summaryrefslogtreecommitdiff
path: root/contrib/extraction/test_extraction.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/extraction/test_extraction.v')
-rw-r--r--contrib/extraction/test_extraction.v552
1 files changed, 552 insertions, 0 deletions
diff --git a/contrib/extraction/test_extraction.v b/contrib/extraction/test_extraction.v
new file mode 100644
index 00000000..0745f62d
--- /dev/null
+++ b/contrib/extraction/test_extraction.v
@@ -0,0 +1,552 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Arith.
+Require Import List.
+
+(*** STANDARD EXAMPLES *)
+
+(** Functions. *)
+
+Definition idnat (x:nat) := x.
+Extraction idnat.
+(* let idnat x = x *)
+
+Definition id (X:Type) (x:X) := x.
+Extraction id. (* let id x = x *)
+Definition id' := id Set nat.
+Extraction id'. (* type id' = nat *)
+
+Definition test2 (f:nat -> nat) (x:nat) := f x.
+Extraction test2.
+(* let test2 f x = f x *)
+
+Definition test3 (f:nat -> Set -> nat) (x:nat) := f x nat.
+Extraction test3.
+(* let test3 f x = f x __ *)
+
+Definition test4 (f:(nat -> nat) -> nat) (x:nat) (g:nat -> nat) := f g.
+Extraction test4.
+(* let test4 f x g = f g *)
+
+Definition test5 := (1, 0).
+Extraction test5.
+(* let test5 = Pair ((S O), O) *)
+
+Definition cf (x:nat) (_:x <= 0) := S x.
+Extraction NoInline cf.
+Definition test6 := cf 0 (le_n 0).
+Extraction test6.
+(* let test6 = cf O *)
+
+Definition test7 := (fun (X:Set) (x:X) => x) nat.
+Extraction test7.
+(* let test7 x = x *)
+
+Definition d (X:Type) := X.
+Extraction d. (* type 'x d = 'x *)
+Definition d2 := d Set.
+Extraction d2. (* type d2 = __ d *)
+Definition d3 (x:d Set) := 0.
+Extraction d3. (* let d3 _ = O *)
+Definition d4 := d nat.
+Extraction d4. (* type d4 = nat d *)
+Definition d5 := (fun x:d Type => 0) Type.
+Extraction d5. (* let d5 = O *)
+Definition d6 (x:d Type) := x.
+Extraction d6. (* type 'x d6 = 'x *)
+
+Definition test8 := (fun (X:Type) (x:X) => x) Set nat.
+Extraction test8. (* type test8 = nat *)
+
+Definition test9 := let t := nat in id Set t.
+Extraction test9. (* type test9 = nat *)
+
+Definition test10 := (fun (X:Type) (x:X) => 0) Type Type.
+Extraction test10. (* let test10 = O *)
+
+Definition test11 := let n := 0 in let p := S n in S p.
+Extraction test11. (* let test11 = S (S O) *)
+
+Definition test12 := forall x:forall X:Type, X -> X, x Type Type.
+Extraction test12.
+(* type test12 = (__ -> __ -> __) -> __ *)
+
+
+Definition test13 := match left True I with
+ | left x => 1
+ | right x => 0
+ end.
+Extraction test13. (* let test13 = S O *)
+
+
+(** example with more arguments that given by the type *)
+
+Definition test19 :=
+ nat_rec (fun n:nat => nat -> nat) (fun n:nat => 0)
+ (fun (n:nat) (f:nat -> nat) => f) 0 0.
+Extraction test19.
+(* let test19 =
+ let rec f = function
+ | O -> (fun n0 -> O)
+ | S n0 -> f n0
+ in f O O
+*)
+
+
+(** casts *)
+
+Definition test20 := True:Type.
+Extraction test20.
+(* type test20 = __ *)
+
+
+(** Simple inductive type and recursor. *)
+
+Extraction nat.
+(*
+type nat =
+ | O
+ | S of nat
+*)
+
+Extraction sumbool_rect.
+(*
+let sumbool_rect f f0 = function
+ | Left -> f __
+ | Right -> f0 __
+*)
+
+(** Less simple inductive type. *)
+
+Inductive c (x:nat) : nat -> Set :=
+ | refl : c x x
+ | trans : forall y z:nat, c x y -> y <= z -> c x z.
+Extraction c.
+(*
+type c =
+ | Refl
+ | Trans of nat * nat * c
+*)
+
+Definition Ensemble (U:Type) := U -> Prop.
+Definition Empty_set (U:Type) (x:U) := False.
+Definition Add (U:Type) (A:Ensemble U) (x y:U) := A y \/ x = y.
+
+Inductive Finite (U:Type) : Ensemble U -> Set :=
+ | Empty_is_finite : Finite U (Empty_set U)
+ | Union_is_finite :
+ forall A:Ensemble U,
+ Finite U A -> forall x:U, ~ A x -> Finite U (Add U A x).
+Extraction Finite.
+(*
+type 'u finite =
+ | Empty_is_finite
+ | Union_is_finite of 'u finite * 'u
+*)
+
+
+(** Mutual Inductive *)
+
+Inductive tree : Set :=
+ Node : nat -> forest -> tree
+with forest : Set :=
+ | Leaf : nat -> forest
+ | Cons : tree -> forest -> forest.
+
+Extraction tree.
+(*
+type tree =
+ | Node of nat * forest
+and forest =
+ | Leaf of nat
+ | Cons of tree * forest
+*)
+
+Fixpoint tree_size (t:tree) : nat :=
+ match t with
+ | Node a f => S (forest_size f)
+ end
+
+ with forest_size (f:forest) : nat :=
+ match f with
+ | Leaf b => 1
+ | Cons t f' => tree_size t + forest_size f'
+ end.
+
+Extraction tree_size.
+(*
+let rec tree_size = function
+ | Node (a, f) -> S (forest_size f)
+and forest_size = function
+ | Leaf b -> S O
+ | Cons (t, f') -> plus (tree_size t) (forest_size f')
+*)
+
+
+(** Eta-expansions of inductive constructor *)
+
+Inductive titi : Set :=
+ tata : nat -> nat -> nat -> nat -> titi.
+Definition test14 := tata 0.
+Extraction test14.
+(* let test14 x x0 x1 = Tata (O, x, x0, x1) *)
+Definition test15 := tata 0 1.
+Extraction test15.
+(* let test15 x x0 = Tata (O, (S O), x, x0) *)
+
+Inductive eta : Set :=
+ eta_c : nat -> Prop -> nat -> Prop -> eta.
+Extraction eta_c.
+(*
+type eta =
+ | Eta_c of nat * nat
+*)
+Definition test16 := eta_c 0.
+Extraction test16.
+(* let test16 x = Eta_c (O, x) *)
+Definition test17 := eta_c 0 True.
+Extraction test17.
+(* let test17 x = Eta_c (O, x) *)
+Definition test18 := eta_c 0 True 0.
+Extraction test18.
+(* let test18 _ = Eta_c (O, O) *)
+
+
+(** Example of singleton inductive type *)
+
+Inductive bidon (A:Prop) (B:Type) : Set :=
+ tb : forall (x:A) (y:B), bidon A B.
+Definition fbidon (A B:Type) (f:A -> B -> bidon True nat)
+ (x:A) (y:B) := f x y.
+Extraction bidon.
+(* type 'b bidon = 'b *)
+Extraction tb.
+(* tb : singleton inductive constructor *)
+Extraction fbidon.
+(* let fbidon f x y =
+ f x y
+*)
+
+Definition fbidon2 := fbidon True nat (tb True nat).
+Extraction fbidon2. (* let fbidon2 y = y *)
+Extraction NoInline fbidon.
+Extraction fbidon2.
+(* let fbidon2 y = fbidon (fun _ x -> x) __ y *)
+
+(* NB: first argument of fbidon2 has type [True], so it disappears. *)
+
+(** mutual inductive on many sorts *)
+
+Inductive test_0 : Prop :=
+ ctest0 : test_0
+with test_1 : Set :=
+ ctest1 : test_0 -> test_1.
+Extraction test_0.
+(* test0 : logical inductive *)
+Extraction test_1.
+(*
+type test1 =
+ | Ctest1
+*)
+
+(** logical singleton *)
+
+Extraction eq.
+(* eq : logical inductive *)
+Extraction eq_rect.
+(* let eq_rect x f y =
+ f
+*)
+
+(** No more propagation of type parameters. Obj.t instead. *)
+
+Inductive tp1 : Set :=
+ T : forall (C:Set) (c:C), tp2 -> tp1
+with tp2 : Set :=
+ T' : tp1 -> tp2.
+Extraction tp1.
+(*
+type tp1 =
+ | T of __ * tp2
+and tp2 =
+ | T' of tp1
+*)
+
+Inductive tp1bis : Set :=
+ Tbis : tp2bis -> tp1bis
+with tp2bis : Set :=
+ T'bis : forall (C:Set) (c:C), tp1bis -> tp2bis.
+Extraction tp1bis.
+(*
+type tp1bis =
+ | Tbis of tp2bis
+and tp2bis =
+ | T'bis of __ * tp1bis
+*)
+
+
+(** Strange inductive type. *)
+
+Inductive Truc : Set -> Set :=
+ | chose : forall A:Set, Truc A
+ | machin : forall A:Set, A -> Truc bool -> Truc A.
+Extraction Truc.
+(*
+type 'x truc =
+ | Chose
+ | Machin of 'x * bool truc
+*)
+
+
+(** Dependant type over Type *)
+
+Definition test24 := sigT (fun a:Set => option a).
+Extraction test24.
+(* type test24 = (__, __ option) sigT *)
+
+
+(** Coq term non strongly-normalizable after extraction *)
+
+Require Import Gt.
+Definition loop (Ax:Acc gt 0) :=
+ (fix F (a:nat) (b:Acc gt a) {struct b} : nat :=
+ F (S a) (Acc_inv b (S a) (gt_Sn_n a))) 0 Ax.
+Extraction loop.
+(* let loop _ =
+ let rec f a =
+ f (S a)
+ in f O
+*)
+
+(*** EXAMPLES NEEDING OBJ.MAGIC *)
+
+(** False conversion of type: *)
+
+Lemma oups : forall H:nat = list nat, nat -> nat.
+intros.
+generalize H0; intros.
+rewrite H in H1.
+case H1.
+exact H0.
+intros.
+exact n.
+Qed.
+Extraction oups.
+(*
+let oups h0 =
+ match Obj.magic h0 with
+ | Nil -> h0
+ | Cons0 (n, l) -> n
+*)
+
+
+(** hybrids *)
+
+Definition horibilis (b:bool) :=
+ if b as b return (if b then Type else nat) then Set else 0.
+Extraction horibilis.
+(*
+let horibilis = function
+ | True -> Obj.magic __
+ | False -> Obj.magic O
+*)
+
+Definition PropSet (b:bool) := if b then Prop else Set.
+Extraction PropSet. (* type propSet = __ *)
+
+Definition natbool (b:bool) := if b then nat else bool.
+Extraction natbool. (* type natbool = __ *)
+
+Definition zerotrue (b:bool) := if b as x return natbool x then 0 else true.
+Extraction zerotrue.
+(*
+let zerotrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic True
+*)
+
+Definition natProp (b:bool) := if b return Type then nat else Prop.
+
+Definition natTrue (b:bool) := if b return Type then nat else True.
+
+Definition zeroTrue (b:bool) := if b as x return natProp x then 0 else True.
+Extraction zeroTrue.
+(*
+let zeroTrue = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+Definition natTrue2 (b:bool) := if b return Type then nat else True.
+
+Definition zeroprop (b:bool) := if b as x return natTrue x then 0 else I.
+Extraction zeroprop.
+(*
+let zeroprop = function
+ | True -> Obj.magic O
+ | False -> Obj.magic __
+*)
+
+(** polymorphic f applied several times *)
+
+Definition test21 := (id nat 0, id bool true).
+Extraction test21.
+(* let test21 = Pair ((id O), (id True)) *)
+
+(** ok *)
+
+Definition test22 :=
+ (fun f:forall X:Type, X -> X => (f nat 0, f bool true))
+ (fun (X:Type) (x:X) => x).
+Extraction test22.
+(* let test22 =
+ let f = fun x -> x in Pair ((f O), (f True)) *)
+
+(* still ok via optim beta -> let *)
+
+Definition test23 (f:forall X:Type, X -> X) := (f nat 0, f bool true).
+Extraction test23.
+(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *)
+
+(* problem: fun f -> (f 0, f true) not legal in ocaml *)
+(* solution: magic ... *)
+
+
+(** Dummy constant __ can be applied.... *)
+
+Definition f (X:Type) (x:nat -> X) (y:X -> bool) : bool := y (x 0).
+Extraction f.
+(* let f x y =
+ y (x O)
+*)
+
+Definition f_prop := f (0 = 0) (fun _ => refl_equal 0) (fun _ => true).
+Extraction NoInline f.
+Extraction f_prop.
+(* let f_prop =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_arity := f Set (fun _:nat => nat) (fun _:Set => true).
+Extraction f_arity.
+(* let f_arity =
+ f (Obj.magic __) (fun _ -> True)
+*)
+
+Definition f_normal :=
+ f nat (fun x => x) (fun x => match x with
+ | O => true
+ | _ => false
+ end).
+Extraction f_normal.
+(* let f_normal =
+ f (fun x -> x) (fun x -> match x with
+ | O -> True
+ | S n -> False)
+*)
+
+
+(* inductive with magic needed *)
+
+Inductive Boite : Set :=
+ boite : forall b:bool, (if b then nat else (nat * nat)%type) -> Boite.
+Extraction Boite.
+(*
+type boite =
+ | Boite of bool * __
+*)
+
+
+Definition boite1 := boite true 0.
+Extraction boite1.
+(* let boite1 = Boite (True, (Obj.magic O)) *)
+
+Definition boite2 := boite false (0, 0).
+Extraction boite2.
+(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *)
+
+Definition test_boite (B:Boite) :=
+ match B return nat with
+ | boite true n => n
+ | boite false n => fst n + snd n
+ end.
+Extraction test_boite.
+(*
+let test_boite = function
+ | Boite (b0, n) ->
+ (match b0 with
+ | True -> Obj.magic n
+ | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n)))
+*)
+
+(* singleton inductive with magic needed *)
+
+Inductive Box : Set :=
+ box : forall A:Set, A -> Box.
+Extraction Box.
+(* type box = __ *)
+
+Definition box1 := box nat 0.
+Extraction box1. (* let box1 = Obj.magic O *)
+
+(* applied constant, magic needed *)
+
+Definition idzarb (b:bool) (x:if b then nat else bool) := x.
+Definition zarb := idzarb true 0.
+Extraction NoInline idzarb.
+Extraction zarb.
+(* let zarb = Obj.magic idzarb True (Obj.magic O) *)
+
+(** function of variable arity. *)
+(** Fun n = nat -> nat -> ... -> nat *)
+
+Fixpoint Fun (n:nat) : Set :=
+ match n with
+ | O => nat
+ | S n => nat -> Fun n
+ end.
+
+Fixpoint Const (k n:nat) {struct n} : Fun n :=
+ match n as x return Fun x with
+ | O => k
+ | S n => fun p:nat => Const k n
+ end.
+
+Fixpoint proj (k n:nat) {struct n} : Fun n :=
+ match n as x return Fun x with
+ | O => 0 (* ou assert false ....*)
+ | S n =>
+ match k with
+ | O => fun x => Const x n
+ | S k => fun x => proj k n
+ end
+ end.
+
+Definition test_proj := proj 2 4 0 1 2 3.
+
+Eval compute in test_proj.
+
+Recursive Extraction test_proj.
+
+
+
+(*** TO SUM UP: ***)
+
+
+Extraction
+ "test_extraction.ml" idnat id id' test2 test3 test4 test5 test6 test7 d d2
+ d3 d4 d5 d6 test8 id id' test9 test10 test11 test12
+ test13 test19 test20 nat sumbool_rect c Finite tree
+ tree_size test14 test15 eta_c test16 test17 test18 bidon
+ tb fbidon fbidon2 fbidon2 test_0 test_1 eq eq_rect tp1
+ tp1bis Truc oups test24 loop horibilis PropSet natbool
+ zerotrue zeroTrue zeroprop test21 test22 test23 f f_prop
+ f_arity f_normal Boite boite1 boite2 test_boite Box box1
+ zarb test_proj.
+