summaryrefslogtreecommitdiff
path: root/contrib/funind/functional_principles_proofs.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/funind/functional_principles_proofs.ml')
-rw-r--r--contrib/funind/functional_principles_proofs.ml1658
1 files changed, 0 insertions, 1658 deletions
diff --git a/contrib/funind/functional_principles_proofs.ml b/contrib/funind/functional_principles_proofs.ml
deleted file mode 100644
index b13bea9d..00000000
--- a/contrib/funind/functional_principles_proofs.ml
+++ /dev/null
@@ -1,1658 +0,0 @@
-open Printer
-open Util
-open Term
-open Termops
-open Names
-open Declarations
-open Pp
-open Entries
-open Hiddentac
-open Evd
-open Tacmach
-open Proof_type
-open Tacticals
-open Tactics
-open Indfun_common
-open Libnames
-
-let msgnl = Pp.msgnl
-
-
-let observe strm =
- if do_observe ()
- then Pp.msgnl strm
- else ()
-
-let observennl strm =
- if do_observe ()
- then begin Pp.msg strm;Pp.pp_flush () end
- else ()
-
-
-
-
-let do_observe_tac s tac g =
- try let v = tac g in (* msgnl (goal ++ fnl () ++ (str s)++(str " ")++(str "finished")); *) v
- with e ->
- let goal = begin try (Printer.pr_goal (sig_it g)) with _ -> assert false end in
- msgnl (str "observation "++ s++str " raised exception " ++
- Cerrors.explain_exn e ++ str " on goal " ++ goal );
- raise e;;
-
-let observe_tac_stream s tac g =
- if do_observe ()
- then do_observe_tac s tac g
- else tac g
-
-let observe_tac s tac g = observe_tac_stream (str s) tac g
-
-(* let tclTRYD tac = *)
-(* if !Flags.debug || do_observe () *)
-(* then (fun g -> try (\* do_observe_tac "" *\)tac g with _ -> tclIDTAC g) *)
-(* else tac *)
-
-
-let list_chop ?(msg="") n l =
- try
- list_chop n l
- with Failure (msg') ->
- failwith (msg ^ msg')
-
-
-let make_refl_eq type_of_t t =
- let refl_equal_term = Lazy.force refl_equal in
- mkApp(refl_equal_term,[|type_of_t;t|])
-
-
-type pte_info =
- {
- proving_tac : (identifier list -> Tacmach.tactic);
- is_valid : constr -> bool
- }
-
-type ptes_info = pte_info Idmap.t
-
-type 'a dynamic_info =
- {
- nb_rec_hyps : int;
- rec_hyps : identifier list ;
- eq_hyps : identifier list;
- info : 'a
- }
-
-type body_info = constr dynamic_info
-
-
-let finish_proof dynamic_infos g =
- observe_tac "finish"
- ( h_assumption)
- g
-
-
-let refine c =
- Tacmach.refine_no_check c
-
-let thin l =
- Tacmach.thin_no_check l
-
-
-let cut_replacing id t tac :tactic=
- tclTHENS (cut t)
- [ tclTHEN (thin_no_check [id]) (introduction_no_check id);
- tac
- ]
-
-let intro_erasing id = tclTHEN (thin [id]) (introduction id)
-
-
-
-let rec_hyp_id = id_of_string "rec_hyp"
-
-let is_trivial_eq t =
- match kind_of_term t with
- | App(f,[|_;t1;t2|]) when eq_constr f (Lazy.force eq) ->
- eq_constr t1 t2
- | _ -> false
-
-
-let rec incompatible_constructor_terms t1 t2 =
- let c1,arg1 = decompose_app t1
- and c2,arg2 = decompose_app t2
- in
- (not (eq_constr t1 t2)) &&
- isConstruct c1 && isConstruct c2 &&
- (
- not (eq_constr c1 c2) ||
- List.exists2 incompatible_constructor_terms arg1 arg2
- )
-
-let is_incompatible_eq t =
- match kind_of_term t with
- | App(f,[|_;t1;t2|]) when eq_constr f (Lazy.force eq) ->
- incompatible_constructor_terms t1 t2
- | _ -> false
-
-let change_hyp_with_using msg hyp_id t tac : tactic =
- fun g ->
- let prov_id = pf_get_new_id hyp_id g in
- tclTHENS
- ((* observe_tac msg *) (assert_by (Name prov_id) t (tclCOMPLETE tac)))
- [tclTHENLIST
- [
- (* observe_tac "change_hyp_with_using thin" *) (thin [hyp_id]);
- (* observe_tac "change_hyp_with_using rename " *) (h_rename [prov_id,hyp_id])
- ]] g
-
-exception TOREMOVE
-
-
-let prove_trivial_eq h_id context (type_of_term,term) =
- let nb_intros = List.length context in
- tclTHENLIST
- [
- tclDO nb_intros intro; (* introducing context *)
- (fun g ->
- let context_hyps =
- fst (list_chop ~msg:"prove_trivial_eq : " nb_intros (pf_ids_of_hyps g))
- in
- let context_hyps' =
- (mkApp(Lazy.force refl_equal,[|type_of_term;term|]))::
- (List.map mkVar context_hyps)
- in
- let to_refine = applist(mkVar h_id,List.rev context_hyps') in
- refine to_refine g
- )
- ]
-
-
-let isAppConstruct t =
- if isApp t
- then isConstruct (fst (destApp t))
- else false
-
-let nf_betaiotazeta = (* Reductionops.local_strong Reductionops.whd_betaiotazeta *)
- let clos_norm_flags flgs env sigma t =
- Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in
- clos_norm_flags Closure.betaiotazeta Environ.empty_env Evd.empty
-
-
-let change_eq env sigma hyp_id (context:Sign.rel_context) x t end_of_type =
- let nochange msg =
- begin
-(* observe (str ("Not treating ( "^msg^" )") ++ pr_lconstr t ); *)
- failwith "NoChange";
- end
- in
- let eq_constr = Reductionops.is_conv env sigma in
- if not (noccurn 1 end_of_type)
- then nochange "dependent"; (* if end_of_type depends on this term we don't touch it *)
- if not (isApp t) then nochange "not an equality";
- let f_eq,args = destApp t in
- if not (eq_constr f_eq (Lazy.force eq)) then nochange "not an equality";
- let t1 = args.(1)
- and t2 = args.(2)
- and t1_typ = args.(0)
- in
- if not (closed0 t1) then nochange "not a closed lhs";
- let rec compute_substitution sub t1 t2 =
-(* observe (str "compute_substitution : " ++ pr_lconstr t1 ++ str " === " ++ pr_lconstr t2); *)
- if isRel t2
- then
- let t2 = destRel t2 in
- begin
- try
- let t1' = Intmap.find t2 sub in
- if not (eq_constr t1 t1') then nochange "twice bound variable";
- sub
- with Not_found ->
- assert (closed0 t1);
- Intmap.add t2 t1 sub
- end
- else if isAppConstruct t1 && isAppConstruct t2
- then
- begin
- let c1,args1 = destApp t1
- and c2,args2 = destApp t2
- in
- if not (eq_constr c1 c2) then anomaly "deconstructing equation";
- array_fold_left2 compute_substitution sub args1 args2
- end
- else
- if (eq_constr t1 t2) then sub else nochange "cannot solve"
- in
- let sub = compute_substitution Intmap.empty t1 t2 in
- let end_of_type_with_pop = pop end_of_type in (*the equation will be removed *)
- let new_end_of_type =
- (* Ugly hack to prevent Map.fold order change between ocaml-3.08.3 and ocaml-3.08.4
- Can be safely replaced by the next comment for Ocaml >= 3.08.4
- *)
- let sub' = Intmap.fold (fun i t acc -> (i,t)::acc) sub [] in
- let sub'' = List.sort (fun (x,_) (y,_) -> Pervasives.compare x y) sub' in
- List.fold_left (fun end_of_type (i,t) -> lift 1 (substnl [t] (i-1) end_of_type))
- end_of_type_with_pop
- sub''
- in
- let old_context_length = List.length context + 1 in
- let witness_fun =
- mkLetIn(Anonymous,make_refl_eq t1_typ t1,t,
- mkApp(mkVar hyp_id,Array.init old_context_length (fun i -> mkRel (old_context_length - i)))
- )
- in
- let new_type_of_hyp,ctxt_size,witness_fun =
- list_fold_left_i
- (fun i (end_of_type,ctxt_size,witness_fun) ((x',b',t') as decl) ->
- try
- let witness = Intmap.find i sub in
- if b' <> None then anomaly "can not redefine a rel!";
- (pop end_of_type,ctxt_size,mkLetIn(x',witness,t',witness_fun))
- with Not_found ->
- (mkProd_or_LetIn decl end_of_type, ctxt_size + 1, mkLambda_or_LetIn decl witness_fun)
- )
- 1
- (new_end_of_type,0,witness_fun)
- context
- in
- let new_type_of_hyp =
- Reductionops.nf_betaiota Evd.empty new_type_of_hyp in
- let new_ctxt,new_end_of_type =
- Sign.decompose_prod_n_assum ctxt_size new_type_of_hyp
- in
- let prove_new_hyp : tactic =
- tclTHEN
- (tclDO ctxt_size intro)
- (fun g ->
- let all_ids = pf_ids_of_hyps g in
- let new_ids,_ = list_chop ctxt_size all_ids in
- let to_refine = applist(witness_fun,List.rev_map mkVar new_ids) in
- refine to_refine g
- )
- in
- let simpl_eq_tac =
- change_hyp_with_using "prove_pattern_simplification" hyp_id new_type_of_hyp prove_new_hyp
- in
-(* observe (str "In " ++ Ppconstr.pr_id hyp_id ++ *)
-(* str "removing an equation " ++ fnl ()++ *)
-(* str "old_typ_of_hyp :=" ++ *)
-(* Printer.pr_lconstr_env *)
-(* env *)
-(* (it_mkProd_or_LetIn ~init:end_of_type ((x,None,t)::context)) *)
-(* ++ fnl () ++ *)
-(* str "new_typ_of_hyp := "++ *)
-(* Printer.pr_lconstr_env env new_type_of_hyp ++ fnl () *)
-(* ++ str "old context := " ++ pr_rel_context env context ++ fnl () *)
-(* ++ str "new context := " ++ pr_rel_context env new_ctxt ++ fnl () *)
-(* ++ str "old type := " ++ pr_lconstr end_of_type ++ fnl () *)
-(* ++ str "new type := " ++ pr_lconstr new_end_of_type ++ fnl () *)
-(* ); *)
- new_ctxt,new_end_of_type,simpl_eq_tac
-
-
-let is_property ptes_info t_x full_type_of_hyp =
- if isApp t_x
- then
- let pte,args = destApp t_x in
- if isVar pte && array_for_all closed0 args
- then
- try
- let info = Idmap.find (destVar pte) ptes_info in
- info.is_valid full_type_of_hyp
- with Not_found -> false
- else false
- else false
-
-let isLetIn t =
- match kind_of_term t with
- | LetIn _ -> true
- | _ -> false
-
-
-let h_reduce_with_zeta =
- h_reduce
- (Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
- })
-
-
-
-let rewrite_until_var arg_num eq_ids : tactic =
- (* tests if the declares recursive argument is neither a Constructor nor
- an applied Constructor since such a form for the recursive argument
- will break the Guard when trying to save the Lemma.
- *)
- let test_var g =
- let _,args = destApp (pf_concl g) in
- not ((isConstruct args.(arg_num)) || isAppConstruct args.(arg_num))
- in
- let rec do_rewrite eq_ids g =
- if test_var g
- then tclIDTAC g
- else
- match eq_ids with
- | [] -> anomaly "Cannot find a way to prove recursive property";
- | eq_id::eq_ids ->
- tclTHEN
- (tclTRY (Equality.rewriteRL (mkVar eq_id)))
- (do_rewrite eq_ids)
- g
- in
- do_rewrite eq_ids
-
-
-let rec_pte_id = id_of_string "Hrec"
-let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
- let coq_False = Coqlib.build_coq_False () in
- let coq_True = Coqlib.build_coq_True () in
- let coq_I = Coqlib.build_coq_I () in
- let rec scan_type context type_of_hyp : tactic =
- if isLetIn type_of_hyp then
- let real_type_of_hyp = it_mkProd_or_LetIn ~init:type_of_hyp context in
- let reduced_type_of_hyp = nf_betaiotazeta real_type_of_hyp in
- (* length of context didn't change ? *)
- let new_context,new_typ_of_hyp =
- Sign.decompose_prod_n_assum (List.length context) reduced_type_of_hyp
- in
- tclTHENLIST
- [
- h_reduce_with_zeta
- (Tacticals.onHyp hyp_id)
- ;
- scan_type new_context new_typ_of_hyp
-
- ]
- else if isProd type_of_hyp
- then
- begin
- let (x,t_x,t') = destProd type_of_hyp in
- let actual_real_type_of_hyp = it_mkProd_or_LetIn ~init:t' context in
- if is_property ptes_infos t_x actual_real_type_of_hyp then
- begin
- let pte,pte_args = (destApp t_x) in
- let (* fix_info *) prove_rec_hyp = (Idmap.find (destVar pte) ptes_infos).proving_tac in
- let popped_t' = pop t' in
- let real_type_of_hyp = it_mkProd_or_LetIn ~init:popped_t' context in
- let prove_new_type_of_hyp =
- let context_length = List.length context in
- tclTHENLIST
- [
- tclDO context_length intro;
- (fun g ->
- let context_hyps_ids =
- fst (list_chop ~msg:"rec hyp : context_hyps"
- context_length (pf_ids_of_hyps g))
- in
- let rec_pte_id = pf_get_new_id rec_pte_id g in
- let to_refine =
- applist(mkVar hyp_id,
- List.rev_map mkVar (rec_pte_id::context_hyps_ids)
- )
- in
-(* observe_tac "rec hyp " *)
- (tclTHENS
- (assert_tac (Name rec_pte_id) t_x)
- [
- (* observe_tac "prove rec hyp" *) (prove_rec_hyp eq_hyps);
-(* observe_tac "prove rec hyp" *)
- (refine to_refine)
- ])
- g
- )
- ]
- in
- tclTHENLIST
- [
-(* observe_tac "hyp rec" *)
- (change_hyp_with_using "rec_hyp_tac" hyp_id real_type_of_hyp prove_new_type_of_hyp);
- scan_type context popped_t'
- ]
- end
- else if eq_constr t_x coq_False then
- begin
-(* observe (str "Removing : "++ Ppconstr.pr_id hyp_id++ *)
-(* str " since it has False in its preconds " *)
-(* ); *)
- raise TOREMOVE; (* False -> .. useless *)
- end
- else if is_incompatible_eq t_x then raise TOREMOVE (* t_x := C1 ... = C2 ... *)
- else if eq_constr t_x coq_True (* Trivial => we remove this precons *)
- then
-(* observe (str "In "++Ppconstr.pr_id hyp_id++ *)
-(* str " removing useless precond True" *)
-(* ); *)
- let popped_t' = pop t' in
- let real_type_of_hyp =
- it_mkProd_or_LetIn ~init:popped_t' context
- in
- let prove_trivial =
- let nb_intro = List.length context in
- tclTHENLIST [
- tclDO nb_intro intro;
- (fun g ->
- let context_hyps =
- fst (list_chop ~msg:"removing True : context_hyps "nb_intro (pf_ids_of_hyps g))
- in
- let to_refine =
- applist (mkVar hyp_id,
- List.rev (coq_I::List.map mkVar context_hyps)
- )
- in
- refine to_refine g
- )
- ]
- in
- tclTHENLIST[
- change_hyp_with_using "prove_trivial" hyp_id real_type_of_hyp
- ((* observe_tac "prove_trivial" *) prove_trivial);
- scan_type context popped_t'
- ]
- else if is_trivial_eq t_x
- then (* t_x := t = t => we remove this precond *)
- let popped_t' = pop t' in
- let real_type_of_hyp =
- it_mkProd_or_LetIn ~init:popped_t' context
- in
- let _,args = destApp t_x in
- tclTHENLIST
- [
- change_hyp_with_using
- "prove_trivial_eq"
- hyp_id
- real_type_of_hyp
- ((* observe_tac "prove_trivial_eq" *) (prove_trivial_eq hyp_id context (args.(0),args.(1))));
- scan_type context popped_t'
- ]
- else
- begin
- try
- let new_context,new_t',tac = change_eq env sigma hyp_id context x t_x t' in
- tclTHEN
- tac
- (scan_type new_context new_t')
- with Failure "NoChange" ->
- (* Last thing todo : push the rel in the context and continue *)
- scan_type ((x,None,t_x)::context) t'
- end
- end
- else
- tclIDTAC
- in
- try
- scan_type [] (Typing.type_of env sigma (mkVar hyp_id)), [hyp_id]
- with TOREMOVE ->
- thin [hyp_id],[]
-
-
-let clean_goal_with_heq ptes_infos continue_tac dyn_infos =
- fun g ->
- let env = pf_env g
- and sigma = project g
- in
- let tac,new_hyps =
- List.fold_left (
- fun (hyps_tac,new_hyps) hyp_id ->
- let hyp_tac,new_hyp =
- clean_hyp_with_heq ptes_infos dyn_infos.eq_hyps hyp_id env sigma
- in
- (tclTHEN hyp_tac hyps_tac),new_hyp@new_hyps
- )
- (tclIDTAC,[])
- dyn_infos.rec_hyps
- in
- let new_infos =
- { dyn_infos with
- rec_hyps = new_hyps;
- nb_rec_hyps = List.length new_hyps
- }
- in
- tclTHENLIST
- [
- tac ;
- (* observe_tac "clean_hyp_with_heq continue" *) (continue_tac new_infos)
- ]
- g
-
-let heq_id = id_of_string "Heq"
-
-let treat_new_case ptes_infos nb_prod continue_tac term dyn_infos =
- fun g ->
- let heq_id = pf_get_new_id heq_id g in
- let nb_first_intro = nb_prod - 1 - dyn_infos.nb_rec_hyps in
- tclTHENLIST
- [
- (* We first introduce the variables *)
- tclDO nb_first_intro (intro_avoiding dyn_infos.rec_hyps);
- (* Then the equation itself *)
- introduction_no_check heq_id;
- (* Then the new hypothesis *)
- tclMAP introduction_no_check dyn_infos.rec_hyps;
- (* observe_tac "after_introduction" *)(fun g' ->
- (* We get infos on the equations introduced*)
- let new_term_value_eq = pf_type_of g' (mkVar heq_id) in
- (* compute the new value of the body *)
- let new_term_value =
- match kind_of_term new_term_value_eq with
- | App(f,[| _;_;args2 |]) -> args2
- | _ ->
- observe (str "cannot compute new term value : " ++ pr_gls g' ++ fnl () ++ str "last hyp is" ++
- pr_lconstr_env (pf_env g') new_term_value_eq
- );
- anomaly "cannot compute new term value"
- in
- let fun_body =
- mkLambda(Anonymous,
- pf_type_of g' term,
- replace_term term (mkRel 1) dyn_infos.info
- )
- in
- let new_body = pf_nf_betaiota g' (mkApp(fun_body,[| new_term_value |])) in
- let new_infos =
- {dyn_infos with
- info = new_body;
- eq_hyps = heq_id::dyn_infos.eq_hyps
- }
- in
- clean_goal_with_heq ptes_infos continue_tac new_infos g'
- )
- ]
- g
-
-
-let my_orelse tac1 tac2 g =
- try
- tac1 g
- with e ->
-(* observe (str "using snd tac since : " ++ Cerrors.explain_exn e); *)
- tac2 g
-
-let instanciate_hyps_with_args (do_prove:identifier list -> tactic) hyps args_id =
- let args = Array.of_list (List.map mkVar args_id) in
- let instanciate_one_hyp hid =
- my_orelse
- ( (* we instanciate the hyp if possible *)
- fun g ->
- let prov_hid = pf_get_new_id hid g in
- tclTHENLIST[
- pose_proof (Name prov_hid) (mkApp(mkVar hid,args));
- thin [hid];
- h_rename [prov_hid,hid]
- ] g
- )
- ( (*
- if not then we are in a mutual function block
- and this hyp is a recursive hyp on an other function.
-
- We are not supposed to use it while proving this
- principle so that we can trash it
-
- *)
- (fun g ->
-(* observe (str "Instanciation: removing hyp " ++ Ppconstr.pr_id hid); *)
- thin [hid] g
- )
- )
- in
- if args_id = []
- then
- tclTHENLIST [
- tclMAP (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id)) hyps;
- do_prove hyps
- ]
- else
- tclTHENLIST
- [
- tclMAP (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id)) hyps;
- tclMAP instanciate_one_hyp hyps;
- (fun g ->
- let all_g_hyps_id =
- List.fold_right Idset.add (pf_ids_of_hyps g) Idset.empty
- in
- let remaining_hyps =
- List.filter (fun id -> Idset.mem id all_g_hyps_id) hyps
- in
- do_prove remaining_hyps g
- )
- ]
-
-let build_proof
- (interactive_proof:bool)
- (fnames:constant list)
- ptes_infos
- dyn_infos
- : tactic =
- let rec build_proof_aux do_finalize dyn_infos : tactic =
- fun g ->
-(* observe (str "proving on " ++ Printer.pr_lconstr_env (pf_env g) term);*)
- match kind_of_term dyn_infos.info with
- | Case(ci,ct,t,cb) ->
- let do_finalize_t dyn_info' =
- fun g ->
- let t = dyn_info'.info in
- let dyn_infos = {dyn_info' with info =
- mkCase(ci,ct,t,cb)} in
- let g_nb_prod = nb_prod (pf_concl g) in
- let type_of_term = pf_type_of g t in
- let term_eq =
- make_refl_eq type_of_term t
- in
- tclTHENSEQ
- [
- h_generalize (term_eq::(List.map mkVar dyn_infos.rec_hyps));
- thin dyn_infos.rec_hyps;
- pattern_option [(false,[1]),t] None;
- h_simplest_case t;
- (fun g' ->
- let g'_nb_prod = nb_prod (pf_concl g') in
- let nb_instanciate_partial = g'_nb_prod - g_nb_prod in
- observe_tac "treat_new_case"
- (treat_new_case
- ptes_infos
- nb_instanciate_partial
- (build_proof do_finalize)
- t
- dyn_infos)
- g'
- )
-
- ] g
- in
- build_proof do_finalize_t {dyn_infos with info = t} g
- | Lambda(n,t,b) ->
- begin
- match kind_of_term( pf_concl g) with
- | Prod _ ->
- tclTHEN
- intro
- (fun g' ->
- let (id,_,_) = pf_last_hyp g' in
- let new_term =
- pf_nf_betaiota g'
- (mkApp(dyn_infos.info,[|mkVar id|]))
- in
- let new_infos = {dyn_infos with info = new_term} in
- let do_prove new_hyps =
- build_proof do_finalize
- {new_infos with
- rec_hyps = new_hyps;
- nb_rec_hyps = List.length new_hyps
- }
- in
-(* observe_tac "Lambda" *) (instanciate_hyps_with_args do_prove new_infos.rec_hyps [id]) g'
- (* build_proof do_finalize new_infos g' *)
- ) g
- | _ ->
- do_finalize dyn_infos g
- end
- | Cast(t,_,_) ->
- build_proof do_finalize {dyn_infos with info = t} g
- | Const _ | Var _ | Meta _ | Evar _ | Sort _ | Construct _ | Ind _ ->
- do_finalize dyn_infos g
- | App(_,_) ->
- let f,args = decompose_app dyn_infos.info in
- begin
- match kind_of_term f with
- | App _ -> assert false (* we have collected all the app in decompose_app *)
- | Var _ | Construct _ | Rel _ | Evar _ | Meta _ | Ind _ | Sort _ | Prod _ ->
- let new_infos =
- { dyn_infos with
- info = (f,args)
- }
- in
- build_proof_args do_finalize new_infos g
- | Const c when not (List.mem c fnames) ->
- let new_infos =
- { dyn_infos with
- info = (f,args)
- }
- in
-(* Pp.msgnl (str "proving in " ++ pr_lconstr_env (pf_env g) dyn_infos.info); *)
- build_proof_args do_finalize new_infos g
- | Const _ ->
- do_finalize dyn_infos g
- | Lambda _ ->
- let new_term =
- Reductionops.nf_beta Evd.empty dyn_infos.info in
- build_proof do_finalize {dyn_infos with info = new_term}
- g
- | LetIn _ ->
- let new_infos =
- { dyn_infos with info = nf_betaiotazeta dyn_infos.info }
- in
-
- tclTHENLIST
- [tclMAP
- (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id))
- dyn_infos.rec_hyps;
- h_reduce_with_zeta Tacticals.onConcl;
- build_proof do_finalize new_infos
- ]
- g
- | Cast(b,_,_) ->
- build_proof do_finalize {dyn_infos with info = b } g
- | Case _ | Fix _ | CoFix _ ->
- let new_finalize dyn_infos =
- let new_infos =
- { dyn_infos with
- info = dyn_infos.info,args
- }
- in
- build_proof_args do_finalize new_infos
- in
- build_proof new_finalize {dyn_infos with info = f } g
- end
- | Fix _ | CoFix _ ->
- error ( "Anonymous local (co)fixpoints are not handled yet")
-
- | Prod _ -> error "Prod"
- | LetIn _ ->
- let new_infos =
- { dyn_infos with
- info = nf_betaiotazeta dyn_infos.info
- }
- in
-
- tclTHENLIST
- [tclMAP
- (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id))
- dyn_infos.rec_hyps;
- h_reduce_with_zeta Tacticals.onConcl;
- build_proof do_finalize new_infos
- ] g
- | Rel _ -> anomaly "Free var in goal conclusion !"
- and build_proof do_finalize dyn_infos g =
-(* observe (str "proving with "++Printer.pr_lconstr dyn_infos.info++ str " on goal " ++ pr_gls g); *)
- observe_tac "build_proof" (build_proof_aux do_finalize dyn_infos) g
- and build_proof_args do_finalize dyn_infos (* f_args' args *) :tactic =
- fun g ->
- let (f_args',args) = dyn_infos.info in
- let tac : tactic =
- fun g ->
- match args with
- | [] ->
- do_finalize {dyn_infos with info = f_args'} g
- | arg::args ->
-(* observe (str "build_proof_args with arg := "++ pr_lconstr_env (pf_env g) arg++ *)
-(* fnl () ++ *)
-(* pr_goal (Tacmach.sig_it g) *)
-(* ); *)
- let do_finalize dyn_infos =
- let new_arg = dyn_infos.info in
- (* tclTRYD *)
- (build_proof_args
- do_finalize
- {dyn_infos with info = (mkApp(f_args',[|new_arg|])), args}
- )
- in
- build_proof do_finalize
- {dyn_infos with info = arg }
- g
- in
- (* observe_tac "build_proof_args" *) (tac ) g
- in
- let do_finish_proof dyn_infos =
- (* tclTRYD *) (clean_goal_with_heq
- ptes_infos
- finish_proof dyn_infos)
- in
- (* observe_tac "build_proof" *)
- (build_proof (clean_goal_with_heq ptes_infos do_finish_proof) dyn_infos)
-
-
-
-
-
-
-
-
-
-
-
-
-(* Proof of principles from structural functions *)
-let is_pte_type t =
- isSort (snd (decompose_prod t))
-
-let is_pte (_,_,t) = is_pte_type t
-
-
-
-
-type static_fix_info =
- {
- idx : int;
- name : identifier;
- types : types;
- offset : int;
- nb_realargs : int;
- body_with_param : constr;
- num_in_block : int
- }
-
-
-
-let prove_rec_hyp_for_struct fix_info =
- (fun eq_hyps -> tclTHEN
- (rewrite_until_var (fix_info.idx) eq_hyps)
- (fun g ->
- let _,pte_args = destApp (pf_concl g) in
- let rec_hyp_proof =
- mkApp(mkVar fix_info.name,array_get_start pte_args)
- in
- refine rec_hyp_proof g
- ))
-
-let prove_rec_hyp fix_info =
- { proving_tac = prove_rec_hyp_for_struct fix_info
- ;
- is_valid = fun _ -> true
- }
-
-
-exception Not_Rec
-
-let generalize_non_dep hyp g =
-(* observe (str "rec id := " ++ Ppconstr.pr_id hyp); *)
- let hyps = [hyp] in
- let env = Global.env () in
- let hyp_typ = pf_type_of g (mkVar hyp) in
- let to_revert,_ =
- Environ.fold_named_context_reverse (fun (clear,keep) (hyp,_,_ as decl) ->
- if List.mem hyp hyps
- or List.exists (occur_var_in_decl env hyp) keep
- or occur_var env hyp hyp_typ
- or Termops.is_section_variable hyp (* should be dangerous *)
- then (clear,decl::keep)
- else (hyp::clear,keep))
- ~init:([],[]) (pf_env g)
- in
-(* observe (str "to_revert := " ++ prlist_with_sep spc Ppconstr.pr_id to_revert); *)
- tclTHEN
- ((* observe_tac "h_generalize" *) (h_generalize (List.map mkVar to_revert) ))
- ((* observe_tac "thin" *) (thin to_revert))
- g
-
-let id_of_decl (na,_,_) = (Nameops.out_name na)
-let var_of_decl decl = mkVar (id_of_decl decl)
-let revert idl =
- tclTHEN
- (generalize (List.map mkVar idl))
- (thin idl)
-
-let generate_equation_lemma fnames f fun_num nb_params nb_args rec_args_num =
-(* observe (str "nb_args := " ++ str (string_of_int nb_args)); *)
-(* observe (str "nb_params := " ++ str (string_of_int nb_params)); *)
-(* observe (str "rec_args_num := " ++ str (string_of_int (rec_args_num + 1) )); *)
- let f_def = Global.lookup_constant (destConst f) in
- let eq_lhs = mkApp(f,Array.init (nb_params + nb_args) (fun i -> mkRel(nb_params + nb_args - i))) in
- let f_body =
- force (Option.get f_def.const_body)
- in
- let params,f_body_with_params = decompose_lam_n nb_params f_body in
- let (_,num),(_,_,bodies) = destFix f_body_with_params in
- let fnames_with_params =
- let params = Array.init nb_params (fun i -> mkRel(nb_params - i)) in
- let fnames = List.rev (Array.to_list (Array.map (fun f -> mkApp(f,params)) fnames)) in
- fnames
- in
-(* observe (str "fnames_with_params " ++ prlist_with_sep fnl pr_lconstr fnames_with_params); *)
-(* observe (str "body " ++ pr_lconstr bodies.(num)); *)
- let f_body_with_params_and_other_fun = substl fnames_with_params bodies.(num) in
-(* observe (str "f_body_with_params_and_other_fun " ++ pr_lconstr f_body_with_params_and_other_fun); *)
- let eq_rhs = nf_betaiotazeta (mkApp(compose_lam params f_body_with_params_and_other_fun,Array.init (nb_params + nb_args) (fun i -> mkRel(nb_params + nb_args - i)))) in
-(* observe (str "eq_rhs " ++ pr_lconstr eq_rhs); *)
- let type_ctxt,type_of_f = Sign.decompose_prod_n_assum (nb_params + nb_args)
- (Typeops.type_of_constant_type (Global.env()) f_def.const_type) in
- let eqn = mkApp(Lazy.force eq,[|type_of_f;eq_lhs;eq_rhs|]) in
- let lemma_type = it_mkProd_or_LetIn ~init:eqn type_ctxt in
- let f_id = id_of_label (con_label (destConst f)) in
- let prove_replacement =
- tclTHENSEQ
- [
- tclDO (nb_params + rec_args_num + 1) intro;
- (* observe_tac "" *) (fun g ->
- let rec_id = pf_nth_hyp_id g 1 in
- tclTHENSEQ
- [(* observe_tac "generalize_non_dep in generate_equation_lemma" *) (generalize_non_dep rec_id);
- (* observe_tac "h_case" *) (h_case false (mkVar rec_id,Rawterm.NoBindings));
- intros_reflexivity] g
- )
- ]
- in
- Command.start_proof
- (*i The next call to mk_equation_id is valid since we are constructing the lemma
- Ensures by: obvious
- i*)
- (mk_equation_id f_id)
- (Decl_kinds.Global,(Decl_kinds.Proof Decl_kinds.Theorem))
- lemma_type
- (fun _ _ -> ());
- Pfedit.by (prove_replacement);
- Command.save_named false
-
-
-
-
-let do_replace params rec_arg_num rev_args_id f fun_num all_funs g =
- let equation_lemma =
- try
- let finfos = find_Function_infos (destConst f) in
- mkConst (Option.get finfos.equation_lemma)
- with (Not_found | Option.IsNone as e) ->
- let f_id = id_of_label (con_label (destConst f)) in
- (*i The next call to mk_equation_id is valid since we will construct the lemma
- Ensures by: obvious
- i*)
- let equation_lemma_id = (mk_equation_id f_id) in
- generate_equation_lemma all_funs f fun_num (List.length params) (List.length rev_args_id) rec_arg_num;
- let _ =
- match e with
- | Option.IsNone ->
- let finfos = find_Function_infos (destConst f) in
- update_Function
- {finfos with
- equation_lemma = Some (match Nametab.locate (make_short_qualid equation_lemma_id) with
- ConstRef c -> c
- | _ -> Util.anomaly "Not a constant"
- )
- }
- | _ -> ()
-
- in
- Tacinterp.constr_of_id (pf_env g) equation_lemma_id
- in
- let nb_intro_to_do = nb_prod (pf_concl g) in
- tclTHEN
- (tclDO nb_intro_to_do intro)
- (
- fun g' ->
- let just_introduced = nLastHyps nb_intro_to_do g' in
- let just_introduced_id = List.map (fun (id,_,_) -> id) just_introduced in
- tclTHEN (Equality.rewriteLR equation_lemma) (revert just_introduced_id) g'
- )
- g
-
-let prove_princ_for_struct interactive_proof fun_num fnames all_funs _nparams : tactic =
- fun g ->
- let princ_type = pf_concl g in
- let princ_info = compute_elim_sig princ_type in
- let fresh_id =
- let avoid = ref (pf_ids_of_hyps g) in
- (fun na ->
- let new_id =
- match na with
- Name id -> fresh_id !avoid (string_of_id id)
- | Anonymous -> fresh_id !avoid "H"
- in
- avoid := new_id :: !avoid;
- (Name new_id)
- )
- in
- let fresh_decl =
- (fun (na,b,t) ->
- (fresh_id na,b,t)
- )
- in
- let princ_info : elim_scheme =
- { princ_info with
- params = List.map fresh_decl princ_info.params;
- predicates = List.map fresh_decl princ_info.predicates;
- branches = List.map fresh_decl princ_info.branches;
- args = List.map fresh_decl princ_info.args
- }
- in
- let get_body const =
- match (Global.lookup_constant const ).const_body with
- | Some b ->
- let body = force b in
- Tacred.cbv_norm_flags
- (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])
- (Global.env ())
- (Evd.empty)
- body
- | None -> error ( "Cannot define a principle over an axiom ")
- in
- let fbody = get_body fnames.(fun_num) in
- let f_ctxt,f_body = decompose_lam fbody in
- let f_ctxt_length = List.length f_ctxt in
- let diff_params = princ_info.nparams - f_ctxt_length in
- let full_params,princ_params,fbody_with_full_params =
- if diff_params > 0
- then
- let princ_params,full_params =
- list_chop diff_params princ_info.params
- in
- (full_params, (* real params *)
- princ_params, (* the params of the principle which are not params of the function *)
- substl (* function instanciated with real params *)
- (List.map var_of_decl full_params)
- f_body
- )
- else
- let f_ctxt_other,f_ctxt_params =
- list_chop (- diff_params) f_ctxt in
- let f_body = compose_lam f_ctxt_other f_body in
- (princ_info.params, (* real params *)
- [],(* all params are full params *)
- substl (* function instanciated with real params *)
- (List.map var_of_decl princ_info.params)
- f_body
- )
- in
-(* observe (str "full_params := " ++ *)
-(* prlist_with_sep spc (fun (na,_,_) -> Ppconstr.pr_id (Nameops.out_name na)) *)
-(* full_params *)
-(* ); *)
-(* observe (str "princ_params := " ++ *)
-(* prlist_with_sep spc (fun (na,_,_) -> Ppconstr.pr_id (Nameops.out_name na)) *)
-(* princ_params *)
-(* ); *)
-(* observe (str "fbody_with_full_params := " ++ *)
-(* pr_lconstr fbody_with_full_params *)
-(* ); *)
- let all_funs_with_full_params =
- Array.map (fun f -> applist(f, List.rev_map var_of_decl full_params)) all_funs
- in
- let fix_offset = List.length princ_params in
- let ptes_to_fix,infos =
- match kind_of_term fbody_with_full_params with
- | Fix((idxs,i),(names,typess,bodies)) ->
- let bodies_with_all_params =
- Array.map
- (fun body ->
- Reductionops.nf_betaiota Evd.empty
- (applist(substl (List.rev (Array.to_list all_funs_with_full_params)) body,
- List.rev_map var_of_decl princ_params))
- )
- bodies
- in
- let info_array =
- Array.mapi
- (fun i types ->
- let types = prod_applist types (List.rev_map var_of_decl princ_params) in
- { idx = idxs.(i) - fix_offset;
- name = Nameops.out_name (fresh_id names.(i));
- types = types;
- offset = fix_offset;
- nb_realargs =
- List.length
- (fst (decompose_lam bodies.(i))) - fix_offset;
- body_with_param = bodies_with_all_params.(i);
- num_in_block = i
- }
- )
- typess
- in
- let pte_to_fix,rev_info =
- list_fold_left_i
- (fun i (acc_map,acc_info) (pte,_,_) ->
- let infos = info_array.(i) in
- let type_args,_ = decompose_prod infos.types in
- let nargs = List.length type_args in
- let f = applist(mkConst fnames.(i), List.rev_map var_of_decl princ_info.params) in
- let first_args = Array.init nargs (fun i -> mkRel (nargs -i)) in
- let app_f = mkApp(f,first_args) in
- let pte_args = (Array.to_list first_args)@[app_f] in
- let app_pte = applist(mkVar (Nameops.out_name pte),pte_args) in
- let body_with_param,num =
- let body = get_body fnames.(i) in
- let body_with_full_params =
- Reductionops.nf_betaiota Evd.empty (
- applist(body,List.rev_map var_of_decl full_params))
- in
- match kind_of_term body_with_full_params with
- | Fix((_,num),(_,_,bs)) ->
- Reductionops.nf_betaiota Evd.empty
- (
- (applist
- (substl
- (List.rev
- (Array.to_list all_funs_with_full_params))
- bs.(num),
- List.rev_map var_of_decl princ_params))
- ),num
- | _ -> error "Not a mutual block"
- in
- let info =
- {infos with
- types = compose_prod type_args app_pte;
- body_with_param = body_with_param;
- num_in_block = num
- }
- in
-(* observe (str "binding " ++ Ppconstr.pr_id (Nameops.out_name pte) ++ *)
-(* str " to " ++ Ppconstr.pr_id info.name); *)
- (Idmap.add (Nameops.out_name pte) info acc_map,info::acc_info)
- )
- 0
- (Idmap.empty,[])
- (List.rev princ_info.predicates)
- in
- pte_to_fix,List.rev rev_info
- | _ -> Idmap.empty,[]
- in
- let mk_fixes : tactic =
- let pre_info,infos = list_chop fun_num infos in
- match pre_info,infos with
- | [],[] -> tclIDTAC
- | _, this_fix_info::others_infos ->
- let other_fix_infos =
- List.map
- (fun fi -> fi.name,fi.idx + 1 ,fi.types)
- (pre_info@others_infos)
- in
- if other_fix_infos = []
- then
- (* observe_tac ("h_fix") *) (h_fix (Some this_fix_info.name) (this_fix_info.idx +1))
- else
- h_mutual_fix false this_fix_info.name (this_fix_info.idx + 1)
- other_fix_infos
- | _ -> anomaly "Not a valid information"
- in
- let first_tac : tactic = (* every operations until fix creations *)
- tclTHENSEQ
- [ (* observe_tac "introducing params" *) (intros_using (List.rev_map id_of_decl princ_info.params));
- (* observe_tac "introducing predictes" *) (intros_using (List.rev_map id_of_decl princ_info.predicates));
- (* observe_tac "introducing branches" *) (intros_using (List.rev_map id_of_decl princ_info.branches));
- (* observe_tac "building fixes" *) mk_fixes;
- ]
- in
- let intros_after_fixes : tactic =
- fun gl ->
- let ctxt,pte_app = (Sign.decompose_prod_assum (pf_concl gl)) in
- let pte,pte_args = (decompose_app pte_app) in
- try
- let pte = try destVar pte with _ -> anomaly "Property is not a variable" in
- let fix_info = Idmap.find pte ptes_to_fix in
- let nb_args = fix_info.nb_realargs in
- tclTHENSEQ
- [
- (* observe_tac ("introducing args") *) (tclDO nb_args intro);
- (fun g -> (* replacement of the function by its body *)
- let args = nLastHyps nb_args g in
- let fix_body = fix_info.body_with_param in
-(* observe (str "fix_body := "++ pr_lconstr_env (pf_env gl) fix_body); *)
- let args_id = List.map (fun (id,_,_) -> id) args in
- let dyn_infos =
- {
- nb_rec_hyps = -100;
- rec_hyps = [];
- info =
- Reductionops.nf_betaiota Evd.empty
- (applist(fix_body,List.rev_map mkVar args_id));
- eq_hyps = []
- }
- in
- tclTHENSEQ
- [
-(* observe_tac "do_replace" *)
- (do_replace
- full_params
- (fix_info.idx + List.length princ_params)
- (args_id@(List.map (fun (id,_,_) -> Nameops.out_name id ) princ_params))
- (all_funs.(fix_info.num_in_block))
- fix_info.num_in_block
- all_funs
- );
-(* observe_tac "do_replace" *)
-(* (do_replace princ_info.params fix_info.idx args_id *)
-(* (List.hd (List.rev pte_args)) fix_body); *)
- let do_prove =
- build_proof
- interactive_proof
- (Array.to_list fnames)
- (Idmap.map prove_rec_hyp ptes_to_fix)
- in
- let prove_tac branches =
- let dyn_infos =
- {dyn_infos with
- rec_hyps = branches;
- nb_rec_hyps = List.length branches
- }
- in
- (* observe_tac "cleaning" *) (clean_goal_with_heq
- (Idmap.map prove_rec_hyp ptes_to_fix)
- do_prove
- dyn_infos)
- in
-(* observe (str "branches := " ++ *)
-(* prlist_with_sep spc (fun decl -> Ppconstr.pr_id (id_of_decl decl)) princ_info.branches ++ fnl () ++ *)
-(* str "args := " ++ prlist_with_sep spc Ppconstr.pr_id args_id *)
-
-(* ); *)
- (* observe_tac "instancing" *) (instanciate_hyps_with_args prove_tac
- (List.rev_map id_of_decl princ_info.branches)
- (List.rev args_id))
- ]
- g
- );
- ] gl
- with Not_found ->
- let nb_args = min (princ_info.nargs) (List.length ctxt) in
- tclTHENSEQ
- [
- tclDO nb_args intro;
- (fun g -> (* replacement of the function by its body *)
- let args = nLastHyps nb_args g in
- let args_id = List.map (fun (id,_,_) -> id) args in
- let dyn_infos =
- {
- nb_rec_hyps = -100;
- rec_hyps = [];
- info =
- Reductionops.nf_betaiota Evd.empty
- (applist(fbody_with_full_params,
- (List.rev_map var_of_decl princ_params)@
- (List.rev_map mkVar args_id)
- ));
- eq_hyps = []
- }
- in
- let fname = destConst (fst (decompose_app (List.hd (List.rev pte_args)))) in
- tclTHENSEQ
- [unfold_in_concl [(all_occurrences,Names.EvalConstRef fname)];
- let do_prove =
- build_proof
- interactive_proof
- (Array.to_list fnames)
- (Idmap.map prove_rec_hyp ptes_to_fix)
- in
- let prove_tac branches =
- let dyn_infos =
- {dyn_infos with
- rec_hyps = branches;
- nb_rec_hyps = List.length branches
- }
- in
- clean_goal_with_heq
- (Idmap.map prove_rec_hyp ptes_to_fix)
- do_prove
- dyn_infos
- in
- instanciate_hyps_with_args prove_tac
- (List.rev_map id_of_decl princ_info.branches)
- (List.rev args_id)
- ]
- g
- )
- ]
- gl
- in
- tclTHEN
- first_tac
- intros_after_fixes
- g
-
-
-
-
-
-
-(* Proof of principles of general functions *)
-let h_id = Recdef.h_id
-and hrec_id = Recdef.hrec_id
-and acc_inv_id = Recdef.acc_inv_id
-and ltof_ref = Recdef.ltof_ref
-and acc_rel = Recdef.acc_rel
-and well_founded = Recdef.well_founded
-and delayed_force = Recdef.delayed_force
-and h_intros = Recdef.h_intros
-and list_rewrite = Recdef.list_rewrite
-and evaluable_of_global_reference = Recdef.evaluable_of_global_reference
-
-
-
-
-
-let prove_with_tcc tcc_lemma_constr eqs : tactic =
- match !tcc_lemma_constr with
- | None -> anomaly "No tcc proof !!"
- | Some lemma ->
- fun gls ->
-(* let hid = next_global_ident_away true h_id (pf_ids_of_hyps gls) in *)
-(* let ids = hid::pf_ids_of_hyps gls in *)
- tclTHENSEQ
- [
-(* generalize [lemma]; *)
-(* h_intro hid; *)
-(* Elim.h_decompose_and (mkVar hid); *)
- tclTRY(list_rewrite true eqs);
-(* (fun g -> *)
-(* let ids' = pf_ids_of_hyps g in *)
-(* let ids = List.filter (fun id -> not (List.mem id ids)) ids' in *)
-(* rewrite *)
-(* ) *)
- Eauto.gen_eauto false (false,5) [] (Some [])
- ]
- gls
-
-
-let backtrack_eqs_until_hrec hrec eqs : tactic =
- fun gls ->
- let eqs = List.map mkVar eqs in
- let rewrite =
- tclFIRST (List.map Equality.rewriteRL eqs )
- in
- let _,hrec_concl = decompose_prod (pf_type_of gls (mkVar hrec)) in
- let f_app = array_last (snd (destApp hrec_concl)) in
- let f = (fst (destApp f_app)) in
- let rec backtrack : tactic =
- fun g ->
- let f_app = array_last (snd (destApp (pf_concl g))) in
- match kind_of_term f_app with
- | App(f',_) when eq_constr f' f -> tclIDTAC g
- | _ -> tclTHEN rewrite backtrack g
- in
- backtrack gls
-
-
-
-let build_clause eqs =
- {
- Tacexpr.onhyps =
- Some (List.map
- (fun id -> (Rawterm.all_occurrences_expr,id),InHyp)
- eqs
- );
- Tacexpr.concl_occs = Rawterm.no_occurrences_expr
- }
-
-let rec rewrite_eqs_in_eqs eqs =
- match eqs with
- | [] -> tclIDTAC
- | eq::eqs ->
-
- tclTHEN
- (tclMAP
- (fun id gl ->
- observe_tac
- (Format.sprintf "rewrite %s in %s " (string_of_id eq) (string_of_id id))
- (tclTRY (Equality.general_rewrite_in true all_occurrences id (mkVar eq) false))
- gl
- )
- eqs
- )
- (rewrite_eqs_in_eqs eqs)
-
-let new_prove_with_tcc is_mes acc_inv hrec tcc_hyps eqs : tactic =
- fun gls ->
- (tclTHENSEQ
- [
- backtrack_eqs_until_hrec hrec eqs;
- (* observe_tac ("new_prove_with_tcc ( applying "^(string_of_id hrec)^" )" ) *)
- (tclTHENS (* We must have exactly ONE subgoal !*)
- (apply (mkVar hrec))
- [ tclTHENSEQ
- [
- keep (tcc_hyps@eqs);
- apply (Lazy.force acc_inv);
- (fun g ->
- if is_mes
- then
- unfold_in_concl [(all_occurrences, evaluable_of_global_reference (delayed_force ltof_ref))] g
- else tclIDTAC g
- );
- observe_tac "rew_and_finish"
- (tclTHENLIST
- [tclTRY(Recdef.list_rewrite false (List.map mkVar eqs));
- observe_tac "rewrite_eqs_in_eqs" (rewrite_eqs_in_eqs eqs);
- (observe_tac "finishing using"
- (
- tclCOMPLETE(
- Eauto.eauto_with_bases
- false
- (true,5)
- [Lazy.force refl_equal]
- [Auto.Hint_db.empty empty_transparent_state false]
- )
- )
- )
- ]
- )
- ]
- ])
- ])
- gls
-
-
-let is_valid_hypothesis predicates_name =
- let predicates_name = List.fold_right Idset.add predicates_name Idset.empty in
- let is_pte typ =
- if isApp typ
- then
- let pte,_ = destApp typ in
- if isVar pte
- then Idset.mem (destVar pte) predicates_name
- else false
- else false
- in
- let rec is_valid_hypothesis typ =
- is_pte typ ||
- match kind_of_term typ with
- | Prod(_,pte,typ') -> is_pte pte && is_valid_hypothesis typ'
- | _ -> false
- in
- is_valid_hypothesis
-
-let prove_principle_for_gen
- (f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes
- rec_arg_num rec_arg_type relation gl =
- let princ_type = pf_concl gl in
- let princ_info = compute_elim_sig princ_type in
- let fresh_id =
- let avoid = ref (pf_ids_of_hyps gl) in
- fun na ->
- let new_id =
- match na with
- | Name id -> fresh_id !avoid (string_of_id id)
- | Anonymous -> fresh_id !avoid "H"
- in
- avoid := new_id :: !avoid;
- Name new_id
- in
- let fresh_decl (na,b,t) = (fresh_id na,b,t) in
- let princ_info : elim_scheme =
- { princ_info with
- params = List.map fresh_decl princ_info.params;
- predicates = List.map fresh_decl princ_info.predicates;
- branches = List.map fresh_decl princ_info.branches;
- args = List.map fresh_decl princ_info.args
- }
- in
- let wf_tac =
- if is_mes
- then
- (fun b -> Recdef.tclUSER_if_not_mes tclIDTAC b None)
- else fun _ -> prove_with_tcc tcc_lemma_ref []
- in
- let real_rec_arg_num = rec_arg_num - princ_info.nparams in
- let npost_rec_arg = princ_info.nargs - real_rec_arg_num + 1 in
-(* observe ( *)
-(* str "princ_type := " ++ pr_lconstr princ_type ++ fnl () ++ *)
-(* str "princ_info.nparams := " ++ int princ_info.nparams ++ fnl () ++ *)
-
-(* str "princ_info.nargs := " ++ int princ_info.nargs ++ fnl () ++ *)
-(* str "rec_arg_num := " ++ int rec_arg_num ++ fnl() ++ *)
-(* str "real_rec_arg_num := " ++ int real_rec_arg_num ++ fnl () ++ *)
-(* str "npost_rec_arg := " ++ int npost_rec_arg ); *)
- let (post_rec_arg,pre_rec_arg) =
- Util.list_chop npost_rec_arg princ_info.args
- in
- let rec_arg_id =
- match List.rev post_rec_arg with
- | (Name id,_,_)::_ -> id
- | _ -> assert false
- in
-(* observe (str "rec_arg_id := " ++ pr_lconstr (mkVar rec_arg_id)); *)
- let subst_constrs = List.map (fun (na,_,_) -> mkVar (Nameops.out_name na)) (pre_rec_arg@princ_info.params) in
- let relation = substl subst_constrs relation in
- let input_type = substl subst_constrs rec_arg_type in
- let wf_thm_id = Nameops.out_name (fresh_id (Name (id_of_string "wf_R"))) in
- let acc_rec_arg_id =
- Nameops.out_name (fresh_id (Name (id_of_string ("Acc_"^(string_of_id rec_arg_id)))))
- in
- let revert l =
- tclTHEN (h_generalize (List.map mkVar l)) (clear l)
- in
- let fix_id = Nameops.out_name (fresh_id (Name hrec_id)) in
- let prove_rec_arg_acc g =
- ((* observe_tac "prove_rec_arg_acc" *)
- (tclCOMPLETE
- (tclTHEN
- (assert_by (Name wf_thm_id)
- (mkApp (delayed_force well_founded,[|input_type;relation|]))
- (fun g -> (* observe_tac "prove wf" *) (tclCOMPLETE (wf_tac is_mes)) g))
- (
- (* observe_tac *)
-(* "apply wf_thm" *)
- h_simplest_apply (mkApp(mkVar wf_thm_id,[|mkVar rec_arg_id|]))
- )
- )
- )
- )
- g
- in
- let args_ids = List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.args in
- let lemma =
- match !tcc_lemma_ref with
- | None -> anomaly ( "No tcc proof !!")
- | Some lemma -> lemma
- in
-(* let rec list_diff del_list check_list = *)
-(* match del_list with *)
-(* [] -> *)
-(* [] *)
-(* | f::r -> *)
-(* if List.mem f check_list then *)
-(* list_diff r check_list *)
-(* else *)
-(* f::(list_diff r check_list) *)
-(* in *)
- let tcc_list = ref [] in
- let start_tac gls =
- let hyps = pf_ids_of_hyps gls in
- let hid =
- next_global_ident_away true
- (id_of_string "prov")
- hyps
- in
- tclTHENSEQ
- [
- generalize [lemma];
- h_intro hid;
- Elim.h_decompose_and (mkVar hid);
- (fun g ->
- let new_hyps = pf_ids_of_hyps g in
- tcc_list := List.rev (list_subtract new_hyps (hid::hyps));
- if !tcc_list = []
- then
- begin
- tcc_list := [hid];
- tclIDTAC g
- end
- else thin [hid] g
- )
- ]
- gls
- in
- tclTHENSEQ
- [
- observe_tac "start_tac" start_tac;
- h_intros
- (List.rev_map (fun (na,_,_) -> Nameops.out_name na)
- (princ_info.args@princ_info.branches@princ_info.predicates@princ_info.params)
- );
- (* observe_tac "" *) (assert_by
- (Name acc_rec_arg_id)
- (mkApp (delayed_force acc_rel,[|input_type;relation;mkVar rec_arg_id|]))
- (prove_rec_arg_acc)
- );
-(* observe_tac "reverting" *) (revert (List.rev (acc_rec_arg_id::args_ids)));
-(* (fun g -> observe (Printer.pr_goal (sig_it g) ++ fnl () ++ *)
-(* str "fix arg num" ++ int (List.length args_ids + 1) ); tclIDTAC g); *)
- (* observe_tac "h_fix " *) (h_fix (Some fix_id) (List.length args_ids + 1));
-(* (fun g -> observe (Printer.pr_goal (sig_it g) ++ fnl() ++ pr_lconstr_env (pf_env g ) (pf_type_of g (mkVar fix_id) )); tclIDTAC g); *)
- h_intros (List.rev (acc_rec_arg_id::args_ids));
- Equality.rewriteLR (mkConst eq_ref);
- (* observe_tac "finish" *) (fun gl' ->
- let body =
- let _,args = destApp (pf_concl gl') in
- array_last args
- in
- let body_info rec_hyps =
- {
- nb_rec_hyps = List.length rec_hyps;
- rec_hyps = rec_hyps;
- eq_hyps = [];
- info = body
- }
- in
- let acc_inv =
- lazy (
- mkApp (
- delayed_force acc_inv_id,
- [|input_type;relation;mkVar rec_arg_id|]
- )
- )
- in
- let acc_inv = lazy (mkApp(Lazy.force acc_inv, [|mkVar acc_rec_arg_id|])) in
- let predicates_names =
- List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.predicates
- in
- let pte_info =
- { proving_tac =
- (fun eqs ->
-(* msgnl (str "tcc_list := "++ prlist_with_sep spc Ppconstr.pr_id !tcc_list); *)
-(* msgnl (str "princ_info.args := "++ prlist_with_sep spc Ppconstr.pr_id (List.map (fun (na,_,_) -> (Nameops.out_name na)) princ_info.args)); *)
-(* msgnl (str "princ_info.params := "++ prlist_with_sep spc Ppconstr.pr_id (List.map (fun (na,_,_) -> (Nameops.out_name na)) princ_info.params)); *)
-(* msgnl (str "acc_rec_arg_id := "++ Ppconstr.pr_id acc_rec_arg_id); *)
-(* msgnl (str "eqs := "++ prlist_with_sep spc Ppconstr.pr_id eqs); *)
-
- (* observe_tac "new_prove_with_tcc" *)
- (new_prove_with_tcc
- is_mes acc_inv fix_id
-
- (!tcc_list@(List.map
- (fun (na,_,_) -> (Nameops.out_name na))
- (princ_info.args@princ_info.params)
- )@ ([acc_rec_arg_id])) eqs
- )
-
- );
- is_valid = is_valid_hypothesis predicates_names
- }
- in
- let ptes_info : pte_info Idmap.t =
- List.fold_left
- (fun map pte_id ->
- Idmap.add pte_id
- pte_info
- map
- )
- Idmap.empty
- predicates_names
- in
- let make_proof rec_hyps =
- build_proof
- false
- [f_ref]
- ptes_info
- (body_info rec_hyps)
- in
- (* observe_tac "instanciate_hyps_with_args" *)
- (instanciate_hyps_with_args
- make_proof
- (List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.branches)
- (List.rev args_ids)
- )
- gl'
- )
-
- ]
- gl
-
-
-
-
-
-
-
-