summaryrefslogtreecommitdiff
path: root/contrib/dp/zenon.v
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/dp/zenon.v')
-rw-r--r--contrib/dp/zenon.v94
1 files changed, 94 insertions, 0 deletions
diff --git a/contrib/dp/zenon.v b/contrib/dp/zenon.v
new file mode 100644
index 00000000..4ad00a11
--- /dev/null
+++ b/contrib/dp/zenon.v
@@ -0,0 +1,94 @@
+(* Copyright 2004 INRIA *)
+(* $Id: zenon.v 10739 2008-04-01 14:45:20Z herbelin $ *)
+
+Require Export Classical.
+
+Lemma zenon_nottrue :
+ (~True -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_noteq : forall (T : Type) (t : T),
+ ((t <> t) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_and : forall P Q : Prop,
+ (P -> Q -> False) -> (P /\ Q -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_or : forall P Q : Prop,
+ (P -> False) -> (Q -> False) -> (P \/ Q -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_imply : forall P Q : Prop,
+ (~P -> False) -> (Q -> False) -> ((P -> Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_equiv : forall P Q : Prop,
+ (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_notand : forall P Q : Prop,
+ (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_notor : forall P Q : Prop,
+ (~P -> ~Q -> False) -> (~(P \/ Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_notimply : forall P Q : Prop,
+ (P -> ~Q -> False) -> (~(P -> Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_notequiv : forall P Q : Prop,
+ (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False).
+Proof. tauto. Qed.
+
+Lemma zenon_ex : forall (T : Type) (P : T -> Prop),
+ (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False).
+Proof. firstorder. Qed.
+
+Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T),
+ ((P t) -> False) -> ((forall x : T, (P x)) -> False).
+Proof. firstorder. Qed.
+
+Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T),
+ (~(P t) -> False) -> (~(exists x : T, (P x)) -> False).
+Proof. firstorder. Qed.
+
+Lemma zenon_notall : forall (T : Type) (P : T -> Prop),
+ (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False).
+Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed.
+
+Lemma zenon_equal_base : forall (T : Type) (f : T), f = f.
+Proof. auto. Qed.
+
+Lemma zenon_equal_step :
+ forall (S T : Type) (fa fb : S -> T) (a b : S),
+ (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)).
+Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed.
+
+Lemma zenon_pnotp : forall P Q : Prop,
+ (P = Q) -> (P -> ~Q -> False).
+Proof. intros P Q Ha. rewrite Ha. auto. Qed.
+
+Lemma zenon_notequal : forall (T : Type) (a b : T),
+ (a = b) -> (a <> b -> False).
+Proof. auto. Qed.
+
+Ltac zenon_intro id :=
+ intro id || let nid := fresh in (intro nid; clear nid)
+.
+
+Definition zenon_and_s := fun P Q a b => zenon_and P Q b a.
+Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a.
+Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a.
+Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a.
+Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a.
+Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a.
+Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a.
+Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a.
+Definition zenon_ex_s := fun T P a b => zenon_ex T P b a.
+Definition zenon_notall_s := fun T P a b => zenon_notall T P b a.
+
+Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b.
+Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x.