diff options
Diffstat (limited to 'contrib/cc/ccproof.ml')
-rw-r--r-- | contrib/cc/ccproof.ml | 89 |
1 files changed, 29 insertions, 60 deletions
diff --git a/contrib/cc/ccproof.ml b/contrib/cc/ccproof.ml index fa525e65..1200dc2e 100644 --- a/contrib/cc/ccproof.ml +++ b/contrib/cc/ccproof.ml @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(* $Id: ccproof.ml,v 1.8.2.1 2004/07/16 19:29:58 herbelin Exp $ *) +(* $Id: ccproof.ml 7298 2005-08-17 12:56:38Z corbinea $ *) (* This file uses the (non-compressed) union-find structure to generate *) (* proof-trees that will be transformed into proof-terms in cctac.ml4 *) @@ -51,8 +51,8 @@ let pcongr=function let build_proof uf= let rec equal_proof i j= - if i=j then Refl (UF.term uf i) else - let (li,lj)=UF.join_path uf i j in + if i=j then Refl (term uf i) else + let (li,lj)=join_path uf i j in ptrans (path_proof i li,psym (path_proof j lj)) and edge_proof ((i,j),eq)= @@ -60,45 +60,44 @@ let build_proof uf= let pj=psym (equal_proof j eq.rhs) in let pij= match eq.rule with - Axiom s->Ax s + Axiom (s,reversed)->if reversed then SymAx s else Ax s | Congruence ->congr_proof eq.lhs eq.rhs - | Injection (ti,tj,c,a) -> - let p=equal_proof ti tj in - let p1=constr_proof ti ti c 0 - and p2=constr_proof tj tj c 0 in - match UF.term uf c with - Constructor (cstr,nargs,nhyps) -> - Inject(ptrans(psym p1,ptrans(p,p2)),cstr,nhyps,a) - | _ -> anomaly "injection on non-constructor terms" + | Injection (ti,ipac,tj,jpac,k) -> + let p=ind_proof ti ipac tj jpac in + let cinfo= get_constructor_info uf ipac.cnode in + Inject(p,cinfo.ci_constr,cinfo.ci_nhyps,k) in ptrans(ptrans (pi,pij),pj) - and constr_proof i j c n= - try - let nj=UF.mem_node_pac uf j (c,n) in - let (ni,arg)=UF.subterms uf j in - let p=constr_proof ni nj c (n+1) in - let targ=UF.term uf arg in - ptrans (equal_proof i j, pcongr (p,Refl targ)) - with Not_found->equal_proof i j + and constr_proof i t ipac= + if ipac.args=[] then + equal_proof i t + else + let npac=tail_pac ipac in + let (j,arg)=subterms uf t in + let targ=term uf arg in + let rj=find uf j in + let u=find_pac uf rj npac in + let p=constr_proof j u npac in + ptrans (equal_proof i t, pcongr (p,Refl targ)) and path_proof i=function - [] -> Refl (UF.term uf i) + [] -> Refl (term uf i) | x::q->ptrans (path_proof (snd (fst x)) q,edge_proof x) and congr_proof i j= - let (i1,i2) = UF.subterms uf i - and (j1,j2) = UF.subterms uf j in + let (i1,i2) = subterms uf i + and (j1,j2) = subterms uf j in pcongr (equal_proof i1 j1, equal_proof i2 j2) - and discr_proof i ci j cj= + and ind_proof i ipac j jpac= let p=equal_proof i j - and p1=constr_proof i i ci 0 - and p2=constr_proof j j cj 0 in + and p1=constr_proof i i ipac + and p2=constr_proof j j jpac in ptrans(psym p1,ptrans(p,p2)) in function - `Prove_goal (i,j) | `Refute_hyp (i,j) -> equal_proof i j - | `Discriminate (i,ci,j,cj)-> discr_proof i ci j cj + `Prove (i,j) -> equal_proof i j + | `Discr (i,ci,j,cj)-> ind_proof i ci j cj let rec nth_arg t n= match t with @@ -110,8 +109,8 @@ let rec nth_arg t n= let rec type_proof axioms p= match p with - Ax s->List.assoc s axioms - | SymAx s-> let (t1,t2)=List.assoc s axioms in (t2,t1) + Ax s->Hashtbl.find axioms s + | SymAx s-> let (t1,t2)=Hashtbl.find axioms s in (t2,t1) | Refl t-> t,t | Trans (p1,p2)-> let (s1,t1)=type_proof axioms p1 @@ -125,33 +124,3 @@ let rec type_proof axioms p= let (ti,tj)=type_proof axioms p in nth_arg ti (n-a),nth_arg tj (n-a) -let by_contradiction uf diseq axioms disaxioms= - try - let id,cpl=find_contradiction uf diseq in - let prf=build_proof uf (`Refute_hyp cpl) in - if List.assoc id disaxioms=type_proof axioms prf then - `Refute_hyp (id,prf) - else - anomaly "wrong proof generated" - with Not_found -> - errorlabstrm "Congruence" (Pp.str "I couldn't solve goal") - -let cc_proof axioms disaxioms glo= - try - let uf=make_uf axioms in - let diseq=add_disaxioms uf disaxioms in - match glo with - Some cpl -> - let goal=add_one_diseq uf cpl in cc uf; - if check_equal uf goal then - let prf=build_proof uf (`Prove_goal goal) in - if cpl=type_proof axioms prf then - `Prove_goal prf - else anomaly "wrong proof generated" - else by_contradiction uf diseq axioms disaxioms - | None -> cc uf; by_contradiction uf diseq axioms disaxioms - with UF.Discriminable (i,ci,j,cj,uf) -> - let prf=build_proof uf (`Discriminate (i,ci,j,cj)) in - `Discriminate (UF.get_constructor uf ci,prf) - - |