diff options
Diffstat (limited to 'contrib/funind')
-rw-r--r-- | contrib/funind/tacinv.ml4 | 853 | ||||
-rw-r--r-- | contrib/funind/tacinvutils.ml | 277 | ||||
-rw-r--r-- | contrib/funind/tacinvutils.mli | 79 |
3 files changed, 1209 insertions, 0 deletions
diff --git a/contrib/funind/tacinv.ml4 b/contrib/funind/tacinv.ml4 new file mode 100644 index 00000000..d2ae12d6 --- /dev/null +++ b/contrib/funind/tacinv.ml4 @@ -0,0 +1,853 @@ +(*i camlp4deps: "parsing/grammar.cma" i*) + +(*s FunInv Tactic: inversion following the shape of a function. *) +(* Use: + \begin{itemize} + \item The Tacinv directory must be in the path (-I <path> option) + \item use the bytecode version of coqtop or coqc (-byte option), or make a + coqtop + \item Do [Require Tacinv] to be able to use it. + \item For syntax see Tacinv.v + \end{itemize} +*) + + +(*i*) +open Termops +open Equality +open Names +open Pp +open Tacmach +open Proof_type +open Tacinterp +open Tactics +open Tacticals +open Term +open Util +open Printer +open Reductionops +open Inductiveops +open Coqlib +open Refine +open Typing +open Declare +open Decl_kinds +open Safe_typing +open Vernacinterp +open Evd +open Environ +open Entries +open Setoid_replace +open Tacinvutils +(*i*) + +module Smap = Map.Make(struct type t = constr let compare = compare end) +let smap_to_list m = Smap.fold (fun c cb l -> (c,cb)::l) m [] +let merge_smap m1 m2 = Smap.fold (fun c cb m -> Smap.add c cb m) m1 m2 +let rec listsuf i l = if i<=0 then l else listsuf (i-1) (List.tl l) +let rec listpref i l = if i<=0 then [] else List.hd l :: listpref (i-1) (List.tl l) + +let mkthesort = mkProp (* would like to put Type here, but with which index? *) + +(* this is the prefix used to name equality hypothesis generated by + case analysis*) +let equality_hyp_string = "_eg_" + +(* bug de refine: on doit ssavoir sur quelle hypothese on se trouve. valeur + initiale au debut de l'appel a la fonction proofPrinc: 1. *) +let nthhyp = ref 1 + (*debugging*) + (* let rewrules = ref [] *) + (*debugging*) +let debug i = prstr ("DEBUG "^ string_of_int i ^"\n") +let pr2constr = (fun c1 c2 -> prconstr c1; prstr " <---> "; prconstr c2) +(* Operations on names *) +let id_of_name = function + Anonymous -> id_of_string "H" + | Name id -> id;; +let string_of_name nme = string_of_id (id_of_name nme) + (*end debugging *) + +let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c + +let rec collect_cases l = + match l with + | [||] -> [||],[],[],[||],[||],[] + | arr -> + let (a,c,d,f,e,g)= arr.(0) in + let aa,lc,ld,_,_,_ = + collect_cases (Array.sub arr 1 ((Array.length arr)-1)) in + Array.append [|a|] aa , (c@lc) , (d@ld) , f , e, g + +let rec collect_pred l = + match l with + | [] -> [],[],[] + | (e1,e2,e3)::l' -> let a,b,c = collect_pred l' in (e1::a),(e2::b),(e3::c) + + +(*s specific manipulations on constr *) +let lift1_leqs leq= + List.map + (function (r,(typofg,g,d)) + -> lift 1 r, (lift 1 typofg, lift 1 g , lift 1 d)) leq + +let lift1_relleqs leq= List.map (function (r,x) -> lift 1 r,x) leq + +(* WARNING: In the types, we don't lift the rels in the type. This is + intentional. Use with care. *) +let lift1_lvars lvars= List.map + (function x,(nme,c) -> lift 1 x, (nme, (*lift 1*) c)) lvars + +let pop1_levar levars = List.map (function ev,tev -> ev, popn 1 tev) levars + + +let rec add_n_dummy_prod t n = + if n<=0 then t + else add_n_dummy_prod (mkNamedProd (id_of_string "DUMMY") mkthesort t) (n-1) + +(* [add_lambdas t gl [csr1;csr2...]] returns [[x1:type of csr1] + [x2:type of csr2] t [csr <- x1 ...]], names of abstracted variables + are not specified *) +let rec add_lambdas t gl lcsr = + match lcsr with + | [] -> t + | csr::lcsr' -> + let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in + lambda_id hyp_csr hyptyp (add_lambdas t gl lcsr') + +(* [add_pis t gl [csr1;csr2...]] returns ([x1] :type of [csr1] + [x2]:type of csr2) [t]*) +let rec add_pis t gl lcsr = + match lcsr with + | [] -> t + | csr::lcsr' -> + let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in + prod_id hyp_csr hyptyp (add_pis t gl lcsr') + +let mkProdEg teq eql eqr concl = + mkProd (name_of_string "eg", mkEq teq eql eqr, lift 1 concl) + +let eqs_of_beqs x = + List.map (function (_,(a,b,c)) -> (Anonymous, mkEq a b c)) x + + +let rec eqs_of_beqs_named_aux s i l = + match l with + | [] -> [] + | (r,(a,b,c))::l' -> + (Name(id_of_string (s^ string_of_int i)), mkEq a b c) + ::eqs_of_beqs_named_aux s (i-1) l' + + +let eqs_of_beqs_named s l = eqs_of_beqs_named_aux s (List.length l) l + +let rec patternify ltypes c nme = + match ltypes with + | [] -> c + | (mv,t)::ltypes' -> + let c'= substitterm 0 mv (mkRel 1) c in + let tlift = lift (List.length ltypes') t in + let res = + patternify ltypes' (mkLambda (newname_append nme "rec", tlift, c')) nme in + res + +let rec npatternify ltypes c = + match ltypes with + | [] -> c + | (mv,nme,t)::ltypes' -> + let c'= substitterm 0 mv (mkRel 1) c in +(* let _ = prconstr c' in *) + let tlift = lift (List.length ltypes') t in + let res = + npatternify ltypes' (mkLambda (newname_append nme "", tlift, c')) in +(* let _ = prconstr res in *) + res + +let rec apply_levars c lmetav = + match lmetav with + | [] -> [],c + | (i,typ) :: lmetav' -> + let levars,trm = apply_levars c lmetav' in + let exkey = mknewexist() in + ((exkey,typ)::levars), applistc trm [mkEvar exkey] + (* EXPERIMENT le refine est plus long si on met un cast: + ((exkey,typ)::levars), mkCast ((applistc trm [mkEvar exkey]),typ) *) + + +let prod_change_concl c newconcl = + let lv,_ = decompose_prod c in prod_it newconcl lv + +let lam_change_concl c newconcl = + let lv,_ = decompose_prod c in lam_it newconcl lv + + +let rec mkAppRel c largs n = + match largs with + | [] -> c + | arg::largs' -> + let newc = mkApp (c,[|(mkRel n)|]) in mkAppRel newc largs' (n-1) + +let applFull c typofc = + let lv,t = decompose_prod typofc in + let ltyp = List.map fst lv in + let res = mkAppRel c ltyp (List.length ltyp) in + res + + +let rec build_rel_map typ type_of_b = + match (kind_of_term typ), (kind_of_term type_of_b) with + Evar _ , Evar _ -> Smap.empty + | Rel i, Rel j -> if i=j then Smap.empty + else Smap.add typ type_of_b Smap.empty + | Prod (name,c1,c2), Prod (nameb,c1b,c2b) -> + let map1 = build_rel_map c1 c1b in + let map2 = build_rel_map (pop c2) (pop c2b) in + merge_smap map1 map2 + | App (f,args), App (fb,argsb) -> + (try build_rel_map_list (Array.to_list args) (Array.to_list argsb) + with Invalid_argument _ -> + failwith ("Could not generate case annotation. "^ + "Two application with different length")) + | Const c1, Const c2 -> if c1=c2 then Smap.empty + else failwith ("Could not generate case annotation. "^ + "Two different constants in a case annotation.") + | Ind c1, Ind c2 -> if c1=c2 then Smap.empty + else failwith ("Could not generate case annotation. "^ + "Two different constants in a case annotation.") + | _,_ -> failwith ("Could not generate case annotation. "^ + "Incompatibility between annotation and actual type") +and build_rel_map_list ltyp ltype_of_b = + List.fold_left2 (fun a b c -> merge_smap a (build_rel_map b c)) + Smap.empty ltyp ltype_of_b + + +(*s Use (and proof) of the principle *) + +(* + \begin {itemize} + \item [concl] ([constr]): conclusions, cad (xi:ti)gl, ou gl est le but a + prouver, et xi:ti correspondent aux arguments donnés à la tactique. On + enlève un produit à chaque fois qu'on rencontre un binder, sans lift ou pop. + Initialement: une seule conclusion, puis specifique a chaque branche. + \item[absconcl] ([constr array]): les conclusions (un predicat pour chaque + fixp. mutuel) patternisées pour pouvoir être appliquées. + \item [mimick] ([constr]): le terme qu'on imite. On plonge dedans au fur et + à mesure, sans lift ni pop. + \item [nmefonc] ([constr array]): la constante correspondant à la fonction + appelée, permet de remplacer les appels recursifs par des appels à la + constante correspondante (non pertinent (et inutile) si on permet l'appel de + la tactique sur une terme donné directement (au lieu d'une constante comme + pour l'instant)). + \item [fonc] ([int*int]) : bornes des indices des variable correspondant aux + appels récursifs (plusieurs car fixp. mutuels), utile pour reconnaître les + appels récursifs (ATTENTION: initialement vide, reste vide tant qu'on n'est + pas dans un fix). + \end{itemize} +*) + +type mimickinfo = + { + concl: constr; + absconcl: constr array; + mimick: constr; + env: env; + sigma: Evd.evar_map; + nmefonc: constr array; + fonc: int * int; + doeqs: bool; (* this reference is to toggle building of equalities during + the building of the principle (default is true) *) + fix: bool (* did I already went through a fix or case constr? lambdas + found before a case or a fix are treated as parameters of + the induction principle *) + } + +(* + \begin{itemize} + \item [lst_vars] ([(constr*(name*constr)) list]): liste des variables + rencontrées jusqu'à maintenant. + \item [lst_eqs] ([constr list]): liste d'équations engendrées au cours du + parcours, cette liste grandit à chaque case, et il faut lifter le tout à + chaque binder. + \item [lst_recs] ([constr list]): listes des appels récursifs rencontrés + jusque là. + \end{itemize} + + Cette fonction rends un nuplet de la forme: + + [t, + [(ev1,tev1);(ev2,tev2)..], + [(i1,j1,k1);(i2,j2,k2)..], + [|c1;c2..|], + [|typ1;typ2..|], + [(param,tparam)..]] + + *) + +(* This could be the return type of [proofPrinc], but not yet *) +type funind = + { + princ:constr; + evarlist: (constr*Term.types) list; + hypnum: (int*int*int) list; + mutfixmetas: constr array ; + conclarray: types array; + params:(constr*name*constr) list + } + +(* + où: + + \begin{itemize} + + \item[t] est le principe demandé, il contient des meta variables + représentant soit des trous à prouver plus tard, soit les conclusions à + compléter avant de rendre le terme (suivant qu'on utilise le principe pour + faire refine ou functional scheme). Il y plusieurs conclusions si plusieurs + fonction mutuellement récursives) voir la suite. + + \item[[(ev1,tev1);(ev2,tev2)...]] est l'ensemble des méta variables + correspondant à des trous. [evi] est la meta variable, [tevi] est son type. + + \item[(in,jn,kn)] sont les nombres respectivement de variables, d'équations, + et d'hypothèses de récurrence pour le but n. Permet de faire le bon nombre + d'intros et des rewrite au bons endroits dans la suite. + + \item[[|c1;c2...|]] est un tableau de meta variables correspondant à chacun + des prédicats mutuellement récursifs construits. + + \item[[|typ1;typ2...|]] est un tableau contenant les conclusions respectives + de chacun des prédicats mutuellement récursifs. Permet de finir la + construction du principe. + + \item[[(param,tparam)..]] est la liste des paramètres (les lambda au-dessus + du fix) du fixpoint si fixpoint il y a. + + \end{itemize} +*) +let heq_prefix = "H_eq_" + +type kind_of_hyp = Var | Eq (*| Rec*) + +let rec proofPrinc mi lst_vars lst_eqs lst_recs: + constr * (constr*Term.types) list * (int*int*int) list + * constr array * types array * (constr*name*constr) list = + match kind_of_term mi.mimick with + (* Fixpoint: we reproduce the Fix, fonc becomes (1,nbofmutf) to point on + the name of recursive calls *) + | Fix((iarr,i),(narr,tarr,carr)) -> + + (* We construct the right predicates for each mutual fixpt *) + let rec build_pred n = + if n >= Array.length iarr then [] + else + let ftyp = Array.get tarr n in + let gl = mknewmeta() in + let gl_app = applFull gl ftyp in + let pis = prod_change_concl ftyp gl_app in + let gl_abstr = lam_change_concl ftyp gl_app in + (gl,gl_abstr,pis):: build_pred (n+1) in + + let evarl,predl,pisl = collect_pred (build_pred 0) in + let newabsconcl = Array.of_list predl in + let evararr = Array.of_list evarl in + let pisarr = Array.of_list pisl in + let newenv = push_rec_types (narr,tarr,carr) mi.env in + + let rec collect_fix n = + if n >= Array.length iarr then [],[],[],[] + else + let nme = Array.get narr n in + let c = Array.get carr n in + (* rappelle sur le sous-terme, on ajoute un niveau de + profondeur (lift) parce que Fix est un binder. *) + let newmi = {mi with concl=(pisarr.(n)); absconcl=newabsconcl; + mimick=c; fonc=(1,((Array.length iarr)));env=newenv;fix=true} in + let appel_rec,levar,lposeq,_,evarrarr,parms = + proofPrinc newmi (lift1_lvars lst_vars) + (lift1_leqs lst_eqs) (lift1L lst_recs) in + let lnme,lappel_rec,llevar,llposeq = collect_fix (n+1) in + (nme::lnme),(appel_rec::lappel_rec),(levar@llevar), (lposeq@llposeq) in + + let lnme,lappel_rec,llevar,llposeq =collect_fix 0 in + let lnme' = List.map (fun nme -> newname_append nme "_ind") lnme in + let anme = Array.of_list lnme' in + let aappel_rec = Array.of_list lappel_rec in + (* llevar are put outside the fix, so one level of rel must be removed *) + mkFix((iarr,i),(anme, pisarr,aappel_rec)),(pop1_levar llevar),llposeq,evararr,pisarr,[] + + (* <pcase> Cases b of arrPt end.*) + | Case(cinfo, pcase, b, arrPt) -> + + let prod_pcase,_ = decompose_lam pcase in + let nmeb,lastprod_pcase = List.hd prod_pcase in + let b'= apply_leqtrpl_t b lst_eqs in + let type_of_b = Typing.type_of mi.env mi.sigma b in + let new_lst_recs = lst_recs @ hdMatchSub_cpl b mi.fonc in + (* Replace the calls to the function (recursive calls) by calls to the + corresponding constant: *) + let d,f = mi.fonc in + let res = ref b' in + let _ = for i = d to f do + res := substitterm 0 (mkRel i) mi.nmefonc.(f-i) !res done in + let newb = !res in + + (* [fold_proof t l n] rend le resultat de l'appel recursif sur les + elements de la liste l (correpsondant a arrPt), appele avec les bons + arguments: [concl] devient [(DUMMY1:t1;...;DUMMY:tn)concl'], ou [n] + est le nombre d'arguments du constructeur considéré (FIX: Hormis les + parametres!!), et [concl'] est concl ou l'on a réécrit [b] en ($c_n$ + [rel1]...).*) + + let rec fold_proof nth_construct eltPt' = + (* mise a jour de concl pour l'interieur du case, concl'= concl[b <- C x3 + x2 x1... ], sans quoi les annotations ne sont plus coherentes *) + let cstr_appl,nargs = nth_dep_constructor type_of_b nth_construct in + let concl'' = + substitterm 0 (lift nargs b) cstr_appl (lift nargs mi.concl) in + let neweq = mkEq type_of_b newb (popn nargs cstr_appl) in + let concl_dummy = add_n_dummy_prod concl'' nargs in + let lsteqs_rew = apply_eq_leqtrpl lst_eqs neweq in + let new_lsteqs = + (mkRel (0-nargs),(type_of_b,newb, popn nargs cstr_appl))::lsteqs_rew in + let a',a'' = decompose_lam_n nargs eltPt' in + let newa'' = + if mi.doeqs + then mkLambda (name_of_string heq_prefix,lift nargs neweq,lift 1 a'') + else a'' in + let newmimick = lamn nargs a' newa'' in + let b',b'' = decompose_prod_n nargs concl_dummy in + let newb'' = + if mi.doeqs + then mkProd (name_of_string heq_prefix,lift nargs neweq,lift 1 b'') + else b'' in + let newconcl = prodn nargs b' newb'' in + let newmi = {mi with mimick=newmimick; concl=newconcl; fix=true} in + let a,b,c,d,e,p = proofPrinc newmi lst_vars new_lsteqs new_lst_recs in + a,b,c,d,e,p + in + + let arrPt_proof,levar,lposeq,evararr,absc,_ = + collect_cases (Array.mapi fold_proof arrPt) in + let prod_pcase,concl_pcase = decompose_lam pcase in + let nme,typ = List.hd prod_pcase in + let suppllam_pcase = List.tl prod_pcase in + (* je remplace b par rel1 (apres avoir lifte un coup) dans la + future annotation du futur case: ensuite je mettrai un lambda devant *) + let typesofeqs' = eqs_of_beqs_named equality_hyp_string lst_eqs in + (* let typesofeqs = prod_it_lift typesofeqs' mi.concl in *) + let typesofeqs = mi.concl in + let typeof_case'' = + substitterm 0 (lift 1 b) (mkRel 1) (lift 1 typesofeqs) in + + (* C'est un peu compliqué ici: en cas de type inductif vraiment dépendant + le piquant du case [pcase] contient des lambdas supplémentaires en tête + je les ai dans la variable [suppllam_pcase]. Le problème est que la + conclusion du piquant doit faire référence à ces variables plutôt qu'à + celle de l'exterieur. Ce qui suit permet de changer les reference de + newpacse' pour pointer vers les lambda du piquant. On procède comme + suit: on repère les rels qui pointent à l'interieur du piquant dans la + fonction imitée, pour ça on parcourt le dernier lambda du piquant (qui + contient le type de l'argument du case), et on remplace les rels + correspondant dans la preuve construite. *) + + (* typ vient du piquant, type_of_b vient du typage de b.*) + + let rel_smap = + if List.length suppllam_pcase=0 then Smap.empty else + build_rel_map (lift (List.length suppllam_pcase) type_of_b) typ in + let rel_map = smap_to_list rel_smap in + let rec substL l c = + match l with + [] -> c + | ((e,e') ::l') -> substL l' (substitterm 0 e (lift 1 e') c) in + let newpcase' = substL rel_map typeof_case'' in + let neweq = mkEq (lift (List.length suppllam_pcase + 1) type_of_b) + (lift (List.length suppllam_pcase + 1) newb) (mkRel 1) in + let newpcase = + if mi.doeqs then + mkProd (name_of_string "eg", neweq, lift 1 newpcase') else newpcase' + in + (* construction du dernier lambda du piquant. *) + let typeof_case' = mkLambda (newname_append nme "_ind" ,typ, newpcase) in + (* ajout des lambdas supplémentaires (type dépendant) du piquant. *) + let typeof_case = + lamn (List.length suppllam_pcase) suppllam_pcase typeof_case' in + let trm' = mkCase (cinfo,typeof_case,newb, arrPt_proof) in + let trm = + if mi.doeqs then mkApp (trm',[|(mkRefl type_of_b newb)|]) + else trm' in + trm,levar,lposeq,evararr,absc,[] (* fix parms here (fix inside case)*) + + | Lambda(nme, typ, cstr) -> + let _, _, cconcl = destProd mi.concl in + let d,f=mi.fonc in + let newenv = push_rel (nme,None,typ) mi.env in + let newmi = {mi with concl=cconcl; mimick=cstr; env=newenv; + fonc=((if d > 0 then d+1 else 0),(if f > 0 then f+1 else 0))} in + let newlst_var = (* if this lambda is a param, then don't add it here *) + if mi.fix then (mkRel 1,(nme,typ)) :: lift1_lvars lst_vars + else (*(mkRel 1,(nme,typ)) :: *) lift1_lvars lst_vars in + let rec_call,levar,lposeq,evararr,absc,parms = + proofPrinc newmi newlst_var (lift1_leqs lst_eqs) (lift1L lst_recs) in + (* are we inside a fixpoint or a case? then this is a normal lambda *) + if mi.fix then mkLambda (nme,typ,rec_call) , levar, lposeq,evararr,absc,[] + else (* otherwise this is a parameter *) + let metav = mknewmeta() in + let substmeta t = popn 1 (substitterm 0 (mkRel 1) metav t) in + let newrec_call = substmeta rec_call in + let newlevar = List.map (fun ev,tev -> ev, substmeta tev) levar in + let newabsc = Array.map substmeta absc in + newrec_call,newlevar,lposeq,evararr,newabsc,((metav,nme, typ)::parms) + + | LetIn(nme,cstr1, typ, cstr) -> + failwith ("I don't deal with let ins yet. "^ + "Please expand them before applying this function.") + + | u -> + let varrels = List.rev (List.map fst lst_vars) in + let varnames = List.map snd lst_vars in + let nb_vars = (List.length varnames) in + let nb_eqs = (List.length lst_eqs) in + let eqrels = List.map fst lst_eqs in + (* [terms_recs]: appel rec du fixpoint, On concatène les appels recs + trouvés dans les let in et les Cases. *) + (* TODO: il faudra gérer plusieurs pt fixes imbriqués ? *) + let terms_recs = lst_recs @ (hdMatchSub_cpl mi.mimick mi.fonc) in + + (*c construction du terme: application successive des variables, des + egalites et des appels rec, a la variable existentielle correspondant a + l'hypothese de recurrence en cours. *) + (* d'abord, on fabrique les types des appels recursifs en replacant le nom + de des fonctions par les predicats dans [terms_recs]: [(f_i t u v)] + devient [(P_i t u v)] *) + (* TODO optimiser ici: *) + let appsrecpred = exchange_reli_arrayi_L mi.absconcl mi.fonc terms_recs in + let typeofhole'' = prod_it_anonym_lift mi.concl appsrecpred in + let typeofhole = prodn nb_vars varnames typeofhole'' in + + (* Un bug de refine m'oblige à mettre ici un H (meta variable à ce point, + mais remplacé par H avant le refine) au lieu d'un '?', je mettrai les + '?' à la fin comme ça [(([H1,H2,H3...] ...) ? ? ?)] *) + + let newmeta = mknewmeta() in + let concl_with_var = applistc newmeta varrels in + let conclrecs = applistc concl_with_var terms_recs in + conclrecs,[newmeta,typeofhole], [nb_vars,(List.length terms_recs) + ,nb_eqs],[||],mi.absconcl,[] + + + +let mkevarmap_aux ex = let x,y = ex in (mkevarmap_from_listex x),y + +(* Interpretation of constr's *) +let constr_of_Constr c = Constrintern.interp_constr Evd.empty (Global.env()) c + + +(* TODO: deal with any term, not only a constant. *) +let interp_fonc_tacarg fonctac gl = + (* [fonc] is the constr corresponding to fontact not unfolded, + if [fonctac] is a (qualified) name then this is a [const] ?. *) +(* let fonc = constr_of_Constr fonctac in *) + (* TODO: replace the [with _ -> ] by something more precise in + the following. *) + (* [def_fonc] is the definition of fonc. TODO: We should do this only + if [fonc] is a const, and take [fonc] otherwise.*) + try fonctac, pf_const_value gl (destConst fonctac) + with _ -> failwith ("don't know how to deal with this function " + ^"(DEBUG:is it a constante?)") + + + + +(* [invfun_proof fonc def_fonc gl_abstr pis] builds the principle, + following the shape of [def_fonc], [fonc] is the constant + corresponding to [def_func] (or a reduced form of it ?), gl_abstr and + pis are the goal to be proved, of the form [x,y...]g and (x.y...)g. + + This function calls the big function proofPrinc. *) + +let invfun_proof fonc def_fonc gl_abstr pis env sigma = + let mi = {concl=pis; absconcl=gl_abstr; mimick=def_fonc; env=env; + sigma=sigma; nmefonc=fonc; fonc=(0,0); doeqs=true; fix=false} in + let princ_proof,levar,lposeq,evararr,absc,parms = proofPrinc mi [] [] [] in + princ_proof,levar,lposeq,evararr,absc,parms + +(* Do intros [i] times, then do rewrite on all introduced hyps which are called + like [heq_prefix], FIX: have another filter than the name. *) +let rec iterintro i = + if i<=0 then tclIDTAC else + tclTHEN + (tclTHEN + intro + (iterintro (i-1))) + (fun gl -> + (tclREPEAT + (tclNTH_HYP i + (fun hyp -> + let hypname = (string_of_id (destVar hyp)) in + let sub = + try String.sub hypname 0 (String.length heq_prefix) + with _ -> "" (* different than [heq_prefix] *) in + if sub=heq_prefix then rewriteLR hyp else tclFAIL 0 "Cannot rewrite") + )) gl) + + +(* + (fun hyp gl -> + let _ = print_string ("nthhyp= "^ string_of_int i) in + if isConst hyp && ((name_of_const hyp)==heq_prefix) then + let _ = print_string "YES\n" in + rewriteLR hyp gl + else + let _ = print_string "NO\n" in + tclIDTAC gl) + *) + +(* [invfun_basic C listargs_ids gl dorew lposeq] builds the tactic + which: + \begin{itemize} + \item Do refine on C (the induction principle), + \item try to Clear listargs_ids + \item if boolean dorew is true, then intro all new hypothesis, and + try rewrite on those hypothesis that are equalities. + \end{itemize} +*) + +let invfun_basic open_princ_proof_applied listargs_ids gl dorew lposeq = + (tclTHEN_i + (tclTHEN + (tclTHEN + (* Refine on the right term (following the sheme of the + given function) *) + (fun gl -> refine open_princ_proof_applied gl) + (* Clear the hypothesis given as arguments of the tactic + (because they are generalized) *) + (tclTHEN simpl_in_concl (tclTRY (clear listargs_ids)))) + (* Now we introduce the created hypothesis, and try rewrite on + equalities due to case analysis *) + (fun gl -> (tclIDTAC gl))) + (fun i gl -> + if not dorew then tclIDTAC gl + else + (* d,m,f correspond respectively to vars, induction hyps and + equalities*) + let d,m,f = List.nth lposeq (i-1) in + tclTHEN (iterintro (d)) (tclDO m (tclTRY intro)) gl) + ) + gl + + + + +(* This function trys to reduce instanciated arguments, provided they + are of the form [(C t u v...)] where [C] is a constructor, and + provided that the argument is not the argument of a fixpoint (i.e. the + argument corresponds to a simple lambda) . *) +let rec applistc_iota cstr lcstr env sigma = + match lcstr with + | [] -> cstr,[] + | arg::lcstr' -> + let arghd = + if isApp arg then let x,_ = destApplication arg in x else arg in + if isConstruct arghd (* of the form [(C ...)]*) + then + applistc_iota (Tacred.nf env sigma (nf_beta (applistc cstr [arg]))) + lcstr' env sigma + else + try + let nme,typ,suite = destLambda cstr in + let c, l = applistc_iota suite lcstr' env sigma in + mkLambda (nme,typ,c), arg::l + with _ -> cstr,arg::lcstr' (* the arg does not correspond to a lambda*) + + + +(* TODO: ne plus mettre les sous-but à l'exterieur, mais à l'intérieur (le bug + de refine est normalement resolu). Ca permettra 2 choses: d'une part que + les preuves soient plus simple, et d'autre part de fabriquer un terme de + refine qui pourra s'aapliquer SANS FAIRE LES INTROS AVANT, ce qui est bcp + mieux car fonctionne comme induction et plus comme inversion (pas de perte + de connexion entre les hypothèse et les variables). *) + +(*s Tactic that makes induction and case analysis following the shape + of a function (idf) given with arguments (listargs) *) +let invfun c l dorew gl = +(* \begin{itemize} + \item [fonc] = the constant corresponding to the function + (necessary for equalities of the form [(f x1 x2 ...)=...] where + [f] is the recursive function). + \item [def_fonc] = body of the function, where let ins have + been expanded. *) + let fonc, def_fonc' = interp_fonc_tacarg c gl in + let def_fonc'',listargs' = + applistc_iota def_fonc' l (pf_env gl) (project gl) in + let def_fonc = expand_letins def_fonc'' in + (* quantifies on previously generalized arguments. + [(x1:T1)...g[arg1 <- x1 ...]] *) + let pis = add_pis (pf_concl gl) gl listargs' in + (* princ_proof builds the principle *) + let _ = resetmeta() in + let princ_proof,levar, lposeq,evararr,_,parms = + invfun_proof [|fonc|] def_fonc [||] pis (pf_env gl) (project gl) in + + (* Generalize the goal. [[x1:T1][x2:T2]... g[arg1 <- x1 ...]]. *) + let gl_abstr' = add_lambdas (pf_concl gl) gl listargs' in + (* apply parameters immediately *) + let gl_abstr = applistc gl_abstr' (List.map (fun x,y,z -> x) (List.rev parms)) in + + (* we apply args of the fix now, the parameters will be applied later *) + let princ_proof_applied_args = + applistc princ_proof (listsuf (List.length parms) listargs') in + + (* parameters are still there so patternify must not take them -> lift *) + let princ_proof_applied_lift = + lift (List.length levar) princ_proof_applied_args in + + let princ_applied_hyps'' = patternify (List.rev levar) + princ_proof_applied_lift (Name (id_of_string "Hyp")) in + (* if there was a fix, we will not add "Q" as in funscheme, so we make a pop, + TODO: find were we made the lift in proofPrinc instead and supress it here, + and add lift in funscheme. *) + let princ_applied_hyps' = + if Array.length evararr > 0 then popn 1 princ_applied_hyps'' + else princ_applied_hyps'' in + + let princ_applied_hyps = + if Array.length evararr > 0 then (* mutual Fixpoint not treated in the tactic *) + (substit_red 0 (evararr.(0)) gl_abstr princ_applied_hyps') + else princ_applied_hyps' (* No Fixpoint *) in + let _ = prNamedConstr "princ_applied_hyps" princ_applied_hyps in + + (* replace params metavar by real args *) + let rec replace_parms lparms largs t = + match lparms, largs with + [], _ -> t + | ((p,_,_)::lp), (a::la) -> let t'= substitterm 0 p a t in replace_parms lp la t' + | _, _ -> error "problem with number of args." in + let princ_proof_applied = replace_parms parms listargs' princ_applied_hyps in + + +(* + (* replace params metavar by abstracted variables *) + let princ_proof_params = npatternify (List.rev parms) princ_applied_hyps in + (* we apply now the real parameters *) + let princ_proof_applied = + applistc princ_proof_params (listpref (List.length parms) listargs') in +*) + + + + let princ_applied_evars = apply_levars princ_proof_applied levar in + let open_princ_proof_applied = princ_applied_evars in + let listargs_ids = List.map destVar (List.filter isVar listargs') in + invfun_basic (mkevarmap_aux open_princ_proof_applied) listargs_ids + gl dorew lposeq + +(* function must be a constant, all arguments must be given. *) +let invfun_verif c l dorew gl = + if not (isConst c) then error "given function is not a constant" + else + let x,_ = decompose_prod (pf_type_of gl c) in + if List.length x = List.length l then + try invfun c l dorew gl + with + UserError (x,y) -> raise (UserError (x,y)) + else error "wrong number of arguments for the function" + + +TACTIC EXTEND FunctionalInduction + [ "Functional" "Induction" constr(c) ne_constr_list(l) ] + -> [ invfun_verif c l true ] +END + + + +(* Construction of the functional scheme. *) +let buildFunscheme fonc mutflist = + let def_fonc = expand_letins (def_of_const fonc) in + let ftyp = type_of (Global.env ()) Evd.empty fonc in + let _ = resetmeta() in + let gl = mknewmeta() in + let gl_app = applFull gl ftyp in + let pis = prod_change_concl ftyp gl_app in + (* Here we call the function invfun_proof, that effectively + builds the scheme *) + let princ_proof,levar,_,evararr,absc,parms = + invfun_proof mutflist def_fonc [||] pis (Global.env()) Evd.empty in + (* parameters are still there (unboud rel), and patternify must not take them + -> lift*) + let princ_proof_lift = lift (List.length levar) princ_proof in + let princ_proof_hyps = + patternify (List.rev levar) princ_proof_lift (Name (id_of_string "Hyp")) in + let rec princ_replace_metas ev abs i t = + if i>= Array.length ev then t + else (* fix? *) + princ_replace_metas ev abs (i+1) + (mkLambda ( + (Name (id_of_string ("Q"^(string_of_int i)))), + prod_change_concl (lift 0 abs.(i)) mkthesort, + (substitterm 0 ev.(i) (mkRel 1) (lift 0 t)))) + in + let rec princ_replace_params params t = + List.fold_left ( + fun acc ev,nam,typ -> + mkLambda (Name (id_of_name nam) , typ, + substitterm 0 ev (mkRel 1) (lift 0 acc))) + t (List.rev params) in + if Array.length evararr = 0 (* Is there a Fixpoint? *) + then (* No Fixpoint *) + princ_replace_params parms (mkLambda ((Name (id_of_string "Q")), + prod_change_concl ftyp mkthesort, + (substitterm 0 gl (mkRel 1) princ_proof_hyps))) + else (* there is a fix -> add parameters + replace metas *) + let princ_rpl = princ_replace_metas evararr absc 0 princ_proof_hyps in + princ_replace_params parms princ_rpl + + + +(* Declaration of the functional scheme. *) +let declareFunScheme f fname mutflist = + let scheme = + buildFunscheme (constr_of f) + (Array.of_list (List.map constr_of (f::mutflist))) in + let _ = prstr "Principe:" in + let _ = prconstr scheme in + let ce = { + const_entry_body = scheme; + const_entry_type = None; + const_entry_opaque = false } in + let _= ignore (declare_constant fname (DefinitionEntry ce,IsDefinition)) in + () + + + +VERNAC COMMAND EXTEND FunctionalScheme + [ "Functional" "Scheme" ident(na) ":=" "Induction" "for" + constr(c) "with" ne_constr_list(l) ] + -> [ declareFunScheme c na l ] +| [ "Functional" "Scheme" ident(na) ":=" "Induction" "for" constr(c) ] + -> [ declareFunScheme c na [] ] +END + + + + + +(* +*** Local Variables: *** +*** compile-command: "make -C ../.. contrib/funind/tacinv.cmo" *** +*** tab-width: 1 *** +*** tuareg-default-indent:1 *** +*** tuareg-begin-indent:1 *** +*** tuareg-let-indent:1 *** +*** tuareg-match-indent:-1 *** +*** tuareg-try-indent:1 *** +*** tuareg-with-indent:1 *** +*** tuareg-if-then-else-inden:1 *** +*** fill-column: 78 *** +*** indent-tabs-mode: nil *** +*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v" *** +*** End: *** +*) + + diff --git a/contrib/funind/tacinvutils.ml b/contrib/funind/tacinvutils.ml new file mode 100644 index 00000000..758071ba --- /dev/null +++ b/contrib/funind/tacinvutils.ml @@ -0,0 +1,277 @@ +(* tacinvutils.ml *) +(*s utilities *) + +(*i*) +open Names +open Util +open Term +open Termops +open Coqlib +open Pp +open Printer +open Inductiveops +open Environ +open Declarations +open Nameops +open Evd +open Sign +open Reductionops +(*i*) + +(*s printing of constr -- debugging *) + +let msg x = () ;; let prterm c = str "" (* comment this to see debug msgs *) + (* uncomment this to see debugging *) +let prconstr c = msg (str" " ++ prterm c ++ str"\n") +let prlistconstr lc = List.iter prconstr lc +let prstr s = msg(str s) + +let prchr () = msg (str" (ret) \n") +let prNamedConstr s c = + begin + msg(str ""); + msg(str(s^"==>\n ") ++ prterm c ++ str "\n<==\n"); + msg(str ""); + end + +let prNamedLConstr_aux lc = + List.iter (prNamedConstr "#>") lc + +let prNamedLConstr s lc = + begin + prstr s; + prNamedLConstr_aux lc + end + + +(* FIXME: ref 1, pas bon, si? *) +let evarcpt = ref 0 +let metacpt = ref 0 +let mknewexist ()= + begin + evarcpt := !evarcpt+1; + !evarcpt,[||] + end + +let resetexist ()= evarcpt := 0 + +let mknewmeta ()= + begin + metacpt := !metacpt+1; + mkMeta (!metacpt) + end + +let resetmeta () = metacpt := 0 + +let rec mkevarmap_from_listex lex = + match lex with + | [] -> Evd.empty + | ((ex,_),typ)::lex' -> + let info ={ + evar_concl = typ; + evar_hyps = empty_named_context; + evar_body = Evar_empty} in + Evd.add (mkevarmap_from_listex lex') ex info + +let mkEq typ c1 c2 = + mkApp (build_coq_eq(),[| typ; c1; c2|]) + +let mkRefl typ c1 = + mkApp ((build_coq_eq_data()).refl, [| typ; c1|]) + +let rec popn i c = if i<=0 then c else pop (popn (i-1) c) + + +(* Operations on names *) +let id_of_name = function + Anonymous -> id_of_string "H" + | Name id -> id;; +let string_of_name nme = string_of_id (id_of_name nme) +let name_of_string str = Name (id_of_string str) +let newname_append nme str = + Name(id_of_string ((string_of_id (id_of_name nme))^str)) + +(* Substitutions in constr *) + +let compare_constr_nosub t1 t2 = + if compare_constr (fun _ _ -> false) t1 t2 + then true + else false + +let rec compare_constr' t1 t2 = + if compare_constr_nosub t1 t2 + then true + else (compare_constr (compare_constr') t1 t2) + +let rec substitterm prof t by_t in_u = + if (compare_constr' (lift prof t) in_u) + then (lift prof by_t) + else map_constr_with_binders succ + (fun i -> substitterm i t by_t) prof in_u + + +let apply_eqtrpl eq t = + let r,(tb,b,by_t) = eq in + substitterm 0 b by_t t + +let apply_eqtrpl_lt lt eq = List.map (apply_eqtrpl eq) lt + +let apply_leqtrpl_t t leq = + List.fold_left (fun x y -> apply_eqtrpl y x) t leq + + +let apply_refl_term eq t = + let _,arr = destApplication eq in + let reli= (Array.get arr 1) in + let by_t= (Array.get arr 2) in + substitterm 0 reli by_t t + +let apply_eq_leqtrpl leq eq = + List.map + (function (r,(tb,b,t)) -> + r,(tb, + (if isRel b then b else (apply_refl_term eq b)), apply_refl_term eq t)) + leq + + + +(* [(a b c) a] -> true *) +let constr_head_match u t= + if isApp u + then + let uhd,args= destApplication u in + uhd=t + else false + +(* My operations on constr *) +let lift1L l = (List.map (lift 1) l) +let mkArrow_lift t1 t2 = mkArrow t1 (lift 1 t2) +let mkProd_liftc nme c1 c2 = mkProd (nme,c1,(lift 1 c2)) +(* prod_it_lift x [a1 a2 ...] *) +let prod_it_lift ini lcpl = + List.fold_right (function a,b -> (fun c -> mkProd_liftc a b c)) ini lcpl;; + +let prod_it_anonym_lift trm lst = List.fold_right mkArrow_lift lst trm + +let lam_it_anonymous trm lst = + List.fold_right + (fun elt res -> mkLambda(Name(id_of_string "Hrec"),elt,res)) lst trm + +let lambda_id id typeofid cstr = + let cstr' = mkNamedLambda (id_of_string "FUNX") typeofid cstr in + substitterm 0 id (mkRel 0) cstr' + +let prod_id id typeofid cstr = + let cstr' = mkNamedProd (id_of_string "FUNX") typeofid cstr in + substitterm 0 id (mkRel 0) cstr' + + + + + +let nth_dep_constructor indtype n = + let sigma = Evd.empty and env = Global.env() in + let indtypedef = find_rectype env sigma indtype in + let indfam,_ = dest_ind_type indtypedef in + let arr_cstr_summary = get_constructors env indfam in + let cstr_sum = Array.get arr_cstr_summary n in + build_dependent_constructor cstr_sum, cstr_sum.cs_nargs + + +let rec buildrefl_from_eqs eqs = + match eqs with + | [] -> [] + | cstr::eqs' -> + let eq,args = destApplication cstr in + (mkRefl (Array.get args 0) (Array.get args 2)) + :: (buildrefl_from_eqs eqs') + + + + +(* list of occurrences of a term inside another, no imbricated + occurrence are considered (ie we stop looking inside a termthat is + an occurrence). *) +let rec hdMatchSub u t= + if constr_head_match u t then + u::(fold_constr (fun l cstr -> l@(hdMatchSub cstr t)) + [] + u) + else + fold_constr (fun l cstr -> l@(hdMatchSub cstr t)) + [] + u + +(* let hdMatchSub_list u lt = List.flatten (List.map (hdMatchSub u) lt) *) +let hdMatchSub_cpl u (d,f) = + let res = ref [] in + begin + for i = d to f do res := (hdMatchSub u (mkRel i)) @ !res done; + !res + end + + +(* destApplication raises an exception if [t] is not an application *) +let exchange_hd_prod subst_hd t = + let (hd,args)= destApplication t in mkApp (subst_hd,args) + +(* substitute t by by_t in head of products inside in_u, reduces each + product found *) +let rec substit_red prof t by_t in_u = + if constr_head_match in_u (lift prof t) + then + let _ = prNamedConstr "in_u" in_u in + let x = whd_beta (exchange_hd_prod (lift prof by_t) in_u) in + let _ = prNamedConstr "xx " x in + let _ = prstr "\n\n" in + x + else + map_constr_with_binders succ (fun i u -> substit_red i t by_t u) + prof in_u + +(* [exchange_reli_arrayi t=(reli x y ...) tarr (d,f)] exchange each + reli by tarr.(f-i). *) +let exchange_reli_arrayi tarr (d,f) t = + let hd,args= destApplication t in + let i = destRel hd in + whd_beta (mkApp (tarr.(f-i) ,args)) + +let exchange_reli_arrayi_L tarr (d,f) = + List.map (exchange_reli_arrayi tarr (d,f)) + + +(* expand all letins in a term, before building the principle. *) +let rec expand_letins mimick = + match kind_of_term mimick with + | LetIn(nme,cstr1, typ, cstr) -> + let cstr' = substitterm 0 (mkRel 1) (lift 1 cstr1) cstr in + expand_letins (pop cstr') + | x -> map_constr expand_letins mimick + + +(* Valeur d'une constante, or identity *) +let def_of_const t = + match kind_of_term t with + | Const sp -> + (try + match Global.lookup_constant sp with + {const_body=Some c} -> force c + |_ -> assert false + with _ -> assert false) + | _ -> t + +(* nom d'une constante. Must be a constante. x*) +let name_of_const t = + match (kind_of_term t) with + Const cst -> Names.string_of_label (Names.label cst) + |_ -> assert false + ;; + + +(*i +*** Local Variables: +*** compile-command: "make -k tacinvutils.cmo" +*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v" +*** End: +i*) + diff --git a/contrib/funind/tacinvutils.mli b/contrib/funind/tacinvutils.mli new file mode 100644 index 00000000..2fc37b2c --- /dev/null +++ b/contrib/funind/tacinvutils.mli @@ -0,0 +1,79 @@ +(* tacinvutils.ml *) +(*s utilities *) + +(*i*) +open Termops +open Equality +open Names +open Pp +open Tacmach +open Proof_type +open Tacinterp +open Tactics +open Tacticals +open Term +open Util +open Printer +open Reductionops +open Inductiveops +open Coqlib +open Refine +open Evd +(*i*) + +(* printing debugging *) +val prconstr: constr -> unit +val prlistconstr: constr list -> unit +val prNamedConstr:string -> constr -> unit +val prNamedLConstr:string -> constr list -> unit +val prstr: string -> unit + + +val mknewmeta: unit -> constr +val mknewexist: unit -> existential +val resetmeta: unit -> unit (* safe *) +val resetexist: unit -> unit (* be careful with this one *) +val mkevarmap_from_listex: (Term.existential * Term.types) list -> evar_map +val mkEq: types -> constr -> constr -> constr +(* let mkEq typ c1 c2 = mkApp (build_coq_eq_data.eq(),[| typ; c1; c2|]) *) +val mkRefl: types -> constr -> constr +val buildrefl_from_eqs: constr list -> constr list +(* typ c1 = mkApp ((constant ["Coq"; "Init"; "Logic"] "refl_equal"), [| typ; c1|]) *) + +val nth_dep_constructor: constr -> int -> (constr*int) + +val prod_it_lift: (name*constr) list -> constr -> constr +val prod_it_anonym_lift: constr -> constr list -> constr +val lam_it_anonymous: constr -> constr list -> constr +val lift1L: (constr list) -> constr list +val popn: int -> constr -> constr +val lambda_id: constr -> constr -> constr -> constr +val prod_id: constr -> constr -> constr -> constr + + +val name_of_string : string -> name +val newname_append: name -> string -> name + +val apply_eqtrpl: constr*(constr*constr*constr) -> constr -> constr +val substitterm: int -> constr -> constr -> constr -> constr +val apply_leqtrpl_t: + constr -> (constr*(constr*constr*constr)) list -> constr +val apply_eq_leqtrpl: + (constr*(constr*constr*constr)) list -> constr -> (constr*(constr*constr*constr)) list +(* val apply_leq_lt: constr list -> constr list -> constr list *) + +val hdMatchSub: constr -> constr -> constr list +val hdMatchSub_cpl: constr -> int*int -> constr list +val exchange_hd_prod: constr -> constr -> constr +val exchange_reli_arrayi_L: constr array -> int*int -> constr list -> constr list +val substit_red: int -> constr -> constr -> constr -> constr +val expand_letins: constr -> constr + +val def_of_const: constr -> constr +val name_of_const: constr -> string +(*i + Local Variables: + compile-command: "make -k tacinvutils.cmi" + End: +i*) + |