summaryrefslogtreecommitdiff
path: root/contrib/extraction/mlutil.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/extraction/mlutil.ml')
-rw-r--r--contrib/extraction/mlutil.ml1136
1 files changed, 1136 insertions, 0 deletions
diff --git a/contrib/extraction/mlutil.ml b/contrib/extraction/mlutil.ml
new file mode 100644
index 00000000..fbe423a7
--- /dev/null
+++ b/contrib/extraction/mlutil.ml
@@ -0,0 +1,1136 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: mlutil.ml,v 1.104.2.1 2004/07/16 19:30:08 herbelin Exp $ i*)
+
+(*i*)
+open Pp
+open Util
+open Names
+open Libnames
+open Nametab
+open Table
+open Miniml
+(*i*)
+
+(*s Exceptions. *)
+
+exception Found
+exception Impossible
+
+(*S Names operations. *)
+
+let anonymous = id_of_string "x"
+let dummy_name = id_of_string "_"
+
+let id_of_name = function
+ | Anonymous -> anonymous
+ | Name id when id = dummy_name -> anonymous
+ | Name id -> id
+
+(*S Operations upon ML types (with meta). *)
+
+let meta_count = ref 0
+
+let reset_meta_count () = meta_count := 0
+
+let new_meta _ =
+ incr meta_count;
+ Tmeta {id = !meta_count; contents = None}
+
+(*s Sustitution of [Tvar i] by [t] in a ML type. *)
+
+let type_subst i t0 t =
+ let rec subst t = match t with
+ | Tvar j when i = j -> t0
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)
+
+let type_subst_list l t =
+ let rec subst t = match t with
+ | Tvar j -> List.nth l (j-1)
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *)
+
+let type_subst_vect v t =
+ let rec subst t = match t with
+ | Tvar j -> v.(j-1)
+ | Tmeta {contents=None} -> t
+ | Tmeta {contents=Some u} -> subst u
+ | Tarr (a,b) -> Tarr (subst a, subst b)
+ | Tglob (r, l) -> Tglob (r, List.map subst l)
+ | a -> a
+ in subst t
+
+(*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *)
+
+let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t
+
+(*s Occur-check of a free meta in a type *)
+
+let rec type_occurs alpha t =
+ match t with
+ | Tmeta {id=beta; contents=None} -> alpha = beta
+ | Tmeta {contents=Some u} -> type_occurs alpha u
+ | Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2
+ | Tglob (r,l) -> List.exists (type_occurs alpha) l
+ | _ -> false
+
+(*s Most General Unificator *)
+
+let rec mgu = function
+ | Tmeta m, Tmeta m' when m.id = m'.id -> ()
+ | Tmeta m, t when m.contents=None ->
+ if type_occurs m.id t then raise Impossible
+ else m.contents <- Some t
+ | t, Tmeta m when m.contents=None ->
+ if type_occurs m.id t then raise Impossible
+ else m.contents <- Some t
+ | Tmeta {contents=Some u}, t -> mgu (u, t)
+ | t, Tmeta {contents=Some u} -> mgu (t, u)
+ | Tarr(a, b), Tarr(a', b') ->
+ mgu (a, a'); mgu (b, b')
+ | Tglob (r,l), Tglob (r',l') when r = r' ->
+ List.iter mgu (List.combine l l')
+ | Tvar i, Tvar j when i = j -> ()
+ | Tvar' i, Tvar' j when i = j -> ()
+ | Tdummy, Tdummy -> ()
+ | Tunknown, Tunknown -> ()
+ | _ -> raise Impossible
+
+let needs_magic p = try mgu p; false with Impossible -> true
+
+let put_magic_if b a = if b then MLmagic a else a
+
+let put_magic p a = if needs_magic p then MLmagic a else a
+
+
+(*S ML type env. *)
+
+module Mlenv = struct
+
+ let meta_cmp m m' = compare m.id m'.id
+ module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end)
+
+ (* Main MLenv type. [env] is the real environment, whereas [free]
+ (tries to) record the free meta variables occurring in [env]. *)
+
+ type t = { env : ml_schema list; mutable free : Metaset.t}
+
+ (* Empty environment. *)
+
+ let empty = { env = []; free = Metaset.empty }
+
+ (* [get] returns a instantiated copy of the n-th most recently added
+ type in the environment. *)
+
+ let get mle n =
+ assert (List.length mle.env >= n);
+ instantiation (List.nth mle.env (n-1))
+
+ (* [find_free] finds the free meta in a type. *)
+
+ let rec find_free set = function
+ | Tmeta m when m.contents = None -> Metaset.add m set
+ | Tmeta {contents = Some t} -> find_free set t
+ | Tarr (a,b) -> find_free (find_free set a) b
+ | Tglob (_,l) -> List.fold_left find_free set l
+ | _ -> set
+
+ (* The [free] set of an environment can be outdate after
+ some unifications. [clean_free] takes care of that. *)
+
+ let clean_free mle =
+ let rem = ref Metaset.empty
+ and add = ref Metaset.empty in
+ let clean m = match m.contents with
+ | None -> ()
+ | Some u -> rem := Metaset.add m !rem; add := find_free !add u
+ in
+ Metaset.iter clean mle.free;
+ mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add
+
+ (* From a type to a type schema. If a [Tmeta] is still uninstantiated
+ and does appears in the [mle], then it becomes a [Tvar]. *)
+
+ let generalization mle t =
+ let c = ref 0 in
+ let map = ref (Intmap.empty : int Intmap.t) in
+ let add_new i = incr c; map := Intmap.add i !c !map; !c in
+ let rec meta2var t = match t with
+ | Tmeta {contents=Some u} -> meta2var u
+ | Tmeta ({id=i} as m) ->
+ (try Tvar (Intmap.find i !map)
+ with Not_found ->
+ if Metaset.mem m mle.free then t
+ else Tvar (add_new i))
+ | Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2)
+ | Tglob (r,l) -> Tglob (r, List.map meta2var l)
+ | t -> t
+ in !c, meta2var t
+
+ (* Adding a type in an environment, after generalizing. *)
+
+ let push_gen mle t =
+ clean_free mle;
+ { env = generalization mle t :: mle.env; free = mle.free }
+
+ (* Adding a type with no [Tvar], hence no generalization needed. *)
+
+ let push_type {env=e;free=f} t =
+ { env = (0,t) :: e; free = find_free f t}
+
+ (* Adding a type with no [Tvar] nor [Tmeta]. *)
+
+ let push_std_type {env=e;free=f} t =
+ { env = (0,t) :: e; free = f}
+
+end
+
+(*S Operations upon ML types (without meta). *)
+
+(*s Does a section path occur in a ML type ? *)
+
+let rec type_mem_kn kn = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) -> (kn_of_r r) = kn || List.exists (type_mem_kn kn) l
+ | Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b)
+ | _ -> false
+
+(*s Greatest variable occurring in [t]. *)
+
+let type_maxvar t =
+ let rec parse n = function
+ | Tmeta _ -> assert false
+ | Tvar i -> max i n
+ | Tarr (a,b) -> parse (parse n a) b
+ | Tglob (_,l) -> List.fold_left parse n l
+ | _ -> n
+ in parse 0 t
+
+(*s From [a -> b -> c] to [[a;b],c]. *)
+
+let rec type_decomp = function
+ | Tmeta _ -> assert false
+ | Tarr (a,b) -> let l,h = type_decomp b in a::l, h
+ | a -> [],a
+
+(*s The converse: From [[a;b],c] to [a -> b -> c]. *)
+
+let rec type_recomp (l,t) = match l with
+ | [] -> t
+ | a::l -> Tarr (a, type_recomp (l,t))
+
+(*s Translating [Tvar] to [Tvar'] to avoid clash. *)
+
+let rec var2var' = function
+ | Tmeta _ -> assert false
+ | Tvar i -> Tvar' i
+ | Tarr (a,b) -> Tarr (var2var' a, var2var' b)
+ | Tglob (r,l) -> Tglob (r, List.map var2var' l)
+ | a -> a
+
+type abbrev_map = global_reference -> ml_type option
+
+(*s Delta-reduction of type constants everywhere in a ML type [t].
+ [env] is a function of type [ml_type_env]. *)
+
+let type_expand env t =
+ let rec expand = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) as t ->
+ (match env r with
+ | Some mlt -> expand (type_subst_list l mlt)
+ | None -> Tglob (r, List.map expand l))
+ | Tarr (a,b) -> Tarr (expand a, expand b)
+ | a -> a
+ in expand t
+
+(*s Idem, but only at the top level of implications. *)
+
+let is_arrow = function Tarr _ -> true | _ -> false
+
+let type_weak_expand env t =
+ let rec expand = function
+ | Tmeta _ -> assert false
+ | Tglob (r,l) as t ->
+ (match env r with
+ | Some mlt ->
+ let u = expand (type_subst_list l mlt) in
+ if is_arrow u then u else t
+ | None -> t)
+ | Tarr (a,b) -> Tarr (a, expand b)
+ | a -> a
+ in expand t
+
+(*s Equality over ML types modulo delta-reduction *)
+
+let type_eq env t t' = (type_expand env t = type_expand env t')
+
+let type_neq env t t' = (type_expand env t <> type_expand env t')
+
+(*s Generating a signature from a ML type. *)
+
+let type_to_sign env t =
+ let rec f = function
+ | Tmeta _ -> assert false
+ | Tarr (a,b) -> (Tdummy <> a) :: (f b)
+ | _ -> []
+ in f (type_expand env t)
+
+(*s Removing [Tdummy] from the top level of a ML type. *)
+
+let type_expunge env t =
+ let s = type_to_sign env t in
+ if s = [] then t
+ else if List.mem true s then
+ let rec f t s =
+ if List.mem false s then
+ match t with
+ | Tmeta _ -> assert false
+ | Tarr (a,b) ->
+ let t = f b (List.tl s) in
+ if List.hd s then Tarr (a, t) else t
+ | Tglob (r,l) ->
+ (match env r with
+ | Some mlt -> f (type_subst_list l mlt) s
+ | None -> assert false)
+ | _ -> assert false
+ else t
+ in f t s
+ else Tarr (Tdummy, snd (type_decomp (type_weak_expand env t)))
+
+(*S Generic functions over ML ast terms. *)
+
+(*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care
+ of the number of bingings crossed before reaching the [MLrel]. *)
+
+let ast_iter_rel f =
+ let rec iter n = function
+ | MLrel i -> f (i-n)
+ | MLlam (_,a) -> iter (n+1) a
+ | MLletin (_,a,b) -> iter n a; iter (n+1) b
+ | MLcase (a,v) ->
+ iter n a; Array.iter (fun (_,l,t) -> iter (n + (List.length l)) t) v
+ | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
+ | MLapp (a,l) -> iter n a; List.iter (iter n) l
+ | MLcons (_,l) -> List.iter (iter n) l
+ | MLmagic a -> iter n a
+ | MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
+ in iter 0
+
+(*s Map over asts. *)
+
+let ast_map_case f (c,ids,a) = (c,ids,f a)
+
+let ast_map f = function
+ | MLlam (i,a) -> MLlam (i, f a)
+ | MLletin (i,a,b) -> MLletin (i, f a, f b)
+ | MLcase (a,v) -> MLcase (f a, Array.map (ast_map_case f) v)
+ | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
+ | MLapp (a,l) -> MLapp (f a, List.map f l)
+ | MLcons (c,l) -> MLcons (c, List.map f l)
+ | MLmagic a -> MLmagic (f a)
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
+
+(*s Map over asts, with binding depth as parameter. *)
+
+let ast_map_lift_case f n (c,ids,a) = (c,ids, f (n+(List.length ids)) a)
+
+let ast_map_lift f n = function
+ | MLlam (i,a) -> MLlam (i, f (n+1) a)
+ | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
+ | MLcase (a,v) -> MLcase (f n a,Array.map (ast_map_lift_case f n) v)
+ | MLfix (i,ids,v) ->
+ let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
+ | MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
+ | MLcons (c,l) -> MLcons (c, List.map (f n) l)
+ | MLmagic a -> MLmagic (f n a)
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
+
+(*s Iter over asts. *)
+
+let ast_iter_case f (c,ids,a) = f a
+
+let ast_iter f = function
+ | MLlam (i,a) -> f a
+ | MLletin (i,a,b) -> f a; f b
+ | MLcase (a,v) -> f a; Array.iter (ast_iter_case f) v
+ | MLfix (i,ids,v) -> Array.iter f v
+ | MLapp (a,l) -> f a; List.iter f l
+ | MLcons (c,l) -> List.iter f l
+ | MLmagic a -> f a
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> ()
+
+(*S Operations concerning De Bruijn indices. *)
+
+(*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *)
+
+let ast_occurs k t =
+ try
+ ast_iter_rel (fun i -> if i = k then raise Found) t; false
+ with Found -> true
+
+(*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)]
+ in [t] with [k<=i<=k'] *)
+
+let ast_occurs_itvl k k' t =
+ try
+ ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
+ with Found -> true
+
+(*s Number of occurences of [Rel k] and [Rel 1] in [t]. *)
+
+let nb_occur_k k t =
+ let cpt = ref 0 in
+ ast_iter_rel (fun i -> if i = k then incr cpt) t;
+ !cpt
+
+let nb_occur t = nb_occur_k 1 t
+
+(* Number of occurences of [Rel 1] in [t], with special treatment of match:
+ occurences in different branches aren't added, but we rather use max. *)
+
+let nb_occur_match =
+ let rec nb k = function
+ | MLrel i -> if i = k then 1 else 0
+ | MLcase(a,v) ->
+ (nb k a) +
+ Array.fold_left
+ (fun r (_,ids,a) -> max r (nb (k+(List.length ids)) a)) 0 v
+ | MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
+ | MLfix (_,ids,v) -> let k = k+(Array.length ids) in
+ Array.fold_left (fun r a -> r+(nb k a)) 0 v
+ | MLlam (_,a) -> nb (k+1) a
+ | MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
+ | MLcons (_,l) -> List.fold_left (fun r a -> r+(nb k a)) 0 l
+ | MLmagic a -> nb k a
+ | MLglob _ | MLexn _ | MLdummy | MLaxiom -> 0
+ in nb 1
+
+(*s Lifting on terms.
+ [ast_lift k t] lifts the binding depth of [t] across [k] bindings. *)
+
+let ast_lift k t =
+ let rec liftrec n = function
+ | MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
+ | a -> ast_map_lift liftrec n a
+ in if k = 0 then t else liftrec 0 t
+
+let ast_pop t = ast_lift (-1) t
+
+(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ...
+ Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)
+
+let permut_rels k k' =
+ let rec permut n = function
+ | MLrel i as a ->
+ let i' = i-n in
+ if i'<1 || i'>k+k' then a
+ else if i'<=k then MLrel (i+k')
+ else MLrel (i-k)
+ | a -> ast_map_lift permut n a
+ in permut 0
+
+(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t].
+ Lifting (of one binder) is done at the same time. *)
+
+let ast_subst e =
+ let rec subst n = function
+ | MLrel i as a ->
+ let i' = i-n in
+ if i'=1 then ast_lift n e
+ else if i'<1 then a
+ else MLrel (i-1)
+ | a -> ast_map_lift subst n a
+ in subst 0
+
+(*s Generalized substitution.
+ [gen_subst v d t] applies to [t] the substitution coded in the
+ [v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies
+ to [Rel] greater than [Array.length v]. *)
+
+let gen_subst v d t =
+ let rec subst n = function
+ | MLrel i as a ->
+ let i'= i-n in
+ if i' < 1 then a
+ else if i' <= Array.length v then
+ ast_lift n v.(i'-1)
+ else MLrel (i+d)
+ | a -> ast_map_lift subst n a
+ in subst 0 t
+
+(*S Operations concerning lambdas. *)
+
+(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
+ [[idn;...;id1]] and the term [t]. *)
+
+let collect_lams =
+ let rec collect acc = function
+ | MLlam(id,t) -> collect (id::acc) t
+ | x -> acc,x
+ in collect []
+
+(*s [collect_n_lams] does the same for a precise number of [MLlam]. *)
+
+let collect_n_lams =
+ let rec collect acc n t =
+ if n = 0 then acc,t
+ else match t with
+ | MLlam(id,t) -> collect (id::acc) (n-1) t
+ | _ -> assert false
+ in collect []
+
+(*s [remove_n_lams] just removes some [MLlam]. *)
+
+let rec remove_n_lams n t =
+ if n = 0 then t
+ else match t with
+ | MLlam(_,t) -> remove_n_lams (n-1) t
+ | _ -> assert false
+
+(*s [nb_lams] gives the number of head [MLlam]. *)
+
+let rec nb_lams = function
+ | MLlam(_,t) -> succ (nb_lams t)
+ | _ -> 0
+
+(*s [named_lams] does the converse of [collect_lams]. *)
+
+let rec named_lams ids a = match ids with
+ | [] -> a
+ | id :: ids -> named_lams ids (MLlam (id,a))
+
+(*s The same in anonymous version. *)
+
+let rec anonym_lams a = function
+ | 0 -> a
+ | n -> anonym_lams (MLlam (anonymous,a)) (pred n)
+
+(*s Idem for [dummy_name]. *)
+
+let rec dummy_lams a = function
+ | 0 -> a
+ | n -> dummy_lams (MLlam (dummy_name,a)) (pred n)
+
+(*s mixed according to a signature. *)
+
+let rec anonym_or_dummy_lams a = function
+ | [] -> a
+ | true :: s -> MLlam(anonymous, anonym_or_dummy_lams a s)
+ | false :: s -> MLlam(dummy_name, anonym_or_dummy_lams a s)
+
+(*S Operations concerning eta. *)
+
+(*s The following function creates [MLrel n;...;MLrel 1] *)
+
+let rec eta_args n =
+ if n = 0 then [] else (MLrel n)::(eta_args (pred n))
+
+(*s Same, but filtered by a signature. *)
+
+let rec eta_args_sign n = function
+ | [] -> []
+ | true :: s -> (MLrel n) :: (eta_args_sign (n-1) s)
+ | false :: s -> eta_args_sign (n-1) s
+
+(*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)
+
+let rec test_eta_args_lift k n = function
+ | [] -> n=0
+ | a :: q -> (a = (MLrel (k+n))) && (test_eta_args_lift k (pred n) q)
+
+(*s Computes an eta-reduction. *)
+
+let eta_red e =
+ let ids,t = collect_lams e in
+ let n = List.length ids in
+ if n = 0 then e
+ else match t with
+ | MLapp (f,a) ->
+ let m = (List.length a) - n in
+ if m < 0 then e
+ else
+ let a1,a2 = list_chop m a in
+ let f = if m = 0 then f else MLapp (f,a1) in
+ if test_eta_args_lift 0 n a2 && not (ast_occurs_itvl 1 n f)
+ then ast_lift (-n) f
+ else e
+ | _ -> e
+
+(*s Computes all head linear beta-reductions possible in [(t a)].
+ Non-linear head beta-redex become let-in. *)
+
+let rec linear_beta_red a t = match a,t with
+ | [], _ -> t
+ | a0::a, MLlam (id,t) ->
+ (match nb_occur_match t with
+ | 0 -> linear_beta_red a (ast_pop t)
+ | 1 -> linear_beta_red a (ast_subst a0 t)
+ | _ ->
+ let a = List.map (ast_lift 1) a in
+ MLletin (id, a0, linear_beta_red a t))
+ | _ -> MLapp (t, a)
+
+(*s Applies a substitution [s] of constants by their body, plus
+ linear beta reductions at modified positions. *)
+
+let rec ast_glob_subst s t = match t with
+ | MLapp ((MLglob (ConstRef kn)) as f, a) ->
+ let a = List.map (ast_glob_subst s) a in
+ (try linear_beta_red a (KNmap.find kn s)
+ with Not_found -> MLapp (f, a))
+ | MLglob (ConstRef kn) -> (try KNmap.find kn s with Not_found -> t)
+ | _ -> ast_map (ast_glob_subst s) t
+
+
+(*S Auxiliary functions used in simplification of ML cases. *)
+
+(*s [check_and_generalize (r0,l,c)] transforms any [MLcons(r0,l)] in [MLrel 1]
+ and raises [Impossible] if any variable in [l] occurs outside such a
+ [MLcons] *)
+
+let check_and_generalize (r0,l,c) =
+ let nargs = List.length l in
+ let rec genrec n = function
+ | MLrel i as c ->
+ let i' = i-n in
+ if i'<1 then c
+ else if i'>nargs then MLrel (i-nargs+1)
+ else raise Impossible
+ | MLcons(r,args) when r=r0 && (test_eta_args_lift n nargs args) ->
+ MLrel (n+1)
+ | a -> ast_map_lift genrec n a
+ in genrec 0 c
+
+(*s [check_generalizable_case] checks if all branches can be seen as the
+ same function [f] applied to the term matched. It is a generalized version
+ of the identity case optimization. *)
+
+(* CAVEAT: this optimization breaks typing in some special case. example:
+ [type 'x a = A]. Then [let f = function A -> A] has type ['x a -> 'y a],
+ which is incompatible with the type of [let f x = x].
+ By default, we brutally disable this optim except for some known types:
+ [bool], [sumbool], [sumor] *)
+
+let generalizable_list =
+ let datatypes = MPfile (dirpath_of_string "Coq.Init.Datatypes")
+ and specif = MPfile (dirpath_of_string "Coq.Init.Specif")
+ in
+ [ make_kn datatypes empty_dirpath (mk_label "bool");
+ make_kn specif empty_dirpath (mk_label "sumbool");
+ make_kn specif empty_dirpath (mk_label "sumor") ]
+
+let check_generalizable_case unsafe br =
+ if not unsafe then
+ (match br.(0) with
+ | ConstructRef ((kn,_),_), _, _ ->
+ if not (List.mem kn generalizable_list) then raise Impossible
+ | _ -> assert false);
+ let f = check_and_generalize br.(0) in
+ for i = 1 to Array.length br - 1 do
+ if check_and_generalize br.(i) <> f then raise Impossible
+ done; f
+
+(*s Do all branches correspond to the same thing? *)
+
+let check_constant_case br =
+ if br = [||] then raise Impossible;
+ let (r,l,t) = br.(0) in
+ let n = List.length l in
+ if ast_occurs_itvl 1 n t then raise Impossible;
+ let cst = ast_lift (-n) t in
+ for i = 1 to Array.length br - 1 do
+ let (r,l,t) = br.(i) in
+ let n = List.length l in
+ if (ast_occurs_itvl 1 n t) || (cst <> (ast_lift (-n) t))
+ then raise Impossible
+ done; cst
+
+(*s If all branches are functions, try to permut the case and the functions. *)
+
+let rec merge_ids ids ids' = match ids,ids' with
+ | [],l -> l
+ | l,[] -> l
+ | i::ids, i'::ids' ->
+ (if i = dummy_name then i' else i) :: (merge_ids ids ids')
+
+let is_exn = function MLexn _ -> true | _ -> false
+
+let rec permut_case_fun br acc =
+ let nb = ref max_int in
+ Array.iter (fun (_,_,t) ->
+ let ids, c = collect_lams t in
+ let n = List.length ids in
+ if (n < !nb) && (not (is_exn c)) then nb := n) br;
+ if !nb = max_int || !nb = 0 then ([],br)
+ else begin
+ let br = Array.copy br in
+ let ids = ref [] in
+ for i = 0 to Array.length br - 1 do
+ let (r,l,t) = br.(i) in
+ let local_nb = nb_lams t in
+ if local_nb < !nb then (* t = MLexn ... *)
+ br.(i) <- (r,l,remove_n_lams local_nb t)
+ else begin
+ let local_ids,t = collect_n_lams !nb t in
+ ids := merge_ids !ids local_ids;
+ br.(i) <- (r,l,permut_rels !nb (List.length l) t)
+ end
+ done;
+ (!ids,br)
+ end
+
+(*S Generalized iota-reduction. *)
+
+(* Definition of a generalized iota-redex: it's a [MLcase(e,_)]
+ with [(is_iota_gen e)=true]. Any generalized iota-redex is
+ transformed into beta-redexes. *)
+
+let rec is_iota_gen = function
+ | MLcons _ -> true
+ | MLcase(_,br)-> array_for_all (fun (_,_,t)->is_iota_gen t) br
+ | _ -> false
+
+let constructor_index = function
+ | ConstructRef (_,j) -> pred j
+ | _ -> assert false
+
+let iota_gen br =
+ let rec iota k = function
+ | MLcons (r,a) ->
+ let (_,ids,c) = br.(constructor_index r) in
+ let c = List.fold_right (fun id t -> MLlam (id,t)) ids c in
+ let c = ast_lift k c in
+ MLapp (c,a)
+ | MLcase(e,br') ->
+ let new_br =
+ Array.map (fun (n,i,c)->(n,i,iota (k+(List.length i)) c)) br'
+ in MLcase(e, new_br)
+ | _ -> assert false
+ in iota 0
+
+let is_atomic = function
+ | MLrel _ | MLglob _ | MLexn _ | MLdummy -> true
+ | _ -> false
+
+(*S The main simplification function. *)
+
+(* Some beta-iota reductions + simplifications. *)
+
+let rec simpl o = function
+ | MLapp (f, []) ->
+ simpl o f
+ | MLapp (f, a) ->
+ simpl_app o (List.map (simpl o) a) (simpl o f)
+ | MLcase (e,br) ->
+ let br = Array.map (fun (n,l,t) -> (n,l,simpl o t)) br in
+ simpl_case o br (simpl o e)
+ | MLletin(id,c,e) when
+ (id = dummy_name) || (is_atomic c) || (is_atomic e) ||
+ (let n = nb_occur_match e in n = 0 || (n=1 && o.opt_lin_let)) ->
+ simpl o (ast_subst c e)
+ | MLfix(i,ids,c) ->
+ let n = Array.length ids in
+ if ast_occurs_itvl 1 n c.(i) then
+ MLfix (i, ids, Array.map (simpl o) c)
+ else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *)
+ | a -> ast_map (simpl o) a
+
+and simpl_app o a = function
+ | MLapp (f',a') -> simpl_app o (a'@a) f'
+ | MLlam (id,t) when id = dummy_name ->
+ simpl o (MLapp (ast_pop t, List.tl a))
+ | MLlam (id,t) -> (* Beta redex *)
+ (match nb_occur_match t with
+ | 0 -> simpl o (MLapp (ast_pop t, List.tl a))
+ | 1 when o.opt_lin_beta ->
+ simpl o (MLapp (ast_subst (List.hd a) t, List.tl a))
+ | _ ->
+ let a' = List.map (ast_lift 1) (List.tl a) in
+ simpl o (MLletin (id, List.hd a, MLapp (t, a'))))
+ | MLletin (id,e1,e2) when o.opt_let_app ->
+ (* Application of a letin: we push arguments inside *)
+ MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
+ | MLcase (e,br) when o.opt_case_app ->
+ (* Application of a case: we push arguments inside *)
+ let br' =
+ Array.map
+ (fun (n,l,t) ->
+ let k = List.length l in
+ let a' = List.map (ast_lift k) a in
+ (n, l, simpl o (MLapp (t,a')))) br
+ in simpl o (MLcase (e,br'))
+ | (MLdummy | MLexn _) as e -> e
+ (* We just discard arguments in those cases. *)
+ | f -> MLapp (f,a)
+
+and simpl_case o br e =
+ if o.opt_case_iot && (is_iota_gen e) then (* Generalized iota-redex *)
+ simpl o (iota_gen br e)
+ else
+ try (* Does a term [f] exist such as each branch is [(f e)] ? *)
+ if not o.opt_case_idr then raise Impossible;
+ let f = check_generalizable_case o.opt_case_idg br in
+ simpl o (MLapp (MLlam (anonymous,f),[e]))
+ with Impossible ->
+ try (* Is each branch independant of [e] ? *)
+ if not o.opt_case_cst then raise Impossible;
+ check_constant_case br
+ with Impossible ->
+ (* Swap the case and the lam if possible *)
+ if o.opt_case_fun
+ then
+ let ids,br = permut_case_fun br [] in
+ let n = List.length ids in
+ if n <> 0 then named_lams ids (MLcase (ast_lift n e, br))
+ else MLcase (e, br)
+ else MLcase (e,br)
+
+let rec post_simpl = function
+ | MLletin(_,c,e) when (is_atomic (eta_red c)) ->
+ post_simpl (ast_subst (eta_red c) e)
+ | a -> ast_map post_simpl a
+
+(*S Local prop elimination. *)
+(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)
+
+(*s In a list, it selects only the elements corresponding to a [true]
+ in the boolean list [l]. *)
+
+let rec select_via_bl l args = match l,args with
+ | [],_ -> args
+ | true::l,a::args -> a :: (select_via_bl l args)
+ | false::l,a::args -> select_via_bl l args
+ | _ -> assert false
+
+(*s [kill_some_lams] removes some head lambdas according to the bool list [bl].
+ This list is build on the identifier list model: outermost lambda
+ is on the right. [true] means "to keep" and [false] means "to eliminate".
+ [Rels] corresponding to removed lambdas are supposed not to occur, and
+ the other [Rels] are made correct via a [gen_subst].
+ Output is not directly a [ml_ast], compose with [named_lams] if needed. *)
+
+let kill_some_lams bl (ids,c) =
+ let n = List.length bl in
+ let n' = List.fold_left (fun n b -> if b then (n+1) else n) 0 bl in
+ if n = n' then ids,c
+ else if n' = 0 then [],ast_lift (-n) c
+ else begin
+ let v = Array.make n MLdummy in
+ let rec parse_ids i j = function
+ | [] -> ()
+ | true :: l -> v.(i) <- MLrel j; parse_ids (i+1) (j+1) l
+ | false :: l -> parse_ids (i+1) j l
+ in parse_ids 0 1 bl ;
+ select_via_bl bl ids, gen_subst v (n'-n) c
+ end
+
+(*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding
+ to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or
+ if there is no lambda left at all. *)
+
+let kill_dummy_lams c =
+ let ids,c = collect_lams c in
+ let bl = List.map ((<>) dummy_name) ids in
+ if (List.mem true bl) && (List.mem false bl) then
+ let ids',c = kill_some_lams bl (ids,c) in
+ ids, named_lams ids' c
+ else raise Impossible
+
+(*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c]
+ and a signature [s] and builds a eta-long version. *)
+
+(* For example, if [s = [true;true;false;true]] then the output is :
+ [fun idn ... id1 x x _ x -> (c' 4 3 __ 1)] with [c' = lift 4 c] *)
+
+let eta_expansion_sign s (ids,c) =
+ let rec abs ids rels i = function
+ | [] ->
+ let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels
+ in ids, MLapp (ast_lift (i-1) c, a)
+ | true :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l
+ | false :: l -> abs (dummy_name :: ids) (MLdummy :: rels) (i+1) l
+ in abs ids [] 1 s
+
+(*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e]
+ in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas
+ corresponding to [false] in [s]. *)
+
+let case_expunge s e =
+ let m = List.length s in
+ let n = nb_lams e in
+ let p = if m <= n then collect_n_lams m e
+ else eta_expansion_sign (list_skipn n s) (collect_lams e) in
+ kill_some_lams (List.rev s) p
+
+(*s [term_expunge] takes a function [fun idn ... id1 -> c]
+ and a signature [s] and remove dummy lams. The difference
+ with [case_expunge] is that we here leave one dummy lambda
+ if all lambdas are dummy. *)
+
+let term_expunge s (ids,c) =
+ if s = [] then c
+ else
+ let ids,c = kill_some_lams (List.rev s) (ids,c) in
+ if ids = [] then MLlam (dummy_name, ast_lift 1 c)
+ else named_lams ids c
+
+(*s [kill_dummy_args ids t0 t] looks for occurences of [t0] in [t] and
+ purge the args of [t0] corresponding to a [dummy_name].
+ It makes eta-expansion if needed. *)
+
+let kill_dummy_args ids t0 t =
+ let m = List.length ids in
+ let bl = List.rev_map ((<>) dummy_name) ids in
+ let rec killrec n = function
+ | MLapp(e, a) when e = ast_lift n t0 ->
+ let k = max 0 (m - (List.length a)) in
+ let a = List.map (killrec n) a in
+ let a = List.map (ast_lift k) a in
+ let a = select_via_bl bl (a @ (eta_args k)) in
+ named_lams (list_firstn k ids) (MLapp (ast_lift k e, a))
+ | e when e = ast_lift n t0 ->
+ let a = select_via_bl bl (eta_args m) in
+ named_lams ids (MLapp (ast_lift m e, a))
+ | e -> ast_map_lift killrec n e
+ in killrec 0 t
+
+(*s The main function for local [dummy] elimination. *)
+
+let rec kill_dummy = function
+ | MLfix(i,fi,c) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ ast_subst (MLfix (i,fi,c)) (kill_dummy_args ids (MLrel 1) (MLrel 1))
+ with Impossible -> MLfix (i,fi,Array.map kill_dummy c))
+ | MLapp (MLfix (i,fi,c),a) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ let a = List.map (fun t -> ast_lift 1 (kill_dummy t)) a in
+ let e = kill_dummy_args ids (MLrel 1) (MLapp (MLrel 1,a)) in
+ ast_subst (MLfix (i,fi,c)) e
+ with Impossible ->
+ MLapp(MLfix(i,fi,Array.map kill_dummy c),List.map kill_dummy a))
+ | MLletin(id, MLfix (i,fi,c),e) ->
+ (try
+ let ids,c = kill_dummy_fix i fi c in
+ let e = kill_dummy (kill_dummy_args ids (MLrel 1) e) in
+ MLletin(id, MLfix(i,fi,c),e)
+ with Impossible ->
+ MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e))
+ | MLletin(id,c,e) ->
+ (try
+ let ids,c = kill_dummy_lams c in
+ let e = kill_dummy_args ids (MLrel 1) e in
+ MLletin (id, kill_dummy c,kill_dummy e)
+ with Impossible -> MLletin(id,kill_dummy c,kill_dummy e))
+ | a -> ast_map kill_dummy a
+
+and kill_dummy_fix i fi c =
+ let n = Array.length fi in
+ let ids,ci = kill_dummy_lams c.(i) in
+ let c = Array.copy c in c.(i) <- ci;
+ for j = 0 to (n-1) do
+ c.(j) <- kill_dummy (kill_dummy_args ids (MLrel (n-i)) c.(j))
+ done;
+ ids,c
+
+(*s Putting things together. *)
+
+let normalize a =
+ let o = optims () in
+ let a = simpl o a in
+ if o.opt_kill_dum then post_simpl (kill_dummy a) else a
+
+(*S Special treatment of fixpoint for pretty-printing purpose. *)
+
+let general_optimize_fix f ids n args m c =
+ let v = Array.make n 0 in
+ for i=0 to (n-1) do v.(i)<-i done;
+ let aux i = function
+ | MLrel j when v.(j-1)>=0 -> v.(j-1)<-(-i-1)
+ | _ -> raise Impossible
+ in list_iter_i aux args;
+ let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in
+ let new_f = anonym_lams (MLapp (MLrel (n+m+1),args_f)) m in
+ let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in
+ MLfix(0,[|f|],[|new_c|])
+
+let optimize_fix a =
+ if not (optims()).opt_fix_fun then a
+ else
+ let ids,a' = collect_lams a in
+ let n = List.length ids in
+ if n = 0 then a
+ else match a' with
+ | MLfix(_,[|f|],[|c|]) ->
+ let new_f = MLapp (MLrel (n+1),eta_args n) in
+ let new_c = named_lams ids (normalize (ast_subst new_f c))
+ in MLfix(0,[|f|],[|new_c|])
+ | MLapp(a',args) ->
+ let m = List.length args in
+ (match a' with
+ | MLfix(_,_,_) when
+ (test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a')
+ -> a'
+ | MLfix(_,[|f|],[|c|]) ->
+ (try general_optimize_fix f ids n args m c
+ with Impossible ->
+ named_lams ids (MLapp (MLfix (0,[|f|],[|c|]),args)))
+ | _ -> a)
+ | _ -> a
+
+(*S Inlining. *)
+
+(* Utility functions used in the decision of inlining. *)
+
+let rec ml_size = function
+ | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
+ | MLlam(_,t) -> 1 + ml_size t
+ | MLcons(_,l) -> ml_size_list l
+ | MLcase(t,pv) ->
+ 1 + ml_size t + (Array.fold_right (fun (_,_,t) a -> a + ml_size t) pv 0)
+ | MLfix(_,_,f) -> ml_size_array f
+ | MLletin (_,_,t) -> ml_size t
+ | MLmagic t -> ml_size t
+ | _ -> 0
+
+and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l
+
+and ml_size_array l = Array.fold_left (fun a t -> a + ml_size t) 0 l
+
+let is_fix = function MLfix _ -> true | _ -> false
+
+let rec is_constr = function
+ | MLcons _ -> true
+ | MLlam(_,t) -> is_constr t
+ | _ -> false
+
+(*s Strictness *)
+
+(* A variable is strict if the evaluation of the whole term implies
+ the evaluation of this variable. Non-strict variables can be found
+ behind Match, for example. Expanding a term [t] is a good idea when
+ it begins by at least one non-strict lambda, since the corresponding
+ argument to [t] might be unevaluated in the expanded code. *)
+
+exception Toplevel
+
+let lift n l = List.map ((+) n) l
+
+let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l
+
+(* This function returns a list of de Bruijn indices of non-strict variables,
+ or raises [Toplevel] if it has an internal non-strict variable.
+ In fact, not all variables are checked for strictness, only the ones which
+ de Bruijn index is in the candidates list [cand]. The flag [add] controls
+ the behaviour when going through a lambda: should we add the corresponding
+ variable to the candidates? We use this flag to check only the external
+ lambdas, those that will correspond to arguments. *)
+
+let rec non_stricts add cand = function
+ | MLlam (id,t) ->
+ let cand = lift 1 cand in
+ let cand = if add then 1::cand else cand in
+ pop 1 (non_stricts add cand t)
+ | MLrel n ->
+ List.filter ((<>) n) cand
+ | MLapp (MLrel n, _) ->
+ List.filter ((<>) n) cand
+ (* In [(x y)] we say that only x is strict. Cf [sig_rec]. We may *)
+ (* gain something if x is replaced by a function like a projection *)
+ | MLapp (t,l)->
+ let cand = non_stricts false cand t in
+ List.fold_left (non_stricts false) cand l
+ | MLcons (_,l) ->
+ List.fold_left (non_stricts false) cand l
+ | MLletin (_,t1,t2) ->
+ let cand = non_stricts false cand t1 in
+ pop 1 (non_stricts add (lift 1 cand) t2)
+ | MLfix (_,i,f)->
+ let n = Array.length i in
+ let cand = lift n cand in
+ let cand = Array.fold_left (non_stricts false) cand f in
+ pop n cand
+ | MLcase (t,v) ->
+ (* The only interesting case: for a variable to be non-strict, *)
+ (* it is sufficient that it appears non-strict in at least one branch, *)
+ (* so we make an union (in fact a merge). *)
+ let cand = non_stricts false cand t in
+ Array.fold_left
+ (fun c (_,i,t)->
+ let n = List.length i in
+ let cand = lift n cand in
+ let cand = pop n (non_stricts add cand t) in
+ Sort.merge (<=) cand c) [] v
+ (* [merge] may duplicates some indices, but I don't mind. *)
+ | MLmagic t ->
+ non_stricts add cand t
+ | _ ->
+ cand
+
+(* The real test: we are looking for internal non-strict variables, so we start
+ with no candidates, and the only positive answer is via the [Toplevel]
+ exception. *)
+
+let is_not_strict t =
+ try let _ = non_stricts true [] t in false
+ with Toplevel -> true
+
+(*s Inlining decision *)
+
+(* [inline_test] answers the following question:
+ If we could inline [t] (the user said nothing special),
+ should we inline ?
+
+ We expand small terms with at least one non-strict
+ variable (i.e. a variable that may not be evaluated).
+
+ Futhermore we don't expand fixpoints. *)
+
+let inline_test t =
+ not (is_fix (eta_red t)) && (ml_size t < 12 && is_not_strict t)
+
+let manual_inline_list =
+ let mp = MPfile (dirpath_of_string "Coq.Init.Wf") in
+ List.map (fun s -> (make_kn mp empty_dirpath (mk_label s)))
+ [ "well_founded_induction_type"; "well_founded_induction";
+ "Acc_rect"; "Acc_rec" ; "Acc_iter" ]
+
+let manual_inline = function
+ | ConstRef c -> List.mem c manual_inline_list
+ | _ -> false
+
+(* If the user doesn't say he wants to keep [t], we inline in two cases:
+ \begin{itemize}
+ \item the user explicitly requests it
+ \item [expansion_test] answers that the inlining is a good idea, and
+ we are free to act (AutoInline is set)
+ \end{itemize} *)
+
+let inline r t =
+ not (to_keep r) (* The user DOES want to keep it *)
+ && not (is_inline_custom r)
+ && (to_inline r (* The user DOES want to inline it *)
+ || (auto_inline () && lang () <> Haskell && not (is_projection r)
+ && (is_recursor r || manual_inline r || inline_test t)))
+