diff options
Diffstat (limited to 'contrib/extraction/test_extraction.v')
-rw-r--r-- | contrib/extraction/test_extraction.v | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/contrib/extraction/test_extraction.v b/contrib/extraction/test_extraction.v new file mode 100644 index 00000000..0745f62d --- /dev/null +++ b/contrib/extraction/test_extraction.v @@ -0,0 +1,552 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import Arith. +Require Import List. + +(*** STANDARD EXAMPLES *) + +(** Functions. *) + +Definition idnat (x:nat) := x. +Extraction idnat. +(* let idnat x = x *) + +Definition id (X:Type) (x:X) := x. +Extraction id. (* let id x = x *) +Definition id' := id Set nat. +Extraction id'. (* type id' = nat *) + +Definition test2 (f:nat -> nat) (x:nat) := f x. +Extraction test2. +(* let test2 f x = f x *) + +Definition test3 (f:nat -> Set -> nat) (x:nat) := f x nat. +Extraction test3. +(* let test3 f x = f x __ *) + +Definition test4 (f:(nat -> nat) -> nat) (x:nat) (g:nat -> nat) := f g. +Extraction test4. +(* let test4 f x g = f g *) + +Definition test5 := (1, 0). +Extraction test5. +(* let test5 = Pair ((S O), O) *) + +Definition cf (x:nat) (_:x <= 0) := S x. +Extraction NoInline cf. +Definition test6 := cf 0 (le_n 0). +Extraction test6. +(* let test6 = cf O *) + +Definition test7 := (fun (X:Set) (x:X) => x) nat. +Extraction test7. +(* let test7 x = x *) + +Definition d (X:Type) := X. +Extraction d. (* type 'x d = 'x *) +Definition d2 := d Set. +Extraction d2. (* type d2 = __ d *) +Definition d3 (x:d Set) := 0. +Extraction d3. (* let d3 _ = O *) +Definition d4 := d nat. +Extraction d4. (* type d4 = nat d *) +Definition d5 := (fun x:d Type => 0) Type. +Extraction d5. (* let d5 = O *) +Definition d6 (x:d Type) := x. +Extraction d6. (* type 'x d6 = 'x *) + +Definition test8 := (fun (X:Type) (x:X) => x) Set nat. +Extraction test8. (* type test8 = nat *) + +Definition test9 := let t := nat in id Set t. +Extraction test9. (* type test9 = nat *) + +Definition test10 := (fun (X:Type) (x:X) => 0) Type Type. +Extraction test10. (* let test10 = O *) + +Definition test11 := let n := 0 in let p := S n in S p. +Extraction test11. (* let test11 = S (S O) *) + +Definition test12 := forall x:forall X:Type, X -> X, x Type Type. +Extraction test12. +(* type test12 = (__ -> __ -> __) -> __ *) + + +Definition test13 := match left True I with + | left x => 1 + | right x => 0 + end. +Extraction test13. (* let test13 = S O *) + + +(** example with more arguments that given by the type *) + +Definition test19 := + nat_rec (fun n:nat => nat -> nat) (fun n:nat => 0) + (fun (n:nat) (f:nat -> nat) => f) 0 0. +Extraction test19. +(* let test19 = + let rec f = function + | O -> (fun n0 -> O) + | S n0 -> f n0 + in f O O +*) + + +(** casts *) + +Definition test20 := True:Type. +Extraction test20. +(* type test20 = __ *) + + +(** Simple inductive type and recursor. *) + +Extraction nat. +(* +type nat = + | O + | S of nat +*) + +Extraction sumbool_rect. +(* +let sumbool_rect f f0 = function + | Left -> f __ + | Right -> f0 __ +*) + +(** Less simple inductive type. *) + +Inductive c (x:nat) : nat -> Set := + | refl : c x x + | trans : forall y z:nat, c x y -> y <= z -> c x z. +Extraction c. +(* +type c = + | Refl + | Trans of nat * nat * c +*) + +Definition Ensemble (U:Type) := U -> Prop. +Definition Empty_set (U:Type) (x:U) := False. +Definition Add (U:Type) (A:Ensemble U) (x y:U) := A y \/ x = y. + +Inductive Finite (U:Type) : Ensemble U -> Set := + | Empty_is_finite : Finite U (Empty_set U) + | Union_is_finite : + forall A:Ensemble U, + Finite U A -> forall x:U, ~ A x -> Finite U (Add U A x). +Extraction Finite. +(* +type 'u finite = + | Empty_is_finite + | Union_is_finite of 'u finite * 'u +*) + + +(** Mutual Inductive *) + +Inductive tree : Set := + Node : nat -> forest -> tree +with forest : Set := + | Leaf : nat -> forest + | Cons : tree -> forest -> forest. + +Extraction tree. +(* +type tree = + | Node of nat * forest +and forest = + | Leaf of nat + | Cons of tree * forest +*) + +Fixpoint tree_size (t:tree) : nat := + match t with + | Node a f => S (forest_size f) + end + + with forest_size (f:forest) : nat := + match f with + | Leaf b => 1 + | Cons t f' => tree_size t + forest_size f' + end. + +Extraction tree_size. +(* +let rec tree_size = function + | Node (a, f) -> S (forest_size f) +and forest_size = function + | Leaf b -> S O + | Cons (t, f') -> plus (tree_size t) (forest_size f') +*) + + +(** Eta-expansions of inductive constructor *) + +Inductive titi : Set := + tata : nat -> nat -> nat -> nat -> titi. +Definition test14 := tata 0. +Extraction test14. +(* let test14 x x0 x1 = Tata (O, x, x0, x1) *) +Definition test15 := tata 0 1. +Extraction test15. +(* let test15 x x0 = Tata (O, (S O), x, x0) *) + +Inductive eta : Set := + eta_c : nat -> Prop -> nat -> Prop -> eta. +Extraction eta_c. +(* +type eta = + | Eta_c of nat * nat +*) +Definition test16 := eta_c 0. +Extraction test16. +(* let test16 x = Eta_c (O, x) *) +Definition test17 := eta_c 0 True. +Extraction test17. +(* let test17 x = Eta_c (O, x) *) +Definition test18 := eta_c 0 True 0. +Extraction test18. +(* let test18 _ = Eta_c (O, O) *) + + +(** Example of singleton inductive type *) + +Inductive bidon (A:Prop) (B:Type) : Set := + tb : forall (x:A) (y:B), bidon A B. +Definition fbidon (A B:Type) (f:A -> B -> bidon True nat) + (x:A) (y:B) := f x y. +Extraction bidon. +(* type 'b bidon = 'b *) +Extraction tb. +(* tb : singleton inductive constructor *) +Extraction fbidon. +(* let fbidon f x y = + f x y +*) + +Definition fbidon2 := fbidon True nat (tb True nat). +Extraction fbidon2. (* let fbidon2 y = y *) +Extraction NoInline fbidon. +Extraction fbidon2. +(* let fbidon2 y = fbidon (fun _ x -> x) __ y *) + +(* NB: first argument of fbidon2 has type [True], so it disappears. *) + +(** mutual inductive on many sorts *) + +Inductive test_0 : Prop := + ctest0 : test_0 +with test_1 : Set := + ctest1 : test_0 -> test_1. +Extraction test_0. +(* test0 : logical inductive *) +Extraction test_1. +(* +type test1 = + | Ctest1 +*) + +(** logical singleton *) + +Extraction eq. +(* eq : logical inductive *) +Extraction eq_rect. +(* let eq_rect x f y = + f +*) + +(** No more propagation of type parameters. Obj.t instead. *) + +Inductive tp1 : Set := + T : forall (C:Set) (c:C), tp2 -> tp1 +with tp2 : Set := + T' : tp1 -> tp2. +Extraction tp1. +(* +type tp1 = + | T of __ * tp2 +and tp2 = + | T' of tp1 +*) + +Inductive tp1bis : Set := + Tbis : tp2bis -> tp1bis +with tp2bis : Set := + T'bis : forall (C:Set) (c:C), tp1bis -> tp2bis. +Extraction tp1bis. +(* +type tp1bis = + | Tbis of tp2bis +and tp2bis = + | T'bis of __ * tp1bis +*) + + +(** Strange inductive type. *) + +Inductive Truc : Set -> Set := + | chose : forall A:Set, Truc A + | machin : forall A:Set, A -> Truc bool -> Truc A. +Extraction Truc. +(* +type 'x truc = + | Chose + | Machin of 'x * bool truc +*) + + +(** Dependant type over Type *) + +Definition test24 := sigT (fun a:Set => option a). +Extraction test24. +(* type test24 = (__, __ option) sigT *) + + +(** Coq term non strongly-normalizable after extraction *) + +Require Import Gt. +Definition loop (Ax:Acc gt 0) := + (fix F (a:nat) (b:Acc gt a) {struct b} : nat := + F (S a) (Acc_inv b (S a) (gt_Sn_n a))) 0 Ax. +Extraction loop. +(* let loop _ = + let rec f a = + f (S a) + in f O +*) + +(*** EXAMPLES NEEDING OBJ.MAGIC *) + +(** False conversion of type: *) + +Lemma oups : forall H:nat = list nat, nat -> nat. +intros. +generalize H0; intros. +rewrite H in H1. +case H1. +exact H0. +intros. +exact n. +Qed. +Extraction oups. +(* +let oups h0 = + match Obj.magic h0 with + | Nil -> h0 + | Cons0 (n, l) -> n +*) + + +(** hybrids *) + +Definition horibilis (b:bool) := + if b as b return (if b then Type else nat) then Set else 0. +Extraction horibilis. +(* +let horibilis = function + | True -> Obj.magic __ + | False -> Obj.magic O +*) + +Definition PropSet (b:bool) := if b then Prop else Set. +Extraction PropSet. (* type propSet = __ *) + +Definition natbool (b:bool) := if b then nat else bool. +Extraction natbool. (* type natbool = __ *) + +Definition zerotrue (b:bool) := if b as x return natbool x then 0 else true. +Extraction zerotrue. +(* +let zerotrue = function + | True -> Obj.magic O + | False -> Obj.magic True +*) + +Definition natProp (b:bool) := if b return Type then nat else Prop. + +Definition natTrue (b:bool) := if b return Type then nat else True. + +Definition zeroTrue (b:bool) := if b as x return natProp x then 0 else True. +Extraction zeroTrue. +(* +let zeroTrue = function + | True -> Obj.magic O + | False -> Obj.magic __ +*) + +Definition natTrue2 (b:bool) := if b return Type then nat else True. + +Definition zeroprop (b:bool) := if b as x return natTrue x then 0 else I. +Extraction zeroprop. +(* +let zeroprop = function + | True -> Obj.magic O + | False -> Obj.magic __ +*) + +(** polymorphic f applied several times *) + +Definition test21 := (id nat 0, id bool true). +Extraction test21. +(* let test21 = Pair ((id O), (id True)) *) + +(** ok *) + +Definition test22 := + (fun f:forall X:Type, X -> X => (f nat 0, f bool true)) + (fun (X:Type) (x:X) => x). +Extraction test22. +(* let test22 = + let f = fun x -> x in Pair ((f O), (f True)) *) + +(* still ok via optim beta -> let *) + +Definition test23 (f:forall X:Type, X -> X) := (f nat 0, f bool true). +Extraction test23. +(* let test23 f = Pair ((Obj.magic f __ O), (Obj.magic f __ True)) *) + +(* problem: fun f -> (f 0, f true) not legal in ocaml *) +(* solution: magic ... *) + + +(** Dummy constant __ can be applied.... *) + +Definition f (X:Type) (x:nat -> X) (y:X -> bool) : bool := y (x 0). +Extraction f. +(* let f x y = + y (x O) +*) + +Definition f_prop := f (0 = 0) (fun _ => refl_equal 0) (fun _ => true). +Extraction NoInline f. +Extraction f_prop. +(* let f_prop = + f (Obj.magic __) (fun _ -> True) +*) + +Definition f_arity := f Set (fun _:nat => nat) (fun _:Set => true). +Extraction f_arity. +(* let f_arity = + f (Obj.magic __) (fun _ -> True) +*) + +Definition f_normal := + f nat (fun x => x) (fun x => match x with + | O => true + | _ => false + end). +Extraction f_normal. +(* let f_normal = + f (fun x -> x) (fun x -> match x with + | O -> True + | S n -> False) +*) + + +(* inductive with magic needed *) + +Inductive Boite : Set := + boite : forall b:bool, (if b then nat else (nat * nat)%type) -> Boite. +Extraction Boite. +(* +type boite = + | Boite of bool * __ +*) + + +Definition boite1 := boite true 0. +Extraction boite1. +(* let boite1 = Boite (True, (Obj.magic O)) *) + +Definition boite2 := boite false (0, 0). +Extraction boite2. +(* let boite2 = Boite (False, (Obj.magic (Pair (O, O)))) *) + +Definition test_boite (B:Boite) := + match B return nat with + | boite true n => n + | boite false n => fst n + snd n + end. +Extraction test_boite. +(* +let test_boite = function + | Boite (b0, n) -> + (match b0 with + | True -> Obj.magic n + | False -> plus (fst (Obj.magic n)) (snd (Obj.magic n))) +*) + +(* singleton inductive with magic needed *) + +Inductive Box : Set := + box : forall A:Set, A -> Box. +Extraction Box. +(* type box = __ *) + +Definition box1 := box nat 0. +Extraction box1. (* let box1 = Obj.magic O *) + +(* applied constant, magic needed *) + +Definition idzarb (b:bool) (x:if b then nat else bool) := x. +Definition zarb := idzarb true 0. +Extraction NoInline idzarb. +Extraction zarb. +(* let zarb = Obj.magic idzarb True (Obj.magic O) *) + +(** function of variable arity. *) +(** Fun n = nat -> nat -> ... -> nat *) + +Fixpoint Fun (n:nat) : Set := + match n with + | O => nat + | S n => nat -> Fun n + end. + +Fixpoint Const (k n:nat) {struct n} : Fun n := + match n as x return Fun x with + | O => k + | S n => fun p:nat => Const k n + end. + +Fixpoint proj (k n:nat) {struct n} : Fun n := + match n as x return Fun x with + | O => 0 (* ou assert false ....*) + | S n => + match k with + | O => fun x => Const x n + | S k => fun x => proj k n + end + end. + +Definition test_proj := proj 2 4 0 1 2 3. + +Eval compute in test_proj. + +Recursive Extraction test_proj. + + + +(*** TO SUM UP: ***) + + +Extraction + "test_extraction.ml" idnat id id' test2 test3 test4 test5 test6 test7 d d2 + d3 d4 d5 d6 test8 id id' test9 test10 test11 test12 + test13 test19 test20 nat sumbool_rect c Finite tree + tree_size test14 test15 eta_c test16 test17 test18 bidon + tb fbidon fbidon2 fbidon2 test_0 test_1 eq eq_rect tp1 + tp1bis Truc oups test24 loop horibilis PropSet natbool + zerotrue zeroTrue zeroprop test21 test22 test23 f f_prop + f_arity f_normal Boite boite1 boite2 test_boite Box box1 + zarb test_proj. + |