summaryrefslogtreecommitdiff
path: root/contrib/cc/cctac.ml
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/cc/cctac.ml')
-rw-r--r--contrib/cc/cctac.ml336
1 files changed, 336 insertions, 0 deletions
diff --git a/contrib/cc/cctac.ml b/contrib/cc/cctac.ml
new file mode 100644
index 00000000..4a719f38
--- /dev/null
+++ b/contrib/cc/cctac.ml
@@ -0,0 +1,336 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* $Id: cctac.ml 7909 2006-01-21 11:09:18Z herbelin $ *)
+
+(* This file is the interface between the c-c algorithm and Coq *)
+
+open Evd
+open Proof_type
+open Names
+open Libnames
+open Nameops
+open Inductiveops
+open Declarations
+open Term
+open Termops
+open Tacmach
+open Tactics
+open Tacticals
+open Ccalgo
+open Tacinterp
+open Ccproof
+open Pp
+open Util
+open Format
+
+let constant dir s = lazy (Coqlib.gen_constant "CC" dir s)
+
+let _f_equal = constant ["Init";"Logic"] "f_equal"
+
+let _eq_rect = constant ["Init";"Logic"] "eq_rect"
+
+let _eq = constant ["Init";"Logic"] "eq"
+
+let _False = constant ["Init";"Logic"] "False"
+
+(* decompose member of equality in an applicative format *)
+
+let whd env=
+ let infos=Closure.create_clos_infos Closure.betaiotazeta env in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+let whd_delta env=
+ let infos=Closure.create_clos_infos Closure.betadeltaiota env in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+let rec decompose_term env t=
+ match kind_of_term (whd env t) with
+ App (f,args)->
+ let tf=decompose_term env f in
+ let targs=Array.map (decompose_term env) args in
+ Array.fold_left (fun s t->Appli (s,t)) tf targs
+ | Construct c->
+ let (oib,_)=Global.lookup_inductive (fst c) in
+ let nargs=mis_constructor_nargs_env env c in
+ Constructor {ci_constr=c;
+ ci_arity=nargs;
+ ci_nhyps=nargs-oib.mind_nparams}
+ | _ ->(Symb t)
+
+(* decompose equality in members and type *)
+
+let atom_of_constr env term =
+ let wh = (whd_delta env term) in
+ let kot = kind_of_term wh in
+ match kot with
+ App (f,args)->
+ if eq_constr f (Lazy.force _eq) && (Array.length args)=3
+ then `Eq (args.(0),
+ decompose_term env args.(1),
+ decompose_term env args.(2))
+ else `Other (decompose_term env term)
+ | _ -> `Other (decompose_term env term)
+
+let rec litteral_of_constr env term=
+ match kind_of_term (whd_delta env term) with
+ Prod (_,atom,ff) ->
+ if eq_constr ff (Lazy.force _False) then
+ match (atom_of_constr env atom) with
+ `Eq(t,a,b) -> `Neq(t,a,b)
+ | `Other(p) -> `Nother(p)
+ else
+ `Other (decompose_term env term)
+ | _ -> atom_of_constr env term
+
+(* rebuild a term from applicative format *)
+
+let rec make_term = function
+ Symb s->s
+ | Eps -> anomaly "epsilon constant has no value"
+ | Constructor cinfo -> mkConstruct cinfo.ci_constr
+ | Appli (s1,s2)->
+ make_app [(make_term s2)] s1
+and make_app l=function
+ Appli (s1,s2)->make_app ((make_term s2)::l) s1
+ | other -> applistc (make_term other) l
+
+(* store all equalities from the context *)
+
+let rec make_prb gls additionnal_terms =
+ let env=pf_env gls in
+ let state = empty () in
+ let pos_hyps = ref [] in
+ let neg_hyps =ref [] in
+ List.iter
+ (fun c ->
+ let t = decompose_term env c in
+ ignore (add_term state t)) additionnal_terms;
+ List.iter
+ (fun (id,_,e) ->
+ begin
+ match litteral_of_constr env e with
+ `Eq (t,a,b) -> add_equality state id a b
+ | `Neq (t,a,b) -> add_disequality state (Hyp id) a b
+ | `Other ph ->
+ List.iter
+ (fun (idn,nh) ->
+ add_disequality state (HeqnH (id,idn)) ph nh)
+ !neg_hyps;
+ pos_hyps:=(id,ph):: !pos_hyps
+ | `Nother nh ->
+ List.iter
+ (fun (idp,ph) ->
+ add_disequality state (HeqnH (idp,id)) ph nh)
+ !pos_hyps;
+ neg_hyps:=(id,nh):: !neg_hyps
+ end) (Environ.named_context_of_val gls.it.evar_hyps);
+ begin
+ match atom_of_constr env gls.it.evar_concl with
+ `Eq (t,a,b) -> add_disequality state Goal a b
+ | `Other g ->
+ List.iter
+ (fun (idp,ph) ->
+ add_disequality state (HeqG idp) ph g) !pos_hyps
+ end;
+ state
+
+(* indhyps builds the array of arrays of constructor hyps for (ind largs) *)
+
+let build_projection intype outtype (cstr:constructor) special default gls=
+ let env=pf_env gls in
+ let (h,argv) =
+ try destApp intype with
+ Invalid_argument _ -> (intype,[||]) in
+ let ind=destInd h in
+ let types=Inductiveops.arities_of_constructors env ind in
+ let lp=Array.length types in
+ let ci=(snd cstr)-1 in
+ let branch i=
+ let ti=Term.prod_appvect types.(i) argv in
+ let rc=fst (Sign.decompose_prod_assum ti) in
+ let head=
+ if i=ci then special else default in
+ Sign.it_mkLambda_or_LetIn head rc in
+ let branches=Array.init lp branch in
+ let casee=mkRel 1 in
+ let pred=mkLambda(Anonymous,intype,outtype) in
+ let case_info=make_default_case_info (pf_env gls) RegularStyle ind in
+ let body= mkCase(case_info, pred, casee, branches) in
+ let id=pf_get_new_id (id_of_string "t") gls in
+ mkLambda(Name id,intype,body)
+
+(* generate an adhoc tactic following the proof tree *)
+
+let rec proof_tac axioms=function
+ Ax id->exact_check (mkVar id)
+ | SymAx id->tclTHEN symmetry (exact_check (mkVar id))
+ | Refl t->reflexivity
+ | Trans (p1,p2)->let t=(make_term (snd (type_proof axioms p1))) in
+ (tclTHENS (transitivity t)
+ [(proof_tac axioms p1);(proof_tac axioms p2)])
+ | Congr (p1,p2)->
+ fun gls->
+ let (f1,f2)=(type_proof axioms p1)
+ and (x1,x2)=(type_proof axioms p2) in
+ let tf1=make_term f1 and tx1=make_term x1
+ and tf2=make_term f2 and tx2=make_term x2 in
+ let typf=pf_type_of gls tf1 and typx=pf_type_of gls tx1
+ and typfx=pf_type_of gls (mkApp(tf1,[|tx1|])) in
+ let id=pf_get_new_id (id_of_string "f") gls in
+ let appx1=mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in
+ let lemma1=
+ mkApp(Lazy.force _f_equal,[|typf;typfx;appx1;tf1;tf2|])
+ and lemma2=
+ mkApp(Lazy.force _f_equal,[|typx;typfx;tf2;tx1;tx2|]) in
+ (tclTHENS (transitivity (mkApp(tf2,[|tx1|])))
+ [tclTHEN (apply lemma1) (proof_tac axioms p1);
+ tclFIRST
+ [tclTHEN (apply lemma2) (proof_tac axioms p2);
+ reflexivity;
+ fun gls ->
+ errorlabstrm "Congruence"
+ (Pp.str
+ "I don't know how to handle dependent equality")]]
+ gls)
+ | Inject (prf,cstr,nargs,argind) as gprf->
+ (fun gls ->
+ let ti,tj=type_proof axioms prf in
+ let ai,aj=type_proof axioms gprf in
+ let cti=make_term ti in
+ let ctj=make_term tj in
+ let cai=make_term ai in
+ let intype=pf_type_of gls cti in
+ let outtype=pf_type_of gls cai in
+ let special=mkRel (1+nargs-argind) in
+ let default=make_term ai in
+ let proj=build_projection intype outtype cstr special default gls in
+ let injt=
+ mkApp (Lazy.force _f_equal,[|intype;outtype;proj;cti;ctj|]) in
+ tclTHEN (apply injt) (proof_tac axioms prf) gls)
+
+let refute_tac axioms id t1 t2 p gls =
+ let tt1=make_term t1 and tt2=make_term t2 in
+ let intype=pf_type_of gls tt1 in
+ let neweq=
+ mkApp(Lazy.force _eq,
+ [|intype;tt1;tt2|]) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let false_t=mkApp (mkVar id,[|mkVar hid|]) in
+ tclTHENS (true_cut (Name hid) neweq)
+ [proof_tac axioms p; simplest_elim false_t] gls
+
+let convert_to_goal_tac axioms id t1 t2 p gls =
+ let tt1=make_term t1 and tt2=make_term t2 in
+ let sort=pf_type_of gls tt2 in
+ let neweq=mkApp(Lazy.force _eq,[|sort;tt1;tt2|]) in
+ let e=pf_get_new_id (id_of_string "e") gls in
+ let x=pf_get_new_id (id_of_string "X") gls in
+ let identity=mkLambda (Name x,sort,mkRel 1) in
+ let endt=mkApp (Lazy.force _eq_rect,
+ [|sort;tt1;identity;mkVar id;tt2;mkVar e|]) in
+ tclTHENS (true_cut (Name e) neweq)
+ [proof_tac axioms p;exact_check endt] gls
+
+let convert_to_hyp_tac axioms id1 t1 id2 t2 p gls =
+ let tt2=make_term t2 in
+ let h=pf_get_new_id (id_of_string "H") gls in
+ let false_t=mkApp (mkVar id2,[|mkVar h|]) in
+ tclTHENS (true_cut (Name h) tt2)
+ [convert_to_goal_tac axioms id1 t1 t2 p;
+ simplest_elim false_t] gls
+
+let discriminate_tac axioms cstr p gls =
+ let t1,t2=type_proof axioms p in
+ let tt1=make_term t1 and tt2=make_term t2 in
+ let intype=pf_type_of gls tt1 in
+ let concl=pf_concl gls in
+ let outsort=mkType (new_univ ()) in
+ let xid=pf_get_new_id (id_of_string "X") gls in
+ let tid=pf_get_new_id (id_of_string "t") gls in
+ let identity=mkLambda(Name xid,outsort,mkLambda(Name tid,mkRel 1,mkRel 1)) in
+ let trivial=pf_type_of gls identity in
+ let outtype=mkType (new_univ ()) in
+ let pred=mkLambda(Name xid,outtype,mkRel 1) in
+ let hid=pf_get_new_id (id_of_string "Heq") gls in
+ let proj=build_projection intype outtype cstr trivial concl gls in
+ let injt=mkApp (Lazy.force _f_equal,
+ [|intype;outtype;proj;tt1;tt2;mkVar hid|]) in
+ let endt=mkApp (Lazy.force _eq_rect,
+ [|outtype;trivial;pred;identity;concl;injt|]) in
+ let neweq=mkApp(Lazy.force _eq,[|intype;tt1;tt2|]) in
+ tclTHENS (true_cut (Name hid) neweq)
+ [proof_tac axioms p;exact_check endt] gls
+
+(* wrap everything *)
+
+let build_term_to_complete uf meta pac =
+ let cinfo = get_constructor_info uf pac.cnode in
+ let real_args = List.map (fun i -> make_term (term uf i)) pac.args in
+ let dummy_args = List.rev (list_tabulate meta pac.arity) in
+ let all_args = List.rev_append real_args dummy_args in
+ applistc (mkConstruct cinfo.ci_constr) all_args
+
+let cc_tactic additionnal_terms gls=
+ Coqlib.check_required_library ["Coq";"Init";"Logic"];
+ let _ = debug Pp.msgnl (Pp.str "Reading subgoal ...") in
+ let state = make_prb gls additionnal_terms in
+ let _ = debug Pp.msgnl (Pp.str "Problem built, solving ...") in
+ let sol = execute true state in
+ let _ = debug Pp.msgnl (Pp.str "Computation completed.") in
+ let uf=forest state in
+ match sol with
+ None -> tclFAIL 0 (str "congruence failed") gls
+ | Some reason ->
+ debug Pp.msgnl (Pp.str "Goal solved, generating proof ...");
+ match reason with
+ Discrimination (i,ipac,j,jpac) ->
+ let p=build_proof uf (`Discr (i,ipac,j,jpac)) in
+ let cstr=(get_constructor_info uf ipac.cnode).ci_constr in
+ discriminate_tac (axioms uf) cstr p gls
+ | Incomplete ->
+ let metacnt = ref 0 in
+ let newmeta _ = incr metacnt; mkMeta !metacnt in
+ let terms_to_complete =
+ List.map
+ (build_term_to_complete uf newmeta)
+ (epsilons uf) in
+ Pp.msgnl
+ (Pp.str "Goal is solvable by congruence but \
+ some arguments are missing.");
+ Pp.msgnl
+ (Pp.str " Try " ++
+ hov 8
+ begin
+ str "\"congruence with (" ++
+ prlist_with_sep
+ (fun () -> str ")" ++ pr_spc () ++ str "(")
+ (print_constr_env (pf_env gls))
+ terms_to_complete ++
+ str ")\","
+ end);
+ Pp.msgnl
+ (Pp.str " replacing metavariables by arbitrary terms.");
+ tclFAIL 0 (str "Incomplete") gls
+ | Contradiction dis ->
+ let p=build_proof uf (`Prove (dis.lhs,dis.rhs)) in
+ let ta=term uf dis.lhs and tb=term uf dis.rhs in
+ let axioms = axioms uf in
+ match dis.rule with
+ Goal -> proof_tac axioms p gls
+ | Hyp id -> refute_tac axioms id ta tb p gls
+ | HeqG id ->
+ convert_to_goal_tac axioms id ta tb p gls
+ | HeqnH (ida,idb) ->
+ convert_to_hyp_tac axioms ida ta idb tb p gls
+
+
+let cc_fail gls =
+ errorlabstrm "Congruence" (Pp.str "congruence failed.")