diff options
Diffstat (limited to 'contrib/jprover/jall.ml')
-rw-r--r-- | contrib/jprover/jall.ml | 4701 |
1 files changed, 4701 insertions, 0 deletions
diff --git a/contrib/jprover/jall.ml b/contrib/jprover/jall.ml new file mode 100644 index 00000000..876dc6c0 --- /dev/null +++ b/contrib/jprover/jall.ml @@ -0,0 +1,4701 @@ +(* + * JProver first-order automated prover. See the interface file + * for more information and a list of references for JProver. + * + * ---------------------------------------------------------------- + * + * This file is part of MetaPRL, a modular, higher order + * logical framework that provides a logical programming + * environment for OCaml and other languages. + * + * See the file doc/index.html for information on Nuprl, + * OCaml, and more information about this system. + * + * Copyright (C) 2000 Stephan Schmitt + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * Author: Stephan Schmitt <schmitts@spmail.slu.edu> + * Modified by: Aleksey Nogin <nogin@cs.cornell.edu> + *) + +(*: All of Huang's modifications of this file are quoted or denoted + by comments followed by a colon. +:*) + +(*: +open Mp_debug + +open Refiner.Refiner +open Term +open TermType +open TermOp +open TermSubst +open TermMan +open RefineError +open Opname +:*) + +open Jterm +open Opname +open Jlogic +open Jtunify + +let ruletable = Jlogic.ruletable + +(*: +let free_var_op = make_opname ["free_variable";"Jprover"] +let jprover_op = make_opname ["string";"Jprover"] +:*) +let free_var_op = make_opname ["free_variable"; "Jprover"] +let jprover_op = make_opname ["jprover"; "string"] + +module JProver (JLogic : JLogicSig) = +struct + type polarity = I | O + + type connective = And | Or | Neg | Imp | All | Ex | At | Null + + type ptype = Alpha | Beta | Gamma | Delta | Phi | Psi | PNull + + type stype = + Alpha_1 | Alpha_2 | Beta_1 | Beta_2 | Gamma_0 | Delta_0 + | Phi_0 | Psi_0 | PNull_0 + + type pos = {name : string; + address : int list; + op : connective; + pol : polarity; + pt : ptype; + st : stype; + label : term} + + type 'pos ftree = + Empty + | NodeAt of 'pos + | NodeA of 'pos * ('pos ftree) array + + type atom = {aname : string; + aaddress : int list; + aprefix : string list; + apredicate : operator; + apol : polarity; + ast : stype; + alabel : term} + + type atom_relations = atom * atom list * atom list +(* all atoms except atom occur in [alpha_set] and [beta_set] of atom*) + +(* beta proofs *) + + type bproof = BEmpty + | RNode of string list * bproof + | CNode of (string * string) + | BNode of string * (string list * bproof) * (string list * bproof) + | AtNode of string * (string * string) + +(* Assume only constants for instantiations, not adapted to terms yet *) + type inf = rule * term * term + +(* proof tree for pretty print and permutation *) + type 'inf ptree = + PEmpty + | PNodeAx of 'inf + | PNodeA of 'inf * 'inf ptree + | PNodeB of 'inf * 'inf ptree * 'inf ptree + + module OrderedAtom = + struct + type t = atom + let compare a1 a2 = if (a1.aname) = (a2.aname) then 0 else + if (a1.aname) < (a2.aname) then -1 else 1 + end + + module AtomSet = Set.Make(OrderedAtom) + + module OrderedString = + struct + type t = string + let compare a1 a2 = if a1 = a2 then 0 else + if a1 < a2 then -1 else 1 + end + + module StringSet = Set.Make(OrderedString) + +(*i let _ = + show_loading "Loading Jall%t" i*) + + let debug_jprover = + create_debug (**) + { debug_name = "jprover"; + debug_description = "Display Jprover operations"; + debug_value = false + } + + let jprover_bug = Invalid_argument "Jprover bug (Jall module)" + +(*****************************************************************) + +(************* printing function *************************************) + +(************ printing T-string unifiers ****************************) + +(* ******* printing ********** *) + + let rec list_to_string s = + match s with + [] -> "" + | f::r -> + f^"."^(list_to_string r) + + let rec print_eqlist eqlist = + match eqlist with + [] -> + print_endline "" + | (atnames,f)::r -> + let (s,t) = f in + let ls = list_to_string s + and lt = list_to_string t in + begin + print_endline ("Atom names: "^(list_to_string atnames)); + print_endline (ls^" = "^lt); + print_eqlist r + end + + let print_equations eqlist = + begin + Format.open_box 0; + Format.force_newline (); + print_endline "Equations:"; + print_eqlist eqlist; + Format.force_newline (); + end + + let rec print_subst sigma = + match sigma with + [] -> + print_endline "" + | f::r -> + let (v,s) = f in + let ls = list_to_string s in + begin + print_endline (v^" = "^ls); + print_subst r + end + + let print_tunify sigma = + let (n,subst) = sigma in + begin + print_endline " "; + print_endline ("MaxVar = "^(string_of_int (n-1))); + print_endline " "; + print_endline "Substitution:"; + print_subst subst; + print_endline " " + end + +(*****************************************************) + +(********* printing atoms and their relations ***********************) + + let print_stype st = + match st with + Alpha_1 -> Format.print_string "Alpha_1" + | Alpha_2 -> Format.print_string "Alpha_2" + | Beta_1 -> Format.print_string "Beta_1" + | Beta_2 -> Format.print_string "Beta_2" + | Gamma_0 -> Format.print_string "Gamma_0" + | Delta_0 -> Format.print_string "Delta_0" + | Phi_0 -> Format.print_string "Phi_0" + | Psi_0 -> Format.print_string "Psi_0" + | PNull_0 -> Format.print_string "PNull_0" + + let print_pol pol = + if pol = O then + Format.print_string "O" + else + Format.print_string "I" + + let rec print_address int_list = + match int_list with + [] -> + Format.print_string "" + | hd::rest -> + begin + Format.print_int hd; + print_address rest + end + + let rec print_prefix prefix_list = + match prefix_list with + [] -> Format.print_string "" + | f::r -> + begin + Format.print_string f; + print_prefix r + end + + let print_atom at tab = + let ({aname=x; aaddress=y; aprefix=z; apredicate=p; apol=a; ast=b; alabel=label}) = at in + begin + Format.print_string ("{aname="^x^"; address="); + print_address y; + Format.print_string "; "; + Format.force_newline (); + Format.print_break (tab+1) (tab+1); + Format.print_string "prefix="; + print_prefix z; + Format.print_string "; predicate=<abstr>; "; + Format.print_break (tab+1) (tab+1); + Format.print_break (tab+1) (tab+1); + Format.print_string "pol="; + print_pol a; + Format.print_string "; stype="; + print_stype b; + Format.print_string "; arguments=[<abstr>]"; + Format.print_string "\n alabel="; + print_term stdout label; + Format.print_string "}" + end + + let rec print_atom_list set tab = + match set with + [] -> Format.print_string "" + | (f::r) -> + begin + Format.force_newline (); + Format.print_break (tab) (tab); + print_atom f tab; + print_atom_list r (tab) + end + + let rec print_atom_info atom_relation = + match atom_relation with + [] -> Format.print_string "" + | (a,b,c)::r -> + begin + Format.print_string "atom:"; + Format.force_newline (); + Format.print_break 3 3; + print_atom a 3; + Format.force_newline (); + Format.print_break 0 0; + Format.print_string "alpha_set:"; + print_atom_list b 3; + Format.force_newline (); + Format.print_break 0 0; + Format.print_string "beta_set:"; + print_atom_list c 3; + Format.force_newline (); + Format.force_newline (); + Format.print_break 0 0; + print_atom_info r + end + +(*************** print formula tree, tree ordering etc. ***********) + + let print_ptype pt = + match pt with + Alpha -> Format.print_string "Alpha" + | Beta -> Format.print_string "Beta" + | Gamma -> Format.print_string "Gamma" + | Delta -> Format.print_string "Delta" + | Phi -> Format.print_string "Phi" + | Psi -> Format.print_string "Psi" + | PNull -> Format.print_string "PNull" + + let print_op op = + match op with + At -> Format.print_string "Atom" + | Neg -> Format.print_string "Neg" + | And -> Format.print_string "And" + | Or -> Format.print_string "Or" + | Imp -> Format.print_string "Imp" + | Ex -> Format.print_string "Ex" + | All -> Format.print_string "All" + | Null -> Format.print_string "Null" + + let print_position position tab = + let ({name=x; address=y; op=z; pol=a; pt=b; st=c; label=t}) = position in + begin + Format.print_string ("{name="^x^"; address="); + print_address y; + Format.print_string "; "; + Format.force_newline (); + Format.print_break (tab+1) 0; +(* Format.print_break 0 3; *) + Format.print_string "op="; + print_op z; + Format.print_string "; pol="; + print_pol a; + Format.print_string "; ptype="; + print_ptype b; + Format.print_string "; stype="; + print_stype c; + Format.print_string ";"; + Format.force_newline (); + Format.print_break (tab+1) 0; + Format.print_string "label="; + Format.print_break 0 0; + Format.force_newline (); + Format.print_break tab 0; + print_term stdout t; + Format.print_string "}" + end + + let rec pp_ftree_list tree_list tab = + let rec pp_ftree ftree new_tab = + let dummy = String.make (new_tab-2) ' ' in + match ftree with + Empty -> Format.print_string "" + | NodeAt(position) -> + begin + Format.force_newline (); + Format.print_break new_tab 0; + print_string (dummy^"AtomNode: "); +(* Format.force_newline (); + Format.print_break 0 3; +*) + print_position position new_tab; + Format.force_newline (); + Format.print_break new_tab 0 + end + | NodeA(position,subtrees) -> + let tree_list = Array.to_list subtrees in + begin + Format.force_newline (); + Format.print_break new_tab 0; + Format.print_break 0 0; + print_string (dummy^"InnerNode: "); + print_position position new_tab; + Format.force_newline (); + Format.print_break 0 0; + pp_ftree_list tree_list (new_tab-3) + end + in + let new_tab = tab+5 in + match tree_list with + [] -> Format.print_string "" + | first::rest -> + begin + pp_ftree first new_tab; + pp_ftree_list rest tab + end + + let print_ftree ftree = + begin + Format.open_box 0; + Format.print_break 3 0; + pp_ftree_list [ftree] 0; + Format.print_flush () + end + + let rec stringlist_to_string stringlist = + match stringlist with + [] -> "." + | f::r -> + let rest_s = stringlist_to_string r in + (f^"."^rest_s) + + let rec print_stringlist slist = + match slist with + [] -> + Format.print_string "" + | f::r -> + begin + Format.print_string (f^"."); + print_stringlist r + end + + let rec pp_bproof_list tree_list tab = + let rec pp_bproof ftree new_tab = + let dummy = String.make (new_tab-2) ' ' in + match ftree with + BEmpty -> Format.print_string "" + | CNode((c1,c2)) -> + begin + Format.open_box 0; + Format.force_newline (); + Format.print_break (new_tab-10) 0; + Format.open_box 0; + Format.force_newline (); + Format.print_string (dummy^"CloseNode: connection = ("^c1^","^c2^")"); + Format.print_flush(); +(* Format.force_newline (); + Format.print_break 0 3; +*) + Format.open_box 0; + Format.print_break new_tab 0; + Format.print_flush() + end + | AtNode(posname,(c1,c2)) -> + begin + Format.open_box 0; + Format.force_newline (); + Format.print_break (new_tab-10) 0; + Format.open_box 0; + Format.force_newline (); + Format.print_string (dummy^"AtNode: pos = "^posname^" conneciton = ("^c1^","^c2^")"); + Format.print_flush(); +(* Format.force_newline (); + Format.print_break 0 3; +*) + Format.open_box 0; + Format.print_break new_tab 0; + Format.print_flush() + end + | RNode(alpha_layer,bproof) -> + let alpha_string = stringlist_to_string alpha_layer in + begin + Format.open_box 0; + Format.force_newline (); + Format.print_break new_tab 0; + Format.print_break 0 0; + Format.force_newline (); + Format.print_flush(); + Format.open_box 0; + print_string (dummy^"RootNode: "^alpha_string); + Format.print_flush(); + Format.open_box 0; + Format.print_break 0 0; + Format.print_flush(); + pp_bproof_list [bproof] (new_tab-3) + end + | BNode(posname,(alph1,bproof1),(alph2,bproof2)) -> + let alpha_string1 = stringlist_to_string alph1 + and alpha_string2 = stringlist_to_string alph2 in + begin + Format.open_box 0; + Format.force_newline (); + Format.print_break new_tab 0; + Format.print_break 0 0; + Format.force_newline (); + Format.print_flush(); + Format.open_box 0; + print_string (dummy^"BetaNode: pos = "^posname^" layer1 = "^alpha_string1^" layer2 = "^alpha_string2); + Format.print_flush(); + Format.open_box 0; + Format.print_break 0 0; + Format.print_flush(); + pp_bproof_list [bproof1;bproof2] (new_tab-3) + end + in + let new_tab = tab+5 in + match tree_list with + [] -> Format.print_string "" + | first::rest -> + begin + pp_bproof first new_tab; + pp_bproof_list rest tab + end + + let rec print_pairlist pairlist = + match pairlist with + [] -> Format.print_string "" + | (a,b)::rest -> + begin + Format.print_break 1 1; + Format.print_string ("("^a^","^b^")"); + print_pairlist rest + end + + let print_beta_proof bproof = + begin + Format.open_box 0; + Format.force_newline (); + Format.force_newline (); + Format.print_break 3 0; + pp_bproof_list [bproof] 0; + Format.force_newline (); + Format.force_newline (); + Format.force_newline (); + Format.print_flush () + end + + let rec print_treelist treelist = + match treelist with + [] -> + print_endline "END"; + | f::r -> + begin + print_ftree f; + Format.open_box 0; + print_endline ""; + print_endline ""; + print_endline "NEXT TREE"; + print_endline ""; + print_endline ""; + print_treelist r; + Format.print_flush () + end + + let rec print_set_list set_list = + match set_list with + [] -> "" + | f::r -> + (f.aname)^" "^(print_set_list r) + + let print_set set = + let set_list = AtomSet.elements set in + if set_list = [] then "empty" + else + print_set_list set_list + + let print_string_set set = + let set_list = StringSet.elements set in + print_stringlist set_list + + let rec print_list_sets list_of_sets = + match list_of_sets with + [] -> Format.print_string "" + | (pos,fset)::r -> + begin + Format.print_string (pos^": "); (* first element = node which successors depend on *) + print_stringlist (StringSet.elements fset); + Format.force_newline (); + print_list_sets r + end + + let print_ordering list_of_sets = + begin + Format.open_box 0; + print_list_sets list_of_sets; + Format.print_flush () + end + + let rec print_triplelist triplelist = + match triplelist with + [] -> Format.print_string "" + | ((a,b),i)::rest -> + begin + Format.print_break 1 1; + Format.print_string ("(("^a^","^b^"),"^(string_of_int i)^")"); + print_triplelist rest + end + + let print_pos_n pos_n = + Format.print_int pos_n + + let print_formula_info ftree ordering pos_n = + begin + print_ftree ftree; + Format.open_box 0; + Format.force_newline (); + print_ordering ordering; + Format.force_newline (); + Format.force_newline (); + Format.print_string "number of positions: "; + print_pos_n pos_n; + Format.force_newline (); + print_endline ""; + print_endline ""; + Format.print_flush () + end + +(* print sequent proof tree *) + + let pp_rule (pos,r,formula,term) tab = + let rep = ruletable r in + if List.mem rep ["Alll";"Allr";"Exl";"Exr"] then + begin + Format.open_box 0; +(* Format.force_newline (); *) + Format.print_break tab 0; + Format.print_string (pos^": "^rep^" "); + Format.print_flush (); +(* Format.print_break tab 0; + Format.force_newline (); + Format.print_break tab 0; +*) + + Format.open_box 0; + print_term stdout formula; + Format.print_flush (); + Format.open_box 0; + Format.print_string " "; + Format.print_flush (); + Format.open_box 0; + print_term stdout term; + Format.force_newline (); + Format.force_newline (); + Format.print_flush () + end + else + begin + Format.open_box 0; + Format.print_break tab 0; + Format.print_string (pos^": "^rep^" "); + Format.print_flush (); + Format.open_box 0; +(* Format.print_break tab 0; *) + Format.force_newline (); +(* Format.print_break tab 0; *) + print_term stdout formula; + Format.force_newline () + end + + let last addr = + if addr = "" + then "" + else + String.make 1 (String.get addr (String.length addr-1)) + + let rest addr = + if addr = "" + then "" + else + String.sub addr 0 ((String.length addr) - 1) + + let rec get_r_chain addr = + if addr = "" then + 0 + else + let l = last addr in + if l = "l" then + 0 + else (* l = "r" *) + let rs = rest addr in + 1 + (get_r_chain rs) + + let rec tpp seqtree tab addr = + match seqtree with + | PEmpty -> raise jprover_bug + | PNodeAx(rule) -> + let (pos,r,p,pa) = rule in + begin + pp_rule (pos,r,p,pa) tab; +(* Format.force_newline (); *) +(* let mult = get_r_chain addr in *) +(* Format.print_break 100 (tab - (3 * mult)) *) + end + | PNodeA(rule,left) -> + let (pos,r,p,pa) = rule in + begin + pp_rule (pos,r,p,pa) tab; + tpp left tab addr + end + | PNodeB(rule,left,right) -> + let (pos,r,p,pa) = rule in + let newtab = tab + 3 in + begin + pp_rule (pos,r,p,pa) tab; +(* Format.force_newline (); *) +(* Format.print_break 100 newtab; *) + (tpp left newtab (addr^"l")); + (tpp right newtab (addr^"r")) + end + + let tt seqtree = + begin + Format.open_box 0; + tpp seqtree 0 ""; + Format.force_newline (); + Format.close_box (); + Format.print_newline () + end + +(************ END printing functions *********************************) + +(************ Beta proofs and redundancy deletion **********************) + + let rec remove_dups_connections connection_list = + match connection_list with + [] -> [] + | (c1,c2)::r -> + if (List.mem (c1,c2) r) or (List.mem (c2,c1) r) then + (* only one direction variant of a connection stays *) + remove_dups_connections r + else + (c1,c2)::(remove_dups_connections r) + + let rec remove_dups_list list = + match list with + [] -> [] + | f::r -> + if List.mem f r then + remove_dups_list r + else + f::(remove_dups_list r) + + let beta_pure alpha_layer connections beta_expansions = + let (l1,l2) = List.split connections in + let test_list = l1 @ l2 @ beta_expansions in + begin +(* Format.open_box 0; + print_endline ""; + print_stringlist alpha_layer; + Format.print_flush(); + Format.open_box 0; + print_endline ""; + print_stringlist test_list; + print_endline ""; + Format.print_flush(); +*) + not (List.exists (fun x -> (List.mem x test_list)) alpha_layer) + end + + let rec apply_bproof_purity bproof = + match bproof with + BEmpty -> + raise jprover_bug + | CNode((c1,c2)) -> + bproof,[(c1,c2)],[] + | AtNode(_,(c1,c2)) -> + bproof,[(c1,c2)],[] + | RNode(alpha_layer,subproof) -> + let (opt_subproof,min_connections,beta_expansions) = + apply_bproof_purity subproof in + (RNode(alpha_layer,opt_subproof),min_connections,beta_expansions) + | BNode(pos,(alph1,subp1),(alph2,subp2)) -> + let (opt_subp1,min_conn1,beta_exp1) = apply_bproof_purity subp1 in + if beta_pure alph1 min_conn1 beta_exp1 then + begin +(* print_endline ("Left layer of "^pos); *) + (opt_subp1,min_conn1,beta_exp1) + end + else + let (opt_subp2,min_conn2,beta_exp2) = apply_bproof_purity subp2 in + if beta_pure alph2 min_conn2 beta_exp2 then + begin +(* print_endline ("Right layer of "^pos); *) + (opt_subp2,min_conn2,beta_exp2) + end + else + let min_conn = remove_dups_connections (min_conn1 @ min_conn2) + and beta_exp = remove_dups_list ([pos] @ beta_exp1 @ beta_exp2) in + (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2)),min_conn,beta_exp) + + let bproof_purity bproof = + let (opt_bproof,min_connections,_) = apply_bproof_purity bproof in + opt_bproof,min_connections + +(*********** split permutation *****************) + + let rec apply_permutation bproof rep_name direction act_blayer = + match bproof with + BEmpty | RNode(_,_) -> + raise jprover_bug + | AtNode(cx,(c1,c2)) -> + bproof,act_blayer + | CNode((c1,c2)) -> + bproof,act_blayer + | BNode(pos,(alph1,subp1),(alph2,subp2)) -> + if rep_name = pos then + let (new_blayer,replace_branch) = + if direction = "left" then + (alph1,subp1) + else (* direciton = "right" *) + (alph2,subp2) + in + (match replace_branch with + CNode((c1,c2)) -> + (AtNode(c1,(c1,c2))),new_blayer (* perform atom expansion at c1 *) + | _ -> + replace_branch,new_blayer + ) + else + let pproof1,new_blayer1 = apply_permutation subp1 rep_name direction act_blayer in + let pproof2,new_blayer2 = apply_permutation subp2 rep_name direction new_blayer1 in + (BNode(pos,(alph1,pproof1),(alph2,pproof2))),new_blayer2 + + let split_permutation pname opt_bproof = + match opt_bproof with + RNode(alayer,BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) -> + if pos = pname then +(* if topmost beta expansion agrees with pname, then *) +(* only split the beta proof and give back the two subproofs *) + let (osubp1,min_con1) = bproof_purity opt_subp1 + and (osubp2,min_con2) = bproof_purity opt_subp2 in +(* there will be no purity reductions in the beta subproofs. We use this *) +(* predicate to collect the set of used leaf-connections in each subproof*) + ((RNode((alayer @ alph1),osubp1),min_con1), + (RNode((alayer @ alph2),osubp2),min_con2) + ) +(* we combine the branch after topmost beta expansion at pos into one root alpha layer *) +(* -- the beta expansion node pos will not be needed in this root layer *) + else + let perm_bproof1,balph1 = apply_permutation + (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "left" [] + and perm_bproof2,balph2 = apply_permutation + (BNode(pos,(alph1,opt_subp1),(alph2,opt_subp2))) pname "right" [] in + + begin +(* print_endline " "; + print_beta_proof perm_bproof1; + print_endline" " ; + print_beta_proof perm_bproof2; + print_endline" "; +*) + let (osubp1,min_con1) = bproof_purity perm_bproof1 + and (osubp2,min_con2) = bproof_purity perm_bproof2 in + ((RNode((alayer @ balph1),osubp1),min_con1), + (RNode((alayer @ balph2),osubp2),min_con2) + ) + end +(* we combine the branch after the NEW topmost beta expansion at bpos *) +(* into one root alpha layer -- the beta expansion node bpos will not be *) +(* needed in this root layer *) + | _ -> + raise jprover_bug + +(*********** END split permutation *****************) + + let rec list_del list_el el_list = + match el_list with + [] -> + raise jprover_bug + | f::r -> + if list_el = f then + r + else + f::(list_del list_el r) + + let rec list_diff del_list check_list = + match del_list with + [] -> + [] + | f::r -> + if List.mem f check_list then + list_diff r check_list + else + f::(list_diff r check_list) + +(* let rec compute_alpha_layer ftree_list = + match ftree_list with + [] -> + [],[],[] + | f::r -> + (match f with + Empty -> + raise jprover_bug + | NodeAt(pos) -> + let pn = pos.name + and (rnode,ratom,borderings) = compute_alpha_layer r in + ((pn::rnode),(pn::ratom),borderings) + | NodeA(pos,suctrees) -> + let pn = pos.name in + if pos.pt = Beta then + let (rnode,ratom,borderings) = compute_alpha_layer r in + ((pn::rnode),(ratom),(f::borderings)) + else + let suclist = Array.to_list suctrees in + compute_alpha_layer (suclist @ r) + ) + + let rec compute_connection alpha_layer union_atoms connections = + match connections with + [] -> ("none","none") + | (c,d)::r -> + if (List.mem c union_atoms) & (List.mem d union_atoms) then + let (c1,c2) = + if List.mem c alpha_layer then + (c,d) + else + if List.mem d alpha_layer then + (d,c) (* then, d is supposed to occur in [alpha_layer] *) + else + raise (Invalid_argument "Jprover bug: connection match failure") + in + (c1,c2) + else + compute_connection alpha_layer union_atoms r + + let get_beta_suctrees btree = + match btree with + Empty | NodeAt(_) -> raise jprover_bug + | NodeA(pos,suctrees) -> + let b1tree = suctrees.(0) + and b2tree = suctrees.(1) in + (pos.name,b1tree,b2tree) + + let rec build_beta_proof alpha_layer union_atoms beta_orderings connections = + let (c1,c2) = compute_connection alpha_layer union_atoms connections in +(* [c1] is supposed to occur in the lowmost alpha layer of the branch, *) +(* i.e. [aplha_layer] *) + if (c1,c2) = ("none","none") then + (match beta_orderings with + [] -> raise jprover_bug + | btree::r -> + let (beta_pos,suctree1,suctree2) = get_beta_suctrees btree in + let (alpha_layer1, atoms1, bordering1) = compute_alpha_layer [suctree1] + and (alpha_layer2, atoms2, bordering2) = compute_alpha_layer [suctree2] in + let bproof1,beta1,closure1 = + build_beta_proof alpha_layer1 (atoms1 @ union_atoms) + (bordering1 @ r) connections + in + let bproof2,beta2,closure2 = + build_beta_proof alpha_layer2 (atoms2 @ union_atoms) + (bordering2 @ r) connections in + (BNode(beta_pos,(alpha_layer1,bproof1),(alpha_layer2,bproof2))),(1+beta1+beta2),(closure1+closure2) + ) + else + CNode((c1,c2)),0,1 + + let construct_beta_proof ftree connections = + let (root_node,root_atoms,beta_orderings) = compute_alpha_layer [ftree] + in + let beta_proof,beta_exp,closures = + build_beta_proof root_node root_atoms beta_orderings connections in + (RNode(root_node,beta_proof)),beta_exp,closures +*) + + +(* *********** New Version with direct computation from extension proof **** *) +(* follows a DIRECT step from proof histories via pr-connection orderings to opt. beta-proofs *) + + let rec compute_alpha_layer ftree_list = + match ftree_list with + [] -> + [] + | f::r -> + (match f with + Empty -> + raise jprover_bug + | NodeAt(pos) -> + let rnode = compute_alpha_layer r in + (pos.name::rnode) + | NodeA(pos,suctrees) -> + if pos.pt = Beta then + let rnode = compute_alpha_layer r in + (pos.name::rnode) + else + let suclist = Array.to_list suctrees in + compute_alpha_layer (suclist @ r) + ) + + let rec compute_beta_difference c1_context c2_context act_context = + match c1_context,c2_context with + ([],c2_context) -> + (list_diff c2_context act_context) +(* both connection partners in the same submatrix; [c1] already isolated *) + | ((fc1::rc1),[]) -> + [] (* [c2] is a reduction step, i.e. isolated before [c1] *) + | ((fc1::rc1),(fc2::rc2)) -> + if fc1 = fc2 then (* common initial beta-expansions *) + compute_beta_difference rc1 rc2 act_context + else + (list_diff c2_context act_context) + + let rec non_closed beta_proof_list = + match beta_proof_list with + [] -> + false + | bpf::rbpf -> + (match bpf with + RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | BEmpty -> true + | CNode(_) -> non_closed rbpf + | BNode(pos,(_,bp1),(_,bp2)) -> non_closed ([bp1;bp2] @ rbpf) + ) + + let rec cut_context pos context = + match context with + [] -> + raise (Invalid_argument "Jprover bug: invalid context element") + | (f,num)::r -> + if pos = f then + context + else + cut_context pos r + + let compute_tree_difference beta_proof c1_context = + match beta_proof with + RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | BEmpty -> c1_context + | BNode(pos,_,_) -> +(* print_endline ("actual root: "^pos); *) + cut_context pos c1_context + + let print_context conn bcontext = + begin + Format.open_box 0; + Format.print_string conn; + Format.print_string ": "; + List.iter (fun x -> let (pos,num) = x in Format.print_string (pos^" "^(string_of_int num)^"")) bcontext; + print_endline " "; + Format.print_flush () + end + + let rec build_opt_beta_proof beta_proof ext_proof beta_atoms beta_layer_list act_context = + let rec add_c2_tree (c1,c2) c2_diff_context = + match c2_diff_context with + [] -> + (CNode(c1,c2),0) + | (f,num)::c2_diff_r -> + let next_beta_proof,next_exp = + add_c2_tree (c1,c2) c2_diff_r in + let (layer1,layer2) = List.assoc f beta_layer_list in + let new_bproof = + if num = 1 then + BNode(f,(layer1,next_beta_proof),(layer2,BEmpty)) + else (* num = 2*) + BNode(f,(layer1,BEmpty),(layer2,next_beta_proof)) + in + (new_bproof,(next_exp+1)) + in + let rec add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context new_act_context = + match c1_diff_context with + [] -> + let (n_c1,n_c2) = + if c2_diff_context = [] then (* make sure that leaf-connection is first element *) + (c1,c2) + else + (c2,c1) + in + let c2_bproof,c2_exp = add_c2_tree (n_c1,n_c2) c2_diff_context in + if c2_exp <> 0 then (* at least one open branch was generated to isloate [c2] *) + begin +(* print_endline "start with new beta-proof"; *) + let new_bproof,new_exp,new_closures,new_rest_proof = + build_opt_beta_proof c2_bproof rest_ext_proof beta_atoms beta_layer_list (act_context @ new_act_context) in + (new_bproof,(new_exp+c2_exp),(new_closures+1),new_rest_proof) + end + else + begin +(* print_endline "proceed with old beta-proof"; *) + (c2_bproof,c2_exp,1,rest_ext_proof) + end + | (f,num)::c1_diff_r -> + let (layer1,layer2) = List.assoc f beta_layer_list in + let next_beta_proof,next_exp,next_closures,next_ext_proof = + add_beta_expansions (c1,c2) rest_ext_proof c1_diff_r c2_diff_context new_act_context in + let new_bproof = + if num = 1 then + BNode(f,(layer1,next_beta_proof),(layer2,BEmpty)) + else (* num = 2*) + BNode(f,(layer1,BEmpty),(layer2,next_beta_proof)) + in + (new_bproof,(next_exp+1),next_closures,next_ext_proof) + + in + let rec insert_connection beta_proof (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context = + begin +(* print_context c1 c1_diff_context; + print_endline ""; + print_context c2 c2_diff_context; + print_endline ""; +*) + match beta_proof with + RNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | CNode(_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | AtNode(_,_) -> raise (Invalid_argument "Jprover bug: invalid beta-proof") + | BEmpty -> + add_beta_expansions (c1,c2) rest_ext_proof c1_diff_context c2_diff_context act_context + | BNode(pos,(layer1,sproof1),(layer2,sproof2)) -> +(* print_endline (c1^" "^c2^" "^pos); *) + (match c1_diff_context with + [] -> + raise (Invalid_argument "Jprover bug: invalid beta-proof") + | (f,num)::rest_context -> (* f = pos must hold!! *) + if num = 1 then + let (next_bproof,next_exp,next_closure,next_ext_proof) = + insert_connection sproof1 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in + (BNode(pos,(layer1,next_bproof),(layer2,sproof2)),next_exp,next_closure,next_ext_proof) + else (* num = 2 *) + let (next_bproof,next_exp,next_closure,next_ext_proof) = + insert_connection sproof2 (c1,c2) rest_ext_proof rest_context c2_diff_context act_context in + (BNode(pos,(layer1,sproof1),(layer2,next_bproof)),next_exp,next_closure,next_ext_proof) + ) + end + + in + match ext_proof with + [] -> + beta_proof,0,0,[] + | (c1,c2)::rproof -> +(* print_endline ("actual connection: "^c1^" "^c2); *) + let c1_context = List.assoc c1 beta_atoms + and c2_context = List.assoc c2 beta_atoms in + let c2_diff_context = compute_beta_difference c1_context c2_context act_context + and c1_diff_context = compute_tree_difference beta_proof c1_context in (* wrt. actual beta-proof *) + let (next_beta_proof,next_exp,next_closures,next_ext_proof) = + insert_connection beta_proof (c1,c2) rproof c1_diff_context c2_diff_context c1_diff_context in + if non_closed [next_beta_proof] then (* at least one branch was generated to isolate [c1] *) + let rest_beta_proof,rest_exp,rest_closures,rest_ext_proof = + build_opt_beta_proof next_beta_proof next_ext_proof beta_atoms beta_layer_list act_context in + rest_beta_proof,(next_exp+rest_exp),(next_closures+rest_closures),rest_ext_proof + else + next_beta_proof,next_exp,next_closures,next_ext_proof + + let rec annotate_atoms beta_context atlist treelist = + let rec annotate_tree beta_context tree atlist = + match tree with + Empty -> + (atlist,[],[]) + | NodeAt(pos) -> + if List.mem pos.name atlist then + let new_atlist = list_del pos.name atlist in + (new_atlist,[(pos.name,beta_context)],[]) + else + (atlist,[],[]) + | NodeA(pos,suctrees) -> + if pos.pt = Beta then + let s1,s2 = suctrees.(0),suctrees.(1) in + let alayer1 = compute_alpha_layer [s1] + and alayer2 = compute_alpha_layer [s2] + and new_beta_context1 = beta_context @ [(pos.name,1)] + and new_beta_context2 = beta_context @ [(pos.name,2)] in + let atlist1,annotates1,blayer_list1 = + annotate_atoms new_beta_context1 atlist [s1] in + let atlist2,annotates2,blayer_list2 = + annotate_atoms new_beta_context2 atlist1 [s2] + in + (atlist2,(annotates1 @ annotates2),((pos.name,(alayer1,alayer2))::(blayer_list1 @ blayer_list2))) + else + annotate_atoms beta_context atlist (Array.to_list suctrees) + in + match treelist with + [] -> (atlist,[],[]) + | f::r -> + let (next_atlist,f_annotates,f_beta_layers) = annotate_tree beta_context f atlist in + let (rest_atlist,rest_annotates,rest_beta_layers) = (annotate_atoms beta_context next_atlist r) + in + (rest_atlist, (f_annotates @ rest_annotates),(f_beta_layers @ rest_beta_layers)) + + let construct_opt_beta_proof ftree ext_proof = + let con1,con2 = List.split ext_proof in + let con_atoms = remove_dups_list (con1 @ con2) in + let (empty_atoms,beta_atoms,beta_layer_list) = annotate_atoms [] con_atoms [ftree] in + let root_node = compute_alpha_layer [ftree] in + let (beta_proof,beta_exp,closures,_) = + build_opt_beta_proof BEmpty ext_proof beta_atoms beta_layer_list [] in + (RNode(root_node,beta_proof)),beta_exp,closures + +(************* permutation ljmc -> lj *********************************) + +(* REAL PERMUTATION STAFF *) + + let subf1 n m subrel = List.mem ((n,m),1) subrel + let subf2 n m subrel = List.mem ((n,m),2) subrel + let tsubf n m tsubrel = List.mem (n,m) tsubrel + +(* Transforms all normal form layers in an LJ proof *) + + let rec modify prooftree (subrel,tsubrel) = + match prooftree with + PEmpty -> + raise jprover_bug + | PNodeAx((pos,inf,form,term)) -> + prooftree,pos + | PNodeA((pos,inf,form,term),left) -> + let t,qpos = modify left (subrel,tsubrel) in + if List.mem inf [Impr;Negr;Allr] then + PNodeA((pos,inf,form,term),t),pos (* layer bound *) + else if qpos = "Orl-True" then + PNodeA((pos,inf,form,term),t),qpos + else if List.mem inf [Andl;Alll;Exl] then + PNodeA((pos,inf,form,term),t),qpos (* simply propagation *) + else if inf = Exr then + if (subf1 pos qpos subrel) then + PNodeA((pos,inf,form,term),t),pos + else t,qpos + else if inf = Negl then + if (subf1 pos qpos subrel) then + PNodeA((pos,inf,form,term),t),"" (* empty string *) + else t,qpos + else (* x = Orr *) + if (subf1 pos qpos subrel) then + PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *) + else if (subf2 pos qpos subrel) then + PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *) + else t,qpos + | PNodeB((pos,inf,form,term),left,right) -> + let t,qpos = modify left (subrel,tsubrel) in + if inf = Andr then + if (or) (qpos = "Orl-True") (subf1 pos qpos subrel) then + let s,rpos = modify right (subrel,tsubrel) in (* Orl-True -> subf *) + if (or) (rpos = "Orl-True") (subf2 pos rpos subrel) then + PNodeB((pos,inf,form,term),t,s),pos + else s,rpos + else t,qpos (* not subf -> not Orl-True *) + else if inf = Impl then + if (subf1 pos qpos subrel) then + let s,rpos = modify right (subrel,tsubrel) in + PNodeB((pos,inf,form,term),t,s),"" (* empty string *) + else t,qpos + else (* x = Orl *) + let s,rpos = modify right (subrel,tsubrel) in + PNodeB((pos,inf,form,term),t,s),"Orl-True" + +(* transforms the subproof into an LJ proof between + the beta-inference rule (excluded) and + layer boundary in the branch ptree *) + + let rec rec_modify ptree (subrel,tsubrel) = + match ptree with + PEmpty -> + raise jprover_bug + | PNodeAx((pos,inf,form,term)) -> + ptree,pos + | PNodeA((pos,inf,form,term),left) -> + if List.mem inf [Impr;Negr;Allr] then + ptree,pos (* layer bound, stop transforming! *) + else + let t,qpos = rec_modify left (subrel,tsubrel) in + if List.mem inf [Andl;Alll;Exl] then + PNodeA((pos,inf,form,term),t),qpos (* simply propagation*) + else if inf = Exr then + if (subf1 pos qpos subrel) then + PNodeA((pos,inf,form,term),t),pos + else t,qpos + else if inf = Negl then + if (subf1 pos qpos subrel) then + PNodeA((pos,inf,form,term),t),"" (* empty string *) + else t,qpos + else (* x = Orr *) + if (subf1 pos qpos subrel) then + PNodeA((pos,Orr1,form,term),t),pos (* make Orr for LJ *) + else if (subf2 pos qpos subrel) then + PNodeA((pos,Orr2,form,term),t),pos (* make Orr for LJ *) + else t,qpos + | PNodeB((pos,inf,form,term),left,right) -> + let t,qpos = rec_modify left (subrel,tsubrel) in + if inf = Andr then + if (subf1 pos qpos subrel) then + let s,rpos = rec_modify right (subrel,tsubrel) in + if (subf2 pos rpos subrel) then + PNodeB((pos,inf,form,term),t,s),pos + else s,rpos + else t,qpos + else (* x = Impl since x= Orl cannot occur in the partial layer ptree *) + + if (subf1 pos qpos subrel) then + let s,rpos = rec_modify right (subrel,tsubrel) in + PNodeB((pos,inf,form,term),t,s),"" (* empty string *) + else t,qpos + + let weak_modify rule ptree (subrel,tsubrel) = (* recall rule = or_l *) + let (pos,inf,formlua,term) = rule in + if inf = Orl then + ptree,true + else + let ptreem,qpos = rec_modify ptree (subrel,tsubrel) in + if (subf1 pos qpos subrel) then (* weak_modify will always be applied on left branches *) + ptreem,true + else + ptreem,false + +(* Now, the permutation stuff .... *) + +(* Permutation schemes *) + +(* corresponds to local permutation lemma -- Lemma 3 in the paper -- *) +(* with eigenvariablen renaming and branch modification *) + +(* eigenvariablen renaming and branch modification over *) +(* the whole proofs, i.e. over layer boundaries, too *) + + +(* global variable vor eigenvariable renaming during permutations *) + + let eigen_counter = ref 1 + +(* append renamed paramater "r" to non-quantifier subformulae + of renamed quantifier formulae *) + +(*: BUG :*) +(*: + let make_new_eigenvariable term = + let op = (dest_term term).term_op in + let opn = (dest_op op).op_name in + let opnam = dest_opname opn in + match opnam with + [] -> + raise jprover_bug + | ofirst::orest -> + let ofname = List.hd orest in + let new_eigen_var = (ofname^"_r"^(string_of_int (!eigen_counter))) in + eigen_counter := !eigen_counter + 1; +(* print_endline ("New Counter :"^(string_of_int (!eigen_counter))); *) + mk_string_term jprover_op new_eigen_var +:*) + + let make_new_eigenvariable term = + let op = (dest_term term).term_op in + let opa = (dest_op op).op_params in + let oppar = dest_param opa in + match oppar with + | String ofname::_ -> + let new_eigen_var = (ofname^"_r"^(string_of_int (!eigen_counter))) in + eigen_counter := !eigen_counter + 1; + mk_string_term jprover_op new_eigen_var + | _ -> raise jprover_bug + + + let replace_subterm term oldt rept = + let v_term = var_subst term oldt "dummy_var" in + subst1 v_term "dummy_var" rept + + let rec eigen_rename old_parameter new_parameter ptree = + match ptree with + PEmpty -> + raise jprover_bug + | PNodeAx((pos,inf,form,term)) -> + let new_form = replace_subterm form old_parameter new_parameter in + PNodeAx((pos,inf,new_form,term)) + | PNodeA((pos,inf,form,term), left) -> + let new_form = replace_subterm form old_parameter new_parameter + and new_term = replace_subterm term old_parameter new_parameter in + let ren_left = eigen_rename old_parameter new_parameter left in + PNodeA((pos,inf,new_form,new_term), ren_left) + | PNodeB((pos,inf,form,term),left, right) -> + let new_form = replace_subterm form old_parameter new_parameter in + let ren_left = eigen_rename old_parameter new_parameter left in + let ren_right = eigen_rename old_parameter new_parameter right in + PNodeB((pos,inf,new_form,term), ren_left, ren_right) + + let rec update_ptree rule subtree direction tsubrel = + match subtree with + PEmpty -> + raise jprover_bug + | PNodeAx(r) -> + subtree + | PNodeA((pos,inf,formula,term), left) -> + if (pos,inf,formula,term) = rule then + left + (* don't delete rule if subformula belongs to renamed instance of quantifiers; *) + (* but this can never occur now since (renamed) formula is part of rule *) + else + let (posn,infn,formn,termn) = rule in + if (&) (List.mem infn [Exl;Allr] ) (term = termn) then + (* this can only occur if eigenvariable rule with same term as termn has been permuted; *) + (* the application of the same eigenvariable introduction on the same subformula with *) + (* different instantiated variables might occur! *) + (* termn cannot occur in terms of permuted quantifier rules due to substitution split *) + (* during reconstruciton of the ljmc proof *) + let new_term = make_new_eigenvariable term in +(* print_endline "Eigenvariable renaming!!!"; *) + eigen_rename termn new_term subtree + else + let left_del = + update_ptree rule left direction tsubrel + in + PNodeA((pos,inf,formula,term), left_del) + | PNodeB((pos,inf,formula,term), left, right) -> + if (pos,inf,formula,term) = rule then + if direction = "l" then + left + else + right (* direction = "r" *) + else + let left_del = update_ptree rule left direction tsubrel in + let right_del = update_ptree rule right direction tsubrel in + PNodeB((pos,inf,formula,term),left_del,right_del) + + let permute r1 r2 ptree la tsubrel = +(* print_endline "permute in"; *) + match ptree,la with + PNodeA(r1, PNodeA(r2,left)),la -> +(* print_endline "1-o-1"; *) + PNodeA(r2, PNodeA(r1,left)) + (* one-over-one *) + | PNodeA(r1, PNodeB(r2,left,right)),la -> +(* print_endline "1-o-2"; *) + PNodeB(r2, PNodeA(r1,left), PNodeA(r1,right)) + (* one-over-two *) + | PNodeB(r1, PNodeA(r2,left), right),"l" -> +(* print_endline "2-o-1 left"; *) + let right_u = update_ptree r2 right "l" tsubrel in + PNodeA(r2, PNodeB(r1, left, right_u)) + (* two-over-one left *) + | PNodeB(r1, left, PNodeA(r2,right)),"r" -> +(* print_endline "2-o-1 right"; *) + let left_u = update_ptree r2 left "l" tsubrel in + PNodeA(r2, PNodeB(r1, left_u, right)) + (* two-over-one right *) + | PNodeB(r1, PNodeB(r2,left2,right2), right),"l" -> +(* print_endline "2-o-2 left"; *) + let right_ul = update_ptree r2 right "l" tsubrel in + let right_ur = update_ptree r2 right "r" tsubrel in + PNodeB(r2,PNodeB(r1,left2,right_ul),PNodeB(r1,right2,right_ur)) + (* two-over-two left *) + | PNodeB(r1, left, PNodeB(r2,left2,right2)),"r" -> +(* print_endline "2-o-2 right"; *) + let left_ul = update_ptree r2 left "l" tsubrel in + let left_ur = update_ptree r2 left "r" tsubrel in + PNodeB(r2,PNodeB(r1,left_ul,left2),PNodeB(r1,left_ur, right2)) + (* two-over-two right *) + | _ -> raise jprover_bug + +(* permute layers, isolate addmissible branches *) + +(* computes if an Andr is d-generatives *) + + let layer_bound rule = + let (pos,inf,formula,term) = rule in + if List.mem inf [Impr;Negr;Allr] then + true + else + false + + let rec orl_free ptree = + match ptree with + PEmpty -> + raise jprover_bug + | PNodeAx(rule) -> + true + | PNodeA(rule,left) -> + if layer_bound rule then + true + else + orl_free left + | PNodeB(rule,left,right) -> + let (pos,inf,formula,term) = rule in + if inf = Orl then + false + else + (&) (orl_free left) (orl_free right) + + let rec dgenerative rule dglist ptree tsubrel = + let (pos,inf,formula,term) = rule in + if List.mem inf [Exr;Orr;Negl] then + true + else if inf = Andr then + if dglist = [] then + false + else + let first,rest = (List.hd dglist),(List.tl dglist) in + let (pos1,inf1,formula1,term1) = first in + if tsubf pos1 pos tsubrel then + true + else + dgenerative rule rest ptree tsubrel + else if inf = Impl then + not (orl_free ptree) + else + false + + +(* to compute a topmost addmissible pair r,o with + the address addr of r in the proof tree +*) + + let rec top_addmissible_pair ptree dglist act_r act_o act_addr tsubrel dummyt = + let rec search_pair ptree dglist act_r act_o act_addr tsubrel = + match ptree with + PEmpty -> raise jprover_bug + | PNodeAx(_) -> raise jprover_bug + | PNodeA(rule, left) -> +(* print_endline "alpha"; *) + if (dgenerative rule dglist left tsubrel) then (* r = Exr,Orr,Negl *) + let newdg = (@) [rule] dglist in + search_pair left newdg act_r rule act_addr tsubrel + else (* Impr, Allr, Notr only for test *) + search_pair left dglist act_r act_o act_addr tsubrel + | PNodeB(rule,left,right) -> +(* print_endline "beta"; *) + let (pos,inf,formula,term) = rule in + if List.mem inf [Andr;Impl] then + let bool = dgenerative rule dglist left tsubrel in + let newdg,newrule = + if bool then + ((@) [rule] dglist),rule + else + dglist,act_o + in + if orl_free left then + search_pair right newdg act_r newrule (act_addr^"r") tsubrel + else (* not orl_free *) + let left_r,left_o,left_addr = + search_pair left newdg act_r newrule (act_addr^"l") tsubrel in + if left_o = ("",Orr,dummyt,dummyt) then + top_addmissible_pair right dglist act_r act_o (act_addr^"r") tsubrel dummyt + else left_r,left_o,left_addr + else (* r = Orl *) + if orl_free left then + top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt + else + let left_r,left_o,left_addr + = search_pair left dglist rule act_o (act_addr^"l") tsubrel in + if left_o = ("",Orr,dummyt,dummyt) then + top_addmissible_pair right dglist rule act_o (act_addr^"r") tsubrel dummyt + else + left_r,left_o,left_addr + in +(* print_endline "top_addmissible_pair in"; *) + if orl_free ptree then (* there must be a orl BELOW an layer bound *) + begin +(* print_endline "orl_free"; *) + act_r,act_o,act_addr + end + else + begin +(* print_endline "orl_full"; *) + search_pair ptree dglist act_r act_o act_addr tsubrel + end + + let next_direction addr act_addr = + String.make 1 (String.get addr (String.length act_addr)) + (* get starts with count 0*) + + let change_last addr d = + let split = (String.length addr) - 1 in + let prec,last = + (String.sub addr 0 split),(String.sub addr split 1) in + prec^d^last + + let last addr = + if addr = "" + then "" + else + String.make 1 (String.get addr (String.length addr-1)) + + let rest addr = + if addr = "" + then "" + else + String.sub addr 0 ((String.length addr) - 1) + + let rec permute_layer ptree dglist (subrel,tsubrel) = + let rec permute_branch r addr act_addr ptree dglist (subrel,tsubrel) = +(* print_endline "pbranch in"; *) + let la = last act_addr in (* no ensure uniqueness at 2-over-x *) + match ptree,la with + PNodeA(o,PNodeA(rule,left)),la -> (* one-over-one *) +(* print_endline " one-over-one "; *) + let permute_result = permute o rule ptree la tsubrel in + begin match permute_result with + PNodeA(r2,left2) -> + let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in + PNodeA(r2,pbleft) + | _ -> raise jprover_bug + end + | PNodeA(o,PNodeB(rule,left,right)),la -> (* one-over-two *) +(* print_endline " one-over-two "; *) + if rule = r then (* left,right are or_l free *) + permute o rule ptree la tsubrel (* first termination case *) + else + let d = next_direction addr act_addr in + if d = "l" then + let permute_result = permute o rule ptree la tsubrel in + (match permute_result with + PNodeB(r2,left2,right2) -> + let pbleft = permute_branch r addr (act_addr^d) left2 dglist (subrel,tsubrel) in + let plright = permute_layer right2 dglist (subrel,tsubrel) in + PNodeB(r2,pbleft,plright) + | _ -> raise jprover_bug + ) + else (* d = "r", that is left of rule is or_l free *) + let left1,bool = weak_modify rule left (subrel,tsubrel) in + if bool then (* rule is relevant *) + let permute_result = permute o rule (PNodeA(o,PNodeB(rule,left1,right))) la tsubrel in + (match permute_result with + PNodeB(r2,left2,right2) -> + let pbright = permute_branch r addr (act_addr^d) right2 dglist (subrel,tsubrel) in + PNodeB(r2,left2,pbright) + | _ -> raise jprover_bug + ) + else (* rule is not relevant *) + PNodeA(o,left1) (* optimized termination case (1) *) + | PNodeB(o,PNodeA(rule,left),right1),"l" -> (* two-over-one, left *) +(* print_endline " two-over-one, left "; *) + let permute_result = permute o rule ptree la tsubrel in + (match permute_result with + PNodeA(r2,left2) -> + let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in + PNodeA(r2,pbleft) + | _ -> raise jprover_bug + ) + | PNodeB(o,left1,PNodeA(rule,left)),"r" -> (* two-over-one, right *) + (* left of o is or_l free *) +(* print_endline " two-over-one, right"; *) + let leftm,bool = weak_modify o left1 (subrel,tsubrel) in + if bool then (* rule is relevant *) + let permute_result = permute o rule (PNodeB(o,leftm,PNodeA(rule,left))) la tsubrel in + (match permute_result with + PNodeA(r2,left2) -> + let pbleft = permute_branch r addr act_addr left2 dglist (subrel,tsubrel) in + PNodeA(r2,pbleft) + | _ -> raise jprover_bug + ) + else (* rule is not relevant *) + leftm (* optimized termination case (2) *) + | PNodeB(o,PNodeB(rule,left,right),right1),"l" -> (* two-over-two, left *) +(* print_endline " two-over-two, left"; *) + if rule = r then (* left,right are or_l free *) + let permute_result = permute o rule ptree la tsubrel in + (match permute_result with + PNodeB(r2,PNodeB(r3,left3,right3),PNodeB(r4,left4,right4)) -> +(* print_endline "permute 2-o-2, left ok"; *) + let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in + let leftm4,bool4 = weak_modify r4 left4 (subrel,tsubrel) in + let plleft,plright = + if (&) bool3 bool4 then (* r3 and r4 are relevant *) + (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)), + (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel)) + else if (&) bool3 (not bool4) then (* only r3 is relevant *) + begin +(* print_endline "two-over-two left: bool3 and not bool4"; *) + (permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel)), + leftm4 + end + else if (&) (not bool3) bool4 then (* only r4 is relevant *) + leftm3, + (permute_layer (PNodeB(r4,leftm4,right4)) dglist (subrel,tsubrel)) + else (* neither r3 nor r4 are relevant *) + leftm3,leftm4 + in + PNodeB(r2,plleft,plright) + | _ -> raise jprover_bug + ) + else + let d = next_direction addr act_addr in + let newadd = change_last act_addr d in + if d = "l" then + let permute_result = permute o rule ptree la tsubrel in + (match permute_result with + PNodeB(r2,left2,right2) -> + let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in + let plright = permute_layer right2 dglist (subrel,tsubrel) in + PNodeB(r2,pbleft,plright) + | _ -> raise jprover_bug + ) + else (* d = "r", that is left is or_l free *) + let left1,bool = weak_modify rule left (subrel,tsubrel) in + if bool then (* rule is relevant *) + let permute_result = + permute o rule (PNodeB(o,PNodeB(rule,left1,right),right1)) la tsubrel in + (match permute_result with + PNodeB(r2,PNodeB(r3,left3,right3),right2) -> + let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in + let leftm3,bool3 = weak_modify r3 left3 (subrel,tsubrel) in + let plleft = + if bool3 (* r3 relevant *) then + permute_layer (PNodeB(r3,leftm3,right3)) dglist (subrel,tsubrel) + else (* r3 redundant *) + leftm3 + in + PNodeB(r2,plleft,pbright) (* further opt. NOT possible *) + | _ -> raise jprover_bug + ) + else (* rule is not relevant *) + permute_layer (PNodeB(o,left1,right1)) dglist (subrel,tsubrel) (* further opt. possible *) + (* combine with orl_free *) + | PNodeB(o,left1,PNodeB(rule,left,right)),"r" -> (* two-over-two, right *) +(* print_endline " two-over-two, right"; *) + let leftm1,bool = weak_modify o left1 (subrel,tsubrel) in (* left1 is or_l free *) + if bool then (* o is relevant, even after permutations *) + if rule = r then (* left, right or_l free *) + permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel + else + let d = next_direction addr act_addr in + let newadd = change_last act_addr d in + if d = "l" then + let permute_result = + permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in + (match permute_result with + PNodeB(r2,left2,right2) -> + let pbleft = permute_branch r addr newadd left2 dglist (subrel,tsubrel) in + let plright = permute_layer right2 dglist (subrel,tsubrel) in + PNodeB(r2,pbleft,plright) + | _ -> raise jprover_bug + ) + else (* d = "r", that is left is or_l free *) + let leftm,bool = weak_modify rule left (subrel,tsubrel) in + if bool then (* rule is relevant *) + let permute_result = + permute o rule (PNodeB(o,leftm1,PNodeB(rule,left,right))) la tsubrel in + (match permute_result with + PNodeB(r2,left2,right2) -> + let pbright = permute_branch r addr newadd right2 dglist (subrel,tsubrel) in + PNodeB(r2,left2,pbright) (* left2 or_l free *) + | _ -> raise jprover_bug + ) + else (* rule is not relevant *) + PNodeB(o,leftm1,leftm) + + else + leftm1 + | _ -> raise jprover_bug + in + let rec trans_add_branch r o addr act_addr ptree dglist (subrel,tsubrel) = + match ptree with + (PEmpty| PNodeAx(_)) -> raise jprover_bug + | PNodeA(rule,left) -> + if (dgenerative rule dglist left tsubrel) then + let newdg = (@) [rule] dglist in + if rule = o then + begin +(* print_endline "one-rule is o"; *) + permute_branch r addr act_addr ptree dglist (subrel,tsubrel) + end + else + begin +(* print_endline "alpha - but not o"; *) + let tptree = trans_add_branch r o addr act_addr left newdg (subrel,tsubrel) in + permute_layer (PNodeA(rule,tptree)) dglist (subrel,tsubrel) + (* r may not longer be valid for rule *) + end + else + let tptree = trans_add_branch r o addr act_addr left dglist (subrel,tsubrel) in + PNodeA(rule,tptree) + | PNodeB(rule,left,right) -> + let d = next_direction addr act_addr in + let bool = (dgenerative rule dglist left tsubrel) in + if rule = o then + begin +(* print_endline "two-rule is o"; *) + permute_branch r addr (act_addr^d) ptree dglist (subrel,tsubrel) + end + else + begin +(* print_endline ("beta - but not o: address "^d); *) + let dbranch = + if d = "l" then + left + else (* d = "r" *) + right + in + let tptree = + if bool then + let newdg = (@) [rule] dglist in + (trans_add_branch r o addr (act_addr^d) dbranch newdg (subrel,tsubrel)) + else + (trans_add_branch r o addr (act_addr^d) dbranch dglist (subrel,tsubrel)) + in + if d = "l" then + permute_layer (PNodeB(rule,tptree,right)) dglist (subrel,tsubrel) + else (* d = "r" *) + begin +(* print_endline "prob. a redundant call"; *) + let back = permute_layer (PNodeB(rule,left,tptree)) dglist (subrel,tsubrel) in +(* print_endline "SURELY a redundant call"; *) + back + end + end + in +(* print_endline "permute_layer in"; *) + let dummyt = mk_var_term "dummy" in + let r,o,addr = + top_addmissible_pair ptree dglist ("",Orl,dummyt,dummyt) ("",Orr,dummyt,dummyt) "" tsubrel dummyt in + if r = ("",Orl,dummyt,dummyt) then + ptree + else if o = ("",Orr,dummyt,dummyt) then (* Orr is a dummy for no d-gen. rule *) + ptree + else + let (x1,x2,x3,x4) = r + and (y1,y2,y3,y4) = o in +(* print_endline ("top or_l: "^x1); + print_endline ("or_l address: "^addr); + print_endline ("top dgen-rule: "^y1); *) + trans_add_branch r o addr "" ptree dglist (subrel,tsubrel) + +(* Isolate layer and outer recursion structure *) +(* uses weaker layer boundaries: ONLY critical inferences *) + + let rec trans_layer ptree (subrel,tsubrel) = + let rec isol_layer ptree (subrel,tsubrel) = + match ptree with + PEmpty -> raise jprover_bug + | PNodeAx(inf) -> + ptree + | PNodeA((pos,rule,formula,term),left) -> + if List.mem rule [Allr;Impr;Negr] then + let tptree = trans_layer left (subrel,tsubrel) in + PNodeA((pos,rule,formula,term),tptree) + else + let tptree = isol_layer left (subrel,tsubrel) in + PNodeA((pos,rule,formula,term),tptree) + | PNodeB(rule,left,right) -> + let tptree_l = isol_layer left (subrel,tsubrel) + and tptree_r = isol_layer right (subrel,tsubrel) in + PNodeB(rule,tptree_l,tptree_r) + in + begin +(* print_endline "trans_layer in"; *) + let top_tree = isol_layer ptree (subrel,tsubrel) in + let back = permute_layer top_tree [] (subrel,tsubrel) in +(* print_endline "translauer out"; *) + back + end + +(* REAL PERMUTATION STAFF --- End *) + +(* build the proof tree from a list of inference rules *) + + let rec unclosed subtree = + match subtree with + PEmpty -> true + | PNodeAx(y) -> false + | PNodeA(y,left) -> (unclosed left) + | PNodeB(y,left,right) -> (or) (unclosed left) (unclosed right) + + let rec extend prooftree element = + match prooftree with + PEmpty -> + let (pos,rule,formula,term) = element in + if rule = Ax then + PNodeAx(element) + else + if List.mem rule [Andr; Orl; Impl] then + PNodeB(element,PEmpty,PEmpty) + else + PNodeA(element,PEmpty) + | PNodeAx(y) -> + PEmpty (* that's only for exhaustive pattern matching *) + | PNodeA(y, left) -> + PNodeA(y, (extend left element)) + | PNodeB(y, left, right) -> + if (unclosed left) then + PNodeB(y, (extend left element), right) + else + PNodeB(y, left, (extend right element)) + + let rec bptree prooftree nodelist nax= + match nodelist with + [] -> prooftree,nax + | ((_,pos),(rule,formula,term))::rest -> (* kick away the first argument *) + let newax = + if rule = Ax then + 1 + else + 0 + in + bptree (extend prooftree (pos,rule,formula,term)) rest (nax+newax) + + + let bproof nodelist = + bptree PEmpty nodelist 0 + + let rec get_successor_pos treelist = + match treelist with + [] -> [] + | f::r -> + ( + match f with + Empty -> get_successor_pos r + | NodeAt(_) -> raise jprover_bug + | NodeA(pos,_) -> + pos::(get_successor_pos r) + ) + + let rec get_formula_tree ftreelist f predflag = + match ftreelist with + [] -> raise jprover_bug + | ftree::rest_trees -> + (match ftree with + Empty -> get_formula_tree rest_trees f predflag + | NodeAt(_) -> get_formula_tree rest_trees f predflag + | NodeA(pos,suctrees) -> + if predflag = "pred" then + if pos.pt = Gamma then + let succs = get_successor_pos (Array.to_list suctrees) in + if List.mem f succs then + NodeA(pos,suctrees),succs + else + get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag + else + get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag + else (* predflag = "" *) + if pos = f then + NodeA(pos,suctrees),[] + else + get_formula_tree ((Array.to_list suctrees) @ rest_trees) f predflag + ) + + let rec get_formula_treelist ftree po = + match po with + [] -> [] + | f::r -> +(* a posistion in po has either stype Gamma_0,Psi_0,Phi_0 (non-atomic), or it has *) +(* ptype Alpha (or on the right), since there was a deadlock for proof reconstruction in LJ*) + if List.mem f.st [Phi_0;Psi_0] then + let (stree,_) = get_formula_tree [ftree] f "" in + stree::(get_formula_treelist ftree r) + else + if f.st = Gamma_0 then + let (predtree,succs) = get_formula_tree [ftree] f "pred" in + let new_po = list_diff r succs in + predtree::(get_formula_treelist ftree new_po) + else + if f.pt = Alpha then (* same as first case, or on the right *) + let (stree,_) = get_formula_tree [ftree] f "" in + stree::(get_formula_treelist ftree r) + else raise (Invalid_argument "Jprover bug: non-admissible open position") + + let rec build_formula_rel dir_treelist slist predname = + + let rec build_renamed_gamma_rel dtreelist predname posname d = + match dtreelist with + [] -> [],[] + | (x,ft)::rdtlist -> + let rest_rel,rest_ren = build_renamed_gamma_rel rdtlist predname posname d in + ( + match ft with + Empty -> (* may have empty successors due to purity in former reconstruction steps *) + rest_rel,rest_ren + | NodeAt(_) -> + raise jprover_bug (* gamma_0 position never is atomic *) + | NodeA(spos,suctrees) -> + if List.mem spos.name slist then +(* the gamma_0 position is really unsolved *) +(* this is only relevant for the gamma_0 positions in po *) + let new_name = (posname^"_"^spos.name) (* make new unique gamma name *) in + let new_srel_el = ((predname,new_name),d) + and new_rename_el = (spos.name,new_name) (* gamma_0 position as key first *) in + let (srel,sren) = build_formula_rel [(x,ft)] slist new_name in + ((new_srel_el::srel) @ rest_rel),((new_rename_el::sren) @ rest_ren) + else + rest_rel,rest_ren + ) + + + in + match dir_treelist with + [] -> [],[] + | (d,f)::dir_r -> + let (rest_rel,rest_renlist) = build_formula_rel dir_r slist predname in + match f with + Empty -> + print_endline "Hello, an empty subtree!!!!!!"; + rest_rel,rest_renlist + | NodeAt(pos) -> + (((predname,pos.name),d)::rest_rel),rest_renlist + | NodeA(pos,suctrees) -> + (match pos.pt with + Alpha | Beta -> + let dtreelist = + if (pos.pt = Alpha) & (pos.op = Neg) then + [(1,suctrees.(0))] + else + let st1 = suctrees.(0) + and st2 = suctrees.(1) in + [(1,st1);(2,st2)] + in + let (srel,sren) = build_formula_rel dtreelist slist pos.name in + ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist) + | Delta -> + let st1 = suctrees.(0) in + let (srel,sren) = build_formula_rel [(1,st1)] slist pos.name in + ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist) + | Psi| Phi -> + let succlist = Array.to_list suctrees in + let dtreelist = (List.map (fun x -> (d,x)) succlist) in + let (srel,sren) = build_formula_rel dtreelist slist predname in + (srel @ rest_rel),(sren @ rest_renlist) + | Gamma -> + let n = Array.length suctrees + and succlist = (Array.to_list suctrees) in + let dtreelist = (List.map (fun x -> (1,x)) succlist) in +(* if (nonemptys suctrees 0 n) = 1 then + let (srel,sren) = build_formula_rel dtreelist slist pos.name in + ((((predname,pos.name),d)::srel) @ rest_rel),(sren @ rest_renlist) + else (* we have more than one gamma instance, which means renaming *) +*) + let (srel,sren) = build_renamed_gamma_rel dtreelist predname pos.name d in + (srel @ rest_rel),(sren @ rest_renlist) + | PNull -> + raise jprover_bug + ) + + let rec rename_gamma ljmc_proof rename_list = + match ljmc_proof with + [] -> [] + | ((inst,pos),(rule,formula,term))::r -> + if List.mem rule [Alll;Exr] then + let new_gamma = List.assoc inst rename_list in + ((inst,new_gamma),(rule,formula,term))::(rename_gamma r rename_list) + else + ((inst,pos),(rule,formula,term))::(rename_gamma r rename_list) + + let rec compare_pair (s,sf) list = + if list = [] then + list + else + let (s_1,sf_1),restlist = (List.hd list),(List.tl list) in + if sf = s_1 then + (@) [(s,sf_1)] (compare_pair (s,sf) restlist) + else + compare_pair (s,sf) restlist + + let rec compare_pairlist list1 list2 = + if list1 = [] then + list1 + else + let (s1,sf1),restlist1 = (List.hd list1),(List.tl list1) in + (@) (compare_pair (s1,sf1) list2) (compare_pairlist restlist1 list2) + + let rec trans_rec pairlist translist = + let tlist = compare_pairlist pairlist translist in + if tlist = [] then + translist + else + (@) (trans_rec pairlist tlist) translist + + let transitive_closure subrel = + let pairlist,nlist = List.split subrel in + trans_rec pairlist pairlist + + let pt ptree subrel = + let tsubrel = transitive_closure subrel in + let transptree = trans_layer ptree (subrel,tsubrel) in + print_endline ""; + fst (modify transptree (subrel,tsubrel)) +(* let mtree = fst (modify transptree (subrel,tsubrel)) in *) +(* pretty_print mtree ax *) + + let rec make_node_list ljproof = + match ljproof with + PEmpty -> + raise jprover_bug + | PNodeAx((pos,inf,form,term)) -> + [(("",pos),(inf,form,term))] + | PNodeA((pos,inf,form,term),left) -> + let left_list = make_node_list left in + (("",pos),(inf,form,term))::left_list + | PNodeB((pos,inf,form,term),left,right) -> + let left_list = make_node_list left + and right_list = make_node_list right in + (("",pos),(inf,form,term))::(left_list @ right_list) + + let permute_ljmc ftree po slist ljmc_proof = + (* ftree/po are the formula tree / open positions of the sequent that caused deadlock and permutation *) +(* print_endline "!!!!!!!!!!!!!Permutation TO DO!!!!!!!!!"; *) + (* the open positions in po are either phi_0, psi_0, or gamma_0 positions *) + (* since proof reconstruction was a deadlock in LJ *) + let po_treelist = get_formula_treelist ftree po in + let dir_treelist = List.map (fun x -> (1,x)) po_treelist in + let (formula_rel,rename_list) = build_formula_rel dir_treelist slist "dummy" in + let renamed_ljmc_proof = rename_gamma ljmc_proof rename_list in + let (ptree,ax) = bproof renamed_ljmc_proof in + let ljproof = pt ptree formula_rel in + (* this is a direct formula relation, comprising left/right subformula *) + begin +(* print_treelist po_treelist; *) +(* print_endline ""; + print_endline ""; +*) +(* print_triplelist formula_rel; *) +(* print_endline ""; + print_endline ""; + tt ljproof; +*) +(* print_pairlist rename_list; *) +(* print_endline ""; + print_endline ""; +*) + make_node_list ljproof + end + +(************** PROOF RECONSTRUCTION without redundancy deletion ******************************) + + let rec init_unsolved treelist = + match treelist with + [] -> [] + | f::r -> + begin match f with + Empty -> [] + | NodeAt(pos) -> + (pos.name)::(init_unsolved r) + | NodeA(pos,suctrees) -> + let new_treelist = (Array.to_list suctrees) @ r in + (pos.name)::(init_unsolved new_treelist) + end + +(* only the unsolved positions will be represented --> skip additional root position *) + + let build_unsolved ftree = + match ftree with + Empty | NodeAt _ -> + raise jprover_bug + | NodeA(pos,suctrees) -> + ((pos.name),init_unsolved (Array.to_list suctrees)) + +(* + let rec collect_variables tree_list = + match tree_list with + [] -> [] + | f::r -> + begin match f with + Empty -> [] + | NodeAt(pos) -> + if pos.st = Gamma_0 then + pos.name::collect_variables r + else + collect_variables r + | NodeA(pos,suctrees) -> + let new_tree_list = (Array.to_list suctrees) @ r in + if pos.st = Gamma_0 then + pos.name::collect_variables new_tree_list + else + collect_variables new_tree_list + end + + let rec extend_sigmaQ sigmaQ vlist = + match vlist with + [] -> [] + | f::r -> + let vf = mk_var_term f in + if List.exists (fun x -> (fst x = vf)) sigmaQ then + extend_sigmaQ sigmaQ r + else +(* first and second component are var terms in meta-prl *) + [(vf,vf)] @ (extend_sigmaQ sigmaQ r) + + let build_sigmaQ sigmaQ ftree = + let vlist = collect_variables [ftree] in + sigmaQ @ (extend_sigmaQ sigmaQ vlist) +*) + +(* subformula relation subrel is assumed to be represented in pairs + (a,b) *) + + let rec delete e list = (* e must not necessarily occur in list *) + match list with + [] -> [] (* e must not necessarily occur in list *) + | first::rest -> + if e = first then + rest + else + first::(delete e rest) + + let rec key_delete fname pos_list = (* in key_delete, f is a pos name (key) but sucs is a list of positions *) + match pos_list with + [] -> [] (* the position with name f must not necessarily occur in pos_list *) + | f::r -> + if fname = f.name then + r + else + f::(key_delete fname r) + + let rec get_roots treelist = + match treelist with + [] -> [] + | f::r -> + match f with + Empty -> (get_roots r) (* Empty is posible below alpha-nodes after purity *) + | NodeAt(pos) -> pos::(get_roots r) + | NodeA(pos,trees) -> pos::(get_roots r) + + let rec comp_ps padd ftree = + match ftree with + Empty -> raise (Invalid_argument "Jprover bug: empty formula tree") + | NodeAt(pos) -> + [] + | NodeA(pos,strees) -> + match padd with + [] -> get_roots (Array.to_list strees) + | f::r -> + if r = [] then + pos::(comp_ps r (Array.get strees (f-1))) + else + comp_ps r (Array.get strees (f-1)) + +(* computes a list: first element predecessor, next elements successoes of p *) + + let tpredsucc p ftree = + let padd = p.address in + comp_ps padd ftree + +(* set an element in an array, without side effects *) + + let myset array int element = + let length = Array.length array in + let firstpart = Array.sub array 0 (int) in + let secondpart = Array.sub array (int+1) (length-(int+1)) in + (Array.append firstpart (Array.append [|element|] secondpart)) + + let rec compute_open treelist slist = + match treelist with + [] -> [] + | first::rest -> + let elements = + match first with + Empty -> [] + | NodeAt(pos) -> + if (List.mem (pos.name) slist) then + [pos] + else + [] + | NodeA(pos,suctrees) -> + if (List.mem (pos.name) slist) then + [pos] + else + compute_open (Array.to_list suctrees) slist + in + elements @ (compute_open rest slist) + + let rec select_connection pname connections slist = + match connections with + [] -> ("none","none") + | f::r -> + let partner = + if (fst f) = pname then + (snd f) + else + if (snd f) = pname then + (fst f) + else + "none" + in + if ((partner = "none") or (List.mem partner slist)) then + select_connection pname r slist + else + f + + let rec replace_element element element_set redord = + match redord with + [] -> raise jprover_bug (* element occurs in redord *) + | (f,fset)::r -> + if f = element then + (f,element_set)::r + else + (f,fset)::(replace_element element element_set r) + + let rec collect_succ_sets sucs redord = + match redord with + [] -> StringSet.empty + | (f,fset)::r -> + let new_sucs = key_delete f sucs in + if (List.length sucs) = (List.length new_sucs) then (* position with name f did not occur in sucs -- no deletion *) + (collect_succ_sets sucs r) + else + StringSet.union (StringSet.add f fset) (collect_succ_sets new_sucs r) + + let replace_ordering psucc_name sucs redord = + let new_psucc_set = collect_succ_sets sucs redord in +(* print_string_set new_psucc_set; *) + replace_element psucc_name new_psucc_set redord + + let rec update pname redord = + match redord with + [] -> [] + | (f,fset)::r -> + if pname=f then + r + else + (f,fset)::(update pname r) + +(* rule construction *) + + let rec selectQ_rec spos_var csigmaQ = + match csigmaQ with + [] -> mk_var_term spos_var (* dynamic completion of csigmaQ *) + | (var,term)::r -> + if spos_var=var then + term + else + selectQ_rec spos_var r + + let selectQ spos_name csigmaQ = + let spos_var = spos_name^"_jprover" in + selectQ_rec spos_var csigmaQ + + let apply_sigmaQ term sigmaQ = + let sigma_vars,sigma_terms = List.split sigmaQ in + (subst term sigma_vars sigma_terms) + + let build_rule pos spos csigmaQ orr_flag calculus = + let inst_label = apply_sigmaQ (pos.label) csigmaQ in + match pos.op,pos.pol with + Null,_ -> raise (Invalid_argument "Jprover: no rule") + | At,O -> Ax,(inst_label),xnil_term (* to give back a term *) + | At,I -> Ax,(inst_label),xnil_term + | And,O -> Andr,(inst_label),xnil_term + | And,I -> Andl,(inst_label),xnil_term + | Or,O -> + if calculus = "LJ" then + let or_rule = + if orr_flag = 1 then + Orr1 + else + Orr2 + in + or_rule,(inst_label),xnil_term + else + Orr,(inst_label),xnil_term + | Or,I -> Orl,(inst_label),xnil_term + | Neg,O -> Negr,(inst_label),xnil_term + | Neg,I -> Negl,(inst_label),xnil_term + | Imp,O -> Impr,(inst_label),xnil_term + | Imp,I -> Impl,(inst_label),xnil_term + | All,I -> Alll,(inst_label),(selectQ spos.name csigmaQ) (* elements of csigmaQ is (string * term) *) + | Ex,O -> Exr,(inst_label), (selectQ spos.name csigmaQ) + | All,O -> Allr,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *) + | Ex,I -> Exl,(inst_label),(mk_string_term jprover_op spos.name) (* must be a proper term *) + + +(* %%%%%%%%%%%%%%%%%%%% Split begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *) + + let rec nonemptys treearray j n = + if j = n then + 0 + else + let count = + if (Array.get treearray j) <> Empty then + 1 + else + 0 + in + count + (nonemptys treearray (j+1) n) + + let rec collect_pure ftreelist (flist,slist) = + + let rec collect_itpure ftree (flist,slist) = + match ftree with + Empty -> (* assumed that not all brother trees are Empty *) + [] + | NodeAt(pos) -> (* that may NOT longer be an inner node *) + if ((List.mem (pos.name) flist) or (List.mem (pos.name) slist)) then + [] + else + [pos] + | NodeA(pos,treearray) -> + collect_pure (Array.to_list treearray) (flist,slist) + in + match ftreelist with + [] -> [] + | f::r -> + (collect_itpure f (flist,slist)) @ (collect_pure r (flist,slist)) + + let rec update_list testlist list = + match testlist with + [] -> list + | f::r -> + let newlist = delete f list in (* f may not occur in list; then newlist=list *) + update_list r newlist + + let rec update_pairlist p pairlist = + match pairlist with + [] -> [] + | f::r -> + if ((fst f) = p) or ((snd f) = p) then + update_pairlist p r + else + f::(update_pairlist p r) + + let rec update_connections slist connections = + match slist with + [] -> connections + | f::r -> + let connew = update_pairlist f connections in + update_connections r connew + + let rec update_redord delset redord = (* delset is the set of positions to be deleted *) + match redord with + [] -> [] + | (f,fset)::r -> + if (StringSet.mem f delset) then + update_redord delset r (* delete all key elements f from redord which are in delset *) + else + let new_fset = StringSet.diff fset delset in (* no successor of f from delset should remain in fset *) + (f,new_fset)::(update_redord delset r) + + let rec get_position_names treelist = + match treelist with + [] -> [] + | deltree::rests -> + match deltree with + Empty -> get_position_names rests + | NodeAt(pos) -> + (pos.name)::get_position_names rests + | NodeA(pos,strees) -> + (pos.name)::(get_position_names ((Array.to_list strees) @ rests)) + + let rec slist_to_set slist = + match slist with + [] -> + StringSet.empty + | f::r -> + StringSet.add f (slist_to_set r) + + let rec print_purelist pr = + match pr with + [] -> + begin + print_string "."; + print_endline " "; + end + | f::r -> + print_string ((f.name)^", "); + print_purelist r + + let update_relations deltree redord connections unsolved_list = + let pure_names = get_position_names [deltree] in + begin +(* print_ftree deltree; + Format.open_box 0; + print_endline " "; + print_stringlist pure_names; + Format.force_newline (); + Format.print_flush (); +*) + let rednew = update_redord (slist_to_set pure_names) redord + and connew = update_connections pure_names connections + and unsolnew = update_list pure_names unsolved_list in + (rednew,connew,unsolnew) + end + + let rec collect_qpos ftreelist uslist = + match ftreelist with + [] -> [],[] + | ftree::rest -> + match ftree with + Empty -> + collect_qpos rest uslist + | NodeAt(pos) -> + let (rest_delta,rest_gamma) = collect_qpos rest uslist in + if (pos.st = Gamma_0) & (List.mem pos.name uslist) then + rest_delta,(pos.name::rest_gamma) + else + if (pos.st = Delta_0) & (List.mem pos.name uslist) then + (pos.name::rest_delta),rest_gamma + else + rest_delta,rest_gamma + | NodeA(pos,suctrees) -> + let (rest_delta,rest_gamma) = collect_qpos ((Array.to_list suctrees) @ rest) uslist in + if (pos.st = Gamma_0) & (List.mem pos.name uslist) then + rest_delta,(pos.name::rest_gamma) + else + if (pos.st = Delta_0) & (List.mem pos.name uslist) then + (pos.name::rest_delta),rest_gamma + else + rest_delta,rest_gamma + + let rec do_split gamma_diff sigmaQ = + match sigmaQ with + [] -> [] + | (v,term)::r -> + if (List.mem (String.sub v 0 (String.index v '_')) gamma_diff) then + do_split gamma_diff r + else + (v,term)::(do_split gamma_diff r) + +(* make a term list out of a bterm list *) + + let rec collect_subterms = function + [] -> [] + | bt::r -> + let dbt = dest_bterm bt in + (dbt.bterm)::(collect_subterms r) + + (*: Bug! :*) +(*: let rec collect_delta_terms = function + [] -> [] + | t::r -> + let dt = dest_term t in + let top = dt.term_op + and tterms = dt.term_terms in + let dop = dest_op top in + let don = dest_opname dop.op_name in + match don with + [] -> + let sub_terms = collect_subterms tterms in + collect_delta_terms (sub_terms @ r) + | op1::opr -> + if op1 = "jprover" then + match opr with + [] -> raise (Invalid_argument "Jprover: delta position missing") + | delta::_ -> + delta::(collect_delta_terms r) + else + let sub_terms = collect_subterms tterms in + collect_delta_terms (sub_terms @ r) +:*) + + let rec collect_delta_terms = function + [] -> [] + | t::r -> + let dt = dest_term t in + let top = dt.term_op + and tterms = dt.term_terms in + let dop = dest_op top in + let don = dest_opname dop.op_name in + let doa = dest_param dop.op_params in + match don with + [] -> + let sub_terms = collect_subterms tterms in + collect_delta_terms (sub_terms @ r) + | op1::opr -> + if op1 = "jprover" then + match doa with + [] -> raise (Invalid_argument "Jprover: delta position missing") + | String delta::_ -> + delta::(collect_delta_terms r) + | _ -> raise (Invalid_argument "Jprover: delta position error") + else + let sub_terms = collect_subterms tterms in + collect_delta_terms (sub_terms @ r) + + + + let rec check_delta_terms (v,term) ass_delta_diff dterms = + match ass_delta_diff with + [] -> term,[] + | (var,dname)::r -> + if List.mem dname dterms then + let new_var = + if var = "" then + v + else + var + in + let replace_term = mk_string_term jprover_op dname in + let next_term = var_subst term replace_term new_var in + let (new_term,next_diffs) = check_delta_terms (v,next_term) r dterms in + (new_term,((new_var,dname)::next_diffs)) + else + let (new_term,next_diffs) = check_delta_terms (v,term) r dterms in + (new_term,((var,dname)::next_diffs)) + + + let rec localize_sigma zw_sigma ass_delta_diff = + match zw_sigma with + [] -> [] + | (v,term)::r -> + let dterms = collect_delta_terms [term] in + let (new_term,new_ass_delta_diff) = check_delta_terms (v,term) ass_delta_diff dterms in + (v,new_term)::(localize_sigma r new_ass_delta_diff) + + let subst_split ft1 ft2 ftree uslist1 uslist2 uslist sigmaQ = + let delta,gamma = collect_qpos [ftree] uslist + and delta1,gamma1 = collect_qpos [ft1] uslist1 + and delta2,gamma2 = collect_qpos [ft2] uslist2 in + let delta_diff1 = list_diff delta delta1 + and delta_diff2 = list_diff delta delta2 + and gamma_diff1 = list_diff gamma gamma1 + and gamma_diff2 = list_diff gamma gamma2 in + let zw_sigma1 = do_split gamma_diff1 sigmaQ + and zw_sigma2 = do_split gamma_diff2 sigmaQ in + let ass_delta_diff1 = List.map (fun x -> ("",x)) delta_diff1 + and ass_delta_diff2 = List.map (fun x -> ("",x)) delta_diff2 in + let sigmaQ1 = localize_sigma zw_sigma1 ass_delta_diff1 + and sigmaQ2 = localize_sigma zw_sigma2 ass_delta_diff2 in + (sigmaQ1,sigmaQ2) + + let rec reduce_tree addr actual_node ftree beta_flag = + match addr with + [] -> (ftree,Empty,actual_node,beta_flag) + | a::radd -> + match ftree with + Empty -> + print_endline "Empty purity tree"; + raise jprover_bug + | NodeAt(_) -> + print_endline "Atom purity tree"; + raise jprover_bug + | NodeA(pos,strees) -> +(* print_endline pos.name; *) + (* the associated node occurs above f (or the empty address) and hence, is neither atom nor empty tree *) + + let nexttree = (Array.get strees (a-1)) in + if (nonemptys strees 0 (Array.length strees)) < 2 then + begin +(* print_endline "strees 1 or non-empties < 2"; *) + let (ft,dt,an,bf) = reduce_tree radd actual_node nexttree beta_flag in + let nstrees = myset strees (a-1) ft in +(* print_endline ("way back "^pos.name); *) + (NodeA(pos,nstrees),dt,an,bf) + end + else (* nonemptys >= 2 *) + begin +(* print_endline "nonempties >= 2 "; *) + let (new_act,new_bf) = + if pos.pt = Beta then + (actual_node,true) + else + ((pos.name),false) + in + let (ft,dt,an,bf) = reduce_tree radd new_act nexttree new_bf in + if an = pos.name then + let nstrees = myset strees (a-1) Empty in +(* print_endline ("way back assocnode "^pos.name); *) + (NodeA(pos,nstrees),nexttree,an,bf) + else (* has been replaced / will be replaced below / above pos *) + let nstrees = myset strees (a-1) ft in +(* print_endline ("way back "^pos.name); *) + (NodeA(pos,nstrees),dt,an,bf) + end + + let rec purity ftree redord connections unsolved_list = + + let rec purity_reduction pr ftree redord connections unsolved_list = + begin +(* Format.open_box 0; + print_endline " "; + print_purelist pr; + Format.force_newline (); + Format.print_flush (); +*) + match pr with + [] -> (ftree,redord,connections,unsolved_list) + | f::r -> +(* print_endline ("pure position "^(f.name)); *) + let (ftnew,deltree,assocn,beta_flag) = reduce_tree f.address "" ftree false + in +(* print_endline ("assoc node "^assocn); *) + if assocn = "" then + (Empty,[],[],[]) (* should not occur in the final version *) + else + let (rednew,connew,unsolnew) = update_relations deltree redord connections unsolved_list in + begin +(* Format.open_box 0; + print_endline " "; + print_pairlist connew; + Format.force_newline (); + Format.print_flush (); +*) + if beta_flag = true then + begin +(* print_endline "beta_flag true"; *) + purity ftnew rednew connew unsolnew + (* new pure positions may occur; old ones may not longer exist *) + end + else + purity_reduction r ftnew rednew connew unsolnew (* let's finish the old pure positions *) + end + end + + in + let flist,slist = List.split connections in + let pr = collect_pure [ftree] (flist,slist) in + purity_reduction pr ftree redord connections unsolved_list + + let rec betasplit addr ftree redord connections unsolved_list = + match ftree with + Empty -> + print_endline "bsplit Empty tree"; + raise jprover_bug + | NodeAt(_) -> + print_endline "bsplit Atom tree"; + raise jprover_bug (* the beta-node should actually occur! *) + | NodeA(pos,strees) -> + match addr with + [] -> (* we are at the beta node under consideration *) + let st1tree = (Array.get strees 0) + and st2tree = (Array.get strees 1) in + let (zw1red,zw1conn,zw1uslist) = update_relations st2tree redord connections unsolved_list + and (zw2red,zw2conn,zw2uslist) = update_relations st1tree redord connections unsolved_list in + ((NodeA(pos,[|st1tree;Empty|])),zw1red,zw1conn,zw1uslist), + ((NodeA(pos,[|Empty;st2tree|])),zw2red,zw2conn,zw2uslist) + | f::rest -> + let nexttree = Array.get strees (f-1) in + let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) = + betasplit rest nexttree redord connections unsolved_list in +(* let scopytrees = Array.copy strees in *) + let zw1trees = myset strees (f-1) zw1ft + and zw2trees = myset strees (f-1) zw2ft in + (NodeA(pos,zw1trees),zw1red,zw1conn,zw1uslist),(NodeA(pos,zw2trees),zw2red,zw2conn,zw2uslist) + + + + + let split addr pname ftree redord connections unsolved_list opt_bproof = + let (opt_bp1,min_con1),(opt_bp2,min_con2) = split_permutation pname opt_bproof in + begin +(* + print_endline "Beta proof 1: "; + print_endline ""; + print_beta_proof opt_bp1; + print_endline ""; + print_endline ("Beta proof 1 connections: "); + Format.open_box 0; + print_pairlist min_con1; + print_endline "."; + Format.print_flush(); + print_endline ""; + print_endline ""; + print_endline "Beta proof 2: "; + print_endline ""; + print_beta_proof opt_bp2; + print_endline ""; + print_endline ("Beta proof 2 connections: "); + Format.open_box 0; + print_pairlist min_con2; + print_endline "."; + Format.print_flush(); + print_endline ""; +*) + let (zw1ft,zw1red,zw1conn,zw1uslist),(zw2ft,zw2red,zw2conn,zw2uslist) = + betasplit addr ftree redord connections unsolved_list in +(* zw1conn and zw2conn are not longer needed when using beta proofs *) +(* print_endline "betasp_out"; *) + let ft1,red1,conn1,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in +(* print_endline "purity_one_out"; *) + let ft2,red2,conn2,uslist2 = purity zw2ft zw2red min_con2 zw2uslist in +(* print_endline "purity_two_out"; *) +(* again, min_con1 = conn1 and min_con2 = conn2 should hold *) + begin +(* print_endline ""; + print_endline ""; + print_endline ("Purity 1 connections: "); + Format.open_box 0; + print_pairlist conn1; + print_endline "."; + print_endline ""; + Format.print_flush(); + print_endline ""; + print_endline ""; + print_endline ("Purity 2 connections: "); + Format.open_box 0; + print_pairlist conn2; + print_endline "."; + print_endline ""; + Format.print_flush(); + print_endline ""; + print_endline ""; +*) + (ft1,red1,conn1,uslist1,opt_bp1),(ft2,red2,conn2,uslist2,opt_bp2) + end + end + + +(* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Splitting end %%%%%%%%%%%%%%%% *) + + +(* for wait labels we collect all solved atoms with pol=0 *) + + let rec collect_solved_O_At ftreelist slist = + match ftreelist with + [] -> + [] + | f::r -> + match f with + Empty -> (* may become possible after purity *) + collect_solved_O_At r slist + | NodeAt(pos) -> + if ((List.mem (pos.name) slist) or (pos.pol = I)) then (* recall slist is the unsolved list *) + collect_solved_O_At r slist + else + (* here, we have pos solved and pos.pol = O) *) + pos::(collect_solved_O_At r slist) + | NodeA(pos,treearray) -> + collect_solved_O_At ((Array.to_list treearray) @ r) slist + + let rec red_ord_block pname redord = + match redord with + [] -> false + | (f,fset)::r -> + if ((f = pname) or (not (StringSet.mem pname fset))) then + red_ord_block pname r + else + true (* then, we have (StringSet.mem pname fset) *) + + let rec check_wait_succ_LJ faddress ftree = + match ftree with + Empty -> raise jprover_bug + | NodeAt(pos) -> raise jprover_bug (* we have an gamma_0 position or an or-formula *) + | NodeA(pos,strees) -> + match faddress with + [] -> + if pos.op = Or then + match (strees.(0),strees.(1)) with + (Empty,Empty) -> raise (Invalid_argument "Jprover: redundancies occur") + | (Empty,_) -> (false,2) (* determines the Orr2 rule *) + | (_,Empty) -> (false,1) (* determines the Orr1 ruke *) + | (_,_) -> (true,0) (* wait-label is set *) + else + (false,0) + | f::r -> + if r = [] then + if (pos.pt = Gamma) & ((nonemptys strees 0 (Array.length strees)) > 1) then + (true,0) (* we are at a gamma position (exr) with one than one successor -- wait label in LJ*) + else + check_wait_succ_LJ r (Array.get strees (f-1)) + else + check_wait_succ_LJ r (Array.get strees (f-1)) + + let blocked f po redord ftree connections slist logic calculus opt_bproof = +(* print_endline ("Blocking check "^(f.name)); *) + if (red_ord_block (f.name) redord) then + begin +(* print_endline "wait-1 check positive"; *) + true,0 + end + else + if logic = "C" then + false,0 (* ready, in C only redord counts *) + else + let pa_O = collect_solved_O_At [ftree] slist (* solved atoms in ftree *) + and po_test = (delete f po) in + if calculus = "LJmc" then (* we provide dynamic wait labels for both sequent calculi *) +(* print_endline "wait-2 check"; *) + if (f.st = Psi_0) & (f.pt <> PNull) & + ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test)) then + begin +(* print_endline "wait-2 positive"; *) + true,0 (* wait_2 label *) + end + else + begin +(* print_endline "wait-2 negative"; *) + false,0 + end + else (* calculus is supposed to be LJ *) + if calculus = "LJ" then + if ((f.st = Phi_0) & ((f.op=Neg) or (f.op=Imp)) & + ((pa_O <> []) or (List.exists (fun x -> x.pol = O) po_test)) + ) + (* this would cause an impl or negl rule with an non-empty succedent *) + then + if (f.op=Neg) then + true,0 + else (* (f.op=Imp) *) + (* In case of an impl rule on A => B, the wait_label must NOT be set + iff all succedent formulae depend exclusively on B. For this, we + perform a split operation and determine, if in the A-subgoal + all succedent formulae are pure, i.e.~have been deleted from treds. + Otherwise, in case of A-dependent succedent formulae, the + wait_label must be set. + *) + let ((_,min_con1),_) = split_permutation f.name opt_bproof in + let slist_fake = delete f.name slist in + let ((zw1ft,zw1red,_,zw1uslist),_) = + betasplit (f.address) ftree redord connections slist_fake in + let ft1,_,_,uslist1 = purity zw1ft zw1red min_con1 zw1uslist in +(* print_endline "wait label purity_one_out"; *) + let ft1_root = (List.hd (List.tl (tpredsucc f ft1))) in +(* print_endline ("wait-root "^(ft1_root.name)); *) + let po_fake = compute_open [ft1] uslist1 in + let po_fake_test = delete ft1_root po_fake + and pa_O_fake = collect_solved_O_At [ft1] uslist1 in +(* print_purelist (po_fake_test @ pa_O_fake); *) + if ((pa_O_fake <> []) or (List.exists (fun x -> x.pol = O) po_fake_test)) then + true,0 + else + false,0 + else + if ((f.pol=O) & ((f.st=Gamma_0) or (f.op=Or))) then + let (bool,orr_flag) = check_wait_succ_LJ f.address ftree in + (bool,orr_flag) + (* here is determined if orr1 or orr2 will be performed, provided bool=false) *) + (* orr_flag can be 1 or 2 *) + else + false,0 + else + raise (Invalid_argument "Jprover: calculus should be LJmc or LJ") + + let rec get_beta_preference list actual = + match list with + [] -> actual + | (f,int)::r -> + if f.op = Imp then + (f,int) + else +(* if f.op = Or then + get_beta_preference r (f,int) + else +*) + get_beta_preference r actual + + exception Gamma_deadlock + + let rec select_pos search_po po redord ftree connections slist logic calculus candidates + opt_bproof = + match search_po with + [] -> + (match candidates with + [] -> + if calculus = "LJ" then + raise Gamma_deadlock (* permutation may be necessary *) + else + raise (Invalid_argument "Jprover bug: overall deadlock") (* this case should not occur *) + | c::rest -> + get_beta_preference (c::rest) c + ) + | f::r -> (* there exist an open position *) + let (bool,orr_flag) = (blocked f po redord ftree connections slist logic calculus + opt_bproof) + in + if (bool = true) then + select_pos r po redord ftree connections slist logic calculus candidates opt_bproof + else + if f.pt = Beta then + (* search for non-splitting rules first *) +(* let beta_candidate = + if candidates = [] + then + [(f,orr_flag)] + else + !!!! but preserve first found candidate !!!!!!! + candidates + in + !!!!!!! this strategy is not sure the best -- back to old !!!!!!!!! +*) + select_pos r po redord ftree connections slist logic calculus + ((f,orr_flag)::candidates) opt_bproof + else + (f,orr_flag) + +(* let rec get_position_in_tree pname treelist = + match treelist with + [] -> raise jprover_bug + | f::r -> + begin match f with + Empty -> get_position_in_tree pname r + | NodeAt(pos) -> + if pos.name = pname then + pos + else + get_position_in_tree pname r + | NodeA(pos,suctrees) -> + get_position_in_tree pname ((Array.to_list suctrees) @ r) + end +*) + +(* total corresponds to tot in the thesis, + tot simulates the while-loop, solve is the rest *) + + let rec total ftree redord connections csigmaQ slist logic calculus opt_bproof = + let rec tot ftree redord connections po slist = + let rec solve ftree redord connections p po slist (pred,succs) orr_flag = + let newslist = delete (p.name) slist in + let rback = + if p.st = Gamma_0 then + begin +(* print_endline "that's the gamma rule"; *) + [((p.name,pred.name),(build_rule pred p csigmaQ orr_flag calculus))] + end + else + [] + in +(* print_endline "gamma check finish"; *) + let pnew = + if p.pt <> Beta then + succs @ (delete p po) + else + po + in + match p.pt with + Gamma -> + rback @ (tot ftree redord connections pnew newslist) + | Psi -> + if p.op = At then + let succ = List.hd succs in + rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *) + else + rback @ (tot ftree redord connections pnew newslist) + | Phi -> + if p.op = At then + let succ = List.hd succs in + rback @ (solve ftree redord connections succ pnew newslist (p,[]) orr_flag) (* solve atoms immediately *) + else + rback @ (tot ftree redord connections pnew newslist) + | PNull -> + let new_redord = update p.name redord in + let (c1,c2) = select_connection (p.name) connections newslist in + if (c1= "none" & c2 ="none") then + rback @ (tot ftree new_redord connections pnew newslist) + else + let (ass_pos,inst_pos) = +(* need the pol=O position ass_pos of the connection for later permutation *) +(* need the pol=I position inst_pos for NuPRL instantiation *) + if p.name = c1 then + if p.pol = O then + (c1,c2) + else + (c2,c1) + else (* p.name = c2 *) + if p.pol = O then + (c2,c1) + else + (c1,c2) + in + rback @ [(("",ass_pos),(build_rule p p csigmaQ orr_flag calculus))] + (* one possibility of recursion end *) + | Alpha -> + rback @ ((("",p.name),(build_rule p p csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist)) + | Delta -> + let sp = List.hd succs in + rback @ ((("",p.name),(build_rule p sp csigmaQ orr_flag calculus))::(tot ftree redord connections pnew newslist)) + | Beta -> +(* print_endline "split_in"; *) + let (ft1,red1,conn1,uslist1,opt_bproof1),(ft2,red2,conn2,uslist2,opt_bproof2) = + split (p.address) (p.name) ftree redord connections newslist opt_bproof in + let (sigmaQ1,sigmaQ2) = subst_split ft1 ft2 ftree uslist1 uslist2 newslist csigmaQ in +(* print_endline "split_out"; *) + let p1 = total ft1 red1 conn1 sigmaQ1 uslist1 logic calculus opt_bproof1 in +(* print_endline "compute p1 out"; *) + let p2 = total ft2 red2 conn2 sigmaQ2 uslist2 logic calculus opt_bproof2 in +(* print_endline "compute p2 out"; *) + rback @ [(("",p.name),(build_rule p p csigmaQ orr_flag calculus))] @ p1 @ p2 (* second possibility of recursion end *) + in + begin try + let (p,orr_flag) = select_pos po po redord ftree connections slist logic + calculus [] opt_bproof + (* last argument for guiding selection strategy *) + in +(* print_endline ((p.name)^" "^(string_of_int orr_flag)); *) + let predsuccs = tpredsucc p ftree in + let pred = List.hd predsuccs + and succs = List.tl predsuccs in + let redpo = update (p.name) redord in (* deletes the entry (p,psuccset) from the redord *) + let rednew = + if (p.pt = Delta) then (* keep the tree ordering for the successor position only *) + let psucc = List.hd succs in + let ppsuccs = tpredsucc psucc ftree in + let pre = List.hd ppsuccs + and sucs = List.tl ppsuccs in + replace_ordering (psucc.name) sucs redpo (* union the succsets of psucc *) + else + redpo + in +(* print_endline "update ok"; *) + solve ftree rednew connections p po slist (pred,succs) orr_flag + with Gamma_deadlock -> + let ljmc_subproof = total ftree redord connections csigmaQ slist "J" "LJmc" opt_bproof + in + eigen_counter := 1; + permute_ljmc ftree po slist ljmc_subproof + (* the permuaiton result will be appended to the lj proof constructed so far *) + end + in + let po = compute_open [ftree] slist in + tot ftree redord connections po slist + + let reconstruct ftree redord sigmaQ ext_proof logic calculus = + let min_connections = remove_dups_connections ext_proof in + let (opt_bproof,beta_exp,closures) = construct_opt_beta_proof ftree ext_proof in +(* let connections = remove_dups_connections ext_proof in + let bproof,beta_exp,closures = construct_beta_proof ftree connections in + let (opt_bproof,min_connections) = bproof_purity bproof in +*) + if !debug_jprover then + begin + print_endline ""; + print_endline ("Beta proof with number of closures = "^(string_of_int closures)^" and number of beta expansions = "^(string_of_int beta_exp)); +(* print_endline ""; + print_endline ""; + print_beta_proof bproof; + print_endline ""; + print_endline ""; + print_endline "Optimal beta proof: "; + print_endline ""; + print_endline ""; + print_beta_proof opt_bproof; + print_endline ""; + print_endline ""; + print_endline ("Beta proof connections: "); + Format.open_box 0; + print_pairlist min_connections; + print_endline "."; + Format.print_flush(); *) + print_endline ""; + end; + let (newroot_name,unsolved_list) = build_unsolved ftree in + let redord2 = (update newroot_name redord) in (* otherwise we would have a deadlock *) + let (init_tree,init_redord,init_connections,init_unsolved_list) = + purity ftree redord2 min_connections unsolved_list in + begin +(* print_endline ""; + print_endline ""; + print_endline ("Purity connections: "); + Format.open_box 0; + print_pairlist init_connections; + print_endline "."; + print_endline ""; + Format.print_flush(); + print_endline ""; + print_endline ""; +*) +(* it should hold: min_connections = init_connections *) + total init_tree init_redord init_connections sigmaQ + init_unsolved_list logic calculus opt_bproof + end + +(* ***************** REDUCTION ORDERING -- both types **************************** *) + + exception Reflexive + + let rec transitive_irreflexive_closure addset const ordering = + match ordering with + [] -> + [] + | (pos,fset)::r -> + if (pos = const) or (StringSet.mem const fset) then +(* check reflexsivity during transitive closure wrt. addset ONLY!!! *) + if StringSet.mem pos addset then + raise Reflexive + else + (pos,(StringSet.union fset addset))::(transitive_irreflexive_closure addset const r) + else + (pos,fset)::(transitive_irreflexive_closure addset const r) + + let rec search_set var ordering = +(* print_endline var; *) + match ordering with + [] -> + raise (Invalid_argument "Jprover: element in ordering missing") + | (pos,fset)::r -> + if pos = var then + StringSet.add pos fset + else + search_set var r + + let add_sets var const ordering = + let addset = search_set var ordering in + transitive_irreflexive_closure addset const ordering + +(* ************* J ordering ********************************************** *) + + let rec add_arrowsJ (v,vlist) ordering = + match vlist with + [] -> ordering + | f::r -> + if ((String.get f 0)='c') then + let new_ordering = add_sets v f ordering in + add_arrowsJ (v,r) new_ordering + else + add_arrowsJ (v,r) ordering + + let rec add_substJ replace_vars replace_string ordering atom_rel = + match replace_vars with + [] -> ordering + | v::r -> + if (String.get v 1 = 'n') (* don't integrate new variables *) + or (List.exists (fun (x,_,_) -> (x.aname = v)) atom_rel) then (* no reduction ordering at atoms *) + (add_substJ r replace_string ordering atom_rel) + else + let next_ordering = add_arrowsJ (v,replace_string) ordering in + (add_substJ r replace_string next_ordering atom_rel) + + let build_orderingJ replace_vars replace_string ordering atom_rel = + try + add_substJ replace_vars replace_string ordering atom_rel + with Reflexive -> (* only possible in the FO case *) + raise Not_unifiable (*search for alternative string unifiers *) + + let rec build_orderingJ_list substJ ordering atom_rel = + match substJ with + [] -> ordering + | (v,vlist)::r -> + let next_ordering = build_orderingJ [v] vlist ordering atom_rel in + build_orderingJ_list r next_ordering atom_rel + +(* ************* J ordering END ********************************************** *) + +(* ************* quantifier ordering ********************************************** *) + + let rec add_arrowsQ v clist ordering = + match clist with + [] -> ordering + | f::r -> + let new_ordering = add_sets v f ordering in + add_arrowsQ v r new_ordering + + let rec print_sigmaQ sigmaQ = + match sigmaQ with + [] -> + print_endline "." + | (v,term)::r -> + begin + Format.open_box 0; + print_endline " "; + print_string (v^" = "); + print_term stdout term; + Format.force_newline (); + Format.print_flush (); + print_sigmaQ r + end + + let rec print_term_list tlist = + match tlist with + [] -> print_string "." + | t::r -> + begin + print_term stdout t; + print_string " "; + print_term_list r + end + + let rec add_sigmaQ new_elements ordering = + match new_elements with + [] -> ([],ordering) + | (v,termlist)::r -> + let dterms = collect_delta_terms termlist in + begin +(*: print_stringlist dterms; + mbreak "add_sigmaQ:1\n"; + Format.open_box 0; + print_endline " "; + print_endline "sigmaQ: "; + print_string (v^" = "); + print_term_list termlist; + Format.force_newline (); + print_stringlist dterms; + Format.force_newline (); + Format.print_flush (); + mbreak "add_sigmaQ:2\n"; +:*) + let new_ordering = add_arrowsQ v dterms ordering in +(*: print_ordering new_ordering; + mbreak "add_sigmaQ:3\n"; +:*) + let (rest_pairs,rest_ordering) = add_sigmaQ r new_ordering in + ((v,dterms)::rest_pairs),rest_ordering + end + + let build_orderingQ new_elements ordering = +(* new_elements is of type (string * term list) list, since one variable can receive more than *) +(* a single term due to substitution multiplication *) + try +(* print_endline "build orderingQ in"; *) (* apple *) + add_sigmaQ new_elements ordering; + with Reflexive -> + raise Failed (* new connection, please *) + + +(* ************* quantifier ordering END ********************************************** *) + +(* ****** Quantifier unification ************** *) + +(* For multiplication we assume always idempotent substitutions sigma, tau! *) + + let rec collect_assoc inst_vars tauQ = + match inst_vars with + [] -> [] + | f::r -> + let f_term = List.assoc f tauQ in + f_term::(collect_assoc r tauQ) + + let rec rec_apply sigmaQ tauQ tau_vars tau_terms = + match sigmaQ with + [] -> [],[] + | (v,term)::r -> + let app_term = subst term tau_vars tau_terms in + let old_free = free_vars_list term + and new_free = free_vars_list app_term in + let inst_vars = list_diff old_free new_free in + let inst_terms = collect_assoc inst_vars tauQ in + let (rest_sigma,rest_sigma_ordering) = rec_apply r tauQ tau_vars tau_terms in + if inst_terms = [] then + ((v,app_term)::rest_sigma),rest_sigma_ordering + else + let ordering_v = String.sub v 0 (String.index v '_') in + ((v,app_term)::rest_sigma),((ordering_v,inst_terms)::rest_sigma_ordering) + +(* let multiply sigmaQ tauQ = + let tau_vars,tau_terms = List.split tauQ + and sigma_vars,sigma_terms = List.split sigmaQ in + let apply_terms = rec_apply sigma_terms tau_vars tau_terms in + (List.combine sigma_vars apply_terms) @ tauQ +*) + + let multiply sigmaQ tauQ = + let (tau_vars,tau_terms) = List.split tauQ in + let (new_sigmaQ,sigma_ordering) = rec_apply sigmaQ tauQ tau_vars tau_terms in + let tau_ordering_terms = (List.map (fun x -> [x]) tau_terms) (* for extending ordering_elements *) in + let tau_ordering_vars = (List.map (fun x -> String.sub x 0 (String.index x '_')) tau_vars) in + let tau_ordering = (List.combine tau_ordering_vars tau_ordering_terms) in + ((new_sigmaQ @ tauQ), + (sigma_ordering @ tau_ordering) + ) + + let apply_2_sigmaQ term1 term2 sigmaQ = + let sigma_vars,sigma_terms = List.split sigmaQ in + (subst term1 sigma_vars sigma_terms),(subst term2 sigma_vars sigma_terms) + + let jqunify term1 term2 sigmaQ = + let app_term1,app_term2 = apply_2_sigmaQ term1 term2 sigmaQ in + try +(*: let tauQ = unify_mm app_term1 app_term2 String_set.StringSet.empty in :*) + let tauQ = unify_mm app_term1 app_term2 StringSet.empty in + let (mult,oel) = multiply sigmaQ tauQ in + (mult,oel) + with + RefineError _ -> (* any unification failure *) +(* print_endline "fo-unification fail"; *) + raise Failed (* new connection, please *) + +(* ************ T-STRING UNIFICATION ******************************** *) + + let rec combine subst (ov,oslist) = + match subst with + [] -> [],[] + | f::r -> + let (v,slist) = f in + let rest_vlist,rest_combine = (combine r (ov,oslist)) in + if (List.mem ov slist) then (* subst assumed to be idemponent *) + let com_element = com_subst slist (ov,oslist) in + (v::rest_vlist),((v,com_element)::rest_combine) + else + (rest_vlist,(f::rest_combine)) + + let compose sigma one_subst = + let (n,subst)=sigma + and (ov,oslist) = one_subst in + let (trans_vars,com) = combine subst (ov,oslist) + in +(* begin + print_endline "!!!!!!!!!test print!!!!!!!!!!"; + print_subst [one_subst]; + print_subst subst; + print_endline "!!!!!!!!! END test print!!!!!!!!!!"; +*) + if List.mem one_subst subst then + (trans_vars,(n,com)) + else +(* ov may multiply as variable in subst with DIFFERENT values *) +(* in order to avoid explicit atom instances!!! *) + (trans_vars,(n,(com @ [one_subst]))) +(* end *) + + let rec apply_element fs ft (v,slist) = + match (fs,ft) with + ([],[]) -> + ([],[]) + | ([],(ft_first::ft_rest)) -> + let new_ft_first = + if ft_first = v then + slist + else + [ft_first] + in + let (emptylist,new_ft_rest) = apply_element [] ft_rest (v,slist) in + (emptylist,(new_ft_first @ new_ft_rest)) + | ((fs_first::fs_rest),[]) -> + let new_fs_first = + if fs_first = v then + slist + else + [fs_first] + in + let (new_fs_rest,emptylist) = apply_element fs_rest [] (v,slist) in + ((new_fs_first @ new_fs_rest),emptylist) + | ((fs_first::fs_rest),(ft_first::ft_rest)) -> + let new_fs_first = + if fs_first = v then + slist + else + [fs_first] + and new_ft_first = + if ft_first = v then + slist + else + [ft_first] + in + let (new_fs_rest,new_ft_rest) = apply_element fs_rest ft_rest (v,slist) in + ((new_fs_first @ new_fs_rest),(new_ft_first @ new_ft_rest)) + + let rec shorten us ut = + match (us,ut) with + ([],_) -> (us,ut) + | (_,[]) -> (us,ut) + | ((fs::rs),(ft::rt)) -> + if fs = ft then + shorten rs rt + else + (us,ut) + + let rec apply_subst_list eq_rest (v,slist) = + + match eq_rest with + [] -> + (true,[]) + | (atomnames,(fs,ft))::r -> + let (n_fs,n_ft) = apply_element fs ft (v,slist) in + let (new_fs,new_ft) = shorten n_fs n_ft in (* delete equal first elements *) + match (new_fs,new_ft) with + [],[] -> + let (bool,new_eq_rest) = apply_subst_list r (v,slist) in + (bool,((atomnames,([],[]))::new_eq_rest)) + | [],(fft::rft) -> + if (is_const fft) then + (false,[]) + else + let (bool,new_eq_rest) = apply_subst_list r (v,slist) in + (bool,((atomnames,([],new_ft))::new_eq_rest)) + | (ffs::rfs),[] -> + if (is_const ffs) then + (false,[]) + else + let (bool,new_eq_rest) = apply_subst_list r (v,slist) in + (bool,((atomnames,(new_fs,[]))::new_eq_rest)) + | (ffs::rfs),(fft::rft) -> + if (is_const ffs) & (is_const fft) then + (false,[]) + (* different first constants cause local fail *) + else + (* at least one of firsts is a variable *) + let (bool,new_eq_rest) = apply_subst_list r (v,slist) in + (bool,((atomnames,(new_fs,new_ft))::new_eq_rest)) + + let apply_subst eq_rest (v,slist) atomnames = + if (List.mem v atomnames) then (* don't apply subst to atom variables !! *) + (true,eq_rest) + else + apply_subst_list eq_rest (v,slist) + + let all_variable_check eqlist = false (* needs some discussion with Jens! -- NOT done *) + +(* + let rec all_variable_check eqlist = + match eqlist with + [] -> true + | ((_,(fs,ft))::rest_eq) -> + if (fs <> []) & (ft <> []) then + let fs_first = List.hd fs + and ft_first = List.hd ft + in + if (is_const fs_first) or (is_const ft_first) then + false + else + all_variable_check rest_eq + else + false +*) + + let rec tunify_list eqlist init_sigma orderingQ atom_rel = + + let rec tunify atomnames fs ft rt rest_eq sigma ordering = + + let apply_r1 fs ft rt rest_eq sigma = +(* print_endline "r1"; *) + tunify_list rest_eq sigma ordering atom_rel + + in + let apply_r2 fs ft rt rest_eq sigma = +(* print_endline "r2"; *) + tunify atomnames rt fs ft rest_eq sigma ordering + + in + let apply_r3 fs ft rt rest_eq sigma = +(* print_endline "r3"; *) + let rfs = (List.tl fs) + and rft = (List.tl rt) in + tunify atomnames rfs ft rft rest_eq sigma ordering + + in + let apply_r4 fs ft rt rest_eq sigma = +(* print_endline "r4"; *) + tunify atomnames rt ft fs rest_eq sigma ordering + + in + let apply_r5 fs ft rt rest_eq sigma = +(* print_endline "r5"; *) + let v = (List.hd fs) in + let (compose_vars,new_sigma) = compose sigma (v,ft) in + let (bool,new_rest_eq) = apply_subst rest_eq (v,ft) atomnames in + if (bool=false) then + raise Not_unifiable + else + let new_ordering = build_orderingJ (v::compose_vars) ft ordering atom_rel in + tunify atomnames (List.tl fs) rt rt new_rest_eq new_sigma new_ordering + + in + let apply_r6 fs ft rt rest_eq sigma = +(* print_endline "r6"; *) + let v = (List.hd fs) in + let (_,new_sigma) = (compose sigma (v,[])) in + let (bool,new_rest_eq) = apply_subst rest_eq (v,[]) atomnames in + if (bool=false) then + raise Not_unifiable + else + (* no relation update since [] has been replaced for v *) + tunify atomnames (List.tl fs) ft rt new_rest_eq new_sigma ordering + + in + let apply_r7 fs ft rt rest_eq sigma = +(* print_endline "r7"; *) + let v = (List.hd fs) + and c1 = (List.hd rt) + and c2t =(List.tl rt) in + let (compose_vars,new_sigma) = (compose sigma (v,(ft @ [c1]))) in + let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [c1])) atomnames in + if bool=false then + raise Not_unifiable + else + let new_ordering = build_orderingJ (v::compose_vars) (ft @ [c1]) ordering atom_rel in + tunify atomnames (List.tl fs) [] c2t new_rest_eq new_sigma new_ordering + + + in + let apply_r8 fs ft rt rest_eq sigma = +(* print_endline "r8"; *) + tunify atomnames rt [(List.hd fs)] (List.tl fs) rest_eq sigma ordering + + in + let apply_r9 fs ft rt rest_eq sigma = +(* print_endline "r9"; *) + let v = (List.hd fs) + and (max,subst) = sigma in + let v_new = ("vnew"^(string_of_int max)) in + let (compose_vars,new_sigma) = (compose ((max+1),subst) (v,(ft @ [v_new]))) in + let (bool,new_rest_eq) = apply_subst rest_eq (v,(ft @ [v_new])) atomnames in + if (bool=false) then + raise Not_unifiable + else + let new_ordering = + build_orderingJ (v::compose_vars) (ft @ [v_new]) ordering atom_rel in + tunify atomnames rt [v_new] (List.tl fs) new_rest_eq new_sigma new_ordering + + in + let apply_r10 fs ft rt rest_eq sigma = +(* print_endline "r10"; *) + let x = List.hd rt in + tunify atomnames fs (ft @ [x]) (List.tl rt) rest_eq sigma ordering + + in + if r_1 fs ft rt then + apply_r1 fs ft rt rest_eq sigma + else if r_2 fs ft rt then + apply_r2 fs ft rt rest_eq sigma + else if r_3 fs ft rt then + apply_r3 fs ft rt rest_eq sigma + else if r_4 fs ft rt then + apply_r4 fs ft rt rest_eq sigma + else if r_5 fs ft rt then + apply_r5 fs ft rt rest_eq sigma + else if r_6 fs ft rt then + (try + apply_r6 fs ft rt rest_eq sigma + with Not_unifiable -> + if r_7 fs ft rt then (* r7 applicable if r6 was and tr6 = C2t' *) + (try + apply_r7 fs ft rt rest_eq sigma + with Not_unifiable -> + apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r6 was *) + ) + else +(* r10 could be represented only once if we would try it before r7.*) +(* but looking at the transformation rules, r10 should be tried at last in any case *) + apply_r10 fs ft rt rest_eq sigma (* r10 always applicable r6 was *) + ) + else if r_7 fs ft rt then (* not r6 and r7 possible if z <> [] *) + (try + apply_r7 fs ft rt rest_eq sigma + with Not_unifiable -> + apply_r10 fs ft rt rest_eq sigma (* r10 always applicable if r7 was *) + ) + else if r_8 fs ft rt then + (try + apply_r8 fs ft rt rest_eq sigma + with Not_unifiable -> + if r_10 fs ft rt then (* r10 applicable if r8 was and tr8 <> [] *) + apply_r10 fs ft rt rest_eq sigma + else + raise Not_unifiable (* simply back propagation *) + ) + else if r_9 fs ft rt then + (try + apply_r9 fs ft rt rest_eq sigma + with Not_unifiable -> + if r_10 fs ft rt then (* r10 applicable if r9 was and tr9 <> [] *) + apply_r10 fs ft rt rest_eq sigma + else + raise Not_unifiable (* simply back propagation *) + ) + + + else + if r_10 fs ft rt then (* not ri, i<10, and r10 possible if for instance *) + (* (s=[] and x=v1) or (z<>[] and xt=C1V1t') *) + apply_r10 fs ft rt rest_eq sigma + else (* NO rule applicable *) + raise Not_unifiable + in + match eqlist with + [] -> + init_sigma,orderingQ + | f::rest_eq -> + begin +(* Format.open_box 0; + print_equations [f]; + Format.print_flush (); +*) + let (atomnames,(fs,ft)) = f in + tunify atomnames fs [] ft rest_eq init_sigma orderingQ + end + +let rec test_apply_eq atomnames eqs eqt subst = + match subst with + [] -> (eqs,eqt) + | (f,flist)::r -> + let (first_appl_eqs,first_appl_eqt) = + if List.mem f atomnames then + (eqs,eqt) + else + (apply_element eqs eqt (f,flist)) + in + test_apply_eq atomnames first_appl_eqs first_appl_eqt r + +let rec test_apply_eqsubst eqlist subst = + match eqlist with + [] -> [] + | f::r -> + let (atomnames,(eqs,eqt)) = f in + let applied_element = test_apply_eq atomnames eqs eqt subst in + (atomnames,applied_element)::(test_apply_eqsubst r subst) + +let ttest us ut ns nt eqlist orderingQ atom_rel = + let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 *) + (* to eliminate common beginning *) + let new_element = ([ns;nt],(short_us,short_ut)) in + let full_eqlist = + if List.mem new_element eqlist then + eqlist + else + new_element::eqlist + in + let (sigma,_) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in + let (n,subst) = sigma in + let test_apply = test_apply_eqsubst full_eqlist subst in + begin + print_endline ""; + print_endline "Final equations:"; + print_equations full_eqlist; + print_endline ""; + print_endline "Final substitution:"; + print_tunify sigma; + print_endline ""; + print_endline "Applied equations:"; + print_equations test_apply + end + +let do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel qmax = + let (short_us,short_ut) = shorten us ut in (* apply intial rule R3 to eliminate common beginning *) + let new_element = ([ns;nt],(short_us,short_ut)) in + let full_eqlist = + if List.mem new_element equations then + equations @ fo_eqlist + else + (new_element::equations) @ fo_eqlist + in + try +(* print_equations full_eqlist; *) +(* max-1 new variables have been used for the domain equations *) + let (new_sigma,new_ordering) = tunify_list full_eqlist (1,[]) orderingQ atom_rel in +(* sigmaQ will not be returned in eqlist *) + (new_sigma,(qmax,full_eqlist),new_ordering) + with Not_unifiable -> + raise Failed (* new connection please *) + +let rec one_equation gprefix dlist delta_0_prefixes n = + match dlist with + [] -> ([],n) + | f::r -> + let fprefix = List.assoc f delta_0_prefixes in + let (sf1,sg) = shorten fprefix gprefix + and v_new = ("vnewq"^(string_of_int n)) in + let fnew = sf1 @ [v_new] in + let (rest_equations,new_n) = one_equation gprefix r delta_0_prefixes (n+1) in + (([],(fnew,sg))::rest_equations),new_n + +let rec make_domain_equations fo_pairs (gamma_0_prefixes,delta_0_prefixes) n = + match fo_pairs with + [] -> ([],n) + | (g,dlist)::r -> + let gprefix = List.assoc g gamma_0_prefixes in + let (gequations,max) = one_equation gprefix dlist delta_0_prefixes n in + let (rest_equations,new_max) = + make_domain_equations r (gamma_0_prefixes,delta_0_prefixes) max in + (gequations @ rest_equations),new_max + +(* type of one unifier: int * ((string * string list) list) *) +(* global failure: (0,[]) *) + +let stringunify ext_atom try_one eqlist fo_pairs logic orderingQ atom_rel qprefixes = + if logic = "C" then + ((0,[]),(0,[]),orderingQ) + else + let (qmax,equations) = eqlist + and us = ext_atom.aprefix + and ut = try_one.aprefix + and ns = ext_atom.aname + and nt = try_one.aname in + if qprefixes = ([],[]) then (* prop case *) + begin +(* print_endline "This is the prop case"; *) + let (new_sigma,new_eqlist) = Jtunify.do_stringunify us ut ns nt equations + (* prop unification only *) + in + (new_sigma,new_eqlist,[]) (* assume the empty reduction ordering during proof search *) + end + else + begin +(* print_endline "This is the FO case"; *) +(* fo_eqlist encodes the domain condition on J quantifier substitutions *) +(* Again, always computed for the whole substitution sigmaQ *) + let (fo_eqlist,new_max) = make_domain_equations fo_pairs qprefixes qmax in + begin +(* Format.open_box 0; + print_string "domain equations in"; + print_equations fo_eqlist; + print_string "domain equations out"; + Format.print_flush (); +*) + do_stringunify us ut ns nt equations fo_eqlist orderingQ atom_rel new_max + end + end + +(**************************************** add multiplicity *********************************) + +let rec subst_replace subst_list t = + match subst_list with + [] -> t + | (old_t,new_t)::r -> + let inter_term = var_subst t old_t "dummy" in +(*: print_string "("; + print_term stdout old_t; + print_string " --> "; + print_term stdout new_t; + print_string ")\n"; + print_term stdout t; + print_newline (); + print_term stdout inter_term; + print_newline (); :*) + let new_term = subst1 inter_term "dummy" new_t in +(*: print_term stdout new_term; + print_newline (); + mbreak "\n+++========----- ---------..........\n"; :*) + subst_replace r new_term + +let rename_pos x m = + let pref = String.get x 0 in + (Char.escaped pref)^(string_of_int m) + +let update_position position m replace_n subst_list mult = + let ({name=x; address=y; op=z; pol=p; pt=a; st=b; label=t}) = position in + let nx = rename_pos x m in + let nsubst_list = + if b=Gamma_0 then + let vx = mk_var_term (x^"_jprover") + and vnx = mk_var_term (nx^"_jprover") in + (vx,vnx)::subst_list + else + if b=Delta_0 then + let sx = mk_string_term jprover_op x + and snx = mk_string_term jprover_op nx in + (sx,snx)::subst_list + else + subst_list + in + let nt = subst_replace nsubst_list t in + let add_array = Array.of_list y in + let _ = (add_array.(replace_n) <- mult) in + let new_add = Array.to_list add_array in + ({name=nx; address=new_add; op=z; pol=p; pt=a; st=b; label=nt},m,nsubst_list) + +let rec append_orderings list_of_lists = + match list_of_lists with + [] -> + [] + | f::r -> + f @ (append_orderings r) + +let rec union_orderings first_orderings = + match first_orderings with + [] -> + StringSet.empty + | (pos,fset)::r -> + StringSet.union (StringSet.add pos fset) (union_orderings r) + +let rec select_orderings add_orderings = + match add_orderings with + [] -> [] + | f::r -> + (List.hd f)::select_orderings r + +let combine_ordering_list add_orderings pos_name = + let first_orderings = select_orderings add_orderings in + let pos_succs = union_orderings first_orderings in + let rest_orderings = append_orderings add_orderings in + (pos_name,pos_succs)::rest_orderings + +let rec copy_and_rename_tree last_tree replace_n pos_n mult subst_list = + + let rec rename_subtrees tree_list nposition s_pos_n nsubst_list = + match tree_list with + [] -> ([||],[],s_pos_n) + | f::r -> + let (f_subtree,f_ordering,f_pos_n) = + copy_and_rename_tree f replace_n s_pos_n mult nsubst_list in + let (r_subtrees,r_ordering_list,r_pos_n) = rename_subtrees r nposition f_pos_n nsubst_list in + ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n) + + in + match last_tree with + Empty -> raise (Invalid_argument "Jprover: copy tree") + | NodeAt(position) -> (* can never be a Gamma_0 position -> no replacements *) + let (nposition,npos_n,_) = update_position position (pos_n+1) replace_n subst_list mult in + ((NodeAt(nposition)),[(nposition.name,StringSet.empty)],npos_n) + | NodeA(position, suctrees) -> + let (nposition,npos_n,nsubst_list) = update_position position (pos_n+1) replace_n subst_list mult in + let (new_suctrees, new_ordering_list, new_pos_n) = + rename_subtrees (Array.to_list suctrees) nposition npos_n nsubst_list in + let new_ordering = combine_ordering_list new_ordering_list (nposition.name) in + ((NodeA(nposition,new_suctrees)),new_ordering,new_pos_n) + +(* we construct for each pos a list orderings representing and correspondning to the array of succtrees *) + +let rec add_multiplicity ftree pos_n mult logic = + let rec parse_subtrees tree_list s_pos_n = + match tree_list with + [] -> ([||],[],s_pos_n) + | f::r -> + let (f_subtree,f_ordering,f_pos_n) = add_multiplicity f s_pos_n mult logic in + let (r_subtrees,r_ordering_list,r_pos_n) = parse_subtrees r f_pos_n in + ((Array.append [|f_subtree|] r_subtrees),(f_ordering::r_ordering_list),r_pos_n) + + in + match ftree with + Empty -> raise (Invalid_argument "Jprover: add mult") + | NodeAt(pos) -> (ftree,[(pos.name,StringSet.empty)],pos_n) + | NodeA(pos,suctrees) -> + let (new_suctrees, new_ordering_list, new_pos_n) = parse_subtrees (Array.to_list suctrees) pos_n in + if (((pos.pt = Phi) & (((pos.op <> At) & (logic="J")) or ((pos.op = All) & (logic = "C")))) + (* no explicit atom-instances *) + or ((pos.pt = Gamma) & (pos.st <> Phi_0))) then (* universal quantifiers are copied *) + (* at their Phi positions *) + let replace_n = (List.length pos.address) (* points to the following argument in the array_of_address *) + and last = (Array.length new_suctrees) - 1 in (* array first element has index 0 *) + let last_tree = new_suctrees.(last) in + let (add_tree,add_ordering,final_pos_n) = + copy_and_rename_tree last_tree replace_n new_pos_n mult [] in + let final_suctrees = Array.append new_suctrees [|add_tree|] + and add_orderings = List.append new_ordering_list [add_ordering] in + let final_ordering = combine_ordering_list add_orderings (pos.name) in + ((NodeA(pos,final_suctrees)),final_ordering,final_pos_n) + else + let final_ordering = combine_ordering_list new_ordering_list (pos.name) in + ((NodeA(pos,new_suctrees)),final_ordering,new_pos_n) + + +(************** Path checker ****************************************************) + +let rec get_sets atom atom_sets = + match atom_sets with + [] -> raise (Invalid_argument "Jprover bug: atom not found") + | f::r -> + let (a,b,c) = f in + if atom = a then f + else + get_sets atom r + +let rec get_connections a alpha tabulist = + match alpha with + [] -> [] + | f::r -> + if (a.apredicate = f.apredicate) & (a.apol <> f.apol) & (not (List.mem f tabulist)) then + (a,f)::(get_connections a r tabulist) + else + (get_connections a r tabulist) + +let rec connections atom_rel tabulist = + match atom_rel with + [] -> [] + | f::r -> + let (a,alpha,beta) = f in + (get_connections a alpha tabulist) @ (connections r (a::tabulist)) + +let check_alpha_relation atom set atom_sets = + let (a,alpha,beta) = get_sets atom atom_sets in + AtomSet.subset set alpha + +let rec extset atom_sets path closed = + match atom_sets with + [] -> AtomSet.empty + | f::r -> + let (at,alpha,beta) = f in + if (AtomSet.subset path alpha) & (AtomSet.subset closed beta) then + AtomSet.add at (extset r path closed) + else + (extset r path closed) + +let rec check_ext_list ext_list fail_set atom_sets = (* fail_set consists of one atom only *) + match ext_list with + [] -> AtomSet.empty + | f::r -> + if (check_alpha_relation f fail_set atom_sets) then + AtomSet.add f (check_ext_list r fail_set atom_sets) + else + (check_ext_list r fail_set atom_sets) + +let fail_ext_set ext_atom ext_set atom_sets = + let ext_list = AtomSet.elements ext_set + and fail_set = AtomSet.add ext_atom AtomSet.empty in + check_ext_list ext_list fail_set atom_sets + +let rec ext_partners con path ext_atom (reduction_partners,extension_partners) atom_sets = + match con with + [] -> + (reduction_partners,extension_partners) + | f::r -> + let (a,b) = f in + if List.mem ext_atom [a;b] then + let ext_partner = + if ext_atom = a then b else a + in + let (new_red_partners,new_ext_partners) = +(* force reduction steps first *) + if (AtomSet.mem ext_partner path) then + ((AtomSet.add ext_partner reduction_partners),extension_partners) + else + if (check_alpha_relation ext_partner path atom_sets) then + (reduction_partners,(AtomSet.add ext_partner extension_partners)) + else + (reduction_partners,extension_partners) + in + ext_partners r path ext_atom (new_red_partners,new_ext_partners) atom_sets + else + ext_partners r path ext_atom (reduction_partners,extension_partners) atom_sets + +exception Failed_connections + +let path_checker atom_rel atom_sets qprefixes init_ordering logic = + + let con = connections atom_rel [] in +(*: print_endline ""; + print_endline ("number of connections: "^(string_of_int (List.length con))); + mbreak "#connec\n"; +:*) + let rec provable path closed (orderingQ,reduction_ordering) eqlist (sigmaQ,sigmaJ) = + + let rec check_connections (reduction_partners,extension_partners) ext_atom = + let try_one = + if reduction_partners = AtomSet.empty then + if extension_partners = AtomSet.empty then + raise Failed_connections + else + AtomSet.choose extension_partners + else + (* force reduction steps always first!! *) + AtomSet.choose reduction_partners + in +(* print_endline ("connection partner "^(try_one.aname)); *) +(* print_endline ("partner path "^(print_set path)); +*) + (try + let (new_sigmaQ,new_ordering_elements) = jqunify (ext_atom.alabel) (try_one.alabel) sigmaQ in +(* build the orderingQ incrementally from the new added substitution tau of new_sigmaQ *) + let (relate_pairs,new_orderingQ) = build_orderingQ new_ordering_elements orderingQ in +(* we make in incremental reflexivity test during the string unification *) + let (new_sigmaJ,new_eqlist,new_red_ordering) = +(* new_red_ordering = [] in propositional case *) + stringunify ext_atom try_one eqlist relate_pairs logic new_orderingQ atom_rel qprefixes + in +(* print_endline ("make reduction ordering "^((string_of_int (List.length new_ordering)))); *) + let new_closed = AtomSet.add ext_atom closed in + let ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),subproof) = + if AtomSet.mem try_one path then + provable path new_closed (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ) + (* always use old first-order ordering for recursion *) + else + let new_path = AtomSet.add ext_atom path + and extension = AtomSet.add try_one AtomSet.empty in + let ((norderingQ,nredordering),neqlist,(nsigmaQ,nsigmaJ),p1) = + provable new_path extension (new_orderingQ,new_red_ordering) new_eqlist (new_sigmaQ,new_sigmaJ) in + let ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),p2) = + provable path new_closed (norderingQ,nredordering) neqlist (nsigmaQ,nsigmaJ) in + ((nnorderingQ,nnredordering),nneqlist,(nnsigmaQ,nnsigmaJ),(p1 @ p2)) + (* first the extension subgoals = depth first; then other subgoals in same clause *) + in + ((next_orderingQ,next_red_ordering),next_eqlist,(next_sigmaQ,next_sigmaJ),(((ext_atom.aname),(try_one.aname))::subproof)) + with Failed -> +(* print_endline ("new connection for "^(ext_atom.aname)); *) +(* print_endline ("Failed"); *) + check_connections ((AtomSet.remove try_one reduction_partners), + (AtomSet.remove try_one extension_partners) + ) ext_atom + ) + + in + let rec check_extension extset = + if extset = AtomSet.empty then + raise Failed (* go directly to a new entry connection *) + else + let select_one = AtomSet.choose extset in +(* print_endline ("extension literal "^(select_one.aname)); *) +(* print_endline ("extension path "^(print_set path));*) + let (reduction_partners,extension_partners) = + ext_partners con path select_one (AtomSet.empty,AtomSet.empty) atom_sets in + (try + check_connections (reduction_partners,extension_partners) select_one + with Failed_connections -> +(* print_endline ("no connections for subgoal "^(select_one.aname)); *) +(* print_endline ("Failed_connections"); *) + let fail_ext_set = fail_ext_set select_one extset atom_sets in + check_extension fail_ext_set + ) + + in + let extset = extset atom_sets path closed in + if extset = AtomSet.empty then + ((orderingQ,reduction_ordering),eqlist,(sigmaQ,sigmaJ),[]) + else + check_extension extset + in + if qprefixes = ([],[]) then + begin +(* print_endline "!!!!!!!!!!! prop prover !!!!!!!!!!!!!!!!!!"; *) +(* in the propositional case, the reduction ordering will be computed AFTER proof search *) + let (_,eqlist,(_,(n,substJ)),ext_proof) = + provable AtomSet.empty AtomSet.empty ([],[]) (1,[]) ([],(1,[])) in + let orderingJ = build_orderingJ_list substJ init_ordering atom_rel in + ((init_ordering,orderingJ),eqlist,([],(n,substJ)),ext_proof) + end + else + provable AtomSet.empty AtomSet.empty (init_ordering,[]) (1,[]) ([],(1,[])) + +(*************************** prepare and init prover *******************************************************) + +let rec list_to_set list = + match list with + [] -> AtomSet.empty + | f::r -> + let rest_set = list_to_set r in + AtomSet.add f rest_set + +let rec make_atom_sets atom_rel = + match atom_rel with + [] -> [] + | f::r -> + let (a,alpha,beta) = f in + (a,(list_to_set alpha),(list_to_set beta))::(make_atom_sets r) + +let rec predecessor address_1 address_2 ftree = + match ftree with + Empty -> PNull (* should not occur since every pair of atoms have a common predecessor *) + | NodeAt(position) -> PNull (* should not occur as above *) + | NodeA(position,suctrees) -> + match address_1,address_2 with + [],_ -> raise (Invalid_argument "Jprover: predecessors left") + | _,[] -> raise (Invalid_argument "Jprover: predecessors right") + | (f1::r1),(f2::r2) -> + if f1 = f2 then + predecessor r1 r2 (suctrees.(f1-1)) + else + position.pt + +let rec compute_sets element ftree alist = + match alist with + [] -> [],[] + | first::rest -> + if first = element then + compute_sets element ftree rest (* element is neithes alpha- nor beta-related to itself*) + else + let (alpha_rest,beta_rest) = compute_sets element ftree rest in + if predecessor (element.aaddress) (first.aaddress) ftree = Beta then + (alpha_rest,(first::beta_rest)) + else + ((first::alpha_rest),beta_rest) + +let rec compute_atomlist_relations worklist ftree alist = (* last version of alist for total comparison *) + let rec compute_atom_relations element ftree alist = + let alpha_set,beta_set = compute_sets element ftree alist in + (element,alpha_set,beta_set) + in + match worklist with + [] -> [] + | first::rest -> + let first_relations = compute_atom_relations first ftree alist in + first_relations::(compute_atomlist_relations rest ftree alist) + +let atom_record position prefix = + let aname = (position.name) in + let aprefix = (List.append prefix [aname]) in (* atom position is last element in prefix *) + let aop = (dest_term position.label).term_op in + ({aname=aname; aaddress=(position.address); aprefix=aprefix; apredicate=aop; + apol=(position.pol); ast=(position.st); alabel=(position.label)}) + +let rec select_atoms_treelist treelist prefix = + let rec select_atoms ftree prefix = + match ftree with + Empty -> [],[],[] + | NodeAt(position) -> + [(atom_record position prefix)],[],[] + | NodeA(position,suctrees) -> + let treelist = Array.to_list suctrees in + let new_prefix = + let prefix_element = + if List.mem (position.st) [Psi_0;Phi_0] then + [(position.name)] + else + [] + in + (List.append prefix prefix_element) + in + let (gamma_0_element,delta_0_element) = + if position.st = Gamma_0 then + begin +(* Format.open_box 0; + print_endline "gamma_0 prefixes "; + print_string (position.name^" :"); + print_stringlist prefix; + print_endline " "; + Format.force_newline (); + Format.print_flush (); +*) + [(position.name,prefix)],[] + end + else + if position.st = Delta_0 then + begin +(* Format.open_box 0; + print_endline "delta_0 prefixes "; + print_string (position.name^" :"); + print_stringlist prefix; + print_endline " "; + Format.force_newline (); + Format.print_flush (); +*) + [],[(position.name,prefix)] + end + else + [],[] + in + let (rest_alist,rest_gamma_0_prefixes,rest_delta_0_prefixes) = + select_atoms_treelist treelist new_prefix in + (rest_alist,(rest_gamma_0_prefixes @ gamma_0_element), + (rest_delta_0_prefixes @ delta_0_element)) + + in + match treelist with + [] -> [],[],[] + | first::rest -> + let (first_alist,first_gprefixes,first_dprefixes) = select_atoms first prefix + and (rest_alist,rest_gprefixes,rest_dprefixes) = select_atoms_treelist rest prefix in + ((first_alist @ rest_alist),(first_gprefixes @ rest_gprefixes), + (first_dprefixes @ rest_dprefixes)) + +let prepare_prover ftree = + let alist,gamma_0_prefixes,delta_0_prefixes = select_atoms_treelist [ftree] [] in + let atom_rel = compute_atomlist_relations alist ftree alist in + (atom_rel,(gamma_0_prefixes,delta_0_prefixes)) + +(* ************************ Build intial formula tree and relations *********************************** *) +(* Building a formula tree and the tree ordering from the input formula, i.e. OCaml term *) + +let make_position_name stype pos_n = + let prefix = + if List.mem stype [Phi_0;Gamma_0] + then "v" + else + if List.mem stype [Psi_0;Delta_0] + then "c" + else + "a" + in + prefix^(string_of_int pos_n) + +let dual_pol pol = + if pol = O then I else O + +let check_subst_term (variable,old_term) pos_name stype = + if (List.mem stype [Gamma_0;Delta_0]) then + let new_variable = + if stype = Gamma_0 then (mk_var_term (pos_name^"_jprover")) + else + (mk_string_term jprover_op pos_name) + in + (subst1 old_term variable new_variable) (* replace variable (non-empty) in t by pos_name *) + (* pos_name is either a variable term or a constant, f.i. a string term *) + (* !!! check unification module how handling eingenvariables as constants !!! *) + else + old_term + +let rec build_ftree (variable,old_term) pol stype address pos_n = + let pos_name = make_position_name stype pos_n in + let term = check_subst_term (variable,old_term) pos_name stype in + if JLogic.is_and_term term then + let s,t = JLogic.dest_and term in + let ptype,stype_1,stype_2 = + if pol = O + then Beta,Beta_1,Beta_2 + else + Alpha,Alpha_1,Alpha_2 + in + let position = {name=pos_name; address=address; op=And; pol=pol; pt=ptype; st=stype; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in + let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2]) + (posn_left+1) in + let (succ_left,whole_left) = List.hd ordering_left + and (succ_right,whole_right) = List.hd ordering_right in + let pos_succs = + (StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right))) + in + (NodeA(position,[|subtree_left;subtree_right|]), + ((position.name,pos_succs)::(ordering_left @ ordering_right)), + posn_right + ) + else + if JLogic.is_or_term term then + let s,t = JLogic.dest_or term in + let ptype,stype_1,stype_2 = + if pol = O + then Alpha,Alpha_1,Alpha_2 + else + Beta,Beta_1,Beta_2 + in + let position = {name=pos_name; address=address; op=Or; pol=pol; pt=ptype; st=stype; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree ("",s) pol stype_1 (address@[1]) (pos_n+1) in + let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[2]) + (posn_left+1) in + let (succ_left,whole_left) = List.hd ordering_left + and (succ_right,whole_right) = List.hd ordering_right in + let pos_succs = + StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in + (NodeA(position,[|subtree_left;subtree_right|]), + ((position.name),pos_succs) :: (ordering_left @ ordering_right), + posn_right + ) + else + if JLogic.is_implies_term term then + let s,t = JLogic.dest_implies term in + let ptype_0,stype_0,ptype,stype_1,stype_2 = + if pol = O + then Psi,Psi_0,Alpha,Alpha_1,Alpha_2 + else + Phi,Phi_0,Beta,Beta_1,Beta_2 + in + let pos2_name = make_position_name stype_0 (pos_n+1) in + let sposition = {name=pos_name; address=address; op=Imp; pol=pol; pt=ptype_0; st=stype; label=term} + and position = {name=pos2_name; address=address@[1]; op=Imp; pol=pol; pt=ptype; st=stype_0; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1]) + (pos_n+2) in + let subtree_right,ordering_right,posn_right = build_ftree ("",t) pol stype_2 (address@[1;2]) + (posn_left+1) in + let (succ_left,whole_left) = List.hd ordering_left + and (succ_right,whole_right) = List.hd ordering_right in + let pos_succs = + StringSet.add succ_left (StringSet.add succ_right (StringSet.union whole_left whole_right)) in + let pos_ordering = (position.name,pos_succs) :: (ordering_left @ ordering_right) in + (NodeA(sposition,[|NodeA(position,[|subtree_left;subtree_right|])|]), + ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering), + posn_right + ) + else + if JLogic.is_not_term term then + let s = JLogic.dest_not term in + let ptype_0,stype_0,ptype,stype_1= + if pol = O + then Psi,Psi_0,Alpha,Alpha_1 + else + Phi,Phi_0,Alpha,Alpha_1 + in + let pos2_name = make_position_name stype_0 (pos_n+1) in + let sposition = {name=pos_name; address=address; op=Neg; pol=pol; pt=ptype_0; st=stype; label=term} + and position = {name=pos2_name; address=address@[1]; op=Neg; pol=pol; pt=ptype; st=stype_0; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree ("",s) (dual_pol pol) stype_1 (address@[1;1]) + (pos_n+2) in + let (succ_left,whole_left) = List.hd ordering_left in + let pos_succs = + StringSet.add succ_left whole_left in + let pos_ordering = (position.name,pos_succs) :: ordering_left in + (NodeA(sposition,[|NodeA(position,[| subtree_left|])|]), + ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering), + posn_left + ) + else + if JLogic.is_exists_term term then + let v,s,t = JLogic.dest_exists term in (* s is type of v and will be supressed here *) + let ptype,stype_1 = + if pol = O + then Gamma,Gamma_0 + else + Delta,Delta_0 + in + let position = {name=pos_name; address=address; op=Ex; pol=pol; pt=ptype; st=stype; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1]) (pos_n+1) in + let (succ_left,whole_left) = List.hd ordering_left in + let pos_succs = + StringSet.add succ_left whole_left in + (NodeA(position,[|subtree_left|]), + ((position.name,pos_succs) :: ordering_left), + posn_left + ) + else + if JLogic.is_all_term term then + let v,s,t = JLogic.dest_all term in + (* s is type of v and will be supressed here *) + let ptype_0,stype_0,ptype,stype_1= + if pol = O + then Psi,Psi_0,Delta,Delta_0 + else + Phi,Phi_0,Gamma,Gamma_0 + in + let pos2_name = make_position_name stype_0 (pos_n+1) in + let sposition = {name=pos_name; address=address; op=All; pol=pol; pt=ptype_0; st=stype; label=term} + and position = {name=pos2_name; address=address@[1]; op=All; pol=pol; pt=ptype; st=stype_0; label=term} in + let subtree_left,ordering_left,posn_left = build_ftree (v,t) pol stype_1 (address@[1;1]) + (pos_n+2) in + let (succ_left,whole_left) = List.hd ordering_left in + let pos_succs = + StringSet.add succ_left whole_left in + let pos_ordering = (position.name,pos_succs) :: ordering_left in + (NodeA(sposition,[|NodeA(position,[|subtree_left|])|]), + ((sposition.name,(StringSet.add position.name pos_succs))::pos_ordering), + posn_left + ) + else (* finally, term is atomic *) + let ptype_0,stype_0 = + if pol = O + then Psi,Psi_0 + else + Phi,Phi_0 + in + let pos2_name = make_position_name stype_0 (pos_n+1) in + let sposition = {name=pos_name; address=address; op=At; pol=pol; pt=ptype_0; st=stype; label=term} + and position = {name=pos2_name; address=address@[1]; op=At; pol=pol; pt=PNull; st=stype_0; label=term} in + (NodeA(sposition,[|NodeAt(position)|]), + [(sposition.name,(StringSet.add position.name StringSet.empty));(position.name,StringSet.empty)], + pos_n+1 + ) + +let rec construct_ftree termlist treelist orderinglist pos_n goal = + match termlist with + [] -> + let new_root = {name="w"; address=[]; op=Null; pol=O; pt=Psi; st=PNull_0; label=goal} + and treearray = Array.of_list treelist in + NodeA(new_root,treearray),(("w",(union_orderings orderinglist))::orderinglist),pos_n + | ft::rest_terms -> + let next_address = [((List.length treelist)+1)] + and next_pol,next_goal = + if rest_terms = [] then + O,ft (* construct tree for the conclusion *) + else + I,goal + in + let new_tree,new_ordering,new_pos_n = + build_ftree ("",ft) next_pol Alpha_1 next_address (pos_n+1) in + construct_ftree rest_terms (treelist @ [new_tree]) + (orderinglist @ new_ordering) new_pos_n next_goal + +(*************************** Main LOOP ************************************) +let unprovable = RefineError ("Jprover", StringError "formula is not provable") +let mult_limit_exn = RefineError ("Jprover", StringError "multiplicity limit reached") +let coq_exn = RefineError ("Jprover", StringError "interface for coq: error on ") + +let init_prover ftree = + let atom_relation,qprefixes = prepare_prover ftree in +(* print_atom_info atom_relation; *) (* apple *) + let atom_sets = make_atom_sets atom_relation in + (atom_relation,atom_sets,qprefixes) + + +let rec try_multiplicity mult_limit ftree ordering pos_n mult logic = + try + let (atom_relation,atom_sets,qprefixes) = init_prover ftree in + let ((orderingQ,red_ordering),eqlist,unifier,ext_proof) = + path_checker atom_relation atom_sets qprefixes ordering logic in + (ftree,red_ordering,eqlist,unifier,ext_proof) (* orderingQ is not needed as return value *) + with Failed -> + match mult_limit with + Some m when m == mult -> + raise mult_limit_exn + | _ -> + let new_mult = mult+1 in + begin + Pp.msgnl (Pp.(++) (Pp.str "Multiplicity Fail: Trying new multiplicity ") + (Pp.int new_mult)); +(* + Format.open_box 0; + Format.force_newline (); + Format.print_string "Multiplicity Fail: "; + Format.print_string ("Try new multiplicity "^(string_of_int new_mult)); + Format.force_newline (); + Format.print_flush (); +*) + let (new_ftree,new_ordering,new_pos_n) = + add_multiplicity ftree pos_n new_mult logic in + if (new_ftree = ftree) then + raise unprovable + else +(* print_formula_info new_ftree new_ordering new_pos_n; *) (* apple *) + try_multiplicity mult_limit new_ftree new_ordering new_pos_n new_mult logic + end + +let prove mult_limit termlist logic = + let (ftree,ordering,pos_n) = construct_ftree termlist [] [] 0 (mk_var_term "dummy") in +(* pos_n = number of positions without new root "w" *) +(* print_formula_info ftree ordering pos_n; *) (* apple *) + try_multiplicity mult_limit ftree ordering pos_n 1 logic + +(********** first-order type theory interface *******************) + +let rec renam_free_vars termlist = + match termlist + with [] -> [],[] + | f::r -> + let var_names = free_vars_list f in + let string_terms = + List.map (fun x -> (mk_string_term free_var_op x)) var_names + in + let mapping = List.combine var_names string_terms + and new_f = subst f var_names string_terms in + let (rest_mapping,rest_renamed) = renam_free_vars r in + let unique_mapping = remove_dups_list (mapping @ rest_mapping) in + (unique_mapping,(new_f::rest_renamed)) + +let rec apply_var_subst term var_subst_list = + match var_subst_list with + [] -> term + | (v,t)::r -> + let next_term = var_subst term t v in + apply_var_subst next_term r + +let rec make_equal_list n list_object = + if n = 0 then + [] + else + list_object::(make_equal_list (n-1) list_object) + +let rec create_output rule_list input_map = + match rule_list with + [] -> JLogic.empty_inf + | f::r -> + let (pos,(rule,term1,term2)) = f in + let delta1_names = collect_delta_terms [term1] + and delta2_names = collect_delta_terms [term2] in + let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in + let delta_terms = + List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in + let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in + let delta_map = List.combine delta_vars delta_terms in + let var_mapping = (input_map @ delta_map) in + let frees1 = free_vars_list term1 + and frees2 = free_vars_list term2 in + let unique_object = mk_var_term "v0_jprover" in + let unique_list1 = make_equal_list (List.length frees1) unique_object + and unique_list2 = make_equal_list (List.length frees2) unique_object + in + let next_term1 = subst term1 frees1 unique_list1 + and next_term2 = subst term2 frees2 unique_list2 in + let new_term1 = apply_var_subst next_term1 var_mapping + and new_term2 = apply_var_subst next_term2 var_mapping + and (a,b) = pos + in +(*: print_string (a^"+++"^b^"\n"); :*) + +(* kick away the first argument, the position *) + (JLogic.append_inf (create_output r input_map) (b,new_term1) (a,new_term2) rule) + +let rec make_test_interface rule_list input_map = + match rule_list with + [] -> [] + | f::r -> + let (pos,(rule,term1,term2)) = f in + let delta1_names = collect_delta_terms [term1] + and delta2_names = collect_delta_terms [term2] in + let unique_deltas = remove_dups_list (delta1_names @ delta2_names) in + let delta_terms = + List.map (fun x -> (mk_string_term jprover_op x)) unique_deltas in + let delta_vars = List.map (fun x -> (x^"_jprover")) unique_deltas in + let delta_map = List.combine delta_vars delta_terms in + let var_mapping = (input_map @ delta_map) in + let frees1 = free_vars_list term1 + and frees2 = free_vars_list term2 in + let unique_object = mk_var_term "v0_jprover" in + let unique_list1 = make_equal_list (List.length frees1) unique_object + and unique_list2 = make_equal_list (List.length frees2) unique_object + in + begin +(* + print_endline ""; + print_endline ""; + print_stringlist frees1; + print_endline ""; + print_stringlist frees2; + print_endline ""; + print_endline ""; +*) + let next_term1 = subst term1 frees1 unique_list1 + and next_term2 = subst term2 frees2 unique_list2 in + let new_term1 = apply_var_subst next_term1 var_mapping + and new_term2 = apply_var_subst next_term2 var_mapping + in + (pos,(rule,new_term1,new_term2))::(make_test_interface r input_map) + end + +(**************************************************************) + +(*: modified for Coq :*) + +let decomp_pos pos = + let {name=n; address=a; label=l} = pos in + (n,(a,l)) + +let rec build_formula_id ftree = + let rec build_fid_list = function + [] -> [] + | t::rest -> (build_formula_id t)@(build_fid_list rest) + in + match ftree with + Empty -> [] + | NodeAt(position) -> + [decomp_pos position] + | NodeA(position,subtrees) -> + let tree_list = Array.to_list subtrees in + (decomp_pos position)::(build_fid_list tree_list) + +let rec encode1 = function (* normal *) + [] -> "" + | i::r -> "_"^(string_of_int i)^(encode1 r) + +let rec encode2 = function (* move up *) + [i] -> "" + | i::r -> "_"^(string_of_int i)^(encode2 r) + | _ -> raise coq_exn + +let rec encode3 = function (* move down *) + [] -> "_1" + | i::r -> "_"^(string_of_int i)^(encode3 r) + +let lookup_coq str map = + try + let (il,t) = List.assoc str map in + il + with Not_found -> raise coq_exn + +let create_coq_input inf map = + let rec rec_coq_part inf = + match inf with + [] -> [] + | (rule, (s1, t1), ((s2, t2) as k))::r -> + begin + match rule with + Andl | Andr | Orl | Orr1 | Orr2 -> + (rule, (encode1 (lookup_coq s1 map), t1), k)::(rec_coq_part r) + | Impr | Impl | Negr | Negl | Ax -> + (rule, (encode2 (lookup_coq s1 map), t1), k)::(rec_coq_part r) + | Exr -> + (rule, (encode1 (lookup_coq s1 map), t1), + (encode1 (lookup_coq s2 map), t2))::(rec_coq_part r) + | Exl -> + (rule, (encode1 (lookup_coq s1 map), t1), + (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r) + | Allr | Alll -> + (rule, (encode2 (lookup_coq s1 map), t1), + (* (s2, t2))::(rec_coq_part r) *) + (encode3 (lookup_coq s1 map), t2))::(rec_coq_part r) + | _ -> raise coq_exn + end + in + rec_coq_part inf + +let gen_prover mult_limit logic calculus hyps concls = + let (input_map,renamed_termlist) = renam_free_vars (hyps @ concls) in + let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in + let sequent_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in + let (ptree,count_ax) = bproof sequent_proof in + let idl = build_formula_id ftree in +(* print_ftree ftree; apple *) + (* transform types and rename constants *) + (* we can transform the eigenvariables AFTER proof reconstruction since *) + (* new delta_0 constants may have been constructed during rule permutation *) + (* from the LJmc to the LJ proof *) + create_coq_input (create_output sequent_proof input_map) idl + +(*: end of coq modification :*) + +let prover mult_limit hyps concl = gen_prover mult_limit "J" "LJ" hyps [concl] + +(************* test with propositional proof reconstruction ************) + +let rec count_axioms seq_list = + match seq_list with + [] -> 0 + | f::r -> + let (rule,_,_) = f in + if rule = Ax then + 1 + count_axioms r + else + count_axioms r + +let do_prove mult_limit termlist logic calculus = + try begin + let (input_map,renamed_termlist) = renam_free_vars termlist in + let (ftree,red_ordering,eqlist,(sigmaQ,sigmaJ),ext_proof) = prove mult_limit renamed_termlist logic in + Format.open_box 0; + Format.force_newline (); + Format.force_newline (); + Format.print_string "Extension proof ready"; + Format.force_newline (); + Format.force_newline (); + Format.print_string ("Length of Extension proof: "^((string_of_int (List.length ext_proof)))^ + " Axioms"); + Format.force_newline (); + Format.force_newline (); + print_endline "Extension proof:"; + Format.open_box 0; + print_pairlist ext_proof; (* print list of type (string * string) list *) + Format.force_newline (); + Format.force_newline (); + Format.force_newline (); + Format.print_flush (); + Format.print_flush (); + Format.open_box 0; + print_ordering red_ordering; + Format.print_flush (); + Format.open_box 0; + Format.force_newline (); +(* ----------------------------------------------- *) + Format.open_box 0; + print_tunify sigmaJ; + Format.print_flush (); + print_endline ""; + print_endline ""; + print_sigmaQ sigmaQ; + print_endline ""; + print_endline ""; + Format.open_box 0; + let (qmax,equations) = eqlist in + print_endline ("number of quantifier domains : "^(string_of_int (qmax-1))); + print_endline ""; + print_equations equations; + Format.print_flush (); + print_endline ""; + print_endline ""; + print_endline ("Length of equations : "^((string_of_int (List.length equations)))); + print_endline ""; + print_endline ""; +(* --------------------------------------------------------- *) + Format.print_string "Break ... "; + print_endline ""; + print_endline ""; + Format.print_flush (); +(*: let _ = input_char stdin in :*) + let reconstr_proof = reconstruct ftree red_ordering sigmaQ ext_proof logic calculus in + let sequent_proof = make_test_interface reconstr_proof input_map in + Format.open_box 0; + Format.force_newline (); + Format.force_newline (); + Format.print_string "Sequent proof ready"; + Format.force_newline (); + Format.force_newline (); + Format.print_flush (); + let (ptree,count_ax) = bproof sequent_proof in + Format.open_box 0; + Format.print_string ("Length of sequent proof: "^((string_of_int count_ax))^" Axioms"); + Format.force_newline (); + Format.force_newline (); + Format.force_newline (); + Format.force_newline (); + Format.print_flush (); + tt ptree; (*: print proof tree :*) + Format.print_flush (); + print_endline ""; + print_endline "" + end with exn -> begin + print_endline "Jprover got an exception:"; + print_endline (Printexc.to_string exn) + end + +let test concl logic calculus = (* calculus should be LJmc or LJ for J, and LK for C *) + do_prove None [concl] logic calculus + +(* for sequents *) + +let seqtest list_term logic calculus = + let bterms = (dest_term list_term).term_terms in + let termlist = collect_subterms bterms in + do_prove None termlist logic calculus + +(*****************************************************************) + +end (* of struct *) |