ftree alist)
-
-let atom_record position prefix =
- let aname = (position.name) in
- let aprefix = (List.append prefix [aname]) in (* atom position is last element in prefix *)
- let aop = (dest_term position.label).term_op in
- ({aname=aname; aaddress=(position.address); aprefix=aprefix; apredicate=aop;
- apol=(position.pol); ast=(position.st); alabel=(position.label)})
-
-let rec select_atoms_treelist treelist prefix =
- let rec select_atoms ftree prefix =
- match ftree with
- Empty -> [],[],[]
- | NodeAt(position) ->
- [(atom_record position prefix)],[],[]
- | NodeA(position,suctrees) ->
- let treelist = Array.to_list suctrees in
- let new_prefix =
- let prefix_element =
- if List.mem (position.st) [Psi_0;Phi_0] then
- [(position.name)]
- else
- []
- in
- (List.append prefix prefix_element)
- in
- let (gamma_0_element,delta_0_element) =
- if position.st = Gamma_0 then
- begin
-(* Format.open_box 0;
- print_endline "gamma_0 prefixes ";
- print_string (position.name^" :");
- print_stringlist prefix;
- print_endline " ";
- Format.force_newline ();
- Format.print_flush ();
-*)
- [(position.name,prefix)],[]
- end
- else
- if position.st = Delta_0 then
- begin
-(* Format.open_box 0;
- print_endline "delta_0 prefixes ";
- print_string (position.name^" :");
- print_stringlist prefix;
- print_endline " ";
- Format.force_newline ();
- Format.print_flush ();
-*)
- [],[(position.name,prefix)]
- end
- else
- [],[]
- in
- let (rest_alist,rest_gamma_0_prefixes,rest_delta_0_prefixes) =
- select_atoms_treelist treelist new_prefix in
- (rest_alist,(rest_gamma_0_prefixes @ gamma_0_element),
- (rest_delta_0_prefixes @ delta_0_element))
-
- in
- match treelist with
- [] -> [],[],[]
- | first::rest ->
- let (first_alist,first_gprefixes,first_dprefixes) = select_atoms first prefix
- and (rest_alist,rest_gprefixes,rest_dprefixes) = select_atoms_treelist rest prefix in
- ((first_alist @ rest_alist),(first_gprefixes @ rest_gprefixes),
- (first_dprefixes @ rest_dprefixes))
-
-let prepare_prover ftree =
- let alist,gamma_0_prefixes,delta_0_prefixes = select_atoms_treelist [ftree] [] in
- let atom_rel = compute_atomlist_relations alist ftree alist in
- (atom_rel,(gamma_0_prefixes,delta_0_prefixes))
-
-(* ************************ Build intial formula tree and relations *********************************** *)
-(* Building a formula tree and the tree ordering from the input formula, i.e. OCaml term *)
-
-let make_position_name stype pos_n =
- let prefix =
- if List.mem stype [Phi_0;Gamma_0]
- then "v"
- else
- if List.mem stype [Psi_0;Delta_0]
- then "c"
- else
- "a"
- in
- prefix^(string_of_int pos_n)
-
-let dual_pol pol =
- if pol = O then I else O
-
-let check_subst_term (variable,old_term) pos_name stype =
- if (List.mem stype [Gamma_0;Delta_0]) then
- let new_variable =
- if stype = Gamma_0 then (mk_var_term (pos_name^"_jprover"))
- else
- (mk_string_term jprover_op pos_name)
- in
- (subst1 old_term variable new_variable) (* replace variable (non-empty) in t by pos_name *)
- (* pos_name is either a variable term or a constant, f.i. a string term *)
- (* !!! check unification module how handling eingenvariables as constants !!! *)
- else
- old_term
-
-let rec build_ftree (variable,old_term) pol stype address pos_n =
- let pos_name = make_position_name stype pos_n in
- let term = check_subst_term (variable,old_term) pos_name stype in
- if JLogic.is_and_term term then
- let s,t = JLogic.dest_and term in
- let ptype,stype_1,stype_2 =
- if pol = O
- then Beta,Beta_1,Beta_2
- else
- Alpha,Alpha_1,Alpha_2
- in
- let position = {name=pos_name; address=address; op=And; pol=pol; pt=ptype; st=stype; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in
- let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2])
- (posn_left+1) in
- let (succ_left,whole_left) = List.hd ordering_left
- and (succ_right,whole_right) = List.hd ordering_right in
- let pos_succs =
- (StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)))
- in
- (NodeA(position,[|subtree_left;subtree_right|]),
- ((position.name,pos_succs)::(ordering_left @ ordering_right)),
- posn_right
- )
- else
- if JLogic.is_or_term term then
- let s,t = JLogic.dest_or term in
- let ptype,stype_1,stype_2 =
- if pol = O
- then Alpha,Alpha_1,Alpha_2
- else
- Beta,Beta_1,Beta_2
- in
- let position = {name=pos_name; address=address; op=Or; pol=pol; pt=ptype; st=stype; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in
- let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2])
- (posn_left+1) in
- let (succ_left,whole_left) = List.hd ordering_left
- and (succ_right,whole_right) = List.hd ordering_right in
- let pos_succs =
- StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in
- (NodeA(position,[|subtree_left;subtree_right|]),
- ((position.name),pos_succs) :: (ordering_left @ ordering_right),
- posn_right
- )
- else
- if JLogic.is_implies_term term then
- let s,t = JLogic.dest_implies term in
- let ptype_0,stype_0,ptype,stype_1,stype_2 =
- if pol = O
- then Psi,Psi_0,Alpha,Alpha_1,Alpha_2
- else
- Phi,Phi_0,Beta,Beta_1,Beta_2
- in
- let pos2_name = make_position_name stype_0 (pos_n+1) in
- let sposition = {name=pos_name; address=address; op=Imp; pol=pol; pt=ptype_0; st=stype; label=term}
- and position = {name=pos2_name; address=address@[1]; op=Imp; pol=pol; pt=ptype; st=stype_0; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1])
- (pos_n+2) in
- let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[1;2])
- (posn_left+1) in
- let (succ_left,whole_left) = List.hd ordering_left
- and (succ_right,whole_right) = List.hd ordering_right in
- let pos_succs =
- StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in
- let pos_ordering = (position.name,pos_succs) :: (ordering_left @ ordering_right) in
- (NodeA(sposition,[|NodeA(position,[|subtree_left;subtree_right|])|]),
- ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
- posn_right
- )
- else
- if JLogic.is_not_term term then
- let s = JLogic.dest_not term in
- let ptype_0,stype_0,ptype,stype_1=
- if pol = O
- then Psi,Psi_0,Alpha,Alpha_1
- else
- Phi,Phi_0,Alpha,Alpha_1
- in
- let pos2_name = make_position_name stype_0 (pos_n+1) in
- let sposition = {name=pos_name; address=address; op=Neg; pol=pol; pt=ptype_0; st=stype; label=term}
- and position = {name=pos2_name; address=address@[1]; op=Neg; pol=pol; pt=ptype; st=stype_0; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1])
- (pos_n+2) in
- let (succ_left,whole_left) = List.hd ordering_left in
- let pos_succs =
- StringSet.add succ_left whole_left in
- let pos_ordering = (position.name,pos_succs) :: ordering_left in
- (NodeA(sposition,[|NodeA(position,[| subtree_left|])|]),
- ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
- posn_left
- )
- else
- if JLogic.is_exists_term term then
- let v,s,t = JLogic.dest_exists term in (* s is type of v and will be supressed here *)
- let ptype,stype_1 =
- if pol = O
- then Gamma,Gamma_0
- else
- Delta,Delta_0
- in
- let position = {name=pos_name; address=address; op=Ex; pol=pol; pt=ptype; st=stype; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1]) (pos_n+1) in
- let (succ_left,whole_left) = List.hd ordering_left in
- let pos_succs =
- StringSet.add succ_left whole_left in
- (NodeA(position,[|subtree_left|]),
- ((position.name,pos_succs) :: ordering_left),
- posn_left
- )
- else
- if JLogic.is_all_term term then
- let v,s,t = JLogic.dest_all term in
- (* s is type of v and will be supressed here *)
- let ptype_0,stype_0,ptype,stype_1=
- if pol = O
- then Psi,Psi_0,Delta,Delta_0
- else
- Phi,Phi_0,Gamma,Gamma_0
- in
- let pos2_name = make_position_name stype_0 (pos_n+1) in
- let sposition = {name=pos_name; address=address; op=All; pol=pol; pt=ptype_0; st=stype; label=term}
- and position = {name=pos2_name; address=address@[1]; op=All; pol=pol; pt=ptype; st=stype_0; label=term} in
- let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1;1])
- (pos_n+2) in
- let (succ_left,whole_left) = List.hd ordering_left in
- let pos_succs =
- StringSet.add succ_left whole_left in
- let pos_ordering = (position.name,pos_succs) :: ordering_left in
- (NodeA(sposition,[|NodeA(position,[|subtree_left|])|]),
- ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering),
- posn_left
- )
- else (* finally, term is atomic *)
- let ptype_0,stype_0 =
- if pol = O
- then Psi,Psi_0
- else
- Phi,Phi_0
- in
- let pos2_name = make_position_name stype_0 (pos_n+1) in
- let sposition = {name=pos_name; address=address; op=At; pol=pol; pt=ptype_0; st=stype; label=term}
- and position = {name=pos2_name; address=address@[1]; op=At; pol=pol; pt=PNull; st=stype_0; label=term} in
- (NodeA(sposition,[|NodeAt(position)|]),
- [(sposition.name,(StringSet.add position.name StringSet.empty));(position.name,StringSet.empty)],
- pos_n+1
- )
-
-let rec construct_ftree termlist treelist orderinglist pos_n goal =
- match termlist with
- [] ->
- let new_root = {name="w"; address=[]; op=Null; pol=O; pt=Psi; st=PNull_0; label=goal}
- and treearray = Array.of_list treelist in
- NodeA(new_root,treearray),(("w",(union_orderings orderinglist))::orderinglist),pos_n
- | ft::rest_terms ->
- let next_address = [((List.length treelist)+1)]
- and next_pol,next_goal =
- if rest_terms = [] then
- O,ft (* construct tree for the conclusion *)
- else
- I,goal
- in
- let new_tree,new_ordering,new_pos_n =
- build_ftree ("",ft) next_pol Alpha_1 next_address (pos_n+1) in
- construct_ftree rest_terms (treelist @ [new_tree])
- (orderinglist @ new_ordering) new_pos_n next_goal
-
-(*************************** Main LOOP ************************************)
-let unprovable = RefineError ("Jprover", StringError "formula is not provable")
-let mult_limit_exn = RefineError ("Jprover", StringError "multiplicity limit reached")
-let coq_exn = RefineError ("Jprover", StringError "interface for coq: error on ")
-
-let init_prover ftree =
- let atom_relation,qprefixes = prepare_prover ftree in
-(* print_atom_info atom_relation; *) (* apple *)
- let atom_sets = make_atom_sets atom_relation in
- (atom_relation,atom_sets,qprefixes)
-
-
-let rec try_multiplicity mult_limit ftree ordering pos_n mult logic =
- try
- let (atom_relation,atom_sets,qprefixes) = init_prover ftree in
- let ((orderingQ,red_ordering),eqlist,unifier,ext_proof) =
- path_checker atom_relation atom_sets qprefixes ordering logic in
- (ftree,red_ordering,eqlist,unifier,ext_proof) (* orderingQ is not needed as return value *)
- with Failed ->
- match mult_limit with
- Some m when m == mult ->
- raise mult_limit_exn
- | _ ->
- let new_mult = mult+1 in
- begin
- Pp.msgnl (Pp.(++) (Pp.str "Multiplicity Fail: Trying new multiplicity ")
- (Pp.int new_mult));
-(*
- Format.open_box 0;
- Format.force_newline ();
- Format.print_string "Multiplicity Fail: ";
- Format.print_string ("Try new multiplicity "^(string_of_int new_mult));
- Format.force_newline ();
- Format.print_flush ();
-*)
- let (new_ftree,new_ordering,new_pos_n) =
- add_multiplicity ftree pos_n new_mult logic in
- if (new_ftree = ftree) then
- raise unprovable
- else
-(* print_formula_info new_ftree new_ordering new_pos_n; *) (* apple *)
- try_multiplicity mult_limit new_ftree new_ordering new_pos_n new_mult logic
- end
-
-let prove mult_limit termlist logic =
- let (ftree,ordering,pos_n) = construct_ftree termlist [] [] 0 (mk_var_term "dummy") in
-(* pos_n = number of positions without new root "w" *)
-(* print_formula_info ftree ordering pos_n; *) (* apple *)
- try_multiplicity mult_limit ftree ordering pos_n 1 logic
-
-(********** first-order type theory interface *******************)
-
-let rec renam_free_vars termlist =
- match termlist
- with [] -> [],[]
- | f::r ->
- let var_names = free_vars_list f in
- let string_terms =
- List.map (fun x -> (mk_string_term free_var_op x)) var_names
- in
- let mapping = List.combine var_names string_terms
- and new_f = subst f var_names string_terms in
- let (rest_mapping,rest_renamed) = renam_free_vars r in
- let unique_mapping = remove_dups_list (mapping @ rest_mapping) in
- (unique_mapping,(new_f::rest_renamed))
-
-let rec apply_var_subst term var_subst_list =
- match var_subst_list with
- [] -> term
- | (v,t)::r ->
- let next_term = var_subst term t v in
- apply_var_subst next_term r
-
-let rec make_equal_list n list_object =
- if n = 0 then
- []
- else
- list_object::(make_equal_list (n-1) list_object)
-
-let rec create_output rule_list input_map =
- match rule_list with
- [] -> JLogic.empty_inf
- | f::r ->
- let (pos,(rule,term1,term2)) = f in
- let delta1_names = collect_delta_terms [term1]
- and delta2_names = collect_delta_terms [term2] in
- let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in
- let delta_terms =
- List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in
- let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in
- let delta_map = List.combine delta_vars delta_terms in
- let var_mapping = (input_map @ delta_map) in
- let frees1 = free_vars_list term1
- and frees2 = free_vars_list term2 in
- let unique_object = mk_var_term "v0_jprover" in
- let unique_list1 = make_equal_list (List.length frees1) unique_object
- and unique_list2 = make_equal_list (List.length frees2) unique_object
- in
- let next_term1 = subst term1 frees1 unique_list1
- and next_term2 = subst term2 frees2 unique_list2 in
- let new_term1 = apply_var_subst next_term1 var_mapping
- and new_term2 = apply_var_subst next_term2 var_mapping
- and (a,b) = pos
- in
-
-(* kick away the first argument, the position *)
- (JLogic.append_inf (create_output r input_map) (b,new_term1) (a,new_term2) rule)
-
-let rec make_test_interface rule_list input_map =
- match rule_list with
- [] -> []
- | f::r ->
- let (pos,(rule,term1,term2)) = f in
- let delta1_names = collect_delta_terms [term1]
- and delta2_names = collect_delta_terms [term2] in
- let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in
- let delta_terms =
- List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in
- let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in
- let delta_map = List.combine delta_vars delta_terms in
- let var_mapping = (input_map @ delta_map) in
- let frees1 = free_vars_list term1
- and frees2 = free_vars_list term2 in
- let unique_object = mk_var_term "v0_jprover" in
- let unique_list1 = make_equal_list (List.length frees1) unique_object
- and unique_list2 = make_equal_list (List.length frees2) unique_object
- in
- begin
-(*
- print_endline "";
- print_endline "";
- print_stringlist frees1;
- print_endline "";
- print_stringlist frees2;
- print_endline "";
- print_endline "";
-*)
- let next_term1 = subst term1 frees1 unique_list1
- and next_term2 = subst term2 frees2 unique_list2 in
- let new_term1 = apply_var_subst next_term1 var_mapping
- and new_term2 = apply_var_subst next_term2 var_mapping
- in
- (pos,(rule,new_term1,new_term2))::(make_test_interface r input_map)
- end
-
-(**************************************************************)
-
-let decomp_pos pos =
- let {name=n; address=a; label=l} = pos in
- (n,(a,l))
-
-let rec build_formula_id ftree =
- let rec build_fid_list = function
- [] -> []
- | t::rest -> (build_formula_id t)@(build_fid_list rest)
- in
- match ftree with
- Empty -> []
- | NodeAt(position) ->
- [decomp_pos position]
- | NodeA(position,subtrees) ->
- let tree_list = Array.to_list subtrees in
- (decomp_pos position)::(build_fid_list tree_list)
-
-let rec encode1 = function (* normal *)
- [] -> ""
- | i::r -> "_"^(string_of_int i)^(encode1 r)
-
-let rec encode2 = function (* move up *)
- [i] -> ""
- | i::r -> "_"^(string_of_int i)^(encode2 r)
- | _ -> raise coq_exn
-
-let rec encode3 = function (* move down *)
- [] -> "_1"
- | i::r -> "_"^(string_of_int i)^(encode3 r)
-
-let lookup_coq str map =
- try
- let (il,t) = List.assoc str map in
- il
- with Not_found -> raise coq_exn
-
-let create_coq_input inf map =
- let rec rec_coq_part inf =
- match inf with
- [] -> []
- | (rule, (s1, t1), ((s2, t2) as k))::r ->
- begin
- match rule with
- Andl | Andr | Orl | Orr1 | Orr2 ->
- (rule, (encode1 (lookup_coq s1 map), t1), k)::(rec_coq_part r)
- | Impr | Impl | Negr | Negl | Ax ->
- (rule, (encode2 (lookup_coq s1 map), t1), k)::(rec_coq_part r)
- | Exr ->
- (rule, (encode1 (lookup_coq s1 map), t1),
- (encode1 (lookup_coq s2 map), t2))::(rec_coq_part r)
- | Exl ->
- (rule, (encode1 (lookup_coq s1 map), t1),
- (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r)
- | Allr | Alll ->
- (rule, (encode2 (lookup_coq s1 map), t1),
- (* (s2, t2))::(rec_coq_part r) *)
- (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r)
- | _ -> raise coq_exn
- end
- in
- rec_coq_part inf
-
-let gen_prover mult_limit logic calculus hyps concls =
- let (input_map,renamed_termlist) = renam_free_vars (hyps @ concls) in
- let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in
- let sequent_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in
- let idl = build_formula_id ftree in
-(* print_ftree ftree; apple *)
- (* transform types and rename constants *)
- (* we can transform the eigenvariables AFTER proof reconstruction since *)
- (* new delta_0 constants may have been constructed during rule permutation *)
- (* from the LJmc to the LJ proof *)
- create_coq_input (create_output sequent_proof input_map) idl
-
-let prover mult_limit hyps concl = gen_prover mult_limit "J" "LJ" hyps [concl]
-
-(************* test with propositional proof reconstruction ************)
-
-let rec count_axioms seq_list =
- match seq_list with
- [] -> 0
- | f::r ->
- let (rule,_,_) = f in
- if rule = Ax then
- 1 + count_axioms r
- else
- count_axioms r
-
-let do_prove mult_limit termlist logic calculus =
- try begin
- let (input_map,renamed_termlist) = renam_free_vars termlist in
- let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in
- Format.open_box 0;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_string "Extension proof ready";
- Format.force_newline ();
- Format.force_newline ();
- Format.print_string ("Length of Extension proof: "^((string_of_int (List.length ext_proof)))^
- " Axioms");
- Format.force_newline ();
- Format.force_newline ();
- print_endline "Extension proof:";
- Format.open_box 0;
- print_pairlist ext_proof; (* print list of type (string * string) list *)
- Format.force_newline ();
- Format.force_newline ();
- Format.force_newline ();
- Format.print_flush ();
- Format.print_flush ();
- Format.open_box 0;
- print_ordering red_ordering;
- Format.print_flush ();
- Format.open_box 0;
- Format.force_newline ();
-(* ----------------------------------------------- *)
- Format.open_box 0;
- print_tunify sigmaJ;
- Format.print_flush ();
- print_endline "";
- print_endline "";
- print_sigmaQ sigmaQ;
- print_endline "";
- print_endline "";
- Format.open_box 0;
- let (qmax,equations) = eqlist in
- print_endline ("number of quantifier domains : "^(string_of_int (qmax-1)));
- print_endline "";
- print_equations equations;
- Format.print_flush ();
- print_endline "";
- print_endline "";
- print_endline ("Length of equations : "^((string_of_int (List.length equations))));
- print_endline "";
- print_endline "";
-(* --------------------------------------------------------- *)
- Format.print_string "Break ... ";
- print_endline "";
- print_endline "";
- Format.print_flush ();
- let reconstr_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in
- let sequent_proof = make_test_interface reconstr_proof input_map in
- Format.open_box 0;
- Format.force_newline ();
- Format.force_newline ();
- Format.print_string "Sequent proof ready";
- Format.force_newline ();
- Format.force_newline ();
- Format.print_flush ();
- let (ptree,count_ax) = bproof sequent_proof in
- Format.open_box 0;
- Format.print_string ("Length of sequent proof: "^((string_of_int count_ax))^" Axioms");
- Format.force_newline ();
- Format.force_newline ();
- Format.force_newline ();
- Format.force_newline ();
- Format.print_flush ();
- tt ptree;
- Format.print_flush ();
- print_endline "";
- print_endline ""
- end with exn -> begin
- print_endline "Jprover got an exception:";
- print_endline (Printexc.to_string exn)
- end
-
-let test concl logic calculus = (* calculus should be LJmc or LJ for J, and LK for C *)
- do_prove None [concl] logic calculus
-
-(* for sequents *)
-
-let seqtest list_term logic calculus =
- let bterms = (dest_term list_term).term_terms in
- let termlist = collect_subterms bterms in
- do_prove None termlist logic calculus
-
-(*****************************************************************)
-
-end (* of struct *)
diff --git a/contrib/jprover/jall.mli b/contrib/jprover/jall.mli
deleted file mode 100644
index 1811fe59..00000000
--- a/contrib/jprover/jall.mli
+++ /dev/null
@@ -1,339 +0,0 @@
-(* JProver provides an efficient refiner for first-order classical
- and first-order intuitionistic logic. It consists of two main parts:
- a proof search procedure and a proof reconstruction procedure.
-
-
- Proof Search
- ============
-
- The proof search process is based on a matrix-based (connection-based)
- proof procedure, i.e.~a non-normalform extension procedure.
- Besides the well-known quantifier substitution (Martelli Montanari),
- a special string unifiation procedure is used in order to
- efficiently compute intuitionistic rule non-permutabilities.
-
-
- Proof Reconstruction
- ====================
-
- The proof reconstruction process converts machine-generated matrix proofs
- into cut-free Gentzen-style sequent proofs. For classcal logic "C",
- Gentzen's sequent calculus "LK" is used as target calculus.
- For intuitionistic logic "J", either Gentzen's single-conclusioned sequent
- calculus "LJ" or Fitting's multiply-conclusioned sequent calculus "LJmc"
- can be used. All sequent claculi are implemented in a set-based formulation
- in order to avoid structural rules.
-
- The proof reconstruction procedure combines three main procedures, depending
- on the selected logics and sequent calculi. It consists of:
-
- 1) A uniform traversal algorithm for all logics and target sequent calculi.
- This procedure converts classical (intuitionistic) matrix proofs
- directly into cut-free "LK" ("LJmc" or "LJ") sequent proofs.
- However, the direct construction of "LJ" proofs may fail in some cases
- due to proof theoretical reasons.
-
- 2) A complete redundancy deletion algorithm, which integrates additional
- knowledge from the proof search process into the reconstruction process.
- This procedure is called by the traversal algorithms in order to avoid
- search and deadlocks during proof reconstruciton.
-
- 3) A permutation-based proof transformation for converting "LJmc" proofs
- into "LJ" proofs.
- This procedure is called by-need, whenever the direct reconstruction
- of "LJ" proofs from matrix proofs fails.
-
-
-
-
- Literature:
- ==========
-
- JProver system description was presented at CADE 2001:
- @InProceedings{inp:Schmitt+01a,
- author = "Stephan Schmitt and Lori Lorigo and Christoph Kreitz and
- Alexey Nogin",
- title = "{{\sf JProver}}: Integrating Connection-based Theorem
- Proving into Interactive Proof Assistants",
- booktitle = "International Joint Conference on Automated Reasoning",
- year = "2001",
- editor = "R. Gore and A. Leitsch and T. Nipkow",
- volume = 2083,
- series = LNAI,
- pages = "421--426",
- publisher = SPRINGER,
- language = English,
- where = OWN,
- }
-
- The implementation of JProver is based on the following publications:
-
-
-
- Slides of PRL-seminar talks:
- ---------------------------
-
- An Efficient Refiner for First-order Intuitionistic Logic
-
- http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar99_00/schmitt/feb28.html
-
-
- An Efficient Refiner for First-order Intuitionistic Logic (Part II)
-
- http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar99_00/schmitt/may22.html
-
-
-
- Proof search:
- -------------
-
-
-[1]
- @InProceedings{inp:OttenKreitz96b,
- author = "J.~Otten and C.~Kreitz",
- title = "A uniform proof procedure for classical and
- non-classical logics",
- booktitle = "Proceedings of the 20$^{th}$ German Annual Conference on
- Artificial Intelligence",
- year = "1996",
- editor = "G.~G{\"o}rz and S.~H{\"o}lldobler",
- number = "1137",
- series = LNAI,
- pages = "307--319",
- publisher = SPRINGER
- }
-
-
-[2]
- @Article{ar:KreitzOtten99,
- author = "C.~Kreitz and J.~Otten",
- title = "Connection-based theorem proving in classical and
- non-classical logics",
- journal = "Journal for Universal Computer Science,
- Special Issue on Integration of Deductive Systems",
- year = "1999",
- volume = "5",
- number = "3",
- pages = "88--112"
- }
-
-
-
-
- Special string unifiation procedure:
- ------------------------------------
-
-
-[3]
- @InProceedings{inp:OttenKreitz96a,
- author = "J.~Otten and C.~Kreitz",
- titl = "T-string-unification: unifying prefixes in
- non-classical proof methods",
- booktitle = "Proceedings of the 5$^{th}$ Workshop on Theorem Proving
- with Analytic Tableaux and Related Methods",
- year = 1996,
- editor = "U.~Moscato",
- number = "1071",
- series = LNAI,
- pages = "244--260",
- publisher = SPRINGER,
- month = "May "
- }
-
-
-
- Proof reconstruction: Uniform traversal algorithm
- -------------------------------------------------
-
-
-[4]
- @InProceedings{inp:SchmittKreitz96a,
- author = "S.~Schmitt and C.~Kreitz",
- title = "Converting non-classical matrix proofs into
- sequent-style systems",
- booktitle = "Proceedings of the 13$^t{}^h$ Conference on
- Automated Deduction",
- editor = M.~A.~McRobbie and J.~K.~Slaney",
- number = "1104",
- series = LNAI,
- pages = "418--432",
- year = "1996",
- publisher = SPRINGER,
- month = "July/August"
- }
-
-
-[5]
- @Article{ar:KreitzSchmitt00,
- author = "C.~Kreitz and S.~Schmitt",
- title = "A uniform procedure for converting matrix proofs
- into sequent-style systems",
- journal = "Journal of Information and Computation",
- year = "2000",
- note = "(to appear)"
- }
-
-
-[6]
- @Book{bo:Schmitt00,
- author = "S.~Schmitt",
- title = "Proof reconstruction in classical and non-classical logics",
- year = "2000",
- publisher = "Infix",
- series = "Dissertationen zur K{\"u}nstlichen Intelleigenz",
- number = "(to appear)",
- note = "(Ph.{D}.~{T}hesis, Technische Universit{\"a}t Darmstadt,
- FG Intellektik, Germany, 1999)"
- }
-
- The traversal algorithm is presented in the Chapters 2 and 3 of my thesis.
- The thesis will be made available for the Department through Christoph Kreitz,
- Upson 4159, kreitz@cs.cornell.edu
-
-
-
-
- Proof reconstruction: Complete redundancy deletion
- --------------------------------------------------
-
-
-[7]
- @Book{bo:Schmitt00,
- author = "S.~Schmitt",
- title = "Proof reconstruction in classical and non-classical logics",
- year = "2000",
- publisher = "Infix",
- series = "Dissertationen zur K{\"u}nstlichen Intelleigenz",
- note = "(Ph.{D}.~{T}hesis, Technische Universit{\"a}t Darmstadt,
- FG Intellektik, Germany, 1999)"
- note = "(to appear)",
-
- }
-
- The integration of proof knowledge and complete redundancy deletion is presented
- in Chapter 4 of my thesis.
-
-
-[8]
- @InProceedings{inp:Schmitt00,
- author = "S.~Schmitt",
- title = "A tableau-like representation framework for efficient
- proof reconstruction",
- booktitle = "Proceedings of the International Conference on Theorem Proving
- with Analytic Tableaux and Related Methods",
- year = "2000",
- series = LNAI,
- publisher = SPRINGER,
- month = "June"
- note = "(to appear)",
- }
-
-
-
-
- Proof Reconstruction: Permutation-based poof transformations "LJ" -> "LJmc"
- ---------------------------------------------------------------------------
-
-
-[9]
- @InProceedings{inp:EglySchmitt98,
- author = "U.~Egly and S.~Schmitt",
- title = "Intuitionistic proof transformations and their
- application to constructive program synthesis",
- booktitle = "Proceedings of the 4$^{th}$ International Conference
- on Artificial Intelligence and Symbolic Computation",
- year = "1998",
- editor = "J.~Calmet and J.~Plaza",
- number = "1476",
- series = LNAI,
- pages = "132--144",
- publisher = SPRINGER,
- month = "September"
- }
-
-
-[10]
- @Article{ar:EglySchmitt99,
- author = "U.~Egly and S.~Schmitt",
- title = "On intuitionistic proof transformations, their
- complexity, and application to constructive program synthesis",
- journal = "Fundamenta Informaticae,
- Special Issue: Symbolic Computation and Artificial Intelligence",
- year = "1999",
- volume = "39",
- number = "1--2",
- pages = "59--83"
- }
-*)
-
-(*: open Refiner.Refiner
-open Refiner.Refiner.Term
-open Refiner.Refiner.TermType
-open Refiner.Refiner.TermSubst
-
-open Jlogic_sig
-:*)
-
-open Jterm
-open Opname
-open Jlogic
-
-val ruletable : rule -> string
-
-module JProver(JLogic: JLogicSig) :
-sig
- val test : term -> string -> string -> unit
-
- (* Procedure call: test conclusion logic calculus
-
- test is applied to a first-order formula. The output is some
- formatted sequent proof for test / debugging purposes.
-
- The arguments for test are as follows:
-
- logic = "C"|"J"
- i.e. first-order classical logic or first-order intuitionistic logic
-
- calculus = "LK"|"LJ"|"LJmc"
- i.e. "LK" for classical logic "C", and either Gentzen's single conclusioned
- calculus "LJ" or Fittings multiply-conclusioned calculus "LJmc" for
- intuitionistic logic "J".
-
- term = first-order formula representing the proof goal.
- *)
-
-
-
- val seqtest : term -> string -> string -> unit
-
- (* seqtest procedure is for debugging purposes only *)
-
-
- val gen_prover : int option -> string -> string -> term list -> term list -> JLogic.inference
-
- (* Procedure call: gen_prover mult_limit logic calculus hypothesis conclusion
-
- The arguments for gen_prover are as follows:
-
- mult_limit - maximal multiplicity to try, None for unlimited
-
- logic = same as in test
-
- calculus = same as in test
-
- hypothesis = list of first-order terms forming the antecedent of the input sequent
-
- conclusion = list of first-order terms forming the succedent of the input sequent
- This list should contain only one element if logic = "J" and calculus = "LJ".
- *)
-
-
- val prover : int option -> term list -> term -> JLogic.inference
-
- (* Procedure call: gen_prover mult_limit "J" "LJ" hyps [concl]
-
- prover provides the first-order refiner for NuPRL, using
- a single concluisoned succedent [concl] in the sequent.
- The result is a sequent proof in the single-conclusioned calculus "LJ".
- *)
-end
diff --git a/contrib/jprover/jlogic.ml b/contrib/jprover/jlogic.ml
deleted file mode 100644
index c074e93e..00000000
--- a/contrib/jprover/jlogic.ml
+++ /dev/null
@@ -1,106 +0,0 @@
-open Opname
-open Jterm
-
-type rule =
- | Ax | Andr | Andl | Orr | Orr1 | Orr2 | Orl | Impr | Impl | Negr | Negl
- | Allr | Alll| Exr | Exl | Fail | Falsel | Truer
-
-let ruletable = function
- | Fail -> "Fail"
- | Ax -> "Ax"
- | Negl -> "Negl"
- | Negr -> "Negr"
- | Andl -> "Andl"
- | Andr -> "Andr"
- | Orl -> "Orl"
- | Orr -> "Orr"
- | Orr1 -> "Orr1"
- | Orr2 -> "Orr2"
- | Impl -> "Impl"
- | Impr -> "Impr"
- | Exl -> "Exl"
- | Exr -> "Exr"
- | Alll -> "Alll"
- | Allr -> "Allr"
- | Falsel -> "Falsel"
- | Truer -> "Truer"
-
-module type JLogicSig =
-sig
- (* understanding the input *)
- val is_all_term : term -> bool
- val dest_all : term -> string * term * term
- val is_exists_term : term -> bool
- val dest_exists : term -> string * term * term
- val is_and_term : term -> bool
- val dest_and : term -> term * term
- val is_or_term : term -> bool
- val dest_or : term -> term * term
- val is_implies_term : term -> bool
- val dest_implies : term -> term * term
- val is_not_term : term -> bool
- val dest_not : term -> term
-
- (* processing the output *)
- type inf_step = rule * (string * term) * (string * term)
- type inference = inf_step list
-(* type inference *)
- val empty_inf : inference
- val append_inf : inference -> (string * term) -> (string * term) -> rule -> inference
- val print_inf : inference -> unit
-end;;
-
-(* Copy from [term_op_std.ml]: *)
-
- let rec print_address int_list =
- match int_list with
- | [] ->
- Format.print_string ""
- | hd::rest ->
- begin
- Format.print_int hd;
- print_address rest
- end
-
-module JLogic: JLogicSig =
-struct
- let is_all_term = Jterm.is_all_term
- let dest_all = Jterm.dest_all
- let is_exists_term = Jterm.is_exists_term
- let dest_exists = Jterm.dest_exists
- let is_and_term = Jterm.is_and_term
- let dest_and = Jterm.dest_and
- let is_or_term = Jterm.is_or_term
- let dest_or = Jterm.dest_or
- let is_implies_term = Jterm.is_implies_term
- let dest_implies = Jterm.dest_implies
- let is_not_term = Jterm.is_not_term
- let dest_not = Jterm.dest_not
-
- type inf_step = rule * (string * term) * (string * term)
- type inference = inf_step list
-
- let empty_inf = []
- let append_inf inf t1 t2 rule =
- (rule, t1, t2)::inf
-
- let rec print_inf inf =
- match inf with
- | [] -> print_string "."; Format.print_flush ()
- | (rule, (n1,t1), (n2,t2))::d ->
- print_string (ruletable rule);
- print_string (":("^n1^":");
- print_term stdout t1;
- print_string (","^n2^":");
- print_term stdout t2;
- print_string ")\n";
- print_inf d
-end;;
-
-let show_loading s = print_string s
-type my_Debug = { mutable debug_name: string;
- mutable debug_description: string;
- debug_value: bool
- }
-
-let create_debug x = ref false
diff --git a/contrib/jprover/jlogic.mli b/contrib/jprover/jlogic.mli
deleted file mode 100644
index a9079791..00000000
--- a/contrib/jprover/jlogic.mli
+++ /dev/null
@@ -1,40 +0,0 @@
-(* The interface to manipulate [jterms], which is
- extracted and modified from Meta-Prl. *)
-
-type rule =
- Ax | Andr | Andl | Orr | Orr1 | Orr2 | Orl | Impr | Impl | Negr | Negl
- | Allr | Alll| Exr | Exl | Fail | Falsel | Truer
-
-module type JLogicSig =
- sig
- val is_all_term : Jterm.term -> bool
- val dest_all : Jterm.term -> string * Jterm.term * Jterm.term
- val is_exists_term : Jterm.term -> bool
- val dest_exists : Jterm.term -> string * Jterm.term * Jterm.term
- val is_and_term : Jterm.term -> bool
- val dest_and : Jterm.term -> Jterm.term * Jterm.term
- val is_or_term : Jterm.term -> bool
- val dest_or : Jterm.term -> Jterm.term * Jterm.term
- val is_implies_term : Jterm.term -> bool
- val dest_implies : Jterm.term -> Jterm.term * Jterm.term
- val is_not_term : Jterm.term -> bool
- val dest_not : Jterm.term -> Jterm.term
- type inf_step = rule * (string * Jterm.term) * (string * Jterm.term)
- type inference = inf_step list
- val empty_inf : inference
- val append_inf :
- inference -> (string * Jterm.term) -> (string * Jterm.term) -> rule -> inference
- val print_inf : inference -> unit
- end
-
-module JLogic : JLogicSig
-
-val show_loading : string -> unit
-
-type my_Debug = {
- mutable debug_name : string;
- mutable debug_description : string;
- debug_value : bool;
-}
-val create_debug : 'a -> bool ref
-val ruletable : rule -> string
diff --git a/contrib/jprover/jprover.ml4 b/contrib/jprover/jprover.ml4
deleted file mode 100644
index 5fd763c3..00000000
--- a/contrib/jprover/jprover.ml4
+++ /dev/null
@@ -1,554 +0,0 @@
-(*i camlp4deps: "parsing/grammar.cma" i*)
-
-open Jlogic
-
-module JA = Jall
-module JT = Jterm
-module T = Tactics
-module TCL = Tacticals
-module TM = Tacmach
-module N = Names
-module PT = Proof_type
-module HT = Hiddentac
-module PA = Pattern
-module HP = Hipattern
-module TR = Term
-module PR = Printer
-module RO = Reductionops
-module UT = Util
-module RA = Rawterm
-
-module J=JA.JProver(JLogic) (* the JProver *)
-
-(*i
-module NO = Nameops
-module TO = Termops
-module RE = Reduction
-module CL = Coqlib
-module ID = Inductiveops
-module CV = Clenv
-module RF = Refiner
-i*)
-
-(* Interface to JProver: *)
-(* type JLogic.inf_step = rule * (string * Jterm.term) * (string * Jterm.term) *)
-type jp_inf_step = JLogic.inf_step
-type jp_inference = JLogic.inference (* simply a list of [inf_step] *)
-
-(* Definitions for rebuilding proof tree from JProver: *)
-(* leaf, one-branch, two-branch, two-branch, true, false *)
-type jpbranch = JP0 | JP1 | JP2 | JP2' | JPT | JPF
-type jptree = | JPempty (* empty tree *)
- | JPAx of jp_inf_step (* Axiom node *)
- | JPA of jp_inf_step * jptree
- | JPB of jp_inf_step * jptree * jptree
-
-(* Private debugging tools: *)
-(*i*)
-let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
- Format.print_flush (); let _ = input_char stdin in ()
-(*i*)
-let jp_error re = raise (JT.RefineError ("jprover", JT.StringError re))
-
-(* print Coq constructor *)
-let print_constr ct = Pp.ppnl (PR.pr_lconstr ct); Format.print_flush ()
-
-let rec print_constr_list = function
- | [] -> ()
- | ct::r -> print_constr ct; print_constr_list r
-
-let print_constr_pair op c1 c2 =
- print_string (op^"(");
- print_constr c1;
- print_string ",";
- print_constr c2;
- print_string ")\n"
-
-
-(* Parsing modules for Coq: *)
-(* [is_coq_???] : testing functions *)
-(* [dest_coq_???] : destructors *)
-
-let is_coq_true ct = (HP.is_unit_type ct) && not (HP.is_equation ct)
-
-let is_coq_false = HP.is_empty_type
-
-(* return two subterms *)
-let dest_coq_and ct =
- match (HP.match_with_conjunction ct) with
- | Some (hdapp,args) ->
-(*i print_constr hdapp; print_constr_list args; i*)
- begin
- match args with
- | s1::s2::[] ->
-(*i print_constr_pair "and" s1 s2; i*)
- (s1,s2)
- | _ -> jp_error "dest_coq_and"
- end
- | None -> jp_error "dest_coq_and"
-
-let is_coq_or = HP.is_disjunction
-
-(* return two subterms *)
-let dest_coq_or ct =
- match (HP.match_with_disjunction ct) with
- | Some (hdapp,args) ->
-(*i print_constr hdapp; print_constr_list args; i*)
- begin
- match args with
- | s1::s2::[] ->
-(*i print_constr_pair "or" s1 s2; i*)
- (s1,s2)
- | _ -> jp_error "dest_coq_or"
- end
- | None -> jp_error "dest_coq_or"
-
-let is_coq_not = HP.is_nottype
-
-let dest_coq_not ct =
- match (HP.match_with_nottype ct) with
- | Some (hdapp,arg) ->
-(*i print_constr hdapp; print_constr args; i*)
-(*i print_string "not ";
- print_constr arg; i*)
- arg
- | None -> jp_error "dest_coq_not"
-
-
-let is_coq_impl ct =
- match TR.kind_of_term ct with
- | TR.Prod (_,_,b) -> (not (Termops.dependent (TR.mkRel 1) b))
- | _ -> false
-
-
-let dest_coq_impl c =
- match TR.kind_of_term c with
- | TR.Prod (_,b,c) ->
-(*i print_constr_pair "impl" b c; i*)
- (b, c)
- | _ -> jp_error "dest_coq_impl"
-
-(* provide new variables for renaming of universal variables *)
-let new_counter =
- let ctr = ref 0 in
- fun () -> incr ctr;!ctr
-
-(* provide new symbol name for unknown Coq constructors *)
-let new_ecounter =
- let ectr = ref 0 in
- fun () -> incr ectr;!ectr
-
-(* provide new variables for address naming *)
-let new_acounter =
- let actr = ref 0 in
- fun () -> incr actr;!actr
-
-let is_coq_forall ct =
- match TR.kind_of_term (RO.whd_betaiota ct) with
- | TR.Prod (_,_,b) -> Termops.dependent (TR.mkRel 1) b
- | _ -> false
-
-(* return the bounded variable (as a string) and the bounded term *)
-let dest_coq_forall ct =
- match TR.kind_of_term (RO.whd_betaiota ct) with
- | TR.Prod (_,_,b) ->
- let x ="jp_"^(string_of_int (new_counter())) in
- let v = TR.mkVar (N.id_of_string x) in
- let c = TR.subst1 v b in (* substitute de Bruijn variable by [v] *)
-(*i print_constr_pair "forall" v c; i*)
- (x, c)
- | _ -> jp_error "dest_coq_forall"
-
-
-(* Apply [ct] to [t]: *)
-let sAPP ct t =
- match TR.kind_of_term (RO.whd_betaiota ct) with
- | TR.Prod (_,_,b) ->
- let c = TR.subst1 t b in
- c
- | _ -> jp_error "sAPP"
-
-
-let is_coq_exists ct =
- if not (HP.is_conjunction ct) then false
- else let (hdapp,args) = TR.decompose_app ct in
- match args with
- | _::la::[] ->
- begin
- try
- match TR.destLambda la with
- | (N.Name _,_,_) -> true
- | _ -> false
- with _ -> false
- end
- | _ -> false
-
-(* return the bounded variable (as a string) and the bounded term *)
-let dest_coq_exists ct =
- let (hdapp,args) = TR.decompose_app ct in
- match args with
- | _::la::[] ->
- begin
- try
- match TR.destLambda la with
- | (N.Name x,t1,t2) ->
- let v = TR.mkVar x in
- let t3 = TR.subst1 v t2 in
-(*i print_constr_pair "exists" v t3; i*)
- (N.string_of_id x, t3)
- | _ -> jp_error "dest_coq_exists"
- with _ -> jp_error "dest_coq_exists"
- end
- | _ -> jp_error "dest_coq_exists"
-
-
-let is_coq_and ct =
- if (HP.is_conjunction ct) && not (is_coq_exists ct)
- && not (is_coq_true ct) then true
- else false
-
-
-(* Parsing modules: *)
-
-let jtbl = Hashtbl.create 53 (* associate for unknown Coq constr. *)
-let rtbl = Hashtbl.create 53 (* reverse table of [jtbl] *)
-
-let dest_coq_symb ct =
- N.string_of_id (TR.destVar ct)
-
-(* provide new names for unknown Coq constr. *)
-(* [ct] is the unknown constr., string [s] is appended to the name encoding *)
-let create_coq_name ct s =
- try
- Hashtbl.find jtbl ct
- with Not_found ->
- let t = ("jp_"^s^(string_of_int (new_ecounter()))) in
- Hashtbl.add jtbl ct t;
- Hashtbl.add rtbl t ct;
- t
-
-let dest_coq_app ct s =
- let (hd, args) = TR.decompose_app ct in
-(*i print_constr hd;
- print_constr_list args; i*)
- if TR.isVar hd then
- (dest_coq_symb hd, args)
- else (* unknown constr *)
- (create_coq_name hd s, args)
-
-let rec parsing2 c = (* for function symbols, variables, constants *)
- if (TR.isApp c) then (* function symbol? *)
- let (f,args) = dest_coq_app c "fun_" in
- JT.fun_ f (List.map parsing2 args)
- else if TR.isVar c then (* identifiable variable or constant *)
- JT.var_ (dest_coq_symb c)
- else (* unknown constr *)
- JT.var_ (create_coq_name c "var_")
-
-(* the main parsing function *)
-let rec parsing c =
- let ct = Reduction.whd_betadeltaiota (Global.env ()) c in
-(* let ct = Reduction.whd_betaiotazeta (Global.env ()) c in *)
- if is_coq_true ct then
- JT.true_
- else if is_coq_false ct then
- JT.false_
- else if is_coq_not ct then
- JT.not_ (parsing (dest_coq_not ct))
- else if is_coq_impl ct then
- let (t1,t2) = dest_coq_impl ct in
- JT.imp_ (parsing t1) (parsing t2)
- else if is_coq_or ct then
- let (t1,t2) = dest_coq_or ct in
- JT.or_ (parsing t1) (parsing t2)
- else if is_coq_and ct then
- let (t1,t2) = dest_coq_and ct in
- JT.and_ (parsing t1) (parsing t2)
- else if is_coq_forall ct then
- let (v,t) = dest_coq_forall ct in
- JT.forall v (parsing t)
- else if is_coq_exists ct then
- let (v,t) = dest_coq_exists ct in
- JT.exists v (parsing t)
- else if TR.isApp ct then (* predicate symbol with arguments *)
- let (p,args) = dest_coq_app ct "P_" in
- JT.pred_ p (List.map parsing2 args)
- else if TR.isVar ct then (* predicate symbol without arguments *)
- let p = dest_coq_symb ct in
- JT.pred_ p []
- else (* unknown predicate *)
- JT.pred_ (create_coq_name ct "Q_") []
-
-(*i
- print_string "??";print_constr ct;
- JT.const_ ("err_"^(string_of_int (new_ecounter())))
-i*)
-
-
-(* Translate JProver terms into Coq constructors: *)
-(* The idea is to retrieve it from [rtbl] if it exists indeed, otherwise
- create one. *)
-let rec constr_of_jterm t =
- if (JT.is_var_term t) then (* a variable *)
- let v = JT.dest_var t in
- try
- Hashtbl.find rtbl v
- with Not_found -> TR.mkVar (N.id_of_string v)
- else if (JT.is_fun_term t) then (* a function symbol *)
- let (f,ts) = JT.dest_fun t in
- let f' = try Hashtbl.find rtbl f with Not_found -> TR.mkVar (N.id_of_string f) in
- TR.mkApp (f', Array.of_list (List.map constr_of_jterm ts))
- else jp_error "constr_of_jterm"
-
-
-(* Coq tactics for Sequent Calculus LJ: *)
-(* Note that for left-rule a name indicating the being applied rule
- in Coq's Hints is required; for right-rule a name is also needed
- if it will pass some subterm to the left-hand side.
- However, all of these can be computed by the path [id] of the being
- applied rule.
-*)
-
-let assoc_addr = Hashtbl.create 97
-
-let short_addr s =
- let ad =
- try
- Hashtbl.find assoc_addr s
- with Not_found ->
- let t = ("jp_H"^(string_of_int (new_acounter()))) in
- Hashtbl.add assoc_addr s t;
- t
- in
- N.id_of_string ad
-
-(* and-right *)
-let dyn_andr =
- T.split RA.NoBindings
-
-(* For example, the following implements the [and-left] rule: *)
-let dyn_andl id = (* [id1]: left child; [id2]: right child *)
- let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
- (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id))) (T.intros_using [id1;id2]))
-
-let dyn_orr1 =
- T.left RA.NoBindings
-
-let dyn_orr2 =
- T.right RA.NoBindings
-
-let dyn_orl id =
- let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
- (TCL.tclTHENS (T.simplest_elim (TR.mkVar (short_addr id)))
- [T.intro_using id1; T.intro_using id2])
-
-let dyn_negr id =
- let id1 = id^"_1_1" in
- HT.h_intro (short_addr id1)
-
-let dyn_negl id =
- T.simplest_elim (TR.mkVar (short_addr id))
-
-let dyn_impr id =
- let id1 = id^"_1_1" in
- HT.h_intro (short_addr id1)
-
-let dyn_impl id gl =
- let t = TM.pf_get_hyp_typ gl (short_addr id) in
- let ct = Reduction.whd_betadeltaiota (Global.env ()) t in (* unfolding *)
- let (_,b) = dest_coq_impl ct in
- let id2 = (short_addr (id^"_1_2")) in
- (TCL.tclTHENLAST
- (TCL.tclTHENS (T.cut b) [T.intro_using id2;TCL.tclIDTAC])
- (T.apply_term (TR.mkVar (short_addr id))
- [TR.mkMeta (Evarutil.new_meta())])) gl
-
-let dyn_allr c = (* [c] must be an eigenvariable which replaces [v] *)
- HT.h_intro (N.id_of_string c)
-
-(* [id2] is the path of the instantiated term for [id]*)
-let dyn_alll id id2 t gl =
- let id' = short_addr id in
- let id2' = short_addr id2 in
- let ct = TM.pf_get_hyp_typ gl id' in
- let ct' = Reduction.whd_betadeltaiota (Global.env ()) ct in (* unfolding *)
- let ta = sAPP ct' t in
- TCL.tclTHENS (T.cut ta) [T.intro_using id2'; T.apply (TR.mkVar id')] gl
-
-let dyn_exl id id2 c = (* [c] must be an eigenvariable *)
- (TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id)))
- (T.intros_using [(N.id_of_string c);(short_addr id2)]))
-
-let dyn_exr t =
- T.one_constructor 1 (RA.ImplicitBindings [t])
-
-let dyn_falsel = dyn_negl
-
-let dyn_truer =
- T.one_constructor 1 RA.NoBindings
-
-(* Do the proof by the guidance of JProver. *)
-
-let do_one_step inf =
- let (rule, (s1, t1), (s2, t2)) = inf in
- begin
-(*i if not (Jterm.is_xnil_term t2) then
- begin
- print_string "1: "; JT.print_term stdout t2; print_string "\n";
- print_string "2: "; print_constr (constr_of_jterm t2); print_string "\n";
- end;
-i*)
- match rule with
- | Andl -> dyn_andl s1
- | Andr -> dyn_andr
- | Orl -> dyn_orl s1
- | Orr1 -> dyn_orr1
- | Orr2 -> dyn_orr2
- | Impr -> dyn_impr s1
- | Impl -> dyn_impl s1
- | Negr -> dyn_negr s1
- | Negl -> dyn_negl s1
- | Allr -> dyn_allr (JT.dest_var t2)
- | Alll -> dyn_alll s1 s2 (constr_of_jterm t2)
- | Exr -> dyn_exr (Tactics.inj_open (constr_of_jterm t2))
- | Exl -> dyn_exl s1 s2 (JT.dest_var t2)
- | Ax -> T.assumption (*i TCL.tclIDTAC i*)
- | Truer -> dyn_truer
- | Falsel -> dyn_falsel s1
- | _ -> jp_error "do_one_step"
- (* this is impossible *)
- end
-;;
-
-(* Parameter [tr] is the reconstucted proof tree from output of JProver. *)
-let do_coq_proof tr =
- let rec rec_do trs =
- match trs with
- | JPempty -> TCL.tclIDTAC
- | JPAx h -> do_one_step h
- | JPA (h, t) -> TCL.tclTHEN (do_one_step h) (rec_do t)
- | JPB (h, left, right) -> TCL.tclTHENS (do_one_step h) [rec_do left; rec_do right]
- in
- rec_do tr
-
-
-(* Rebuild the proof tree from the output of JProver: *)
-
-(* Since some universal variables are not necessarily first-order,
- lazy substitution may happen. They are recorded in [rtbl]. *)
-let reg_unif_subst t1 t2 =
- let (v,_,_) = JT.dest_all t1 in
- Hashtbl.add rtbl v (TR.mkVar (N.id_of_string (JT.dest_var t2)))
-
-let count_jpbranch one_inf =
- let (rule, (_, t1), (_, t2)) = one_inf in
- begin
- match rule with
- | Ax -> JP0
- | Orr1 | Orr2 | Negl | Impr | Alll | Exr | Exl -> JP1
- | Andr | Orl -> JP2
- | Negr -> if (JT.is_true_term t1) then JPT else JP1
- | Andl -> if (JT.is_false_term t1) then JPF else JP1
- | Impl -> JP2' (* reverse the sons of [Impl] since [dyn_impl] reverses them *)
- | Allr -> reg_unif_subst t1 t2; JP1
- | _ -> jp_error "count_jpbranch"
- end
-
-let replace_by r = function
- (rule, a, b) -> (r, a, b)
-
-let rec build_jptree inf =
- match inf with
- | [] -> ([], JPempty)
- | h::r ->
- begin
- match count_jpbranch h with
- | JP0 -> (r,JPAx h)
- | JP1 -> let (r1,left) = build_jptree r in
- (r1, JPA(h, left))
- | JP2 -> let (r1,left) = build_jptree r in
- let (r2,right) = build_jptree r1 in
- (r2, JPB(h, left, right))
- | JP2' -> let (r1,left) = build_jptree r in (* for [Impl] *)
- let (r2,right) = build_jptree r1 in
- (r2, JPB(h, right, left))
- | JPT -> let (r1,left) = build_jptree r in (* right True *)
- (r1, JPAx (replace_by Truer h))
- | JPF -> let (r1,left) = build_jptree r in (* left False *)
- (r1, JPAx (replace_by Falsel h))
- end
-
-
-(* The main function: *)
-(* [limits] is the multiplicity limit. *)
-let jp limits gls =
- let concl = TM.pf_concl gls in
- let ct = concl in
-(*i print_constr ct; i*)
- Hashtbl.clear jtbl; (* empty the hash tables *)
- Hashtbl.clear rtbl;
- Hashtbl.clear assoc_addr;
- let t = parsing ct in
-(*i JT.print_term stdout t; i*)
- try
- let p = (J.prover limits [] t) in
-(*i print_string "\n";
- JLogic.print_inf p; i*)
- let (il,tr) = build_jptree p in
- if (il = []) then
- begin
- Pp.msgnl (Pp.str "Proof is built.");
- do_coq_proof tr gls
- end
- else UT.error "Cannot reconstruct proof tree from JProver."
- with e -> Pp.msgnl (Pp.str "JProver fails to prove this:");
- JT.print_error_msg e;
- UT.error "JProver terminated."
-
-(* an unfailed generalization procedure *)
-let non_dep_gen b gls =
- let concl = TM.pf_concl gls in
- if (not (Termops.dependent b concl)) then
- T.generalize [b] gls
- else
- TCL.tclIDTAC gls
-
-let rec unfail_gen = function
- | [] -> TCL.tclIDTAC
- | h::r ->
- TCL.tclTHEN
- (TCL.tclORELSE (non_dep_gen h) (TCL.tclIDTAC))
- (unfail_gen r)
-
-(*
-(* no argument, which stands for no multiplicity limit *)
-let jp gls =
- let ls = List.map (fst) (TM.pf_hyps_types gls) in
-(*i T.generalize (List.map TR.mkVar ls) gls i*)
- (* generalize the context *)
- TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
- (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
- (jp None)) gls
-*)
-(*
-let dyn_jp l gls =
- assert (l = []);
- jp
-*)
-
-(* one optional integer argument for the multiplicity *)
-let jpn n gls =
- let ls = List.map (fst) (TM.pf_hyps_types gls) in
- TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
- (TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
- (jp n)) gls
-
-TACTIC EXTEND jprover
- [ "jp" natural_opt(n) ] -> [ jpn n ]
-END
-
-(*
-TACTIC EXTEND Andl
- [ "Andl" ident(id)] -> [ ... (Andl id) ... ].
-END
-*)
diff --git a/contrib/jprover/jterm.ml b/contrib/jprover/jterm.ml
deleted file mode 100644
index 7fc923a5..00000000
--- a/contrib/jprover/jterm.ml
+++ /dev/null
@@ -1,872 +0,0 @@
-open Printf
-open Opname
-open List
-
-(* Definitions of [jterm]: *)
-type param = param'
- and operator = operator'
- and term = term'
- and bound_term = bound_term'
- and param' =
- | Number of int
- | String of string
- | Token of string
- | Var of string
- | ParamList of param list
- and operator' = { op_name : opname; op_params : param list }
- and term' = { term_op : operator; term_terms : bound_term list }
- and bound_term' = { bvars : string list; bterm : term }
-;;
-
-(* Debugging tools: *)
-(*i*)
-let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
- Format.print_flush (); let _ = input_char stdin in ()
-(*i*)
-
-type error_msg =
- | TermMatchError of term * string
- | StringError of string
-
-exception RefineError of string * error_msg
-
-let ref_raise = function
- | RefineError(s,e) -> raise (RefineError(s,e))
- | _ -> raise (RefineError ("Jterm", StringError "unexpected error"))
-
-(* Printing utilities: *)
-
-let fprint_str ostream s =
- let _ = fprintf ostream "%s." s in ostream
-
-let fprint_str_list ostream sl =
- ignore (List.fold_left fprint_str ostream sl);
- Format.print_flush ()
-
-let fprint_opname ostream = function
- { opname_token= tk; opname_name = sl } ->
- fprint_str_list ostream sl
-
-let rec fprint_param ostream = function
- | Number n -> fprintf ostream " %d " n
- | String s -> fprint_str_list ostream [s]
- | Token t -> fprint_str_list ostream [t]
- | Var v -> fprint_str_list ostream [v]
- | ParamList ps -> fprint_param_list ostream ps
-and fprint_param_list ostream = function
- | [] -> ()
- | param::r -> fprint_param ostream param;
- fprint_param_list ostream r
-;;
-
-let print_strs = fprint_str_list stdout
-
-
-(* Interface to [Jall.ml]: *)
-(* It is extracted from Meta-Prl's standard implementation. *)
-(*c begin of the extraction *)
-
-type term_subst = (string * term) list
-let mk_term op bterms = { term_op = op; term_terms = bterms }
-let make_term x = x (* external [make_term : term' -> term] = "%identity" *)
-let dest_term x = x (* external [dest_term : term -> term'] = "%identity" *)
-let mk_op name params =
- { op_name = name; op_params = params }
-
-let make_op x = x (* external [make_op : operator' -> operator] = "%identity" *)
-let dest_op x = x (* external [dest_op : operator -> operator'] = "%identity" *)
-let mk_bterm bvars term = { bvars = bvars; bterm = term }
-let make_bterm x = x (* external [make_bterm : bound_term' -> bound_term] = "%identity" *)
-let dest_bterm x = x (* external [dest_bterm : bound_term -> bound_term'] = "%identity" *)
-let make_param x = x (* external [make_param : param' -> param] = "%identity" *)
-let dest_param x = x (* external [dest_param : param -> param'] = "%identity" *)
-
-(*
- * Operator names.
- *)
-let opname_of_term = function
- { term_op = { op_name = name } } ->
- name
-
-(*
- * Get the subterms.
- * None of the subterms should be bound.
- *)
-let subterms_of_term t =
- List.map (fun { bterm = t } -> t) t.term_terms
-
-let subterm_count { term_terms = terms } =
- List.length terms
-
-let subterm_arities { term_terms = terms } =
- List.map (fun { bvars = vars } -> List.length vars) terms
-
-(*
- * Manifest terms are injected into the "perv" module.
- *)
-let xperv = make_opname ["Perv"]
-let sequent_opname = mk_opname "sequent" xperv
-
-(*
- * Variables.
- *)
-
-let var_opname = make_opname ["var"]
-
-(*
- * See if a term is a variable.
- *)
-let is_var_term = function
- | { term_op = { op_name = opname; op_params = [Var v] };
- term_terms = []
- } when Opname.eq opname var_opname -> true
- | _ ->
- false
-
-(*
- * Destructor for a variable.
- *)
-let dest_var = function
- | { term_op = { op_name = opname; op_params = [Var v] };
- term_terms = []
- } when Opname.eq opname var_opname -> v
- | t ->
- ref_raise(RefineError ("dest_var", TermMatchError (t, "not a variable")))
-(*
- * Make a variable.
- *)
-let mk_var_term v =
- { term_op = { op_name = var_opname; op_params = [Var v] };
- term_terms = []
- }
-
-(*
- * Simple terms
- *)
-(*
- * "Simple" terms have no parameters and no binding variables.
- *)
-let is_simple_term_opname name = function
- | { term_op = { op_name = name'; op_params = [] };
- term_terms = bterms
- } when Opname.eq name' name ->
- let rec aux = function
- | { bvars = []; bterm = _ }::t -> aux t
- | _::t -> false
- | [] -> true
- in
- aux bterms
- | _ -> false
-
-let mk_any_term op terms =
- let aux t =
- { bvars = []; bterm = t }
- in
- { term_op = op; term_terms = List.map aux terms }
-
-let mk_simple_term name terms =
- mk_any_term { op_name = name; op_params = [] } terms
-
-let dest_simple_term = function
- | ({ term_op = { op_name = name; op_params = [] };
- term_terms = bterms
- } : term) as t ->
- let aux = function
- | { bvars = []; bterm = t } ->
- t
- | _ ->
- ref_raise(RefineError ("dest_simple_term", TermMatchError (t, "binding vars exist")))
- in
- name, List.map aux bterms
- | t ->
- ref_raise(RefineError ("dest_simple_term", TermMatchError (t, "params exist")))
-
-let dest_simple_term_opname name = function
- | ({ term_op = { op_name = name'; op_params = [] };
- term_terms = bterms
- } : term) as t ->
- if Opname.eq name name' then
- let aux = function
- | { bvars = []; bterm = t } -> t
- | _ -> ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "binding vars exist")))
- in
- List.map aux bterms
- else
- ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "opname mismatch")))
- | t ->
- ref_raise(RefineError ("dest_simple_term_opname", TermMatchError (t, "params exist")))
-
-(*
- * Bound terms.
- *)
-let mk_simple_bterm bterm =
- { bvars = []; bterm = bterm }
-
-let dest_simple_bterm = function
- | { bvars = []; bterm = bterm } ->
- bterm
- | _ ->
- ref_raise(RefineError ("dest_simple_bterm", StringError ("bterm is not simple")))
-
-(* Copy from [term_op_std.ml]: *)
-(*i modified for Jprover, as a patch... i*)
-let mk_string_term opname s =
- { term_op = { op_name = opname; op_params = [String s] }; term_terms = [] }
-
-(*i let mk_string_term opname s =
- let new_opname={opname_token=opname.opname_token; opname_name=(List.tl opname.opname_name)@[s]} in
- { term_op = { op_name = new_opname; op_params = [String (List.hd opname.opname_name)] }; term_terms = [] }
-i*)
-
-(* Copy from [term_subst_std.ml]: *)
-
-let rec free_vars_term gvars bvars = function
- | { term_op = { op_name = opname; op_params = [Var v] }; term_terms = bterms } when Opname.eq opname var_opname ->
- (* This is a variable *)
- let gvars' =
- if List.mem v bvars or List.mem v gvars then
- gvars
- else
- v::gvars
- in
- free_vars_bterms gvars' bvars bterms
- | { term_terms = bterms } ->
- free_vars_bterms gvars bvars bterms
- and free_vars_bterms gvars bvars = function
- | { bvars = vars; bterm = term}::l ->
- let bvars' = vars @ bvars in
- let gvars' = free_vars_term gvars bvars' term in
- free_vars_bterms gvars' bvars l
- | [] ->
- gvars
-
-let free_vars_list = free_vars_term [] []
-
-
-(* Termop: *)
-
-let is_no_subterms_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = []
- } ->
- Opname.eq opname' opname
- | _ ->
- false
-
-(*
- * Terms with one subterm.
- *)
-let is_dep0_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = [] }]
- } -> Opname.eq opname' opname
- | _ -> false
-
-let mk_dep0_term opname t =
- { term_op = { op_name = opname; op_params = [] };
- term_terms = [{ bvars = []; bterm = t }]
- }
-
-let dest_dep0_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = []; bterm = t }]
- } when Opname.eq opname' opname -> t
- | t -> ref_raise(RefineError ("dest_dep0_term", TermMatchError (t, "not a dep0 term")))
-
-(*
- * Terms with two subterms.
- *)
-let is_dep0_dep0_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = [] }; { bvars = [] }]
- } -> Opname.eq opname' opname
- | _ -> false
-
-let mk_dep0_dep0_term opname = fun
- t1 t2 ->
- { term_op = { op_name = opname; op_params = [] };
- term_terms = [{ bvars = []; bterm = t1 };
- { bvars = []; bterm = t2 }]
- }
-
-let dest_dep0_dep0_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = []; bterm = t1 };
- { bvars = []; bterm = t2 }]
- } when Opname.eq opname' opname -> t1, t2
- | t -> ref_raise(RefineError ("dest_dep0_dep0_term", TermMatchError (t, "bad arity")))
-
-(*
- * Bound term.
- *)
-
-let is_dep0_dep1_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = [] }; { bvars = [_] }]
- } when Opname.eq opname' opname -> true
- | _ -> false
-
-let is_dep0_dep1_any_term = function
- | { term_op = { op_params = [] };
- term_terms = [{ bvars = [] }; { bvars = [_] }]
- } -> true
- | _ -> false
-
-let mk_dep0_dep1_term opname = fun
- v t1 t2 -> { term_op = { op_name = opname; op_params = [] };
- term_terms = [{ bvars = []; bterm = t1 };
- { bvars = [v]; bterm = t2 }]
- }
-
-let dest_dep0_dep1_term opname = function
- | { term_op = { op_name = opname'; op_params = [] };
- term_terms = [{ bvars = []; bterm = t1 };
- { bvars = [v]; bterm = t2 }]
- } when Opname.eq opname' opname -> v, t1, t2
- | t -> ref_raise(RefineError ("dest_dep0_dep1_term", TermMatchError (t, "bad arity")))
-
-let rec smap f = function
- | [] -> []
- | (hd::tl) as l ->
- let hd' = f hd in
- let tl' = smap f tl in
- if (hd==hd')&&(tl==tl') then l else hd'::tl'
-
-let rec try_check_assoc v v' = function
- | [] -> raise Not_found
- | (v1,v2)::tl ->
- begin match v=v1, v'=v2 with
- | true, true -> true
- | false, false -> try_check_assoc v v' tl
- | _ -> false
- end
-
-let rec zip_list l l1 l2 = match (l1,l2) with
- | (h1::t1), (h2::t2) ->
- zip_list ((h1,h2)::l) t1 t2
- | [], [] ->
- l
- | _ -> raise (Failure "Term.zip_list")
-
-let rec assoc_in_range eq y = function
- | (_, y')::tl ->
- (eq y y') || (assoc_in_range eq y tl)
- | [] ->
- false
-
-let rec check_assoc v v' = function
- | [] -> v=v'
- | (v1,v2)::tl ->
- begin match v=v1, v'=v2 with
- | true, true -> true
- | false, false -> check_assoc v v' tl
- | _ -> false
- end
-
-let rec zip a b = match (a,b) with
- | (h1::t1), (h2::t2) ->
- (h1, h2) :: zip t1 t2
- | [], [] ->
- []
- |
- _ -> raise (Failure "Term.zip")
-
-let rec for_all2 f l1 l2 =
- match (l1,l2) with
- | h1::t1, h2::t2 -> for_all2 f t1 t2 & f h1 h2
- | [], [] -> true
- | _ -> false
-
-let newname v i =
- v ^ "_" ^ (string_of_int i)
-
-let rec new_var v avoid i =
- let v' = newname v i in
- if avoid v'
- then new_var v avoid (succ i)
- else v'
-
-let vnewname v avoid = new_var v avoid 1
-
-let rev_mem a b = List.mem b a
-
-let rec find_index_aux v i = function
- | h::t ->
- if h = v then
- i
- else
- find_index_aux v (i + 1) t
- | [] ->
- raise Not_found
-
-let find_index v l = find_index_aux v 0 l
-
-let rec remove_elements l1 l2 =
- match l1, l2 with
- | flag::ft, h::t ->
- if flag then
- remove_elements ft t
- else
- h :: remove_elements ft t
- | _, l ->
- l
-
-let rec subtract l1 l2 =
- match l1 with
- | h::t ->
- if List.mem h l2 then
- subtract t l2
- else
- h :: subtract t l2
- | [] ->
- []
-
-let rec fv_mem fv v =
- match fv with
- | [] -> false
- | h::t ->
- List.mem v h || fv_mem t v
-
-let rec new_vars fv = function
- | [] -> []
- | v::t ->
- (* Rename the first one, then add it to free vars *)
- let v' = vnewname v (fv_mem fv) in
- v'::(new_vars ([v']::fv) t)
-
-let rec fsubtract l = function
- | [] -> l
- | h::t ->
- fsubtract (subtract l h) t
-
-let add_renames_fv r l =
- let rec aux = function
- | [] -> l
- | v::t -> [v]::(aux t)
- in
- aux r
-
-let add_renames_terms r l =
- let rec aux = function
- | [] -> l
- | v::t -> (mk_var_term v)::(aux t)
- in
- aux r
-
-(*
- * First order simultaneous substitution.
- *)
-let rec subst_term terms fv vars = function
- | { term_op = { op_name = opname; op_params = [Var(v)] }; term_terms = [] } as t
- when Opname.eq opname var_opname->
- (* Var case *)
- begin
- try List.nth terms (find_index v vars) with
- Not_found ->
- t
- end
- | { term_op = op; term_terms = bterms } ->
- (* Other term *)
- { term_op = op; term_terms = subst_bterms terms fv vars bterms }
-
-and subst_bterms terms fv vars bterms =
- (* When subst through bterms, catch binding occurrences *)
- let rec subst_bterm = function
- | { bvars = []; bterm = term } ->
- (* Optimize the common case *)
- { bvars = []; bterm = subst_term terms fv vars term }
-
- | { bvars = bvars; bterm = term } ->
- (* First subtract bound instances *)
- let flags = List.map (function v -> List.mem v bvars) vars in
- let vars' = remove_elements flags vars in
- let fv' = remove_elements flags fv in
- let terms' = remove_elements flags terms in
-
- (* If any of the binding variables are free, rename them *)
- let renames = subtract bvars (fsubtract bvars fv') in
- if renames <> [] then
- let fv'' = (free_vars_list term)::fv' in
- let renames' = new_vars fv'' renames in
- { bvars = subst_bvars renames' renames bvars;
- bterm = subst_term
- (add_renames_terms renames' terms')
- (add_renames_fv renames' fv')
- (renames @ vars')
- term
- }
- else
- { bvars = bvars;
- bterm = subst_term terms' fv' vars' term
- }
- in
- List.map subst_bterm bterms
-
-and subst_bvars renames' renames bvars =
- let subst_bvar v =
- try List.nth renames' (find_index v renames) with
- Not_found -> v
- in
- List.map subst_bvar bvars
-
-let subst term vars terms =
- subst_term terms (List.map free_vars_list terms) vars term
-
-(*i bug!!! in the [term_std] module
- let subst1 t var term =
- let fv = free_vars_list term in
- if List.mem var fv then
- subst_term [term] [fv] [var] t
- else
- t
-The following is the correct implementation
-i*)
-
-let subst1 t var term =
-if List.mem var (free_vars_list t) then
- subst_term [term] [free_vars_list term] [var] t
-else
- t
-
-let apply_subst t s =
- let vs,ts = List.split s in
- subst t vs ts
-
-let rec equal_params p1 p2 =
- match p1, p2 with
- | Number n1, Number n2 ->
- n1 = n2
- | ParamList pl1, ParamList pl2 ->
- List.for_all2 equal_params pl1 pl2
- | _ ->
- p1 = p2
-
-let rec equal_term vars t t' =
- match t, t' with
- | { term_op = { op_name = opname1; op_params = [Var v] };
- term_terms = []
- },
- { term_op = { op_name = opname2; op_params = [Var v'] };
- term_terms = []
- } when Opname.eq opname1 var_opname & Opname.eq opname2 var_opname ->
- check_assoc v v' vars
- | { term_op = { op_name = name1; op_params = params1 }; term_terms = bterms1 },
- { term_op = { op_name = name2; op_params = params2 }; term_terms = bterms2 } ->
- (Opname.eq name1 name2)
- & (for_all2 equal_params params1 params2)
- & (equal_bterms vars bterms1 bterms2)
-and equal_bterms vars bterms1 bterms2 =
- let equal_bterm = fun
- { bvars = bvars1; bterm = term1 }
- { bvars = bvars2; bterm = term2 } ->
- equal_term (zip_list vars bvars1 bvars2) term1 term2
- in
- for_all2 equal_bterm bterms1 bterms2
-
-
-let alpha_equal t1 t2 =
- try equal_term [] t1 t2 with Failure _ -> false
-
-let var_subst t t' v =
- let { term_op = { op_name = opname } } = t' in
- let vt = mk_var_term v in
- let rec subst_term = function
- { term_op = { op_name = opname'; op_params = params };
- term_terms = bterms
- } as t ->
- (* Check if this is the same *)
- if Opname.eq opname' opname & alpha_equal t t' then
- vt
- else
- { term_op = { op_name = opname'; op_params = params };
- term_terms = List.map subst_bterm bterms
- }
-
- and subst_bterm { bvars = vars; bterm = term } =
- if List.mem v vars then
- let av = vars @ (free_vars_list term) in
- let v' = vnewname v (fun v -> List.mem v av) in
- let rename var = if var = v then v' else var in
- let term = subst1 term v (mk_var_term v') in
- { bvars = smap rename vars; bterm = subst_term term }
- else
- { bvars = vars; bterm = subst_term term }
- in
- subst_term t
-
-let xnil_opname = mk_opname "nil" xperv
-let xnil_term = mk_simple_term xnil_opname []
-let is_xnil_term = is_no_subterms_term xnil_opname
-
-(*c End of the extraction from Meta-Prl *)
-
-(* Huang's modification: *)
-let all_opname = make_opname ["quantifier";"all"]
-let is_all_term = is_dep0_dep1_term all_opname
-let dest_all = dest_dep0_dep1_term all_opname
-let mk_all_term = mk_dep0_dep1_term all_opname
-
-let exists_opname = make_opname ["quantifier";"exst"]
-let is_exists_term = is_dep0_dep1_term exists_opname
-let dest_exists = dest_dep0_dep1_term exists_opname
-let mk_exists_term = mk_dep0_dep1_term exists_opname
-
-let or_opname = make_opname ["connective";"or"]
-let is_or_term = is_dep0_dep0_term or_opname
-let dest_or = dest_dep0_dep0_term or_opname
-let mk_or_term = mk_dep0_dep0_term or_opname
-
-let and_opname = make_opname ["connective";"and"]
-let is_and_term = is_dep0_dep0_term and_opname
-let dest_and = dest_dep0_dep0_term and_opname
-let mk_and_term = mk_dep0_dep0_term and_opname
-
-let cor_opname = make_opname ["connective";"cor"]
-let is_cor_term = is_dep0_dep0_term cor_opname
-let dest_cor = dest_dep0_dep0_term cor_opname
-let mk_cor_term = mk_dep0_dep0_term cor_opname
-
-let cand_opname = make_opname ["connective";"cand"]
-let is_cand_term = is_dep0_dep0_term cand_opname
-let dest_cand = dest_dep0_dep0_term cand_opname
-let mk_cand_term = mk_dep0_dep0_term cand_opname
-
-let implies_opname = make_opname ["connective";"=>"]
-let is_implies_term = is_dep0_dep0_term implies_opname
-let dest_implies = dest_dep0_dep0_term implies_opname
-let mk_implies_term = mk_dep0_dep0_term implies_opname
-
-let iff_opname = make_opname ["connective";"iff"]
-let is_iff_term = is_dep0_dep0_term iff_opname
-let dest_iff = dest_dep0_dep0_term iff_opname
-let mk_iff_term = mk_dep0_dep0_term iff_opname
-
-let not_opname = make_opname ["connective";"not"]
-let is_not_term = is_dep0_term not_opname
-let dest_not = dest_dep0_term not_opname
-let mk_not_term = mk_dep0_term not_opname
-
-let var_ = mk_var_term
-let fun_opname = make_opname ["function"]
-let fun_ f ts = mk_any_term {op_name = fun_opname; op_params = [String f] } ts
-
-let is_fun_term = function
- | { term_op = { op_name = opname; op_params = [String f] }}
- when Opname.eq opname fun_opname -> true
- | _ ->
- false
-
-let dest_fun = function
- | { term_op = { op_name = opname; op_params = [String f] }; term_terms = ts}
- when Opname.eq opname fun_opname -> (f, List.map (fun { bterm = t } -> t) ts)
- | t ->
- ref_raise(RefineError ("dest_fun", TermMatchError (t, "not a function symbol")))
-
-let const_ c = fun_ c []
-let is_const_term = function
- | { term_op = { op_name = opname; op_params = [String f] }; term_terms = [] }
- when Opname.eq opname fun_opname -> true
- | _ ->
- false
-
-let dest_const t =
- let (n, ts) = dest_fun t in n
-
-let pred_opname = make_opname ["predicate"]
-let pred_ p ts = mk_any_term {op_name = pred_opname; op_params = [String p] } ts
-
-let not_ = mk_not_term
-let and_ = mk_and_term
-let or_ = mk_or_term
-let imp_ = mk_implies_term
-let cand_ = mk_cand_term
-let cor_ = mk_cor_term
-let iff_ = mk_iff_term
-let nil_term = {term_op={op_name=nil_opname; op_params=[]}; term_terms=[] }
-let forall v t = mk_all_term v nil_term t
-let exists v t= mk_exists_term v nil_term t
-let rec wbin op = function
- | [] -> raise (Failure "Term.wbin")
- | [t] -> t
- | t::r -> op t (wbin op r)
-
-let wand_ = wbin and_
-let wor_ = wbin or_
-let wimp_ = wbin imp_
-
-(*i let true_opname = make_opname ["bool";"true"]
-let is_true_term = is_no_subterms_term true_opname
-let true_ = mk_simple_term true_opname []
-let false_ = not_ true_
-
-let is_false_term t =
- if is_not_term t then
- let t1 = dest_not t in
- is_true_term t1
- else
- false
-i*)
-
-let dummy_false_ = mk_simple_term (make_opname ["bool";"false"]) []
-let dummy_true_ = mk_simple_term (make_opname ["bool";"true"]) []
-let false_ = and_ (dummy_false_) (not_ dummy_false_)
-let true_ = not_ (and_ (dummy_true_) (not_ dummy_true_))
-
-let is_false_term t =
- if (alpha_equal t false_) then true
- else false
-
-let is_true_term t =
- if (alpha_equal t true_) then true
- else false
-
-(* Print a term [t] via the [ostream]: *)
-let rec fprint_term ostream t prec =
- let l_print op_prec =
- if (prec > op_prec) then fprintf ostream "(" in
- let r_print op_prec =
- if (prec > op_prec) then fprintf ostream ")" in
- if is_false_term t then (* false *)
- fprint_str_list ostream ["False"]
- else if is_true_term t then (* true *)
- fprint_str_list ostream ["True"]
- else if is_all_term t then (* for all *)
- let v, t1, t2 = dest_all t in
- fprint_str_list ostream ["A."^v];
- fprint_term ostream t2 4
- else if is_exists_term t then (* exists *)
- let v, t1, t2 = dest_exists t in
- fprint_str_list ostream ["E."^v];
- fprint_term ostream t2 4 (* implication *)
- else if is_implies_term t then
- let t1, t2 = dest_implies t in
- l_print 0;
- fprint_term ostream t1 1;
- fprint_str_list ostream ["=>"];
- fprint_term ostream t2 0;
- r_print 0
- else if is_and_term t then (* logical and *)
- let t1, t2 = dest_and t in
- l_print 3;
- fprint_term ostream t1 3;
- fprint_str_list ostream ["&"];
- fprint_term ostream t2 3;
- r_print 3
- else if is_or_term t then (* logical or *)
- let t1, t2 = dest_or t in
- l_print 2;
- fprint_term ostream t1 2;
- fprint_str_list ostream ["|"];
- fprint_term ostream t2 2;
- r_print 2
- else if is_not_term t then (* logical not *)
- let t2 = dest_not t in
- fprint_str_list ostream ["~"];
- fprint_term ostream t2 4 (* nil term *)
- else if is_xnil_term t then
- fprint_str_list ostream ["NIL"]
- else match t with (* other cases *)
- { term_op = { op_name = opname; op_params = opparm }; term_terms = bterms} ->
- if (Opname.eq opname pred_opname) || (Opname.eq opname fun_opname) then
- begin
- fprint_param_list ostream opparm;
- if bterms != [] then
- begin
- fprintf ostream "(";
- fprint_bterm_list ostream prec bterms;
- fprintf ostream ")";
- end
- end else
- begin
- fprintf ostream "[";
-(* fprint_opname ostream opname;
- fprintf ostream ": "; *)
- fprint_param_list ostream opparm;
- if bterms != [] then
- begin
- fprintf ostream "(";
- fprint_bterm_list ostream prec bterms;
- fprintf ostream ")";
- end;
- fprintf ostream "]"
- end
-and fprint_bterm_list ostream prec = function
- | [] -> ()
- | {bvars=bv; bterm=bt}::r ->
- fprint_str_list ostream bv;
- fprint_term ostream bt prec;
- if (r<>[]) then fprint_str_list ostream [","];
- fprint_bterm_list ostream prec r
-;;
-
-
-let print_term ostream t =
- Format.print_flush ();
- fprint_term ostream t 0;
- Format.print_flush ()
-
-let print_error_msg = function
- | RefineError(s,e) -> print_string ("(module "^s^") ");
- begin
- match e with
- | TermMatchError(t,s) -> print_term stdout t; print_string (s^"\n")
- | StringError s -> print_string (s^"\n")
- end
- | ue -> print_string "Unexpected error for Jp.\n";
- raise ue
-
-
-(* Naive implementation for [jterm] substitution, unification, etc.: *)
-let substitute subst term =
- apply_subst term subst
-
-(* A naive unification algorithm: *)
-let compsubst subst1 subst2 =
- (List.map (fun (v, t) -> (v, substitute subst1 t)) subst2) @ subst1
-;;
-
-let rec extract_terms = function
- | [] -> []
- | h::r -> let {bvars=_; bterm=bt}=h in bt::extract_terms r
-
-(* Occurs check: *)
-let occurs v t =
- let rec occur_rec t =
- if is_var_term t then v=dest_var t
- else let { term_op = _ ; term_terms = bterms} = t in
- let sons = extract_terms bterms in
- List.exists occur_rec sons
- in
- occur_rec t
-
-(* The naive unification algorithm: *)
-let rec unify2 (term1,term2) =
- if is_var_term term1 then
- if equal_term [] term1 term2 then []
- else let v1 = dest_var term1 in
- if occurs v1 term2 then raise (RefineError ("unify1", StringError ("1")))
- else [v1,term2]
- else if is_var_term term2 then
- let v2 = dest_var term2 in
- if occurs v2 term1 then raise (RefineError ("unify2", StringError ("2")))
- else [v2,term1]
- else
- let { term_op = { op_name = opname1; op_params = params1 };
- term_terms = bterms1
- } = term1
- in
- let { term_op = { op_name = opname2; op_params = params2 };
- term_terms = bterms2
- } = term2
- in
- if Opname.eq opname1 opname2 & params1 = params2 then
- let sons1 = extract_terms bterms1
- and sons2 = extract_terms bterms2 in
- List.fold_left2
- (fun s t1 t2 -> compsubst
- (unify2 (substitute s t1, substitute s t2)) s)
- [] sons1 sons2
- else raise (RefineError ("unify3", StringError ("3")))
-
-let unify term1 term2 = unify2 (term1, term2)
-let unify_mm term1 term2 _ = unify2 (term1, term2)
diff --git a/contrib/jprover/jterm.mli b/contrib/jprover/jterm.mli
deleted file mode 100644
index 0bc42010..00000000
--- a/contrib/jprover/jterm.mli
+++ /dev/null
@@ -1,110 +0,0 @@
-(* This module is modified and extracted from Meta-Prl. *)
-
-(* Definitions of [jterm]: *)
-type param = param'
-and operator = operator'
-and term = term'
-and bound_term = bound_term'
-and param' =
- | Number of int
- | String of string
- | Token of string
- | Var of string
- | ParamList of param list
-and operator' = { op_name : Opname.opname; op_params : param list; }
-and term' = { term_op : operator; term_terms : bound_term list; }
-and bound_term' = { bvars : string list; bterm : term; }
-type term_subst = (string * term) list
-
-type error_msg = TermMatchError of term * string | StringError of string
-
-exception RefineError of string * error_msg
-
-(* Collect free variables: *)
-val free_vars_list : term -> string list
-
-(* Substitutions: *)
-val subst_term : term list -> string list list -> string list -> term -> term
-val subst : term -> string list -> term list -> term
-val subst1 : term -> string -> term -> term
-val var_subst : term -> term -> string -> term
-val apply_subst : term -> (string * term) list -> term
-
-(* Unification: *)
-val unify_mm : term -> term -> 'a -> (string * term) list
-
-val xnil_term : term'
-
-(* Testing functions: *)
-val is_xnil_term : term' -> bool
-val is_var_term : term' -> bool
-val is_true_term : term' -> bool
-val is_false_term : term' -> bool
-val is_all_term : term' -> bool
-val is_exists_term : term' -> bool
-val is_or_term : term' -> bool
-val is_and_term : term' -> bool
-val is_cor_term : term' -> bool
-val is_cand_term : term' -> bool
-val is_implies_term : term' -> bool
-val is_iff_term : term' -> bool
-val is_not_term : term' -> bool
-val is_fun_term : term -> bool
-val is_const_term : term -> bool
-
-
-(* Constructors for [jterms]: *)
-val var_ : string -> term'
-val fun_ : string -> term list -> term'
-val const_ : string -> term'
-val pred_ : string -> term list -> term'
-val not_ : term -> term'
-val and_ : term -> term -> term'
-val or_ : term -> term -> term'
-val imp_ : term -> term -> term'
-val cand_ : term -> term -> term'
-val cor_ : term -> term -> term'
-val iff_ : term -> term -> term'
-val false_ : term'
-val true_ : term'
-val nil_term : term'
-val forall : string -> term -> term'
-val exists : string -> term -> term'
-
-
-(* Destructors for [jterm]: *)
-val dest_var : term -> string
-val dest_fun : term -> string * term list
-val dest_const : term -> string
-val dest_not : term -> term
-val dest_iff : term -> term * term
-val dest_implies : term -> term * term
-val dest_cand : term -> term * term
-val dest_cor : term -> term * term
-val dest_and : term -> term * term
-val dest_or : term -> term * term
-val dest_exists : term -> string * term * term
-val dest_all : term -> string * term * term
-
-(* Wide-logical connectives: *)
-val wand_ : term list -> term
-val wor_ : term list -> term
-val wimp_ : term list -> term
-
-(* Printing and debugging tools: *)
-val fprint_str_list : out_channel -> string list -> unit
-val mbreak : string -> unit
-val print_strs : string list -> unit
-val print_term : out_channel -> term -> unit
-val print_error_msg : exn -> unit
-
-(* Other exported functions for [jall.ml]: *)
-val make_term : 'a -> 'a
-val dest_term : 'a -> 'a
-val make_op : 'a -> 'a
-val dest_op : 'a -> 'a
-val make_bterm : 'a -> 'a
-val dest_bterm : 'a -> 'a
-val dest_param : 'a -> 'a
-val mk_var_term : string -> term'
-val mk_string_term : Opname.opname -> string -> term'
diff --git a/contrib/jprover/jtunify.ml b/contrib/jprover/jtunify.ml
deleted file mode 100644
index 91aa6b4b..00000000
--- a/contrib/jprover/jtunify.ml
+++ /dev/null
@@ -1,507 +0,0 @@
-(*
- * Unification procedures for JProver. See jall.mli for more
- * information on JProver.
- *
- * ----------------------------------------------------------------
- *
- * This file is part of MetaPRL, a modular, higher order
- * logical framework that provides a logical programming
- * environment for OCaml and other languages.
- *
- * See the file doc/index.html for information on Nuprl,
- * OCaml, and more information about this system.
- *
- * Copyright (C) 2000 Stephan Schmitt
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Author: Stephan Schmitt <schmitts@spmail.slu.edu>
- * Modified by: Aleksey Nogin <nogin@cs.cornell.edu>
- *)
-
-exception Not_unifiable
-exception Failed
-
-let jprover_bug = Invalid_argument "Jprover bug (Jtunify module)"
-
-(* ************ T-STRING UNIFICATION *********************************)
-
-
-(* ******* printing ********** *)
-
-let rec list_to_string s =
- match s with
- [] -> ""
- | f::r ->
- f^"."^(list_to_string r)
-
-let rec print_eqlist eqlist =
- match eqlist with
- [] ->
- print_endline ""
- | (atnames,f)::r ->
- let (s,t) = f in
- let ls = list_to_string s
- and lt = list_to_string t in
- begin
- print_endline ("Atom names: "^(list_to_string atnames));
- print_endline (ls^" = "^lt);
- print_eqlist r
- end
-
-let print_equations eqlist =
- begin
- Format.open_box 0;
- Format.force_newline ();
- print_endline "Equations:";
- print_eqlist eqlist;
- Format.force_newline ();
- end
-
-let rec print_subst sigma =
- match sigma with
- [] ->
- print_endline ""
- | f::r ->
- let (v,s) = f in
- let ls = list_to_string s in
- begin
- print_endline (v^" = "^ls);
- print_subst r
- end
-
-let print_tunify sigma =
- let (n,subst) = sigma in
- begin
- print_endline " ";
- print_endline ("MaxVar = "^(string_of_int (n-1)));
- print_endline " ";
- print_endline "Substitution:";
- print_subst subst;
- print_endline " "
- end
-
- (*****************************************************)
-
-let is_const name =
- (String.get name 0) = 'c'
-
-let is_var name =
- (String.get name 0) = 'v'
-
-let r_1 s ft rt =
- (s = []) && (ft = []) && (rt = [])
-
-let r_2 s ft rt =
- (s = []) && (ft = []) && (List.length rt >= 1)
-
-let r_3 s ft rt =
- ft=[] && (List.length s >= 1) && (List.length rt >= 1) && (List.hd s = List.hd rt)
-
-let r_4 s ft rt =
- ft=[]
- && (List.length s >= 1)
- && (List.length rt >= 1)
- && is_const (List.hd s)
- && is_var (List.hd rt)
-
-let r_5 s ft rt =
- rt=[]
- && (List.length s >= 1)
- && is_var (List.hd s)
-
-let r_6 s ft rt =
- ft=[]
- && (List.length s >= 1)
- && (List.length rt >= 1)
- && is_var (List.hd s)
- && is_const (List.hd rt)
-
-let r_7 s ft rt =
- List.length s >= 1
- && (List.length rt >= 2)
- && is_var (List.hd s)
- && is_const (List.hd rt)
- && is_const (List.hd (List.tl rt))
-
-let r_8 s ft rt =
- ft=[]
- && List.length s >= 2
- && List.length rt >= 1
- && let v = List.hd s
- and v1 = List.hd rt in
- (is_var v) & (is_var v1) & (v <> v1)
-
-let r_9 s ft rt =
- (List.length s >= 2) && (List.length ft >= 1) && (List.length rt >= 1)
- && let v = (List.hd s)
- and v1 = (List.hd rt) in
- (is_var v) & (is_var v1) & (v <> v1)
-
-let r_10 s ft rt =
- (List.length s >= 1) && (List.length rt >= 1)
- && let v = List.hd s
- and x = List.hd rt in
- (is_var v) && (v <> x)
- && (((List.tl s) =[]) or (is_const x) or ((List.tl rt) <> []))
-
-let rec com_subst slist ((ov,ovlist) as one_subst) =
- match slist with
- [] -> raise jprover_bug
- | f::r ->
- if f = ov then
- (ovlist @ r)
- else
- f::(com_subst r one_subst)
-
-let rec combine subst ((ov,oslist) as one_subst) =
- match subst with
- [] -> []
- | ((v, slist) as f) :: r ->
- let rest_combine = (combine r one_subst) in
- if (List.mem ov slist) then (* subst assumed to be idemponent *)
- let com_element = com_subst slist one_subst in
- ((v,com_element)::rest_combine)
- else
- (f::rest_combine)
-
-let compose ((n,subst) as _sigma) ((ov,oslist) as one_subst) =
- let com = combine subst one_subst in
-(* begin
- print_endline "!!!!!!!!!test print!!!!!!!!!!";
- print_subst [one_subst];
- print_subst subst;
- print_endline "!!!!!!!!! END test print!!!!!!!!!!";
-*)
- if List.mem one_subst subst then
- (n,com)
- else
-(* ov may multiply as variable in subst with DIFFERENT values *)
-(* in order to avoid explicit atom instances!!! *)
- (n,(com @ [one_subst]))
-(* end *)
-
-let rec apply_element fs ft (v,slist) =
- match (fs,ft) with
- ([],[]) ->
- ([],[])
- | ([],(ft_first::ft_rest)) ->
- let new_ft_first =
- if ft_first = v then
- slist
- else
- [ft_first]
- in
- let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in
- (emptylist,(new_ft_first @ new_ft_rest))
- | ((fs_first::fs_rest),[]) ->
- let new_fs_first =
- if fs_first = v then
- slist
- else
- [fs_first]
- in
- let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in
- ((new_fs_first @ new_fs_rest),emptylist)
- | ((fs_first::fs_rest),(ft_first::ft_rest)) ->
- let new_fs_first =
- if fs_first = v then
- slist
- else
- [fs_first]
- and new_ft_first =
- if ft_first = v then
- slist
- else
- [ft_first]
- in
- let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in
- ((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest))
-
-let rec shorten us ut =
- match (us,ut) with
- ([],_) | (_,[]) -> (us,ut) (*raise jprover_bug*)
- | ((fs::rs),(ft::rt)) ->
- if fs = ft then
- shorten rs rt
- else
- (us,ut)
-
-let rec apply_subst_list eq_rest (v,slist) =
- match eq_rest with
- [] ->
- (true,[])
- | (atomnames,(fs,ft))::r ->
- let (n_fs,n_ft) = apply_element fs ft (v,slist) in
- let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *)
- match (new_fs,new_ft) with
- [],[] ->
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,([],[]))::new_eq_rest))
- | [],(fft::rft) ->
- if (is_const fft) then
- (false,[])
- else
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,([],new_ft))::new_eq_rest))
- | (ffs::rfs),[] ->
- if (is_const ffs) then
- (false,[])
- else
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,(new_fs,[]))::new_eq_rest))
- | (ffs::rfs),(fft::rft) ->
- if (is_const ffs) & (is_const fft) then
- (false,[])
- (* different first constants cause local fail *)
- else
- (* at least one of firsts is a variable *)
- let (bool,new_eq_rest) = apply_subst_list r (v,slist) in
- (bool,((atomnames,(new_fs,new_ft))::new_eq_rest))
-
-let apply_subst eq_rest (v,slist) atomnames =
- if (List.mem v atomnames) then (* don't apply subst to atom variables !! *)
- (true,eq_rest)
- else
- apply_subst_list eq_rest (v,slist)
-
-
-(* let all_variable_check eqlist = false needs some discussion with Jens! -- NOT done *)
-
-(*
- let rec all_variable_check eqlist =
- match eqlist with
- [] -> true
- | ((_,(fs,ft))::rest_eq) ->
- if (fs <> []) & (ft <> []) then
- let fs_first = List.hd fs
- and ft_first = List.hd ft
- in
- if (is_const fs_first) or (is_const ft_first) then
- false
- else
- all_variable_check rest_eq
- else
- false
-*)
-
-let rec tunify_list eqlist init_sigma =
- let rec tunify atomnames fs ft rt rest_eq sigma =
- let apply_r1 fs ft rt rest_eq sigma =
- (* print_endline "r1"; *)
- tunify_list rest_eq sigma
-
- in
- let apply_r2 fs ft rt rest_eq sigma =
- (* print_endline "r2"; *)
- tunify atomnames rt fs ft rest_eq sigma
-
- in
- let apply_r3 fs ft rt rest_eq sigma =
- (* print_endline "r3"; *)
- let rfs = (List.tl fs)
- and rft = (List.tl rt) in
- tunify atomnames rfs ft rft rest_eq sigma
-
- in
- let apply_r4 fs ft rt rest_eq sigma =
- (* print_endline "r4"; *)
- tunify atomnames rt ft fs rest_eq sigma
-
- in
- let apply_r5 fs ft rt rest_eq sigma =
- (* print_endline "r5"; *)
- let v = (List.hd fs) in
- let new_sigma = compose sigma (v,ft) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma
-
- in
- let apply_r6 fs ft rt rest_eq sigma =
- (* print_endline "r6"; *)
- let v = (List.hd fs) in
- let new_sigma = (compose sigma (v,[])) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma
-
- in
- let apply_r7 fs ft rt rest_eq sigma =
- (* print_endline "r7"; *)
- let v = (List.hd fs)
- and c1 = (List.hd rt)
- and c2t =(List.tl rt) in
- let new_sigma = (compose sigma (v,(ft @ [c1]))) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in
- if bool=false then
- raise Not_unifiable
- else
- tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma
- in
- let apply_r8 fs ft rt rest_eq sigma =
- (* print_endline "r8"; *)
- tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma
-
- in
- let apply_r9 fs ft rt rest_eq sigma =
- (* print_endline "r9"; *)
- let v = (List.hd fs)
- and (max,subst) = sigma in
- let v_new = ("vnew"^(string_of_int max)) in
- let new_sigma = (compose ((max+1),subst) (v,(ft @ [v_new]))) in
- let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in
- if (bool=false) then
- raise Not_unifiable
- else
- tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma
-
- in
- let apply_r10 fs ft rt rest_eq sigma =
- (* print_endline "r10"; *)
- let x = List.hd rt in
- tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma
-
- in
- if r_1 fs ft rt then
- apply_r1 fs ft rt rest_eq sigma
- else if r_2 fs ft rt then
- apply_r2 fs ft rt rest_eq sigma
- else if r_3 fs ft rt then
- apply_r3 fs ft rt rest_eq sigma
- else if r_4 fs ft rt then
- apply_r4 fs ft rt rest_eq sigma
- else if r_5 fs ft rt then
- apply_r5 fs ft rt rest_eq sigma
- else if r_6 fs ft rt then
- (try
- apply_r6 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *)
- (try
- apply_r7 fs ft rt rest_eq sigma
- with Not_unifiable ->
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *)
- )
- else
- (* r10 could be represented only once if we would try it before r7.*)
- (* but looking at the transformation rules, r10 should be tried at last in any case *)
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *)
- )
- else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *)
- (try
- apply_r7 fs ft rt rest_eq sigma
- with Not_unifiable ->
- apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *)
- )
- else if r_8 fs ft rt then
- (try
- apply_r8 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *)
- apply_r10 fs ft rt rest_eq sigma
- else
- raise Not_unifiable (* simply back propagation *)
- )
- else if r_9 fs ft rt then
- (try
- apply_r9 fs ft rt rest_eq sigma
- with Not_unifiable ->
- if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *)
- apply_r10 fs ft rt rest_eq sigma
- else
- raise Not_unifiable (* simply back propagation *)
- )
- else if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *)
- (* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *)
- apply_r10 fs ft rt rest_eq sigma
- else (* NO rule applicable *)
- raise Not_unifiable
- in
- match eqlist with
- [] ->
- init_sigma
- | f::rest_eq ->
- let (atomnames,(fs,ft)) = f in
- tunify atomnames fs [] ft rest_eq init_sigma
-
-let rec test_apply_eq atomnames eqs eqt subst =
- match subst with
- [] -> (eqs,eqt)
- | (f,flist)::r ->
- let (first_appl_eqs,first_appl_eqt) =
- if List.mem f atomnames then
- (eqs,eqt)
- else
- (apply_element eqs eqt (f,flist))
- in
- test_apply_eq atomnames first_appl_eqs first_appl_eqt r
-
-let rec test_apply_eqsubst eqlist subst =
- match eqlist with
- [] -> []
- | f::r ->
- let (atomnames,(eqs,eqt)) = f in
- let applied_element = test_apply_eq atomnames eqs eqt subst in
- (atomnames,applied_element)::(test_apply_eqsubst r subst)
-
-let ttest us ut ns nt eqlist orderingQ atom_rel =
- let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *)
- (* to eliminate common beginning *)
- let new_element = ([ns;nt],(short_us,short_ut)) in
- let full_eqlist =
- if List.mem new_element eqlist then
- eqlist
- else
- new_element::eqlist
- in
- let sigma = tunify_list full_eqlist (1,[]) in
- let (n,subst) = sigma in
- let test_apply = test_apply_eqsubst full_eqlist subst in
- begin
- print_endline "";
- print_endline "Final equations:";
- print_equations full_eqlist;
- print_endline "";
- print_endline "Final substitution:";
- print_tunify sigma;
- print_endline "";
- print_endline "Applied equations:";
- print_equations test_apply
- end
-
-let do_stringunify us ut ns nt equations =
- let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *)
- let new_element = ([ns;nt],(short_us,short_ut)) in
- let full_eqlist =
- if List.mem new_element equations then
- equations
- else
- new_element::equations
- in
-(* print_equations full_eqlist; *)
- (try
- let new_sigma = tunify_list full_eqlist (1,[]) in
- (new_sigma,(1,full_eqlist))
- with Not_unifiable ->
- raise Failed (* new connection please *)
- )
-
-
-(* type of one unifier: int * (string * string) list *)
diff --git a/contrib/jprover/jtunify.mli b/contrib/jprover/jtunify.mli
deleted file mode 100644
index 0aabc79e..00000000
--- a/contrib/jprover/jtunify.mli
+++ /dev/null
@@ -1,35 +0,0 @@
-exception Not_unifiable
-exception Failed
-
-(* Utilities *)
-
-val is_const : string -> bool
-val is_var : string -> bool
-val r_1 : 'a list -> 'b list -> 'c list -> bool
-val r_2 : 'a list -> 'b list -> 'c list -> bool
-val r_3 : 'a list -> 'b list -> 'a list -> bool
-val r_4 : string list -> 'a list -> string list -> bool
-val r_5 : string list -> 'a -> 'b list -> bool
-val r_6 : string list -> 'a list -> string list -> bool
-val r_7 : string list -> 'a -> string list -> bool
-val r_8 : string list -> 'a list -> string list -> bool
-val r_9 : string list -> 'a list -> string list -> bool
-val r_10 : string list -> 'a -> string list -> bool
-val com_subst : 'a list -> 'a * 'a list -> 'a list
-
-(* Debugging *)
-
-val print_equations : (string list * (string list * string list)) list -> unit
-
-val print_tunify : int * (string * string list) list -> unit
-
-(* Main function *)
-
-val do_stringunify : string list ->
- string list ->
- string ->
- string ->
- (string list * (string list * string list)) list ->
- (int * (string * string list) list) * (* unifier *)
- (int * ((string list * (string list * string list)) list)) (* applied new eqlist *)
-
diff --git a/contrib/jprover/opname.ml b/contrib/jprover/opname.ml
deleted file mode 100644
index d0aa9046..00000000
--- a/contrib/jprover/opname.ml
+++ /dev/null
@@ -1,90 +0,0 @@
-open Printf
-
-type token = string
-type atom = string list
-
-let opname_token = String.make 4 (Char.chr 0)
-
-type opname =
- { mutable opname_token : token;
- mutable opname_name : string list
- }
-
-let (optable : (string list, opname) Hashtbl.t) = Hashtbl.create 97
-
-(* * Constructors.*)
-let nil_opname = { opname_token = opname_token; opname_name = [] }
-
-let _ = Hashtbl.add optable [] nil_opname
-
-let rec mk_opname s ({ opname_token = token; opname_name = name } as opname) =
- if token == opname_token then
- let name = s :: name in
- try Hashtbl.find optable name with
- Not_found ->
- let op = { opname_token = opname_token; opname_name = name } in
- Hashtbl.add optable name op;
- op
- else
- mk_opname s (normalize_opname opname)
-
-and make_opname = function
- | [] ->
- nil_opname
- | h :: t ->
- mk_opname h (make_opname t)
-
-and normalize_opname opname =
- if opname.opname_token == opname_token then
- (* This opname is already normalized *)
- opname
- else
- let res = make_opname opname.opname_name
- in
- opname.opname_name <- res.opname_name;
- opname.opname_token <- opname_token;
- res
-
-(* * Atoms are the inner string list. *)
-let intern opname =
- if opname.opname_token == opname_token then
- opname.opname_name
- else
- let name = (normalize_opname opname).opname_name in
- opname.opname_token <- opname_token;
- opname.opname_name <- name;
- name
-
-let eq_inner op1 op2 =
- op1.opname_name <- (normalize_opname op1).opname_name;
- op1.opname_token <- opname_token;
- op2.opname_name <- (normalize_opname op2).opname_name;
- op2.opname_token <- opname_token;
- op1.opname_name == op2.opname_name
-
-let eq op1 op2 =
- (op1.opname_name == op2.opname_name)
- or ((op1.opname_token != opname_token or op2.opname_token != opname_token) & eq_inner op1 op2)
-
-(* * Destructor. *)
-let dst_opname = function
- | { opname_name = n :: name } -> n, { opname_token = opname_token; opname_name = name }
- | _ -> raise (Invalid_argument "dst_opname")
-
-let dest_opname { opname_name = name } =
- name
-
-let string_of_opname op =
- let rec flatten = function
- | [] ->
- ""
- | h::t ->
- let rec collect s = function
- | h::t ->
- collect (h ^ "!" ^ s) t
- | [] ->
- s
- in
- collect h t
- in
- flatten op.opname_name
diff --git a/contrib/jprover/opname.mli b/contrib/jprover/opname.mli
deleted file mode 100644
index 56bf84e2..00000000
--- a/contrib/jprover/opname.mli
+++ /dev/null
@@ -1,15 +0,0 @@
-(* This module is extracted from Meta-Prl. *)
-
-type token = string
-and atom = string list
-val opname_token : token
-type opname = {
- mutable opname_token : token;
- mutable opname_name : string list;
-}
-val nil_opname : opname
-val mk_opname : string -> opname -> opname
-val make_opname : string list -> opname
-val eq : opname -> opname -> bool
-val dest_opname : opname -> string list
-val string_of_opname : opname -> string