summaryrefslogtreecommitdiff
path: root/theories
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:13:01 +0200
committerGravatar Samuel Mimram <smimram@debian.org>2008-07-25 15:13:01 +0200
commitd18b6226c9ecdb0ebbef6d29fb9f0c09ba78a5fa (patch)
treef9a2c15acb3448f4e78f4e8b7328f751fb144aa0 /theories
parent4892a9c7ae62f552fa42701788b2bd08a7f3bc08 (diff)
parenta0cfa4f118023d35b767a999d5a2ac4b082857b4 (diff)
Merge commit 'upstream/8.2.beta3+dfsg'
Diffstat (limited to 'theories')
-rw-r--r--theories/Arith/Arith_base.v4
-rw-r--r--theories/Arith/Compare_dec.v6
-rw-r--r--theories/Arith/Div.v64
-rw-r--r--theories/Arith/Div2.v6
-rw-r--r--theories/Arith/EqNat.v12
-rw-r--r--theories/Arith/Even.v4
-rw-r--r--theories/Arith/Max.v11
-rw-r--r--theories/Arith/Min.v19
-rw-r--r--theories/Arith/Minus.v53
-rw-r--r--theories/Arith/Mult.v41
-rw-r--r--theories/Arith/Peano_dec.v2
-rw-r--r--theories/Arith/Plus.v12
-rw-r--r--theories/Arith/Wf_nat.v76
-rw-r--r--theories/Bool/Bool.v84
-rw-r--r--theories/Bool/Bvector.v87
-rw-r--r--theories/Classes/EquivDec.v158
-rw-r--r--theories/Classes/Equivalence.v144
-rw-r--r--theories/Classes/Functions.v42
-rw-r--r--theories/Classes/Init.v21
-rw-r--r--theories/Classes/Morphisms.v467
-rw-r--r--theories/Classes/Morphisms_Prop.v132
-rw-r--r--theories/Classes/Morphisms_Relations.v50
-rw-r--r--theories/Classes/RelationClasses.v400
-rw-r--r--theories/Classes/SetoidAxioms.v35
-rw-r--r--theories/Classes/SetoidClass.v181
-rw-r--r--theories/Classes/SetoidDec.v126
-rw-r--r--theories/Classes/SetoidTactics.v176
-rw-r--r--theories/FSets/FMapAVL.v2773
-rw-r--r--theories/FSets/FMapFacts.v1170
-rw-r--r--theories/FSets/FMapFullAVL.v823
-rw-r--r--theories/FSets/FMapIntMap.v622
-rw-r--r--theories/FSets/FMapInterface.v233
-rw-r--r--theories/FSets/FMapList.v120
-rw-r--r--theories/FSets/FMapPositive.v102
-rw-r--r--theories/FSets/FMapWeak.v15
-rw-r--r--theories/FSets/FMapWeakFacts.v599
-rw-r--r--theories/FSets/FMapWeakInterface.v201
-rw-r--r--theories/FSets/FMapWeakList.v127
-rw-r--r--theories/FSets/FMaps.v14
-rw-r--r--theories/FSets/FSetAVL.v3351
-rw-r--r--theories/FSets/FSetBridge.v104
-rw-r--r--theories/FSets/FSetDecide.v841
-rw-r--r--theories/FSets/FSetEqProperties.v167
-rw-r--r--theories/FSets/FSetFacts.v120
-rw-r--r--theories/FSets/FSetFullAVL.v1125
-rw-r--r--theories/FSets/FSetInterface.v265
-rw-r--r--theories/FSets/FSetList.v36
-rw-r--r--theories/FSets/FSetProperties.v806
-rw-r--r--theories/FSets/FSetToFiniteSet.v46
-rw-r--r--theories/FSets/FSetWeak.v16
-rw-r--r--theories/FSets/FSetWeakFacts.v421
-rw-r--r--theories/FSets/FSetWeakInterface.v251
-rw-r--r--theories/FSets/FSetWeakList.v114
-rw-r--r--theories/FSets/FSetWeakProperties.v896
-rw-r--r--theories/FSets/FSets.v8
-rw-r--r--theories/FSets/OrderedType.v36
-rw-r--r--theories/FSets/OrderedTypeAlt.v24
-rw-r--r--theories/FSets/OrderedTypeEx.v27
-rw-r--r--theories/Init/Datatypes.v60
-rw-r--r--theories/Init/Logic.v135
-rw-r--r--theories/Init/Logic_Type.v8
-rw-r--r--theories/Init/Notations.v11
-rw-r--r--theories/Init/Peano.v24
-rw-r--r--theories/Init/Prelude.v6
-rw-r--r--theories/Init/Specif.v21
-rw-r--r--theories/Init/Tactics.v154
-rw-r--r--theories/Init/Wf.v69
-rw-r--r--theories/IntMap/.depend48
-rw-r--r--theories/IntMap/Adalloc.v94
-rw-r--r--theories/IntMap/Fset.v371
-rw-r--r--theories/IntMap/Lsort.v413
-rw-r--r--theories/IntMap/Map.v869
-rw-r--r--theories/IntMap/Mapaxioms.v761
-rw-r--r--theories/IntMap/Mapc.v539
-rw-r--r--theories/IntMap/Mapcanon.v401
-rw-r--r--theories/IntMap/Mapcard.v764
-rw-r--r--theories/IntMap/Mapfold.v425
-rw-r--r--theories/IntMap/Mapiter.v618
-rw-r--r--theories/IntMap/Maplists.v438
-rw-r--r--theories/IntMap/Mapsubset.v605
-rw-r--r--theories/IntMap/intro.tex6
-rw-r--r--theories/Lists/List.v115
-rw-r--r--theories/Lists/ListSet.v10
-rw-r--r--theories/Lists/ListTactics.v2
-rw-r--r--theories/Lists/SetoidList.v497
-rw-r--r--theories/Lists/StreamMemo.v205
-rw-r--r--theories/Lists/Streams.v84
-rw-r--r--theories/Logic/ChoiceFacts.v264
-rw-r--r--theories/Logic/ClassicalChoice.v12
-rw-r--r--theories/Logic/ClassicalDescription.v13
-rw-r--r--theories/Logic/ClassicalEpsilon.v8
-rw-r--r--theories/Logic/ClassicalFacts.v35
-rw-r--r--theories/Logic/ClassicalUniqueChoice.v8
-rw-r--r--theories/Logic/ConstructiveEpsilon.v32
-rw-r--r--theories/Logic/Decidable.v161
-rw-r--r--theories/Logic/DecidableType.v25
-rw-r--r--theories/Logic/DecidableTypeEx.v71
-rw-r--r--theories/Logic/Description.v21
-rw-r--r--theories/Logic/Epsilon.v72
-rw-r--r--theories/Logic/EqdepFacts.v23
-rw-r--r--theories/Logic/Eqdep_dec.v23
-rw-r--r--theories/Logic/IndefiniteDescription.v39
-rw-r--r--theories/Logic/JMeq.v37
-rw-r--r--theories/Logic/SetIsType.v17
-rw-r--r--theories/NArith/BinNat.v180
-rw-r--r--theories/NArith/BinPos.v1171
-rw-r--r--theories/NArith/NArith.v4
-rw-r--r--theories/NArith/Ndec.v182
-rw-r--r--theories/NArith/Ndigits.v9
-rw-r--r--theories/NArith/Ndist.v2
-rw-r--r--theories/NArith/Nnat.v205
-rw-r--r--theories/NArith/Pnat.v4
-rw-r--r--theories/Numbers/BigNumPrelude.v372
-rw-r--r--theories/Numbers/Cyclic/Abstract/CyclicAxioms.v375
-rw-r--r--theories/Numbers/Cyclic/Abstract/NZCyclic.v236
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v318
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v446
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v885
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v1540
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v528
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v487
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v628
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v1389
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v357
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v71
-rw-r--r--theories/Numbers/Cyclic/Int31/Cyclic31.v2516
-rw-r--r--theories/Numbers/Cyclic/Int31/Int31.v469
-rw-r--r--theories/Numbers/Cyclic/ZModulo/ZModulo.v946
-rw-r--r--theories/Numbers/Integer/Abstract/ZAdd.v345
-rw-r--r--theories/Numbers/Integer/Abstract/ZAddOrder.v373
-rw-r--r--theories/Numbers/Integer/Abstract/ZAxioms.v65
-rw-r--r--theories/Numbers/Integer/Abstract/ZBase.v86
-rw-r--r--theories/Numbers/Integer/Abstract/ZDomain.v69
-rw-r--r--theories/Numbers/Integer/Abstract/ZLt.v432
-rw-r--r--theories/Numbers/Integer/Abstract/ZMul.v115
-rw-r--r--theories/Numbers/Integer/Abstract/ZMulOrder.v343
-rw-r--r--theories/Numbers/Integer/BigZ/BigZ.v109
-rw-r--r--theories/Numbers/Integer/BigZ/ZMake.v491
-rw-r--r--theories/Numbers/Integer/Binary/ZBinary.v249
-rw-r--r--theories/Numbers/Integer/NatPairs/ZNatPairs.v422
-rw-r--r--theories/Numbers/Integer/SpecViaZ/ZSig.v117
-rw-r--r--theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v306
-rw-r--r--theories/Numbers/NaryFunctions.v142
-rw-r--r--theories/Numbers/NatInt/NZAdd.v91
-rw-r--r--theories/Numbers/NatInt/NZAddOrder.v166
-rw-r--r--theories/Numbers/NatInt/NZAxioms.v99
-rw-r--r--theories/Numbers/NatInt/NZBase.v84
-rw-r--r--theories/Numbers/NatInt/NZMul.v80
-rw-r--r--theories/Numbers/NatInt/NZMulOrder.v310
-rw-r--r--theories/Numbers/NatInt/NZOrder.v666
-rw-r--r--theories/Numbers/Natural/Abstract/NAdd.v156
-rw-r--r--theories/Numbers/Natural/Abstract/NAddOrder.v114
-rw-r--r--theories/Numbers/Natural/Abstract/NAxioms.v71
-rw-r--r--theories/Numbers/Natural/Abstract/NBase.v288
-rw-r--r--theories/Numbers/Natural/Abstract/NDefOps.v298
-rw-r--r--theories/Numbers/Natural/Abstract/NIso.v122
-rw-r--r--theories/Numbers/Natural/Abstract/NMul.v87
-rw-r--r--theories/Numbers/Natural/Abstract/NMulOrder.v131
-rw-r--r--theories/Numbers/Natural/Abstract/NOrder.v539
-rw-r--r--theories/Numbers/Natural/Abstract/NStrongRec.v133
-rw-r--r--theories/Numbers/Natural/Abstract/NSub.v180
-rw-r--r--theories/Numbers/Natural/BigN/BigN.v83
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml3166
-rw-r--r--theories/Numbers/Natural/BigN/Nbasic.v514
-rw-r--r--theories/Numbers/Natural/Binary/NBinDefs.v267
-rw-r--r--theories/Numbers/Natural/Binary/NBinary.v (renamed from theories/IntMap/Allmaps.v)20
-rw-r--r--theories/Numbers/Natural/Peano/NPeano.v220
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSig.v115
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v356
-rw-r--r--theories/Numbers/NumPrelude.v267
-rw-r--r--theories/Numbers/Rational/BigQ/BigQ.v35
-rw-r--r--theories/Numbers/Rational/BigQ/Q0Make.v1412
-rw-r--r--theories/Numbers/Rational/BigQ/QMake_base.v34
-rw-r--r--theories/Numbers/Rational/BigQ/QbiMake.v1066
-rw-r--r--theories/Numbers/Rational/BigQ/QifMake.v979
-rw-r--r--theories/Numbers/Rational/BigQ/QpMake.v901
-rw-r--r--theories/Numbers/Rational/BigQ/QvMake.v1151
-rw-r--r--theories/Numbers/Rational/SpecViaQ/QSig.v84
-rw-r--r--theories/Program/Basics.v57
-rw-r--r--theories/Program/Combinators.v71
-rw-r--r--theories/Program/Equality.v264
-rw-r--r--theories/Program/FunctionalExtensionality.v109
-rw-r--r--theories/Program/Program.v7
-rw-r--r--theories/Program/Subset.v116
-rw-r--r--theories/Program/Syntax.v59
-rw-r--r--theories/Program/Tactics.v234
-rw-r--r--theories/Program/Utils.v56
-rw-r--r--theories/Program/Wf.v148
-rw-r--r--theories/QArith/QArith.v2
-rw-r--r--theories/QArith/QArith_base.v183
-rw-r--r--theories/QArith/Qabs.v124
-rw-r--r--theories/QArith/Qcanon.v38
-rw-r--r--theories/QArith/Qfield.v153
-rw-r--r--theories/QArith/Qpower.v239
-rw-r--r--theories/QArith/Qreals.v32
-rw-r--r--theories/QArith/Qreduction.v26
-rw-r--r--theories/QArith/Qring.v97
-rw-r--r--theories/QArith/Qround.v139
-rw-r--r--theories/Reals/Alembert.v70
-rw-r--r--theories/Reals/AltSeries.v14
-rw-r--r--theories/Reals/ArithProp.v2
-rw-r--r--theories/Reals/Cos_plus.v6
-rw-r--r--theories/Reals/Cos_rel.v8
-rw-r--r--theories/Reals/DiscrR.v5
-rw-r--r--theories/Reals/Exp_prop.v20
-rw-r--r--theories/Reals/LegacyRfield.v2
-rw-r--r--theories/Reals/MVT.v11
-rw-r--r--theories/Reals/NewtonInt.v39
-rw-r--r--theories/Reals/PSeries_reg.v29
-rw-r--r--theories/Reals/PartSum.v12
-rw-r--r--theories/Reals/RIneq.v1091
-rw-r--r--theories/Reals/R_sqr.v5
-rw-r--r--theories/Reals/R_sqrt.v5
-rw-r--r--theories/Reals/Ranalysis.v5
-rw-r--r--theories/Reals/Ranalysis1.v53
-rw-r--r--theories/Reals/Ranalysis2.v5
-rw-r--r--theories/Reals/Ranalysis3.v13
-rw-r--r--theories/Reals/Ranalysis4.v21
-rw-r--r--theories/Reals/Raxioms.v6
-rw-r--r--theories/Reals/Rbasic_fun.v5
-rw-r--r--theories/Reals/Rcomplete.v6
-rw-r--r--theories/Reals/Rdefinitions.v26
-rw-r--r--theories/Reals/Rderiv.v5
-rw-r--r--theories/Reals/Rfunctions.v12
-rw-r--r--theories/Reals/Rgeom.v5
-rw-r--r--theories/Reals/RiemannInt.v131
-rw-r--r--theories/Reals/RiemannInt_SF.v36
-rw-r--r--theories/Reals/Rlimit.v9
-rw-r--r--theories/Reals/Rlogic.v293
-rw-r--r--theories/Reals/Rpow_def.v10
-rw-r--r--theories/Reals/Rpower.v58
-rw-r--r--theories/Reals/Rprod.v112
-rw-r--r--theories/Reals/Rseries.v6
-rw-r--r--theories/Reals/Rsigma.v2
-rw-r--r--theories/Reals/Rsqrt_def.v30
-rw-r--r--theories/Reals/Rtopology.v6
-rw-r--r--theories/Reals/Rtrigo.v2
-rw-r--r--theories/Reals/Rtrigo_alt.v6
-rw-r--r--theories/Reals/Rtrigo_def.v55
-rw-r--r--theories/Reals/Rtrigo_fun.v5
-rw-r--r--theories/Reals/Rtrigo_reg.v32
-rw-r--r--theories/Reals/SeqProp.v236
-rw-r--r--theories/Reals/SeqSeries.v20
-rw-r--r--theories/Reals/Sqrt_reg.v7
-rw-r--r--theories/Relations/Operators_Properties.v2
-rw-r--r--theories/Relations/Relation_Operators.v8
-rw-r--r--theories/Relations/Relations.v2
-rw-r--r--theories/Relations/Rstar.v4
-rw-r--r--theories/Setoids/Setoid.v676
-rw-r--r--theories/Setoids/Setoid_Prop.v79
-rw-r--r--theories/Setoids/Setoid_tac.v595
-rw-r--r--theories/Sets/Infinite_sets.v4
-rw-r--r--theories/Sets/Integers.v8
-rw-r--r--theories/Sets/Multiset.v6
-rw-r--r--theories/Sets/Permut.v4
-rw-r--r--theories/Sets/Powerset_Classical_facts.v2
-rw-r--r--theories/Sets/Relations_2_facts.v8
-rw-r--r--theories/Sorting/Heap.v44
-rw-r--r--theories/Sorting/PermutEq.v13
-rw-r--r--theories/Sorting/PermutSetoid.v19
-rw-r--r--theories/Sorting/Permutation.v9
-rw-r--r--theories/Sorting/Sorting.v25
-rw-r--r--theories/Strings/String.v6
-rw-r--r--theories/Unicode/Utf8.v60
-rw-r--r--theories/Wellfounded/Disjoint_Union.v6
-rw-r--r--theories/Wellfounded/Inclusion.v6
-rw-r--r--theories/Wellfounded/Inverse_Image.v4
-rw-r--r--theories/Wellfounded/Lexicographic_Exponentiation.v3
-rw-r--r--theories/Wellfounded/Lexicographic_Product.v2
-rw-r--r--theories/Wellfounded/Transitive_Closure.v2
-rw-r--r--theories/Wellfounded/Union.v6
-rw-r--r--theories/Wellfounded/Well_Ordering.v2
-rw-r--r--theories/ZArith/BinInt.v208
-rw-r--r--theories/ZArith/Int.v47
-rw-r--r--theories/ZArith/ZArith_dec.v2
-rw-r--r--theories/ZArith/ZOdiv.v953
-rw-r--r--theories/ZArith/ZOdiv_def.v136
-rw-r--r--theories/ZArith/Zabs.v129
-rw-r--r--theories/ZArith/Zbool.v16
-rw-r--r--theories/ZArith/Zcomplements.v8
-rw-r--r--theories/ZArith/Zdiv.v1068
-rw-r--r--theories/ZArith/Zeven.v130
-rw-r--r--theories/ZArith/Zgcd_alt.v317
-rw-r--r--theories/ZArith/Zmax.v60
-rw-r--r--theories/ZArith/Zmin.v20
-rw-r--r--theories/ZArith/Zmisc.v29
-rw-r--r--theories/ZArith/Znat.v207
-rw-r--r--theories/ZArith/Znumtheory.v750
-rw-r--r--theories/ZArith/Zorder.v32
-rw-r--r--theories/ZArith/Zpow_facts.v465
-rw-r--r--theories/ZArith/Zpower.v126
-rw-r--r--theories/ZArith/Zsqrt.v53
292 files changed, 51229 insertions, 17572 deletions
diff --git a/theories/Arith/Arith_base.v b/theories/Arith/Arith_base.v
index b076de2a..fbdf2a41 100644
--- a/theories/Arith/Arith_base.v
+++ b/theories/Arith/Arith_base.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id$ i*)
+(*i $Id: Arith_base.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
Require Export Le.
Require Export Lt.
@@ -18,3 +18,5 @@ Require Export Between.
Require Export Peano_dec.
Require Export Compare_dec.
Require Export Factorial.
+Require Export EqNat.
+Require Export Wf_nat.
diff --git a/theories/Arith/Compare_dec.v b/theories/Arith/Compare_dec.v
index b431fd05..e6cb5be4 100644
--- a/theories/Arith/Compare_dec.v
+++ b/theories/Arith/Compare_dec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Compare_dec.v 9941 2007-07-05 12:42:35Z letouzey $ i*)
+(*i $Id: Compare_dec.v 10295 2007-11-06 22:46:21Z letouzey $ i*)
Require Import Le.
Require Import Lt.
@@ -170,7 +170,7 @@ Proof.
exact (lt_irrefl n).
intros.
apply not_gt.
- swap H.
+ contradict H.
destruct (nat_compare_gt n m); auto.
Qed.
@@ -184,7 +184,7 @@ Proof.
exact (lt_irrefl m).
intros.
apply not_lt.
- swap H.
+ contradict H.
destruct (nat_compare_lt n m); auto.
Qed.
diff --git a/theories/Arith/Div.v b/theories/Arith/Div.v
deleted file mode 100644
index 1dec34e2..00000000
--- a/theories/Arith/Div.v
+++ /dev/null
@@ -1,64 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Div.v 9245 2006-10-17 12:53:34Z notin $ i*)
-
-(** Euclidean division *)
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Require Le.
-Require Euclid_def.
-Require Compare_dec.
-
-Implicit Variables Type n,a,b,q,r:nat.
-
-Fixpoint inf_dec [n:nat] : nat->bool :=
- [m:nat] Cases n m of
- O _ => true
- | (S n') O => false
- | (S n') (S m') => (inf_dec n' m')
- end.
-
-Theorem div1 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
- Realizer Fix div1 {div1/2: nat->nat->diveucl :=
- [b,a]Cases a of
- O => (O,O)
- | (S n) =>
- let (q,r) = (div1 b n) in
- if (le_gt_dec b (S r)) then ((S q),O)
- else (q,(S r))
- end}.
- Program_all.
- Rewrite e.
- Replace b with (S r).
- Simpl.
- Elim plus_n_O; Auto with arith.
- Apply le_antisym; Auto with arith.
- Elim plus_n_Sm; Auto with arith.
-Qed.
-
-Theorem div2 : (b:nat)(gt b O)->(a:nat)(diveucl a b).
- Realizer Fix div1 {div1/2: nat->nat->diveucl :=
- [b,a]Cases a of
- O => (O,O)
- | (S n) =>
- let (q,r) = (div1 b n) in
- if (inf_dec b (S r)) :: :: { {(le b (S r))}+{(gt b (S r))} }
- then ((S q),O)
- else (q,(S r))
- end}.
- Program_all.
- Rewrite e.
- Replace b with (S r).
- Simpl.
- Elim plus_n_O; Auto with arith.
- Apply le_antisym; Auto with arith.
- Elim plus_n_Sm; Auto with arith.
-Qed.
diff --git a/theories/Arith/Div2.v b/theories/Arith/Div2.v
index c32759b2..1216a545 100644
--- a/theories/Arith/Div2.v
+++ b/theories/Arith/Div2.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Div2.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Div2.v 10625 2008-03-06 11:21:01Z notin $ i*)
Require Import Lt.
Require Import Plus.
@@ -169,12 +169,12 @@ Hint Resolve even_double double_even odd_double double_odd: arith.
Lemma even_2n : forall n, even n -> {p : nat | n = double p}.
Proof.
intros n H. exists (div2 n). auto with arith.
-Qed.
+Defined.
Lemma odd_S2n : forall n, odd n -> {p : nat | n = S (double p)}.
Proof.
intros n H. exists (div2 n). auto with arith.
-Qed.
+Defined.
(** Doubling before dividing by two brings back to the initial number. *)
diff --git a/theories/Arith/EqNat.v b/theories/Arith/EqNat.v
index 82d05e2c..a9244455 100644
--- a/theories/Arith/EqNat.v
+++ b/theories/Arith/EqNat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: EqNat.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: EqNat.v 9966 2007-07-10 23:54:53Z letouzey $ i*)
(** Equality on natural numbers *)
@@ -89,3 +89,13 @@ Proof.
intros n H1 H2. discriminate H2.
intros n H1 z H2 H3. case (H2 _ H3). reflexivity.
Defined.
+
+Lemma beq_nat_true : forall x y, beq_nat x y = true -> x=y.
+Proof.
+ induction x; destruct y; simpl; auto; intros; discriminate.
+Qed.
+
+Lemma beq_nat_false : forall x y, beq_nat x y = false -> x<>y.
+Proof.
+ induction x; destruct y; simpl; auto; intros; discriminate.
+Qed.
diff --git a/theories/Arith/Even.v b/theories/Arith/Even.v
index 83c0ce17..1484666b 100644
--- a/theories/Arith/Even.v
+++ b/theories/Arith/Even.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Even.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Even.v 10410 2007-12-31 13:11:55Z msozeau $ i*)
(** Here we define the predicates [even] and [odd] by mutual induction
and we prove the decidability and the exclusion of those predicates.
@@ -40,7 +40,7 @@ Proof.
induction n.
auto with arith.
elim IHn; auto with arith.
-Qed.
+Defined.
Lemma not_even_and_odd : forall n, even n -> odd n -> False.
Proof.
diff --git a/theories/Arith/Max.v b/theories/Arith/Max.v
index e0222e41..95af67f8 100644
--- a/theories/Arith/Max.v
+++ b/theories/Arith/Max.v
@@ -6,9 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Max.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Max.v 9883 2007-06-07 18:44:59Z letouzey $ i*)
-Require Import Arith.
+Require Import Le.
Open Local Scope nat_scope.
@@ -30,6 +30,13 @@ Proof.
auto with arith.
Qed.
+Theorem max_assoc : forall m n p : nat, max m (max n p) = max (max m n) p.
+Proof.
+ induction m; destruct n; destruct p; trivial.
+ simpl.
+ auto using IHm.
+Qed.
+
Lemma max_comm : forall n m, max n m = max m n.
Proof.
induction n; induction m; simpl in |- *; auto with arith.
diff --git a/theories/Arith/Min.v b/theories/Arith/Min.v
index db14e74b..aa009963 100644
--- a/theories/Arith/Min.v
+++ b/theories/Arith/Min.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Min.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Min.v 9660 2007-02-19 11:36:30Z notin $ i*)
Require Import Le.
@@ -25,11 +25,28 @@ Fixpoint min n m {struct n} : nat :=
(** * Simplifications of [min] *)
+Lemma min_0_l : forall n : nat, min 0 n = 0.
+Proof.
+ trivial.
+Qed.
+
+Lemma min_0_r : forall n : nat, min n 0 = 0.
+Proof.
+ destruct n; trivial.
+Qed.
+
Lemma min_SS : forall n m, S (min n m) = min (S n) (S m).
Proof.
auto with arith.
Qed.
+Lemma min_assoc : forall m n p : nat, min m (min n p) = min (min m n) p.
+Proof.
+ induction m; destruct n; destruct p; trivial.
+ simpl.
+ auto using (IHm n p).
+Qed.
+
Lemma min_comm : forall n m, min n m = min m n.
Proof.
induction n; induction m; simpl in |- *; auto with arith.
diff --git a/theories/Arith/Minus.v b/theories/Arith/Minus.v
index 2380c2de..b961886d 100644
--- a/theories/Arith/Minus.v
+++ b/theories/Arith/Minus.v
@@ -6,13 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Minus.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Minus.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
(** [minus] (difference between two natural numbers) is defined in [Init/Peano.v] as:
<<
Fixpoint minus (n m:nat) {struct n} : nat :=
match n, m with
- | O, _ => 0
+ | O, _ => n
| S k, O => S k
| S k, S l => k - l
end
@@ -51,11 +51,18 @@ Qed.
(** * Diagonal *)
-Lemma minus_n_n : forall n, 0 = n - n.
+Lemma minus_diag : forall n, n - n = 0.
Proof.
induction n; simpl in |- *; auto with arith.
Qed.
-Hint Resolve minus_n_n: arith v62.
+
+Lemma minus_diag_reverse : forall n, 0 = n - n.
+Proof.
+ auto using minus_diag.
+Qed.
+Hint Resolve minus_diag_reverse: arith v62.
+
+Notation minus_n_n := minus_diag_reverse.
(** * Simplification *)
@@ -97,23 +104,39 @@ Hint Resolve le_plus_minus_r: arith v62.
(** * Relation with order *)
-Theorem le_minus : forall n m, n - m <= n.
+Theorem minus_le_compat_r : forall n m p : nat, n <= m -> n - p <= m - p.
Proof.
- intros i h; pattern i, h in |- *; apply nat_double_ind;
- [ auto
- | auto
- | intros m n H; simpl in |- *; apply le_trans with (m := m); auto ].
+ intros n m p; generalize n m; clear n m; induction p as [|p HI].
+ intros n m; rewrite <- (minus_n_O n); rewrite <- (minus_n_O m); trivial.
+
+ intros n m Hnm; apply le_elim_rel with (n:=n) (m:=m); auto with arith.
+ intros q r H _. simpl. auto using HI.
+Qed.
+
+Theorem minus_le_compat_l : forall n m p : nat, n <= m -> p - m <= p - n.
+Proof.
+ intros n m p; generalize n m; clear n m; induction p as [|p HI].
+ trivial.
+
+ intros n m Hnm; apply le_elim_rel with (n:=n) (m:=m); trivial.
+ intros q; destruct q; auto with arith.
+ simpl.
+ apply le_trans with (m := p - 0); [apply HI | rewrite <- minus_n_O];
+ auto with arith.
+
+ intros q r Hqr _. simpl. auto using HI.
+Qed.
+
+Corollary le_minus : forall n m, n - m <= n.
+Proof.
+ intros n m; rewrite minus_n_O; auto using minus_le_compat_l with arith.
Qed.
Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n.
Proof.
intros n m Le; pattern m, n in |- *; apply le_elim_rel; simpl in |- *;
- auto with arith.
- intros; absurd (0 < 0); auto with arith.
- intros p q lepq Hp gtp.
- elim (le_lt_or_eq 0 p); auto with arith.
- auto with arith.
- induction 1; elim minus_n_O; auto with arith.
+ auto using le_minus with arith.
+ intros; absurd (0 < 0); auto with arith.
Qed.
Hint Resolve lt_minus: arith v62.
diff --git a/theories/Arith/Mult.v b/theories/Arith/Mult.v
index 2315e12c..a43579f9 100644
--- a/theories/Arith/Mult.v
+++ b/theories/Arith/Mult.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Mult.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Mult.v 11015 2008-05-28 20:06:42Z herbelin $ i*)
Require Export Plus.
Require Export Minus.
@@ -104,6 +104,43 @@ Proof.
Qed.
Hint Resolve mult_assoc: arith v62.
+(** ** Inversion lemmas *)
+
+Lemma mult_is_O : forall n m, n * m = 0 -> n = 0 \/ m = 0.
+Proof.
+ destruct n as [| n].
+ intros; left; trivial.
+
+ simpl; intros m H; right.
+ assert (H':m = 0 /\ n * m = 0) by apply (plus_is_O _ _ H).
+ destruct H'; trivial.
+Qed.
+
+Lemma mult_is_one : forall n m, n * m = 1 -> n = 1 /\ m = 1.
+Proof.
+ destruct n as [|n].
+ simpl; intros m H; elim (O_S _ H).
+
+ simpl; intros m H.
+ destruct (plus_is_one _ _ H) as [[Hm Hnm] | [Hm Hnm]].
+ rewrite Hm in H; simpl in H; rewrite mult_0_r in H; elim (O_S _ H).
+ rewrite Hm in Hnm; rewrite mult_1_r in Hnm; auto.
+Qed.
+
+(** ** Multiplication and successor *)
+
+Lemma mult_succ_l : forall n m:nat, S n * m = n * m + m.
+Proof.
+ intros; simpl. rewrite plus_comm. reflexivity.
+Qed.
+
+Lemma mult_succ_r : forall n m:nat, n * S m = n * m + n.
+Proof.
+ induction n as [| p H]; intro m; simpl.
+ reflexivity.
+ rewrite H, <- plus_n_Sm; apply f_equal; rewrite plus_assoc; reflexivity.
+Qed.
+
(** * Compatibility with orders *)
Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n.
@@ -223,4 +260,4 @@ Qed.
Ltac tail_simpl :=
repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult;
- simpl in |- *. \ No newline at end of file
+ simpl in |- *.
diff --git a/theories/Arith/Peano_dec.v b/theories/Arith/Peano_dec.v
index 9ae80d79..cc970ae4 100644
--- a/theories/Arith/Peano_dec.v
+++ b/theories/Arith/Peano_dec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Peano_dec.v 9941 2007-07-05 12:42:35Z letouzey $ i*)
+(*i $Id: Peano_dec.v 9698 2007-03-12 17:11:32Z letouzey $ i*)
Require Import Decidable.
diff --git a/theories/Arith/Plus.v b/theories/Arith/Plus.v
index 74d0dc93..6d510447 100644
--- a/theories/Arith/Plus.v
+++ b/theories/Arith/Plus.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Plus.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Plus.v 9750 2007-04-06 00:58:14Z letouzey $ i*)
(** Properties of addition. [add] is defined in [Init/Peano.v] as:
<<
@@ -198,16 +198,14 @@ Qed.
tail-recursive, whereas [plus] is not. This can be useful
when extracting programs. *)
-Fixpoint plus_acc q n {struct n} : nat :=
+Fixpoint tail_plus n m {struct n} : nat :=
match n with
- | O => q
- | S p => plus_acc (S q) p
+ | O => m
+ | S n => tail_plus n (S m)
end.
-Definition tail_plus n m := plus_acc m n.
-
Lemma plus_tail_plus : forall n m, n + m = tail_plus n m.
-unfold tail_plus in |- *; induction n as [| n IHn]; simpl in |- *; auto.
+induction n as [| n IHn]; simpl in |- *; auto.
intro m; rewrite <- IHn; simpl in |- *; auto.
Qed.
diff --git a/theories/Arith/Wf_nat.v b/theories/Arith/Wf_nat.v
index 11fcd161..6ad640eb 100644
--- a/theories/Arith/Wf_nat.v
+++ b/theories/Arith/Wf_nat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Wf_nat.v 9341 2006-11-06 13:08:10Z notin $ i*)
+(*i $Id: Wf_nat.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
(** Well-founded relations and natural numbers *)
@@ -50,10 +50,12 @@ Defined.
the ML-like program for [induction_ltof1] is :
[[
- let induction_ltof1 F a = indrec ((f a)+1) a
- where rec indrec =
- function 0 -> (function a -> error)
- |(S m) -> (function a -> (F a (function y -> indrec y m)));;
+let induction_ltof1 f F a =
+ let rec indrec n k =
+ match n with
+ | O -> error
+ | S m -> F k (indrec m)
+ in indrec (f a + 1) a
]]
the ML-like program for [induction_ltof2] is :
@@ -210,3 +212,67 @@ Lemma well_founded_inv_rel_inv_lt_rel :
forall (A:Set) (F:A -> nat -> Prop), well_founded (inv_lt_rel A F).
intros; apply (well_founded_inv_lt_rel_compat A (inv_lt_rel A F) F); trivial.
Qed.
+
+(** A constructive proof that any non empty decidable subset of
+ natural numbers has a least element *)
+
+Set Implicit Arguments.
+
+Require Import Le.
+Require Import Compare_dec.
+Require Import Decidable.
+
+Definition has_unique_least_element (A:Type) (R:A->A->Prop) (P:A->Prop) :=
+ exists! x, P x /\ forall x', P x' -> R x x'.
+
+Lemma dec_inh_nat_subset_has_unique_least_element :
+ forall P:nat->Prop, (forall n, P n \/ ~ P n) ->
+ (exists n, P n) -> has_unique_least_element le P.
+Proof.
+ intros P Pdec (n0,HPn0).
+ assert
+ (forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'')
+ \/(forall n', P n' -> n<=n')).
+ induction n.
+ right.
+ intros n' Hn'.
+ apply le_O_n.
+ destruct IHn.
+ left; destruct H as (n', (Hlt', HPn')).
+ exists n'; split.
+ apply lt_S; assumption.
+ assumption.
+ destruct (Pdec n).
+ left; exists n; split.
+ apply lt_n_Sn.
+ split; assumption.
+ right.
+ intros n' Hltn'.
+ destruct (le_lt_eq_dec n n') as [Hltn|Heqn].
+ apply H; assumption.
+ assumption.
+ destruct H0.
+ rewrite Heqn; assumption.
+ destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0];
+ repeat split;
+ assumption || intros n' (HPn',Hminn'); apply le_antisym; auto.
+Qed.
+
+Unset Implicit Arguments.
+
+(** [n]th iteration of the function [f] *)
+
+Fixpoint iter_nat (n:nat) (A:Type) (f:A -> A) (x:A) {struct n} : A :=
+ match n with
+ | O => x
+ | S n' => f (iter_nat n' A f x)
+ end.
+
+Theorem iter_nat_plus :
+ forall (n m:nat) (A:Type) (f:A -> A) (x:A),
+ iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
+Proof.
+ simple induction n;
+ [ simpl in |- *; auto with arith
+ | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
+Qed.
diff --git a/theories/Bool/Bool.v b/theories/Bool/Bool.v
index e126ad35..47b9fc83 100644
--- a/theories/Bool/Bool.v
+++ b/theories/Bool/Bool.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Bool.v 9246 2006-10-17 14:01:18Z herbelin $ i*)
+(*i $Id: Bool.v 10812 2008-04-17 16:42:37Z letouzey $ i*)
(** The type [bool] is defined in the prelude as
[Inductive bool : Set := true : bool | false : bool] *)
@@ -126,9 +126,8 @@ Proof.
destruct a; destruct b; simpl in |- *; intro; discriminate H || reflexivity.
Qed.
-
(************************)
-(** * Logical combinators *)
+(** * A synonym of [if] on [bool] *)
(************************)
Definition ifb (b1 b2 b3:bool) : bool :=
@@ -137,31 +136,8 @@ Definition ifb (b1 b2 b3:bool) : bool :=
| false => b3
end.
-Definition andb (b1 b2:bool) : bool := ifb b1 b2 false.
-
-Definition orb (b1 b2:bool) : bool := ifb b1 true b2.
-
-Definition implb (b1 b2:bool) : bool := ifb b1 b2 true.
-
-Definition xorb (b1 b2:bool) : bool :=
- match b1, b2 with
- | true, true => false
- | true, false => true
- | false, true => true
- | false, false => false
- end.
-
-Definition negb (b:bool) := if b then false else true.
-
-Infix "||" := orb (at level 50, left associativity) : bool_scope.
-Infix "&&" := andb (at level 40, left associativity) : bool_scope.
-
Open Scope bool_scope.
-Delimit Scope bool_scope with bool.
-
-Bind Scope bool_scope with bool.
-
(****************************)
(** * De Morgan laws *)
(****************************)
@@ -220,7 +196,7 @@ Qed.
Lemma if_negb :
- forall (A:Set) (b:bool) (x y:A),
+ forall (A:Type) (b:bool) (x y:A),
(if negb b then x else y) = (if b then y else x).
Proof.
destruct b; trivial.
@@ -332,12 +308,11 @@ Hint Resolve orb_comm orb_assoc: bool v62.
(** * Properties of [andb] *)
(*******************************)
-Lemma andb_prop : forall a b:bool, a && b = true -> a = true /\ b = true.
+Lemma andb_true_iff :
+ forall b1 b2:bool, b1 && b2 = true <-> b1 = true /\ b2 = true.
Proof.
- destruct a; destruct b; simpl in |- *; try (intro H; discriminate H);
- auto with bool.
+ destruct b1; destruct b2; intuition.
Qed.
-Hint Resolve andb_prop: bool v62.
Lemma andb_true_eq :
forall a b:bool, true = a && b -> true = a /\ true = b.
@@ -345,13 +320,6 @@ Proof.
destruct a; destruct b; auto.
Defined.
-Lemma andb_true_intro :
- forall b1 b2:bool, b1 = true /\ b2 = true -> b1 && b2 = true.
-Proof.
- destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
-Qed.
-Hint Resolve andb_true_intro: bool v62.
-
Lemma andb_false_intro1 : forall b1 b2:bool, b1 = false -> b1 && b2 = false.
Proof.
destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
@@ -715,3 +683,43 @@ Lemma negb_prop_involutive : forall b, Is_true b -> ~ Is_true (negb b).
Proof.
destruct b; intuition.
Qed.
+
+(** Rewrite rules about andb, orb and if (used in romega) *)
+
+Lemma andb_if : forall (A:Type)(a a':A)(b b' : bool),
+ (if b && b' then a else a') =
+ (if b then if b' then a else a' else a').
+Proof.
+ destruct b; destruct b'; auto.
+Qed.
+
+Lemma negb_if : forall (A:Type)(a a':A)(b:bool),
+ (if negb b then a else a') =
+ (if b then a' else a).
+Proof.
+ destruct b; auto.
+Qed.
+
+(*****************************************)
+(** * Alternative versions of [andb] and [orb]
+ with lazy behavior (for vm_compute) *)
+(*****************************************)
+
+Notation "a &&& b" := (if a then b else false)
+ (at level 40, left associativity) : lazy_bool_scope.
+Notation "a ||| b" := (if a then true else b)
+ (at level 50, left associativity) : lazy_bool_scope.
+
+Open Local Scope lazy_bool_scope.
+
+Lemma andb_lazy_alt : forall a b : bool, a && b = a &&& b.
+Proof.
+ unfold andb; auto.
+Qed.
+
+Lemma orb_lazy_alt : forall a b : bool, a || b = a ||| b.
+Proof.
+ unfold orb; auto.
+Qed.
+
+
diff --git a/theories/Bool/Bvector.v b/theories/Bool/Bvector.v
index 659630c5..0e8ea33c 100644
--- a/theories/Bool/Bvector.v
+++ b/theories/Bool/Bvector.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Bvector.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Bvector.v 11004 2008-05-28 09:09:12Z herbelin $ i*)
(** Bit vectors. Contribution by Jean Duprat (ENS Lyon). *)
@@ -25,10 +25,10 @@ Malheureusement, cette verification a posteriori amene a faire
de nombreux lemmes pour gerer les longueurs.
La seconde idée est de faire un type dépendant dans lequel la
longueur est un paramètre de construction. Cela complique un
-peu les inductions structurelles, la solution qui a ma préférence
-est alors d'utiliser un terme de preuve comme définition, car le
-mécanisme d'inférence du type du filtrage n'est pas aussi puissant que
-celui implanté par les tactiques d'élimination.
+peu les inductions structurelles et dans certains cas on
+utilisera un terme de preuve comme définition, car le
+mécanisme d'inférence du type du filtrage n'est pas toujours
+aussi puissant que celui implanté par les tactiques d'élimination.
*)
Section VECTORS.
@@ -52,39 +52,39 @@ Inductive vector : nat -> Type :=
| Vnil : vector 0
| Vcons : forall (a:A) (n:nat), vector n -> vector (S n).
-Definition Vhead : forall n:nat, vector (S n) -> A.
-Proof.
- intros n v; inversion v; exact a.
-Defined.
+Definition Vhead (n:nat) (v:vector (S n)) :=
+ match v with
+ | Vcons a _ _ => a
+ end.
-Definition Vtail : forall n:nat, vector (S n) -> vector n.
-Proof.
- intros n v; inversion v as [|_ n0 H0 H1]; exact H0.
-Defined.
+Definition Vtail (n:nat) (v:vector (S n)) :=
+ match v with
+ | Vcons _ _ v => v
+ end.
Definition Vlast : forall n:nat, vector (S n) -> A.
Proof.
induction n as [| n f]; intro v.
inversion v.
exact a.
-
+
inversion v as [| n0 a H0 H1].
exact (f H0).
Defined.
-Definition Vconst : forall (a:A) (n:nat), vector n.
-Proof.
- induction n as [| n v].
- exact Vnil.
+Fixpoint Vconst (a:A) (n:nat) :=
+ match n return vector n with
+ | O => Vnil
+ | S n => Vcons a _ (Vconst a n)
+ end.
- exact (Vcons a n v).
-Defined.
+(** Shifting and truncating *)
Lemma Vshiftout : forall n:nat, vector (S n) -> vector n.
Proof.
induction n as [| n f]; intro v.
exact Vnil.
-
+
inversion v as [| a n0 H0 H1].
exact (Vcons a n (f H0)).
Defined.
@@ -123,25 +123,23 @@ Proof.
auto with *.
Defined.
-Lemma Vextend : forall n p:nat, vector n -> vector p -> vector (n + p).
-Proof.
- induction n as [| n f]; intros p v v0.
- simpl in |- *; exact v0.
-
- inversion v as [| a n0 H0 H1].
- simpl in |- *; exact (Vcons a (n + p) (f p H0 v0)).
-Defined.
+(** Concatenation of two vectors *)
+
+Fixpoint Vextend n p (v:vector n) (w:vector p) : vector (n+p) :=
+ match v with
+ | Vnil => w
+ | Vcons a n' v' => Vcons a (n'+p) (Vextend n' p v' w)
+ end.
+
+(** Uniform application on the arguments of the vector *)
Variable f : A -> A.
-Lemma Vunary : forall n:nat, vector n -> vector n.
-Proof.
- induction n as [| n g]; intro v.
- exact Vnil.
-
- inversion v as [| a n0 H0 H1].
- exact (Vcons (f a) n (g H0)).
-Defined.
+Fixpoint Vunary n (v:vector n) : vector n :=
+ match v with
+ | Vnil => Vnil
+ | Vcons a n' v' => Vcons (f a) n' (Vunary n' v')
+ end.
Variable g : A -> A -> A.
@@ -154,14 +152,15 @@ Proof.
exact (Vcons (g a a0) n (h H0 H2)).
Defined.
-Definition Vid : forall n:nat, vector n -> vector n.
-Proof.
- destruct n; intro X.
- exact Vnil.
- exact (Vcons (Vhead _ X) _ (Vtail _ X)).
-Defined.
+(** Eta-expansion of a vector *)
+
+Definition Vid n : vector n -> vector n :=
+ match n with
+ | O => fun _ => Vnil
+ | _ => fun v => Vcons (Vhead _ v) _ (Vtail _ v)
+ end.
-Lemma Vid_eq : forall (n:nat) (v:vector n), v=(Vid n v).
+Lemma Vid_eq : forall (n:nat) (v:vector n), v = Vid n v.
Proof.
destruct v; auto.
Qed.
diff --git a/theories/Classes/EquivDec.v b/theories/Classes/EquivDec.v
new file mode 100644
index 00000000..debe953a
--- /dev/null
+++ b/theories/Classes/EquivDec.v
@@ -0,0 +1,158 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Decidable equivalences.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: EquivDec.v 10919 2008-05-11 22:04:26Z msozeau $ *)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** Export notations. *)
+
+Require Export Coq.Classes.Equivalence.
+
+(** The [DecidableSetoid] class asserts decidability of a [Setoid]. It can be useful in proofs to reason more
+ classically. *)
+
+Require Import Coq.Logic.Decidable.
+
+Open Scope equiv_scope.
+
+Class [ equiv : Equivalence A ] => DecidableEquivalence :=
+ setoid_decidable : forall x y : A, decidable (x === y).
+
+(** The [EqDec] class gives a decision procedure for a particular setoid equality. *)
+
+Class [ equiv : Equivalence A ] => EqDec :=
+ equiv_dec : forall x y : A, { x === y } + { x =/= y }.
+
+(** We define the [==] overloaded notation for deciding equality. It does not take precedence
+ of [==] defined in the type scope, hence we can have both at the same time. *)
+
+Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70).
+
+Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
+ match x with
+ | left H => @right _ _ H
+ | right H => @left _ _ H
+ end.
+
+Require Import Coq.Program.Program.
+
+Open Local Scope program_scope.
+
+(** Invert the branches. *)
+
+Program Definition nequiv_dec [ EqDec A ] (x y : A) : { x =/= y } + { x === y } := swap_sumbool (x == y).
+
+(** Overloaded notation for inequality. *)
+
+Infix "=/=" := nequiv_dec (no associativity, at level 70).
+
+(** Define boolean versions, losing the logical information. *)
+
+Definition equiv_decb [ EqDec A ] (x y : A) : bool :=
+ if x == y then true else false.
+
+Definition nequiv_decb [ EqDec A ] (x y : A) : bool :=
+ negb (equiv_decb x y).
+
+Infix "==b" := equiv_decb (no associativity, at level 70).
+Infix "<>b" := nequiv_decb (no associativity, at level 70).
+
+(** Decidable leibniz equality instances. *)
+
+Require Import Coq.Arith.Peano_dec.
+
+(** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *)
+
+Program Instance nat_eq_eqdec : ! EqDec nat eq :=
+ equiv_dec := eq_nat_dec.
+
+Require Import Coq.Bool.Bool.
+
+Program Instance bool_eqdec : ! EqDec bool eq :=
+ equiv_dec := bool_dec.
+
+Program Instance unit_eqdec : ! EqDec unit eq :=
+ equiv_dec x y := in_left.
+
+ Next Obligation.
+ Proof.
+ destruct x ; destruct y.
+ reflexivity.
+ Qed.
+
+Program Instance prod_eqdec [ EqDec A eq, EqDec B eq ] :
+ ! EqDec (prod A B) eq :=
+ equiv_dec x y :=
+ let '(x1, x2) := x in
+ let '(y1, y2) := y in
+ if x1 == y1 then
+ if x2 == y2 then in_left
+ else in_right
+ else in_right.
+
+ Solve Obligations using unfold complement, equiv ; program_simpl.
+
+Program Instance sum_eqdec [ EqDec A eq, EqDec B eq ] :
+ ! EqDec (sum A B) eq :=
+ equiv_dec x y :=
+ match x, y with
+ | inl a, inl b => if a == b then in_left else in_right
+ | inr a, inr b => if a == b then in_left else in_right
+ | inl _, inr _ | inr _, inl _ => in_right
+ end.
+
+ Solve Obligations using unfold complement, equiv ; program_simpl.
+
+(** Objects of function spaces with countable domains like bool have decidable equality. *)
+
+Require Import Coq.Program.FunctionalExtensionality.
+
+Program Instance bool_function_eqdec [ EqDec A eq ] : ! EqDec (bool -> A) eq :=
+ equiv_dec f g :=
+ if f true == g true then
+ if f false == g false then in_left
+ else in_right
+ else in_right.
+
+ Solve Obligations using try red ; unfold equiv, complement ; program_simpl.
+
+ Next Obligation.
+ Proof.
+ extensionality x.
+ destruct x ; auto.
+ Qed.
+
+Require Import List.
+
+Program Instance list_eqdec [ eqa : EqDec A eq ] : ! EqDec (list A) eq :=
+ equiv_dec :=
+ fix aux (x : list A) y { struct x } :=
+ match x, y with
+ | nil, nil => in_left
+ | cons hd tl, cons hd' tl' =>
+ if hd == hd' then
+ if aux tl tl' then in_left else in_right
+ else in_right
+ | _, _ => in_right
+ end.
+
+ Solve Obligations using unfold equiv, complement in * ; program_simpl ; intuition (discriminate || eauto).
+
+ Next Obligation.
+ Proof. clear aux. red in H0. subst.
+ destruct y; intuition (discriminate || eauto).
+ Defined. \ No newline at end of file
diff --git a/theories/Classes/Equivalence.v b/theories/Classes/Equivalence.v
new file mode 100644
index 00000000..70bf3483
--- /dev/null
+++ b/theories/Classes/Equivalence.v
@@ -0,0 +1,144 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Typeclass-based setoids. Definitions on [Equivalence].
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: Equivalence.v 10919 2008-05-11 22:04:26Z msozeau $ *)
+
+Require Export Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+
+Require Import Coq.Classes.Init.
+Require Import Relation_Definitions.
+Require Import Coq.Classes.RelationClasses.
+Require Export Coq.Classes.Morphisms.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Open Local Scope signature_scope.
+
+Definition equiv [ Equivalence A R ] : relation A := R.
+
+Typeclasses unfold equiv.
+
+(** Overloaded notations for setoid equivalence and inequivalence. Not to be confused with [eq] and [=]. *)
+
+Notation " x === y " := (equiv x y) (at level 70, no associativity) : equiv_scope.
+
+Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : equiv_scope.
+
+Open Local Scope equiv_scope.
+
+(** Overloading for [PER]. *)
+
+Definition pequiv [ PER A R ] : relation A := R.
+
+Typeclasses unfold pequiv.
+
+(** Overloaded notation for partial equivalence. *)
+
+Infix "=~=" := pequiv (at level 70, no associativity) : equiv_scope.
+
+(** Shortcuts to make proof search easier. *)
+
+Program Instance equiv_reflexive [ sa : Equivalence A ] : Reflexive equiv.
+
+Program Instance equiv_symmetric [ sa : Equivalence A ] : Symmetric equiv.
+
+ Next Obligation.
+ Proof.
+ symmetry ; auto.
+ Qed.
+
+Program Instance equiv_transitive [ sa : Equivalence A ] : Transitive equiv.
+
+ Next Obligation.
+ Proof.
+ transitivity y ; auto.
+ Qed.
+
+(** Use the [substitute] command which substitutes an equivalence in every hypothesis. *)
+
+Ltac setoid_subst H :=
+ match type of H with
+ ?x === ?y => substitute H ; clear H x
+ end.
+
+Ltac setoid_subst_nofail :=
+ match goal with
+ | [ H : ?x === ?y |- _ ] => setoid_subst H ; setoid_subst_nofail
+ | _ => idtac
+ end.
+
+(** [subst*] will try its best at substituting every equality in the goal. *)
+
+Tactic Notation "subst" "*" := subst_no_fail ; setoid_subst_nofail.
+
+(** Simplify the goal w.r.t. equivalence. *)
+
+Ltac equiv_simplify_one :=
+ match goal with
+ | [ H : ?x === ?x |- _ ] => clear H
+ | [ H : ?x === ?y |- _ ] => setoid_subst H
+ | [ |- ?x =/= ?y ] => let name:=fresh "Hneq" in intro name
+ | [ |- ~ ?x === ?y ] => let name:=fresh "Hneq" in intro name
+ end.
+
+Ltac equiv_simplify := repeat equiv_simplify_one.
+
+(** "reify" relations which are equivalences to applications of the overloaded [equiv] method
+ for easy recognition in tactics. *)
+
+Ltac equivify_tac :=
+ match goal with
+ | [ s : Equivalence ?A ?R, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
+ | [ s : Equivalence ?A ?R |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
+ end.
+
+Ltac equivify := repeat equivify_tac.
+
+Section Respecting.
+
+ (** Here we build an equivalence instance for functions which relates respectful ones only,
+ we do not export it. *)
+
+ Definition respecting [ Equivalence A (R : relation A), Equivalence B (R' : relation B) ] : Type :=
+ { morph : A -> B | respectful R R' morph morph }.
+
+ Program Instance respecting_equiv [ Equivalence A R, Equivalence B R' ] :
+ Equivalence respecting
+ (fun (f g : respecting) => forall (x y : A), R x y -> R' (proj1_sig f x) (proj1_sig g y)).
+
+ Solve Obligations using unfold respecting in * ; simpl_relation ; program_simpl.
+
+ Next Obligation.
+ Proof.
+ unfold respecting in *. program_simpl. red in H2,H3,H4.
+ transitivity (y x0) ; auto.
+ transitivity (y y0) ; auto.
+ symmetry. auto.
+ Qed.
+
+End Respecting.
+
+(** The default equivalence on function spaces, with higher-priority than [eq]. *)
+
+Program Instance pointwise_equivalence [ Equivalence A eqA ] :
+ Equivalence (B -> A) (pointwise_relation eqA) | 9.
+
+ Next Obligation.
+ Proof.
+ transitivity (y x0) ; auto.
+ Qed.
+
diff --git a/theories/Classes/Functions.v b/theories/Classes/Functions.v
new file mode 100644
index 00000000..49fc4f89
--- /dev/null
+++ b/theories/Classes/Functions.v
@@ -0,0 +1,42 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Functional morphisms.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: Functions.v 10739 2008-04-01 14:45:20Z herbelin $ *)
+
+Require Import Coq.Classes.RelationClasses.
+Require Import Coq.Classes.Morphisms.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Class [ m : Morphism (A -> B) (RA ++> RB) f ] => Injective : Prop :=
+ injective : forall x y : A, RB (f x) (f y) -> RA x y.
+
+Class [ m : Morphism (A -> B) (RA ++> RB) f ] => Surjective : Prop :=
+ surjective : forall y, exists x : A, RB y (f x).
+
+Definition Bijective [ m : Morphism (A -> B) (RA ++> RB) (f : A -> B) ] :=
+ Injective m /\ Surjective m.
+
+Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => MonoMorphism :=
+ monic :> Injective m.
+
+Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => EpiMorphism :=
+ epic :> Surjective m.
+
+Class [ m : Morphism (A -> B) (eqA ++> eqB) ] => IsoMorphism :=
+ monomorphism :> MonoMorphism m ; epimorphism :> EpiMorphism m.
+
+Class [ m : Morphism (A -> A) (eqA ++> eqA), ! IsoMorphism m ] => AutoMorphism.
diff --git a/theories/Classes/Init.v b/theories/Classes/Init.v
new file mode 100644
index 00000000..6ba0c61e
--- /dev/null
+++ b/theories/Classes/Init.v
@@ -0,0 +1,21 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Initialization code for typeclasses, setting up the default tactic
+ for instance search.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: Init.v 10739 2008-04-01 14:45:20Z herbelin $ *)
+
+(* Ltac typeclass_instantiation := typeclasses eauto || eauto. *)
+
+Tactic Notation "clapply" ident(c) :=
+ eapply @c ; eauto with typeclass_instances.
diff --git a/theories/Classes/Morphisms.v b/theories/Classes/Morphisms.v
new file mode 100644
index 00000000..f21c68a6
--- /dev/null
+++ b/theories/Classes/Morphisms.v
@@ -0,0 +1,467 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.Morphisms"); compile-command: "make -C ../.. TIME='time'" -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Typeclass-based morphism definition and standard, minimal instances.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: Morphisms.v 11092 2008-06-10 18:28:26Z msozeau $ *)
+
+Require Import Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+Require Import Coq.Relations.Relation_Definitions.
+Require Export Coq.Classes.RelationClasses.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** * Morphisms.
+
+ We now turn to the definition of [Morphism] and declare standard instances.
+ These will be used by the [setoid_rewrite] tactic later. *)
+
+(** A morphism on a relation [R] is an object respecting the relation (in its kernel).
+ The relation [R] will be instantiated by [respectful] and [A] by an arrow type
+ for usual morphisms. *)
+
+Class Morphism A (R : relation A) (m : A) : Prop :=
+ respect : R m m.
+
+(** We make the type implicit, it can be infered from the relations. *)
+
+Implicit Arguments Morphism [A].
+
+(** We allow to unfold the [relation] definition while doing morphism search. *)
+
+Typeclasses unfold relation.
+
+(** Respectful morphisms. *)
+
+(** The fully dependent version, not used yet. *)
+
+Definition respectful_hetero
+ (A B : Type)
+ (C : A -> Type) (D : B -> Type)
+ (R : A -> B -> Prop)
+ (R' : forall (x : A) (y : B), C x -> D y -> Prop) :
+ (forall x : A, C x) -> (forall x : B, D x) -> Prop :=
+ fun f g => forall x y, R x y -> R' x y (f x) (g y).
+
+(** The non-dependent version is an instance where we forget dependencies. *)
+
+Definition respectful (A B : Type)
+ (R : relation A) (R' : relation B) : relation (A -> B) :=
+ Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
+
+(** Notations reminiscent of the old syntax for declaring morphisms. *)
+
+Delimit Scope signature_scope with signature.
+Arguments Scope Morphism [type_scope signature_scope].
+
+Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature))
+ (right associativity, at level 55) : signature_scope.
+
+Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature))
+ (right associativity, at level 55) : signature_scope.
+
+Notation " R --> R' " := (@respectful _ _ (inverse (R%signature)) (R'%signature))
+ (right associativity, at level 55) : signature_scope.
+
+Arguments Scope respectful [type_scope type_scope signature_scope signature_scope].
+
+Open Local Scope signature_scope.
+
+(** We can build a PER on the Coq function space if we have PERs on the domain and
+ codomain. *)
+
+Program Instance respectful_per [ PER A (R : relation A), PER B (R' : relation B) ] :
+ PER (A -> B) (R ==> R').
+
+ Next Obligation.
+ Proof with auto.
+ assert(R x0 x0).
+ transitivity y0... symmetry...
+ transitivity (y x0)...
+ Qed.
+
+(** Subrelations induce a morphism on the identity, not used for morphism search yet. *)
+
+Lemma subrelation_id_morphism [ subrelation A Râ‚ Râ‚‚ ] : Morphism (Râ‚ ==> Râ‚‚) id.
+Proof. firstorder. Qed.
+
+(** The subrelation property goes through products as usual. *)
+
+Instance morphisms_subrelation [ sub : subrelation A Râ‚ Râ‚‚ ] :
+ ! subrelation (B -> A) (R ==> Râ‚) (R ==> Râ‚‚).
+Proof. firstorder. Qed.
+
+Instance morphisms_subrelation_left [ sub : subrelation A Râ‚‚ Râ‚ ] :
+ ! subrelation (A -> B) (Râ‚ ==> R) (Râ‚‚ ==> R) | 3.
+Proof. firstorder. Qed.
+
+(** [Morphism] is itself a covariant morphism for [subrelation]. *)
+
+Lemma subrelation_morphism [ sub : subrelation A Râ‚ Râ‚‚, mor : Morphism A Râ‚ m ] : Morphism Râ‚‚ m.
+Proof.
+ intros. apply sub. apply mor.
+Qed.
+
+Instance morphism_subrelation_morphism :
+ Morphism (subrelation ++> @eq _ ==> impl) (@Morphism A).
+Proof. reduce. subst. firstorder. Qed.
+
+(** We use an external tactic to manage the application of subrelation, which is otherwise
+ always applicable. We allow its use only once per branch. *)
+
+Inductive subrelation_done : Prop :=
+ did_subrelation : subrelation_done.
+
+Ltac subrelation_tac :=
+ match goal with
+ | [ _ : subrelation_done |- _ ] => fail 1
+ | [ |- @Morphism _ _ _ ] => let H := fresh "H" in
+ set(H:=did_subrelation) ; eapply @subrelation_morphism
+ end.
+
+Hint Extern 4 (@Morphism _ _ _) => subrelation_tac : typeclass_instances.
+
+(** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *)
+
+Instance iff_impl_subrelation : subrelation iff impl.
+Proof. firstorder. Qed.
+
+Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl).
+Proof. firstorder. Qed.
+
+Instance pointwise_subrelation [ sub : subrelation A R R' ] :
+ subrelation (pointwise_relation (A:=B) R) (pointwise_relation R') | 4.
+Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed.
+
+(** The complement of a relation conserves its morphisms. *)
+
+Program Instance complement_morphism
+ [ mR : Morphism (A -> A -> Prop) (RA ==> RA ==> iff) R ] :
+ Morphism (RA ==> RA ==> iff) (complement R).
+
+ Next Obligation.
+ Proof.
+ unfold complement.
+ pose (mR x y H x0 y0 H0).
+ intuition.
+ Qed.
+
+(** The [inverse] too, actually the [flip] instance is a bit more general. *)
+
+Program Instance flip_morphism
+ [ mor : Morphism (A -> B -> C) (RA ==> RB ==> RC) f ] :
+ Morphism (RB ==> RA ==> RC) (flip f).
+
+ Next Obligation.
+ Proof.
+ apply mor ; auto.
+ Qed.
+
+(** Every Transitive relation gives rise to a binary morphism on [impl],
+ contravariant in the first argument, covariant in the second. *)
+
+Program Instance trans_contra_co_morphism
+ [ Transitive A R ] : Morphism (R --> R ++> impl) R.
+
+ Next Obligation.
+ Proof with auto.
+ transitivity x...
+ transitivity x0...
+ Qed.
+
+(* (** Dually... *) *)
+
+(* Program Instance [ Transitive A R ] => *)
+(* trans_co_contra_inv_impl_morphism : Morphism (R ++> R --> inverse impl) R. *)
+
+(* Next Obligation. *)
+(* Proof with auto. *)
+(* apply* trans_contra_co_morphism ; eauto. eauto. *)
+(* Qed. *)
+
+(** Morphism declarations for partial applications. *)
+
+Program Instance trans_contra_inv_impl_morphism
+ [ Transitive A R ] : Morphism (R --> inverse impl) (R x).
+
+ Next Obligation.
+ Proof with auto.
+ transitivity y...
+ Qed.
+
+Program Instance trans_co_impl_morphism
+ [ Transitive A R ] : Morphism (R ==> impl) (R x).
+
+ Next Obligation.
+ Proof with auto.
+ transitivity x0...
+ Qed.
+
+Program Instance trans_sym_co_inv_impl_morphism
+ [ Transitive A R, Symmetric A R ] : Morphism (R ==> inverse impl) (R x).
+
+ Next Obligation.
+ Proof with auto.
+ transitivity y...
+ Qed.
+
+Program Instance trans_sym_contra_impl_morphism
+ [ Transitive A R, Symmetric _ R ] : Morphism (R --> impl) (R x).
+
+ Next Obligation.
+ Proof with auto.
+ transitivity x0...
+ Qed.
+
+Program Instance equivalence_partial_app_morphism
+ [ Equivalence A R ] : Morphism (R ==> iff) (R x).
+
+ Next Obligation.
+ Proof with auto.
+ split. intros ; transitivity x0...
+ intros.
+ transitivity y...
+ symmetry...
+ Qed.
+
+(** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof
+ to get an [R y z] goal. *)
+
+Program Instance trans_co_eq_inv_impl_morphism
+ [ Transitive A R ] : Morphism (R ==> (@eq A) ==> inverse impl) R.
+
+ Next Obligation.
+ Proof with auto.
+ transitivity y...
+ Qed.
+
+(* Program Instance [ Transitive A R ] => *)
+(* trans_contra_eq_impl_morphism : Morphism (R --> (@eq A) ==> impl) R. *)
+
+(* Next Obligation. *)
+(* Proof with auto. *)
+(* transitivity x... *)
+(* Qed. *)
+
+(** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *)
+
+Program Instance trans_sym_morphism
+ [ Transitive A R, Symmetric _ R ] : Morphism (R ==> R ==> iff) R.
+
+ Next Obligation.
+ Proof with auto.
+ split ; intros.
+ transitivity x0... transitivity x...
+
+ transitivity y... transitivity y0...
+ Qed.
+
+Program Instance equiv_morphism [ Equivalence A R ] :
+ Morphism (R ==> R ==> iff) R.
+
+ Next Obligation.
+ Proof with auto.
+ split ; intros.
+ transitivity x0... transitivity x... symmetry...
+
+ transitivity y... transitivity y0... symmetry...
+ Qed.
+
+(** In case the rewrite happens at top level. *)
+
+Program Instance iff_inverse_impl_id :
+ Morphism (iff ==> inverse impl) id.
+
+Program Instance inverse_iff_inverse_impl_id :
+ Morphism (iff --> inverse impl) id.
+
+Program Instance iff_impl_id :
+ Morphism (iff ==> impl) id.
+
+Program Instance inverse_iff_impl_id :
+ Morphism (iff --> impl) id.
+
+(** Coq functions are morphisms for leibniz equality,
+ applied only if really needed. *)
+
+(* Instance (A : Type) [ Reflexive B R ] => *)
+(* eq_reflexive_morphism : Morphism (@Logic.eq A ==> R) m | 3. *)
+(* Proof. simpl_relation. Qed. *)
+
+Instance reflexive_eq_dom_reflexive (A : Type) [ Reflexive B R' ] :
+ Reflexive (@Logic.eq A ==> R').
+Proof. simpl_relation. Qed.
+
+(** [respectful] is a morphism for relation equivalence. *)
+
+Instance respectful_morphism :
+ Morphism (relation_equivalence ++> relation_equivalence ++> relation_equivalence) (@respectful A B).
+Proof.
+ reduce.
+ unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *.
+ split ; intros.
+
+ rewrite <- H0.
+ apply H1.
+ rewrite H.
+ assumption.
+
+ rewrite H0.
+ apply H1.
+ rewrite <- H.
+ assumption.
+Qed.
+
+(** Every element in the carrier of a reflexive relation is a morphism for this relation.
+ We use a proxy class for this case which is used internally to discharge reflexivity constraints.
+ The [Reflexive] instance will almost always be used, but it won't apply in general to any kind of
+ [Morphism (A -> B) _ _] goal, making proof-search much slower. A cleaner solution would be to be able
+ to set different priorities in different hint bases and select a particular hint database for
+ resolution of a type class constraint.*)
+
+Class MorphismProxy A (R : relation A) (m : A) : Prop :=
+ respect_proxy : R m m.
+
+Instance reflexive_morphism_proxy
+ [ Reflexive A R ] (x : A) : MorphismProxy A R x | 1.
+Proof. firstorder. Qed.
+
+Instance morphism_morphism_proxy
+ [ Morphism A R x ] : MorphismProxy A R x | 2.
+Proof. firstorder. Qed.
+
+(* Instance (A : Type) [ Reflexive B R ] => *)
+(* eq_reflexive_morphism : Morphism (@Logic.eq A ==> R) m | 3. *)
+(* Proof. simpl_relation. Qed. *)
+
+(** [R] is Reflexive, hence we can build the needed proof. *)
+
+Lemma Reflexive_partial_app_morphism [ Morphism (A -> B) (R ==> R') m, MorphismProxy A R x ] :
+ Morphism R' (m x).
+Proof. simpl_relation. Qed.
+
+Ltac partial_application_tactic :=
+ let tac x :=
+ match type of x with
+ | Type => fail 1
+ | _ => eapply @Reflexive_partial_app_morphism
+ end
+ in
+ let on_morphism m :=
+ match m with
+ | ?m' ?x => tac x
+ | ?m' _ ?x => tac x
+ | ?m' _ _ ?x => tac x
+ | ?m' _ _ _ ?x => tac x
+ | ?m' _ _ _ _ ?x => tac x
+ | ?m' _ _ _ _ _ ?x => tac x
+ | ?m' _ _ _ _ _ _ ?x => tac x
+ | ?m' _ _ _ _ _ _ _ ?x => tac x
+ | ?m' _ _ _ _ _ _ _ _ ?x => tac x
+ end
+ in
+ match goal with
+ | [ |- @Morphism _ _ ?m ] => on_morphism m
+ end.
+
+(* Program Instance [ Morphism (A -> B) (R ==> R') m, Reflexive A R ] (x : A) => *)
+(* reflexive_partial_app_morphism : Morphism R' (m x). *)
+
+Hint Extern 4 (@Morphism _ _ _) => partial_application_tactic : typeclass_instances.
+
+Lemma inverse_respectful : forall (A : Type) (R : relation A) (B : Type) (R' : relation B),
+ relation_equivalence (inverse (R ==> R')) (inverse R ==> inverse R').
+Proof.
+ intros.
+ unfold flip, respectful.
+ split ; intros ; intuition.
+Qed.
+
+(** Special-purpose class to do normalization of signatures w.r.t. inverse. *)
+
+Class (A : Type) => Normalizes (m : relation A) (m' : relation A) : Prop :=
+ normalizes : relation_equivalence m m'.
+
+Instance inverse_respectful_norm :
+ Normalizes (A -> B) (inverse R ==> inverse R') (inverse (R ==> R')) .
+Proof. firstorder. Qed.
+
+(* If not an inverse on the left, do a double inverse. *)
+
+Instance not_inverse_respectful_norm :
+ Normalizes (A -> B) (R ==> inverse R') (inverse (inverse R ==> R')) | 4.
+Proof. firstorder. Qed.
+
+Instance inverse_respectful_rec_norm [ Normalizes B R' (inverse R'') ] :
+ Normalizes (A -> B) (inverse R ==> R') (inverse (R ==> R'')).
+Proof. red ; intros.
+ pose normalizes as r.
+ setoid_rewrite r.
+ setoid_rewrite inverse_respectful.
+ reflexivity.
+Qed.
+
+(** Once we have normalized, we will apply this instance to simplify the problem. *)
+
+Program Instance morphism_inverse_morphism
+ [ Morphism A R m ] : Morphism (inverse R) m | 2.
+
+(** Bootstrap !!! *)
+
+Instance morphism_morphism : Morphism (relation_equivalence ==> @eq _ ==> iff) (@Morphism A).
+Proof.
+ simpl_relation.
+ reduce in H.
+ split ; red ; intros.
+ setoid_rewrite <- H.
+ apply H0.
+ setoid_rewrite H.
+ apply H0.
+Qed.
+
+Lemma morphism_releq_morphism [ Normalizes A R R', Morphism _ R' m ] : Morphism R m.
+Proof.
+ intros.
+ pose respect as r.
+ pose normalizes as norm.
+ setoid_rewrite norm.
+ assumption.
+Qed.
+
+Inductive normalization_done : Prop := did_normalization.
+
+Ltac morphism_normalization :=
+ match goal with
+ | [ _ : normalization_done |- _ ] => fail 1
+ | [ |- @Morphism _ _ _ ] => let H := fresh "H" in
+ set(H:=did_normalization) ; eapply @morphism_releq_morphism
+ end.
+
+Hint Extern 6 (@Morphism _ _ _) => morphism_normalization : typeclass_instances.
+
+(** Every reflexive relation gives rise to a morphism, only for immediately solving goals without variables. *)
+
+Lemma reflexive_morphism [ Reflexive A R ] (x : A)
+ : Morphism R x.
+Proof. firstorder. Qed.
+
+Ltac morphism_reflexive :=
+ match goal with
+ | [ _ : normalization_done |- _ ] => fail 1
+ | [ _ : subrelation_done |- _ ] => fail 1
+ | [ |- @Morphism _ _ _ ] => eapply @reflexive_morphism
+ end.
+
+Hint Extern 4 (@Morphism _ _ _) => morphism_reflexive : typeclass_instances. \ No newline at end of file
diff --git a/theories/Classes/Morphisms_Prop.v b/theories/Classes/Morphisms_Prop.v
new file mode 100644
index 00000000..7dc1f95e
--- /dev/null
+++ b/theories/Classes/Morphisms_Prop.v
@@ -0,0 +1,132 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.Morphisms") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Morphism instances for propositional connectives.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+Require Import Coq.Classes.Morphisms.
+Require Import Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+
+(** Standard instances for [not], [iff] and [impl]. *)
+
+(** Logical negation. *)
+
+Program Instance not_impl_morphism :
+ Morphism (impl --> impl) not.
+
+Program Instance not_iff_morphism :
+ Morphism (iff ++> iff) not.
+
+(** Logical conjunction. *)
+
+Program Instance and_impl_iff_morphism :
+ Morphism (impl ==> impl ==> impl) and.
+
+(* Program Instance and_impl_iff_morphism : *)
+(* Morphism (impl ==> iff ==> impl) and. *)
+
+(* Program Instance and_iff_impl_morphism : *)
+(* Morphism (iff ==> impl ==> impl) and. *)
+
+(* Program Instance and_inverse_impl_iff_morphism : *)
+(* Morphism (inverse impl ==> iff ==> inverse impl) and. *)
+
+(* Program Instance and_iff_inverse_impl_morphism : *)
+(* Morphism (iff ==> inverse impl ==> inverse impl) and. *)
+
+Program Instance and_iff_morphism :
+ Morphism (iff ==> iff ==> iff) and.
+
+(** Logical disjunction. *)
+
+Program Instance or_impl_iff_morphism :
+ Morphism (impl ==> impl ==> impl) or.
+
+(* Program Instance or_impl_iff_morphism : *)
+(* Morphism (impl ==> iff ==> impl) or. *)
+
+(* Program Instance or_iff_impl_morphism : *)
+(* Morphism (iff ==> impl ==> impl) or. *)
+
+(* Program Instance or_inverse_impl_iff_morphism : *)
+(* Morphism (inverse impl ==> iff ==> inverse impl) or. *)
+
+(* Program Instance or_iff_inverse_impl_morphism : *)
+(* Morphism (iff ==> inverse impl ==> inverse impl) or. *)
+
+Program Instance or_iff_morphism :
+ Morphism (iff ==> iff ==> iff) or.
+
+(** Logical implication [impl] is a morphism for logical equivalence. *)
+
+Program Instance iff_iff_iff_impl_morphism : Morphism (iff ==> iff ==> iff) impl.
+
+(** Morphisms for quantifiers *)
+
+Program Instance ex_iff_morphism {A : Type} : Morphism (pointwise_relation iff ==> iff) (@ex A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation in H.
+ split ; intros.
+ destruct H0 as [xâ‚ Hâ‚].
+ exists xâ‚. rewrite H in Hâ‚. assumption.
+
+ destruct H0 as [xâ‚ Hâ‚].
+ exists xâ‚. rewrite H. assumption.
+ Qed.
+
+Program Instance ex_impl_morphism {A : Type} :
+ Morphism (pointwise_relation impl ==> impl) (@ex A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation in H.
+ exists H0. apply H. assumption.
+ Qed.
+
+Program Instance ex_inverse_impl_morphism {A : Type} :
+ Morphism (pointwise_relation (inverse impl) ==> inverse impl) (@ex A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation in H.
+ exists H0. apply H. assumption.
+ Qed.
+
+Program Instance all_iff_morphism {A : Type} :
+ Morphism (pointwise_relation iff ==> iff) (@all A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation, all in *.
+ intuition ; specialize (H x0) ; intuition.
+ Qed.
+
+Program Instance all_impl_morphism {A : Type} :
+ Morphism (pointwise_relation impl ==> impl) (@all A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation, all in *.
+ intuition ; specialize (H x0) ; intuition.
+ Qed.
+
+Program Instance all_inverse_impl_morphism {A : Type} :
+ Morphism (pointwise_relation (inverse impl) ==> inverse impl) (@all A).
+
+ Next Obligation.
+ Proof.
+ unfold pointwise_relation, all in *.
+ intuition ; specialize (H x0) ; intuition.
+ Qed.
diff --git a/theories/Classes/Morphisms_Relations.v b/theories/Classes/Morphisms_Relations.v
new file mode 100644
index 00000000..5018fa01
--- /dev/null
+++ b/theories/Classes/Morphisms_Relations.v
@@ -0,0 +1,50 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.Morphisms") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Morphism instances for relations.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+Require Import Coq.Classes.Morphisms.
+Require Import Coq.Program.Program.
+
+(** Morphisms for relations *)
+
+Instance relation_conjunction_morphism : Morphism (relation_equivalence (A:=A) ==>
+ relation_equivalence ==> relation_equivalence) relation_conjunction.
+ Proof. firstorder. Qed.
+
+Instance relation_disjunction_morphism : Morphism (relation_equivalence (A:=A) ==>
+ relation_equivalence ==> relation_equivalence) relation_disjunction.
+ Proof. firstorder. Qed.
+
+(* Predicate equivalence is exactly the same as the pointwise lifting of [iff]. *)
+
+Require Import List.
+
+Lemma predicate_equivalence_pointwise (l : list Type) :
+ Morphism (@predicate_equivalence l ==> pointwise_lifting iff l) id.
+Proof. do 2 red. unfold predicate_equivalence. auto. Qed.
+
+Lemma predicate_implication_pointwise (l : list Type) :
+ Morphism (@predicate_implication l ==> pointwise_lifting impl l) id.
+Proof. do 2 red. unfold predicate_implication. auto. Qed.
+
+(** The instanciation at relation allows to rewrite applications of relations [R x y] to [R' x y] *)
+(* when [R] and [R'] are in [relation_equivalence]. *)
+
+Instance relation_equivalence_pointwise :
+ Morphism (relation_equivalence ==> pointwise_relation (A:=A) (pointwise_relation (A:=A) iff)) id.
+Proof. intro. apply (predicate_equivalence_pointwise (cons A (cons A nil))). Qed.
+
+Instance subrelation_pointwise :
+ Morphism (subrelation ==> pointwise_relation (A:=A) (pointwise_relation (A:=A) impl)) id.
+Proof. intro. apply (predicate_implication_pointwise (cons A (cons A nil))). Qed.
diff --git a/theories/Classes/RelationClasses.v b/theories/Classes/RelationClasses.v
new file mode 100644
index 00000000..a9a53068
--- /dev/null
+++ b/theories/Classes/RelationClasses.v
@@ -0,0 +1,400 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.RelationClasses") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Typeclass-based relations, tactics and standard instances.
+ This is the basic theory needed to formalize morphisms and setoids.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: RelationClasses.v 11092 2008-06-10 18:28:26Z msozeau $ *)
+
+Require Export Coq.Classes.Init.
+Require Import Coq.Program.Basics.
+Require Import Coq.Program.Tactics.
+Require Export Coq.Relations.Relation_Definitions.
+
+Notation inverse R := (flip (R:relation _) : relation _).
+
+Definition complement {A} (R : relation A) : relation A := fun x y => R x y -> False.
+
+Definition pointwise_relation {A B : Type} (R : relation B) : relation (A -> B) :=
+ fun f g => forall x : A, R (f x) (g x).
+
+(** These are convertible. *)
+
+Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R).
+Proof. reflexivity. Qed.
+
+(** We rebind relations in separate classes to be able to overload each proof. *)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Class Reflexive A (R : relation A) :=
+ reflexivity : forall x, R x x.
+
+Class Irreflexive A (R : relation A) :=
+ irreflexivity :> Reflexive A (complement R).
+
+Class Symmetric A (R : relation A) :=
+ symmetry : forall x y, R x y -> R y x.
+
+Class Asymmetric A (R : relation A) :=
+ asymmetry : forall x y, R x y -> R y x -> False.
+
+Class Transitive A (R : relation A) :=
+ transitivity : forall x y z, R x y -> R y z -> R x z.
+
+Implicit Arguments Reflexive [A].
+Implicit Arguments Irreflexive [A].
+Implicit Arguments Symmetric [A].
+Implicit Arguments Asymmetric [A].
+Implicit Arguments Transitive [A].
+
+Hint Resolve @irreflexivity : ord.
+
+Unset Implicit Arguments.
+
+(** We can already dualize all these properties. *)
+
+Program Instance flip_Reflexive [ Reflexive A R ] : Reflexive (flip R) :=
+ reflexivity := reflexivity (R:=R).
+
+Program Instance flip_Irreflexive [ Irreflexive A R ] : Irreflexive (flip R) :=
+ irreflexivity := irreflexivity (R:=R).
+
+Program Instance flip_Symmetric [ Symmetric A R ] : Symmetric (flip R).
+
+ Solve Obligations using unfold flip ; program_simpl ; clapply Symmetric.
+
+Program Instance flip_Asymmetric [ Asymmetric A R ] : Asymmetric (flip R).
+
+ Solve Obligations using program_simpl ; unfold flip in * ; intros ; clapply asymmetry.
+
+Program Instance flip_Transitive [ Transitive A R ] : Transitive (flip R).
+
+ Solve Obligations using unfold flip ; program_simpl ; clapply transitivity.
+
+Program Instance Reflexive_complement_Irreflexive [ Reflexive A (R : relation A) ]
+ : Irreflexive (complement R).
+
+ Next Obligation.
+ Proof.
+ unfold complement.
+ red. intros H.
+ intros H' ; apply H'.
+ apply (reflexivity H).
+ Qed.
+
+
+Program Instance complement_Symmetric [ Symmetric A (R : relation A) ] : Symmetric (complement R).
+
+ Next Obligation.
+ Proof.
+ red ; intros H'.
+ apply (H (symmetry H')).
+ Qed.
+
+(** * Standard instances. *)
+
+Ltac reduce_hyp H :=
+ match type of H with
+ | context [ _ <-> _ ] => fail 1
+ | _ => red in H ; try reduce_hyp H
+ end.
+
+Ltac reduce_goal :=
+ match goal with
+ | [ |- _ <-> _ ] => fail 1
+ | _ => red ; intros ; try reduce_goal
+ end.
+
+Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
+
+Ltac reduce := reduce_goal.
+
+Tactic Notation "apply" "*" constr(t) :=
+ first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
+ refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
+
+Ltac simpl_relation :=
+ unfold flip, impl, arrow ; try reduce ; program_simpl ;
+ try ( solve [ intuition ]).
+
+Ltac obligations_tactic ::= simpl_relation.
+
+(** Logical implication. *)
+
+Program Instance impl_Reflexive : Reflexive impl.
+Program Instance impl_Transitive : Transitive impl.
+
+(** Logical equivalence. *)
+
+Program Instance iff_Reflexive : Reflexive iff.
+Program Instance iff_Symmetric : Symmetric iff.
+Program Instance iff_Transitive : Transitive iff.
+
+(** Leibniz equality. *)
+
+Program Instance eq_Reflexive : Reflexive (@eq A).
+Program Instance eq_Symmetric : Symmetric (@eq A).
+Program Instance eq_Transitive : Transitive (@eq A).
+
+(** Various combinations of reflexivity, symmetry and transitivity. *)
+
+(** A [PreOrder] is both Reflexive and Transitive. *)
+
+Class PreOrder A (R : relation A) : Prop :=
+ PreOrder_Reflexive :> Reflexive R ;
+ PreOrder_Transitive :> Transitive R.
+
+(** A partial equivalence relation is Symmetric and Transitive. *)
+
+Class PER (carrier : Type) (pequiv : relation carrier) : Prop :=
+ PER_Symmetric :> Symmetric pequiv ;
+ PER_Transitive :> Transitive pequiv.
+
+(** Equivalence relations. *)
+
+Class Equivalence (carrier : Type) (equiv : relation carrier) : Prop :=
+ Equivalence_Reflexive :> Reflexive equiv ;
+ Equivalence_Symmetric :> Symmetric equiv ;
+ Equivalence_Transitive :> Transitive equiv.
+
+(** An Equivalence is a PER plus reflexivity. *)
+
+Instance Equivalence_PER [ Equivalence A R ] : PER A R :=
+ PER_Symmetric := Equivalence_Symmetric ;
+ PER_Transitive := Equivalence_Transitive.
+
+(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
+
+Class [ Equivalence A eqA ] => Antisymmetric (R : relation A) :=
+ antisymmetry : forall x y, R x y -> R y x -> eqA x y.
+
+Program Instance flip_antiSymmetric [ eq : Equivalence A eqA, ! Antisymmetric eq R ] :
+ Antisymmetric eq (flip R).
+
+(** Leibinz equality [eq] is an equivalence relation.
+ The instance has low priority as it is always applicable
+ if only the type is constrained. *)
+
+Program Instance eq_equivalence : Equivalence A (@eq A) | 10.
+
+(** Logical equivalence [iff] is an equivalence relation. *)
+
+Program Instance iff_equivalence : Equivalence Prop iff.
+
+(** We now develop a generalization of results on relations for arbitrary predicates.
+ The resulting theory can be applied to homogeneous binary relations but also to
+ arbitrary n-ary predicates. *)
+
+Require Import List.
+
+(* Notation " [ ] " := nil : list_scope. *)
+(* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *)
+
+(* Open Local Scope list_scope. *)
+
+(** A compact representation of non-dependent arities, with the codomain singled-out. *)
+
+Fixpoint arrows (l : list Type) (r : Type) : Type :=
+ match l with
+ | nil => r
+ | A :: l' => A -> arrows l' r
+ end.
+
+(** We can define abbreviations for operation and relation types based on [arrows]. *)
+
+Definition unary_operation A := arrows (cons A nil) A.
+Definition binary_operation A := arrows (cons A (cons A nil)) A.
+Definition ternary_operation A := arrows (cons A (cons A (cons A nil))) A.
+
+(** We define n-ary [predicate]s as functions into [Prop]. *)
+
+Notation predicate l := (arrows l Prop).
+
+(** Unary predicates, or sets. *)
+
+Definition unary_predicate A := predicate (cons A nil).
+
+(** Homogeneous binary relations, equivalent to [relation A]. *)
+
+Definition binary_relation A := predicate (cons A (cons A nil)).
+
+(** We can close a predicate by universal or existential quantification. *)
+
+Fixpoint predicate_all (l : list Type) : predicate l -> Prop :=
+ match l with
+ | nil => fun f => f
+ | A :: tl => fun f => forall x : A, predicate_all tl (f x)
+ end.
+
+Fixpoint predicate_exists (l : list Type) : predicate l -> Prop :=
+ match l with
+ | nil => fun f => f
+ | A :: tl => fun f => exists x : A, predicate_exists tl (f x)
+ end.
+
+(** Pointwise extension of a binary operation on [T] to a binary operation
+ on functions whose codomain is [T].
+ For an operator on [Prop] this lifts the operator to a binary operation. *)
+
+Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
+ (l : list Type) : binary_operation (arrows l T) :=
+ match l with
+ | nil => fun R R' => op R R'
+ | A :: tl => fun R R' =>
+ fun x => pointwise_extension op tl (R x) (R' x)
+ end.
+
+(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
+
+Fixpoint pointwise_lifting (op : binary_relation Prop) (l : list Type) : binary_relation (predicate l) :=
+ match l with
+ | nil => fun R R' => op R R'
+ | A :: tl => fun R R' =>
+ forall x, pointwise_lifting op tl (R x) (R' x)
+ end.
+
+(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
+
+Definition predicate_equivalence {l : list Type} : binary_relation (predicate l) :=
+ pointwise_lifting iff l.
+
+(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
+
+Definition predicate_implication {l : list Type} :=
+ pointwise_lifting impl l.
+
+(** Notations for pointwise equivalence and implication of predicates. *)
+
+Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
+Infix "-∙>" := predicate_implication (at level 70) : predicate_scope.
+
+Open Local Scope predicate_scope.
+
+(** The pointwise liftings of conjunction and disjunctions.
+ Note that these are [binary_operation]s, building new relations out of old ones. *)
+
+Definition predicate_intersection := pointwise_extension and.
+Definition predicate_union := pointwise_extension or.
+
+Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
+Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
+
+(** The always [True] and always [False] predicates. *)
+
+Fixpoint true_predicate {l : list Type} : predicate l :=
+ match l with
+ | nil => True
+ | A :: tl => fun _ => @true_predicate tl
+ end.
+
+Fixpoint false_predicate {l : list Type} : predicate l :=
+ match l with
+ | nil => False
+ | A :: tl => fun _ => @false_predicate tl
+ end.
+
+Notation "∙⊤∙" := true_predicate : predicate_scope.
+Notation "∙⊥∙" := false_predicate : predicate_scope.
+
+(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
+
+Program Instance predicate_equivalence_equivalence :
+ Equivalence (predicate l) predicate_equivalence.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ fold pointwise_lifting.
+ induction l. firstorder.
+ intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)).
+ firstorder.
+ Qed.
+
+Program Instance predicate_implication_preorder :
+ PreOrder (predicate l) predicate_implication.
+
+ Next Obligation.
+ induction l ; firstorder.
+ Qed.
+
+ Next Obligation.
+ induction l. firstorder.
+ unfold predicate_implication in *. simpl in *.
+ intro. pose (IHl (x x0) (y x0) (z x0)). firstorder.
+ Qed.
+
+(** We define the various operations which define the algebra on binary relations,
+ from the general ones. *)
+
+Definition relation_equivalence {A : Type} : relation (relation A) :=
+ @predicate_equivalence (cons _ (cons _ nil)).
+
+Class subrelation {A:Type} (R R' : relation A) : Prop :=
+ is_subrelation : @predicate_implication (cons A (cons A nil)) R R'.
+
+Implicit Arguments subrelation [[A]].
+
+Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A :=
+ @predicate_intersection (cons A (cons A nil)) R R'.
+
+Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A :=
+ @predicate_union (cons A (cons A nil)) R R'.
+
+(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
+
+Instance relation_equivalence_equivalence (A : Type) :
+ Equivalence (relation A) relation_equivalence.
+Proof. intro A. exact (@predicate_equivalence_equivalence (cons A (cons A nil))). Qed.
+
+Instance relation_implication_preorder : PreOrder (relation A) subrelation.
+Proof. intro A. exact (@predicate_implication_preorder (cons A (cons A nil))). Qed.
+
+(** *** Partial Order.
+ A partial order is a preorder which is additionally antisymmetric.
+ We give an equivalent definition, up-to an equivalence relation
+ on the carrier. *)
+
+Class [ equ : Equivalence A eqA, PreOrder A R ] => PartialOrder :=
+ partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)).
+
+(** The equivalence proof is sufficient for proving that [R] must be a morphism
+ for equivalence (see Morphisms).
+ It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *)
+
+Instance partial_order_antisym [ PartialOrder A eqA R ] : ! Antisymmetric A eqA R.
+Proof with auto.
+ reduce_goal. pose proof partial_order_equivalence as poe. do 3 red in poe.
+ apply <- poe. firstorder.
+Qed.
+
+(** The partial order defined by subrelation and relation equivalence. *)
+
+Program Instance subrelation_partial_order :
+ ! PartialOrder (relation A) relation_equivalence subrelation.
+
+ Next Obligation.
+ Proof.
+ unfold relation_equivalence in *. firstorder.
+ Qed.
+
+Lemma inverse_pointwise_relation A (R : relation A) :
+ relation_equivalence (pointwise_relation (inverse R)) (inverse (pointwise_relation (A:=A) R)).
+Proof. reflexivity. Qed.
diff --git a/theories/Classes/SetoidAxioms.v b/theories/Classes/SetoidAxioms.v
new file mode 100644
index 00000000..9264b6d2
--- /dev/null
+++ b/theories/Classes/SetoidAxioms.v
@@ -0,0 +1,35 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Extensionality axioms that can be used when reasoning with setoids.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: SetoidAxioms.v 10739 2008-04-01 14:45:20Z herbelin $ *)
+
+Require Import Coq.Program.Program.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Require Export Coq.Classes.SetoidClass.
+
+(* Application of the extensionality axiom to turn a goal on leibinz equality to
+ a setoid equivalence. *)
+
+Axiom setoideq_eq : forall [ sa : Setoid a ] (x y : a), x == y -> x = y.
+
+(** Application of the extensionality principle for setoids. *)
+
+Ltac setoid_extensionality :=
+ match goal with
+ [ |- @eq ?A ?X ?Y ] => apply (setoideq_eq (a:=A) (x:=X) (y:=Y))
+ end.
diff --git a/theories/Classes/SetoidClass.v b/theories/Classes/SetoidClass.v
new file mode 100644
index 00000000..a9bdaa8f
--- /dev/null
+++ b/theories/Classes/SetoidClass.v
@@ -0,0 +1,181 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Typeclass-based setoids, tactics and standard instances.
+
+ Author: Matthieu Sozeau
+ Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ 91405 Orsay, France *)
+
+(* $Id: SetoidClass.v 11065 2008-06-06 22:39:43Z msozeau $ *)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Require Import Coq.Program.Program.
+
+Require Import Coq.Classes.Init.
+Require Export Coq.Classes.RelationClasses.
+Require Export Coq.Classes.Morphisms.
+Require Import Coq.Classes.Functions.
+
+(** A setoid wraps an equivalence. *)
+
+Class Setoid A :=
+ equiv : relation A ;
+ setoid_equiv :> Equivalence A equiv.
+
+Typeclasses unfold equiv.
+
+(* Too dangerous instance *)
+(* Program Instance [ eqa : Equivalence A eqA ] => *)
+(* equivalence_setoid : Setoid A := *)
+(* equiv := eqA ; setoid_equiv := eqa. *)
+
+(** Shortcuts to make proof search easier. *)
+
+Definition setoid_refl [ sa : Setoid A ] : Reflexive equiv.
+Proof. eauto with typeclass_instances. Qed.
+
+Definition setoid_sym [ sa : Setoid A ] : Symmetric equiv.
+Proof. eauto with typeclass_instances. Qed.
+
+Definition setoid_trans [ sa : Setoid A ] : Transitive equiv.
+Proof. eauto with typeclass_instances. Qed.
+
+Existing Instance setoid_refl.
+Existing Instance setoid_sym.
+Existing Instance setoid_trans.
+
+(** Standard setoids. *)
+
+(* Program Instance eq_setoid : Setoid A := *)
+(* equiv := eq ; setoid_equiv := eq_equivalence. *)
+
+Program Instance iff_setoid : Setoid Prop :=
+ equiv := iff ; setoid_equiv := iff_equivalence.
+
+(** Overloaded notations for setoid equivalence and inequivalence. Not to be confused with [eq] and [=]. *)
+
+(** Subset objects should be first coerced to their underlying type, but that notation doesn't work in the standard case then. *)
+(* Notation " x == y " := (equiv (x :>) (y :>)) (at level 70, no associativity) : type_scope. *)
+
+Notation " x == y " := (equiv x y) (at level 70, no associativity) : type_scope.
+
+Notation " x =/= y " := (complement equiv x y) (at level 70, no associativity) : type_scope.
+
+(** Use the [clsubstitute] command which substitutes an equality in every hypothesis. *)
+
+Ltac clsubst H :=
+ match type of H with
+ ?x == ?y => substitute H ; clear H x
+ end.
+
+Ltac clsubst_nofail :=
+ match goal with
+ | [ H : ?x == ?y |- _ ] => clsubst H ; clsubst_nofail
+ | _ => idtac
+ end.
+
+(** [subst*] will try its best at substituting every equality in the goal. *)
+
+Tactic Notation "clsubst" "*" := clsubst_nofail.
+
+Lemma nequiv_equiv_trans : forall [ Setoid A ] (x y z : A), x =/= y -> y == z -> x =/= z.
+Proof with auto.
+ intros; intro.
+ assert(z == y) by (symmetry ; auto).
+ assert(x == y) by (transitivity z ; eauto).
+ contradiction.
+Qed.
+
+Lemma equiv_nequiv_trans : forall [ Setoid A ] (x y z : A), x == y -> y =/= z -> x =/= z.
+Proof.
+ intros; intro.
+ assert(y == x) by (symmetry ; auto).
+ assert(y == z) by (transitivity x ; eauto).
+ contradiction.
+Qed.
+
+Ltac setoid_simplify_one :=
+ match goal with
+ | [ H : (?x == ?x)%type |- _ ] => clear H
+ | [ H : (?x == ?y)%type |- _ ] => clsubst H
+ | [ |- (?x =/= ?y)%type ] => let name:=fresh "Hneq" in intro name
+ end.
+
+Ltac setoid_simplify := repeat setoid_simplify_one.
+
+Ltac setoidify_tac :=
+ match goal with
+ | [ s : Setoid ?A, H : ?R ?x ?y |- _ ] => change R with (@equiv A R s) in H
+ | [ s : Setoid ?A |- context C [ ?R ?x ?y ] ] => change (R x y) with (@equiv A R s x y)
+ end.
+
+Ltac setoidify := repeat setoidify_tac.
+
+(** Every setoid relation gives rise to a morphism, in fact every partial setoid does. *)
+
+Program Definition setoid_morphism [ sa : Setoid A ] : Morphism (equiv ++> equiv ++> iff) equiv :=
+ trans_sym_morphism.
+
+(** Add this very useful instance in the database. *)
+
+Implicit Arguments setoid_morphism [[!sa]].
+Existing Instance setoid_morphism.
+
+Program Definition setoid_partial_app_morphism [ sa : Setoid A ] (x : A) : Morphism (equiv ++> iff) (equiv x) :=
+ Reflexive_partial_app_morphism.
+
+Existing Instance setoid_partial_app_morphism.
+
+Definition type_eq : relation Type :=
+ fun x y => x = y.
+
+Program Instance type_equivalence : Equivalence Type type_eq.
+
+Ltac morphism_tac := try red ; unfold arrow ; intros ; program_simpl ; try tauto.
+
+Ltac obligations_tactic ::= morphism_tac.
+
+(** These are morphisms used to rewrite at the top level of a proof,
+ using [iff_impl_id_morphism] if the proof is in [Prop] and
+ [eq_arrow_id_morphism] if it is in Type. *)
+
+Program Instance iff_impl_id_morphism : Morphism (iff ++> impl) Basics.id.
+
+(* Program Instance eq_arrow_id_morphism : ? Morphism (eq +++> arrow) id. *)
+
+(* Definition compose_respect (A B C : Type) (R : relation (A -> B)) (R' : relation (B -> C)) *)
+(* (x y : A -> C) : Prop := forall (f : A -> B) (g : B -> C), R f f -> R' g g. *)
+
+(* Program Instance (A B C : Type) (R : relation (A -> B)) (R' : relation (B -> C)) *)
+(* [ mg : ? Morphism R' g ] [ mf : ? Morphism R f ] => *)
+(* compose_morphism : ? Morphism (compose_respect R R') (g o f). *)
+
+(* Next Obligation. *)
+(* Proof. *)
+(* apply (respect (m0:=mg)). *)
+(* apply (respect (m0:=mf)). *)
+(* assumption. *)
+(* Qed. *)
+
+(** Partial setoids don't require reflexivity so we can build a partial setoid on the function space. *)
+
+Class PartialSetoid (carrier : Type) :=
+ pequiv : relation carrier ;
+ pequiv_prf :> PER carrier pequiv.
+
+(** Overloaded notation for partial setoid equivalence. *)
+
+Infix "=~=" := pequiv (at level 70, no associativity) : type_scope.
+
+(** Reset the default Program tactic. *)
+
+Ltac obligations_tactic ::= program_simpl.
diff --git a/theories/Classes/SetoidDec.v b/theories/Classes/SetoidDec.v
new file mode 100644
index 00000000..cf3d202d
--- /dev/null
+++ b/theories/Classes/SetoidDec.v
@@ -0,0 +1,126 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Decidable setoid equality theory.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: SetoidDec.v 10919 2008-05-11 22:04:26Z msozeau $ *)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** Export notations. *)
+
+Require Export Coq.Classes.SetoidClass.
+
+(** The [DecidableSetoid] class asserts decidability of a [Setoid]. It can be useful in proofs to reason more
+ classically. *)
+
+Require Import Coq.Logic.Decidable.
+
+Class [ Setoid A ] => DecidableSetoid :=
+ setoid_decidable : forall x y : A, decidable (x == y).
+
+(** The [EqDec] class gives a decision procedure for a particular setoid equality. *)
+
+Class [ Setoid A ] => EqDec :=
+ equiv_dec : forall x y : A, { x == y } + { x =/= y }.
+
+(** We define the [==] overloaded notation for deciding equality. It does not take precedence
+ of [==] defined in the type scope, hence we can have both at the same time. *)
+
+Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70).
+
+Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
+ match x with
+ | left H => @right _ _ H
+ | right H => @left _ _ H
+ end.
+
+Require Import Coq.Program.Program.
+
+Open Local Scope program_scope.
+
+(** Invert the branches. *)
+
+Program Definition nequiv_dec [ EqDec A ] (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y).
+
+(** Overloaded notation for inequality. *)
+
+Infix "=/=" := nequiv_dec (no associativity, at level 70).
+
+(** Define boolean versions, losing the logical information. *)
+
+Definition equiv_decb [ EqDec A ] (x y : A) : bool :=
+ if x == y then true else false.
+
+Definition nequiv_decb [ EqDec A ] (x y : A) : bool :=
+ negb (equiv_decb x y).
+
+Infix "==b" := equiv_decb (no associativity, at level 70).
+Infix "<>b" := nequiv_decb (no associativity, at level 70).
+
+(** Decidable leibniz equality instances. *)
+
+Require Import Coq.Arith.Arith.
+
+(** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *)
+
+Program Instance eq_setoid : Setoid A :=
+ equiv := eq ; setoid_equiv := eq_equivalence.
+
+Program Instance nat_eq_eqdec : EqDec (@eq_setoid nat) :=
+ equiv_dec := eq_nat_dec.
+
+Require Import Coq.Bool.Bool.
+
+Program Instance bool_eqdec : EqDec (@eq_setoid bool) :=
+ equiv_dec := bool_dec.
+
+Program Instance unit_eqdec : EqDec (@eq_setoid unit) :=
+ equiv_dec x y := in_left.
+
+ Next Obligation.
+ Proof.
+ destruct x ; destruct y.
+ reflexivity.
+ Qed.
+
+Program Instance prod_eqdec [ ! EqDec (@eq_setoid A), ! EqDec (@eq_setoid B) ] : EqDec (@eq_setoid (prod A B)) :=
+ equiv_dec x y :=
+ let '(x1, x2) := x in
+ let '(y1, y2) := y in
+ if x1 == y1 then
+ if x2 == y2 then in_left
+ else in_right
+ else in_right.
+
+ Solve Obligations using unfold complement ; program_simpl.
+
+(** Objects of function spaces with countable domains like bool have decidable equality. *)
+
+Require Import Coq.Program.FunctionalExtensionality.
+
+Program Instance bool_function_eqdec [ ! EqDec (@eq_setoid A) ] : EqDec (@eq_setoid (bool -> A)) :=
+ equiv_dec f g :=
+ if f true == g true then
+ if f false == g false then in_left
+ else in_right
+ else in_right.
+
+ Solve Obligations using try red ; unfold equiv, complement ; program_simpl.
+
+ Next Obligation.
+ Proof.
+ extensionality x.
+ destruct x ; auto.
+ Qed.
diff --git a/theories/Classes/SetoidTactics.v b/theories/Classes/SetoidTactics.v
new file mode 100644
index 00000000..b29a52cc
--- /dev/null
+++ b/theories/Classes/SetoidTactics.v
@@ -0,0 +1,176 @@
+(* -*- coq-prog-args: ("-emacs-U" "-top" "Coq.Classes.SetoidTactics") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Tactics for typeclass-based setoids.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: SetoidTactics.v 10921 2008-05-12 12:27:25Z msozeau $ *)
+
+Require Export Coq.Classes.RelationClasses.
+Require Export Coq.Classes.Morphisms.
+Require Export Coq.Classes.Morphisms_Prop.
+Require Export Coq.Classes.Equivalence.
+Require Export Coq.Relations.Relation_Definitions.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** Default relation on a given support. Can be used by tactics
+ to find a sensible default relation on any carrier. Users can
+ declare an [Instance A RA] anywhere to declare default relations.
+ This is also done by the [Declare Relation A RA] command with no
+ parameters for backward compatibility. *)
+
+Class DefaultRelation A (R : relation A).
+
+(** To search for the default relation, just call [default_relation]. *)
+
+Definition default_relation [ DefaultRelation A R ] := R.
+
+(** Every [Equivalence] gives a default relation, if no other is given (lowest priority). *)
+
+Instance equivalence_default [ Equivalence A R ] : DefaultRelation A R | 4.
+
+(** The setoid_replace tactics in Ltac, defined in terms of default relations and
+ the setoid_rewrite tactic. *)
+
+Ltac setoidreplace H t :=
+ let Heq := fresh "Heq" in
+ cut(H) ; unfold default_relation ; [ intro Heq ; setoid_rewrite Heq ; clear Heq | t ].
+
+Ltac setoidreplacein H H' t :=
+ let Heq := fresh "Heq" in
+ cut(H) ; unfold default_relation ; [ intro Heq ; setoid_rewrite Heq in H' ; clear Heq | t ].
+
+Ltac setoidreplaceinat H H' t occs :=
+ let Heq := fresh "Heq" in
+ cut(H) ; unfold default_relation ; [ intro Heq ; setoid_rewrite Heq in H' at occs ; clear Heq | t ].
+
+Ltac setoidreplaceat H t occs :=
+ let Heq := fresh "Heq" in
+ cut(H) ; unfold default_relation ; [ intro Heq ; setoid_rewrite Heq at occs ; clear Heq | t ].
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y) :=
+ setoidreplace (default_relation x y) idtac.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "at" int_or_var_list(o) :=
+ setoidreplaceat (default_relation x y) idtac o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "in" hyp(id) :=
+ setoidreplacein (default_relation x y) id idtac.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "in" hyp(id)
+ "at" int_or_var_list(o) :=
+ setoidreplaceinat (default_relation x y) id idtac o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "by" tactic3(t) :=
+ setoidreplace (default_relation x y) ltac:t.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "at" int_or_var_list(o)
+ "by" tactic3(t) :=
+ setoidreplaceat (default_relation x y) ltac:t o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "in" hyp(id)
+ "by" tactic3(t) :=
+ setoidreplacein (default_relation x y) id ltac:t.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "in" hyp(id)
+ "at" int_or_var_list(o)
+ "by" tactic3(t) :=
+ setoidreplaceinat (default_relation x y) id ltac:t o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel) :=
+ setoidreplace (rel x y) idtac.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "at" int_or_var_list(o) :=
+ setoidreplaceat (rel x y) idtac o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "by" tactic3(t) :=
+ setoidreplace (rel x y) ltac:t.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "at" int_or_var_list(o)
+ "by" tactic3(t) :=
+ setoidreplaceat (rel x y) ltac:t o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "in" hyp(id) :=
+ setoidreplacein (rel x y) id idtac.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "in" hyp(id)
+ "at" int_or_var_list(o) :=
+ setoidreplaceinat (rel x y) id idtac o.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "in" hyp(id)
+ "by" tactic3(t) :=
+ setoidreplacein (rel x y) id ltac:t.
+
+Tactic Notation "setoid_replace" constr(x) "with" constr(y)
+ "using" "relation" constr(rel)
+ "in" hyp(id)
+ "at" int_or_var_list(o)
+ "by" tactic3(t) :=
+ setoidreplaceinat (rel x y) id ltac:t o.
+
+(** The [add_morphism_tactic] tactic is run at each [Add Morphism] command before giving the hand back
+ to the user to discharge the proof. It essentially amounts to unfold the right amount of [respectful] calls
+ and substitute leibniz equalities. One can redefine it using [Ltac add_morphism_tactic ::= t]. *)
+
+Require Import Coq.Program.Tactics.
+
+Open Local Scope signature_scope.
+
+Ltac red_subst_eq_morphism concl :=
+ match concl with
+ | @Logic.eq ?A ==> ?R' => red ; intros ; subst ; red_subst_eq_morphism R'
+ | ?R ==> ?R' => red ; intros ; red_subst_eq_morphism R'
+ | _ => idtac
+ end.
+
+Ltac destruct_morphism :=
+ match goal with
+ | [ |- @Morphism ?A ?R ?m ] => red
+ end.
+
+Ltac reverse_arrows x :=
+ match x with
+ | @Logic.eq ?A ==> ?R' => revert_last ; reverse_arrows R'
+ | ?R ==> ?R' => do 3 revert_last ; reverse_arrows R'
+ | _ => idtac
+ end.
+
+Ltac default_add_morphism_tactic :=
+ intros ;
+ (try destruct_morphism) ;
+ match goal with
+ | [ |- (?x ==> ?y) _ _ ] => red_subst_eq_morphism (x ==> y) ; reverse_arrows (x ==> y)
+ end.
+
+Ltac add_morphism_tactic := default_add_morphism_tactic.
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v
index 4807ed66..8cb1236e 100644
--- a/theories/FSets/FMapAVL.v
+++ b/theories/FSets/FMapAVL.v
@@ -9,35 +9,35 @@
(* Finite map library. *)
-(* $Id: FMapAVL.v 9862 2007-05-25 16:57:06Z letouzey $ *)
+(* $Id: FMapAVL.v 11033 2008-06-01 22:56:50Z letouzey $ *)
-(** This module implements map using AVL trees.
- It follows the implementation from Ocaml's standard library. *)
+(** * FMapAVL *)
-Require Import FSetInterface.
-Require Import FMapInterface.
-Require Import FMapList.
+(** This module implements maps using AVL trees.
+ It follows the implementation from Ocaml's standard library.
+
+ See the comments at the beginning of FSetAVL for more details.
+*)
-Require Import ZArith.
-Require Import Int.
+Require Import FMapInterface FMapList ZArith Int.
-Set Firstorder Depth 3.
Set Implicit Arguments.
Unset Strict Implicit.
+(** Notations and helper lemma about pairs *)
-Module Raw (I:Int)(X: OrderedType).
-Import I.
-Module II:=MoreInt(I).
-Import II.
-Open Local Scope Int_scope.
+Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
+Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
-Module E := X.
-Module MX := OrderedTypeFacts X.
-Module PX := KeyOrderedType X.
-Module L := FMapList.Raw X.
-Import MX.
-Import PX.
+(** * The Raw functor
+
+ Functor of pure functions + separate proofs of invariant
+ preservation *)
+
+Module Raw (Import I:Int)(X: OrderedType).
+Open Local Scope pair_scope.
+Open Local Scope lazy_bool_scope.
+Open Local Scope Int_scope.
Definition key := X.t.
@@ -45,30 +45,391 @@ Definition key := X.t.
Section Elt.
-Variable elt : Set.
+Variable elt : Type.
-(* Now in KeyOrderedType:
-Definition eqk (p p':key*elt) := X.eq (fst p) (fst p').
-Definition eqke (p p':key*elt) :=
- X.eq (fst p) (fst p') /\ (snd p) = (snd p').
-Definition ltk (p p':key*elt) := X.lt (fst p) (fst p').
-*)
+(** * Trees
-Notation eqk := (eqk (elt:= elt)).
-Notation eqke := (eqke (elt:= elt)).
-Notation ltk := (ltk (elt:= elt)).
+ The fifth field of [Node] is the height of the tree *)
-Inductive tree : Set :=
+Inductive tree :=
| Leaf : tree
| Node : tree -> key -> elt -> tree -> int -> tree.
Notation t := tree.
-(** The Sixth field of [Node] is the height of the tree *)
+(** * Basic functions on trees: height and cardinal *)
+
+Definition height (m : t) : int :=
+ match m with
+ | Leaf => 0
+ | Node _ _ _ _ h => h
+ end.
+
+Fixpoint cardinal (m : t) : nat :=
+ match m with
+ | Leaf => 0%nat
+ | Node l _ _ r _ => S (cardinal l + cardinal r)
+ end.
+
+(** * Empty Map *)
+
+Definition empty := Leaf.
+
+(** * Emptyness test *)
+
+Definition is_empty m := match m with Leaf => true | _ => false end.
+
+(** * Appartness *)
+
+(** The [mem] function is deciding appartness. It exploits the [bst] property
+ to achieve logarithmic complexity. *)
+
+Fixpoint mem x m : bool :=
+ match m with
+ | Leaf => false
+ | Node l y _ r _ => match X.compare x y with
+ | LT _ => mem x l
+ | EQ _ => true
+ | GT _ => mem x r
+ end
+ end.
+
+Fixpoint find x m : option elt :=
+ match m with
+ | Leaf => None
+ | Node l y d r _ => match X.compare x y with
+ | LT _ => find x l
+ | EQ _ => Some d
+ | GT _ => find x r
+ end
+ end.
+
+(** * Helper functions *)
-(** * Occurrence in a tree *)
+(** [create l x r] creates a node, assuming [l] and [r]
+ to be balanced and [|height l - height r| <= 2]. *)
-Inductive MapsTo (x : key)(e : elt) : tree -> Prop :=
+Definition create l x e r :=
+ Node l x e r (max (height l) (height r) + 1).
+
+(** [bal l x e r] acts as [create], but performs one step of
+ rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
+
+Definition assert_false := create.
+
+Fixpoint bal l x d r :=
+ let hl := height l in
+ let hr := height r in
+ if gt_le_dec hl (hr+2) then
+ match l with
+ | Leaf => assert_false l x d r
+ | Node ll lx ld lr _ =>
+ if ge_lt_dec (height ll) (height lr) then
+ create ll lx ld (create lr x d r)
+ else
+ match lr with
+ | Leaf => assert_false l x d r
+ | Node lrl lrx lrd lrr _ =>
+ create (create ll lx ld lrl) lrx lrd (create lrr x d r)
+ end
+ end
+ else
+ if gt_le_dec hr (hl+2) then
+ match r with
+ | Leaf => assert_false l x d r
+ | Node rl rx rd rr _ =>
+ if ge_lt_dec (height rr) (height rl) then
+ create (create l x d rl) rx rd rr
+ else
+ match rl with
+ | Leaf => assert_false l x d r
+ | Node rll rlx rld rlr _ =>
+ create (create l x d rll) rlx rld (create rlr rx rd rr)
+ end
+ end
+ else
+ create l x d r.
+
+(** * Insertion *)
+
+Fixpoint add x d m :=
+ match m with
+ | Leaf => Node Leaf x d Leaf 1
+ | Node l y d' r h =>
+ match X.compare x y with
+ | LT _ => bal (add x d l) y d' r
+ | EQ _ => Node l y d r h
+ | GT _ => bal l y d' (add x d r)
+ end
+ end.
+
+(** * Extraction of minimum binding
+
+ Morally, [remove_min] is to be applied to a non-empty tree
+ [t = Node l x e r h]. Since we can't deal here with [assert false]
+ for [t=Leaf], we pre-unpack [t] (and forget about [h]).
+*)
+
+Fixpoint remove_min l x d r : t*(key*elt) :=
+ match l with
+ | Leaf => (r,(x,d))
+ | Node ll lx ld lr lh =>
+ let (l',m) := remove_min ll lx ld lr in
+ (bal l' x d r, m)
+ end.
+
+(** * Merging two trees
+
+ [merge t1 t2] builds the union of [t1] and [t2] assuming all elements
+ of [t1] to be smaller than all elements of [t2], and
+ [|height t1 - height t2| <= 2].
+*)
+
+Fixpoint merge s1 s2 := match s1,s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 d2 r2 h2 =>
+ match remove_min l2 x2 d2 r2 with
+ (s2',(x,d)) => bal s1 x d s2'
+ end
+end.
+
+(** * Deletion *)
+
+Fixpoint remove x m := match m with
+ | Leaf => Leaf
+ | Node l y d r h =>
+ match X.compare x y with
+ | LT _ => bal (remove x l) y d r
+ | EQ _ => merge l r
+ | GT _ => bal l y d (remove x r)
+ end
+ end.
+
+(** * join
+
+ Same as [bal] but does not assume anything regarding heights of [l]
+ and [r].
+*)
+
+Fixpoint join l : key -> elt -> t -> t :=
+ match l with
+ | Leaf => add
+ | Node ll lx ld lr lh => fun x d =>
+ fix join_aux (r:t) : t := match r with
+ | Leaf => add x d l
+ | Node rl rx rd rr rh =>
+ if gt_le_dec lh (rh+2) then bal ll lx ld (join lr x d r)
+ else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rd rr
+ else create l x d r
+ end
+ end.
+
+(** * Splitting
+
+ [split x m] returns a triple [(l, o, r)] where
+ - [l] is the set of elements of [m] that are [< x]
+ - [r] is the set of elements of [m] that are [> x]
+ - [o] is the result of [find x m].
+*)
+
+Record triple := mktriple { t_left:t; t_opt:option elt; t_right:t }.
+Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
+
+Fixpoint split x m : triple := match m with
+ | Leaf => << Leaf, None, Leaf >>
+ | Node l y d r h =>
+ match X.compare x y with
+ | LT _ => let (ll,o,rl) := split x l in << ll, o, join rl y d r >>
+ | EQ _ => << l, Some d, r >>
+ | GT _ => let (rl,o,rr) := split x r in << join l y d rl, o, rr >>
+ end
+ end.
+
+(** * Concatenation
+
+ Same as [merge] but does not assume anything about heights.
+*)
+
+Definition concat m1 m2 :=
+ match m1, m2 with
+ | Leaf, _ => m2
+ | _ , Leaf => m1
+ | _, Node l2 x2 d2 r2 _ =>
+ let (m2',xd) := remove_min l2 x2 d2 r2 in
+ join m1 xd#1 xd#2 m2'
+ end.
+
+(** * Elements *)
+
+(** [elements_tree_aux acc t] catenates the elements of [t] in infix
+ order to the list [acc] *)
+
+Fixpoint elements_aux (acc : list (key*elt)) m : list (key*elt) :=
+ match m with
+ | Leaf => acc
+ | Node l x d r _ => elements_aux ((x,d) :: elements_aux acc r) l
+ end.
+
+(** then [elements] is an instanciation with an empty [acc] *)
+
+Definition elements := elements_aux nil.
+
+(** * Fold *)
+
+Fixpoint fold (A : Type) (f : key -> elt -> A -> A) (m : t) : A -> A :=
+ fun a => match m with
+ | Leaf => a
+ | Node l x d r _ => fold f r (f x d (fold f l a))
+ end.
+
+(** * Comparison *)
+
+Variable cmp : elt->elt->bool.
+
+(** ** Enumeration of the elements of a tree *)
+
+Inductive enumeration :=
+ | End : enumeration
+ | More : key -> elt -> t -> enumeration -> enumeration.
+
+(** [cons m e] adds the elements of tree [m] on the head of
+ enumeration [e]. *)
+
+Fixpoint cons m e : enumeration :=
+ match m with
+ | Leaf => e
+ | Node l x d r h => cons l (More x d r e)
+ end.
+
+(** One step of comparison of elements *)
+
+Definition equal_more x1 d1 (cont:enumeration->bool) e2 :=
+ match e2 with
+ | End => false
+ | More x2 d2 r2 e2 =>
+ match X.compare x1 x2 with
+ | EQ _ => cmp d1 d2 &&& cont (cons r2 e2)
+ | _ => false
+ end
+ end.
+
+(** Comparison of left tree, middle element, then right tree *)
+
+Fixpoint equal_cont m1 (cont:enumeration->bool) e2 :=
+ match m1 with
+ | Leaf => cont e2
+ | Node l1 x1 d1 r1 _ =>
+ equal_cont l1 (equal_more x1 d1 (equal_cont r1 cont)) e2
+ end.
+
+(** Initial continuation *)
+
+Definition equal_end e2 := match e2 with End => true | _ => false end.
+
+(** The complete comparison *)
+
+Definition equal m1 m2 := equal_cont m1 equal_end (cons m2 End).
+
+End Elt.
+Notation t := tree.
+Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
+Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
+Notation "t #o" := (t_opt t) (at level 9, format "t '#o'").
+Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
+
+
+(** * Map *)
+
+Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
+ match m with
+ | Leaf => Leaf _
+ | Node l x d r h => Node (map f l) x (f d) (map f r) h
+ end.
+
+(* * Mapi *)
+
+Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
+ match m with
+ | Leaf => Leaf _
+ | Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h
+ end.
+
+(** * Map with removal *)
+
+Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
+ : t elt' :=
+ match m with
+ | Leaf => Leaf _
+ | Node l x d r h =>
+ match f x d with
+ | Some d' => join (map_option f l) x d' (map_option f r)
+ | None => concat (map_option f l) (map_option f r)
+ end
+ end.
+
+(** * Optimized map2
+
+ Suggestion by B. Gregoire: a [map2] function with specialized
+ arguments allowing to bypass some tree traversal. Instead of one
+ [f0] of type [key -> option elt -> option elt' -> option elt''],
+ we ask here for:
+ - [f] which is a specialisation of [f0] when first option isn't [None]
+ - [mapl] treats a [tree elt] with [f0] when second option is [None]
+ - [mapr] treats a [tree elt'] with [f0] when first option is [None]
+
+ The idea is that [mapl] and [mapr] can be instantaneous (e.g.
+ the identity or some constant function).
+*)
+
+Section Map2_opt.
+Variable elt elt' elt'' : Type.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+
+Fixpoint map2_opt m1 m2 :=
+ match m1, m2 with
+ | Leaf, _ => mapr m2
+ | _, Leaf => mapl m1
+ | Node l1 x1 d1 r1 h1, _ =>
+ let (l2',o2,r2') := split x1 m2 in
+ match f x1 d1 o2 with
+ | Some e => join (map2_opt l1 l2') x1 e (map2_opt r1 r2')
+ | None => concat (map2_opt l1 l2') (map2_opt r1 r2')
+ end
+ end.
+
+End Map2_opt.
+
+(** * Map2
+
+ The [map2] function of the Map interface can be implemented
+ via [map2_opt] and [map_option].
+*)
+
+Section Map2.
+Variable elt elt' elt'' : Type.
+Variable f : option elt -> option elt' -> option elt''.
+
+Definition map2 : t elt -> t elt' -> t elt'' :=
+ map2_opt
+ (fun _ d o => f (Some d) o)
+ (map_option (fun _ d => f (Some d) None))
+ (map_option (fun _ d' => f None (Some d'))).
+
+End Map2.
+
+
+
+(** * Invariants *)
+
+Section Invariants.
+Variable elt : Type.
+
+(** ** Occurrence in a tree *)
+
+Inductive MapsTo (x : key)(e : elt) : t elt -> Prop :=
| MapsRoot : forall l r h y,
X.eq x y -> MapsTo x e (Node l y e r h)
| MapsLeft : forall l r h y e',
@@ -76,7 +437,7 @@ Inductive MapsTo (x : key)(e : elt) : tree -> Prop :=
| MapsRight : forall l r h y e',
MapsTo x e r -> MapsTo x e (Node l y e' r h).
-Inductive In (x : key) : tree -> Prop :=
+Inductive In (x : key) : t elt -> Prop :=
| InRoot : forall l r h y e,
X.eq x y -> In x (Node l y e r h)
| InLeft : forall l r h y e',
@@ -84,58 +445,66 @@ Inductive In (x : key) : tree -> Prop :=
| InRight : forall l r h y e',
In x r -> In x (Node l y e' r h).
-Definition In0 (k:key)(m:t) : Prop := exists e:elt, MapsTo k e m.
+Definition In0 k m := exists e:elt, MapsTo k e m.
-(** * Binary search trees *)
+(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
-Definition lt_tree x s := forall y:key, In y s -> X.lt y x.
-Definition gt_tree x s := forall y:key, In y s -> X.lt x y.
+Definition lt_tree x m := forall y, In y m -> X.lt y x.
+Definition gt_tree x m := forall y, In y m -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
-Inductive bst : tree -> Prop :=
- | BSLeaf : bst Leaf
- | BSNode : forall x e l r h,
- bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (Node l x e r h).
+Inductive bst : t elt -> Prop :=
+ | BSLeaf : bst (Leaf _)
+ | BSNode : forall x e l r h, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (Node l x e r h).
-(** * AVL trees *)
+End Invariants.
-(** [avl s] : [s] is a properly balanced AVL tree,
- i.e. for any node the heights of the two children
- differ by at most 2 *)
-Definition height (s : tree) : int :=
- match s with
- | Leaf => 0
- | Node _ _ _ _ h => h
- end.
+(** * Correctness proofs, isolated in a sub-module *)
-Inductive avl : tree -> Prop :=
- | RBLeaf : avl Leaf
- | RBNode : forall x e l r h,
- avl l ->
- avl r ->
- -(2) <= height l - height r <= 2 ->
- h = max (height l) (height r) + 1 ->
- avl (Node l x e r h).
+Module Proofs.
+ Module MX := OrderedTypeFacts X.
+ Module PX := KeyOrderedType X.
+ Module L := FMapList.Raw X.
-(* We should end this section before the big proofs that follows,
- otherwise the discharge takes a lot of time. *)
-End Elt.
+Functional Scheme mem_ind := Induction for mem Sort Prop.
+Functional Scheme find_ind := Induction for find Sort Prop.
+Functional Scheme bal_ind := Induction for bal Sort Prop.
+Functional Scheme add_ind := Induction for add Sort Prop.
+Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
+Functional Scheme merge_ind := Induction for merge Sort Prop.
+Functional Scheme remove_ind := Induction for remove Sort Prop.
+Functional Scheme concat_ind := Induction for concat Sort Prop.
+Functional Scheme split_ind := Induction for split Sort Prop.
+Functional Scheme map_option_ind := Induction for map_option Sort Prop.
+Functional Scheme map2_opt_ind := Induction for map2_opt Sort Prop.
-(** Some helpful hints and tactics. *)
+(** * Automation and dedicated tactics. *)
-Notation t := tree.
-Hint Constructors tree.
-Hint Constructors MapsTo.
-Hint Constructors In.
-Hint Constructors bst.
-Hint Constructors avl.
+Hint Constructors tree MapsTo In bst.
Hint Unfold lt_tree gt_tree.
+Tactic Notation "factornode" ident(l) ident(x) ident(d) ident(r) ident(h)
+ "as" ident(s) :=
+ set (s:=Node l x d r h) in *; clearbody s; clear l x d r h.
+
+(** A tactic for cleaning hypothesis after use of functional induction. *)
+
+Ltac clearf :=
+ match goal with
+ | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf
+ | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf
+ | _ => idtac
+ end.
+
+(** A tactic to repeat [inversion_clear] on all hyps of the
+ form [(f (Node ...))] *)
+
Ltac inv f :=
match goal with
| H:f (Leaf _) |- _ => inversion_clear H; inv f
@@ -149,14 +518,6 @@ Ltac inv f :=
| _ => idtac
end.
-Ltac safe_inv f := match goal with
- | H:f (Node _ _ _ _ _) |- _ =>
- generalize H; inversion_clear H; safe_inv f
- | H:f _ (Node _ _ _ _ _) |- _ =>
- generalize H; inversion_clear H; safe_inv f
- | _ => intros
- end.
-
Ltac inv_all f :=
match goal with
| H: f _ |- _ => inversion_clear H; inv f
@@ -166,55 +527,54 @@ Ltac inv_all f :=
| _ => idtac
end.
+(** Helper tactic concerning order of elements. *)
+
Ltac order := match goal with
- | H: lt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
- | H: gt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
+ | U: lt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
+ | U: gt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
Ltac intuition_in := repeat progress (intuition; inv In; inv MapsTo).
-Ltac firstorder_in := repeat progress (firstorder; inv In; inv MapsTo).
-
-Lemma height_non_negative : forall elt (s : t elt), avl s -> height s >= 0.
-Proof.
- induction s; simpl; intros; auto with zarith.
- inv avl; intuition; omega_max.
-Qed.
-
-Ltac avl_nn_hyp H :=
- let nz := fresh "nz" in assert (nz := height_non_negative H).
-Ltac avl_nn h :=
- let t := type of h in
- match type of t with
- | Prop => avl_nn_hyp h
- | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
- end.
-
-(* Repeat the previous tactic.
- Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
+(* Function/Functional Scheme can't deal with internal fix.
+ Let's do its job by hand: *)
+
+Ltac join_tac :=
+ intros l; induction l as [| ll _ lx ld lr Hlr lh];
+ [ | intros x d r; induction r as [| rl Hrl rx rd rr _ rh]; unfold join;
+ [ | destruct (gt_le_dec lh (rh+2));
+ [ match goal with |- context [ bal ?u ?v ?w ?z ] =>
+ replace (bal u v w z)
+ with (bal ll lx ld (join lr x d (Node rl rx rd rr rh))); [ | auto]
+ end
+ | destruct (gt_le_dec rh (lh+2));
+ [ match goal with |- context [ bal ?u ?v ?w ?z ] =>
+ replace (bal u v w z)
+ with (bal (join (Node ll lx ld lr lh) x d rl) rx rd rr); [ | auto]
+ end
+ | ] ] ] ]; intros.
-Ltac avl_nns :=
- match goal with
- | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
- | _ => idtac
- end.
+Section Elt.
+Variable elt:Type.
+Implicit Types m r : t elt.
+(** * Basic results about [MapsTo], [In], [lt_tree], [gt_tree], [height] *)
(** Facts about [MapsTo] and [In]. *)
-Lemma MapsTo_In : forall elt k e (m:t elt), MapsTo k e m -> In k m.
+Lemma MapsTo_In : forall k e m, MapsTo k e m -> In k m.
Proof.
induction 1; auto.
Qed.
Hint Resolve MapsTo_In.
-Lemma In_MapsTo : forall elt k (m:t elt), In k m -> exists e, MapsTo k e m.
+Lemma In_MapsTo : forall k m, In k m -> exists e, MapsTo k e m.
Proof.
induction 1; try destruct IHIn as (e,He); exists e; auto.
Qed.
-Lemma In_alt : forall elt k (m:t elt), In0 k m <-> In k m.
+Lemma In_alt : forall k m, In0 k m <-> In k m.
Proof.
split.
intros (e,H); eauto.
@@ -222,64 +582,70 @@ Proof.
Qed.
Lemma MapsTo_1 :
- forall elt (m:t elt) x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
+ forall m x y e, X.eq x y -> MapsTo x e m -> MapsTo y e m.
Proof.
induction m; simpl; intuition_in; eauto.
Qed.
Hint Immediate MapsTo_1.
Lemma In_1 :
- forall elt (m:t elt) x y, X.eq x y -> In x m -> In y m.
+ forall m x y, X.eq x y -> In x m -> In y m.
Proof.
- intros elt m x y; induction m; simpl; intuition_in; eauto.
+ intros m x y; induction m; simpl; intuition_in; eauto.
Qed.
+Lemma In_node_iff :
+ forall l x e r h y,
+ In y (Node l x e r h) <-> In y l \/ X.eq y x \/ In y r.
+Proof.
+ intuition_in.
+Qed.
(** Results about [lt_tree] and [gt_tree] *)
-Lemma lt_leaf : forall elt x, lt_tree x (Leaf elt).
+Lemma lt_leaf : forall x, lt_tree x (Leaf elt).
Proof.
unfold lt_tree in |- *; intros; intuition_in.
Qed.
-Lemma gt_leaf : forall elt x, gt_tree x (Leaf elt).
+Lemma gt_leaf : forall x, gt_tree x (Leaf elt).
Proof.
unfold gt_tree in |- *; intros; intuition_in.
Qed.
-Lemma lt_tree_node : forall elt x y (l:t elt) r e h,
+Lemma lt_tree_node : forall x y l r e h,
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y e r h).
Proof.
- unfold lt_tree in *; firstorder_in; order.
+ unfold lt_tree in *; intuition_in; order.
Qed.
-Lemma gt_tree_node : forall elt x y (l:t elt) r e h,
+Lemma gt_tree_node : forall x y l r e h,
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y e r h).
Proof.
- unfold gt_tree in *; firstorder_in; order.
+ unfold gt_tree in *; intuition_in; order.
Qed.
Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
-Lemma lt_left : forall elt x y (l: t elt) r e h,
+Lemma lt_left : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x l.
Proof.
intuition_in.
Qed.
-Lemma lt_right : forall elt x y (l:t elt) r e h,
+Lemma lt_right : forall x y l r e h,
lt_tree x (Node l y e r h) -> lt_tree x r.
Proof.
intuition_in.
Qed.
-Lemma gt_left : forall elt x y (l:t elt) r e h,
+Lemma gt_left : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x l.
Proof.
intuition_in.
Qed.
-Lemma gt_right : forall elt x y (l:t elt) r e h,
+Lemma gt_right : forall x y l r e h,
gt_tree x (Node l y e r h) -> gt_tree x r.
Proof.
intuition_in.
@@ -288,731 +654,639 @@ Qed.
Hint Resolve lt_left lt_right gt_left gt_right.
Lemma lt_tree_not_in :
- forall elt x (t : t elt), lt_tree x t -> ~ In x t.
+ forall x m, lt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma lt_tree_trans :
- forall elt x y, X.lt x y -> forall (t:t elt), lt_tree x t -> lt_tree y t.
+ forall x y, X.lt x y -> forall m, lt_tree x m -> lt_tree y m.
Proof.
- firstorder eauto.
+ eauto.
Qed.
Lemma gt_tree_not_in :
- forall elt x (t : t elt), gt_tree x t -> ~ In x t.
+ forall x m, gt_tree x m -> ~ In x m.
Proof.
intros; intro; generalize (H _ H0); order.
Qed.
Lemma gt_tree_trans :
- forall elt x y, X.lt y x -> forall (t:t elt), gt_tree x t -> gt_tree y t.
+ forall x y, X.lt y x -> forall m, gt_tree x m -> gt_tree y m.
Proof.
- firstorder eauto.
+ eauto.
Qed.
Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
-(** Results about [avl] *)
+(** * Empty map *)
-Lemma avl_node : forall elt x e (l:t elt) r,
- avl l ->
- avl r ->
- -(2) <= height l - height r <= 2 ->
- avl (Node l x e r (max (height l) (height r) + 1)).
+Definition Empty m := forall (a:key)(e:elt) , ~ MapsTo a e m.
+
+Lemma empty_bst : bst (empty elt).
Proof.
- intros; auto.
+ unfold empty; auto.
Qed.
-Hint Resolve avl_node.
-(** * Helper functions *)
-
-(** [create l x r] creates a node, assuming [l] and [r]
- to be balanced and [|height l - height r| <= 2]. *)
+Lemma empty_1 : Empty (empty elt).
+Proof.
+ unfold empty, Empty; intuition_in.
+Qed.
-Definition create elt (l:t elt) x e r :=
- Node l x e r (max (height l) (height r) + 1).
+(** * Emptyness test *)
-Lemma create_bst :
- forall elt (l:t elt) x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
- bst (create l x e r).
+Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
Proof.
- unfold create; auto.
+ destruct m as [|r x e l h]; simpl; auto.
+ intro H; elim (H x e); auto.
Qed.
-Hint Resolve create_bst.
-Lemma create_avl :
- forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- avl (create l x e r).
-Proof.
- unfold create; auto.
+Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
+Proof.
+ destruct m; simpl; intros; try discriminate; red; intuition_in.
Qed.
-Lemma create_height :
- forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (create l x e r) = max (height l) (height r) + 1.
-Proof.
- unfold create; intros; auto.
+(** * Appartness *)
+
+Lemma mem_1 : forall m x, bst m -> In x m -> mem x m = true.
+Proof.
+ intros m x; functional induction (mem x m); auto; intros; clearf;
+ inv bst; intuition_in; order.
Qed.
-Lemma create_in :
- forall elt (l:t elt) x e r y, In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
-Proof.
- unfold create; split; [ inversion_clear 1 | ]; intuition.
+Lemma mem_2 : forall m x, mem x m = true -> In x m.
+Proof.
+ intros m x; functional induction (mem x m); auto; intros; discriminate.
Qed.
-(** trick for emulating [assert false] in Coq *)
+Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
+Proof.
+ intros m x; functional induction (find x m); auto; intros; clearf;
+ inv bst; intuition_in; simpl; auto;
+ try solve [order | absurd (X.lt x y); eauto | absurd (X.lt y x); eauto].
+Qed.
-Notation assert_false := Leaf.
+Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
+Proof.
+ intros m x; functional induction (find x m); subst; intros; clearf;
+ try discriminate.
+ constructor 2; auto.
+ inversion H; auto.
+ constructor 3; auto.
+Qed.
-(** [bal l x e r] acts as [create], but performs one step of
- rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
+Lemma find_iff : forall m x e, bst m ->
+ (find x m = Some e <-> MapsTo x e m).
+Proof.
+ split; auto using find_1, find_2.
+Qed.
-Definition bal elt (l: tree elt) x e r :=
- let hl := height l in
- let hr := height r in
- if gt_le_dec hl (hr+2) then
- match l with
- | Leaf => assert_false _
- | Node ll lx le lr _ =>
- if ge_lt_dec (height ll) (height lr) then
- create ll lx le (create lr x e r)
- else
- match lr with
- | Leaf => assert_false _
- | Node lrl lrx lre lrr _ =>
- create (create ll lx le lrl) lrx lre (create lrr x e r)
- end
- end
- else
- if gt_le_dec hr (hl+2) then
- match r with
- | Leaf => assert_false _
- | Node rl rx re rr _ =>
- if ge_lt_dec (height rr) (height rl) then
- create (create l x e rl) rx re rr
- else
- match rl with
- | Leaf => assert_false _
- | Node rll rlx rle rlr _ =>
- create (create l x e rll) rlx rle (create rlr rx re rr)
- end
- end
- else
- create l x e r.
-
-Ltac bal_tac :=
- intros elt l x e r;
- unfold bal;
- destruct (gt_le_dec (height l) (height r + 2));
- [ destruct l as [ |ll lx le lr lh];
- [ | destruct (ge_lt_dec (height ll) (height lr));
- [ | destruct lr ] ]
- | destruct (gt_le_dec (height r) (height l + 2));
- [ destruct r as [ |rl rx re rr rh];
- [ | destruct (ge_lt_dec (height rr) (height rl));
- [ | destruct rl ] ]
- | ] ]; intros.
-
-Ltac bal_tac_imp := match goal with
- | |- context [ assert_false ] =>
- inv avl; avl_nns; simpl in *; false_omega
- | _ => idtac
-end.
+Lemma find_in : forall m x, find x m <> None -> In x m.
+Proof.
+ intros.
+ case_eq (find x m); [intros|congruence].
+ apply MapsTo_In with e; apply find_2; auto.
+Qed.
-Lemma bal_bst : forall elt (l:t elt) x e r, bst l -> bst r ->
- lt_tree x l -> gt_tree x r -> bst (bal l x e r).
+Lemma in_find : forall m x, bst m -> In x m -> find x m <> None.
Proof.
- bal_tac;
- inv bst; repeat apply create_bst; auto; unfold create;
- apply lt_tree_node || apply gt_tree_node; auto;
- eapply lt_tree_trans || eapply gt_tree_trans || eauto; eauto.
+ intros.
+ destruct (In_MapsTo H0) as (d,Hd).
+ rewrite (find_1 H Hd); discriminate.
Qed.
-Lemma bal_avl : forall elt (l:t elt) x e r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 -> avl (bal l x e r).
+Lemma find_in_iff : forall m x, bst m ->
+ (find x m <> None <-> In x m).
Proof.
- bal_tac; inv avl; repeat apply create_avl; simpl in *; auto; omega_max.
+ split; auto using find_in, in_find.
Qed.
-Lemma bal_height_1 : forall elt (l:t elt) x e r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 ->
- 0 <= height (bal l x e r) - max (height l) (height r) <= 1.
+Lemma not_find_iff : forall m x, bst m ->
+ (find x m = None <-> ~In x m).
Proof.
- bal_tac; inv avl; avl_nns; simpl in *; omega_max.
+ split; intros.
+ red; intros.
+ elim (in_find H H1 H0).
+ case_eq (find x m); [ intros | auto ].
+ elim H0; apply find_in; congruence.
Qed.
-Lemma bal_height_2 :
- forall elt (l:t elt) x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (bal l x e r) == max (height l) (height r) +1.
+Lemma find_find : forall m m' x,
+ find x m = find x m' <->
+ (forall d, find x m = Some d <-> find x m' = Some d).
Proof.
- bal_tac; inv avl; simpl in *; omega_max.
+ intros; destruct (find x m); destruct (find x m'); split; intros;
+ try split; try congruence.
+ rewrite H; auto.
+ symmetry; rewrite <- H; auto.
+ rewrite H; auto.
Qed.
-Lemma bal_in : forall elt (l:t elt) x e r y, avl l -> avl r ->
- (In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r).
+Lemma find_mapsto_equiv : forall m m' x, bst m -> bst m' ->
+ (find x m = find x m' <->
+ (forall d, MapsTo x d m <-> MapsTo x d m')).
Proof.
- bal_tac; bal_tac_imp; repeat rewrite create_in; intuition_in.
+ intros m m' x Hm Hm'.
+ rewrite find_find.
+ split; intros H d; specialize H with d.
+ rewrite <- 2 find_iff; auto.
+ rewrite 2 find_iff; auto.
Qed.
-Lemma bal_mapsto : forall elt (l:t elt) x e r y e', avl l -> avl r ->
- (MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r)).
+Lemma find_in_equiv : forall m m' x, bst m -> bst m' ->
+ find x m = find x m' ->
+ (In x m <-> In x m').
Proof.
- bal_tac; bal_tac_imp; unfold create; intuition_in.
+ split; intros; apply find_in; [ rewrite <- H1 | rewrite H1 ];
+ apply in_find; auto.
Qed.
-Ltac omega_bal := match goal with
- | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?e ?r ] =>
- generalize (bal_height_1 x e H H') (bal_height_2 x e H H');
- omega_max
- end.
+(** * Helper functions *)
-(** * Insertion *)
+Lemma create_bst :
+ forall l x e r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
+ bst (create l x e r).
+Proof.
+ unfold create; auto.
+Qed.
+Hint Resolve create_bst.
-Function add (elt:Set)(x:key)(e:elt)(s:t elt) { struct s } : t elt := match s with
- | Leaf => Node (Leaf _) x e (Leaf _) 1
- | Node l y e' r h =>
- match X.compare x y with
- | LT _ => bal (add x e l) y e' r
- | EQ _ => Node l y e r h
- | GT _ => bal l y e' (add x e r)
- end
- end.
+Lemma create_in :
+ forall l x e r y,
+ In y (create l x e r) <-> X.eq y x \/ In y l \/ In y r.
+Proof.
+ unfold create; split; [ inversion_clear 1 | ]; intuition.
+Qed.
-Lemma add_avl_1 : forall elt (m:t elt) x e, avl m ->
- avl (add x e m) /\ 0 <= height (add x e m) - height m <= 1.
-Proof.
- intros elt m x e; functional induction (add x e m); intros; inv avl; simpl in *.
- intuition; try constructor; simpl; auto; try omega_max.
- (* LT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
- (* EQ *)
- intuition; omega_max.
- (* GT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
+Lemma bal_bst : forall l x e r, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (bal l x e r).
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv bst; repeat apply create_bst; auto; unfold create; try constructor;
+ (apply lt_tree_node || apply gt_tree_node); auto;
+ (eapply lt_tree_trans || eapply gt_tree_trans); eauto.
Qed.
+Hint Resolve bal_bst.
-Lemma add_avl : forall elt (m:t elt) x e, avl m -> avl (add x e m).
+Lemma bal_in : forall l x e r y,
+ In y (bal l x e r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
- intros; generalize (add_avl_1 x e H); intuition.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ rewrite !create_in; intuition_in.
Qed.
-Hint Resolve add_avl.
-Lemma add_in : forall elt (m:t elt) x y e, avl m ->
- (In y (add x e m) <-> X.eq y x \/ In y m).
+Lemma bal_mapsto : forall l x e r y e',
+ MapsTo y e' (bal l x e r) <-> MapsTo y e' (create l x e r).
Proof.
- intros elt m x y e; functional induction (add x e m); auto; intros.
- intuition_in.
- (* LT *)
- inv avl.
- rewrite bal_in; auto.
- rewrite (IHt H0); intuition_in.
- (* EQ *)
- inv avl.
- firstorder_in.
- eapply In_1; eauto.
- (* GT *)
- inv avl.
- rewrite bal_in; auto.
- rewrite (IHt H1); intuition_in.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ unfold assert_false, create; intuition_in.
Qed.
-Lemma add_bst : forall elt (m:t elt) x e, bst m -> avl m -> bst (add x e m).
-Proof.
- intros elt m x e; functional induction (add x e m);
- intros; inv bst; inv avl; auto; apply bal_bst; auto.
- (* lt_tree -> lt_tree (add ...) *)
- red; red in H4.
- intros.
- rewrite (add_in x y0 e H) in H0.
- intuition.
- eauto.
- (* gt_tree -> gt_tree (add ...) *)
- red; red in H4.
- intros.
- rewrite (add_in x y0 e H5) in H0.
- intuition.
- apply lt_eq with x; auto.
+Lemma bal_find : forall l x e r y,
+ bst l -> bst r -> lt_tree x l -> gt_tree x r ->
+ find y (bal l x e r) = find y (create l x e r).
+Proof.
+ intros; rewrite find_mapsto_equiv; auto; intros; apply bal_mapsto.
Qed.
-Lemma add_1 : forall elt (m:t elt) x y e, avl m -> X.eq x y -> MapsTo y e (add x e m).
+(** * Insertion *)
+
+Lemma add_in : forall m x y e,
+ In y (add x e m) <-> X.eq y x \/ In y m.
+Proof.
+ intros m x y e; functional induction (add x e m); auto; intros;
+ try (rewrite bal_in, IHt); intuition_in.
+ apply In_1 with x; auto.
+Qed.
+
+Lemma add_bst : forall m x e, bst m -> bst (add x e m).
+Proof.
+ intros m x e; functional induction (add x e m); intros;
+ inv bst; try apply bal_bst; auto;
+ intro z; rewrite add_in; intuition.
+ apply MX.eq_lt with x; auto.
+ apply MX.lt_eq with x; auto.
+Qed.
+Hint Resolve add_bst.
+
+Lemma add_1 : forall m x y e, X.eq x y -> MapsTo y e (add x e m).
Proof.
- intros elt m x y e; functional induction (add x e m);
- intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; eauto.
-Qed.
+ intros m x y e; functional induction (add x e m);
+ intros; inv bst; try rewrite bal_mapsto; unfold create; eauto.
+Qed.
-Lemma add_2 : forall elt (m:t elt) x y e e', avl m -> ~X.eq x y ->
+Lemma add_2 : forall m x y e e', ~X.eq x y ->
MapsTo y e m -> MapsTo y e (add x e' m).
Proof.
- intros elt m x y e e'; induction m; simpl; auto.
+ intros m x y e e'; induction m; simpl; auto.
destruct (X.compare x k);
- intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; auto;
+ intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
inv MapsTo; auto; order.
Qed.
-Lemma add_3 : forall elt (m:t elt) x y e e', avl m -> ~X.eq x y ->
+Lemma add_3 : forall m x y e e', ~X.eq x y ->
MapsTo y e (add x e' m) -> MapsTo y e m.
Proof.
- intros elt m x y e e'; induction m; simpl; auto.
- intros; inv avl; inv MapsTo; auto; order.
- destruct (X.compare x k); intro; inv avl;
+ intros m x y e e'; induction m; simpl; auto.
+ intros; inv MapsTo; auto; order.
+ destruct (X.compare x k); intro;
try rewrite bal_mapsto; auto; unfold create; intros; inv MapsTo; auto;
- order.
+ order.
Qed.
-
-(** * Extraction of minimum binding
-
- morally, [remove_min] is to be applied to a non-empty tree
- [t = Node l x e r h]. Since we can't deal here with [assert false]
- for [t=Leaf], we pre-unpack [t] (and forget about [h]).
-*)
-
-Function remove_min (elt:Set)(l:t elt)(x:key)(e:elt)(r:t elt) { struct l } : t elt*(key*elt) :=
- match l with
- | Leaf => (r,(x,e))
- | Node ll lx le lr lh => let (l',m) := (remove_min ll lx le lr : t elt*(key*elt)) in (bal l' x e r, m)
- end.
-
-Lemma remove_min_avl_1 : forall elt (l:t elt) x e r h, avl (Node l x e r h) ->
- avl (fst (remove_min l x e r)) /\
- 0 <= height (Node l x e r h) - height (fst (remove_min l x e r)) <= 1.
+Lemma add_find : forall m x y e, bst m ->
+ find y (add x e m) =
+ match X.compare y x with EQ _ => Some e | _ => find y m end.
Proof.
- intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
- inv avl; simpl in *; split; auto.
- avl_nns; omega_max.
- (* l = Node *)
- inversion_clear H.
- destruct (IHp lh); auto.
- split; simpl in *.
- rewrite_all e1. simpl in *.
- apply bal_avl; subst;auto; omega_max.
- rewrite_all e1;simpl in *;omega_bal.
+ intros.
+ assert (~X.eq x y -> find y (add x e m) = find y m).
+ intros; rewrite find_mapsto_equiv; auto.
+ split; eauto using add_2, add_3.
+ destruct X.compare; try (apply H0; order).
+ auto using find_1, add_1.
Qed.
-Lemma remove_min_avl : forall elt (l:t elt) x e r h, avl (Node l x e r h) ->
- avl (fst (remove_min l x e r)).
-Proof.
- intros; generalize (remove_min_avl_1 H); intuition.
-Qed.
+(** * Extraction of minimum binding *)
-Lemma remove_min_in : forall elt (l:t elt) x e r h y, avl (Node l x e r h) ->
- (In y (Node l x e r h) <->
- X.eq y (fst (snd (remove_min l x e r))) \/ In y (fst (remove_min l x e r))).
+Lemma remove_min_in : forall l x e r h y,
+ In y (Node l x e r h) <->
+ X.eq y (remove_min l x e r)#2#1 \/ In y (remove_min l x e r)#1.
Proof.
- intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
intuition_in.
- (* l = Node *)
- inversion_clear H.
- generalize (remove_min_avl H0).
-
- rewrite_all e1; simpl; intros.
- rewrite bal_in; auto.
- generalize (IHp lh y H0).
- intuition.
- inversion_clear H7; intuition.
+ rewrite e0 in *; simpl; intros.
+ rewrite bal_in, In_node_iff, IHp; intuition.
Qed.
-Lemma remove_min_mapsto : forall elt (l:t elt) x e r h y e', avl (Node l x e r h) ->
- (MapsTo y e' (Node l x e r h) <->
- ((X.eq y (fst (snd (remove_min l x e r))) /\ e' = (snd (snd (remove_min l x e r))))
- \/ MapsTo y e' (fst (remove_min l x e r)))).
+Lemma remove_min_mapsto : forall l x e r h y e',
+ MapsTo y e' (Node l x e r h) <->
+ ((X.eq y (remove_min l x e r)#2#1) /\ e' = (remove_min l x e r)#2#2)
+ \/ MapsTo y e' (remove_min l x e r)#1.
Proof.
- intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
intuition_in; subst; auto.
- (* l = Node *)
- inversion_clear H.
- generalize (remove_min_avl H0).
- rewrite_all e1; simpl; intros.
+ rewrite e0 in *; simpl; intros.
rewrite bal_mapsto; auto; unfold create.
- simpl in *;destruct (IHp lh y e').
- auto.
+ simpl in *;destruct (IHp _x y e').
intuition.
- inversion_clear H2; intuition.
- inversion_clear H9; intuition.
+ inversion_clear H1; intuition.
+ inversion_clear H3; intuition.
Qed.
-Lemma remove_min_bst : forall elt (l:t elt) x e r h,
- bst (Node l x e r h) -> avl (Node l x e r h) -> bst (fst (remove_min l x e r)).
+Lemma remove_min_bst : forall l x e r h,
+ bst (Node l x e r h) -> bst (remove_min l x e r)#1.
Proof.
- intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
inv bst; auto.
inversion_clear H; inversion_clear H0.
apply bal_bst; auto.
- rewrite_all e1;simpl in *;firstorder.
+ rewrite e0 in *; simpl in *; apply (IHp _x); auto.
intro; intros.
- generalize (remove_min_in y H).
- rewrite_all e1; simpl in *.
+ generalize (remove_min_in ll lx ld lr _x y).
+ rewrite e0; simpl in *.
destruct 1.
- apply H3; intuition.
+ apply H2; intuition.
Qed.
+Hint Resolve remove_min_bst.
-Lemma remove_min_gt_tree : forall elt (l:t elt) x e r h,
- bst (Node l x e r h) -> avl (Node l x e r h) ->
- gt_tree (fst (snd (remove_min l x e r))) (fst (remove_min l x e r)).
+Lemma remove_min_gt_tree : forall l x e r h,
+ bst (Node l x e r h) ->
+ gt_tree (remove_min l x e r)#2#1 (remove_min l x e r)#1.
Proof.
- intros elt l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
inv bst; auto.
- inversion_clear H; inversion_clear H0.
+ inversion_clear H.
intro; intro.
- rewrite_all e1;simpl in *.
- generalize (IHp lh H1 H); clear H7 H6 IHp.
- generalize (remove_min_avl H).
- generalize (remove_min_in (fst m) H).
- rewrite e1; simpl; intros.
- rewrite (bal_in x e y H7 H5) in H0.
- destruct H6.
- firstorder.
- apply lt_eq with x; auto.
- apply X.lt_trans with x; auto.
-Qed.
-
-(** * Merging two trees
-
- [merge t1 t2] builds the union of [t1] and [t2] assuming all elements
- of [t1] to be smaller than all elements of [t2], and
- [|height t1 - height t2| <= 2].
-*)
-
-Function merge (elt:Set) (s1 s2 : t elt) : tree elt := match s1,s2 with
- | Leaf, _ => s2
- | _, Leaf => s1
- | _, Node l2 x2 e2 r2 h2 =>
- match remove_min l2 x2 e2 r2 with
- (s2',(x,e)) => bal s1 x e s2'
- end
-end.
-
-Lemma merge_avl_1 : forall elt (s1 s2:t elt), avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 ->
- avl (merge s1 s2) /\
- 0<= height (merge s1 s2) - max (height s1) (height s2) <=1.
-Proof.
- intros elt s1 s2; functional induction (merge s1 s2); simpl in *; intros.
- split; auto; avl_nns; omega_max.
- destruct s1;try contradiction;clear y.
- split; auto; avl_nns; simpl in *; omega_max.
- destruct s1;try contradiction;clear y.
- generalize (remove_min_avl_1 H0).
- rewrite e3; simpl;destruct 1.
- split.
- apply bal_avl; auto.
- simpl; omega_max.
- omega_bal.
+ rewrite e0 in *;simpl in *.
+ generalize (IHp _x H0).
+ generalize (remove_min_in ll lx ld lr _x m#1).
+ rewrite e0; simpl; intros.
+ rewrite (bal_in l' x d r y) in H.
+ assert (In m#1 (Node ll lx ld lr _x)) by (rewrite H4; auto); clear H4.
+ assert (X.lt m#1 x) by order.
+ decompose [or] H; order.
+Qed.
+Hint Resolve remove_min_gt_tree.
+
+Lemma remove_min_find : forall l x e r h y,
+ bst (Node l x e r h) ->
+ find y (Node l x e r h) =
+ match X.compare y (remove_min l x e r)#2#1 with
+ | LT _ => None
+ | EQ _ => Some (remove_min l x e r)#2#2
+ | GT _ => find y (remove_min l x e r)#1
+ end.
+Proof.
+ intros.
+ destruct X.compare.
+ rewrite not_find_iff; auto.
+ rewrite remove_min_in; red; destruct 1 as [H'|H']; [ order | ].
+ generalize (remove_min_gt_tree H H'); order.
+ apply find_1; auto.
+ rewrite remove_min_mapsto; auto.
+ rewrite find_mapsto_equiv; eauto; intros.
+ rewrite remove_min_mapsto; intuition; order.
Qed.
-Lemma merge_avl : forall elt (s1 s2:t elt), avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
-Proof.
- intros; generalize (merge_avl_1 H H0 H1); intuition.
-Qed.
+(** * Merging two trees *)
-Lemma merge_in : forall elt (s1 s2:t elt) y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (In y (merge s1 s2) <-> In y s1 \/ In y s2).
+Lemma merge_in : forall m1 m2 y, bst m1 -> bst m2 ->
+ (In y (merge m1 m2) <-> In y m1 \/ In y m2).
Proof.
- intros elt s1 s2; functional induction (merge s1 s2);intros.
+ intros m1 m2; functional induction (merge m1 m2);intros;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
intuition_in.
intuition_in.
- destruct s1;try contradiction;clear y.
-(* rewrite H_eq_2; rewrite H_eq_2 in H_eq_1; clear H_eq_2. *)
- replace s2' with (fst (remove_min l2 x2 e2 r2)); [|rewrite e3; auto].
- rewrite bal_in; auto.
- generalize (remove_min_avl H2); rewrite e3; simpl; auto.
- generalize (remove_min_in y0 H2); rewrite e3; simpl; intro.
- rewrite H3; intuition.
+ rewrite bal_in, remove_min_in, e1; simpl; intuition.
Qed.
-Lemma merge_mapsto : forall elt (s1 s2:t elt) y e, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (MapsTo y e (merge s1 s2) <-> MapsTo y e s1 \/ MapsTo y e s2).
+Lemma merge_mapsto : forall m1 m2 y e, bst m1 -> bst m2 ->
+ (MapsTo y e (merge m1 m2) <-> MapsTo y e m1 \/ MapsTo y e m2).
Proof.
- intros elt s1 s2; functional induction (@merge elt s1 s2); intros.
+ intros m1 m2; functional induction (merge m1 m2); intros;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
intuition_in.
intuition_in.
- destruct s1;try contradiction;clear y.
- replace s2' with (fst (remove_min l2 x2 e2 r2)); [|rewrite e3; auto].
- rewrite bal_mapsto; auto; unfold create.
- generalize (remove_min_avl H2); rewrite e3; simpl; auto.
- generalize (remove_min_mapsto y0 e H2); rewrite e3; simpl; intro.
- rewrite H3; intuition (try subst; auto).
- inversion_clear H3; intuition.
+ rewrite bal_mapsto, remove_min_mapsto, e1; simpl; auto.
+ unfold create.
+ intuition; subst; auto.
+ inversion_clear H1; intuition.
Qed.
-Lemma merge_bst : forall elt (s1 s2:t elt), bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (forall y1 y2 : key, In y1 s1 -> In y2 s2 -> X.lt y1 y2) ->
- bst (merge s1 s2).
+Lemma merge_bst : forall m1 m2, bst m1 -> bst m2 ->
+ (forall y1 y2 : key, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
+ bst (merge m1 m2).
Proof.
- intros elt s1 s2; functional induction (@merge elt s1 s2); intros; auto.
-
+ intros m1 m2; functional induction (merge m1 m2); intros; auto;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
apply bal_bst; auto.
- destruct s1;try contradiction.
- generalize (remove_min_bst H1); rewrite e3; simpl in *; auto.
- destruct s1;try contradiction.
+ generalize (remove_min_bst H0); rewrite e1; simpl in *; auto.
intro; intro.
- apply H3; auto.
- generalize (remove_min_in x H2); rewrite e3; simpl; intuition.
- destruct s1;try contradiction.
- generalize (remove_min_gt_tree H1); rewrite e3; simpl; auto.
-Qed.
-
-(** * Deletion *)
-
-Function remove (elt:Set)(x:key)(s:t elt) { struct s } : t elt := match s with
- | Leaf => Leaf _
- | Node l y e r h =>
- match X.compare x y with
- | LT _ => bal (remove x l) y e r
- | EQ _ => merge l r
- | GT _ => bal l y e (remove x r)
- end
- end.
-
-Lemma remove_avl_1 : forall elt (s:t elt) x, avl s ->
- avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1.
-Proof.
- intros elt s x; functional induction (@remove elt x s); intros.
- split; auto; omega_max.
- (* LT *)
- inv avl.
- destruct (IHt H0).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
- (* EQ *)
- inv avl.
- generalize (merge_avl_1 H0 H1 H2).
- intuition omega_max.
- (* GT *)
- inv avl.
- destruct (IHt H1).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
+ apply H1; auto.
+ generalize (remove_min_in l2 x2 d2 r2 _x4 x); rewrite e1; simpl; intuition.
+ generalize (remove_min_gt_tree H0); rewrite e1; simpl; auto.
Qed.
-Lemma remove_avl : forall elt (s:t elt) x, avl s -> avl (remove x s).
-Proof.
- intros; generalize (remove_avl_1 x H); intuition.
-Qed.
-Hint Resolve remove_avl.
+(** * Deletion *)
-Lemma remove_in : forall elt (s:t elt) x y, bst s -> avl s ->
- (In y (remove x s) <-> ~ X.eq y x /\ In y s).
+Lemma remove_in : forall m x y, bst m ->
+ (In y (remove x m) <-> ~ X.eq y x /\ In y m).
Proof.
- intros elt s x; functional induction (@remove elt x s); simpl; intros.
+ intros m x; functional induction (remove x m); simpl; intros.
intuition_in.
(* LT *)
- inv avl; inv bst; clear e1.
+ inv bst; clear e0.
rewrite bal_in; auto.
generalize (IHt y0 H0); intuition; [ order | order | intuition_in ].
(* EQ *)
- inv avl; inv bst; clear e1.
+ inv bst; clear e0.
rewrite merge_in; intuition; [ order | order | intuition_in ].
- elim H9; eauto.
+ elim H4; eauto.
(* GT *)
- inv avl; inv bst; clear e1.
+ inv bst; clear e0.
rewrite bal_in; auto.
- generalize (IHt y0 H5); intuition; [ order | order | intuition_in ].
+ generalize (IHt y0 H1); intuition; [ order | order | intuition_in ].
Qed.
-Lemma remove_bst : forall elt (s:t elt) x, bst s -> avl s -> bst (remove x s).
+Lemma remove_bst : forall m x, bst m -> bst (remove x m).
Proof.
- intros elt s x; functional induction (@remove elt x s); simpl; intros.
+ intros m x; functional induction (remove x m); simpl; intros.
auto.
(* LT *)
- inv avl; inv bst.
+ inv bst.
apply bal_bst; auto.
intro; intro.
rewrite (remove_in x y0 H0) in H; auto.
destruct H; eauto.
(* EQ *)
- inv avl; inv bst.
+ inv bst.
apply merge_bst; eauto.
(* GT *)
- inv avl; inv bst.
+ inv bst.
apply bal_bst; auto.
intro; intro.
- rewrite (remove_in x y0 H5) in H; auto.
+ rewrite (remove_in x y0 H1) in H; auto.
destruct H; eauto.
Qed.
-Lemma remove_1 : forall elt (m:t elt) x y, bst m -> avl m -> X.eq x y -> ~ In y (remove x m).
+Lemma remove_1 : forall m x y, bst m -> X.eq x y -> ~ In y (remove x m).
Proof.
intros; rewrite remove_in; intuition.
-Qed.
+Qed.
-Lemma remove_2 : forall elt (m:t elt) x y e, bst m -> avl m -> ~X.eq x y ->
+Lemma remove_2 : forall m x y e, bst m -> ~X.eq x y ->
MapsTo y e m -> MapsTo y e (remove x m).
Proof.
- intros elt m x y e; induction m; simpl; auto.
+ intros m x y e; induction m; simpl; auto.
destruct (X.compare x k);
- intros; inv bst; inv avl; try rewrite bal_mapsto; unfold create; auto;
+ intros; inv bst; try rewrite bal_mapsto; unfold create; auto;
try solve [inv MapsTo; auto].
rewrite merge_mapsto; auto.
inv MapsTo; auto; order.
Qed.
-Lemma remove_3 : forall elt (m:t elt) x y e, bst m -> avl m ->
+Lemma remove_3 : forall m x y e, bst m ->
MapsTo y e (remove x m) -> MapsTo y e m.
Proof.
- intros elt m x y e; induction m; simpl; auto.
- destruct (X.compare x k); intros Bs Av; inv avl; inv bst;
+ intros m x y e; induction m; simpl; auto.
+ destruct (X.compare x k); intros Bs; inv bst;
try rewrite bal_mapsto; auto; unfold create.
- intros; inv MapsTo; auto.
+ intros; inv MapsTo; auto.
rewrite merge_mapsto; intuition.
intros; inv MapsTo; auto.
Qed.
-Section Elt2.
+(** * join *)
-Variable elt:Set.
+Lemma join_in : forall l x d r y,
+ In y (join l x d r) <-> X.eq y x \/ In y l \/ In y r.
+Proof.
+ join_tac.
+ simpl.
+ rewrite add_in; intuition_in.
+ rewrite add_in; intuition_in.
+ rewrite bal_in, Hlr; clear Hlr Hrl; intuition_in.
+ rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
+ apply create_in.
+Qed.
-Notation eqk := (eqk (elt:= elt)).
-Notation eqke := (eqke (elt:= elt)).
-Notation ltk := (ltk (elt:= elt)).
+Lemma join_bst : forall l x d r, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (join l x d r).
+Proof.
+ join_tac; auto; try (simpl; auto; fail); inv bst; apply bal_bst; auto;
+ clear Hrl Hlr z; intro; intros; rewrite join_in in *.
+ intuition; [ apply MX.lt_eq with x | ]; eauto.
+ intuition; [ apply MX.eq_lt with x | ]; eauto.
+Qed.
+Hint Resolve join_bst.
-(** * Empty map *)
+Lemma join_find : forall l x d r y,
+ bst l -> bst r -> lt_tree x l -> gt_tree x r ->
+ find y (join l x d r) = find y (create l x d r).
+Proof.
+ join_tac; auto; inv bst;
+ simpl (join (Leaf elt));
+ try (assert (X.lt lx x) by auto);
+ try (assert (X.lt x rx) by auto);
+ rewrite ?add_find, ?bal_find; auto.
-Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.
+ simpl; destruct X.compare; auto.
+ rewrite not_find_iff; auto; intro; order.
-Definition empty := (Leaf elt).
+ simpl; repeat (destruct X.compare; auto); try (order; fail).
+ rewrite not_find_iff by auto; intro.
+ assert (X.lt y x) by auto; order.
-Lemma empty_bst : bst empty.
+ simpl; rewrite Hlr; simpl; auto.
+ repeat (destruct X.compare; auto); order.
+ intros u Hu; rewrite join_in in Hu.
+ destruct Hu as [Hu|[Hu|Hu]]; try generalize (H2 _ Hu); order.
+
+ simpl; rewrite Hrl; simpl; auto.
+ repeat (destruct X.compare; auto); order.
+ intros u Hu; rewrite join_in in Hu.
+ destruct Hu as [Hu|[Hu|Hu]]; order.
+Qed.
+
+(** * split *)
+
+Lemma split_in_1 : forall m x, bst m -> forall y,
+ (In y (split x m)#l <-> In y m /\ X.lt y x).
Proof.
- unfold empty; auto.
+ intros m x; functional induction (split x m); simpl; intros;
+ inv bst; try clear e0.
+ intuition_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
+ intuition_in; order.
+ rewrite join_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
-Lemma empty_avl : avl empty.
+Lemma split_in_2 : forall m x, bst m -> forall y,
+ (In y (split x m)#r <-> In y m /\ X.lt x y).
Proof.
- unfold empty; auto.
+ intros m x; functional induction (split x m); subst; simpl; intros;
+ inv bst; try clear e0.
+ intuition_in.
+ rewrite join_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
+ intuition_in; order.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
-Lemma empty_1 : Empty empty.
+Lemma split_in_3 : forall m x, bst m ->
+ (split x m)#o = find x m.
Proof.
- unfold empty, Empty; intuition_in.
+ intros m x; functional induction (split x m); subst; simpl; auto;
+ intros; inv bst; try clear e0;
+ destruct X.compare; try (order;fail); rewrite <-IHt, e1; auto.
Qed.
-(** * Emptyness test *)
-
-Definition is_empty (s:t elt) := match s with Leaf => true | _ => false end.
+Lemma split_bst : forall m x, bst m ->
+ bst (split x m)#l /\ bst (split x m)#r.
+Proof.
+ intros m x; functional induction (split x m); subst; simpl; intros;
+ inv bst; try clear e0; try rewrite e1 in *; simpl in *; intuition;
+ apply join_bst; auto.
+ intros y0.
+ generalize (split_in_2 x H0 y0); rewrite e1; simpl; intuition.
+ intros y0.
+ generalize (split_in_1 x H1 y0); rewrite e1; simpl; intuition.
+Qed.
-Lemma is_empty_1 : forall s, Empty s -> is_empty s = true.
+Lemma split_lt_tree : forall m x, bst m -> lt_tree x (split x m)#l.
Proof.
- destruct s as [|r x e l h]; simpl; auto.
- intro H; elim (H x e); auto.
+ intros m x B y Hy; rewrite split_in_1 in Hy; intuition.
Qed.
-Lemma is_empty_2 : forall s, is_empty s = true -> Empty s.
-Proof.
- destruct s; simpl; intros; try discriminate; red; intuition_in.
+Lemma split_gt_tree : forall m x, bst m -> gt_tree x (split x m)#r.
+Proof.
+ intros m x B y Hy; rewrite split_in_2 in Hy; intuition.
Qed.
-(** * Appartness *)
+Lemma split_find : forall m x y, bst m ->
+ find y m = match X.compare y x with
+ | LT _ => find y (split x m)#l
+ | EQ _ => (split x m)#o
+ | GT _ => find y (split x m)#r
+ end.
+Proof.
+ intros m x; functional induction (split x m); subst; simpl; intros;
+ inv bst; try clear e0; try rewrite e1 in *; simpl in *;
+ [ destruct X.compare; auto | .. ];
+ try match goal with E:split ?x ?t = _, B:bst ?t |- _ =>
+ generalize (split_in_1 x B)(split_in_2 x B)(split_bst x B);
+ rewrite E; simpl; destruct 3 end.
-(** The [mem] function is deciding appartness. It exploits the [bst] property
- to achieve logarithmic complexity. *)
+ rewrite join_find, IHt; auto; clear IHt; simpl.
+ repeat (destruct X.compare; auto); order.
+ intro y1; rewrite H4; intuition.
-Function mem (x:key)(m:t elt) { struct m } : bool :=
- match m with
- | Leaf => false
- | Node l y e r _ => match X.compare x y with
- | LT _ => mem x l
- | EQ _ => true
- | GT _ => mem x r
- end
- end.
-Implicit Arguments mem.
+ repeat (destruct X.compare; auto); order.
-Lemma mem_1 : forall s x, bst s -> In x s -> mem x s = true.
-Proof.
- intros s x.
- functional induction (mem x s); inversion_clear 1; auto.
- intuition_in.
- intuition_in; firstorder; absurd (X.lt x y); eauto.
- intuition_in; firstorder; absurd (X.lt y x); eauto.
+ rewrite join_find, IHt; auto; clear IHt; simpl.
+ repeat (destruct X.compare; auto); order.
+ intros y1; rewrite H; intuition.
Qed.
-Lemma mem_2 : forall s x, mem x s = true -> In x s.
-Proof.
- intros s x.
- functional induction (mem x s); firstorder; intros; try discriminate.
-Qed.
-
-Function find (x:key)(m:t elt) { struct m } : option elt :=
- match m with
- | Leaf => None
- | Node l y e r _ => match X.compare x y with
- | LT _ => find x l
- | EQ _ => Some e
- | GT _ => find x r
- end
- end.
+(** * Concatenation *)
-Lemma find_1 : forall m x e, bst m -> MapsTo x e m -> find x m = Some e.
-Proof.
- intros m x e.
- functional induction (find x m); inversion_clear 1; auto.
+Lemma concat_in : forall m1 m2 y,
+ In y (concat m1 m2) <-> In y m1 \/ In y m2.
+Proof.
+ intros m1 m2; functional induction (concat m1 m2); intros;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
+ intuition_in.
intuition_in.
- intuition_in; firstorder; absurd (X.lt x y); eauto.
- intuition_in; auto.
- absurd (X.lt x y); eauto.
- absurd (X.lt y x); eauto.
- intuition_in; firstorder; absurd (X.lt y x); eauto.
+ rewrite join_in, remove_min_in, e1; simpl; intuition.
Qed.
-Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
-Proof.
- intros m x.
- functional induction (find x m); subst;firstorder; intros; try discriminate.
- inversion H; subst; auto.
-Qed.
-
-(** An all-in-one spec for [add] used later in the naive [map2] *)
-
-Lemma add_spec : forall m x y e , bst m -> avl m ->
- find x (add y e m) = if eq_dec x y then Some e else find x m.
-Proof.
-intros.
-destruct (eq_dec x y).
-apply find_1.
-apply add_bst; auto.
-eapply MapsTo_1 with y; eauto.
-apply add_1; auto.
-case_eq (find x m); intros.
-apply find_1.
-apply add_bst; auto.
-apply add_2; auto.
-apply find_2; auto.
-case_eq (find x (add y e m)); auto; intros.
-rewrite <- H1; symmetry.
-apply find_1; auto.
-eapply add_3; eauto.
-apply find_2; eauto.
+Lemma concat_bst : forall m1 m2, bst m1 -> bst m2 ->
+ (forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
+ bst (concat m1 m2).
+Proof.
+ intros m1 m2; functional induction (concat m1 m2); intros; auto;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
+ apply join_bst; auto.
+ change (bst (m2',xd)#1); rewrite <-e1; eauto.
+ intros y Hy.
+ apply H1; auto.
+ rewrite remove_min_in, e1; simpl; auto.
+ change (gt_tree (m2',xd)#2#1 (m2',xd)#1); rewrite <-e1; eauto.
Qed.
+Hint Resolve concat_bst.
-(** * Elements *)
+Lemma concat_find : forall m1 m2 y, bst m1 -> bst m2 ->
+ (forall y1 y2, In y1 m1 -> In y2 m2 -> X.lt y1 y2) ->
+ find y (concat m1 m2) =
+ match find y m2 with Some d => Some d | None => find y m1 end.
+Proof.
+ intros m1 m2; functional induction (concat m1 m2); intros; auto;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
+ simpl; destruct (find y m2); auto.
-(** [elements_tree_aux acc t] catenates the elements of [t] in infix
- order to the list [acc] *)
+ generalize (remove_min_find y H0)(remove_min_in l2 x2 d2 r2 _x4)
+ (remove_min_bst H0)(remove_min_gt_tree H0);
+ rewrite e1; simpl fst; simpl snd; intros.
+
+ inv bst.
+ rewrite H2, join_find; auto; clear H2.
+ simpl; destruct X.compare; simpl; auto.
+ destruct (find y m2'); auto.
+ symmetry; rewrite not_find_iff; auto; intro.
+ apply (MX.lt_not_gt l); apply H1; auto; rewrite H3; auto.
-Fixpoint elements_aux (acc : list (key*elt)) (t : t elt) {struct t} : list (key*elt) :=
- match t with
- | Leaf => acc
- | Node l x e r _ => elements_aux ((x,e) :: elements_aux acc r) l
- end.
+ intros z Hz; apply H1; auto; rewrite H3; auto.
+Qed.
-(** then [elements] is an instanciation with an empty [acc] *)
-Definition elements := elements_aux nil.
+(** * Elements *)
-Lemma elements_aux_mapsto : forall s acc x e,
+Notation eqk := (PX.eqk (elt:= elt)).
+Notation eqke := (PX.eqke (elt:= elt)).
+Notation ltk := (PX.ltk (elt:= elt)).
+
+Lemma elements_aux_mapsto : forall (s:t elt) acc x e,
InA eqke (x,e) (elements_aux acc s) <-> MapsTo x e s \/ InA eqke (x,e) acc.
Proof.
induction s as [ | l Hl x e r Hr h ]; simpl; auto.
@@ -1025,13 +1299,13 @@ Proof.
destruct H0; simpl in *; subst; intuition.
Qed.
-Lemma elements_mapsto : forall s x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
+Lemma elements_mapsto : forall (s:t elt) x e, InA eqke (x,e) (elements s) <-> MapsTo x e s.
Proof.
intros; generalize (elements_aux_mapsto s nil x e); intuition.
inversion_clear H0.
Qed.
-Lemma elements_in : forall s x, L.PX.In x (elements s) <-> In x s.
+Lemma elements_in : forall (s:t elt) x, L.PX.In x (elements s) <-> In x s.
Proof.
intros.
unfold L.PX.In.
@@ -1043,7 +1317,7 @@ Proof.
unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
-Lemma elements_aux_sort : forall s acc, bst s -> sort ltk acc ->
+Lemma elements_aux_sort : forall (s:t elt) acc, bst s -> sort ltk acc ->
(forall x e y, InA eqke (x,e) acc -> In y s -> X.lt y x) ->
sort ltk (elements_aux acc s).
Proof.
@@ -1052,7 +1326,7 @@ Proof.
apply Hl; auto.
constructor.
apply Hr; eauto.
- apply (InA_InfA (eqke_refl (elt:=elt))); intros (y',e') H6.
+ apply (InA_InfA (PX.eqke_refl (elt:=elt))); intros (y',e') H6.
destruct (elements_aux_mapsto r acc y' e'); intuition.
red; simpl; eauto.
red; simpl; eauto.
@@ -1070,20 +1344,49 @@ Proof.
Qed.
Hint Resolve elements_sort.
+Lemma elements_nodup : forall s : t elt, bst s -> NoDupA eqk (elements s).
+Proof.
+ intros; apply PX.Sort_NoDupA; auto.
+Qed.
-(** * Fold *)
+Lemma elements_aux_cardinal :
+ forall (m:t elt) acc, (length acc + cardinal m)%nat = length (elements_aux acc m).
+Proof.
+ simple induction m; simpl; intuition.
+ rewrite <- H; simpl.
+ rewrite <- H0; omega.
+Qed.
-Fixpoint fold (A : Set) (f : key -> elt -> A -> A)(s : t elt) {struct s} : A -> A :=
- fun a => match s with
- | Leaf => a
- | Node l x e r _ => fold f r (f x e (fold f l a))
- end.
+Lemma elements_cardinal : forall (m:t elt), cardinal m = length (elements m).
+Proof.
+ exact (fun m => elements_aux_cardinal m nil).
+Qed.
-Definition fold' (A : Set) (f : key -> elt -> A -> A)(s : t elt) :=
+Lemma elements_app :
+ forall (s:t elt) acc, elements_aux acc s = elements s ++ acc.
+Proof.
+ induction s; simpl; intros; auto.
+ rewrite IHs1, IHs2.
+ unfold elements; simpl.
+ rewrite 2 IHs1, IHs2, <- !app_nil_end, !app_ass; auto.
+Qed.
+
+Lemma elements_node :
+ forall (t1 t2:t elt) x e z l,
+ elements t1 ++ (x,e) :: elements t2 ++ l =
+ elements (Node t1 x e t2 z) ++ l.
+Proof.
+ unfold elements; simpl; intros.
+ rewrite !elements_app, <- !app_nil_end, !app_ass; auto.
+Qed.
+
+(** * Fold *)
+
+Definition fold' (A : Type) (f : key -> elt -> A -> A)(s : t elt) :=
L.fold f (elements s).
Lemma fold_equiv_aux :
- forall (A : Set) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc,
+ forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A) acc,
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
@@ -1095,7 +1398,7 @@ Proof.
Qed.
Lemma fold_equiv :
- forall (A : Set) (s : t elt) (f : key -> elt -> A -> A) (a : A),
+ forall (A : Type) (s : t elt) (f : key -> elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
unfold fold', elements in |- *.
@@ -1106,8 +1409,8 @@ Proof.
Qed.
Lemma fold_1 :
- forall (s:t elt)(Hs:bst s)(A : Set)(i:A)(f : key -> elt -> A -> A),
- fold f s i = fold_left (fun a p => f (fst p) (snd p) a) (elements s) i.
+ forall (s:t elt)(Hs:bst s)(A : Type)(i:A)(f : key -> elt -> A -> A),
+ fold f s i = fold_left (fun a p => f p#1 p#2 a) (elements s) i.
Proof.
intros.
rewrite fold_equiv.
@@ -1118,288 +1421,93 @@ Qed.
(** * Comparison *)
-Definition Equal (cmp:elt->elt->bool) m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-
-(** ** Enumeration of the elements of a tree *)
-
-Inductive enumeration : Set :=
- | End : enumeration
- | More : key -> elt -> t elt -> enumeration -> enumeration.
-
-(** [flatten_e e] returns the list of elements of [e] i.e. the list
- of elements actually compared *)
+(** [flatten_e e] returns the list of elements of the enumeration [e]
+ i.e. the list of elements actually compared *)
-Fixpoint flatten_e (e : enumeration) : list (key*elt) := match e with
+Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with
| End => nil
| More x e t r => (x,e) :: elements t ++ flatten_e r
end.
-(** [sorted_e e] expresses that elements in the enumeration [e] are
- sorted, and that all trees in [e] are binary search trees. *)
-
-Inductive In_e (p:key*elt) : enumeration -> Prop :=
- | InEHd1 :
- forall (y : key)(d:elt) (s : t elt) (e : enumeration),
- eqke p (y,d) -> In_e p (More y d s e)
- | InEHd2 :
- forall (y : key) (d:elt) (s : t elt) (e : enumeration),
- MapsTo (fst p) (snd p) s -> In_e p (More y d s e)
- | InETl :
- forall (y : key) (d:elt) (s : t elt) (e : enumeration),
- In_e p e -> In_e p (More y d s e).
-
-Hint Constructors In_e.
-
-Inductive sorted_e : enumeration -> Prop :=
- | SortedEEnd : sorted_e End
- | SortedEMore :
- forall (x : key) (d:elt) (s : t elt) (e : enumeration),
- bst s ->
- (gt_tree x s) ->
- sorted_e e ->
- (forall p, In_e p e -> ltk (x,d) p) ->
- (forall p,
- MapsTo (fst p) (snd p) s -> forall q, In_e q e -> ltk p q) ->
- sorted_e (More x d s e).
-
-Hint Constructors sorted_e.
-
-Lemma in_flatten_e :
- forall p e, InA eqke p (flatten_e e) -> In_e p e.
-Proof.
- simple induction e; simpl in |- *; intuition.
- inversion_clear H.
- inversion_clear H0; auto.
- elim (InA_app H1); auto.
- destruct (elements_mapsto t a b); auto.
+Lemma flatten_e_elements :
+ forall (l:t elt) r x d z e,
+ elements l ++ flatten_e (More x d r e) =
+ elements (Node l x d r z) ++ flatten_e e.
+Proof.
+ intros; simpl; apply elements_node.
Qed.
-Lemma sorted_flatten_e :
- forall e : enumeration, sorted_e e -> sort ltk (flatten_e e).
+Lemma cons_1 : forall (s:t elt) e,
+ flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
- simple induction e; simpl in |- *; intuition.
- apply cons_sort.
- apply (SortA_app (eqke_refl (elt:=elt))); inversion_clear H0; auto.
- intros; apply H5; auto.
- rewrite <- elements_mapsto; auto; destruct x; auto.
- apply in_flatten_e; auto.
- inversion_clear H0.
- apply In_InfA; intros.
- intros; elim (in_app_or _ _ _ H0); intuition.
- generalize (In_InA (eqke_refl (elt:=elt)) H6).
- destruct y; rewrite elements_mapsto; eauto.
- apply H4; apply in_flatten_e; auto.
- apply In_InA; auto.
+ induction s; simpl; auto; intros.
+ rewrite IHs1; apply flatten_e_elements; auto.
Qed.
-Lemma elements_app :
- forall s acc, elements_aux acc s = elements s ++ acc.
+(** Proof of correction for the comparison *)
+
+Variable cmp : elt->elt->bool.
+
+Definition IfEq b l1 l2 := L.equal cmp l1 l2 = b.
+
+Lemma cons_IfEq : forall b x1 x2 d1 d2 l1 l2,
+ X.eq x1 x2 -> cmp d1 d2 = true ->
+ IfEq b l1 l2 ->
+ IfEq b ((x1,d1)::l1) ((x2,d2)::l2).
Proof.
- simple induction s; simpl in |- *; intuition.
- rewrite H0.
- rewrite H.
- unfold elements; simpl.
- do 2 rewrite H.
- rewrite H0.
- repeat rewrite <- app_nil_end.
- repeat rewrite app_ass; auto.
+ unfold IfEq; destruct b; simpl; intros; destruct X.compare; simpl;
+ try rewrite H0; auto; order.
Qed.
-Lemma compare_flatten_1 :
- forall t1 t2 x e z l,
- elements t1 ++ (x,e) :: elements t2 ++ l =
- elements (Node t1 x e t2 z) ++ l.
+Lemma equal_end_IfEq : forall e2,
+ IfEq (equal_end e2) nil (flatten_e e2).
Proof.
- simpl in |- *; unfold elements in |- *; simpl in |- *; intuition.
- repeat rewrite elements_app.
- repeat rewrite <- app_nil_end.
- repeat rewrite app_ass; auto.
+ destruct e2; red; auto.
Qed.
-(** key lemma for correctness *)
-
-Lemma flatten_e_elements :
- forall l r x d z e,
- elements l ++ flatten_e (More x d r e) =
- elements (Node l x d r z) ++ flatten_e e.
+Lemma equal_more_IfEq :
+ forall x1 d1 (cont:enumeration elt -> bool) x2 d2 r2 e2 l,
+ IfEq (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
+ IfEq (equal_more cmp x1 d1 cont (More x2 d2 r2 e2)) ((x1,d1)::l)
+ (flatten_e (More x2 d2 r2 e2)).
Proof.
- intros; simpl.
- apply compare_flatten_1.
+ unfold IfEq; simpl; intros; destruct X.compare; simpl; auto.
+ rewrite <-andb_lazy_alt; f_equal; auto.
Qed.
-Open Local Scope Z_scope.
-
-(** termination of [compare_aux] *)
-
-Fixpoint measure_e_t (s : t elt) : Z := match s with
- | Leaf => 0
- | Node l _ _ r _ => 1 + measure_e_t l + measure_e_t r
- end.
-
-Fixpoint measure_e (e : enumeration) : Z := match e with
- | End => 0
- | More _ _ s r => 1 + measure_e_t s + measure_e r
- end.
-
-Ltac Measure_e_t := unfold measure_e_t in |- *; fold measure_e_t in |- *.
-Ltac Measure_e := unfold measure_e in |- *; fold measure_e in |- *.
-
-Lemma measure_e_t_0 : forall s : t elt, measure_e_t s >= 0.
+Lemma equal_cont_IfEq : forall m1 cont e2 l,
+ (forall e, IfEq (cont e) l (flatten_e e)) ->
+ IfEq (equal_cont cmp m1 cont e2) (elements m1 ++ l) (flatten_e e2).
Proof.
- simple induction s.
- simpl in |- *; omega.
- intros.
- Measure_e_t; omega.
+ induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; simpl; intros; auto.
+ rewrite <- elements_node; simpl.
+ apply Hl1; auto.
+ clear e2; intros [|x2 d2 r2 e2].
+ simpl; red; auto.
+ apply equal_more_IfEq.
+ rewrite <- cons_1; auto.
Qed.
-Ltac Measure_e_t_0 s := generalize (@measure_e_t_0 s); intro.
-
-Lemma measure_e_0 : forall e : enumeration, measure_e e >= 0.
+Lemma equal_IfEq : forall (m1 m2:t elt),
+ IfEq (equal cmp m1 m2) (elements m1) (elements m2).
Proof.
- simple induction e.
- simpl in |- *; omega.
+ intros; unfold equal.
+ rewrite (app_nil_end (elements m1)).
+ replace (elements m2) with (flatten_e (cons m2 (End _)))
+ by (rewrite cons_1; simpl; rewrite <-app_nil_end; auto).
+ apply equal_cont_IfEq.
intros.
- Measure_e; Measure_e_t_0 t; omega.
+ apply equal_end_IfEq; auto.
Qed.
-Ltac Measure_e_0 e := generalize (@measure_e_0 e); intro.
-
-(** Induction principle over the sum of the measures for two lists *)
+Definition Equivb m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-Definition compare_rec2 :
- forall P : enumeration -> enumeration -> Set,
- (forall x x' : enumeration,
- (forall y y' : enumeration,
- measure_e y + measure_e y' < measure_e x + measure_e x' -> P y y') ->
- P x x') ->
- forall x x' : enumeration, P x x'.
+Lemma Equivb_elements : forall s s',
+ Equivb s s' <-> L.Equivb cmp (elements s) (elements s').
Proof.
- intros P H x x'.
- apply well_founded_induction_type_2
- with (R := fun yy' xx' : enumeration * enumeration =>
- measure_e (fst yy') + measure_e (snd yy') <
- measure_e (fst xx') + measure_e (snd xx')); auto.
- apply Wf_nat.well_founded_lt_compat
- with (f := fun xx' : enumeration * enumeration =>
- Zabs_nat (measure_e (fst xx') + measure_e (snd xx'))).
- intros; apply Zabs.Zabs_nat_lt.
- Measure_e_0 (fst x0); Measure_e_0 (snd x0); Measure_e_0 (fst y);
- Measure_e_0 (snd y); intros; omega.
-Qed.
-
-(** [cons t e] adds the elements of tree [t] on the head of
- enumeration [e]. Code:
-
-let rec cons s e = match s with
- | Empty -> e
- | Node(l, k, d, r, _) -> cons l (More(k, d, r, e))
-*)
-
-Definition cons : forall s e, bst s -> sorted_e e ->
- (forall x y, MapsTo (fst x) (snd x) s -> In_e y e -> ltk x y) ->
- { r : enumeration
- | sorted_e r /\
- measure_e r = measure_e_t s + measure_e e /\
- flatten_e r = elements s ++ flatten_e e
- }.
-Proof.
- simple induction s; intuition.
- (* s = Leaf *)
- exists e; intuition.
- (* s = Node t k e t0 z *)
- clear H0.
- case (H (More k e t0 e0)); clear H; intuition.
- inv bst; auto.
- constructor; inversion_clear H1; auto.
- inversion_clear H0; inv bst; intuition.
- destruct y; red; red in H4; simpl in *; intuition.
- apply lt_eq with k; eauto.
- destruct y; red; simpl in *; intuition.
- apply X.lt_trans with k; eauto.
- exists x; intuition.
- generalize H4; Measure_e; intros; Measure_e_t; omega.
- rewrite H5.
- apply flatten_e_elements.
-Qed.
-
-Definition equal_aux :
- forall (cmp: elt -> elt -> bool)(e1 e2:enumeration),
- sorted_e e1 -> sorted_e e2 ->
- { L.Equal cmp (flatten_e e1) (flatten_e e2) } +
- { ~ L.Equal cmp (flatten_e e1) (flatten_e e2) }.
-Proof.
- intros cmp e1 e2; pattern e1, e2 in |- *; apply compare_rec2.
- simple destruct x; simple destruct x'; intuition.
- (* x = x' = End *)
- left; unfold L.Equal in |- *; intuition.
- inversion H2.
- (* x = End x' = More *)
- right; simpl in |- *; auto.
- destruct 1.
- destruct (H2 k).
- destruct H5; auto.
- exists e; auto.
- inversion H5.
- (* x = More x' = End *)
- right; simpl in |- *; auto.
- destruct 1.
- destruct (H2 k).
- destruct H4; auto.
- exists e; auto.
- inversion H4.
- (* x = More k e t e0, x' = More k0 e3 t0 e4 *)
- case (X.compare k k0); intro.
- (* k < k0 *)
- right.
- destruct 1.
- clear H3 H.
- assert (L.PX.In k (flatten_e (More k0 e3 t0 e4))).
- destruct (H2 k).
- apply H; simpl; exists e; auto.
- destruct H.
- generalize (Sort_In_cons_2 (sorted_flatten_e H1) (InA_eqke_eqk H)).
- compute.
- intuition order.
- (* k = k0 *)
- case_eq (cmp e e3).
- intros EQ.
- destruct (@cons t e0) as [c1 (H2,(H3,H4))]; try inversion_clear H0; auto.
- destruct (@cons t0 e4) as [c2 (H5,(H6,H7))]; try inversion_clear H1; auto.
- destruct (H c1 c2); clear H; intuition.
- Measure_e; omega.
- left.
- rewrite H4 in e6; rewrite H7 in e6.
- simpl; rewrite <- L.equal_cons; auto.
- apply (sorted_flatten_e H0).
- apply (sorted_flatten_e H1).
- right.
- simpl; rewrite <- L.equal_cons; auto.
- apply (sorted_flatten_e H0).
- apply (sorted_flatten_e H1).
- swap f.
- rewrite H4; rewrite H7; auto.
- right.
- destruct 1.
- rewrite (H4 k) in H2; try discriminate; simpl; auto.
- (* k > k0 *)
- right.
- destruct 1.
- clear H3 H.
- assert (L.PX.In k0 (flatten_e (More k e t e0))).
- destruct (H2 k0).
- apply H3; simpl; exists e3; auto.
- destruct H.
- generalize (Sort_In_cons_2 (sorted_flatten_e H0) (InA_eqke_eqk H)).
- compute.
- intuition order.
-Qed.
-
-Lemma Equal_elements : forall cmp s s',
- Equal cmp s s' <-> L.Equal cmp (elements s) (elements s').
-Proof.
-unfold Equal, L.Equal; split; split; intros.
+unfold Equivb, L.Equivb; split; split; intros.
do 2 rewrite elements_in; firstorder.
destruct H.
apply (H2 k); rewrite <- elements_mapsto; auto.
@@ -1408,95 +1516,46 @@ destruct H.
apply (H2 k); unfold L.PX.MapsTo; rewrite elements_mapsto; auto.
Qed.
-Definition equal : forall cmp s s', bst s -> bst s' ->
- {Equal cmp s s'} + {~ Equal cmp s s'}.
+Lemma equal_Equivb : forall (s s': t elt), bst s -> bst s' ->
+ (equal cmp s s' = true <-> Equivb s s').
Proof.
- intros cmp s1 s2 s1_bst s2_bst; simpl.
- destruct (@cons s1 End); auto.
- inversion_clear 2.
- destruct (@cons s2 End); auto.
- inversion_clear 2.
- simpl in a; rewrite <- app_nil_end in a.
- simpl in a0; rewrite <- app_nil_end in a0.
- destruct (@equal_aux cmp x x0); intuition.
- left.
- rewrite H4 in e; rewrite H5 in e.
- rewrite Equal_elements; auto.
- right.
- swap n.
- rewrite H4; rewrite H5.
- rewrite <- Equal_elements; auto.
+ intros s s' B B'.
+ rewrite Equivb_elements, <- equal_IfEq.
+ split; [apply L.equal_2|apply L.equal_1]; auto.
Qed.
-End Elt2.
-
-Section Elts.
-
-Variable elt elt' elt'' : Set.
+End Elt.
Section Map.
+Variable elt elt' : Type.
Variable f : elt -> elt'.
-Fixpoint map (m:t elt) {struct m} : t elt' :=
- match m with
- | Leaf => Leaf _
- | Node l v d r h => Node (map l) v (f d) (map r) h
- end.
-
-Lemma map_height : forall m, height (map m) = height m.
-Proof.
-destruct m; simpl; auto.
-Qed.
-
-Lemma map_avl : forall m, avl m -> avl (map m).
-Proof.
-induction m; simpl; auto.
-inversion_clear 1; constructor; auto; do 2 rewrite map_height; auto.
-Qed.
-
-Lemma map_1 : forall (m: tree elt)(x:key)(e:elt),
- MapsTo x e m -> MapsTo x (f e) (map m).
+Lemma map_1 : forall (m: t elt)(x:key)(e:elt),
+ MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
Lemma map_2 : forall (m: t elt)(x:key),
- In x (map m) -> In x m.
+ In x (map f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
-Lemma map_bst : forall m, bst m -> bst (map m).
+Lemma map_bst : forall m, bst m -> bst (map f m).
Proof.
induction m; simpl; auto.
-inversion_clear 1; constructor; auto.
-red; intros; apply H2; apply map_2; auto.
-red; intros; apply H3; apply map_2; auto.
+inversion_clear 1; constructor; auto;
+ red; auto using map_2.
Qed.
End Map.
-Section Mapi.
-Variable f : key -> elt -> elt'.
-
-Fixpoint mapi (m:t elt) {struct m} : t elt' :=
- match m with
- | Leaf => Leaf _
- | Node l v d r h => Node (mapi l) v (f v d) (mapi r) h
- end.
-
-Lemma mapi_height : forall m, height (mapi m) = height m.
-Proof.
-destruct m; simpl; auto.
-Qed.
-
-Lemma mapi_avl : forall m, avl m -> avl (mapi m).
-Proof.
-induction m; simpl; auto.
-inversion_clear 1; constructor; auto; do 2 rewrite mapi_height; auto.
-Qed.
+Section Mapi.
+Variable elt elt' : Type.
+Variable f : key -> elt -> elt'.
Lemma mapi_1 : forall (m: tree elt)(x:key)(e:elt),
- MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi m).
+ MapsTo x e m -> exists y, X.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
induction m; simpl; inversion_clear 1; auto.
exists k; auto.
@@ -1507,198 +1566,242 @@ exists x0; intuition.
Qed.
Lemma mapi_2 : forall (m: t elt)(x:key),
- In x (mapi m) -> In x m.
+ In x (mapi f m) -> In x m.
Proof.
induction m; simpl; inversion_clear 1; auto.
Qed.
-Lemma mapi_bst : forall m, bst m -> bst (mapi m).
+Lemma mapi_bst : forall m, bst m -> bst (mapi f m).
Proof.
induction m; simpl; auto.
-inversion_clear 1; constructor; auto.
-red; intros; apply H2; apply mapi_2; auto.
-red; intros; apply H3; apply mapi_2; auto.
+inversion_clear 1; constructor; auto;
+ red; auto using mapi_2.
Qed.
End Mapi.
-Section Map2.
-Variable f : option elt -> option elt' -> option elt''.
-
-(* Not exactly pretty nor perfect, but should suffice as a first naive implem.
- Anyway, map2 isn't in Ocaml...
-*)
-
-Definition anti_elements (l:list (key*elt'')) := L.fold (@add _) l (empty _).
+Section Map_option.
+Variable elt elt' : Type.
+Variable f : key -> elt -> option elt'.
+Hypothesis f_compat : forall x x' d, X.eq x x' -> f x d = f x' d.
-Definition map2 (m:t elt)(m':t elt') : t elt'' :=
- anti_elements (L.map2 f (elements m) (elements m')).
-
-Lemma anti_elements_avl_aux : forall (l:list (key*elt''))(m:t elt''),
- avl m -> avl (L.fold (@add _) l m).
+Lemma map_option_2 : forall (m:t elt)(x:key),
+ In x (map_option f m) -> exists d, MapsTo x d m /\ f x d <> None.
Proof.
-unfold anti_elements; induction l.
-simpl; auto.
-simpl; destruct a; intros.
-apply IHl.
-apply add_avl; auto.
+intros m; functional induction (map_option f m); simpl; auto; intros.
+inversion H.
+rewrite join_in in H; destruct H as [H|[H|H]].
+exists d; split; auto; rewrite (f_compat d H), e0; discriminate.
+destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
+rewrite concat_in in H; destruct H as [H|H].
+destruct (IHt _ H) as (d0 & ? & ?); exists d0; auto.
+destruct (IHt0 _ H) as (d0 & ? & ?); exists d0; auto.
Qed.
-Lemma anti_elements_avl : forall l, avl (anti_elements l).
+Lemma map_option_bst : forall m, bst m -> bst (map_option f m).
Proof.
-unfold anti_elements, empty; intros; apply anti_elements_avl_aux; auto.
-Qed.
+intros m; functional induction (map_option f m); simpl; auto; intros;
+ inv bst.
+apply join_bst; auto; intros y H;
+ destruct (map_option_2 H) as (d0 & ? & ?); eauto using MapsTo_In.
+apply concat_bst; auto; intros y y' H H'.
+destruct (map_option_2 H) as (d0 & ? & ?).
+destruct (map_option_2 H') as (d0' & ? & ?).
+eapply X.lt_trans with x; eauto using MapsTo_In.
+Qed.
+Hint Resolve map_option_bst.
+
+Ltac nonify e :=
+ replace e with (@None elt) by
+ (symmetry; rewrite not_find_iff; auto; intro; order).
+
+Lemma map_option_find : forall (m:t elt)(x:key),
+ bst m ->
+ find x (map_option f m) =
+ match (find x m) with Some d => f x d | None => None end.
+Proof.
+intros m; functional induction (map_option f m); simpl; auto; intros;
+ inv bst; rewrite join_find || rewrite concat_find; auto; simpl;
+ try destruct X.compare; simpl; auto.
+rewrite (f_compat d e); auto.
+intros y H;
+ destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
+intros y H;
+ destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
+
+rewrite <- IHt, IHt0; auto; nonify (find x0 r); auto.
+rewrite IHt, IHt0; auto; nonify (find x0 r); nonify (find x0 l); auto.
+rewrite (f_compat d e); auto.
+rewrite <- IHt0, IHt; auto; nonify (find x0 l); auto.
+ destruct (find x0 (map_option f r)); auto.
+
+intros y y' H H'.
+destruct (map_option_2 H) as (? & ? & ?).
+destruct (map_option_2 H') as (? & ? & ?).
+eapply X.lt_trans with x; eauto using MapsTo_In.
+Qed.
+
+End Map_option.
+
+Section Map2_opt.
+Variable elt elt' elt'' : Type.
+Variable f0 : key -> option elt -> option elt' -> option elt''.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+Hypothesis f0_f : forall x d o, f x d o = f0 x (Some d) o.
+Hypothesis mapl_bst : forall m, bst m -> bst (mapl m).
+Hypothesis mapr_bst : forall m', bst m' -> bst (mapr m').
+Hypothesis mapl_f0 : forall x m, bst m ->
+ find x (mapl m) =
+ match find x m with Some d => f0 x (Some d) None | None => None end.
+Hypothesis mapr_f0 : forall x m', bst m' ->
+ find x (mapr m') =
+ match find x m' with Some d' => f0 x None (Some d') | None => None end.
+Hypothesis f0_compat : forall x x' o o', X.eq x x' -> f0 x o o' = f0 x' o o'.
+
+Notation map2_opt := (map2_opt f mapl mapr).
+
+Lemma map2_opt_2 : forall m m' y, bst m -> bst m' ->
+ In y (map2_opt m m') -> In y m \/ In y m'.
+Proof.
+intros m m'; functional induction (map2_opt m m'); intros;
+ auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
+ try (generalize (split_in_1 x1 H0 y)(split_in_2 x1 H0 y)
+ (split_bst x1 H0); rewrite e1; simpl; destruct 3; inv bst).
+
+right; apply find_in.
+generalize (in_find (mapr_bst H0) H1); rewrite mapr_f0; auto.
+destruct (find y m2); auto; intros; discriminate.
+
+factornode l1 x1 d1 r1 _x as m1.
+left; apply find_in.
+generalize (in_find (mapl_bst H) H1); rewrite mapl_f0; auto.
+destruct (find y m1); auto; intros; discriminate.
+
+rewrite join_in in H1; destruct H1 as [H'|[H'|H']]; auto.
+destruct (IHt1 y H6 H4 H'); intuition.
+destruct (IHt0 y H7 H5 H'); intuition.
+
+rewrite concat_in in H1; destruct H1 as [H'|H']; auto.
+destruct (IHt1 y H6 H4 H'); intuition.
+destruct (IHt0 y H7 H5 H'); intuition.
+Qed.
+
+Lemma map2_opt_bst : forall m m', bst m -> bst m' ->
+ bst (map2_opt m m').
+Proof.
+intros m m'; functional induction (map2_opt m m'); intros;
+ auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2; inv bst;
+ generalize (split_in_1 x1 H0)(split_in_2 x1 H0)(split_bst x1 H0);
+ rewrite e1; simpl in *; destruct 3.
+
+apply join_bst; auto.
+intros y Hy; specialize H with y.
+destruct (map2_opt_2 H1 H6 Hy); intuition.
+intros y Hy; specialize H5 with y.
+destruct (map2_opt_2 H2 H7 Hy); intuition.
+
+apply concat_bst; auto.
+intros y y' Hy Hy'; specialize H with y; specialize H5 with y'.
+apply X.lt_trans with x1.
+destruct (map2_opt_2 H1 H6 Hy); intuition.
+destruct (map2_opt_2 H2 H7 Hy'); intuition.
+Qed.
+Hint Resolve map2_opt_bst.
+
+Ltac map2_aux :=
+ match goal with
+ | H : In ?x _ \/ In ?x ?m,
+ H' : find ?x ?m = find ?x ?m', B:bst ?m, B':bst ?m' |- _ =>
+ destruct H; [ intuition_in; order |
+ rewrite <-(find_in_equiv B B' H'); auto ]
+ end.
-Lemma anti_elements_bst_aux : forall (l:list (key*elt''))(m:t elt''),
- bst m -> avl m -> bst (L.fold (@add _) l m).
-Proof.
-induction l.
-simpl; auto.
-simpl; destruct a; intros.
-apply IHl.
-apply add_bst; auto.
-apply add_avl; auto.
-Qed.
+Ltac nonify t :=
+ match t with (find ?y (map2_opt ?m ?m')) =>
+ replace t with (@None elt'');
+ [ | symmetry; rewrite not_find_iff; auto; intro;
+ destruct (@map2_opt_2 m m' y); auto; order ]
+ end.
-Lemma anti_elements_bst : forall l, bst (anti_elements l).
-Proof.
-unfold anti_elements, empty; intros; apply anti_elements_bst_aux; auto.
-Qed.
+Lemma map2_opt_1 : forall m m' y, bst m -> bst m' ->
+ In y m \/ In y m' ->
+ find y (map2_opt m m') = f0 y (find y m) (find y m').
+Proof.
+intros m m'; functional induction (map2_opt m m'); intros;
+ auto; try factornode _x0 _x1 _x2 _x3 _x4 as m2;
+ try (generalize (split_in_1 x1 H0)(split_in_2 x1 H0)
+ (split_in_3 x1 H0)(split_bst x1 H0)(split_find x1 y H0)
+ (split_lt_tree (x:=x1) H0)(split_gt_tree (x:=x1) H0);
+ rewrite e1; simpl in *; destruct 4; intros; inv bst;
+ subst o2; rewrite H7, ?join_find, ?concat_find; auto).
+
+simpl; destruct H1; [ inversion_clear H1 | ].
+rewrite mapr_f0; auto.
+generalize (in_find H0 H1); destruct (find y m2); intuition.
+
+factornode l1 x1 d1 r1 _x as m1.
+destruct H1; [ | inversion_clear H1 ].
+rewrite mapl_f0; auto.
+generalize (in_find H H1); destruct (find y m1); intuition.
+
+simpl; destruct X.compare; auto.
+apply IHt1; auto; map2_aux.
+rewrite (@f0_compat y x1), <- f0_f; auto.
+apply IHt0; auto; map2_aux.
+intros z Hz; destruct (@map2_opt_2 l1 l2' z); auto.
+intros z Hz; destruct (@map2_opt_2 r1 r2' z); auto.
+
+destruct X.compare.
+nonify (find y (map2_opt r1 r2')).
+apply IHt1; auto; map2_aux.
+nonify (find y (map2_opt r1 r2')).
+nonify (find y (map2_opt l1 l2')).
+rewrite (@f0_compat y x1), <- f0_f; auto.
+nonify (find y (map2_opt l1 l2')).
+rewrite IHt0; auto; [ | map2_aux ].
+destruct (f0 y (find y r1) (find y r2')); auto.
+intros y1 y2 Hy1 Hy2; apply X.lt_trans with x1.
+ destruct (@map2_opt_2 l1 l2' y1); auto.
+ destruct (@map2_opt_2 r1 r2' y2); auto.
+Qed.
+
+End Map2_opt.
-Lemma anti_elements_mapsto_aux : forall (l:list (key*elt'')) m k e,
- bst m -> avl m -> NoDupA (eqk (elt:=elt'')) l ->
- (forall x, L.PX.In x l -> In x m -> False) ->
- (MapsTo k e (L.fold (@add _) l m) <-> L.PX.MapsTo k e l \/ MapsTo k e m).
-Proof.
-induction l.
-simpl; auto.
-intuition.
-inversion H4.
-simpl; destruct a; intros.
-rewrite IHl; clear IHl.
-apply add_bst; auto.
-apply add_avl; auto.
-inversion H1; auto.
-intros.
-inversion_clear H1.
-assert (~X.eq x k).
- swap H5.
- destruct H3.
- apply InA_eqA with (x,x0); eauto.
-apply (H2 x).
-destruct H3; exists x0; auto.
-revert H4; do 2 rewrite <- In_alt; destruct 1; exists x0; auto.
-eapply add_3; eauto.
-intuition.
-assert (find k0 (add k e m) = Some e0).
- apply find_1; auto.
- apply add_bst; auto.
-clear H4.
-rewrite add_spec in H3; auto.
-destruct (eq_dec k0 k).
-inversion_clear H3; subst; auto.
-right; apply find_2; auto.
-inversion_clear H4; auto.
-compute in H3; destruct H3.
-subst; right; apply add_1; auto.
-inversion_clear H1.
-destruct (eq_dec k0 k).
-destruct (H2 k); eauto.
-right; apply add_2; auto.
-Qed.
-
-Lemma anti_elements_mapsto : forall l k e, NoDupA (eqk (elt:=elt'')) l ->
- (MapsTo k e (anti_elements l) <-> L.PX.MapsTo k e l).
-Proof.
-intros.
-unfold anti_elements.
-rewrite anti_elements_mapsto_aux; auto; unfold empty; auto.
-inversion 2.
-intuition.
-inversion H1.
-Qed.
+Section Map2.
+Variable elt elt' elt'' : Type.
+Variable f : option elt -> option elt' -> option elt''.
-Lemma map2_avl : forall (m: t elt)(m': t elt'), avl (map2 m m').
+Lemma map2_bst : forall m m', bst m -> bst m' -> bst (map2 f m m').
Proof.
-unfold map2; intros; apply anti_elements_avl; auto.
+unfold map2; intros.
+apply map2_opt_bst with (fun _ => f); auto using map_option_bst;
+ intros; rewrite map_option_find; auto.
Qed.
-Lemma map2_bst : forall (m: t elt)(m': t elt'), bst (map2 m m').
+Lemma map2_1 : forall m m' y, bst m -> bst m' ->
+ In y m \/ In y m' -> find y (map2 f m m') = f (find y m) (find y m').
Proof.
-unfold map2; intros; apply anti_elements_bst; auto.
-Qed.
-
-Lemma find_elements : forall (elt:Set)(m: t elt) x, bst m ->
- L.find x (elements m) = find x m.
-Proof.
-intros.
-case_eq (find x m); intros.
-apply L.find_1.
-apply elements_sort; auto.
-red; rewrite elements_mapsto.
-apply find_2; auto.
-case_eq (L.find x (elements m)); auto; intros.
-rewrite <- H0; symmetry.
-apply find_1; auto.
-rewrite <- elements_mapsto.
-apply L.find_2; auto.
-Qed.
-
-Lemma find_anti_elements : forall (l: list (key*elt'')) x, sort (@ltk _) l ->
- find x (anti_elements l) = L.find x l.
-Proof.
-intros.
-case_eq (L.find x l); intros.
-apply find_1.
-apply anti_elements_bst; auto.
-rewrite anti_elements_mapsto.
-apply L.PX.Sort_NoDupA; auto.
-apply L.find_2; auto.
-case_eq (find x (anti_elements l)); auto; intros.
-rewrite <- H0; symmetry.
-apply L.find_1; auto.
-rewrite <- anti_elements_mapsto.
-apply L.PX.Sort_NoDupA; auto.
-apply find_2; auto.
-Qed.
-
-Lemma map2_1 : forall (m: t elt)(m': t elt')(x:key), bst m -> bst m' ->
- In x m \/ In x m' -> find x (map2 m m') = f (find x m) (find x m').
-Proof.
unfold map2; intros.
-rewrite find_anti_elements; auto.
-rewrite <- find_elements; auto.
-rewrite <- find_elements; auto.
-apply L.map2_1; auto.
-apply elements_sort; auto.
-apply elements_sort; auto.
-do 2 rewrite elements_in; auto.
-apply L.map2_sorted; auto.
-apply elements_sort; auto.
-apply elements_sort; auto.
+rewrite (map2_opt_1 (f0:=fun _ => f));
+ auto using map_option_bst; intros; rewrite map_option_find; auto.
Qed.
-Lemma map2_2 : forall (m: t elt)(m': t elt')(x:key), bst m -> bst m' ->
- In x (map2 m m') -> In x m \/ In x m'.
+Lemma map2_2 : forall m m' y, bst m -> bst m' ->
+ In y (map2 f m m') -> In y m \/ In y m'.
Proof.
unfold map2; intros.
-do 2 rewrite <- elements_in.
-apply L.map2_2 with (f:=f); auto.
-apply elements_sort; auto.
-apply elements_sort; auto.
-revert H1.
-rewrite <- In_alt.
-destruct 1.
-exists x0.
-rewrite <- anti_elements_mapsto; auto.
-apply L.PX.Sort_NoDupA; auto.
-apply L.map2_sorted; auto.
-apply elements_sort; auto.
-apply elements_sort; auto.
+eapply map2_opt_2 with (f0:=fun _ => f); eauto; intros.
+ apply map_option_bst; auto.
+ apply map_option_bst; auto.
+ rewrite map_option_find; auto.
+ rewrite map_option_find; auto.
Qed.
End Map2.
-End Elts.
+End Proofs.
End Raw.
(** * Encapsulation
@@ -1710,178 +1813,184 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
Module Raw := Raw I X.
+ Import Raw.Proofs.
- Record bbst (elt:Set) : Set :=
- Bbst {this :> Raw.tree elt; is_bst : Raw.bst this; is_avl: Raw.avl this}.
+ Record bst (elt:Type) :=
+ Bst {this :> Raw.tree elt; is_bst : Raw.bst this}.
- Definition t := bbst.
+ Definition t := bst.
Definition key := E.t.
Section Elt.
- Variable elt elt' elt'': Set.
+ Variable elt elt' elt'': Type.
Implicit Types m : t elt.
Implicit Types x y : key.
Implicit Types e : elt.
- Definition empty : t elt := Bbst (Raw.empty_bst elt) (Raw.empty_avl elt).
+ Definition empty : t elt := Bst (empty_bst elt).
Definition is_empty m : bool := Raw.is_empty m.(this).
- Definition add x e m : t elt :=
- Bbst (Raw.add_bst x e m.(is_bst) m.(is_avl)) (Raw.add_avl x e m.(is_avl)).
- Definition remove x m : t elt :=
- Bbst (Raw.remove_bst x m.(is_bst) m.(is_avl)) (Raw.remove_avl x m.(is_avl)).
+ Definition add x e m : t elt := Bst (add_bst x e m.(is_bst)).
+ Definition remove x m : t elt := Bst (remove_bst x m.(is_bst)).
Definition mem x m : bool := Raw.mem x m.(this).
Definition find x m : option elt := Raw.find x m.(this).
- Definition map f m : t elt' :=
- Bbst (Raw.map_bst f m.(is_bst)) (Raw.map_avl f m.(is_avl)).
+ Definition map f m : t elt' := Bst (map_bst f m.(is_bst)).
Definition mapi (f:key->elt->elt') m : t elt' :=
- Bbst (Raw.mapi_bst f m.(is_bst)) (Raw.mapi_avl f m.(is_avl)).
+ Bst (mapi_bst f m.(is_bst)).
Definition map2 f m (m':t elt') : t elt'' :=
- Bbst (Raw.map2_bst f m m') (Raw.map2_avl f m m').
+ Bst (map2_bst f m.(is_bst) m'.(is_bst)).
Definition elements m : list (key*elt) := Raw.elements m.(this).
- Definition fold (A:Set) (f:key->elt->A->A) m i := Raw.fold (A:=A) f m.(this) i.
- Definition equal cmp m m' : bool :=
- if (Raw.equal cmp m.(is_bst) m'.(is_bst)) then true else false.
+ Definition cardinal m := Raw.cardinal m.(this).
+ Definition fold (A:Type) (f:key->elt->A->A) m i := Raw.fold (A:=A) f m.(this) i.
+ Definition equal cmp m m' : bool := Raw.equal cmp m.(this) m'.(this).
Definition MapsTo x e m : Prop := Raw.MapsTo x e m.(this).
Definition In x m : Prop := Raw.In0 x m.(this).
- Definition Empty m : Prop := Raw.Empty m.(this).
+ Definition Empty m : Prop := Empty m.(this).
- Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
- Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqke elt.
- Definition lt_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.ltk elt.
+ Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
+ Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
+ Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
- Proof. intros m; exact (@Raw.MapsTo_1 _ m.(this)). Qed.
+ Proof. intros m; exact (@MapsTo_1 _ m.(this)). Qed.
Lemma mem_1 : forall m x, In x m -> mem x m = true.
Proof.
- unfold In, mem; intros m x; rewrite Raw.In_alt; simpl; apply Raw.mem_1; auto.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
apply m.(is_bst).
Qed.
Lemma mem_2 : forall m x, mem x m = true -> In x m.
Proof.
- unfold In, mem; intros m x; rewrite Raw.In_alt; simpl; apply Raw.mem_2; auto.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
Qed.
Lemma empty_1 : Empty empty.
- Proof. exact (@Raw.empty_1 elt). Qed.
+ Proof. exact (@empty_1 elt). Qed.
Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
- Proof. intros m; exact (@Raw.is_empty_1 _ m.(this)). Qed.
+ Proof. intros m; exact (@is_empty_1 _ m.(this)). Qed.
Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
- Proof. intros m; exact (@Raw.is_empty_2 _ m.(this)). Qed.
+ Proof. intros m; exact (@is_empty_2 _ m.(this)). Qed.
Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
- Proof. intros m x y e; exact (@Raw.add_1 elt _ x y e m.(is_avl)). Qed.
+ Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
- Proof. intros m x y e e'; exact (@Raw.add_2 elt _ x y e e' m.(is_avl)). Qed.
+ Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
- Proof. intros m x y e e'; exact (@Raw.add_3 elt _ x y e e' m.(is_avl)). Qed.
+ Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
Proof.
- unfold In, remove; intros m x y; rewrite Raw.In_alt; simpl; apply Raw.remove_1; auto.
+ unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
apply m.(is_bst).
- apply m.(is_avl).
Qed.
Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
- Proof. intros m x y e; exact (@Raw.remove_2 elt _ x y e m.(is_bst) m.(is_avl)). Qed.
+ Proof. intros m x y e; exact (@remove_2 elt _ x y e m.(is_bst)). Qed.
Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
- Proof. intros m x y e; exact (@Raw.remove_3 elt _ x y e m.(is_bst) m.(is_avl)). Qed.
+ Proof. intros m x y e; exact (@remove_3 elt _ x y e m.(is_bst)). Qed.
Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
- Proof. intros m x e; exact (@Raw.find_1 elt _ x e m.(is_bst)). Qed.
+ Proof. intros m x e; exact (@find_1 elt _ x e m.(is_bst)). Qed.
Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
- Proof. intros m; exact (@Raw.find_2 elt m.(this)). Qed.
+ Proof. intros m; exact (@find_2 elt m.(this)). Qed.
- Lemma fold_1 : forall m (A : Set) (i : A) (f : key -> elt -> A -> A),
+ Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
- Proof. intros m; exact (@Raw.fold_1 elt m.(this) m.(is_bst)). Qed.
+ Proof. intros m; exact (@fold_1 elt m.(this) m.(is_bst)). Qed.
Lemma elements_1 : forall m x e,
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Proof.
- intros; unfold elements, MapsTo, eq_key_elt; rewrite Raw.elements_mapsto; auto.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
Qed.
Lemma elements_2 : forall m x e,
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof.
- intros; unfold elements, MapsTo, eq_key_elt; rewrite <- Raw.elements_mapsto; auto.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
- Proof. intros m; exact (@Raw.elements_sort elt m.(this) m.(is_bst)). Qed.
+ Proof. intros m; exact (@elements_sort elt m.(this) m.(is_bst)). Qed.
- Definition Equal cmp m m' :=
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Proof. intros m; exact (@elements_nodup elt m.(this) m.(is_bst)). Qed.
+
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intro m; exact (@elements_cardinal elt m.(this)). Qed.
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp := Equiv (Cmp cmp).
- Lemma Equal_Equal : forall cmp m m', Equal cmp m m' <-> Raw.Equal cmp m m'.
+ Lemma Equivb_Equivb : forall cmp m m',
+ Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
- intros; unfold Equal, Raw.Equal, In; intuition.
- generalize (H0 k); do 2 rewrite Raw.In_alt; intuition.
- generalize (H0 k); do 2 rewrite Raw.In_alt; intuition.
- generalize (H0 k); do 2 rewrite <- Raw.In_alt; intuition.
- generalize (H0 k); do 2 rewrite <- Raw.In_alt; intuition.
- Qed.
+ intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ Qed.
Lemma equal_1 : forall m m' cmp,
- Equal cmp m m' -> equal cmp m m' = true.
+ Equivb cmp m m' -> equal cmp m m' = true.
Proof.
- unfold equal; intros m m' cmp; rewrite Equal_Equal.
- destruct (@Raw.equal _ cmp m m'); auto.
+ unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite equal_Equivb; auto.
Qed.
Lemma equal_2 : forall m m' cmp,
- equal cmp m m' = true -> Equal cmp m m'.
+ equal cmp m m' = true -> Equivb cmp m m'.
Proof.
- unfold equal; intros; rewrite Equal_Equal.
- destruct (@Raw.equal _ cmp m m'); auto; try discriminate.
- Qed.
+ unfold equal; intros (m,b) (m',b') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite <-equal_Equivb; auto.
+ Qed.
End Elt.
- Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
- Proof. intros elt elt' m x e f; exact (@Raw.map_1 elt elt' f m.(this) x e). Qed.
+ Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f m.(this) x e). Qed.
- Lemma map_2 : forall (elt elt':Set)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
+ Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Proof.
- intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite Raw.In_alt; simpl.
- apply Raw.map_2; auto.
+ intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
+ apply map_2; auto.
Qed.
- Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
+ Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
- Proof. intros elt elt' m x e f; exact (@Raw.mapi_1 elt elt' f m.(this) x e). Qed.
- Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
+ Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f m.(this) x e). Qed.
+ Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof.
- intros elt elt' m x f; unfold In in *; do 2 rewrite Raw.In_alt; simpl; apply Raw.mapi_2; auto.
- Qed.
+ intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
+ Qed.
- Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
Proof.
unfold find, map2, In; intros elt elt' elt'' m m' x f.
- do 2 rewrite Raw.In_alt; intros; simpl; apply Raw.map2_1; auto.
+ do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
apply m.(is_bst).
apply m'.(is_bst).
Qed.
- Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
unfold In, map2; intros elt elt' elt'' m m' x f.
- do 3 rewrite Raw.In_alt; intros; simpl in *; eapply Raw.map2_2; eauto.
+ do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
apply m.(is_bst).
apply m'.(is_bst).
Qed.
@@ -1891,158 +2000,185 @@ End IntMake.
Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Sord with Module Data := D
- with Module MapS.E := X.
+ with Module MapS.E := X.
Module Data := D.
- Module MapS := IntMake(I)(X).
- Import MapS.
+ Module Import MapS := IntMake(I)(X).
+ Module LO := FMapList.Make_ord(X)(D).
+ Module R := Raw.
+ Module P := Raw.Proofs.
+
+ Definition t := MapS.t D.t.
+
+ Definition cmp e e' :=
+ match D.compare e e' with EQ _ => true | _ => false end.
+
+ (** One step of comparison of elements *)
+
+ Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 :=
+ match e2 with
+ | R.End => Gt
+ | R.More x2 d2 r2 e2 =>
+ match X.compare x1 x2 with
+ | EQ _ => match D.compare d1 d2 with
+ | EQ _ => cont (R.cons r2 e2)
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ end.
- Module MD := OrderedTypeFacts(D).
- Import MD.
+ (** Comparison of left tree, middle element, then right tree *)
- Module LO := FMapList.Make_ord(X)(D).
+ Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 :=
+ match s1 with
+ | R.Leaf => cont e2
+ | R.Node l1 x1 d1 r1 _ =>
+ compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2
+ end.
+
+ (** Initial continuation *)
+
+ Definition compare_end (e2:R.enumeration D.t) :=
+ match e2 with R.End => Eq | _ => Lt end.
+
+ (** The complete comparison *)
- Definition t := MapS.t D.t.
+ Definition compare_pure s1 s2 :=
+ compare_cont s1 compare_end (R.cons s2 (Raw.End _)).
- Definition cmp e e' := match D.compare e e' with EQ _ => true | _ => false end.
+ (** Correctness of this comparison *)
- Definition elements (m:t) :=
- LO.MapS.Build_slist (Raw.elements_sort m.(is_bst)).
+ Definition Cmp c :=
+ match c with
+ | Eq => LO.eq_list
+ | Lt => LO.lt_list
+ | Gt => (fun l1 l2 => LO.lt_list l2 l1)
+ end.
+
+ Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
+ X.eq x1 x2 -> D.eq d1 d2 ->
+ Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
+ Proof.
+ destruct c; simpl; intros; P.MX.elim_comp; auto.
+ Qed.
+ Hint Resolve cons_Cmp.
+
+ Lemma compare_end_Cmp :
+ forall e2, Cmp (compare_end e2) nil (P.flatten_e e2).
+ Proof.
+ destruct e2; simpl; auto.
+ Qed.
+
+ Lemma compare_more_Cmp : forall x1 d1 cont x2 d2 r2 e2 l,
+ Cmp (cont (R.cons r2 e2)) l (R.elements r2 ++ P.flatten_e e2) ->
+ Cmp (compare_more x1 d1 cont (R.More x2 d2 r2 e2)) ((x1,d1)::l)
+ (P.flatten_e (R.More x2 d2 r2 e2)).
+ Proof.
+ simpl; intros; destruct X.compare; simpl;
+ try destruct D.compare; simpl; auto; P.MX.elim_comp; auto.
+ Qed.
+
+ Lemma compare_cont_Cmp : forall s1 cont e2 l,
+ (forall e, Cmp (cont e) l (P.flatten_e e)) ->
+ Cmp (compare_cont s1 cont e2) (R.elements s1 ++ l) (P.flatten_e e2).
+ Proof.
+ induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; simpl; intros; auto.
+ rewrite <- P.elements_node; simpl.
+ apply Hl1; auto. clear e2. intros [|x2 d2 r2 e2].
+ simpl; auto.
+ apply compare_more_Cmp.
+ rewrite <- P.cons_1; auto.
+ Qed.
+
+ Lemma compare_Cmp : forall s1 s2,
+ Cmp (compare_pure s1 s2) (R.elements s1) (R.elements s2).
+ Proof.
+ intros; unfold compare_pure.
+ rewrite (app_nil_end (R.elements s1)).
+ replace (R.elements s2) with (P.flatten_e (R.cons s2 (R.End _))) by
+ (rewrite P.cons_1; simpl; rewrite <- app_nil_end; auto).
+ auto using compare_cont_Cmp, compare_end_Cmp.
+ Qed.
- Definition eq : t -> t -> Prop :=
- fun m1 m2 => LO.eq (elements m1) (elements m2).
+ (** The dependent-style [compare] *)
- Definition lt : t -> t -> Prop :=
- fun m1 m2 => LO.lt (elements m1) (elements m2).
+ Definition eq (m1 m2 : t) := LO.eq_list (elements m1) (elements m2).
+ Definition lt (m1 m2 : t) := LO.lt_list (elements m1) (elements m2).
- Lemma eq_1 : forall m m', Equal cmp m m' -> eq m m'.
+ Definition compare (s s':t) : Compare lt eq s s'.
+ Proof.
+ intros (s,b) (s',b').
+ generalize (compare_Cmp s s').
+ destruct compare_pure; intros; [apply EQ|apply LT|apply GT]; red; auto.
+ Defined.
+
+ (* Proofs about [eq] and [lt] *)
+
+ Definition selements (m1 : t) :=
+ LO.MapS.Build_slist (P.elements_sort m1.(is_bst)).
+
+ Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
+ Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
+
+ Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
+ Proof.
+ unfold eq, seq, selements, elements, LO.eq; intuition.
+ Qed.
+
+ Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
+ Proof.
+ unfold lt, slt, selements, elements, LO.lt; intuition.
+ Qed.
+
+ Lemma eq_1 : forall (m m' : t), Equivb cmp m m' -> eq m m'.
Proof.
intros m m'.
- unfold eq.
- rewrite Equal_Equal.
- rewrite Raw.Equal_elements.
- intros.
- apply LO.eq_1.
- auto.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite P.Equivb_elements.
+ auto using LO.eq_1.
Qed.
- Lemma eq_2 : forall m m', eq m m' -> Equal cmp m m'.
+ Lemma eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Proof.
intros m m'.
- unfold eq.
- rewrite Equal_Equal.
- rewrite Raw.Equal_elements.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite P.Equivb_elements.
intros.
generalize (LO.eq_2 H).
auto.
Qed.
-
+
Lemma eq_refl : forall m : t, eq m m.
Proof.
- unfold eq; intros; apply LO.eq_refl.
+ intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
Qed.
Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
- unfold eq; intros; apply LO.eq_sym; auto.
+ intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
Qed.
Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
Proof.
- unfold eq; intros; eapply LO.eq_trans; eauto.
+ intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
+ intros; eapply LO.eq_trans; eauto.
Qed.
Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
Proof.
- unfold lt; intros; eapply LO.lt_trans; eauto.
+ intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
+ intros; eapply LO.lt_trans; eauto.
Qed.
Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
Proof.
- unfold lt, eq; intros; apply LO.lt_not_eq; auto.
- Qed.
-
- Import Raw.
-
- Definition flatten_slist (e:enumeration D.t)(He:sorted_e e) :=
- LO.MapS.Build_slist (sorted_flatten_e He).
-
- Open Local Scope Z_scope.
-
- Definition compare_aux :
- forall (e1 e2:enumeration D.t)(He1:sorted_e e1)(He2: sorted_e e2),
- Compare LO.lt LO.eq (flatten_slist He1) (flatten_slist He2).
- Proof.
- intros e1 e2; pattern e1, e2 in |- *; apply compare_rec2.
- simple destruct x; simple destruct x'; intuition.
- (* x = x' = End *)
- constructor 2.
- compute; auto.
- (* x = End x' = More *)
- constructor 1.
- compute; auto.
- (* x = More x' = End *)
- constructor 3.
- compute; auto.
- (* x = More k t0 t1 e, x' = More k0 t2 t3 e0 *)
- case (X.compare k k0); intro.
- (* k < k0 *)
- constructor 1.
- compute; MX.elim_comp; auto.
- (* k = k0 *)
- destruct (D.compare t t1).
- constructor 1.
- compute; MX.elim_comp; auto.
- destruct (@cons _ t0 e) as [c1 (H2,(H3,H4))]; try inversion_clear He1; auto.
- destruct (@cons _ t2 e0) as [c2 (H5,(H6,H7))]; try inversion_clear He2; auto.
- assert (measure_e c1 + measure_e c2 <
- measure_e (More k t t0 e) +
- measure_e (More k0 t1 t2 e0)).
- unfold measure_e in *; fold measure_e in *; omega.
- destruct (H c1 c2 H0 H2 H5); clear H.
- constructor 1.
- unfold flatten_slist, LO.lt in *; simpl; simpl in l.
- MX.elim_comp.
- right; split; auto.
- rewrite <- H7; rewrite <- H4; auto.
- constructor 2.
- unfold flatten_slist, LO.eq in *; simpl; simpl in e5.
- MX.elim_comp.
- split; auto.
- rewrite <- H7; rewrite <- H4; auto.
- constructor 3.
- unfold flatten_slist, LO.lt in *; simpl; simpl in l.
- MX.elim_comp.
- right; split; auto.
- rewrite <- H7; rewrite <- H4; auto.
- constructor 3.
- compute; MX.elim_comp; auto.
- (* k > k0 *)
- constructor 3.
- compute; MX.elim_comp; auto.
- Qed.
-
- Definition compare : forall m1 m2, Compare lt eq m1 m2.
- Proof.
- intros (m1,m1_bst,m1_avl) (m2,m2_bst,m2_avl); simpl.
- destruct (@cons _ m1 (End _)) as [x1 (H1,H11)]; auto.
- apply SortedEEnd.
- inversion_clear 2.
- destruct (@cons _ m2 (End _)) as [x2 (H2,H22)]; auto.
- apply SortedEEnd.
- inversion_clear 2.
- simpl in H11; rewrite <- app_nil_end in H11.
- simpl in H22; rewrite <- app_nil_end in H22.
- destruct (compare_aux H1 H2); intuition.
- constructor 1.
- unfold lt, LO.lt, IntMake_ord.elements, flatten_slist in *; simpl in *.
- rewrite <- H0; rewrite <- H4; auto.
- constructor 2.
- unfold eq, LO.eq, IntMake_ord.elements, flatten_slist in *; simpl in *.
- rewrite <- H0; rewrite <- H4; auto.
- constructor 3.
- unfold lt, LO.lt, IntMake_ord.elements, flatten_slist in *; simpl in *.
- rewrite <- H0; rewrite <- H4; auto.
+ intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
+ intros; apply LO.lt_not_eq; auto.
Qed.
End IntMake_ord.
@@ -2056,3 +2192,4 @@ Module Make_ord (X: OrderedType)(D: OrderedType)
<: Sord with Module Data := D
with Module MapS.E := X
:=IntMake_ord(Z_as_Int)(X)(D).
+
diff --git a/theories/FSets/FMapFacts.v b/theories/FSets/FMapFacts.v
index 0105095a..b307efe3 100644
--- a/theories/FSets/FMapFacts.v
+++ b/theories/FSets/FMapFacts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
+(* $Id: FMapFacts.v 10782 2008-04-12 16:08:04Z msozeau $ *)
(** * Finite maps library *)
@@ -15,20 +15,24 @@
different styles: equivalence and boolean equalities.
*)
-Require Import Bool.
-Require Import OrderedType.
+Require Import Bool DecidableType DecidableTypeEx OrderedType.
Require Export FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
-Module Facts (M: S).
-Module ME := OrderedTypeFacts M.E.
-Import ME.
-Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
+(** * Facts about weak maps *)
-Lemma MapsTo_fun : forall (elt:Set) m x (e e':elt),
+Module WFacts (E:DecidableType)(Import M:WSfun E).
+
+Notation eq_dec := E.eq_dec.
+Definition eqb x y := if eq_dec x y then true else false.
+
+Lemma eq_bool_alt : forall b b', b=b' <-> (b=true <-> b'=true).
+Proof.
+ destruct b; destruct b'; intuition.
+Qed.
+
+Lemma MapsTo_fun : forall (elt:Type) m x (e e':elt),
MapsTo x e m -> MapsTo x e' m -> e=e'.
Proof.
intros.
@@ -36,19 +40,14 @@ generalize (find_1 H) (find_1 H0); clear H H0.
intros; rewrite H in H0; injection H0; auto.
Qed.
-(** * Specifications written using equivalences *)
+(** ** Specifications written using equivalences *)
Section IffSpec.
-Variable elt elt' elt'': Set.
+Variable elt elt' elt'': Type.
Implicit Type m: t elt.
Implicit Type x y z: key.
Implicit Type e: elt.
-Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
-Proof.
-split; apply MapsTo_1; auto.
-Qed.
-
Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
Proof.
unfold In.
@@ -57,12 +56,34 @@ apply (MapsTo_1 H H0); auto.
apply (MapsTo_1 (E.eq_sym H) H0); auto.
Qed.
+Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
+Proof.
+split; apply MapsTo_1; auto.
+Qed.
+
+Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
+Proof.
+split; [apply mem_1|apply mem_2].
+Qed.
+
+Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
+Proof.
+intros; rewrite mem_in_iff; destruct (mem x m); intuition.
+Qed.
+
+Lemma In_dec : forall m x, { In x m } + { ~ In x m }.
+Proof.
+ intros.
+ generalize (mem_in_iff m x).
+ destruct (mem x m); [left|right]; intuition.
+Qed.
+
Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
Proof.
split; [apply find_1|apply find_2].
Qed.
-Lemma not_find_mapsto_iff : forall m x, ~In x m <-> find x m = None.
+Lemma not_find_in_iff : forall m x, ~In x m <-> find x m = None.
Proof.
intros.
generalize (find_mapsto_iff m x); destruct (find x m).
@@ -74,17 +95,13 @@ intros; intros (e,H1).
rewrite H in H1; discriminate.
Qed.
-Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
-Proof.
-split; [apply mem_1|apply mem_2].
-Qed.
-
-Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
+Lemma in_find_iff : forall m x, In x m <-> find x m <> None.
Proof.
-intros; rewrite mem_in_iff; destruct (mem x m); intuition.
+intros; rewrite <- not_find_in_iff, mem_in_iff.
+destruct mem; intuition.
Qed.
-Lemma equal_iff : forall m m' cmp, Equal cmp m m' <-> equal cmp m m' = true.
+Lemma equal_iff : forall m m' cmp, Equivb cmp m m' <-> equal cmp m m' = true.
Proof.
split; [apply equal_1|apply equal_2].
Qed.
@@ -114,9 +131,9 @@ intros.
intuition.
destruct (eq_dec x y); [left|right].
split; auto.
-symmetry; apply (MapsTo_fun (e':=e) H); auto.
+symmetry; apply (MapsTo_fun (e':=e) H); auto with map.
split; auto; apply add_3 with x e; auto.
-subst; auto.
+subst; auto with map.
Qed.
Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
@@ -204,33 +221,33 @@ split.
case_eq (find x m); intros.
exists e.
split.
-apply (MapsTo_fun (m:=map f m) (x:=x)); auto.
-apply find_2; auto.
+apply (MapsTo_fun (m:=map f m) (x:=x)); auto with map.
+apply find_2; auto with map.
assert (In x (map f m)) by (exists b; auto).
destruct (map_2 H1) as (a,H2).
rewrite (find_1 H2) in H; discriminate.
intros (a,(H,H0)).
-subst b; auto.
+subst b; auto with map.
Qed.
Lemma map_in_iff : forall m x (f : elt -> elt'),
In x (map f m) <-> In x m.
Proof.
-split; intros; eauto.
+split; intros; eauto with map.
destruct H as (a,H).
-exists (f a); auto.
+exists (f a); auto with map.
Qed.
Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
In x (mapi f m) <-> In x m.
Proof.
-split; intros; eauto.
+split; intros; eauto with map.
destruct H as (a,H).
destruct (mapi_1 f H) as (y,(H0,H1)).
exists (f y a); auto.
Qed.
-(* Unfortunately, we don't have simple equivalences for [mapi]
+(** Unfortunately, we don't have simple equivalences for [mapi]
and [MapsTo]. The only correct one needs compatibility of [f]. *)
Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
@@ -240,9 +257,9 @@ Proof.
intros; case_eq (find x m); intros.
exists e.
destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
-apply find_2; auto.
-exists y; repeat split; auto.
-apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto.
+apply find_2; auto with map.
+exists y; repeat split; auto with map.
+apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto with map.
assert (In x (mapi f m)) by (exists b; auto).
destruct (mapi_2 H1) as (a,H2).
rewrite (find_1 H2) in H0; discriminate.
@@ -287,11 +304,11 @@ Ltac map_iff :=
rewrite map_mapsto_iff || rewrite map_in_iff ||
rewrite mapi_in_iff)).
-(** * Specifications written using boolean predicates *)
+(** ** Specifications written using boolean predicates *)
Section BoolSpec.
-Lemma mem_find_b : forall (elt:Set)(m:t elt)(x:key), mem x m = if find x m then true else false.
+Lemma mem_find_b : forall (elt:Type)(m:t elt)(x:key), mem x m = if find x m then true else false.
Proof.
intros.
generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
@@ -303,7 +320,7 @@ destruct H0 as (e,H0).
destruct (H e); intuition discriminate.
Qed.
-Variable elt elt' elt'' : Set.
+Variable elt elt' elt'' : Type.
Implicit Types m : t elt.
Implicit Types x y z : key.
Implicit Types e : elt.
@@ -345,24 +362,24 @@ Qed.
Lemma add_eq_o : forall m x y e,
E.eq x y -> find y (add x e m) = Some e.
Proof.
-auto.
+auto with map.
Qed.
Lemma add_neq_o : forall m x y e,
~ E.eq x y -> find y (add x e m) = find y m.
Proof.
intros.
-case_eq (find y m); intros; auto.
-case_eq (find y (add x e m)); intros; auto.
+case_eq (find y m); intros; auto with map.
+case_eq (find y (add x e m)); intros; auto with map.
rewrite <- H0; symmetry.
-apply find_1; apply add_3 with x e; auto.
+apply find_1; apply add_3 with x e; auto with map.
Qed.
-Hint Resolve add_neq_o.
+Hint Resolve add_neq_o : map.
Lemma add_o : forall m x y e,
find y (add x e m) = if eq_dec x y then Some e else find y m.
Proof.
-intros; destruct (eq_dec x y); auto.
+intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma add_eq_b : forall m x y e,
@@ -394,23 +411,23 @@ destruct (find y (remove x m)); auto.
destruct 2.
exists e; rewrite H0; auto.
Qed.
-Hint Resolve remove_eq_o.
+Hint Resolve remove_eq_o : map.
Lemma remove_neq_o : forall m x y,
~ E.eq x y -> find y (remove x m) = find y m.
Proof.
intros.
-case_eq (find y m); intros; auto.
-case_eq (find y (remove x m)); intros; auto.
+case_eq (find y m); intros; auto with map.
+case_eq (find y (remove x m)); intros; auto with map.
rewrite <- H0; symmetry.
-apply find_1; apply remove_3 with x; auto.
+apply find_1; apply remove_3 with x; auto with map.
Qed.
-Hint Resolve remove_neq_o.
+Hint Resolve remove_neq_o : map.
Lemma remove_o : forall m x y,
find y (remove x m) = if eq_dec x y then None else find y m.
Proof.
-intros; destruct (eq_dec x y); auto.
+intros; destruct (eq_dec x y); auto with map.
Qed.
Lemma remove_eq_b : forall m x y,
@@ -432,7 +449,7 @@ intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.
-Definition option_map (A:Set)(B:Set)(f:A->B)(o:option A) : option B :=
+Definition option_map (A B:Type)(f:A->B)(o:option A) : option B :=
match o with
| Some a => Some (f a)
| None => None
@@ -494,15 +511,15 @@ Proof.
intros.
case_eq (find x m); intros.
rewrite <- H0.
-apply map2_1; auto.
-left; exists e; auto.
+apply map2_1; auto with map.
+left; exists e; auto with map.
case_eq (find x m'); intros.
rewrite <- H0; rewrite <- H1.
apply map2_1; auto.
-right; exists e; auto.
+right; exists e; auto with map.
rewrite H.
-case_eq (find x (map2 f m m')); intros; auto.
-assert (In x (map2 f m m')) by (exists e; auto).
+case_eq (find x (map2 f m m')); intros; auto with map.
+assert (In x (map2 f m m')) by (exists e; auto with map).
destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
rewrite (find_1 H4) in H0; discriminate.
rewrite (find_1 H4) in H1; discriminate.
@@ -514,21 +531,18 @@ Proof.
intros.
assert (forall e, find x m = Some e <-> InA (eq_key_elt (elt:=elt)) (x,e) (elements m)).
intros; rewrite <- find_mapsto_iff; apply elements_mapsto_iff.
-assert (NoDupA (eq_key (elt:=elt)) (elements m)).
- apply SortA_NoDupA with (lt_key (elt:=elt)); unfold eq_key, lt_key; intuition eauto.
- destruct y; simpl in *.
- apply (E.lt_not_eq H0 H1).
- exact (elements_3 m).
+assert (H0:=elements_3w m).
generalize (fun e => @findA_NoDupA _ _ _ E.eq_sym E.eq_trans eq_dec (elements m) x e H0).
-unfold eqb.
-destruct (find x m); destruct (findA (fun y : E.t => if eq_dec x y then true else false) (elements m));
+fold (eqb x).
+destruct (find x m); destruct (findA (eqb x) (elements m));
simpl; auto; intros.
symmetry; rewrite <- H1; rewrite <- H; auto.
symmetry; rewrite <- H1; rewrite <- H; auto.
rewrite H; rewrite H1; auto.
Qed.
-Lemma elements_b : forall m x, mem x m = existsb (fun p => eqb x (fst p)) (elements m).
+Lemma elements_b : forall m x,
+ mem x m = existsb (fun p => eqb x (fst p)) (elements m).
Proof.
intros.
generalize (mem_in_iff m x)(elements_in_iff m x)
@@ -554,4 +568,1026 @@ Qed.
End BoolSpec.
+Section Equalities.
+
+Variable elt:Type.
+
+(** * Relations between [Equal], [Equiv] and [Equivb]. *)
+
+(** First, [Equal] is [Equiv] with Leibniz on elements. *)
+
+Lemma Equal_Equiv : forall (m m' : t elt),
+ Equal m m' <-> Equiv (@Logic.eq elt) m m'.
+Proof.
+ unfold Equal, Equiv; split; intros.
+ split; intros.
+ rewrite in_find_iff, in_find_iff, H; intuition.
+ rewrite find_mapsto_iff in H0,H1; congruence.
+ destruct H.
+ specialize (H y).
+ specialize (H0 y).
+ do 2 rewrite in_find_iff in H.
+ generalize (find_mapsto_iff m y)(find_mapsto_iff m' y).
+ do 2 destruct find; auto; intros.
+ f_equal; apply H0; [rewrite H1|rewrite H2]; auto.
+ destruct H as [H _]; now elim H.
+ destruct H as [_ H]; now elim H.
+Qed.
+
+(** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp]
+ are related. *)
+
+Section Cmp.
+Variable eq_elt : elt->elt->Prop.
+Variable cmp : elt->elt->bool.
+
+Definition compat_cmp :=
+ forall e e', cmp e e' = true <-> eq_elt e e'.
+
+Lemma Equiv_Equivb : compat_cmp ->
+ forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'.
+Proof.
+ unfold Equivb, Equiv, Cmp; intuition.
+ red in H; rewrite H; eauto.
+ red in H; rewrite <-H; eauto.
+Qed.
+End Cmp.
+
+(** Composition of the two last results: relation between [Equal]
+ and [Equivb]. *)
+
+Lemma Equal_Equivb : forall cmp,
+ (forall e e', cmp e e' = true <-> e = e') ->
+ forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
+Proof.
+ intros; rewrite Equal_Equiv.
+ apply Equiv_Equivb; auto.
+Qed.
+
+Lemma Equal_Equivb_eqdec :
+ forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }),
+ let cmp := fun e e' => if eq_elt_dec e e' then true else false in
+ forall (m m':t elt), Equal m m' <-> Equivb cmp m m'.
+Proof.
+intros; apply Equal_Equivb.
+unfold cmp; clear cmp; intros.
+destruct eq_elt_dec; now intuition.
+Qed.
+
+End Equalities.
+
+(** * [Equal] is a setoid equality. *)
+
+Lemma Equal_refl : forall (elt:Type)(m : t elt), Equal m m.
+Proof. red; reflexivity. Qed.
+
+Lemma Equal_sym : forall (elt:Type)(m m' : t elt),
+ Equal m m' -> Equal m' m.
+Proof. unfold Equal; auto. Qed.
+
+Lemma Equal_trans : forall (elt:Type)(m m' m'' : t elt),
+ Equal m m' -> Equal m' m'' -> Equal m m''.
+Proof. unfold Equal; congruence. Qed.
+
+Definition Equal_ST : forall elt:Type, Setoid_Theory (t elt) (@Equal _).
+Proof.
+constructor; red; [apply Equal_refl | apply Equal_sym | apply Equal_trans].
+Qed.
+
+Add Relation key E.eq
+ reflexivity proved by E.eq_refl
+ symmetry proved by E.eq_sym
+ transitivity proved by E.eq_trans
+ as KeySetoid.
+
+Implicit Arguments Equal [[elt]].
+
+Add Parametric Relation (elt : Type) : (t elt) Equal
+ reflexivity proved by (@Equal_refl elt)
+ symmetry proved by (@Equal_sym elt)
+ transitivity proved by (@Equal_trans elt)
+ as EqualSetoid.
+
+Add Parametric Morphism elt : (@In elt) with signature E.eq ==> Equal ==> iff as In_m.
+Proof.
+unfold Equal; intros k k' Hk m m' Hm.
+rewrite (In_iff m Hk), in_find_iff, in_find_iff, Hm; intuition.
+Qed.
+
+Add Parametric Morphism elt : (@MapsTo elt)
+ with signature E.eq ==> @Logic.eq _ ==> Equal ==> iff as MapsTo_m.
+Proof.
+unfold Equal; intros k k' Hk e m m' Hm.
+rewrite (MapsTo_iff m e Hk), find_mapsto_iff, find_mapsto_iff, Hm;
+ intuition.
+Qed.
+
+Add Parametric Morphism elt : (@Empty elt) with signature Equal ==> iff as Empty_m.
+Proof.
+unfold Empty; intros m m' Hm; intuition.
+rewrite <-Hm in H0; eauto.
+rewrite Hm in H0; eauto.
+Qed.
+
+Add Parametric Morphism elt : (@is_empty elt) with signature Equal ==> @Logic.eq _ as is_empty_m.
+Proof.
+intros m m' Hm.
+rewrite eq_bool_alt, <-is_empty_iff, <-is_empty_iff, Hm; intuition.
+Qed.
+
+Add Parametric Morphism elt : (@mem elt) with signature E.eq ==> Equal ==> @Logic.eq _ as mem_m.
+Proof.
+intros k k' Hk m m' Hm.
+rewrite eq_bool_alt, <- mem_in_iff, <-mem_in_iff, Hk, Hm; intuition.
+Qed.
+
+Add Parametric Morphism elt : (@find elt) with signature E.eq ==> Equal ==> @Logic.eq _ as find_m.
+Proof.
+intros k k' Hk m m' Hm.
+generalize (find_mapsto_iff m k)(find_mapsto_iff m' k')
+ (not_find_in_iff m k)(not_find_in_iff m' k');
+do 2 destruct find; auto; intros.
+rewrite <- H, Hk, Hm, H0; auto.
+rewrite <- H1, Hk, Hm, H2; auto.
+symmetry; rewrite <- H2, <-Hk, <-Hm, H1; auto.
+Qed.
+
+Add Parametric Morphism elt : (@add elt) with signature
+ E.eq ==> @Logic.eq _ ==> Equal ==> Equal as add_m.
+Proof.
+intros k k' Hk e m m' Hm y.
+rewrite add_o, add_o; do 2 destruct eq_dec; auto.
+elim n; rewrite <-Hk; auto.
+elim n; rewrite Hk; auto.
+Qed.
+
+Add Parametric Morphism elt : (@remove elt) with signature
+ E.eq ==> Equal ==> Equal as remove_m.
+Proof.
+intros k k' Hk m m' Hm y.
+rewrite remove_o, remove_o; do 2 destruct eq_dec; auto.
+elim n; rewrite <-Hk; auto.
+elim n; rewrite Hk; auto.
+Qed.
+
+Add Parametric Morphism elt elt' : (@map elt elt') with signature @Logic.eq _ ==> Equal ==> Equal as map_m.
+Proof.
+intros f m m' Hm y.
+rewrite map_o, map_o, Hm; auto.
+Qed.
+
+(* Later: Add Morphism cardinal *)
+
+(* old name: *)
+Notation not_find_mapsto_iff := not_find_in_iff.
+
+End WFacts.
+
+(** * Same facts for full maps *)
+
+Module Facts (M:S).
+ Module D := OT_as_DT M.E.
+ Include WFacts D M.
End Facts.
+
+(** * Additional Properties for weak maps
+
+ Results about [fold], [elements], induction principles...
+*)
+
+Module WProperties (E:DecidableType)(M:WSfun E).
+ Module Import F:=WFacts E M.
+ Import M.
+
+ Section Elt.
+ Variable elt:Type.
+
+ Definition Add x (e:elt) m m' := forall y, find y m' = find y (add x e m).
+
+ Notation eqke := (@eq_key_elt elt).
+ Notation eqk := (@eq_key elt).
+
+ Lemma elements_Empty : forall m:t elt, Empty m <-> elements m = nil.
+ Proof.
+ intros.
+ unfold Empty.
+ split; intros.
+ assert (forall a, ~ List.In a (elements m)).
+ red; intros.
+ apply (H (fst a) (snd a)).
+ rewrite elements_mapsto_iff.
+ rewrite InA_alt; exists a; auto.
+ split; auto; split; auto.
+ destruct (elements m); auto.
+ elim (H0 p); simpl; auto.
+ red; intros.
+ rewrite elements_mapsto_iff in H0.
+ rewrite InA_alt in H0; destruct H0.
+ rewrite H in H0; destruct H0 as (_,H0); inversion H0.
+ Qed.
+
+ Lemma elements_empty : elements (@empty elt) = nil.
+ Proof.
+ rewrite <-elements_Empty; apply empty_1.
+ Qed.
+
+ Lemma fold_Empty : forall m (A:Type)(f:key->elt->A->A)(i:A),
+ Empty m -> fold f m i = i.
+ Proof.
+ intros.
+ rewrite fold_1.
+ rewrite elements_Empty in H; rewrite H; simpl; auto.
+ Qed.
+
+ Lemma NoDupA_eqk_eqke : forall l, NoDupA eqk l -> NoDupA eqke l.
+ Proof.
+ induction 1; auto.
+ constructor; auto.
+ contradict H.
+ destruct x as (x,y).
+ rewrite InA_alt in *; destruct H as ((a,b),((H1,H2),H3)); simpl in *.
+ exists (a,b); auto.
+ Qed.
+
+ Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ transpose eqA (fun y => f (fst y) (snd y)) ->
+ Equal m1 m2 ->
+ eqA (fold f m1 i) (fold f m2 i).
+ Proof.
+ assert (eqke_refl : forall p, eqke p p).
+ red; auto.
+ assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
+ intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
+ assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
+ intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
+ intuition; eauto; congruence.
+ intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
+ apply fold_right_equivlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
+ apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
+ red; intros.
+ do 2 rewrite InA_rev.
+ destruct x; do 2 rewrite <- elements_mapsto_iff.
+ do 2 rewrite find_mapsto_iff.
+ rewrite H1; split; auto.
+ Qed.
+
+ Lemma fold_Add : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ transpose eqA (fun y =>f (fst y) (snd y)) ->
+ ~In x m1 -> Add x e m1 m2 ->
+ eqA (fold f m2 i) (f x e (fold f m1 i)).
+ Proof.
+ assert (eqke_refl : forall p, eqke p p).
+ red; auto.
+ assert (eqke_sym : forall p p', eqke p p' -> eqke p' p).
+ intros (x1,x2) (y1,y2); unfold eq_key_elt; simpl; intuition.
+ assert (eqke_trans : forall p p' p'', eqke p p' -> eqke p' p'' -> eqke p p'').
+ intros (x1,x2) (y1,y2) (z1,z2); unfold eq_key_elt; simpl.
+ intuition; eauto; congruence.
+ intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
+ set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
+ change (f x e (fold_right f' i (rev (elements m1))))
+ with (f' (x,e) (fold_right f' i (rev (elements m1)))).
+ apply fold_right_add with (eqA:=eqke)(eqB:=eqA); auto.
+ apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
+ apply NoDupA_rev; auto; apply NoDupA_eqk_eqke; apply elements_3w.
+ rewrite InA_rev.
+ contradict H1.
+ exists e.
+ rewrite elements_mapsto_iff; auto.
+ intros a.
+ rewrite InA_cons; do 2 rewrite InA_rev;
+ destruct a as (a,b); do 2 rewrite <- elements_mapsto_iff.
+ do 2 rewrite find_mapsto_iff; unfold eq_key_elt; simpl.
+ rewrite H2.
+ rewrite add_o.
+ destruct (eq_dec x a); intuition.
+ inversion H3; auto.
+ f_equal; auto.
+ elim H1.
+ exists b; apply MapsTo_1 with a; auto with map.
+ elim n; auto.
+ Qed.
+
+ Lemma cardinal_fold : forall m : t elt,
+ cardinal m = fold (fun _ _ => S) m 0.
+ Proof.
+ intros; rewrite cardinal_1, fold_1.
+ symmetry; apply fold_left_length; auto.
+ Qed.
+
+ Lemma cardinal_Empty : forall m : t elt,
+ Empty m <-> cardinal m = 0.
+ Proof.
+ intros.
+ rewrite cardinal_1, elements_Empty.
+ destruct (elements m); intuition; discriminate.
+ Qed.
+
+ Lemma Equal_cardinal : forall m m' : t elt,
+ Equal m m' -> cardinal m = cardinal m'.
+ Proof.
+ intros; do 2 rewrite cardinal_fold.
+ apply fold_Equal with (eqA:=@eq _); auto.
+ constructor; auto; congruence.
+ red; auto.
+ red; auto.
+ Qed.
+
+ Lemma cardinal_1 : forall m : t elt, Empty m -> cardinal m = 0.
+ Proof.
+ intros; rewrite <- cardinal_Empty; auto.
+ Qed.
+
+ Lemma cardinal_2 :
+ forall m m' x e, ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m).
+ Proof.
+ intros; do 2 rewrite cardinal_fold.
+ change S with ((fun _ _ => S) x e).
+ apply fold_Add; auto.
+ constructor; intros; auto; congruence.
+ red; simpl; auto.
+ red; simpl; auto.
+ Qed.
+
+ Lemma cardinal_inv_1 : forall m : t elt,
+ cardinal m = 0 -> Empty m.
+ Proof.
+ intros; rewrite cardinal_Empty; auto.
+ Qed.
+ Hint Resolve cardinal_inv_1 : map.
+
+ Lemma cardinal_inv_2 :
+ forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }.
+ Proof.
+ intros; rewrite M.cardinal_1 in *.
+ generalize (elements_mapsto_iff m).
+ destruct (elements m); try discriminate.
+ exists p; auto.
+ rewrite H0; destruct p; simpl; auto.
+ constructor; red; auto.
+ Qed.
+
+ Lemma cardinal_inv_2b :
+ forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }.
+ Proof.
+ intros.
+ generalize (@cardinal_inv_2 m); destruct cardinal.
+ elim H;auto.
+ eauto.
+ Qed.
+
+ Lemma map_induction :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
+ apply X; apply cardinal_inv_1; auto.
+
+ destruct (cardinal_inv_2 (sym_eq Heqn)) as ((x,e),H0); simpl in *.
+ assert (Add x e (remove x m) m).
+ red; intros.
+ rewrite add_o; rewrite remove_o; destruct (eq_dec x y); eauto with map.
+ apply X0 with (remove x m) x e; auto with map.
+ apply IHn; auto with map.
+ assert (S n = S (cardinal (remove x m))).
+ rewrite Heqn; eapply cardinal_2; eauto with map.
+ inversion H1; auto with map.
+ Qed.
+
+ (** * Let's emulate some functions not present in the interface *)
+
+ Definition filter (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e m => if f k e then add k e m else m) m (empty _).
+
+ Definition for_all (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e b => if f k e then b else false) m true.
+
+ Definition exists_ (f : key -> elt -> bool)(m : t elt) :=
+ fold (fun k e b => if f k e then true else b) m false.
+
+ Definition partition (f : key -> elt -> bool)(m : t elt) :=
+ (filter f m, filter (fun k e => negb (f k e))).
+
+ Section Specs.
+ Variable f : key -> elt -> bool.
+ Hypothesis Hf : forall e, compat_bool E.eq (fun k => f k e).
+
+ Lemma filter_iff : forall m k e,
+ MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true.
+ Proof.
+ unfold filter; intros.
+ rewrite fold_1.
+ rewrite <- fold_left_rev_right.
+ rewrite (elements_mapsto_iff m).
+ rewrite <- (InA_rev eqke (k,e) (elements m)).
+ assert (NoDupA eqk (rev (elements m))).
+ apply NoDupA_rev; auto; try apply elements_3w; auto.
+ intros (k1,e1); compute; auto.
+ intros (k1,e1)(k2,e2); compute; auto.
+ intros (k1,e1)(k2,e2)(k3,e3); compute; eauto.
+ induction (rev (elements m)); simpl; auto.
+
+ rewrite empty_mapsto_iff.
+ intuition.
+ inversion H1.
+
+ destruct a as (k',e'); simpl.
+ inversion_clear H.
+ case_eq (f k' e'); intros; simpl;
+ try rewrite add_mapsto_iff; rewrite IHl; clear IHl; intuition.
+ constructor; red; auto.
+ rewrite (Hf e' H2),H4 in H; auto.
+ inversion_clear H3.
+ compute in H2; destruct H2; auto.
+ destruct (E.eq_dec k' k); auto.
+ elim H0.
+ rewrite InA_alt in *; destruct H2 as (w,Hw); exists w; intuition.
+ red in H2; red; simpl in *; intuition.
+ rewrite e0; auto.
+ inversion_clear H3; auto.
+ compute in H2; destruct H2.
+ rewrite (Hf e H2),H3,H in H4; discriminate.
+ Qed.
+
+ Lemma for_all_iff : forall m,
+ for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true).
+ Proof.
+ cut (forall m : t elt,
+ for_all f m = true <->
+ (forall k e, InA eqke (k,e) (rev (elements m)) -> f k e = true)).
+ intros; rewrite H; split; intros.
+ apply H0; rewrite InA_rev, <- elements_mapsto_iff; auto.
+ apply H0; rewrite InA_rev, <- elements_mapsto_iff in H1; auto.
+
+ unfold for_all; intros.
+ rewrite fold_1.
+ rewrite <- fold_left_rev_right.
+ assert (NoDupA eqk (rev (elements m))).
+ apply NoDupA_rev; auto; try apply elements_3w; auto.
+ intros (k1,e1); compute; auto.
+ intros (k1,e1)(k2,e2); compute; auto.
+ intros (k1,e1)(k2,e2)(k3,e3); compute; eauto.
+ induction (rev (elements m)); simpl; auto.
+
+ intuition.
+ inversion H1.
+
+ destruct a as (k,e); simpl.
+ inversion_clear H.
+ case_eq (f k e); intros; simpl;
+ try rewrite IHl; clear IHl; intuition.
+ inversion_clear H3; auto.
+ compute in H4; destruct H4.
+ rewrite (Hf e0 H3), H4; auto.
+ rewrite <-H, <-(H2 k e); auto.
+ constructor; red; auto.
+ Qed.
+
+ Lemma exists_iff : forall m,
+ exists_ f m = true <->
+ (exists p, MapsTo (fst p) (snd p) m /\ f (fst p) (snd p) = true).
+ Proof.
+ cut (forall m : t elt,
+ exists_ f m = true <->
+ (exists p, InA eqke p (rev (elements m))
+ /\ f (fst p) (snd p) = true)).
+ intros; rewrite H; split; intros.
+ destruct H0 as ((k,e),Hke); exists (k,e).
+ rewrite InA_rev, <-elements_mapsto_iff in Hke; auto.
+ destruct H0 as ((k,e),Hke); exists (k,e).
+ rewrite InA_rev, <-elements_mapsto_iff; auto.
+ unfold exists_; intros.
+ rewrite fold_1.
+ rewrite <- fold_left_rev_right.
+ assert (NoDupA eqk (rev (elements m))).
+ apply NoDupA_rev; auto; try apply elements_3w; auto.
+ intros (k1,e1); compute; auto.
+ intros (k1,e1)(k2,e2); compute; auto.
+ intros (k1,e1)(k2,e2)(k3,e3); compute; eauto.
+ induction (rev (elements m)); simpl; auto.
+
+ intuition; try discriminate.
+ destruct H0 as ((k,e),(Hke,_)); inversion Hke.
+
+ destruct a as (k,e); simpl.
+ inversion_clear H.
+ case_eq (f k e); intros; simpl;
+ try rewrite IHl; clear IHl; intuition.
+ exists (k,e); simpl; split; auto.
+ constructor; red; auto.
+ destruct H2 as ((k',e'),(Hke',Hf')); exists (k',e'); simpl; auto.
+ destruct H2 as ((k',e'),(Hke',Hf')); simpl in *.
+ inversion_clear Hke'.
+ compute in H2; destruct H2.
+ rewrite (Hf e' H2), H3,H in Hf'; discriminate.
+ exists (k',e'); auto.
+ Qed.
+ End Specs.
+
+ (** specialized versions analyzing only keys (resp. elements) *)
+
+ Definition filter_dom (f : key -> bool) := filter (fun k _ => f k).
+ Definition filter_range (f : elt -> bool) := filter (fun _ => f).
+ Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k).
+ Definition for_all_range (f : elt -> bool) := for_all (fun _ => f).
+ Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k).
+ Definition exists_range (f : elt -> bool) := exists_ (fun _ => f).
+ Definition partition_dom (f : key -> bool) := partition (fun k _ => f k).
+ Definition partition_range (f : elt -> bool) := partition (fun _ => f).
+
+ End Elt.
+
+ Add Parametric Morphism elt : (@cardinal elt) with signature Equal ==> @Logic.eq _ as cardinal_m.
+ Proof. intros; apply Equal_cardinal; auto. Qed.
+
+End WProperties.
+
+(** * Same Properties for full maps *)
+
+Module Properties (M:S).
+ Module D := OT_as_DT M.E.
+ Include WProperties D M.
+End Properties.
+
+(** * Properties specific to maps with ordered keys *)
+
+Module OrdProperties (M:S).
+ Module Import ME := OrderedTypeFacts M.E.
+ Module Import O:=KeyOrderedType M.E.
+ Module Import P:=Properties M.
+ Import F.
+ Import M.
+
+ Section Elt.
+ Variable elt:Type.
+
+ Notation eqke := (@eqke elt).
+ Notation eqk := (@eqk elt).
+ Notation ltk := (@ltk elt).
+ Notation cardinal := (@cardinal elt).
+ Notation Equal := (@Equal elt).
+ Notation Add := (@Add elt).
+
+ Definition Above x (m:t elt) := forall y, In y m -> E.lt y x.
+ Definition Below x (m:t elt) := forall y, In y m -> E.lt x y.
+
+ Section Elements.
+
+ Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt),
+ sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'.
+ Proof.
+ apply SortA_equivlistA_eqlistA; eauto;
+ unfold O.eqke, O.ltk; simpl; intuition; eauto.
+ Qed.
+
+ Ltac clean_eauto := unfold O.eqke, O.ltk; simpl; intuition; eauto.
+
+ Definition gtb (p p':key*elt) := match E.compare (fst p) (fst p') with GT _ => true | _ => false end.
+ Definition leb p := fun p' => negb (gtb p p').
+
+ Definition elements_lt p m := List.filter (gtb p) (elements m).
+ Definition elements_ge p m := List.filter (leb p) (elements m).
+
+ Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p.
+ Proof.
+ intros (x,e) (y,e'); unfold gtb, O.ltk; simpl.
+ destruct (E.compare x y); intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p.
+ Proof.
+ intros (x,e) (y,e'); unfold leb, gtb, O.ltk; simpl.
+ destruct (E.compare x y); intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma gtb_compat : forall p, compat_bool eqke (gtb p).
+ Proof.
+ red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H.
+ generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e''));
+ destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); auto.
+ unfold O.ltk in *; simpl in *; intros.
+ symmetry; rewrite H2.
+ apply ME.eq_lt with a; auto.
+ rewrite <- H1; auto.
+ unfold O.ltk in *; simpl in *; intros.
+ rewrite H1.
+ apply ME.eq_lt with b; auto.
+ rewrite <- H2; auto.
+ Qed.
+
+ Lemma leb_compat : forall p, compat_bool eqke (leb p).
+ Proof.
+ red; intros x a b H.
+ unfold leb; f_equal; apply gtb_compat; auto.
+ Qed.
+
+ Hint Resolve gtb_compat leb_compat elements_3 : map.
+
+ Lemma elements_split : forall p m,
+ elements m = elements_lt p m ++ elements_ge p m.
+ Proof.
+ unfold elements_lt, elements_ge, leb; intros.
+ apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with map.
+ intros; destruct x; destruct y; destruct p.
+ rewrite gtb_1 in H; unfold O.ltk in H; simpl in *.
+ assert (~ltk (t1,e0) (k,e1)).
+ unfold gtb, O.ltk in *; simpl in *.
+ destruct (E.compare k t1); intuition; try discriminate; ME.order.
+ unfold O.ltk in *; simpl in *; ME.order.
+ Qed.
+
+ Lemma elements_Add : forall m m' x e, ~In x m -> Add x e m m' ->
+ eqlistA eqke (elements m')
+ (elements_lt (x,e) m ++ (x,e):: elements_ge (x,e) m).
+ Proof.
+ intros; unfold elements_lt, elements_ge.
+ apply sort_equivlistA_eqlistA; auto with map.
+ apply (@SortA_app _ eqke); auto with map.
+ apply (@filter_sort _ eqke); auto with map; clean_eauto.
+ constructor; auto with map.
+ apply (@filter_sort _ eqke); auto with map; clean_eauto.
+ rewrite (@InfA_alt _ eqke); auto with map; try (clean_eauto; fail).
+ intros.
+ rewrite filter_InA in H1; auto with map; destruct H1.
+ rewrite leb_1 in H2.
+ destruct y; unfold O.ltk in *; simpl in *.
+ rewrite <- elements_mapsto_iff in H1.
+ assert (~E.eq x t0).
+ contradict H.
+ exists e0; apply MapsTo_1 with t0; auto.
+ ME.order.
+ apply (@filter_sort _ eqke); auto with map; clean_eauto.
+ intros.
+ rewrite filter_InA in H1; auto with map; destruct H1.
+ rewrite gtb_1 in H3.
+ destruct y; destruct x0; unfold O.ltk in *; simpl in *.
+ inversion_clear H2.
+ red in H4; simpl in *; destruct H4.
+ ME.order.
+ rewrite filter_InA in H4; auto with map; destruct H4.
+ rewrite leb_1 in H4.
+ unfold O.ltk in *; simpl in *; ME.order.
+ red; intros a; destruct a.
+ rewrite InA_app_iff; rewrite InA_cons.
+ do 2 (rewrite filter_InA; auto with map).
+ do 2 rewrite <- elements_mapsto_iff.
+ rewrite leb_1; rewrite gtb_1.
+ rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
+ rewrite add_mapsto_iff.
+ unfold O.eqke, O.ltk; simpl.
+ destruct (E.compare t0 x); intuition.
+ right; split; auto; ME.order.
+ ME.order.
+ elim H.
+ exists e0; apply MapsTo_1 with t0; auto.
+ right; right; split; auto; ME.order.
+ ME.order.
+ right; split; auto; ME.order.
+ Qed.
+
+ Lemma elements_Add_Above : forall m m' x e,
+ Above x m -> Add x e m m' ->
+ eqlistA eqke (elements m') (elements m ++ (x,e)::nil).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with map.
+ apply (@SortA_app _ eqke); auto with map.
+ intros.
+ inversion_clear H2.
+ destruct x0; destruct y.
+ rewrite <- elements_mapsto_iff in H1.
+ unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
+ apply ME.lt_eq with x; auto.
+ apply H; firstorder.
+ inversion H3.
+ red; intros a; destruct a.
+ rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
+ do 2 rewrite <- elements_mapsto_iff.
+ rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
+ rewrite add_mapsto_iff; unfold O.eqke; simpl.
+ intuition.
+ destruct (ME.eq_dec x t0); auto.
+ elimtype False.
+ assert (In t0 m).
+ exists e0; auto.
+ generalize (H t0 H1).
+ ME.order.
+ Qed.
+
+ Lemma elements_Add_Below : forall m m' x e,
+ Below x m -> Add x e m m' ->
+ eqlistA eqke (elements m') ((x,e)::elements m).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with map.
+ change (sort ltk (((x,e)::nil) ++ elements m)).
+ apply (@SortA_app _ eqke); auto with map.
+ intros.
+ inversion_clear H1.
+ destruct y; destruct x0.
+ rewrite <- elements_mapsto_iff in H2.
+ unfold O.eqke, O.ltk in *; simpl in *; destruct H3.
+ apply ME.eq_lt with x; auto.
+ apply H; firstorder.
+ inversion H3.
+ red; intros a; destruct a.
+ rewrite InA_cons.
+ do 2 rewrite <- elements_mapsto_iff.
+ rewrite find_mapsto_iff; rewrite (H0 t0); rewrite <- find_mapsto_iff.
+ rewrite add_mapsto_iff; unfold O.eqke; simpl.
+ intuition.
+ destruct (ME.eq_dec x t0); auto.
+ elimtype False.
+ assert (In t0 m).
+ exists e0; auto.
+ generalize (H t0 H1).
+ ME.order.
+ Qed.
+
+ Lemma elements_Equal_eqlistA : forall (m m': t elt),
+ Equal m m' -> eqlistA eqke (elements m) (elements m').
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with map.
+ red; intros.
+ destruct x; do 2 rewrite <- elements_mapsto_iff.
+ do 2 rewrite find_mapsto_iff; rewrite H; split; auto.
+ Qed.
+
+ End Elements.
+
+ Section Min_Max_Elt.
+
+ (** We emulate two [max_elt] and [min_elt] functions. *)
+
+ Fixpoint max_elt_aux (l:list (key*elt)) := match l with
+ | nil => None
+ | (x,e)::nil => Some (x,e)
+ | (x,e)::l => max_elt_aux l
+ end.
+ Definition max_elt m := max_elt_aux (elements m).
+
+ Lemma max_elt_Above :
+ forall m x e, max_elt m = Some (x,e) -> Above x (remove x m).
+ Proof.
+ red; intros.
+ rewrite remove_in_iff in H0.
+ destruct H0.
+ rewrite elements_in_iff in H1.
+ destruct H1.
+ unfold max_elt in *.
+ generalize (elements_3 m).
+ revert x e H y x0 H0 H1.
+ induction (elements m).
+ simpl; intros; try discriminate.
+ intros.
+ destruct a; destruct l; simpl in *.
+ injection H; clear H; intros; subst.
+ inversion_clear H1.
+ red in H; simpl in *; intuition.
+ elim H0; eauto.
+ inversion H.
+ change (max_elt_aux (p::l) = Some (x,e)) in H.
+ generalize (IHl x e H); clear IHl; intros IHl.
+ inversion_clear H1; [ | inversion_clear H2; eauto ].
+ red in H3; simpl in H3; destruct H3.
+ destruct p as (p1,p2).
+ destruct (ME.eq_dec p1 x).
+ apply ME.lt_eq with p1; auto.
+ inversion_clear H2.
+ inversion_clear H5.
+ red in H2; simpl in H2; ME.order.
+ apply E.lt_trans with p1; auto.
+ inversion_clear H2.
+ inversion_clear H5.
+ red in H2; simpl in H2; ME.order.
+ eapply IHl; eauto.
+ econstructor; eauto.
+ red; eauto.
+ inversion H2; auto.
+ Qed.
+
+ Lemma max_elt_MapsTo :
+ forall m x e, max_elt m = Some (x,e) -> MapsTo x e m.
+ Proof.
+ intros.
+ unfold max_elt in *.
+ rewrite elements_mapsto_iff.
+ induction (elements m).
+ simpl; try discriminate.
+ destruct a; destruct l; simpl in *.
+ injection H; intros; subst; constructor; red; auto.
+ constructor 2; auto.
+ Qed.
+
+ Lemma max_elt_Empty :
+ forall m, max_elt m = None -> Empty m.
+ Proof.
+ intros.
+ unfold max_elt in *.
+ rewrite elements_Empty.
+ induction (elements m); auto.
+ destruct a; destruct l; simpl in *; try discriminate.
+ assert (H':=IHl H); discriminate.
+ Qed.
+
+ Definition min_elt m : option (key*elt) := match elements m with
+ | nil => None
+ | (x,e)::_ => Some (x,e)
+ end.
+
+ Lemma min_elt_Below :
+ forall m x e, min_elt m = Some (x,e) -> Below x (remove x m).
+ Proof.
+ unfold min_elt, Below; intros.
+ rewrite remove_in_iff in H0; destruct H0.
+ rewrite elements_in_iff in H1.
+ destruct H1.
+ generalize (elements_3 m).
+ destruct (elements m).
+ try discriminate.
+ destruct p; injection H; intros; subst.
+ inversion_clear H1.
+ red in H2; destruct H2; simpl in *; ME.order.
+ inversion_clear H4.
+ rewrite (@InfA_alt _ eqke) in H3; eauto.
+ apply (H3 (y,x0)); auto.
+ unfold lt_key; simpl; intuition; eauto.
+ intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
+ intros (x1,x2) (y1,y2) (z1,z2); compute; intuition; eauto.
+ Qed.
+
+ Lemma min_elt_MapsTo :
+ forall m x e, min_elt m = Some (x,e) -> MapsTo x e m.
+ Proof.
+ intros.
+ unfold min_elt in *.
+ rewrite elements_mapsto_iff.
+ destruct (elements m).
+ simpl; try discriminate.
+ destruct p; simpl in *.
+ injection H; intros; subst; constructor; red; auto.
+ Qed.
+
+ Lemma min_elt_Empty :
+ forall m, min_elt m = None -> Empty m.
+ Proof.
+ intros.
+ unfold min_elt in *.
+ rewrite elements_Empty.
+ destruct (elements m); auto.
+ destruct p; simpl in *; discriminate.
+ Qed.
+
+ End Min_Max_Elt.
+
+ Section Induction_Principles.
+
+ Lemma map_induction_max :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
+ apply X; apply cardinal_inv_1; auto.
+
+ case_eq (max_elt m); intros.
+ destruct p.
+ assert (Add k e (remove k m) m).
+ red; intros.
+ rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
+ apply find_1; apply MapsTo_1 with k; auto.
+ apply max_elt_MapsTo; auto.
+ apply X0 with (remove k m) k e; auto with map.
+ apply IHn.
+ assert (S n = S (cardinal (remove k m))).
+ rewrite Heqn.
+ eapply cardinal_2; eauto with map.
+ inversion H1; auto.
+ eapply max_elt_Above; eauto.
+
+ apply X; apply max_elt_Empty; auto.
+ Qed.
+
+ Lemma map_induction_min :
+ forall P : t elt -> Type,
+ (forall m, Empty m -> P m) ->
+ (forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') ->
+ forall m, P m.
+ Proof.
+ intros; remember (cardinal m) as n; revert m Heqn; induction n; intros.
+ apply X; apply cardinal_inv_1; auto.
+
+ case_eq (min_elt m); intros.
+ destruct p.
+ assert (Add k e (remove k m) m).
+ red; intros.
+ rewrite add_o; rewrite remove_o; destruct (eq_dec k y); eauto.
+ apply find_1; apply MapsTo_1 with k; auto.
+ apply min_elt_MapsTo; auto.
+ apply X0 with (remove k m) k e; auto.
+ apply IHn.
+ assert (S n = S (cardinal (remove k m))).
+ rewrite Heqn.
+ eapply cardinal_2; eauto with map.
+ inversion H1; auto.
+ eapply min_elt_Below; eauto.
+
+ apply X; apply min_elt_Empty; auto.
+ Qed.
+
+ End Induction_Principles.
+
+ Section Fold_properties.
+
+ (** The following lemma has already been proved on Weak Maps,
+ but with one additionnal hypothesis (some [transpose] fact). *)
+
+ Lemma fold_Equal : forall s1 s2 (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ Equal s1 s2 ->
+ eqA (fold f s1 i) (fold f s2 i).
+ Proof.
+ intros.
+ do 2 rewrite fold_1.
+ do 2 rewrite <- fold_left_rev_right.
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ apply eqlistA_rev.
+ apply elements_Equal_eqlistA; auto.
+ Qed.
+
+ Lemma fold_Add : forall s1 s2 x e (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ transpose eqA (fun y =>f (fst y) (snd y)) ->
+ ~In x s1 -> Add x e s1 s2 ->
+ eqA (fold f s2 i) (f x e (fold f s1 i)).
+ Proof.
+ intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
+ set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
+ change (f x e (fold_right f' i (rev (elements s1))))
+ with (f' (x,e) (fold_right f' i (rev (elements s1)))).
+ trans_st (fold_right f' i
+ (rev (elements_lt (x, e) s1 ++ (x,e) :: elements_ge (x, e) s1))).
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ apply eqlistA_rev.
+ apply elements_Add; auto.
+ rewrite distr_rev; simpl.
+ rewrite app_ass; simpl.
+ rewrite (elements_split (x,e) s1).
+ rewrite distr_rev; simpl.
+ apply fold_right_commutes with (eqA:=eqke) (eqB:=eqA); auto.
+ Qed.
+
+ Lemma fold_Add_Above : forall s1 s2 x e (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ Above x s1 -> Add x e s1 s2 ->
+ eqA (fold f s2 i) (f x e (fold f s1 i)).
+ Proof.
+ intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
+ set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
+ trans_st (fold_right f' i (rev (elements s1 ++ (x,e)::nil))).
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ apply eqlistA_rev.
+ apply elements_Add_Above; auto.
+ rewrite distr_rev; simpl.
+ refl_st.
+ Qed.
+
+ Lemma fold_Add_Below : forall s1 s2 x e (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory A eqA)
+ (f:key->elt->A->A)(i:A),
+ compat_op eqke eqA (fun y =>f (fst y) (snd y)) ->
+ Below x s1 -> Add x e s1 s2 ->
+ eqA (fold f s2 i) (fold f s1 (f x e i)).
+ Proof.
+ intros; do 2 rewrite fold_1; do 2 rewrite <- fold_left_rev_right.
+ set (f':=fun y x0 => f (fst y) (snd y) x0) in *.
+ trans_st (fold_right f' i (rev (((x,e)::nil)++elements s1))).
+ apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto.
+ apply eqlistA_rev.
+ simpl; apply elements_Add_Below; auto.
+ rewrite distr_rev; simpl.
+ rewrite fold_right_app.
+ refl_st.
+ Qed.
+
+ End Fold_properties.
+
+ End Elt.
+
+End OrdProperties.
+
+
+
+
+
diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v
new file mode 100644
index 00000000..57cbbcc4
--- /dev/null
+++ b/theories/FSets/FMapFullAVL.v
@@ -0,0 +1,823 @@
+
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite map library. *)
+
+(* $Id: FMapFullAVL.v 10748 2008-04-03 18:28:26Z letouzey $ *)
+
+(** * FMapFullAVL
+
+ This file contains some complements to [FMapAVL].
+
+ - Functor [AvlProofs] proves that trees of [FMapAVL] are not only
+ binary search trees, but moreover well-balanced ones. This is done
+ by proving that all operations preserve the balancing.
+
+ - We then pack the previous elements in a [IntMake] functor
+ similar to the one of [FMapAVL], but richer.
+
+ - In final [IntMake_ord] functor, the [compare] function is
+ different from the one in [FMapAVL]: this non-structural
+ version is closer to the original Ocaml code.
+
+*)
+
+Require Import Recdef FMapInterface FMapList ZArith Int FMapAVL.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module AvlProofs (Import I:Int)(X: OrderedType).
+Module Import Raw := Raw I X.
+Module Import II:=MoreInt(I).
+Import Raw.Proofs.
+Open Local Scope pair_scope.
+Open Local Scope Int_scope.
+
+Section Elt.
+Variable elt : Type.
+Implicit Types m r : t elt.
+
+(** * AVL trees *)
+
+(** [avl s] : [s] is a properly balanced AVL tree,
+ i.e. for any node the heights of the two children
+ differ by at most 2 *)
+
+Inductive avl : t elt -> Prop :=
+ | RBLeaf : avl (Leaf _)
+ | RBNode : forall x e l r h,
+ avl l ->
+ avl r ->
+ -(2) <= height l - height r <= 2 ->
+ h = max (height l) (height r) + 1 ->
+ avl (Node l x e r h).
+
+
+(** * Automation and dedicated tactics about [avl]. *)
+
+Hint Constructors avl.
+
+Lemma height_non_negative : forall (s : t elt), avl s ->
+ height s >= 0.
+Proof.
+ induction s; simpl; intros; auto with zarith.
+ inv avl; intuition; omega_max.
+Qed.
+
+Ltac avl_nn_hyp H :=
+ let nz := fresh "nz" in assert (nz := height_non_negative H).
+
+Ltac avl_nn h :=
+ let t := type of h in
+ match type of t with
+ | Prop => avl_nn_hyp h
+ | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
+ end.
+
+(* Repeat the previous tactic.
+ Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
+
+Ltac avl_nns :=
+ match goal with
+ | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
+ | _ => idtac
+ end.
+
+
+(** * Basic results about [avl], [height] *)
+
+Lemma avl_node : forall x e l r, avl l -> avl r ->
+ -(2) <= height l - height r <= 2 ->
+ avl (Node l x e r (max (height l) (height r) + 1)).
+Proof.
+ intros; auto.
+Qed.
+Hint Resolve avl_node.
+
+(** Results about [height] *)
+
+Lemma height_0 : forall l, avl l -> height l = 0 ->
+ l = Leaf _.
+Proof.
+ destruct 1; intuition; simpl in *.
+ avl_nns; simpl in *; elimtype False; omega_max.
+Qed.
+
+
+(** * Empty map *)
+
+Lemma empty_avl : avl (empty elt).
+Proof.
+ unfold empty; auto.
+Qed.
+
+
+(** * Helper functions *)
+
+Lemma create_avl :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ avl (create l x e r).
+Proof.
+ unfold create; auto.
+Qed.
+
+Lemma create_height :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (create l x e r) = max (height l) (height r) + 1.
+Proof.
+ unfold create; intros; auto.
+Qed.
+
+Lemma bal_avl : forall l x e r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 -> avl (bal l x e r).
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; simpl in *;
+ match goal with |- avl (assert_false _ _ _ _) => avl_nns
+ | _ => repeat apply create_avl; simpl in *; auto
+ end; omega_max.
+Qed.
+
+Lemma bal_height_1 : forall l x e r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 ->
+ 0 <= height (bal l x e r) - max (height l) (height r) <= 1.
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; avl_nns; simpl in *; omega_max.
+Qed.
+
+Lemma bal_height_2 :
+ forall l x e r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (bal l x e r) == max (height l) (height r) +1.
+Proof.
+ intros l x e r; functional induction (bal l x e r); intros; clearf;
+ inv avl; avl_nns; simpl in *; omega_max.
+Qed.
+
+Ltac omega_bal := match goal with
+ | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?e ?r ] =>
+ generalize (bal_height_1 x e H H') (bal_height_2 x e H H');
+ omega_max
+ end.
+
+(** * Insertion *)
+
+Lemma add_avl_1 : forall m x e, avl m ->
+ avl (add x e m) /\ 0 <= height (add x e m) - height m <= 1.
+Proof.
+ intros m x e; functional induction (add x e m); intros; inv avl; simpl in *.
+ intuition; try constructor; simpl; auto; try omega_max.
+ (* LT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+ (* EQ *)
+ intuition; omega_max.
+ (* GT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma add_avl : forall m x e, avl m -> avl (add x e m).
+Proof.
+ intros; generalize (add_avl_1 x e H); intuition.
+Qed.
+Hint Resolve add_avl.
+
+(** * Extraction of minimum binding *)
+
+Lemma remove_min_avl_1 : forall l x e r h, avl (Node l x e r h) ->
+ avl (remove_min l x e r)#1 /\
+ 0 <= height (Node l x e r h) - height (remove_min l x e r)#1 <= 1.
+Proof.
+ intros l x e r; functional induction (remove_min l x e r); simpl in *; intros.
+ inv avl; simpl in *; split; auto.
+ avl_nns; omega_max.
+ inversion_clear H.
+ rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto.
+ split; simpl in *.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_min_avl : forall l x e r h, avl (Node l x e r h) ->
+ avl (remove_min l x e r)#1.
+Proof.
+ intros; generalize (remove_min_avl_1 H); intuition.
+Qed.
+
+(** * Merging two trees *)
+
+Lemma merge_avl_1 : forall m1 m2, avl m1 -> avl m2 ->
+ -(2) <= height m1 - height m2 <= 2 ->
+ avl (merge m1 m2) /\
+ 0<= height (merge m1 m2) - max (height m1) (height m2) <=1.
+Proof.
+ intros m1 m2; functional induction (merge m1 m2); intros;
+ try factornode _x _x0 _x1 _x2 _x3 as m1.
+ simpl; split; auto; avl_nns; omega_max.
+ simpl; split; auto; avl_nns; omega_max.
+ generalize (remove_min_avl_1 H0).
+ rewrite e1; destruct 1.
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+Qed.
+
+Lemma merge_avl : forall m1 m2, avl m1 -> avl m2 ->
+ -(2) <= height m1 - height m2 <= 2 -> avl (merge m1 m2).
+Proof.
+ intros; generalize (merge_avl_1 H H0 H1); intuition.
+Qed.
+
+
+(** * Deletion *)
+
+Lemma remove_avl_1 : forall m x, avl m ->
+ avl (remove x m) /\ 0 <= height m - height (remove x m) <= 1.
+Proof.
+ intros m x; functional induction (remove x m); intros.
+ split; auto; omega_max.
+ (* LT *)
+ inv avl.
+ destruct (IHt H0).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+ (* EQ *)
+ inv avl.
+ generalize (merge_avl_1 H0 H1 H2).
+ intuition omega_max.
+ (* GT *)
+ inv avl.
+ destruct (IHt H1).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_avl : forall m x, avl m -> avl (remove x m).
+Proof.
+ intros; generalize (remove_avl_1 x H); intuition.
+Qed.
+Hint Resolve remove_avl.
+
+
+(** * Join *)
+
+Lemma join_avl_1 : forall l x d r, avl l -> avl r ->
+ avl (join l x d r) /\
+ 0<= height (join l x d r) - max (height l) (height r) <= 1.
+Proof.
+ join_tac.
+
+ split; simpl; auto.
+ destruct (add_avl_1 x d H0).
+ avl_nns; omega_max.
+ set (l:=Node ll lx ld lr lh) in *.
+ split; auto.
+ destruct (add_avl_1 x d H).
+ simpl (height (Leaf elt)).
+ avl_nns; omega_max.
+
+ inversion_clear H.
+ assert (height (Node rl rx rd rr rh) = rh); auto.
+ set (r := Node rl rx rd rr rh) in *; clearbody r.
+ destruct (Hlr x d r H2 H0); clear Hrl Hlr.
+ set (j := join lr x d r) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height ll - height j <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ inversion_clear H0.
+ assert (height (Node ll lx ld lr lh) = lh); auto.
+ set (l := Node ll lx ld lr lh) in *; clearbody l.
+ destruct (Hrl H H1); clear Hrl Hlr.
+ set (j := join l x d rl) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height j - height rr <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ clear Hrl Hlr.
+ assert (height (Node ll lx ld lr lh) = lh); auto.
+ assert (height (Node rl rx rd rr rh) = rh); auto.
+ set (l := Node ll lx ld lr lh) in *; clearbody l.
+ set (r := Node rl rx rd rr rh) in *; clearbody r.
+ assert (-(2) <= height l - height r <= 2) by omega_max.
+ split.
+ apply create_avl; auto.
+ rewrite create_height; auto; omega_max.
+Qed.
+
+Lemma join_avl : forall l x d r, avl l -> avl r -> avl (join l x d r).
+Proof.
+ intros; destruct (join_avl_1 x d H H0); auto.
+Qed.
+Hint Resolve join_avl.
+
+(** concat *)
+
+Lemma concat_avl : forall m1 m2, avl m1 -> avl m2 -> avl (concat m1 m2).
+Proof.
+ intros m1 m2; functional induction (concat m1 m2); auto.
+ intros; apply join_avl; auto.
+ generalize (remove_min_avl H0); rewrite e1; simpl; auto.
+Qed.
+Hint Resolve concat_avl.
+
+(** split *)
+
+Lemma split_avl : forall m x, avl m ->
+ avl (split x m)#l /\ avl (split x m)#r.
+Proof.
+ intros m x; functional induction (split x m); simpl; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+ simpl; inversion_clear 1; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+Qed.
+
+End Elt.
+Hint Constructors avl.
+
+Section Map.
+Variable elt elt' : Type.
+Variable f : elt -> elt'.
+
+Lemma map_height : forall m, height (map f m) = height m.
+Proof.
+destruct m; simpl; auto.
+Qed.
+
+Lemma map_avl : forall m, avl m -> avl (map f m).
+Proof.
+induction m; simpl; auto.
+inversion_clear 1; constructor; auto; do 2 rewrite map_height; auto.
+Qed.
+
+End Map.
+
+Section Mapi.
+Variable elt elt' : Type.
+Variable f : key -> elt -> elt'.
+
+Lemma mapi_height : forall m, height (mapi f m) = height m.
+Proof.
+destruct m; simpl; auto.
+Qed.
+
+Lemma mapi_avl : forall m, avl m -> avl (mapi f m).
+Proof.
+induction m; simpl; auto.
+inversion_clear 1; constructor; auto; do 2 rewrite mapi_height; auto.
+Qed.
+
+End Mapi.
+
+Section Map_option.
+Variable elt elt' : Type.
+Variable f : key -> elt -> option elt'.
+
+Lemma map_option_avl : forall m, avl m -> avl (map_option f m).
+Proof.
+induction m; simpl; auto; intros.
+inv avl; destruct (f k e); auto using join_avl, concat_avl.
+Qed.
+
+End Map_option.
+
+Section Map2_opt.
+Variable elt elt' elt'' : Type.
+Variable f : key -> elt -> option elt' -> option elt''.
+Variable mapl : t elt -> t elt''.
+Variable mapr : t elt' -> t elt''.
+Hypothesis mapl_avl : forall m, avl m -> avl (mapl m).
+Hypothesis mapr_avl : forall m', avl m' -> avl (mapr m').
+
+Notation map2_opt := (map2_opt f mapl mapr).
+
+Lemma map2_opt_avl : forall m1 m2, avl m1 -> avl m2 ->
+ avl (map2_opt m1 m2).
+Proof.
+intros m1 m2; functional induction (map2_opt m1 m2); auto;
+factornode _x0 _x1 _x2 _x3 _x4 as r2; intros;
+destruct (split_avl x1 H0); rewrite e1 in *; simpl in *; inv avl;
+auto using join_avl, concat_avl.
+Qed.
+
+End Map2_opt.
+
+Section Map2.
+Variable elt elt' elt'' : Type.
+Variable f : option elt -> option elt' -> option elt''.
+
+Lemma map2_avl : forall m1 m2, avl m1 -> avl m2 -> avl (map2 f m1 m2).
+Proof.
+unfold map2; auto using map2_opt_avl, map_option_avl.
+Qed.
+
+End Map2.
+End AvlProofs.
+
+(** * Encapsulation
+
+ We can implement [S] with balanced binary search trees.
+ When compared to [FMapAVL], we maintain here two invariants
+ (bst and avl) instead of only bst, which is enough for fulfilling
+ the FMap interface.
+*)
+
+Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
+
+ Module E := X.
+ Module Import AvlProofs := AvlProofs I X.
+ Import Raw.
+ Import Raw.Proofs.
+
+ Record bbst (elt:Type) :=
+ Bbst {this :> tree elt; is_bst : bst this; is_avl: avl this}.
+
+ Definition t := bbst.
+ Definition key := E.t.
+
+ Section Elt.
+ Variable elt elt' elt'': Type.
+
+ Implicit Types m : t elt.
+ Implicit Types x y : key.
+ Implicit Types e : elt.
+
+ Definition empty : t elt := Bbst (empty_bst elt) (empty_avl elt).
+ Definition is_empty m : bool := is_empty m.(this).
+ Definition add x e m : t elt :=
+ Bbst (add_bst x e m.(is_bst)) (add_avl x e m.(is_avl)).
+ Definition remove x m : t elt :=
+ Bbst (remove_bst x m.(is_bst)) (remove_avl x m.(is_avl)).
+ Definition mem x m : bool := mem x m.(this).
+ Definition find x m : option elt := find x m.(this).
+ Definition map f m : t elt' :=
+ Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
+ Definition mapi (f:key->elt->elt') m : t elt' :=
+ Bbst (mapi_bst f m.(is_bst)) (mapi_avl f m.(is_avl)).
+ Definition map2 f m (m':t elt') : t elt'' :=
+ Bbst (map2_bst f m.(is_bst) m'.(is_bst)) (map2_avl f m.(is_avl) m'.(is_avl)).
+ Definition elements m : list (key*elt) := elements m.(this).
+ Definition cardinal m := cardinal m.(this).
+ Definition fold (A:Type) (f:key->elt->A->A) m i := fold (A:=A) f m.(this) i.
+ Definition equal cmp m m' : bool := equal cmp m.(this) m'.(this).
+
+ Definition MapsTo x e m : Prop := MapsTo x e m.(this).
+ Definition In x m : Prop := In0 x m.(this).
+ Definition Empty m : Prop := Empty m.(this).
+
+ Definition eq_key : (key*elt) -> (key*elt) -> Prop := @PX.eqk elt.
+ Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop := @PX.eqke elt.
+ Definition lt_key : (key*elt) -> (key*elt) -> Prop := @PX.ltk elt.
+
+ Lemma MapsTo_1 : forall m x y e, E.eq x y -> MapsTo x e m -> MapsTo y e m.
+ Proof. intros m; exact (@MapsTo_1 _ m.(this)). Qed.
+
+ Lemma mem_1 : forall m x, In x m -> mem x m = true.
+ Proof.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_1; auto.
+ apply m.(is_bst).
+ Qed.
+
+ Lemma mem_2 : forall m x, mem x m = true -> In x m.
+ Proof.
+ unfold In, mem; intros m x; rewrite In_alt; simpl; apply mem_2; auto.
+ Qed.
+
+ Lemma empty_1 : Empty empty.
+ Proof. exact (@empty_1 elt). Qed.
+
+ Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
+ Proof. intros m; exact (@is_empty_1 _ m.(this)). Qed.
+ Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
+ Proof. intros m; exact (@is_empty_2 _ m.(this)). Qed.
+
+ Lemma add_1 : forall m x y e, E.eq x y -> MapsTo y e (add x e m).
+ Proof. intros m x y e; exact (@add_1 elt _ x y e). Qed.
+ Lemma add_2 : forall m x y e e', ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
+ Proof. intros m x y e e'; exact (@add_2 elt _ x y e e'). Qed.
+ Lemma add_3 : forall m x y e e', ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
+ Proof. intros m x y e e'; exact (@add_3 elt _ x y e e'). Qed.
+
+ Lemma remove_1 : forall m x y, E.eq x y -> ~ In y (remove x m).
+ Proof.
+ unfold In, remove; intros m x y; rewrite In_alt; simpl; apply remove_1; auto.
+ apply m.(is_bst).
+ Qed.
+ Lemma remove_2 : forall m x y e, ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
+ Proof. intros m x y e; exact (@remove_2 elt _ x y e m.(is_bst)). Qed.
+ Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
+ Proof. intros m x y e; exact (@remove_3 elt _ x y e m.(is_bst)). Qed.
+
+
+ Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
+ Proof. intros m x e; exact (@find_1 elt _ x e m.(is_bst)). Qed.
+ Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
+ Proof. intros m; exact (@find_2 elt m.(this)). Qed.
+
+ Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
+ fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
+ Proof. intros m; exact (@fold_1 elt m.(this) m.(is_bst)). Qed.
+
+ Lemma elements_1 : forall m x e,
+ MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
+ Proof.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite elements_mapsto; auto.
+ Qed.
+
+ Lemma elements_2 : forall m x e,
+ InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
+ Proof.
+ intros; unfold elements, MapsTo, eq_key_elt; rewrite <- elements_mapsto; auto.
+ Qed.
+
+ Lemma elements_3 : forall m, sort lt_key (elements m).
+ Proof. intros m; exact (@elements_sort elt m.(this) m.(is_bst)). Qed.
+
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Proof. intros m; exact (@elements_nodup elt m.(this) m.(is_bst)). Qed.
+
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intro m; exact (@elements_cardinal elt m.(this)). Qed.
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp := Equiv (Cmp cmp).
+
+ Lemma Equivb_Equivb : forall cmp m m',
+ Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
+ Proof.
+ intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ generalize (H0 k); do 2 rewrite <- In_alt; intuition.
+ Qed.
+
+ Lemma equal_1 : forall m m' cmp,
+ Equivb cmp m m' -> equal cmp m m' = true.
+ Proof.
+ unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite equal_Equivb; auto.
+ Qed.
+
+ Lemma equal_2 : forall m m' cmp,
+ equal cmp m m' = true -> Equivb cmp m m'.
+ Proof.
+ unfold equal; intros (m,b,a) (m',b',a') cmp; rewrite Equivb_Equivb;
+ intros; simpl in *; rewrite <-equal_Equivb; auto.
+ Qed.
+
+ End Elt.
+
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ MapsTo x e m -> MapsTo x (f e) (map f m).
+ Proof. intros elt elt' m x e f; exact (@map_1 elt elt' f m.(this) x e). Qed.
+
+ Lemma map_2 : forall (elt elt':Type)(m:t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
+ Proof.
+ intros elt elt' m x f; do 2 unfold In in *; do 2 rewrite In_alt; simpl.
+ apply map_2; auto.
+ Qed.
+
+ Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
+ (f:key->elt->elt'), MapsTo x e m ->
+ exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
+ Proof. intros elt elt' m x e f; exact (@mapi_1 elt elt' f m.(this) x e). Qed.
+ Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
+ (f:key->elt->elt'), In x (mapi f m) -> In x m.
+ Proof.
+ intros elt elt' m x f; unfold In in *; do 2 rewrite In_alt; simpl; apply mapi_2; auto.
+ Qed.
+
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x m \/ In x m' ->
+ find x (map2 f m m') = f (find x m) (find x m').
+ Proof.
+ unfold find, map2, In; intros elt elt' elt'' m m' x f.
+ do 2 rewrite In_alt; intros; simpl; apply map2_1; auto.
+ apply m.(is_bst).
+ apply m'.(is_bst).
+ Qed.
+
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
+ (x:key)(f:option elt->option elt'->option elt''),
+ In x (map2 f m m') -> In x m \/ In x m'.
+ Proof.
+ unfold In, map2; intros elt elt' elt'' m m' x f.
+ do 3 rewrite In_alt; intros; simpl in *; eapply map2_2; eauto.
+ apply m.(is_bst).
+ apply m'.(is_bst).
+ Qed.
+
+End IntMake.
+
+
+Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
+ Sord with Module Data := D
+ with Module MapS.E := X.
+
+ Module Data := D.
+ Module Import MapS := IntMake(I)(X).
+ Import AvlProofs.
+ Import Raw.Proofs.
+ Module Import MD := OrderedTypeFacts(D).
+ Module LO := FMapList.Make_ord(X)(D).
+
+ Definition t := MapS.t D.t.
+
+ Definition cmp e e' :=
+ match D.compare e e' with EQ _ => true | _ => false end.
+
+ Definition elements (m:t) :=
+ LO.MapS.Build_slist (Raw.Proofs.elements_sort m.(is_bst)).
+
+ (** * As comparison function, we propose here a non-structural
+ version faithful to the code of Ocaml's Map library, instead of
+ the structural version of FMapAVL *)
+
+ Fixpoint cardinal_e (e:Raw.enumeration D.t) :=
+ match e with
+ | Raw.End => 0%nat
+ | Raw.More _ _ r e => S (Raw.cardinal r + cardinal_e e)
+ end.
+
+ Lemma cons_cardinal_e : forall m e,
+ cardinal_e (Raw.cons m e) = (Raw.cardinal m + cardinal_e e)%nat.
+ Proof.
+ induction m; simpl; intros; auto.
+ rewrite IHm1; simpl; rewrite <- plus_n_Sm; auto with arith.
+ Qed.
+
+ Definition cardinal_e_2 ee :=
+ (cardinal_e (fst ee) + cardinal_e (snd ee))%nat.
+
+ Function compare_aux (ee:Raw.enumeration D.t * Raw.enumeration D.t)
+ { measure cardinal_e_2 ee } : comparison :=
+ match ee with
+ | (Raw.End, Raw.End) => Eq
+ | (Raw.End, Raw.More _ _ _ _) => Lt
+ | (Raw.More _ _ _ _, Raw.End) => Gt
+ | (Raw.More x1 d1 r1 e1, Raw.More x2 d2 r2 e2) =>
+ match X.compare x1 x2 with
+ | EQ _ => match D.compare d1 d2 with
+ | EQ _ => compare_aux (Raw.cons r1 e1, Raw.cons r2 e2)
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ end.
+ Proof.
+ intros; unfold cardinal_e_2; simpl;
+ abstract (do 2 rewrite cons_cardinal_e; romega with * ).
+ Defined.
+
+ Definition Cmp c :=
+ match c with
+ | Eq => LO.eq_list
+ | Lt => LO.lt_list
+ | Gt => (fun l1 l2 => LO.lt_list l2 l1)
+ end.
+
+ Lemma cons_Cmp : forall c x1 x2 d1 d2 l1 l2,
+ X.eq x1 x2 -> D.eq d1 d2 ->
+ Cmp c l1 l2 -> Cmp c ((x1,d1)::l1) ((x2,d2)::l2).
+ Proof.
+ destruct c; simpl; intros; MX.elim_comp; auto.
+ Qed.
+ Hint Resolve cons_Cmp.
+
+ Lemma compare_aux_Cmp : forall e,
+ Cmp (compare_aux e) (flatten_e (fst e)) (flatten_e (snd e)).
+ Proof.
+ intros e; functional induction (compare_aux e); simpl in *;
+ auto; intros; try clear e0; try clear e3; try MX.elim_comp; auto.
+ rewrite 2 cons_1 in IHc; auto.
+ Qed.
+
+ Lemma compare_Cmp : forall m1 m2,
+ Cmp (compare_aux (Raw.cons m1 (Raw.End _), Raw.cons m2 (Raw.End _)))
+ (Raw.elements m1) (Raw.elements m2).
+ Proof.
+ intros.
+ assert (H1:=cons_1 m1 (Raw.End _)).
+ assert (H2:=cons_1 m2 (Raw.End _)).
+ simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2.
+ apply (@compare_aux_Cmp (Raw.cons m1 (Raw.End _),
+ Raw.cons m2 (Raw.End _))).
+ Qed.
+
+ Definition eq (m1 m2 : t) := LO.eq_list (Raw.elements m1) (Raw.elements m2).
+ Definition lt (m1 m2 : t) := LO.lt_list (Raw.elements m1) (Raw.elements m2).
+
+ Definition compare (s s':t) : Compare lt eq s s'.
+ Proof.
+ intros (s,b,a) (s',b',a').
+ generalize (compare_Cmp s s').
+ destruct compare_aux; intros; [apply EQ|apply LT|apply GT]; red; auto.
+ Defined.
+
+
+ (* Proofs about [eq] and [lt] *)
+
+ Definition selements (m1 : t) :=
+ LO.MapS.Build_slist (elements_sort m1.(is_bst)).
+
+ Definition seq (m1 m2 : t) := LO.eq (selements m1) (selements m2).
+ Definition slt (m1 m2 : t) := LO.lt (selements m1) (selements m2).
+
+ Lemma eq_seq : forall m1 m2, eq m1 m2 <-> seq m1 m2.
+ Proof.
+ unfold eq, seq, selements, elements, LO.eq; intuition.
+ Qed.
+
+ Lemma lt_slt : forall m1 m2, lt m1 m2 <-> slt m1 m2.
+ Proof.
+ unfold lt, slt, selements, elements, LO.lt; intuition.
+ Qed.
+
+ Lemma eq_1 : forall (m m' : t), MapS.Equivb cmp m m' -> eq m m'.
+ Proof.
+ intros m m'.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite Equivb_elements.
+ auto using LO.eq_1.
+ Qed.
+
+ Lemma eq_2 : forall m m', eq m m' -> MapS.Equivb cmp m m'.
+ Proof.
+ intros m m'.
+ rewrite eq_seq; unfold seq.
+ rewrite Equivb_Equivb.
+ rewrite Equivb_elements.
+ intros.
+ generalize (LO.eq_2 H).
+ auto.
+ Qed.
+
+ Lemma eq_refl : forall m : t, eq m m.
+ Proof.
+ intros; rewrite eq_seq; unfold seq; intros; apply LO.eq_refl.
+ Qed.
+
+ Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
+ Proof.
+ intros m1 m2; rewrite 2 eq_seq; unfold seq; intros; apply LO.eq_sym; auto.
+ Qed.
+
+ Lemma eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
+ Proof.
+ intros m1 m2 M3; rewrite 3 eq_seq; unfold seq.
+ intros; eapply LO.eq_trans; eauto.
+ Qed.
+
+ Lemma lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3.
+ Proof.
+ intros m1 m2 m3; rewrite 3 lt_slt; unfold slt;
+ intros; eapply LO.lt_trans; eauto.
+ Qed.
+
+ Lemma lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2.
+ Proof.
+ intros m1 m2; rewrite lt_slt, eq_seq; unfold slt, seq;
+ intros; apply LO.lt_not_eq; auto.
+ Qed.
+
+End IntMake_ord.
+
+(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
+
+Module Make (X: OrderedType) <: S with Module E := X
+ :=IntMake(Z_as_Int)(X).
+
+Module Make_ord (X: OrderedType)(D: OrderedType)
+ <: Sord with Module Data := D
+ with Module MapS.E := X
+ :=IntMake_ord(Z_as_Int)(X)(D).
+
diff --git a/theories/FSets/FMapIntMap.v b/theories/FSets/FMapIntMap.v
deleted file mode 100644
index c7681bd4..00000000
--- a/theories/FSets/FMapIntMap.v
+++ /dev/null
@@ -1,622 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* Finite sets library.
- * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
- * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
- * 91405 Orsay, France *)
-
-(* $Id: FMapIntMap.v 8876 2006-05-30 13:43:15Z letouzey $ *)
-
-Require Import Bool.
-Require Import NArith Ndigits Ndec Nnat.
-Require Import Allmaps.
-Require Import OrderedType.
-Require Import OrderedTypeEx.
-Require Import FMapInterface FMapList.
-
-
-Set Implicit Arguments.
-
-(** * An implementation of [FMapInterface.S] based on [IntMap] *)
-
-(** Keys are of type [N]. The main functions are directly taken from
- [IntMap]. Since they have no exact counterpart in [IntMap], functions
- [fold], [map2] and [equal] are for now obtained by translation
- to sorted lists. *)
-
-(** [N] is an ordered type, using not the usual order on numbers,
- but lexicographic ordering on bits (lower bit considered first). *)
-
-Module NUsualOrderedType <: UsualOrderedType.
- Definition t:=N.
- Definition eq:=@eq N.
- Definition eq_refl := @refl_equal t.
- Definition eq_sym := @sym_eq t.
- Definition eq_trans := @trans_eq t.
-
- Definition lt p q:= Nless p q = true.
-
- Definition lt_trans := Nless_trans.
-
- Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
- Proof.
- intros; intro.
- rewrite H0 in H.
- red in H.
- rewrite Nless_not_refl in H; discriminate.
- Qed.
-
- Definition compare : forall x y : t, Compare lt eq x y.
- Proof.
- intros x y.
- destruct (Nless_total x y) as [[H|H]|H].
- apply LT; unfold lt; auto.
- apply GT; unfold lt; auto.
- apply EQ; auto.
- Qed.
-
-End NUsualOrderedType.
-
-
-(** The module of maps over [N] keys based on [IntMap] *)
-
-Module MapIntMap <: S with Module E:=NUsualOrderedType.
-
- Module E:=NUsualOrderedType.
- Module ME:=OrderedTypeFacts(E).
- Module PE:=KeyOrderedType(E).
-
- Definition key := N.
-
- Definition t := Map.
-
- Section A.
- Variable A:Set.
-
- Definition empty : t A := M0 A.
-
- Definition is_empty (m : t A) : bool :=
- MapEmptyp _ (MapCanonicalize _ m).
-
- Definition find (x:key)(m: t A) : option A := MapGet _ m x.
-
- Definition mem (x:key)(m: t A) : bool :=
- match find x m with
- | Some _ => true
- | None => false
- end.
-
- Definition add (x:key)(v:A)(m:t A) : t A := MapPut _ m x v.
-
- Definition remove (x:key)(m:t A) : t A := MapRemove _ m x.
-
- Definition elements (m : t A) : list (N*A) := alist_of_Map _ m.
-
- Definition MapsTo (x:key)(v:A)(m:t A) := find x m = Some v.
-
- Definition In (x:key)(m:t A) := exists e:A, MapsTo x e m.
-
- Definition Empty m := forall (a : key)(e:A) , ~ MapsTo a e m.
-
- Definition eq_key (p p':key*A) := E.eq (fst p) (fst p').
-
- Definition eq_key_elt (p p':key*A) :=
- E.eq (fst p) (fst p') /\ (snd p) = (snd p').
-
- Definition lt_key (p p':key*A) := E.lt (fst p) (fst p').
-
- Lemma Empty_alt : forall m, Empty m <-> forall a, find a m = None.
- Proof.
- unfold Empty, MapsTo.
- intuition.
- generalize (H a).
- destruct (find a m); intuition.
- elim (H0 a0); auto.
- rewrite H in H0; discriminate.
- Qed.
-
- Section Spec.
- Variable m m' m'' : t A.
- Variable x y z : key.
- Variable e e' : A.
-
- Lemma MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
- Proof. intros; rewrite <- H; auto. Qed.
-
- Lemma find_1 : MapsTo x e m -> find x m = Some e.
- Proof. unfold MapsTo; auto. Qed.
-
- Lemma find_2 : find x m = Some e -> MapsTo x e m.
- Proof. red; auto. Qed.
-
- Lemma empty_1 : Empty empty.
- Proof.
- rewrite Empty_alt; intros; unfold empty, find; simpl; auto.
- Qed.
-
- Lemma is_empty_1 : Empty m -> is_empty m = true.
- Proof.
- unfold Empty, is_empty, find; intros.
- cut (MapCanonicalize _ m = M0 _).
- intros; rewrite H0; simpl; auto.
- apply mapcanon_unique.
- apply mapcanon_exists_2.
- constructor.
- red; red; simpl; intros.
- rewrite <- (mapcanon_exists_1 _ m).
- unfold MapsTo, find in *.
- generalize (H a).
- destruct (MapGet _ m a); auto.
- intros; generalize (H0 a0); destruct 1; auto.
- Qed.
-
- Lemma is_empty_2 : is_empty m = true -> Empty m.
- Proof.
- unfold Empty, is_empty, MapsTo, find; intros.
- generalize (MapEmptyp_complete _ _ H); clear H; intros.
- rewrite (mapcanon_exists_1 _ m).
- rewrite H; simpl; auto.
- discriminate.
- Qed.
-
- Lemma mem_1 : In x m -> mem x m = true.
- Proof.
- unfold In, MapsTo, mem.
- destruct (find x m); auto.
- destruct 1; discriminate.
- Qed.
-
- Lemma mem_2 : forall m x, mem x m = true -> In x m.
- Proof.
- unfold In, MapsTo, mem.
- intros.
- destruct (find x0 m0); auto; try discriminate.
- exists a; auto.
- Qed.
-
- Lemma add_1 : E.eq x y -> MapsTo y e (add x e m).
- Proof.
- unfold MapsTo, find, add.
- intro H; rewrite H; clear H.
- rewrite MapPut_semantics.
- rewrite Neqb_correct; auto.
- Qed.
-
- Lemma add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
- Proof.
- unfold MapsTo, find, add.
- intros.
- rewrite MapPut_semantics.
- rewrite H0.
- generalize (Neqb_complete x y).
- destruct (Neqb x y); auto.
- intros.
- elim H; auto.
- apply H1; auto.
- Qed.
-
- Lemma add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
- Proof.
- unfold MapsTo, find, add.
- rewrite MapPut_semantics.
- intro H.
- generalize (Neqb_complete x y).
- destruct (Neqb x y); auto.
- intros; elim H; auto.
- apply H0; auto.
- Qed.
-
- Lemma remove_1 : E.eq x y -> ~ In y (remove x m).
- Proof.
- unfold In, MapsTo, find, remove.
- rewrite MapRemove_semantics.
- intro H.
- rewrite H; rewrite Neqb_correct.
- red; destruct 1; discriminate.
- Qed.
-
- Lemma remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
- Proof.
- unfold MapsTo, find, remove.
- rewrite MapRemove_semantics.
- intros.
- rewrite H0.
- generalize (Neqb_complete x y).
- destruct (Neqb x y); auto.
- intros; elim H; apply H1; auto.
- Qed.
-
- Lemma remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
- Proof.
- unfold MapsTo, find, remove.
- rewrite MapRemove_semantics.
- destruct (Neqb x y); intros; auto.
- discriminate.
- Qed.
-
- Lemma alist_sorted_sort : forall l, alist_sorted A l=true -> sort lt_key l.
- Proof.
- induction l.
- auto.
- simpl.
- destruct a.
- destruct l.
- auto.
- destruct p.
- intros; destruct (andb_prop _ _ H); auto.
- Qed.
-
- Lemma elements_3 : sort lt_key (elements m).
- Proof.
- unfold elements.
- apply alist_sorted_sort.
- apply alist_of_Map_sorts.
- Qed.
-
- Lemma elements_1 :
- MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
- Proof.
- unfold MapsTo, find, elements.
- rewrite InA_alt.
- intro H.
- exists (x,e).
- split.
- red; simpl; unfold E.eq; auto.
- rewrite alist_of_Map_semantics in H.
- generalize H.
- set (l:=alist_of_Map A m); clearbody l; clear.
- induction l; simpl; auto.
- intro; discriminate.
- destruct a; simpl; auto.
- generalize (Neqb_complete a x).
- destruct (Neqb a x); auto.
- left.
- injection H0; auto.
- intros; f_equal; auto.
- Qed.
-
- Lemma elements_2 :
- InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
- Proof.
- generalize elements_3.
- unfold MapsTo, find, elements.
- rewrite InA_alt.
- intros H ((e0,a),(H0,H1)).
- red in H0; simpl in H0; unfold E.eq in H0; destruct H0; subst.
- rewrite alist_of_Map_semantics.
- generalize H H1; clear H H1.
- set (l:=alist_of_Map A m); clearbody l; clear.
- induction l; simpl; auto.
- intro; contradiction.
- intros.
- destruct a0; simpl.
- inversion H1.
- injection H0; intros; subst.
- rewrite Neqb_correct; auto.
- assert (InA eq_key (e0,a) l).
- rewrite InA_alt.
- exists (e0,a); split; auto.
- red; simpl; auto; red; auto.
- generalize (PE.Sort_In_cons_1 H H2).
- unfold PE.ltk; simpl.
- intros H3; generalize (E.lt_not_eq H3).
- generalize (Neqb_complete a0 e0).
- destruct (Neqb a0 e0); auto.
- destruct 2.
- apply H4; auto.
- inversion H; auto.
- Qed.
-
- Definition Equal cmp m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-
- (** unfortunately, the [MapFold] of [IntMap] isn't compatible with
- the FMap interface. We use a naive version for now : *)
-
- Definition fold (B:Set)(f:key -> A -> B -> B)(m:t A)(i:B) : B :=
- fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
-
- Lemma fold_1 :
- forall (B:Set) (i : B) (f : key -> A -> B -> B),
- fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
- Proof. auto. Qed.
-
- End Spec.
-
- Variable B : Set.
-
- Fixpoint mapi_aux (pf:N->N)(f : N -> A -> B)(m:t A) { struct m }: t B :=
- match m with
- | M0 => M0 _
- | M1 x y => M1 _ x (f (pf x) y)
- | M2 m0 m1 => M2 _ (mapi_aux (fun n => pf (Ndouble n)) f m0)
- (mapi_aux (fun n => pf (Ndouble_plus_one n)) f m1)
- end.
-
- Definition mapi := mapi_aux (fun n => n).
-
- Definition map (f:A->B) := mapi (fun _ => f).
-
- End A.
-
- Lemma mapi_aux_1 : forall (elt elt':Set)(m: t elt)(pf:N->N)(x:key)(e:elt)
- (f:key->elt->elt'), MapsTo x e m ->
- exists y, E.eq y x /\ MapsTo x (f (pf y) e) (mapi_aux pf f m).
- Proof.
- unfold MapsTo; induction m; simpl; auto.
- inversion 1.
-
- intros.
- exists x; split; [red; auto|].
- generalize (Neqb_complete a x).
- destruct (Neqb a x); try discriminate.
- injection H; intros; subst; auto.
- rewrite H1; auto.
-
- intros.
- exists x; split; [red;auto|].
- destruct x; simpl in *.
- destruct (IHm1 (fun n : N => pf (Ndouble n)) _ _ f H) as (y,(Hy,Hy')).
- rewrite Hy in Hy'; simpl in Hy'; auto.
- destruct p; simpl in *.
- destruct (IHm2 (fun n : N => pf (Ndouble_plus_one n)) _ _ f H) as (y,(Hy,Hy')).
- rewrite Hy in Hy'; simpl in Hy'; auto.
- destruct (IHm1 (fun n : N => pf (Ndouble n)) _ _ f H) as (y,(Hy,Hy')).
- rewrite Hy in Hy'; simpl in Hy'; auto.
- destruct (IHm2 (fun n : N => pf (Ndouble_plus_one n)) _ _ f H) as (y,(Hy,Hy')).
- rewrite Hy in Hy'; simpl in Hy'; auto.
- Qed.
-
- Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
- (f:key->elt->elt'), MapsTo x e m ->
- exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
- Proof.
- intros elt elt' m; exact (mapi_aux_1 (fun n => n)).
- Qed.
-
- Lemma mapi_aux_2 : forall (elt elt':Set)(m: t elt)(pf:N->N)(x:key)
- (f:key->elt->elt'), In x (mapi_aux pf f m) -> In x m.
- Proof.
- unfold In, MapsTo.
- induction m; simpl in *.
- intros pf x f (e,He); inversion He.
- intros pf x f (e,He).
- exists a0.
- destruct (Neqb a x); try discriminate; auto.
- intros pf x f (e,He).
- destruct x; [|destruct p]; eauto.
- Qed.
-
- Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
- (f:key->elt->elt'), In x (mapi f m) -> In x m.
- Proof.
- intros elt elt' m; exact (mapi_aux_2 m (fun n => n)).
- Qed.
-
- Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
- MapsTo x e m -> MapsTo x (f e) (map f m).
- Proof.
- unfold map; intros.
- destruct (@mapi_1 _ _ m x e (fun _ => f)) as (e',(_,H0)); auto.
- Qed.
-
- Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
- In x (map f m) -> In x m.
- Proof.
- unfold map; intros.
- eapply mapi_2; eauto.
- Qed.
-
- Module L := FMapList.Raw E.
-
- (** Not exactly pretty nor perfect, but should suffice as a first naive implem.
- Anyway, map2 isn't in Ocaml...
- *)
-
- Definition anti_elements (A:Set)(l:list (key*A)) := L.fold (@add _) l (empty _).
-
- Definition map2 (A B C:Set)(f:option A->option B -> option C)(m:t A)(m':t B) : t C :=
- anti_elements (L.map2 f (elements m) (elements m')).
-
- Lemma add_spec : forall (A:Set)(m:t A) x y e,
- find x (add y e m) = if ME.eq_dec x y then Some e else find x m.
- Proof.
- intros.
- destruct (ME.eq_dec x y).
- apply find_1.
- eapply MapsTo_1 with y; eauto.
- red; auto.
- apply add_1; auto.
- red; auto.
- case_eq (find x m); intros.
- apply find_1.
- apply add_2; unfold E.eq in *; auto.
- case_eq (find x (add y e m)); auto; intros.
- rewrite <- H; symmetry.
- apply find_1; auto.
- apply (@add_3 _ m y x a e); unfold E.eq in *; auto.
- Qed.
-
- Lemma anti_elements_mapsto_aux : forall (A:Set)(l:list (key*A)) m k e,
- NoDupA (eq_key (A:=A)) l ->
- (forall x, L.PX.In x l -> In x m -> False) ->
- (MapsTo k e (L.fold (@add _) l m) <-> L.PX.MapsTo k e l \/ MapsTo k e m).
- Proof.
- induction l.
- simpl; auto.
- intuition.
- inversion H2.
- simpl; destruct a; intros.
- rewrite IHl; clear IHl.
- inversion H; auto.
- intros.
- inversion_clear H.
- assert (~E.eq x k).
- swap H3.
- destruct H1.
- apply InA_eqA with (x,x0); eauto.
- unfold eq_key, E.eq; eauto.
- unfold eq_key, E.eq; congruence.
- apply (H0 x).
- destruct H1; exists x0; auto.
- revert H2.
- unfold In.
- intros (e',He').
- exists e'; apply (@add_3 _ m k x e' a); unfold E.eq; auto.
- intuition.
- red in H2.
- rewrite add_spec in H2; auto.
- destruct (ME.eq_dec k0 k).
- inversion_clear H2; subst; auto.
- right; apply find_2; auto.
- inversion_clear H2; auto.
- compute in H1; destruct H1.
- subst; right; apply add_1; auto.
- red; auto.
- inversion_clear H.
- destruct (ME.eq_dec k0 k).
- unfold E.eq in *; subst.
- destruct (H0 k); eauto.
- red; eauto.
- right; apply add_2; unfold E.eq in *; auto.
- Qed.
-
- Lemma anti_elements_mapsto : forall (A:Set) l k e, NoDupA (eq_key (A:=A)) l ->
- (MapsTo k e (anti_elements l) <-> L.PX.MapsTo k e l).
- Proof.
- intros.
- unfold anti_elements.
- rewrite anti_elements_mapsto_aux; auto; unfold empty; auto.
- inversion 2.
- inversion H2.
- intuition.
- inversion H1.
- Qed.
-
- Lemma find_anti_elements : forall (A:Set)(l: list (key*A)) x, sort (@lt_key _) l ->
- find x (anti_elements l) = L.find x l.
- Proof.
- intros.
- case_eq (L.find x l); intros.
- apply find_1.
- rewrite anti_elements_mapsto.
- apply L.PX.Sort_NoDupA; auto.
- apply L.find_2; auto.
- case_eq (find x (anti_elements l)); auto; intros.
- rewrite <- H0; symmetry.
- apply L.find_1; auto.
- rewrite <- anti_elements_mapsto.
- apply L.PX.Sort_NoDupA; auto.
- apply find_2; auto.
- Qed.
-
- Lemma find_elements : forall (A:Set)(m: t A) x,
- L.find x (elements m) = find x m.
- Proof.
- intros.
- case_eq (find x m); intros.
- apply L.find_1.
- apply elements_3; auto.
- red; apply elements_1.
- apply find_2; auto.
- case_eq (L.find x (elements m)); auto; intros.
- rewrite <- H; symmetry.
- apply find_1; auto.
- apply elements_2.
- apply L.find_2; auto.
- Qed.
-
- Lemma elements_in : forall (A:Set)(s:t A) x, L.PX.In x (elements s) <-> In x s.
- Proof.
- intros.
- unfold L.PX.In, In.
- firstorder.
- exists x0.
- red; rewrite <- find_elements; auto.
- apply L.find_1; auto.
- apply elements_3.
- exists x0.
- apply L.find_2.
- rewrite find_elements; auto.
- Qed.
-
- Lemma map2_1 : forall (A B C:Set)(m: t A)(m': t B)(x:key)
- (f:option A->option B ->option C),
- In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m').
- Proof.
- unfold map2; intros.
- rewrite find_anti_elements; auto.
- rewrite <- find_elements; auto.
- rewrite <- find_elements; auto.
- apply L.map2_1; auto.
- apply elements_3; auto.
- apply elements_3; auto.
- do 2 rewrite elements_in; auto.
- apply L.map2_sorted; auto.
- apply elements_3; auto.
- apply elements_3; auto.
- Qed.
-
- Lemma map2_2 : forall (A B C: Set)(m: t A)(m': t B)(x:key)
- (f:option A->option B ->option C),
- In x (map2 f m m') -> In x m \/ In x m'.
- Proof.
- unfold map2; intros.
- do 2 rewrite <- elements_in.
- apply L.map2_2 with (f:=f); auto.
- apply elements_3; auto.
- apply elements_3; auto.
- destruct H.
- exists x0.
- rewrite <- anti_elements_mapsto; auto.
- apply L.PX.Sort_NoDupA; auto.
- apply L.map2_sorted; auto.
- apply elements_3; auto.
- apply elements_3; auto.
- Qed.
-
- (** same trick for [equal] *)
-
- Definition equal (A:Set)(cmp:A -> A -> bool)(m m' : t A) : bool :=
- L.equal cmp (elements m) (elements m').
-
- Lemma equal_1 :
- forall (A:Set)(m: t A)(m': t A)(cmp: A -> A -> bool),
- Equal cmp m m' -> equal cmp m m' = true.
- Proof.
- unfold equal, Equal.
- intros.
- apply L.equal_1.
- apply elements_3.
- apply elements_3.
- unfold L.Equal.
- destruct H.
- split; intros.
- do 2 rewrite elements_in; auto.
- apply (H0 k);
- red; rewrite <- find_elements; apply L.find_1; auto;
- apply elements_3.
- Qed.
-
- Lemma equal_2 :
- forall (A:Set)(m: t A)(m': t A)(cmp: A -> A -> bool),
- equal cmp m m' = true -> Equal cmp m m'.
- Proof.
- unfold equal, Equal.
- intros.
- destruct (L.equal_2 (elements_3 m) (elements_3 m') H); clear H.
- split.
- intros; do 2 rewrite <- elements_in; auto.
- intros; apply (H1 k);
- apply L.find_2; rewrite find_elements;auto.
- Qed.
-
-End MapIntMap.
-
diff --git a/theories/FSets/FMapInterface.v b/theories/FSets/FMapInterface.v
index dde74a0a..1e475887 100644
--- a/theories/FSets/FMapInterface.v
+++ b/theories/FSets/FMapInterface.v
@@ -6,42 +6,72 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapInterface.v 8671 2006-03-29 08:31:28Z letouzey $ *)
+(* $Id: FMapInterface.v 10616 2008-03-04 17:33:35Z letouzey $ *)
(** * Finite map library *)
-(** This file proposes an interface for finite maps *)
+(** This file proposes interfaces for finite maps *)
-(* begin hide *)
+Require Export Bool DecidableType OrderedType.
Set Implicit Arguments.
Unset Strict Implicit.
-Require Import FSetInterface.
-(* end hide *)
-
-(** When compared with Ocaml Map, this signature has been split in two:
- - The first part [S] contains the usual operators (add, find, ...)
- It only requires a ordered key type, the data type can be arbitrary.
- The only function that asks more is [equal], whose first argument should
- be an equality on data.
- - Then, [Sord] extends [S] with a complete comparison function. For
- that, the data type should have a decidable total ordering.
+
+(** When compared with Ocaml Map, this signature has been split in
+ several parts :
+
+ - The first parts [WSfun] and [WS] propose signatures for weak
+ maps, which are maps with no ordering on the key type nor the
+ data type. [WSfun] and [WS] are almost identical, apart from the
+ fact that [WSfun] is expressed in a functorial way whereas [WS]
+ is self-contained. For obtaining an instance of such signatures,
+ a decidable equality on keys in enough (see for example
+ [FMapWeakList]). These signatures contain the usual operators
+ (add, find, ...). The only function that asks for more is
+ [equal], whose first argument should be a comparison on data.
+
+ - Then comes [Sfun] and [S], that extend [WSfun] and [WS] to the
+ case where the key type is ordered. The main novelty is that
+ [elements] is required to produce sorted lists.
+
+ - Finally, [Sord] extends [S] with a complete comparison function. For
+ that, the data type should have a decidable total ordering as well.
+
+ If unsure, what you're looking for is probably [S]: apart from [Sord],
+ all other signatures are subsets of [S].
+
+ Some additional differences with Ocaml:
+
+ - no [iter] function, useless since Coq is purely functional
+ - [option] types are used instead of [Not_found] exceptions
+ - more functions are provided: [elements] and [cardinal] and [map2]
+
*)
-Module Type S.
+Definition Cmp (elt:Type)(cmp:elt->elt->bool) e1 e2 := cmp e1 e2 = true.
- Declare Module E : OrderedType.
+(** ** Weak signature for maps
+
+ No requirements for an ordering on keys nor elements, only decidability
+ of equality on keys. First, a functorial signature: *)
+
+Module Type WSfun (E : EqualityType).
+
+ (** The module E of base objects is meant to be a [DecidableType]
+ (and used to be so). But requiring only an [EqualityType] here
+ allows subtyping between weak and ordered maps. *)
Definition key := E.t.
- Parameter t : Set -> Set. (** the abstract type of maps *)
+ Parameter t : Type -> Type.
+ (** the abstract type of maps *)
Section Types.
- Variable elt:Set.
+ Variable elt:Type.
Parameter empty : t elt.
- (** The empty map. *)
+ (** The empty map. *)
Parameter is_empty : t elt -> bool.
(** Test whether a map is empty or not. *)
@@ -53,8 +83,7 @@ Module Type S.
Parameter find : key -> t elt -> option elt.
(** [find x m] returns the current binding of [x] in [m],
- or raises [Not_found] if no such binding exists.
- NB: in Coq, the exception mechanism becomes a option type. *)
+ or [None] if no such binding exists. *)
Parameter remove : key -> t elt -> t elt.
(** [remove x m] returns a map containing the same bindings as [m],
@@ -64,45 +93,36 @@ Module Type S.
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
- (** Coq comment: [iter] is useless in a purely functional world *)
- (** val iter : (key -> 'a -> unit) -> 'a t -> unit *)
- (** iter f m applies f to all bindings in map m. f receives the key as
- first argument, and the associated value as second argument.
- The bindings are passed to f in increasing order with respect to the
- ordering over the type of the keys. Only current bindings are
- presented to f: bindings hidden by more recent bindings are not
- passed to f. *)
-
- Variable elt' : Set.
- Variable elt'': Set.
+ Variable elt' elt'' : Type.
Parameter map : (elt -> elt') -> t elt -> t elt'.
(** [map f m] returns a map with same domain as [m], where the associated
value a of all bindings of [m] has been replaced by the result of the
- application of [f] to [a]. The bindings are passed to [f] in
- increasing order with respect to the ordering over the type of the
- keys. *)
+ application of [f] to [a]. Since Coq is purely functional, the order
+ in which the bindings are passed to [f] is irrelevant. *)
Parameter mapi : (key -> elt -> elt') -> t elt -> t elt'.
- (** Same as [S.map], but the function receives as arguments both the
+ (** Same as [map], but the function receives as arguments both the
key and the associated value for each binding of the map. *)
- Parameter map2 : (option elt -> option elt' -> option elt'') -> t elt -> t elt' -> t elt''.
- (** Not present in Ocaml.
- [map f m m'] creates a new map whose bindings belong to the ones of either
- [m] or [m']. The presence and value for a key [k] is determined by [f e e']
- where [e] and [e'] are the (optional) bindings of [k] in [m] and [m']. *)
+ Parameter map2 :
+ (option elt -> option elt' -> option elt'') -> t elt -> t elt' -> t elt''.
+ (** [map2 f m m'] creates a new map whose bindings belong to the ones
+ of either [m] or [m']. The presence and value for a key [k] is
+ determined by [f e e'] where [e] and [e'] are the (optional) bindings
+ of [k] in [m] and [m']. *)
Parameter elements : t elt -> list (key*elt).
- (** Not present in Ocaml.
- [elements m] returns an assoc list corresponding to the bindings of [m].
- Elements of this list are sorted with respect to their first components.
- Useful to specify [fold] ... *)
+ (** [elements m] returns an assoc list corresponding to the bindings
+ of [m], in any order. *)
- Parameter fold : forall A: Set, (key -> elt -> A -> A) -> t elt -> A -> A.
+ Parameter cardinal : t elt -> nat.
+ (** [cardinal m] returns the number of bindings in [m]. *)
+
+ Parameter fold : forall A: Type, (key -> elt -> A -> A) -> t elt -> A -> A.
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
where [k1] ... [kN] are the keys of all bindings in [m]
- (in increasing order), and [d1] ... [dN] are the associated data. *)
+ (in any order), and [d1] ... [dN] are the associated data. *)
Parameter equal : (elt -> elt -> bool) -> t elt -> t elt -> bool.
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are equal,
@@ -127,8 +147,6 @@ Module Type S.
Definition eq_key_elt (p p':key*elt) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
- Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p').
-
(** Specification of [MapsTo] *)
Parameter MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
@@ -162,61 +180,123 @@ Module Type S.
MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
Parameter elements_2 :
InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
- Parameter elements_3 : sort lt_key (elements m).
+ (** When compared with ordered maps, here comes the only
+ property that is really weaker: *)
+ Parameter elements_3w : NoDupA eq_key (elements m).
+
+ (** Specification of [cardinal] *)
+ Parameter cardinal_1 : cardinal m = length (elements m).
(** Specification of [fold] *)
Parameter fold_1 :
- forall (A : Set) (i : A) (f : key -> elt -> A -> A),
+ forall (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
+
+ (** Equality of maps *)
- Definition Equal cmp m m' :=
+ (** Caveat: there are at least three distinct equality predicates on maps.
+ - The simpliest (and maybe most natural) way is to consider keys up to
+ their equivalence [E.eq], but elements up to Leibniz equality, in
+ the spirit of [eq_key_elt] above. This leads to predicate [Equal].
+ - Unfortunately, this [Equal] predicate can't be used to describe
+ the [equal] function, since this function (for compatibility with
+ ocaml) expects a boolean comparison [cmp] that may identify more
+ elements than Leibniz. So logical specification of [equal] is done
+ via another predicate [Equivb]
+ - This predicate [Equivb] is quite ad-hoc with its boolean [cmp],
+ it can be generalized in a [Equiv] expecting a more general
+ (possibly non-decidable) equality predicate on elements *)
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
(forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb (cmp: elt->elt->bool) := Equiv (Cmp cmp).
- Variable cmp : elt -> elt -> bool.
+ (** Specification of [equal] *)
- (** Specification of [equal] *)
- Parameter equal_1 : Equal cmp m m' -> equal cmp m m' = true.
- Parameter equal_2 : equal cmp m m' = true -> Equal cmp m m'.
+ Variable cmp : elt -> elt -> bool.
- End Spec.
- End Types.
+ Parameter equal_1 : Equivb cmp m m' -> equal cmp m m' = true.
+ Parameter equal_2 : equal cmp m m' = true -> Equivb cmp m m'.
+
+ End Spec.
+ End Types.
(** Specification of [map] *)
- Parameter map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Parameter map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
- Parameter map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
+ Parameter map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
(** Specification of [mapi] *)
- Parameter mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
+ Parameter mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
- Parameter mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
+ Parameter mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
(** Specification of [map2] *)
- Parameter map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Parameter map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
- Parameter map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Parameter map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
- (* begin hide *)
- Hint Immediate MapsTo_1 mem_2 is_empty_2.
-
- Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 add_3 remove_1
- remove_2 remove_3 find_1 find_2 fold_1 map_1 map_2 mapi_1 mapi_2.
- (* end hide *)
+ Hint Immediate MapsTo_1 mem_2 is_empty_2
+ map_2 mapi_2 add_3 remove_3 find_2
+ : map.
+ Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1
+ remove_2 find_1 fold_1 map_1 mapi_1 mapi_2
+ : map.
+End WSfun.
+
+
+(** ** Static signature for Weak Maps
+
+ Similar to [WSfun] but expressed in a self-contained way. *)
+
+Module Type WS.
+ Declare Module E : EqualityType.
+ Include Type WSfun E.
+End WS.
+
+
+
+(** ** Maps on ordered keys, functorial signature *)
+
+Module Type Sfun (E : OrderedType).
+ Include Type WSfun E.
+ Section elt.
+ Variable elt:Type.
+ Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p').
+ (* Additional specification of [elements] *)
+ Parameter elements_3 : forall m, sort lt_key (elements m).
+ (** Remark: since [fold] is specified via [elements], this stronger
+ specification of [elements] has an indirect impact on [fold],
+ which can now be proved to receive elements in increasing order. *)
+ End elt.
+End Sfun.
+
+
+
+(** ** Maps on ordered keys, self-contained signature *)
+
+Module Type S.
+ Declare Module E : OrderedType.
+ Include Type Sfun E.
End S.
+
+(** ** Maps with ordering both on keys and datas *)
+
Module Type Sord.
-
+
Declare Module Data : OrderedType.
Declare Module MapS : S.
Import MapS.
@@ -234,12 +314,11 @@ Module Type Sord.
Definition cmp e e' := match Data.compare e e' with EQ _ => true | _ => false end.
- Parameter eq_1 : forall m m', Equal cmp m m' -> eq m m'.
- Parameter eq_2 : forall m m', eq m m' -> Equal cmp m m'.
+ Parameter eq_1 : forall m m', Equivb cmp m m' -> eq m m'.
+ Parameter eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Parameter compare : forall m1 m2, Compare lt eq m1 m2.
- (** Total ordering between maps. The first argument (in Coq: Data.compare)
- is a total ordering used to compare data associated with equal keys
- in the two maps. *)
+ (** Total ordering between maps. [Data.compare] is a total ordering
+ used to compare data associated with equal keys in the two maps. *)
-End Sord. \ No newline at end of file
+End Sord.
diff --git a/theories/FSets/FMapList.v b/theories/FSets/FMapList.v
index 067f5a3e..23bf8196 100644
--- a/theories/FSets/FMapList.v
+++ b/theories/FSets/FMapList.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapList.v 9035 2006-07-09 15:42:09Z herbelin $ *)
+(* $Id: FMapList.v 10616 2008-03-04 17:33:35Z letouzey $ *)
(** * Finite map library *)
@@ -14,7 +14,6 @@
[FMapInterface.S] using lists of pairs ordered (increasing) with respect to
left projection. *)
-Require Import FSetInterface.
Require Import FMapInterface.
Set Implicit Arguments.
@@ -22,26 +21,14 @@ Unset Strict Implicit.
Module Raw (X:OrderedType).
-Module E := X.
-Module MX := OrderedTypeFacts X.
-Module PX := KeyOrderedType X.
-Import MX.
-Import PX.
+Module Import MX := OrderedTypeFacts X.
+Module Import PX := KeyOrderedType X.
Definition key := X.t.
-Definition t (elt:Set) := list (X.t * elt).
+Definition t (elt:Type) := list (X.t * elt).
Section Elt.
-Variable elt : Set.
-
-(* Now in KeyOrderedType:
-Definition eqk (p p':key*elt) := X.eq (fst p) (fst p').
-Definition eqke (p p':key*elt) :=
- X.eq (fst p) (fst p') /\ (snd p) = (snd p').
-Definition ltk (p p':key*elt) := X.lt (fst p) (fst p').
-Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
-Definition In k m := exists e:elt, MapsTo k e m.
-*)
+Variable elt : Type.
Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
@@ -347,15 +334,22 @@ Proof.
auto.
Qed.
+Lemma elements_3w : forall m (Hm:Sort m), NoDupA eqk (elements m).
+Proof.
+ intros.
+ apply Sort_NoDupA.
+ apply elements_3; auto.
+Qed.
+
(** * [fold] *)
-Function fold (A:Set)(f:key->elt->A->A)(m:t elt) (acc:A) {struct m} : A :=
+Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc:A) {struct m} : A :=
match m with
| nil => acc
| (k,e)::m' => fold f m' (f k e acc)
end.
-Lemma fold_1 : forall m (A:Set)(i:A)(f:key->elt->A->A),
+Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; functional induction (fold f m i); auto.
@@ -374,29 +368,24 @@ Function equal (cmp:elt->elt->bool)(m m' : t elt) { struct m } : bool :=
| _, _ => false
end.
-Definition Equal cmp m m' :=
+Definition Equivb cmp m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
Lemma equal_1 : forall m (Hm:Sort m) m' (Hm': Sort m') cmp,
- Equal cmp m m' -> equal cmp m m' = true.
+ Equivb cmp m m' -> equal cmp m m' = true.
Proof.
intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
- functional induction (equal cmp m m'); simpl; subst;auto; unfold Equal;
- intuition; subst; match goal with
- | [H: X.compare _ _ = _ |- _ ] => clear H
- | _ => idtac
- end.
-
-
-
+ functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
+ intuition; subst.
+ match goal with H: X.compare _ _ = _ |- _ => clear H end.
assert (cmp_e_e':cmp e e' = true).
apply H1 with x; auto.
rewrite cmp_e_e'; simpl.
apply IHb; auto.
inversion_clear Hm; auto.
inversion_clear Hm'; auto.
- unfold Equal; intuition.
+ unfold Equivb; intuition.
destruct (H0 k).
assert (In k ((x,e) ::l)).
destruct H as (e'', hyp); exists e''; auto.
@@ -459,14 +448,12 @@ Qed.
Lemma equal_2 : forall m (Hm:Sort m) m' (Hm:Sort m') cmp,
- equal cmp m m' = true -> Equal cmp m m'.
+ equal cmp m m' = true -> Equivb cmp m m'.
Proof.
intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
- functional induction (equal cmp m m'); simpl; subst;auto; unfold Equal;
- intuition; try discriminate; subst; match goal with
- | [H: X.compare _ _ = _ |- _ ] => clear H
- | _ => idtac
- end.
+ functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
+ intuition; try discriminate; subst;
+ try match goal with H: X.compare _ _ = _ |- _ => clear H end.
inversion H0.
@@ -502,13 +489,13 @@ Proof.
elim (Sort_Inf_NotIn H2 H3).
exists e0; apply MapsTo_eq with k; auto; order.
apply H8 with k; auto.
-Qed.
+Qed.
-(** This lemma isn't part of the spec of [Equal], but is used in [FMapAVL] *)
+(** This lemma isn't part of the spec of [Equivb], but is used in [FMapAVL] *)
Lemma equal_cons : forall cmp l1 l2 x y, Sort (x::l1) -> Sort (y::l2) ->
eqk x y -> cmp (snd x) (snd y) = true ->
- (Equal cmp l1 l2 <-> Equal cmp (x :: l1) (y :: l2)).
+ (Equivb cmp l1 l2 <-> Equivb cmp (x :: l1) (y :: l2)).
Proof.
intros.
inversion H; subst.
@@ -527,7 +514,7 @@ Proof.
rewrite H2; simpl; auto.
Qed.
-Variable elt':Set.
+Variable elt':Type.
(** * [map] and [mapi] *)
@@ -548,7 +535,7 @@ Section Elt2.
(* A new section is necessary for previous definitions to work
with different [elt], especially [MapsTo]... *)
-Variable elt elt' : Set.
+Variable elt elt' : Type.
(** Specification of [map] *)
@@ -684,10 +671,10 @@ Section Elt3.
(** * [map2] *)
-Variable elt elt' elt'' : Set.
+Variable elt elt' elt'' : Type.
Variable f : option elt -> option elt' -> option elt''.
-Definition option_cons (A:Set)(k:key)(o:option A)(l:list (key*A)) :=
+Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
match o with
| Some e => (k,e)::l
| None => l
@@ -739,7 +726,7 @@ Fixpoint combine (m : t elt) : t elt' -> t oee' :=
end
end.
-Definition fold_right_pair (A B C:Set)(f: A->B->C->C)(l:list (A*B))(i:C) :=
+Definition fold_right_pair (A B C:Type)(f: A->B->C->C)(l:list (A*B))(i:C) :=
List.fold_right (fun p => f (fst p) (snd p)) i l.
Definition map2_alt m m' :=
@@ -1038,12 +1025,12 @@ Module E := X.
Definition key := E.t.
-Record slist (elt:Set) : Set :=
+Record slist (elt:Type) :=
{this :> Raw.t elt; sorted : sort (@Raw.PX.ltk elt) this}.
-Definition t (elt:Set) : Set := slist elt.
+Definition t (elt:Type) : Type := slist elt.
Section Elt.
- Variable elt elt' elt'':Set.
+ Variable elt elt' elt'':Type.
Implicit Types m : t elt.
Implicit Types x y : key.
@@ -1060,13 +1047,19 @@ Section Elt.
Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_sorted f m.(sorted) m'.(sorted)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
- Definition fold (A:Set)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
+ Definition cardinal m := length m.(this).
+ Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
Definition equal cmp m m' : bool := @Raw.equal elt cmp m.(this) m'.(this).
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this).
Definition In x m : Prop := Raw.PX.In x m.(this).
Definition Empty m : Prop := Raw.Empty m.(this).
- Definition Equal cmp m m' : Prop := @Raw.Equal elt cmp m.(this) m'.(this).
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp m.(this) m'.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt.
@@ -1113,34 +1106,39 @@ Section Elt.
Proof. intros m; exact (@Raw.elements_2 elt m.(this)). Qed.
Lemma elements_3 : forall m, sort lt_key (elements m).
Proof. intros m; exact (@Raw.elements_3 elt m.(this) m.(sorted)). Qed.
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(sorted)). Qed.
+
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intros; reflexivity. Qed.
- Lemma fold_1 : forall m (A : Set) (i : A) (f : key -> elt -> A -> A),
+ Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed.
- Lemma equal_1 : forall m m' cmp, Equal cmp m m' -> equal cmp m m' = true.
+ Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof. intros m m'; exact (@Raw.equal_1 elt m.(this) m.(sorted) m'.(this) m'.(sorted)). Qed.
- Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equal cmp m m'.
+ Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof. intros m m'; exact (@Raw.equal_2 elt m.(this) m.(sorted) m'.(this) m'.(sorted)). Qed.
End Elt.
- Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' m.(this)). Qed.
- Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
+ Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' m.(this)). Qed.
- Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
+ Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' m.(this)). Qed.
- Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
+ Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' m.(this)). Qed.
- Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
@@ -1148,7 +1146,7 @@ Section Elt.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_1 elt elt' elt'' f m.(this) m.(sorted) m'.(this) m'.(sorted) x).
Qed.
- Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
@@ -1229,7 +1227,7 @@ Proof.
unfold equal, eq in H6; simpl in H6; auto.
Qed.
-Lemma eq_1 : forall m m', Equal cmp m m' -> eq m m'.
+Lemma eq_1 : forall m m', Equivb cmp m m' -> eq m m'.
Proof.
intros.
generalize (@equal_1 D.t m m' cmp).
@@ -1237,7 +1235,7 @@ Proof.
intuition.
Qed.
-Lemma eq_2 : forall m m', eq m m' -> Equal cmp m m'.
+Lemma eq_2 : forall m m', eq m m' -> Equivb cmp m m'.
Proof.
intros.
generalize (@equal_2 D.t m m' cmp).
diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v
index 44724767..9bc2a599 100644
--- a/theories/FSets/FMapPositive.v
+++ b/theories/FSets/FMapPositive.v
@@ -11,11 +11,12 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: FMapPositive.v 9862 2007-05-25 16:57:06Z letouzey $ *)
+(* $Id: FMapPositive.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import Bool.
Require Import ZArith.
Require Import OrderedType.
+Require Import OrderedTypeEx.
Require Import FMapInterface.
Set Implicit Arguments.
@@ -36,9 +37,12 @@ Open Local Scope positive_scope.
usual order (see [OrderedTypeEx]), we use here a lexicographic order
over bits, which is more natural here (lower bits are considered first). *)
-Module PositiveOrderedTypeBits <: OrderedType.
+Module PositiveOrderedTypeBits <: UsualOrderedType.
Definition t:=positive.
Definition eq:=@eq positive.
+ Definition eq_refl := @refl_equal t.
+ Definition eq_sym := @sym_eq t.
+ Definition eq_trans := @trans_eq t.
Fixpoint bits_lt (p q:positive) { struct p } : Prop :=
match p, q with
@@ -52,15 +56,6 @@ Module PositiveOrderedTypeBits <: OrderedType.
Definition lt:=bits_lt.
- Lemma eq_refl : forall x : t, eq x x.
- Proof. red; auto. Qed.
-
- Lemma eq_sym : forall x y : t, eq x y -> eq y x.
- Proof. red; auto. Qed.
-
- Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
- Proof. red; intros; transitivity y; auto. Qed.
-
Lemma bits_lt_trans : forall x y z : positive, bits_lt x y -> bits_lt y z -> bits_lt x z.
Proof.
induction x.
@@ -171,17 +166,18 @@ Qed.
Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
+ Module ME:=KeyOrderedType E.
Definition key := positive.
- Inductive tree (A : Set) : Set :=
+ Inductive tree (A : Type) :=
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.
Definition t := tree.
Section A.
- Variable A:Set.
+ Variable A:Type.
Implicit Arguments Leaf [A].
@@ -280,6 +276,15 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Definition elements (m : t A) := xelements m xH.
+ (** [cardinal] *)
+
+ Fixpoint cardinal (m : t A) : nat :=
+ match m with
+ | Leaf => 0%nat
+ | Node l None r => (cardinal l + cardinal r)%nat
+ | Node l (Some _) r => S (cardinal l + cardinal r)
+ end.
+
Section CompcertSpec.
Theorem gempty:
@@ -560,6 +565,16 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
exact (xelements_complete i xH m v H).
Qed.
+ Lemma cardinal_1 :
+ forall (m: t A), cardinal m = length (elements m).
+ Proof.
+ unfold elements.
+ intros m; set (p:=1); clearbody p; revert m p.
+ induction m; simpl; auto; intros.
+ rewrite (IHm1 (append p 2)), (IHm2 (append p 3)); auto.
+ destruct o; rewrite app_length; simpl; omega.
+ Qed.
+
End CompcertSpec.
Definition MapsTo (i:positive)(v:A)(m:t A) := find i m = Some v.
@@ -793,11 +808,17 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
apply xelements_sort; auto.
Qed.
+ Lemma elements_3w : NoDupA eq_key (elements m).
+ Proof.
+ change eq_key with (@ME.eqk A).
+ apply ME.Sort_NoDupA; apply elements_3; auto.
+ Qed.
+
End FMapSpec.
(** [map] and [mapi] *)
- Variable B : Set.
+ Variable B : Type.
Fixpoint xmapi (f : positive -> A -> B) (m : t A) (i : positive)
{struct m} : t B :=
@@ -815,7 +836,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End A.
Lemma xgmapi:
- forall (A B: Set) (f: positive -> A -> B) (i j : positive) (m: t A),
+ forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
find i (xmapi f m j) = option_map (f (append j i)) (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -825,7 +846,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem gmapi:
- forall (A B: Set) (f: positive -> A -> B) (i: positive) (m: t A),
+ forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
find i (mapi f m) = option_map (f i) (find i m).
Proof.
intros.
@@ -836,7 +857,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma mapi_1 :
- forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
+ forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:key->elt->elt'),
MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof.
@@ -851,7 +872,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma mapi_2 :
- forall (elt elt':Set)(m: t elt)(x:key)(f:key->elt->elt'),
+ forall (elt elt':Type)(m: t elt)(x:key)(f:key->elt->elt'),
In x (mapi f m) -> In x m.
Proof.
intros.
@@ -864,21 +885,21 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
simpl in *; discriminate.
Qed.
- Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof.
intros; unfold map.
destruct (mapi_1 (fun _ => f) H); intuition.
Qed.
- Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
+ Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof.
intros; unfold map in *; eapply mapi_2; eauto.
Qed.
Section map2.
- Variable A B C : Set.
+ Variable A B C : Type.
Variable f : option A -> option B -> option C.
Implicit Arguments Leaf [A].
@@ -927,10 +948,10 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End map2.
- Definition map2 (elt elt' elt'':Set)(f:option elt->option elt'->option elt'') :=
+ Definition map2 (elt elt' elt'':Type)(f:option elt->option elt'->option elt'') :=
_map2 (fun o1 o2 => match o1,o2 with None,None => None | _, _ => f o1 o2 end).
- Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
@@ -946,7 +967,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
destruct H; intuition; try discriminate.
Qed.
- Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
@@ -962,17 +983,17 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
- Definition fold (A B : Set) (f: positive -> A -> B -> B) (tr: t A) (v: B) :=
+ Definition fold (A : Type)(B : Type) (f: positive -> A -> B -> B) (tr: t A) (v: B) :=
List.fold_left (fun a p => f (fst p) (snd p) a) (elements tr) v.
Lemma fold_1 :
- forall (A:Set)(m:t A)(B:Set)(i : B) (f : key -> A -> B -> B),
+ forall (A:Type)(m:t A)(B:Type)(i : B) (f : key -> A -> B -> B),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; unfold fold; auto.
Qed.
- Fixpoint equal (A:Set)(cmp : A -> A -> bool)(m1 m2 : t A) {struct m1} : bool :=
+ Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) {struct m1} : bool :=
match m1, m2 with
| Leaf, _ => is_empty m2
| _, Leaf => is_empty m1
@@ -985,12 +1006,15 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
&& equal cmp l1 l2 && equal cmp r1 r2
end.
- Definition Equal (A:Set)(cmp:A->A->bool)(m m':t A) :=
+ Definition Equal (A:Type)(m m':t A) :=
+ forall y, find y m = find y m'.
+ Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' :=
(forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp).
- Lemma equal_1 : forall (A:Set)(m m':t A)(cmp:A->A->bool),
- Equal cmp m m' -> equal cmp m m' = true.
+ Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
+ Equivb cmp m m' -> equal cmp m m' = true.
Proof.
induction m.
(* m = Leaf *)
@@ -1024,11 +1048,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
destruct H2; red in H2; simpl in H2; discriminate.
(* m' = Node *)
destruct 1.
- assert (Equal cmp m1 m'1).
+ assert (Equivb cmp m1 m'1).
split.
intros k; generalize (H (xO k)); unfold In, MapsTo; simpl; auto.
intros k e e'; generalize (H0 (xO k) e e'); unfold In, MapsTo; simpl; auto.
- assert (Equal cmp m2 m'2).
+ assert (Equivb cmp m2 m'2).
split.
intros k; generalize (H (xI k)); unfold In, MapsTo; simpl; auto.
intros k e e'; generalize (H0 (xI k) e e'); unfold In, MapsTo; simpl; auto.
@@ -1043,8 +1067,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
apply andb_true_intro; split; auto.
Qed.
- Lemma equal_2 : forall (A:Set)(m m':t A)(cmp:A->A->bool),
- equal cmp m m' = true -> Equal cmp m m'.
+ Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool),
+ equal cmp m m' = true -> Equivb cmp m m'.
Proof.
induction m.
(* m = Leaf *)
@@ -1103,7 +1127,7 @@ Module PositiveMapAdditionalFacts.
(* Derivable from the Map interface *)
Theorem gsspec:
- forall (A:Set)(i j: positive) (x: A) (m: t A),
+ forall (A:Type)(i j: positive) (x: A) (m: t A),
find i (add j x m) = if peq_dec i j then Some x else find i m.
Proof.
intros.
@@ -1112,7 +1136,7 @@ Module PositiveMapAdditionalFacts.
(* Not derivable from the Map interface *)
Theorem gsident:
- forall (A:Set)(i: positive) (m: t A) (v: A),
+ forall (A:Type)(i: positive) (m: t A) (v: A),
find i m = Some v -> add i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
@@ -1121,7 +1145,7 @@ Module PositiveMapAdditionalFacts.
Qed.
Lemma xmap2_lr :
- forall (A B : Set)(f g: option A -> option A -> option B)(m : t A),
+ forall (A B : Type)(f g: option A -> option A -> option B)(m : t A),
(forall (i j : option A), f i j = g j i) ->
xmap2_l f m = xmap2_r g m.
Proof.
@@ -1132,7 +1156,7 @@ Module PositiveMapAdditionalFacts.
Qed.
Theorem map2_commut:
- forall (A B: Set) (f g: option A -> option A -> option B),
+ forall (A B: Type) (f g: option A -> option A -> option B),
(forall (i j: option A), f i j = g j i) ->
forall (m1 m2: t A),
_map2 f m1 m2 = _map2 g m2 m1.
diff --git a/theories/FSets/FMapWeak.v b/theories/FSets/FMapWeak.v
deleted file mode 100644
index 1ad190a4..00000000
--- a/theories/FSets/FMapWeak.v
+++ /dev/null
@@ -1,15 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FMapWeak.v 8844 2006-05-22 17:22:36Z letouzey $ *)
-
-Require Export DecidableType.
-Require Export DecidableTypeEx.
-Require Export FMapWeakInterface.
-Require Export FMapWeakList.
-Require Export FMapWeakFacts. \ No newline at end of file
diff --git a/theories/FSets/FMapWeakFacts.v b/theories/FSets/FMapWeakFacts.v
deleted file mode 100644
index 18f73a3f..00000000
--- a/theories/FSets/FMapWeakFacts.v
+++ /dev/null
@@ -1,599 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FMapWeakFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
-
-(** * Finite maps library *)
-
-(** This functor derives additional facts from [FMapWeakInterface.S]. These
- facts are mainly the specifications of [FMapWeakInterface.S] written using
- different styles: equivalence and boolean equalities.
-*)
-
-Require Import Bool.
-Require Import OrderedType.
-Require Export FMapWeakInterface.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Module Facts (M: S).
-Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
-
-Lemma MapsTo_fun : forall (elt:Set) m x (e e':elt),
- MapsTo x e m -> MapsTo x e' m -> e=e'.
-Proof.
-intros.
-generalize (find_1 H) (find_1 H0); clear H H0.
-intros; rewrite H in H0; injection H0; auto.
-Qed.
-
-(** * Specifications written using equivalences *)
-
-Section IffSpec.
-Variable elt elt' elt'': Set.
-Implicit Type m: t elt.
-Implicit Type x y z: key.
-Implicit Type e: elt.
-
-Lemma MapsTo_iff : forall m x y e, E.eq x y -> (MapsTo x e m <-> MapsTo y e m).
-Proof.
-split; apply MapsTo_1; auto.
-Qed.
-
-Lemma In_iff : forall m x y, E.eq x y -> (In x m <-> In y m).
-Proof.
-unfold In.
-split; intros (e0,H0); exists e0.
-apply (MapsTo_1 H H0); auto.
-apply (MapsTo_1 (E.eq_sym H) H0); auto.
-Qed.
-
-Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
-Proof.
-split; [apply find_1|apply find_2].
-Qed.
-
-Lemma not_find_mapsto_iff : forall m x, ~In x m <-> find x m = None.
-Proof.
-intros.
-generalize (find_mapsto_iff m x); destruct (find x m).
-split; intros; try discriminate.
-destruct H0.
-exists e; rewrite H; auto.
-split; auto.
-intros; intros (e,H1).
-rewrite H in H1; discriminate.
-Qed.
-
-Lemma mem_in_iff : forall m x, In x m <-> mem x m = true.
-Proof.
-split; [apply mem_1|apply mem_2].
-Qed.
-
-Lemma not_mem_in_iff : forall m x, ~In x m <-> mem x m = false.
-Proof.
-intros; rewrite mem_in_iff; destruct (mem x m); intuition.
-Qed.
-
-Lemma equal_iff : forall m m' cmp, Equal cmp m m' <-> equal cmp m m' = true.
-Proof.
-split; [apply equal_1|apply equal_2].
-Qed.
-
-Lemma empty_mapsto_iff : forall x e, MapsTo x e (empty elt) <-> False.
-Proof.
-intuition; apply (empty_1 H).
-Qed.
-
-Lemma empty_in_iff : forall x, In x (empty elt) <-> False.
-Proof.
-unfold In.
-split; [intros (e,H); rewrite empty_mapsto_iff in H|]; intuition.
-Qed.
-
-Lemma is_empty_iff : forall m, Empty m <-> is_empty m = true.
-Proof.
-split; [apply is_empty_1|apply is_empty_2].
-Qed.
-
-Lemma add_mapsto_iff : forall m x y e e',
- MapsTo y e' (add x e m) <->
- (E.eq x y /\ e=e') \/
- (~E.eq x y /\ MapsTo y e' m).
-Proof.
-intros.
-intuition.
-destruct (E.eq_dec x y); [left|right].
-split; auto.
-symmetry; apply (MapsTo_fun (e':=e) H); auto.
-split; auto; apply add_3 with x e; auto.
-subst; auto.
-Qed.
-
-Lemma add_in_iff : forall m x y e, In y (add x e m) <-> E.eq x y \/ In y m.
-Proof.
-unfold In; split.
-intros (e',H).
-destruct (E.eq_dec x y) as [E|E]; auto.
-right; exists e'; auto.
-apply (add_3 E H).
-destruct (E.eq_dec x y) as [E|E]; auto.
-intros.
-exists e; apply add_1; auto.
-intros [H|(e',H)].
-destruct E; auto.
-exists e'; apply add_2; auto.
-Qed.
-
-Lemma add_neq_mapsto_iff : forall m x y e e',
- ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m).
-Proof.
-split; [apply add_3|apply add_2]; auto.
-Qed.
-
-Lemma add_neq_in_iff : forall m x y e,
- ~ E.eq x y -> (In y (add x e m) <-> In y m).
-Proof.
-split; intros (e',H0); exists e'.
-apply (add_3 H H0).
-apply add_2; auto.
-Qed.
-
-Lemma remove_mapsto_iff : forall m x y e,
- MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m.
-Proof.
-intros.
-split; intros.
-split.
-assert (In y (remove x m)) by (exists e; auto).
-intro H1; apply (remove_1 H1 H0).
-apply remove_3 with x; auto.
-apply remove_2; intuition.
-Qed.
-
-Lemma remove_in_iff : forall m x y, In y (remove x m) <-> ~E.eq x y /\ In y m.
-Proof.
-unfold In; split.
-intros (e,H).
-split.
-assert (In y (remove x m)) by (exists e; auto).
-intro H1; apply (remove_1 H1 H0).
-exists e; apply remove_3 with x; auto.
-intros (H,(e,H0)); exists e; apply remove_2; auto.
-Qed.
-
-Lemma remove_neq_mapsto_iff : forall m x y e,
- ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m).
-Proof.
-split; [apply remove_3|apply remove_2]; auto.
-Qed.
-
-Lemma remove_neq_in_iff : forall m x y,
- ~ E.eq x y -> (In y (remove x m) <-> In y m).
-Proof.
-split; intros (e',H0); exists e'.
-apply (remove_3 H0).
-apply remove_2; auto.
-Qed.
-
-Lemma elements_mapsto_iff : forall m x e,
- MapsTo x e m <-> InA (@eq_key_elt _) (x,e) (elements m).
-Proof.
-split; [apply elements_1 | apply elements_2].
-Qed.
-
-Lemma elements_in_iff : forall m x,
- In x m <-> exists e, InA (@eq_key_elt _) (x,e) (elements m).
-Proof.
-unfold In; split; intros (e,H); exists e; [apply elements_1 | apply elements_2]; auto.
-Qed.
-
-Lemma map_mapsto_iff : forall m x b (f : elt -> elt'),
- MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m.
-Proof.
-split.
-case_eq (find x m); intros.
-exists e.
-split.
-apply (MapsTo_fun (m:=map f m) (x:=x)); auto.
-apply find_2; auto.
-assert (In x (map f m)) by (exists b; auto).
-destruct (map_2 H1) as (a,H2).
-rewrite (find_1 H2) in H; discriminate.
-intros (a,(H,H0)).
-subst b; auto.
-Qed.
-
-Lemma map_in_iff : forall m x (f : elt -> elt'),
- In x (map f m) <-> In x m.
-Proof.
-split; intros; eauto.
-destruct H as (a,H).
-exists (f a); auto.
-Qed.
-
-Lemma mapi_in_iff : forall m x (f:key->elt->elt'),
- In x (mapi f m) <-> In x m.
-Proof.
-split; intros; eauto.
-destruct H as (a,H).
-destruct (mapi_1 f H) as (y,(H0,H1)).
-exists (f y a); auto.
-Qed.
-
-(* Unfortunately, we don't have simple equivalences for [mapi]
- and [MapsTo]. The only correct one needs compatibility of [f]. *)
-
-Lemma mapi_inv : forall m x b (f : key -> elt -> elt'),
- MapsTo x b (mapi f m) ->
- exists a, exists y, E.eq y x /\ b = f y a /\ MapsTo x a m.
-Proof.
-intros; case_eq (find x m); intros.
-exists e.
-destruct (@mapi_1 _ _ m x e f) as (y,(H1,H2)).
-apply find_2; auto.
-exists y; repeat split; auto.
-apply (MapsTo_fun (m:=mapi f m) (x:=x)); auto.
-assert (In x (mapi f m)) by (exists b; auto).
-destruct (mapi_2 H1) as (a,H2).
-rewrite (find_1 H2) in H0; discriminate.
-Qed.
-
-Lemma mapi_1bis : forall m x e (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
- MapsTo x e m -> MapsTo x (f x e) (mapi f m).
-Proof.
-intros.
-destruct (mapi_1 f H0) as (y,(H1,H2)).
-replace (f x e) with (f y e) by auto.
-auto.
-Qed.
-
-Lemma mapi_mapsto_iff : forall m x b (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
- (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m).
-Proof.
-split.
-intros.
-destruct (mapi_inv H0) as (a,(y,(H1,(H2,H3)))).
-exists a; split; auto.
-subst b; auto.
-intros (a,(H0,H1)).
-subst b.
-apply mapi_1bis; auto.
-Qed.
-
-(** Things are even worse for [map2] : we don't try to state any
- equivalence, see instead boolean results below. *)
-
-End IffSpec.
-
-(** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *)
-
-Ltac map_iff :=
- repeat (progress (
- rewrite add_mapsto_iff || rewrite add_in_iff ||
- rewrite remove_mapsto_iff || rewrite remove_in_iff ||
- rewrite empty_mapsto_iff || rewrite empty_in_iff ||
- rewrite map_mapsto_iff || rewrite map_in_iff ||
- rewrite mapi_in_iff)).
-
-(** * Specifications written using boolean predicates *)
-
-Section BoolSpec.
-
-Definition eqb x y := if E.eq_dec x y then true else false.
-
-Lemma mem_find_b : forall (elt:Set)(m:t elt)(x:key), mem x m = if find x m then true else false.
-Proof.
-intros.
-generalize (find_mapsto_iff m x)(mem_in_iff m x); unfold In.
-destruct (find x m); destruct (mem x m); auto.
-intros.
-rewrite <- H0; exists e; rewrite H; auto.
-intuition.
-destruct H0 as (e,H0).
-destruct (H e); intuition discriminate.
-Qed.
-
-Variable elt elt' elt'' : Set.
-Implicit Types m : t elt.
-Implicit Types x y z : key.
-Implicit Types e : elt.
-
-Lemma mem_b : forall m x y, E.eq x y -> mem x m = mem y m.
-Proof.
-intros.
-generalize (mem_in_iff m x) (mem_in_iff m y)(In_iff m H).
-destruct (mem x m); destruct (mem y m); intuition.
-Qed.
-
-Lemma find_o : forall m x y, E.eq x y -> find x m = find y m.
-Proof.
-intros.
-generalize (find_mapsto_iff m x) (find_mapsto_iff m y) (fun e => MapsTo_iff m e H).
-destruct (find x m); destruct (find y m); intros.
-rewrite <- H0; rewrite H2; rewrite H1; auto.
-symmetry; rewrite <- H1; rewrite <- H2; rewrite H0; auto.
-rewrite <- H0; rewrite H2; rewrite H1; auto.
-auto.
-Qed.
-
-Lemma empty_o : forall x, find x (empty elt) = None.
-Proof.
-intros.
-case_eq (find x (empty elt)); intros; auto.
-generalize (find_2 H).
-rewrite empty_mapsto_iff; intuition.
-Qed.
-
-Lemma empty_a : forall x, mem x (empty elt) = false.
-Proof.
-intros.
-case_eq (mem x (empty elt)); intros; auto.
-generalize (mem_2 H).
-rewrite empty_in_iff; intuition.
-Qed.
-
-Lemma add_eq_o : forall m x y e,
- E.eq x y -> find y (add x e m) = Some e.
-Proof.
-auto.
-Qed.
-
-Lemma add_neq_o : forall m x y e,
- ~ E.eq x y -> find y (add x e m) = find y m.
-Proof.
-intros.
-case_eq (find y m); intros; auto.
-case_eq (find y (add x e m)); intros; auto.
-rewrite <- H0; symmetry.
-apply find_1; apply add_3 with x e; auto.
-Qed.
-Hint Resolve add_neq_o.
-
-Lemma add_o : forall m x y e,
- find y (add x e m) = if E.eq_dec x y then Some e else find y m.
-Proof.
-intros; destruct (E.eq_dec x y); auto.
-Qed.
-
-Lemma add_eq_b : forall m x y e,
- E.eq x y -> mem y (add x e m) = true.
-Proof.
-intros; rewrite mem_find_b; rewrite add_eq_o; auto.
-Qed.
-
-Lemma add_neq_b : forall m x y e,
- ~E.eq x y -> mem y (add x e m) = mem y m.
-Proof.
-intros; do 2 rewrite mem_find_b; rewrite add_neq_o; auto.
-Qed.
-
-Lemma add_b : forall m x y e,
- mem y (add x e m) = eqb x y || mem y m.
-Proof.
-intros; do 2 rewrite mem_find_b; rewrite add_o; unfold eqb.
-destruct (E.eq_dec x y); simpl; auto.
-Qed.
-
-Lemma remove_eq_o : forall m x y,
- E.eq x y -> find y (remove x m) = None.
-Proof.
-intros.
-generalize (remove_1 (m:=m) H).
-generalize (find_mapsto_iff (remove x m) y).
-destruct (find y (remove x m)); auto.
-destruct 2.
-exists e; rewrite H0; auto.
-Qed.
-Hint Resolve remove_eq_o.
-
-Lemma remove_neq_o : forall m x y,
- ~ E.eq x y -> find y (remove x m) = find y m.
-Proof.
-intros.
-case_eq (find y m); intros; auto.
-case_eq (find y (remove x m)); intros; auto.
-rewrite <- H0; symmetry.
-apply find_1; apply remove_3 with x; auto.
-Qed.
-Hint Resolve remove_neq_o.
-
-Lemma remove_o : forall m x y,
- find y (remove x m) = if E.eq_dec x y then None else find y m.
-Proof.
-intros; destruct (E.eq_dec x y); auto.
-Qed.
-
-Lemma remove_eq_b : forall m x y,
- E.eq x y -> mem y (remove x m) = false.
-Proof.
-intros; rewrite mem_find_b; rewrite remove_eq_o; auto.
-Qed.
-
-Lemma remove_neq_b : forall m x y,
- ~ E.eq x y -> mem y (remove x m) = mem y m.
-Proof.
-intros; do 2 rewrite mem_find_b; rewrite remove_neq_o; auto.
-Qed.
-
-Lemma remove_b : forall m x y,
- mem y (remove x m) = negb (eqb x y) && mem y m.
-Proof.
-intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
-destruct (E.eq_dec x y); auto.
-Qed.
-
-Definition option_map (A:Set)(B:Set)(f:A->B)(o:option A) : option B :=
- match o with
- | Some a => Some (f a)
- | None => None
- end.
-
-Lemma map_o : forall m x (f:elt->elt'),
- find x (map f m) = option_map f (find x m).
-Proof.
-intros.
-generalize (find_mapsto_iff (map f m) x) (find_mapsto_iff m x)
- (fun b => map_mapsto_iff m x b f).
-destruct (find x (map f m)); destruct (find x m); simpl; auto; intros.
-rewrite <- H; rewrite H1; exists e0; rewrite H0; auto.
-destruct (H e) as [_ H2].
-rewrite H1 in H2.
-destruct H2 as (a,(_,H2)); auto.
-rewrite H0 in H2; discriminate.
-rewrite <- H; rewrite H1; exists e; rewrite H0; auto.
-Qed.
-
-Lemma map_b : forall m x (f:elt->elt'),
- mem x (map f m) = mem x m.
-Proof.
-intros; do 2 rewrite mem_find_b; rewrite map_o.
-destruct (find x m); simpl; auto.
-Qed.
-
-Lemma mapi_b : forall m x (f:key->elt->elt'),
- mem x (mapi f m) = mem x m.
-Proof.
-intros.
-generalize (mem_in_iff (mapi f m) x) (mem_in_iff m x) (mapi_in_iff m x f).
-destruct (mem x (mapi f m)); destruct (mem x m); simpl; auto; intros.
-symmetry; rewrite <- H0; rewrite <- H1; rewrite H; auto.
-rewrite <- H; rewrite H1; rewrite H0; auto.
-Qed.
-
-Lemma mapi_o : forall m x (f:key->elt->elt'),
- (forall x y e, E.eq x y -> f x e = f y e) ->
- find x (mapi f m) = option_map (f x) (find x m).
-Proof.
-intros.
-generalize (find_mapsto_iff (mapi f m) x) (find_mapsto_iff m x)
- (fun b => mapi_mapsto_iff m x b H).
-destruct (find x (mapi f m)); destruct (find x m); simpl; auto; intros.
-rewrite <- H0; rewrite H2; exists e0; rewrite H1; auto.
-destruct (H0 e) as [_ H3].
-rewrite H2 in H3.
-destruct H3 as (a,(_,H3)); auto.
-rewrite H1 in H3; discriminate.
-rewrite <- H0; rewrite H2; exists e; rewrite H1; auto.
-Qed.
-
-Lemma map2_1bis : forall (m: t elt)(m': t elt') x
- (f:option elt->option elt'->option elt''),
- f None None = None ->
- find x (map2 f m m') = f (find x m) (find x m').
-Proof.
-intros.
-case_eq (find x m); intros.
-rewrite <- H0.
-apply map2_1; auto.
-left; exists e; auto.
-case_eq (find x m'); intros.
-rewrite <- H0; rewrite <- H1.
-apply map2_1; auto.
-right; exists e; auto.
-rewrite H.
-case_eq (find x (map2 f m m')); intros; auto.
-assert (In x (map2 f m m')) by (exists e; auto).
-destruct (map2_2 H3) as [(e0,H4)|(e0,H4)].
-rewrite (find_1 H4) in H0; discriminate.
-rewrite (find_1 H4) in H1; discriminate.
-Qed.
-
-Fixpoint findA (A B:Set)(f : A -> bool) (l:list (A*B)) : option B :=
- match l with
- | nil => None
- | (a,b)::l => if f a then Some b else findA f l
- end.
-
-Lemma findA_NoDupA :
- forall (A B:Set)
- (eqA:A->A->Prop)
- (eqA_sym: forall a b, eqA a b -> eqA b a)
- (eqA_trans: forall a b c, eqA a b -> eqA b c -> eqA a c)
- (eqA_dec : forall a a', { eqA a a' }+{~eqA a a' })
- (l:list (A*B))(x:A)(e:B),
- NoDupA (fun p p' => eqA (fst p) (fst p')) l ->
- (InA (fun p p' => eqA (fst p) (fst p') /\ snd p = snd p') (x,e) l <->
- findA (fun y:A => if eqA_dec x y then true else false) l = Some e).
-Proof.
-induction l; simpl; intros.
-split; intros; try discriminate.
-inversion H0.
-destruct a as (y,e').
-inversion_clear H.
-split; intros.
-inversion_clear H.
-simpl in *; destruct H2; subst e'.
-destruct (eqA_dec x y); intuition.
-destruct (eqA_dec x y); simpl.
-destruct H0.
-generalize e0 H2 eqA_trans eqA_sym; clear.
-induction l.
-inversion 2.
-inversion_clear 2; intros; auto.
-destruct a.
-compute in H; destruct H.
-subst b.
-constructor 1; auto.
-simpl.
-apply eqA_trans with x; auto.
-rewrite <- IHl; auto.
-destruct (eqA_dec x y); simpl in *.
-inversion H; clear H; intros; subst e'; auto.
-constructor 2.
-rewrite IHl; auto.
-Qed.
-
-Lemma elements_o : forall m x,
- find x m = findA (eqb x) (elements m).
-Proof.
-intros.
-assert (forall e, find x m = Some e <-> InA (eq_key_elt (elt:=elt)) (x,e) (elements m)).
- intros; rewrite <- find_mapsto_iff; apply elements_mapsto_iff.
-assert (NoDupA (eq_key (elt:=elt)) (elements m)).
- exact (elements_3 m).
-generalize (fun e => @findA_NoDupA _ _ _ E.eq_sym E.eq_trans E.eq_dec (elements m) x e H0).
-unfold eqb.
-destruct (find x m); destruct (findA (fun y : E.t => if E.eq_dec x y then true else false) (elements m));
- simpl; auto; intros.
-symmetry; rewrite <- H1; rewrite <- H; auto.
-symmetry; rewrite <- H1; rewrite <- H; auto.
-rewrite H; rewrite H1; auto.
-Qed.
-
-Lemma elements_b : forall m x, mem x m = existsb (fun p => eqb x (fst p)) (elements m).
-Proof.
-intros.
-generalize (mem_in_iff m x)(elements_in_iff m x)
- (existsb_exists (fun p => eqb x (fst p)) (elements m)).
-destruct (mem x m); destruct (existsb (fun p => eqb x (fst p)) (elements m)); auto; intros.
-symmetry; rewrite H1.
-destruct H0 as (H0,_).
-destruct H0 as (e,He); [ intuition |].
-rewrite InA_alt in He.
-destruct He as ((y,e'),(Ha1,Ha2)).
-compute in Ha1; destruct Ha1; subst e'.
-exists (y,e); split; simpl; auto.
-unfold eqb; destruct (E.eq_dec x y); intuition.
-rewrite <- H; rewrite H0.
-destruct H1 as (H1,_).
-destruct H1 as ((y,e),(Ha1,Ha2)); [intuition|].
-simpl in Ha2.
-unfold eqb in *; destruct (E.eq_dec x y); auto; try discriminate.
-exists e; rewrite InA_alt.
-exists (y,e); intuition.
-compute; auto.
-Qed.
-
-End BoolSpec.
-
-End Facts.
diff --git a/theories/FSets/FMapWeakInterface.v b/theories/FSets/FMapWeakInterface.v
deleted file mode 100644
index b6df4da5..00000000
--- a/theories/FSets/FMapWeakInterface.v
+++ /dev/null
@@ -1,201 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FMapWeakInterface.v 8639 2006-03-16 19:21:55Z letouzey $ *)
-
-(** * Finite map library *)
-
-(** This file proposes an interface for finite maps over keys with decidable
- equality, but no decidable order. *)
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Require Import FSetInterface.
-Require Import FSetWeakInterface.
-
-Module Type S.
-
- Declare Module E : DecidableType.
-
- Definition key := E.t.
-
- Parameter t : Set -> Set. (** the abstract type of maps *)
-
- Section Types.
-
- Variable elt:Set.
-
- Parameter empty : t elt.
- (** The empty map. *)
-
- Parameter is_empty : t elt -> bool.
- (** Test whether a map is empty or not. *)
-
- Parameter add : key -> elt -> t elt -> t elt.
- (** [add x y m] returns a map containing the same bindings as [m],
- plus a binding of [x] to [y]. If [x] was already bound in [m],
- its previous binding disappears. *)
-
- Parameter find : key -> t elt -> option elt.
- (** [find x m] returns the current binding of [x] in [m],
- or raises [Not_found] if no such binding exists.
- NB: in Coq, the exception mechanism becomes a option type. *)
-
- Parameter remove : key -> t elt -> t elt.
- (** [remove x m] returns a map containing the same bindings as [m],
- except for [x] which is unbound in the returned map. *)
-
- Parameter mem : key -> t elt -> bool.
- (** [mem x m] returns [true] if [m] contains a binding for [x],
- and [false] otherwise. *)
-
- (** Coq comment: [iter] is useless in a purely functional world *)
- (** val iter : (key -> 'a -> unit) -> 'a t -> unit *)
- (** iter f m applies f to all bindings in map m. f receives the key as
- first argument, and the associated value as second argument.
- The bindings are passed to f in increasing order with respect to the
- ordering over the type of the keys. Only current bindings are
- presented to f: bindings hidden by more recent bindings are not
- passed to f. *)
-
- Variable elt' : Set.
- Variable elt'': Set.
-
- Parameter map : (elt -> elt') -> t elt -> t elt'.
- (** [map f m] returns a map with same domain as [m], where the associated
- value a of all bindings of [m] has been replaced by the result of the
- application of [f] to [a]. The bindings are passed to [f] in
- increasing order with respect to the ordering over the type of the
- keys. *)
-
- Parameter mapi : (key -> elt -> elt') -> t elt -> t elt'.
- (** Same as [S.map], but the function receives as arguments both the
- key and the associated value for each binding of the map. *)
-
- Parameter map2 : (option elt -> option elt' -> option elt'') -> t elt -> t elt' -> t elt''.
- (** Not present in Ocaml.
- [map f m m'] creates a new map whose bindings belong to the ones of either
- [m] or [m']. The presence and value for a key [k] is determined by [f e e']
- where [e] and [e'] are the (optional) bindings of [k] in [m] and [m']. *)
-
- Parameter elements : t elt -> list (key*elt).
- (** Not present in Ocaml.
- [elements m] returns an assoc list corresponding to the bindings of [m].
- Elements of this list are sorted with respect to their first components.
- Useful to specify [fold] ... *)
-
- Parameter fold : forall A: Set, (key -> elt -> A -> A) -> t elt -> A -> A.
- (** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
- where [k1] ... [kN] are the keys of all bindings in [m]
- (in increasing order), and [d1] ... [dN] are the associated data. *)
-
- Parameter equal : (elt -> elt -> bool) -> t elt -> t elt -> bool.
- (** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are equal,
- that is, contain equal keys and associate them with equal data.
- [cmp] is the equality predicate used to compare the data associated
- with the keys. *)
-
- Section Spec.
-
- Variable m m' m'' : t elt.
- Variable x y z : key.
- Variable e e' : elt.
-
- Parameter MapsTo : key -> elt -> t elt -> Prop.
-
- Definition In (k:key)(m: t elt) : Prop := exists e:elt, MapsTo k e m.
-
- Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.
-
- Definition eq_key (p p':key*elt) := E.eq (fst p) (fst p').
-
- Definition eq_key_elt (p p':key*elt) :=
- E.eq (fst p) (fst p') /\ (snd p) = (snd p').
-
- (** Specification of [MapsTo] *)
- Parameter MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
-
- (** Specification of [mem] *)
- Parameter mem_1 : In x m -> mem x m = true.
- Parameter mem_2 : mem x m = true -> In x m.
-
- (** Specification of [empty] *)
- Parameter empty_1 : Empty empty.
-
- (** Specification of [is_empty] *)
- Parameter is_empty_1 : Empty m -> is_empty m = true.
- Parameter is_empty_2 : is_empty m = true -> Empty m.
-
- (** Specification of [add] *)
- Parameter add_1 : E.eq x y -> MapsTo y e (add x e m).
- Parameter add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
- Parameter add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
-
- (** Specification of [remove] *)
- Parameter remove_1 : E.eq x y -> ~ In y (remove x m).
- Parameter remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
- Parameter remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
-
- (** Specification of [find] *)
- Parameter find_1 : MapsTo x e m -> find x m = Some e.
- Parameter find_2 : find x m = Some e -> MapsTo x e m.
-
- (** Specification of [elements] *)
- Parameter elements_1 :
- MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
- Parameter elements_2 :
- InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
- Parameter elements_3 : NoDupA eq_key (elements m).
-
- (** Specification of [fold] *)
- Parameter fold_1 :
- forall (A : Set) (i : A) (f : key -> elt -> A -> A),
- fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
-
- Definition Equal cmp m m' :=
- (forall k, In k m <-> In k m') /\
- (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-
- Variable cmp : elt -> elt -> bool.
-
- (** Specification of [equal] *)
- Parameter equal_1 : Equal cmp m m' -> equal cmp m m' = true.
- Parameter equal_2 : equal cmp m m' = true -> Equal cmp m m'.
-
- End Spec.
- End Types.
-
- (** Specification of [map] *)
- Parameter map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
- MapsTo x e m -> MapsTo x (f e) (map f m).
- Parameter map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
- In x (map f m) -> In x m.
-
- (** Specification of [mapi] *)
- Parameter mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
- (f:key->elt->elt'), MapsTo x e m ->
- exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
- Parameter mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
- (f:key->elt->elt'), In x (mapi f m) -> In x m.
-
- (** Specification of [map2] *)
- Parameter map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
- In x m \/ In x m' ->
- find x (map2 f m m') = f (find x m) (find x m').
-
- Parameter map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
- (x:key)(f:option elt->option elt'->option elt''),
- In x (map2 f m m') -> In x m \/ In x m'.
-
- Hint Immediate MapsTo_1 mem_2 is_empty_2.
-
- Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 add_3 remove_1
- remove_2 remove_3 find_1 find_2 fold_1 map_1 map_2 mapi_1 mapi_2.
-
-End S.
diff --git a/theories/FSets/FMapWeakList.v b/theories/FSets/FMapWeakList.v
index 890485a8..be09e41a 100644
--- a/theories/FSets/FMapWeakList.v
+++ b/theories/FSets/FMapWeakList.v
@@ -6,39 +6,28 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMapWeakList.v 8985 2006-06-23 16:12:45Z jforest $ *)
+(* $Id: FMapWeakList.v 10616 2008-03-04 17:33:35Z letouzey $ *)
(** * Finite map library *)
(** This file proposes an implementation of the non-dependant interface
- [FMapInterface.S] using lists of pairs, unordered but without redundancy. *)
+ [FMapInterface.WS] using lists of pairs, unordered but without redundancy. *)
-Require Import FSetInterface.
-Require Import FSetWeakInterface.
-Require Import FMapWeakInterface.
+Require Import FMapInterface.
Set Implicit Arguments.
Unset Strict Implicit.
-Arguments Scope list [type_scope].
-
Module Raw (X:DecidableType).
-Module PX := KeyDecidableType X.
-Import PX.
+Module Import PX := KeyDecidableType X.
Definition key := X.t.
-Definition t (elt:Set) := list (X.t * elt).
+Definition t (elt:Type) := list (X.t * elt).
Section Elt.
-Variable elt : Set.
-
-(* now in KeyDecidableType:
-Definition eqk (p p':key*elt) := X.eq (fst p) (fst p').
-Definition eqke (p p':key*elt) :=
- X.eq (fst p) (fst p') /\ (snd p) = (snd p').
-*)
+Variable elt : Type.
Notation eqk := (eqk (elt:=elt)).
Notation eqke := (eqke (elt:=elt)).
@@ -221,10 +210,10 @@ Proof.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); inversion_clear Hm; auto.
constructor; auto.
- swap H.
+ contradict H.
apply InA_eqk with (x,e); auto.
constructor; auto.
- swap H; apply add_3' with x e; auto.
+ contradict H; apply add_3' with x e; auto.
Qed.
(* Not part of the exported specifications, used later for [combine]. *)
@@ -272,8 +261,8 @@ Proof.
inversion_clear Hm.
subst.
- swap H0.
- destruct H2 as (e,H2); unfold PX.MapsTo in H2.
+ contradict H0.
+ destruct H0 as (e,H2); unfold PX.MapsTo in H2.
apply InA_eqk with (y,e); auto.
compute; apply X.eq_trans with x; auto.
@@ -323,7 +312,7 @@ Proof.
destruct a as (x',e').
simpl; case (X.eq_dec x x'); auto.
constructor; auto.
- swap H; apply remove_3' with x; auto.
+ contradict H; apply remove_3' with x; auto.
Qed.
(** * [elements] *)
@@ -340,20 +329,20 @@ Proof.
auto.
Qed.
-Lemma elements_3 : forall m (Hm:NoDupA m), NoDupA (elements m).
+Lemma elements_3w : forall m (Hm:NoDupA m), NoDupA (elements m).
Proof.
auto.
Qed.
(** * [fold] *)
-Function fold (A:Set)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A :=
+Function fold (A:Type)(f:key->elt->A->A)(m:t elt) (acc : A) {struct m} : A :=
match m with
| nil => acc
| (k,e)::m' => fold f m' (f k e acc)
end.
-Lemma fold_1 : forall m (A:Set)(i:A)(f:key->elt->A->A),
+Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof.
intros; functional induction (@fold A f m i); auto.
@@ -377,7 +366,7 @@ Definition Submap cmp m m' :=
(forall k, In k m -> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
-Definition Equal cmp m m' :=
+Definition Equivb cmp m m' :=
(forall k, In k m <-> In k m') /\
(forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).
@@ -444,17 +433,17 @@ Qed.
(** Specification of [equal] *)
Lemma equal_1 : forall m (Hm:NoDupA m) m' (Hm': NoDupA m') cmp,
- Equal cmp m m' -> equal cmp m m' = true.
+ Equivb cmp m m' -> equal cmp m m' = true.
Proof.
- unfold Equal, equal.
+ unfold Equivb, equal.
intuition.
apply andb_true_intro; split; apply submap_1; unfold Submap; firstorder.
Qed.
Lemma equal_2 : forall m (Hm:NoDupA m) m' (Hm':NoDupA m') cmp,
- equal cmp m m' = true -> Equal cmp m m'.
+ equal cmp m m' = true -> Equivb cmp m m'.
Proof.
- unfold Equal, equal.
+ unfold Equivb, equal.
intros.
destruct (andb_prop _ _ H); clear H.
generalize (submap_2 Hm Hm' H0).
@@ -462,7 +451,7 @@ Proof.
firstorder.
Qed.
-Variable elt':Set.
+Variable elt':Type.
(** * [map] and [mapi] *)
@@ -483,7 +472,7 @@ Section Elt2.
(* A new section is necessary for previous definitions to work
with different [elt], especially [MapsTo]... *)
-Variable elt elt' : Set.
+Variable elt elt' : Type.
(** Specification of [map] *)
@@ -533,12 +522,12 @@ Proof.
destruct a as (x',e').
inversion_clear Hm.
constructor; auto.
- swap H.
+ contradict H.
(* il faut un map_1 avec eqk au lieu de eqke *)
clear IHm H0.
induction m; simpl in *; auto.
- inversion H1.
- destruct a; inversion H1; auto.
+ inversion H.
+ destruct a; inversion H; auto.
Qed.
(** Specification of [mapi] *)
@@ -593,17 +582,17 @@ Proof.
destruct a as (x',e').
inversion_clear Hm; auto.
constructor; auto.
- swap H.
+ contradict H.
clear IHm H0.
induction m; simpl in *; auto.
- inversion_clear H1.
- destruct a; inversion_clear H1; auto.
+ inversion_clear H.
+ destruct a; inversion_clear H; auto.
Qed.
End Elt2.
Section Elt3.
-Variable elt elt' elt'' : Set.
+Variable elt elt' elt'' : Type.
Notation oee' := (option elt * option elt')%type.
@@ -613,7 +602,7 @@ Definition combine_l (m:t elt)(m':t elt') : t oee' :=
Definition combine_r (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e' => (find k m, Some e')) m'.
-Definition fold_right_pair (A B C:Set)(f:A->B->C->C)(l:list (A*B))(i:C) :=
+Definition fold_right_pair (A B C:Type)(f:A->B->C->C)(l:list (A*B))(i:C) :=
List.fold_right (fun p => f (fst p) (snd p)) i l.
Definition combine (m:t elt)(m':t elt') : t oee' :=
@@ -737,7 +726,7 @@ Qed.
Variable f : option elt -> option elt' -> option elt''.
-Definition option_cons (A:Set)(k:key)(o:option A)(l:list (key*A)) :=
+Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
match o with
| Some e => (k,e)::l
| None => l
@@ -765,13 +754,13 @@ Proof.
inversion_clear H1.
destruct a; destruct o; simpl; auto.
constructor; auto.
- swap H.
+ contradict H.
clear IHl1.
induction l1.
- inversion H1.
+ inversion H.
inversion_clear H0.
destruct a; destruct o; simpl in *; auto.
- inversion_clear H1; auto.
+ inversion_clear H; auto.
Qed.
Definition at_least_one_then_f (o:option elt)(o':option elt') :=
@@ -807,7 +796,7 @@ Proof.
rewrite H2.
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); try absurd_hyp n; auto.
+ destruct (X.eq_dec x k); try contradict n; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
case_eq (find x m0); intros; auto.
elim H0.
@@ -817,7 +806,7 @@ Proof.
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); [ absurd_hyp n; auto | auto].
+ destruct (X.eq_dec x k); [ contradict n; auto | auto].
destruct (IHm0 H1) as (H3,_); apply H3; auto.
destruct (IHm0 H1) as (H3,_); apply H3; auto.
@@ -831,7 +820,7 @@ Proof.
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); [ absurd_hyp n; auto | auto].
+ destruct (X.eq_dec x k); [ contradict n; auto | auto].
destruct (IHm0 H1) as (_,H4); apply H4; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
Qed.
@@ -873,18 +862,18 @@ End Elt3.
End Raw.
-Module Make (X: DecidableType) <: S with Module E:=X.
+Module Make (X: DecidableType) <: WS with Module E:=X.
Module Raw := Raw X.
Module E := X.
Definition key := E.t.
- Record slist (elt:Set) : Set :=
+ Record slist (elt:Type) :=
{this :> Raw.t elt; NoDup : NoDupA (@Raw.PX.eqk elt) this}.
- Definition t (elt:Set) := slist elt.
+ Definition t (elt:Type) := slist elt.
Section Elt.
- Variable elt elt' elt'':Set.
+ Variable elt elt' elt'':Type.
Implicit Types m : t elt.
Implicit Types x y : key.
@@ -901,13 +890,18 @@ Section Elt.
Definition map2 f m (m':t elt') : t elt'' :=
Build_slist (Raw.map2_NoDup f m.(NoDup) m'.(NoDup)).
Definition elements m : list (key*elt) := @Raw.elements elt m.(this).
- Definition fold (A:Set)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
+ Definition cardinal m := length m.(this).
+ Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A := @Raw.fold elt A f m.(this) i.
Definition equal cmp m m' : bool := @Raw.equal elt cmp m.(this) m'.(this).
-
Definition MapsTo x e m : Prop := Raw.PX.MapsTo x e m.(this).
Definition In x m : Prop := Raw.PX.In x m.(this).
Definition Empty m : Prop := Raw.Empty m.(this).
- Definition Equal cmp m m' : Prop := @Raw.Equal elt cmp m.(this) m'.(this).
+
+ Definition Equal m m' := forall y, find y m = find y m'.
+ Definition Equiv (eq_elt:elt->elt->Prop) m m' :=
+ (forall k, In k m <-> In k m') /\
+ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e').
+ Definition Equivb cmp m m' : Prop := @Raw.Equivb elt cmp m.(this) m'.(this).
Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.PX.eqk elt.
Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.PX.eqke elt.
@@ -951,36 +945,39 @@ Section Elt.
Proof. intros m; exact (@Raw.elements_1 elt m.(this)). Qed.
Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
Proof. intros m; exact (@Raw.elements_2 elt m.(this)). Qed.
- Lemma elements_3 : forall m, NoDupA eq_key (elements m).
- Proof. intros m; exact (@Raw.elements_3 elt m.(this) m.(NoDup)). Qed.
+ Lemma elements_3w : forall m, NoDupA eq_key (elements m).
+ Proof. intros m; exact (@Raw.elements_3w elt m.(this) m.(NoDup)). Qed.
+
+ Lemma cardinal_1 : forall m, cardinal m = length (elements m).
+ Proof. intros; reflexivity. Qed.
- Lemma fold_1 : forall m (A : Set) (i : A) (f : key -> elt -> A -> A),
+ Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Proof. intros m; exact (@Raw.fold_1 elt m.(this)). Qed.
- Lemma equal_1 : forall m m' cmp, Equal cmp m m' -> equal cmp m m' = true.
+ Lemma equal_1 : forall m m' cmp, Equivb cmp m m' -> equal cmp m m' = true.
Proof. intros m m'; exact (@Raw.equal_1 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed.
- Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equal cmp m m'.
+ Lemma equal_2 : forall m m' cmp, equal cmp m m' = true -> Equivb cmp m m'.
Proof. intros m m'; exact (@Raw.equal_2 elt m.(this) m.(NoDup) m'.(this) m'.(NoDup)). Qed.
End Elt.
- Lemma map_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
+ Lemma map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'),
MapsTo x e m -> MapsTo x (f e) (map f m).
Proof. intros elt elt' m; exact (@Raw.map_1 elt elt' m.(this)). Qed.
- Lemma map_2 : forall (elt elt':Set)(m: t elt)(x:key)(f:elt->elt'),
+ Lemma map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'),
In x (map f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.map_2 elt elt' m.(this)). Qed.
- Lemma mapi_1 : forall (elt elt':Set)(m: t elt)(x:key)(e:elt)
+ Lemma mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)
(f:key->elt->elt'), MapsTo x e m ->
exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m).
Proof. intros elt elt' m; exact (@Raw.mapi_1 elt elt' m.(this)). Qed.
- Lemma mapi_2 : forall (elt elt':Set)(m: t elt)(x:key)
+ Lemma mapi_2 : forall (elt elt':Type)(m: t elt)(x:key)
(f:key->elt->elt'), In x (mapi f m) -> In x m.
Proof. intros elt elt' m; exact (@Raw.mapi_2 elt elt' m.(this)). Qed.
- Lemma map2_1 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x m \/ In x m' ->
find x (map2 f m m') = f (find x m) (find x m').
@@ -988,7 +985,7 @@ Section Elt.
intros elt elt' elt'' m m' x f;
exact (@Raw.map2_1 elt elt' elt'' f m.(this) m.(NoDup) m'.(this) m'.(NoDup) x).
Qed.
- Lemma map2_2 : forall (elt elt' elt'':Set)(m: t elt)(m': t elt')
+ Lemma map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt')
(x:key)(f:option elt->option elt'->option elt''),
In x (map2 f m m') -> In x m \/ In x m'.
Proof.
diff --git a/theories/FSets/FMaps.v b/theories/FSets/FMaps.v
index 72ccad3f..75904202 100644
--- a/theories/FSets/FMaps.v
+++ b/theories/FSets/FMaps.v
@@ -6,13 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FMaps.v 8844 2006-05-22 17:22:36Z letouzey $ *)
+(* $Id: FMaps.v 10699 2008-03-19 20:56:43Z letouzey $ *)
-Require Export OrderedType.
-Require Export OrderedTypeEx.
-Require Export OrderedTypeAlt.
+
+Require Export OrderedType OrderedTypeEx OrderedTypeAlt.
+Require Export DecidableType DecidableTypeEx.
Require Export FMapInterface.
-Require Export FMapList.
Require Export FMapPositive.
-Require Export FMapIntMap.
-Require Export FMapFacts. \ No newline at end of file
+Require Export FMapFacts.
+Require Export FMapWeakList.
+Require Export FMapList.
diff --git a/theories/FSets/FSetAVL.v b/theories/FSets/FSetAVL.v
index d5ce54d9..faa705f6 100644
--- a/theories/FSets/FSetAVL.v
+++ b/theories/FSets/FSetAVL.v
@@ -1,4 +1,3 @@
-
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
@@ -12,41 +11,555 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: FSetAVL.v 9862 2007-05-25 16:57:06Z letouzey $ *)
+(* $Id: FSetAVL.v 10811 2008-04-17 16:29:49Z letouzey $ *)
+
+(** * FSetAVL *)
(** This module implements sets using AVL trees.
- It follows the implementation from Ocaml's standard library. *)
+ It follows the implementation from Ocaml's standard library,
+
+ All operations given here expect and produce well-balanced trees
+ (in the ocaml sense: heigths of subtrees shouldn't differ by more
+ than 2), and hence has low complexities (e.g. add is logarithmic
+ in the size of the set). But proving these balancing preservations
+ is in fact not necessary for ensuring correct operational behavior
+ and hence fulfilling the FSet interface. As a consequence,
+ balancing results are not part of this file anymore, they can
+ now be found in [FSetFullAVL].
+
+ Four operations ([union], [subset], [compare] and [equal]) have
+ been slightly adapted in order to have only structural recursive
+ calls. The precise ocaml versions of these operations have also
+ been formalized (thanks to Function+measure), see [ocaml_union],
+ [ocaml_subset], [ocaml_compare] and [ocaml_equal] in
+ [FSetFullAVL]. The structural variants compute faster in Coq,
+ whereas the other variants produce nicer and/or (slightly) faster
+ code after extraction.
+*)
-Require Import FSetInterface.
-Require Import FSetList.
-Require Import ZArith.
-Require Import Int.
+Require Import FSetInterface FSetList ZArith Int.
-Set Firstorder Depth 3.
+Set Implicit Arguments.
+Unset Strict Implicit.
-Module Raw (I:Int)(X:OrderedType).
-Import I.
-Module II:=MoreInt(I).
-Import II.
-Open Local Scope Int_scope.
+(** Notations and helper lemma about pairs *)
+
+Notation "s #1" := (fst s) (at level 9, format "s '#1'") : pair_scope.
+Notation "s #2" := (snd s) (at level 9, format "s '#2'") : pair_scope.
-Module E := X.
-Module MX := OrderedTypeFacts X.
+(** * Raw
+
+ Functor of pure functions + a posteriori proofs of invariant
+ preservation *)
+
+Module Raw (Import I:Int)(X:OrderedType).
+Open Local Scope pair_scope.
+Open Local Scope lazy_bool_scope.
+Open Local Scope Int_scope.
Definition elt := X.t.
-(** * Trees *)
+(** * Trees
-Inductive tree : Set :=
+ The fourth field of [Node] is the height of the tree *)
+
+Inductive tree :=
| Leaf : tree
| Node : tree -> X.t -> tree -> int -> tree.
Notation t := tree.
-(** The fourth field of [Node] is the height of the tree *)
+(** * Basic functions on trees: height and cardinal *)
+
+Definition height (s : tree) : int :=
+ match s with
+ | Leaf => 0
+ | Node _ _ _ h => h
+ end.
+
+Fixpoint cardinal (s : tree) : nat :=
+ match s with
+ | Leaf => 0%nat
+ | Node l _ r _ => S (cardinal l + cardinal r)
+ end.
+
+(** * Empty Set *)
+
+Definition empty := Leaf.
+
+(** * Emptyness test *)
+
+Definition is_empty s :=
+ match s with Leaf => true | _ => false end.
+
+(** * Appartness *)
+
+(** The [mem] function is deciding appartness. It exploits the
+ binary search tree invariant to achieve logarithmic complexity. *)
+
+Fixpoint mem x s :=
+ match s with
+ | Leaf => false
+ | Node l y r _ => match X.compare x y with
+ | LT _ => mem x l
+ | EQ _ => true
+ | GT _ => mem x r
+ end
+ end.
+
+(** * Singleton set *)
+
+Definition singleton x := Node Leaf x Leaf 1.
+
+(** * Helper functions *)
+
+(** [create l x r] creates a node, assuming [l] and [r]
+ to be balanced and [|height l - height r| <= 2]. *)
+
+Definition create l x r :=
+ Node l x r (max (height l) (height r) + 1).
+
+(** [bal l x r] acts as [create], but performs one step of
+ rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
+
+Definition assert_false := create.
+
+Definition bal l x r :=
+ let hl := height l in
+ let hr := height r in
+ if gt_le_dec hl (hr+2) then
+ match l with
+ | Leaf => assert_false l x r
+ | Node ll lx lr _ =>
+ if ge_lt_dec (height ll) (height lr) then
+ create ll lx (create lr x r)
+ else
+ match lr with
+ | Leaf => assert_false l x r
+ | Node lrl lrx lrr _ =>
+ create (create ll lx lrl) lrx (create lrr x r)
+ end
+ end
+ else
+ if gt_le_dec hr (hl+2) then
+ match r with
+ | Leaf => assert_false l x r
+ | Node rl rx rr _ =>
+ if ge_lt_dec (height rr) (height rl) then
+ create (create l x rl) rx rr
+ else
+ match rl with
+ | Leaf => assert_false l x r
+ | Node rll rlx rlr _ =>
+ create (create l x rll) rlx (create rlr rx rr)
+ end
+ end
+ else
+ create l x r.
+
+(** * Insertion *)
+
+Fixpoint add x s := match s with
+ | Leaf => Node Leaf x Leaf 1
+ | Node l y r h =>
+ match X.compare x y with
+ | LT _ => bal (add x l) y r
+ | EQ _ => Node l y r h
+ | GT _ => bal l y (add x r)
+ end
+ end.
+
+(** * Join
+
+ Same as [bal] but does not assume anything regarding heights
+ of [l] and [r].
+*)
+
+Fixpoint join l : elt -> t -> t :=
+ match l with
+ | Leaf => add
+ | Node ll lx lr lh => fun x =>
+ fix join_aux (r:t) : t := match r with
+ | Leaf => add x l
+ | Node rl rx rr rh =>
+ if gt_le_dec lh (rh+2) then bal ll lx (join lr x r)
+ else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rr
+ else create l x r
+ end
+ end.
+
+(** * Extraction of minimum element
+
+ Morally, [remove_min] is to be applied to a non-empty tree
+ [t = Node l x r h]. Since we can't deal here with [assert false]
+ for [t=Leaf], we pre-unpack [t] (and forget about [h]).
+*)
+
+Fixpoint remove_min l x r : t*elt :=
+ match l with
+ | Leaf => (r,x)
+ | Node ll lx lr lh =>
+ let (l',m) := remove_min ll lx lr in (bal l' x r, m)
+ end.
+
+(** * Merging two trees
+
+ [merge t1 t2] builds the union of [t1] and [t2] assuming all elements
+ of [t1] to be smaller than all elements of [t2], and
+ [|height t1 - height t2| <= 2].
+*)
+
+Definition merge s1 s2 := match s1,s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 r2 h2 =>
+ let (s2',m) := remove_min l2 x2 r2 in bal s1 m s2'
+end.
+
+(** * Deletion *)
+
+Fixpoint remove x s := match s with
+ | Leaf => Leaf
+ | Node l y r h =>
+ match X.compare x y with
+ | LT _ => bal (remove x l) y r
+ | EQ _ => merge l r
+ | GT _ => bal l y (remove x r)
+ end
+ end.
+
+(** * Minimum element *)
+
+Fixpoint min_elt s := match s with
+ | Leaf => None
+ | Node Leaf y _ _ => Some y
+ | Node l _ _ _ => min_elt l
+end.
+
+(** * Maximum element *)
+
+Fixpoint max_elt s := match s with
+ | Leaf => None
+ | Node _ y Leaf _ => Some y
+ | Node _ _ r _ => max_elt r
+end.
+
+(** * Any element *)
+
+Definition choose := min_elt.
+
+(** * Concatenation
+
+ Same as [merge] but does not assume anything about heights.
+*)
+
+Definition concat s1 s2 :=
+ match s1, s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | _, Node l2 x2 r2 _ =>
+ let (s2',m) := remove_min l2 x2 r2 in
+ join s1 m s2'
+ end.
+
+(** * Splitting
+
+ [split x s] returns a triple [(l, present, r)] where
+ - [l] is the set of elements of [s] that are [< x]
+ - [r] is the set of elements of [s] that are [> x]
+ - [present] is [true] if and only if [s] contains [x].
+*)
+
+Record triple := mktriple { t_left:t; t_in:bool; t_right:t }.
+Notation "<< l , b , r >>" := (mktriple l b r) (at level 9).
+Notation "t #l" := (t_left t) (at level 9, format "t '#l'").
+Notation "t #b" := (t_in t) (at level 9, format "t '#b'").
+Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
+
+Fixpoint split x s : triple := match s with
+ | Leaf => << Leaf, false, Leaf >>
+ | Node l y r h =>
+ match X.compare x y with
+ | LT _ => let (ll,b,rl) := split x l in << ll, b, join rl y r >>
+ | EQ _ => << l, true, r >>
+ | GT _ => let (rl,b,rr) := split x r in << join l y rl, b, rr >>
+ end
+ end.
+
+(** * Intersection *)
+
+Fixpoint inter s1 s2 := match s1, s2 with
+ | Leaf, _ => Leaf
+ | _, Leaf => Leaf
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',pres,r2') := split x1 s2 in
+ if pres then join (inter l1 l2') x1 (inter r1 r2')
+ else concat (inter l1 l2') (inter r1 r2')
+ end.
+
+(** * Difference *)
+
+Fixpoint diff s1 s2 := match s1, s2 with
+ | Leaf, _ => Leaf
+ | _, Leaf => s1
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',pres,r2') := split x1 s2 in
+ if pres then concat (diff l1 l2') (diff r1 r2')
+ else join (diff l1 l2') x1 (diff r1 r2')
+end.
+
+(** * Union *)
+
+(** In ocaml, heights of [s1] and [s2] are compared each time in order
+ to recursively perform the split on the smaller set.
+ Unfortunately, this leads to a non-structural algorithm. The
+ following code is a simplification of the ocaml version: no
+ comparison of heights. It might be slightly slower, but
+ experimentally all the tests I've made in ocaml have shown this
+ potential slowdown to be non-significant. Anyway, the exact code
+ of ocaml has also been formalized thanks to Function+measure, see
+ [ocaml_union] in [FSetFullAVL].
+*)
+
+Fixpoint union s1 s2 :=
+ match s1, s2 with
+ | Leaf, _ => s2
+ | _, Leaf => s1
+ | Node l1 x1 r1 h1, _ =>
+ let (l2',_,r2') := split x1 s2 in
+ join (union l1 l2') x1 (union r1 r2')
+ end.
+
+(** * Elements *)
+
+(** [elements_tree_aux acc t] catenates the elements of [t] in infix
+ order to the list [acc] *)
+
+Fixpoint elements_aux (acc : list X.t) (t : tree) : list X.t :=
+ match t with
+ | Leaf => acc
+ | Node l x r _ => elements_aux (x :: elements_aux acc r) l
+ end.
+
+(** then [elements] is an instanciation with an empty [acc] *)
+
+Definition elements := elements_aux nil.
+
+(** * Filter *)
+
+Fixpoint filter_acc (f:elt->bool) acc s := match s with
+ | Leaf => acc
+ | Node l x r h =>
+ filter_acc f (filter_acc f (if f x then add x acc else acc) l) r
+ end.
+
+Definition filter f := filter_acc f Leaf.
+
+
+(** * Partition *)
+
+Fixpoint partition_acc (f:elt->bool)(acc : t*t)(s : t) : t*t :=
+ match s with
+ | Leaf => acc
+ | Node l x r _ =>
+ let (acct,accf) := acc in
+ partition_acc f
+ (partition_acc f
+ (if f x then (add x acct, accf) else (acct, add x accf)) l) r
+ end.
+
+Definition partition f := partition_acc f (Leaf,Leaf).
+
+(** * [for_all] and [exists] *)
+
+Fixpoint for_all (f:elt->bool) s := match s with
+ | Leaf => true
+ | Node l x r _ => f x &&& for_all f l &&& for_all f r
+end.
+
+Fixpoint exists_ (f:elt->bool) s := match s with
+ | Leaf => false
+ | Node l x r _ => f x ||| exists_ f l ||| exists_ f r
+end.
+
+(** * Fold *)
+
+Fixpoint fold (A : Type) (f : elt -> A -> A)(s : tree) : A -> A :=
+ fun a => match s with
+ | Leaf => a
+ | Node l x r _ => fold f r (f x (fold f l a))
+ end.
+Implicit Arguments fold [A].
+
+
+(** * Subset *)
+
+(** In ocaml, recursive calls are made on "half-trees" such as
+ (Node l1 x1 Leaf _) and (Node Leaf x1 r1 _). Instead of these
+ non-structural calls, we propose here two specialized functions for
+ these situations. This version should be almost as efficient as
+ the one of ocaml (closures as arguments may slow things a bit),
+ it is simply less compact. The exact ocaml version has also been
+ formalized (thanks to Function+measure), see [ocaml_subset] in
+ [FSetFullAVL].
+ *)
+
+Fixpoint subsetl (subset_l1:t->bool) x1 s2 : bool :=
+ match s2 with
+ | Leaf => false
+ | Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | EQ _ => subset_l1 l2
+ | LT _ => subsetl subset_l1 x1 l2
+ | GT _ => mem x1 r2 &&& subset_l1 s2
+ end
+ end.
+
+Fixpoint subsetr (subset_r1:t->bool) x1 s2 : bool :=
+ match s2 with
+ | Leaf => false
+ | Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | EQ _ => subset_r1 r2
+ | LT _ => mem x1 l2 &&& subset_r1 s2
+ | GT _ => subsetr subset_r1 x1 r2
+ end
+ end.
+
+Fixpoint subset s1 s2 : bool := match s1, s2 with
+ | Leaf, _ => true
+ | Node _ _ _ _, Leaf => false
+ | Node l1 x1 r1 h1, Node l2 x2 r2 h2 =>
+ match X.compare x1 x2 with
+ | EQ _ => subset l1 l2 &&& subset r1 r2
+ | LT _ => subsetl (subset l1) x1 l2 &&& subset r1 s2
+ | GT _ => subsetr (subset r1) x1 r2 &&& subset l1 s2
+ end
+ end.
+
+(** * A new comparison algorithm suggested by Xavier Leroy
+
+ Transformation in C.P.S. suggested by Benjamin Grégoire.
+ The original ocaml code (with non-structural recursive calls)
+ has also been formalized (thanks to Function+measure), see
+ [ocaml_compare] in [FSetFullAVL]. The following code with
+ continuations computes dramatically faster in Coq, and
+ should be almost as efficient after extraction.
+*)
+
+(** Enumeration of the elements of a tree *)
+
+Inductive enumeration :=
+ | End : enumeration
+ | More : elt -> tree -> enumeration -> enumeration.
+
+
+(** [cons t e] adds the elements of tree [t] on the head of
+ enumeration [e]. *)
+
+Fixpoint cons s e : enumeration :=
+ match s with
+ | Leaf => e
+ | Node l x r h => cons l (More x r e)
+ end.
+
+(** One step of comparison of elements *)
+
+Definition compare_more x1 (cont:enumeration->comparison) e2 :=
+ match e2 with
+ | End => Gt
+ | More x2 r2 e2 =>
+ match X.compare x1 x2 with
+ | EQ _ => cont (cons r2 e2)
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ end.
+
+(** Comparison of left tree, middle element, then right tree *)
+
+Fixpoint compare_cont s1 (cont:enumeration->comparison) e2 :=
+ match s1 with
+ | Leaf => cont e2
+ | Node l1 x1 r1 _ =>
+ compare_cont l1 (compare_more x1 (compare_cont r1 cont)) e2
+ end.
+
+(** Initial continuation *)
+
+Definition compare_end e2 :=
+ match e2 with End => Eq | _ => Lt end.
+
+(** The complete comparison *)
+
+Definition compare s1 s2 := compare_cont s1 compare_end (cons s2 End).
+
+(** * Equality test *)
+
+Definition equal s1 s2 : bool :=
+ match compare s1 s2 with
+ | Eq => true
+ | _ => false
+ end.
+
+
+
+
+(** * Invariants *)
+
+(** ** Occurrence in a tree *)
+
+Inductive In (x : elt) : tree -> Prop :=
+ | IsRoot : forall l r h y, X.eq x y -> In x (Node l y r h)
+ | InLeft : forall l r h y, In x l -> In x (Node l y r h)
+ | InRight : forall l r h y, In x r -> In x (Node l y r h).
+
+(** ** Binary search trees *)
+
+(** [lt_tree x s]: all elements in [s] are smaller than [x]
+ (resp. greater for [gt_tree]) *)
+
+Definition lt_tree x s := forall y, In y s -> X.lt y x.
+Definition gt_tree x s := forall y, In y s -> X.lt x y.
+
+(** [bst t] : [t] is a binary search tree *)
+
+Inductive bst : tree -> Prop :=
+ | BSLeaf : bst Leaf
+ | BSNode : forall x l r h, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (Node l x r h).
+
+
+
+
+(** * Some shortcuts *)
+
+Definition Equal s s' := forall a : elt, In a s <-> In a s'.
+Definition Subset s s' := forall a : elt, In a s -> In a s'.
+Definition Empty s := forall a : elt, ~ In a s.
+Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
+Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
+
+
+
+(** * Correctness proofs, isolated in a sub-module *)
+
+Module Proofs.
+ Module MX := OrderedTypeFacts X.
+ Module L := FSetList.Raw X.
+
+(** * Automation and dedicated tactics *)
+
+Hint Constructors In bst.
+Hint Unfold lt_tree gt_tree.
+
+Tactic Notation "factornode" ident(l) ident(x) ident(r) ident(h)
+ "as" ident(s) :=
+ set (s:=Node l x r h) in *; clearbody s; clear l x r h.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node _ _ _ _))] *)
+
Ltac inv f :=
match goal with
| H:f Leaf |- _ => inversion_clear H; inv f
@@ -56,30 +569,18 @@ Ltac inv f :=
| _ => idtac
end.
-(** Same, but with a backup of the original hypothesis. *)
+Ltac intuition_in := repeat progress (intuition; inv In).
-Ltac safe_inv f := match goal with
- | H:f (Node _ _ _ _) |- _ =>
- generalize H; inversion_clear H; safe_inv f
- | _ => intros
- end.
+(** Helper tactic concerning order of elements. *)
-(** * Occurrence in a tree *)
+Ltac order := match goal with
+ | U: lt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
+ | U: gt_tree _ ?s, V: In _ ?s |- _ => generalize (U _ V); clear U; order
+ | _ => MX.order
+end.
-Inductive In (x : elt) : tree -> Prop :=
- | IsRoot :
- forall (l r : tree) (h : int) (y : elt),
- X.eq x y -> In x (Node l y r h)
- | InLeft :
- forall (l r : tree) (h : int) (y : elt),
- In x l -> In x (Node l y r h)
- | InRight :
- forall (l r : tree) (h : int) (y : elt),
- In x r -> In x (Node l y r h).
-
-Hint Constructors In.
-Ltac intuition_in := repeat progress (intuition; inv In).
+(** * Basic results about [In], [lt_tree], [gt_tree], [height] *)
(** [In] is compatible with [X.eq] *)
@@ -90,48 +591,37 @@ Proof.
Qed.
Hint Immediate In_1.
-(** * Binary search trees *)
-
-(** [lt_tree x s]: all elements in [s] are smaller than [x]
- (resp. greater for [gt_tree]) *)
-
-Definition lt_tree (x : elt) (s : tree) :=
- forall y:elt, In y s -> X.lt y x.
-Definition gt_tree (x : elt) (s : tree) :=
- forall y:elt, In y s -> X.lt x y.
-
-Hint Unfold lt_tree gt_tree.
-
-Ltac order := match goal with
- | H: lt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
- | H: gt_tree ?x ?s, H1: In ?y ?s |- _ => generalize (H _ H1); clear H; order
- | _ => MX.order
-end.
+Lemma In_node_iff :
+ forall l x r h y,
+ In y (Node l x r h) <-> In y l \/ X.eq y x \/ In y r.
+Proof.
+ intuition_in.
+Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x : elt, lt_tree x Leaf.
Proof.
- unfold lt_tree in |- *; intros; inversion H.
+ red; inversion 1.
Qed.
Lemma gt_leaf : forall x : elt, gt_tree x Leaf.
Proof.
- unfold gt_tree in |- *; intros; inversion H.
+ red; inversion 1.
Qed.
Lemma lt_tree_node :
forall (x y : elt) (l r : tree) (h : int),
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node l y r h).
Proof.
- unfold lt_tree in *; intuition_in; order.
+ unfold lt_tree; intuition_in; order.
Qed.
Lemma gt_tree_node :
forall (x y : elt) (l r : tree) (h : int),
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node l y r h).
Proof.
- unfold gt_tree in *; intuition_in; order.
+ unfold gt_tree; intuition_in; order.
Qed.
Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node.
@@ -145,7 +635,7 @@ Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall t, lt_tree x t -> lt_tree y t.
Proof.
- firstorder eauto.
+ eauto.
Qed.
Lemma gt_tree_not_in :
@@ -157,120 +647,43 @@ Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall t, gt_tree x t -> gt_tree y t.
Proof.
- firstorder eauto.
+ eauto.
Qed.
Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans.
-(** [bst t] : [t] is a binary search tree *)
-
-Inductive bst : tree -> Prop :=
- | BSLeaf : bst Leaf
- | BSNode :
- forall (x : elt) (l r : tree) (h : int),
- bst l -> bst r -> lt_tree x l -> gt_tree x r -> bst (Node l x r h).
+(** * Inductions principles *)
-Hint Constructors bst.
+Functional Scheme mem_ind := Induction for mem Sort Prop.
+Functional Scheme bal_ind := Induction for bal Sort Prop.
+Functional Scheme add_ind := Induction for add Sort Prop.
+Functional Scheme remove_min_ind := Induction for remove_min Sort Prop.
+Functional Scheme merge_ind := Induction for merge Sort Prop.
+Functional Scheme remove_ind := Induction for remove Sort Prop.
+Functional Scheme min_elt_ind := Induction for min_elt Sort Prop.
+Functional Scheme max_elt_ind := Induction for max_elt Sort Prop.
+Functional Scheme concat_ind := Induction for concat Sort Prop.
+Functional Scheme split_ind := Induction for split Sort Prop.
+Functional Scheme inter_ind := Induction for inter Sort Prop.
+Functional Scheme diff_ind := Induction for diff Sort Prop.
+Functional Scheme union_ind := Induction for union Sort Prop.
-(** * AVL trees *)
-(** [avl s] : [s] is a properly balanced AVL tree,
- i.e. for any node the heights of the two children
- differ by at most 2 *)
-
-Definition height (s : tree) : int :=
- match s with
- | Leaf => 0
- | Node _ _ _ h => h
- end.
-
-Inductive avl : tree -> Prop :=
- | RBLeaf : avl Leaf
- | RBNode :
- forall (x : elt) (l r : tree) (h : int),
- avl l ->
- avl r ->
- -(2) <= height l - height r <= 2 ->
- h = max (height l) (height r) + 1 ->
- avl (Node l x r h).
-
-Hint Constructors avl.
-
-(** Results about [avl] *)
-
-Lemma avl_node :
- forall (x : elt) (l r : tree),
- avl l ->
- avl r ->
- -(2) <= height l - height r <= 2 ->
- avl (Node l x r (max (height l) (height r) + 1)).
-Proof.
- intros; auto.
-Qed.
-Hint Resolve avl_node.
-
-(** The tactics *)
+(** * Empty set *)
-Lemma height_non_negative : forall s : tree, avl s -> height s >= 0.
+Lemma empty_1 : Empty empty.
Proof.
- induction s; simpl; intros; auto with zarith.
- inv avl; intuition; omega_max.
+ intro; intro.
+ inversion H.
Qed.
-Implicit Arguments height_non_negative.
-
-(** When [H:avl r], typing [avl_nn H] or [avl_nn r] adds [height r>=0] *)
-
-Ltac avl_nn_hyp H :=
- let nz := fresh "nz" in assert (nz := height_non_negative H).
-
-Ltac avl_nn h :=
- let t := type of h in
- match type of t with
- | Prop => avl_nn_hyp h
- | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
- end.
-
-(* Repeat the previous tactic.
- Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
-
-Ltac avl_nns :=
- match goal with
- | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
- | _ => idtac
- end.
-
-(** * Some shortcuts. *)
-
-Definition Equal s s' := forall a : elt, In a s <-> In a s'.
-Definition Subset s s' := forall a : elt, In a s -> In a s'.
-Definition Empty s := forall a : elt, ~ In a s.
-Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
-Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
-
-(** * Empty set *)
-
-Definition empty := Leaf.
Lemma empty_bst : bst empty.
Proof.
auto.
Qed.
-Lemma empty_avl : avl empty.
-Proof.
- auto.
-Qed.
-
-Lemma empty_1 : Empty empty.
-Proof.
- intro; intro.
- inversion H.
-Qed.
-
(** * Emptyness test *)
-Definition is_empty (s:t) := match s with Leaf => true | _ => false end.
-
Lemma is_empty_1 : forall s, Empty s -> is_empty s = true.
Proof.
destruct s as [|r x l h]; simpl; auto.
@@ -282,54 +695,28 @@ Proof.
destruct s; simpl; intros; try discriminate; red; auto.
Qed.
-(** * Appartness *)
-(** The [mem] function is deciding appartness. It exploits the [bst] property
- to achieve logarithmic complexity. *)
-Function mem (x:elt)(s:t) { struct s } : bool :=
- match s with
- | Leaf => false
- | Node l y r _ => match X.compare x y with
- | LT _ => mem x l
- | EQ _ => true
- | GT _ => mem x r
- end
- end.
+(** * Appartness *)
Lemma mem_1 : forall s x, bst s -> In x s -> mem x s = true.
-Proof.
- intros s x.
- functional induction (mem x s); inversion_clear 1; auto.
- inversion_clear 1.
- inversion_clear 1; auto; absurd (X.lt x y); eauto.
- inversion_clear 1; auto; absurd (X.lt y x); eauto.
+Proof.
+ intros s x; functional induction mem x s; auto; intros; try clear e0;
+ inv bst; intuition_in; order.
Qed.
Lemma mem_2 : forall s x, mem x s = true -> In x s.
Proof.
- intros s x.
- functional induction (mem x s); auto; intros; try discriminate.
+ intros s x; functional induction mem x s; auto; intros; discriminate.
Qed.
-(** * Singleton set *)
-Definition singleton (x : elt) := Node Leaf x Leaf 1.
-
-Lemma singleton_bst : forall x : elt, bst (singleton x).
-Proof.
- unfold singleton; auto.
-Qed.
-Lemma singleton_avl : forall x : elt, avl (singleton x).
-Proof.
- unfold singleton; intro.
- constructor; auto; try red; simpl; omega_max.
-Qed.
+(** * Singleton set *)
Lemma singleton_1 : forall x y, In y (singleton x) -> X.eq x y.
Proof.
- unfold singleton; inversion_clear 1; auto; inversion_clear H0.
+ unfold singleton; intros; inv In; order.
Qed.
Lemma singleton_2 : forall x y, X.eq x y -> In y (singleton x).
@@ -337,35 +724,14 @@ Proof.
unfold singleton; auto.
Qed.
-(** * Helper functions *)
-
-(** [create l x r] creates a node, assuming [l] and [r]
- to be balanced and [|height l - height r| <= 2]. *)
-
-Definition create l x r :=
- Node l x r (max (height l) (height r) + 1).
-
-Lemma create_bst :
- forall l x r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
- bst (create l x r).
+Lemma singleton_bst : forall x : elt, bst (singleton x).
Proof.
- unfold create; auto.
+ unfold singleton; auto.
Qed.
-Hint Resolve create_bst.
-Lemma create_avl :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- avl (create l x r).
-Proof.
- unfold create; auto.
-Qed.
-Lemma create_height :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (create l x r) = max (height l) (height r) + 1.
-Proof.
- unfold create; intros; auto.
-Qed.
+
+(** * Helper functions *)
Lemma create_in :
forall l x r y, In y (create l x r) <-> X.eq y x \/ In y l \/ In y r.
@@ -373,196 +739,69 @@ Proof.
unfold create; split; [ inversion_clear 1 | ]; intuition.
Qed.
-(** trick for emulating [assert false] in Coq *)
-
-Definition assert_false := Leaf.
-
-(** [bal l x r] acts as [create], but performs one step of
- rebalancing if necessary, i.e. assumes [|height l - height r| <= 3]. *)
-
-Definition bal l x r :=
- let hl := height l in
- let hr := height r in
- if gt_le_dec hl (hr+2) then
- match l with
- | Leaf => assert_false
- | Node ll lx lr _ =>
- if ge_lt_dec (height ll) (height lr) then
- create ll lx (create lr x r)
- else
- match lr with
- | Leaf => assert_false
- | Node lrl lrx lrr _ =>
- create (create ll lx lrl) lrx (create lrr x r)
- end
- end
- else
- if gt_le_dec hr (hl+2) then
- match r with
- | Leaf => assert_false
- | Node rl rx rr _ =>
- if ge_lt_dec (height rr) (height rl) then
- create (create l x rl) rx rr
- else
- match rl with
- | Leaf => assert_false
- | Node rll rlx rlr _ =>
- create (create l x rll) rlx (create rlr rx rr)
- end
- end
- else
- create l x r.
-
-Ltac bal_tac :=
- intros l x r;
- unfold bal;
- destruct (gt_le_dec (height l) (height r + 2));
- [ destruct l as [ |ll lx lr lh];
- [ | destruct (ge_lt_dec (height ll) (height lr));
- [ | destruct lr ] ]
- | destruct (gt_le_dec (height r) (height l + 2));
- [ destruct r as [ |rl rx rr rh];
- [ | destruct (ge_lt_dec (height rr) (height rl));
- [ | destruct rl ] ]
- | ] ]; intros.
-
-Lemma bal_bst : forall l x r, bst l -> bst r ->
- lt_tree x l -> gt_tree x r -> bst (bal l x r).
-Proof.
- (* intros l x r; functional induction bal l x r. MARCHE PAS !*)
- bal_tac;
- inv bst; repeat apply create_bst; auto; unfold create;
- apply lt_tree_node || apply gt_tree_node; auto;
- eapply lt_tree_trans || eapply gt_tree_trans || eauto; eauto.
-Qed.
-
-Lemma bal_avl : forall l x r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 -> avl (bal l x r).
+Lemma create_bst :
+ forall l x r, bst l -> bst r -> lt_tree x l -> gt_tree x r ->
+ bst (create l x r).
Proof.
- bal_tac; inv avl; repeat apply create_avl; simpl in *; auto; omega_max.
+ unfold create; auto.
Qed.
+Hint Resolve create_bst.
-Lemma bal_height_1 : forall l x r, avl l -> avl r ->
- -(3) <= height l - height r <= 3 ->
- 0 <= height (bal l x r) - max (height l) (height r) <= 1.
+Lemma bal_in : forall l x r y,
+ In y (bal l x r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
- bal_tac; inv avl; avl_nns; simpl in *; omega_max.
+ intros l x r; functional induction bal l x r; intros; try clear e0;
+ rewrite !create_in; intuition_in.
Qed.
-Lemma bal_height_2 :
- forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
- height (bal l x r) == max (height l) (height r) +1.
+Lemma bal_bst : forall l x r, bst l -> bst r ->
+ lt_tree x l -> gt_tree x r -> bst (bal l x r).
Proof.
- bal_tac; inv avl; simpl in *; omega_max.
+ intros l x r; functional induction bal l x r; intros;
+ inv bst; repeat apply create_bst; auto; unfold create;
+ (apply lt_tree_node || apply gt_tree_node); auto;
+ (eapply lt_tree_trans || eapply gt_tree_trans); eauto.
Qed.
+Hint Resolve bal_bst.
-Lemma bal_in : forall l x r y, avl l -> avl r ->
- (In y (bal l x r) <-> X.eq y x \/ In y l \/ In y r).
-Proof.
- bal_tac;
- solve [repeat rewrite create_in; intuition_in
- |inv avl; avl_nns; simpl in *; false_omega].
-Qed.
-Ltac omega_bal := match goal with
- | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] =>
- generalize (bal_height_1 l x r H H') (bal_height_2 l x r H H');
- omega_max
- end.
(** * Insertion *)
-Function add (x:elt)(s:t) { struct s } : t := match s with
- | Leaf => Node Leaf x Leaf 1
- | Node l y r h =>
- match X.compare x y with
- | LT _ => bal (add x l) y r
- | EQ _ => Node l y r h
- | GT _ => bal l y (add x r)
- end
- end.
-
-Lemma add_avl_1 : forall s x, avl s ->
- avl (add x s) /\ 0 <= height (add x s) - height s <= 1.
-Proof.
- intros s x; functional induction (add x s); subst;intros; inv avl; simpl in *.
- intuition; try constructor; simpl; auto; try omega_max.
- (* LT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
- (* EQ *)
- intuition; omega_max.
- (* GT *)
- destruct IHt; auto.
- split.
- apply bal_avl; auto; omega_max.
- omega_bal.
-Qed.
-
-Lemma add_avl : forall s x, avl s -> avl (add x s).
-Proof.
- intros; generalize (add_avl_1 s x H); intuition.
-Qed.
-Hint Resolve add_avl.
-
-Lemma add_in : forall s x y, avl s ->
- (In y (add x s) <-> X.eq y x \/ In y s).
+Lemma add_in : forall s x y,
+ In y (add x s) <-> X.eq y x \/ In y s.
Proof.
- intros s x; functional induction (add x s); auto; intros.
- intuition_in.
- (* LT *)
- inv avl.
- rewrite bal_in; auto.
- rewrite (IHt y0 H0); intuition_in.
- (* EQ *)
- inv avl.
- intuition.
+ intros s x; functional induction (add x s); auto; intros;
+ try rewrite bal_in, IHt; intuition_in.
eapply In_1; eauto.
- (* GT *)
- inv avl.
- rewrite bal_in; auto.
- rewrite (IHt y0 H1); intuition_in.
Qed.
-Lemma add_bst : forall s x, bst s -> avl s -> bst (add x s).
+Lemma add_bst : forall s x, bst s -> bst (add x s).
Proof.
- intros s x; functional induction (add x s); auto; intros.
- inv bst; inv avl; apply bal_bst; auto.
+ intros s x; functional induction (add x s); auto; intros;
+ inv bst; apply bal_bst; auto.
(* lt_tree -> lt_tree (add ...) *)
- red; red in H4.
+ red; red in H3.
intros.
- rewrite (add_in l x y0 H) in H0.
+ rewrite add_in in H.
intuition.
eauto.
- inv bst; inv avl; apply bal_bst; auto.
+ inv bst; auto using bal_bst.
(* gt_tree -> gt_tree (add ...) *)
- red; red in H4.
+ red; red in H3.
intros.
- rewrite (add_in r x y0 H5) in H0.
+ rewrite add_in in H.
intuition.
apply MX.lt_eq with x; auto.
Qed.
+Hint Resolve add_bst.
-(** * Join
- Same as [bal] but does not assume anything regarding heights
- of [l] and [r].
-*)
-Fixpoint join (l:t) : elt -> t -> t :=
- match l with
- | Leaf => add
- | Node ll lx lr lh => fun x =>
- fix join_aux (r:t) : t := match r with
- | Leaf => add x l
- | Node rl rx rr rh =>
- if gt_le_dec lh (rh+2) then bal ll lx (join lr x r)
- else if gt_le_dec rh (lh+2) then bal (join_aux rl) rx rr
- else create l x r
- end
- end.
+(** * Join *)
+
+(* Function/Functional Scheme can't deal with internal fix.
+ Let's do its job by hand: *)
Ltac join_tac :=
intro l; induction l as [| ll _ lx lr Hlr lh];
@@ -579,437 +818,200 @@ Ltac join_tac :=
end
| ] ] ] ]; intros.
-Lemma join_avl_1 : forall l x r, avl l -> avl r -> avl (join l x r) /\
- 0<= height (join l x r) - max (height l) (height r) <= 1.
-Proof.
- (* intros l x r; functional induction join l x r. AUTRE PROBLEME! *)
- join_tac.
-
- split; simpl; auto.
- destruct (add_avl_1 r x H0).
- avl_nns; omega_max.
- split; auto.
- set (l:=Node ll lx lr lh) in *.
- destruct (add_avl_1 l x H).
- simpl (height Leaf).
- avl_nns; omega_max.
-
- inversion_clear H.
- assert (height (Node rl rx rr rh) = rh); auto.
- set (r := Node rl rx rr rh) in *; clearbody r.
- destruct (Hlr x r H2 H0); clear Hrl Hlr.
- set (j := join lr x r) in *; clearbody j.
- simpl.
- assert (-(3) <= height ll - height j <= 3) by omega_max.
- split.
- apply bal_avl; auto.
- omega_bal.
-
- inversion_clear H0.
- assert (height (Node ll lx lr lh) = lh); auto.
- set (l := Node ll lx lr lh) in *; clearbody l.
- destruct (Hrl H H1); clear Hrl Hlr.
- set (j := join l x rl) in *; clearbody j.
- simpl.
- assert (-(3) <= height j - height rr <= 3) by omega_max.
- split.
- apply bal_avl; auto.
- omega_bal.
-
- clear Hrl Hlr.
- assert (height (Node ll lx lr lh) = lh); auto.
- assert (height (Node rl rx rr rh) = rh); auto.
- set (l := Node ll lx lr lh) in *; clearbody l.
- set (r := Node rl rx rr rh) in *; clearbody r.
- assert (-(2) <= height l - height r <= 2) by omega_max.
- split.
- apply create_avl; auto.
- rewrite create_height; auto; omega_max.
-Qed.
-
-Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r).
-Proof.
- intros; generalize (join_avl_1 l x r H H0); intuition.
-Qed.
-Hint Resolve join_avl.
-
-Lemma join_in : forall l x r y, avl l -> avl r ->
- (In y (join l x r) <-> X.eq y x \/ In y l \/ In y r).
+Lemma join_in : forall l x r y,
+ In y (join l x r) <-> X.eq y x \/ In y l \/ In y r.
Proof.
join_tac.
simpl.
rewrite add_in; intuition_in.
-
rewrite add_in; intuition_in.
-
- inv avl.
- rewrite bal_in; auto.
- rewrite Hlr; clear Hlr Hrl; intuition_in.
-
- inv avl.
- rewrite bal_in; auto.
- rewrite Hrl; clear Hlr Hrl; intuition_in.
-
+ rewrite bal_in, Hlr; clear Hlr Hrl; intuition_in.
+ rewrite bal_in, Hrl; clear Hlr Hrl; intuition_in.
apply create_in.
Qed.
-Lemma join_bst : forall l x r, bst l -> avl l -> bst r -> avl r ->
+Lemma join_bst : forall l x r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (join l x r).
Proof.
- join_tac.
- apply add_bst; auto.
- apply add_bst; auto.
-
- inv bst; safe_inv avl.
- apply bal_bst; auto.
- clear Hrl Hlr H13 H14 H16 H17 z; intro; intros.
- set (r:=Node rl rx rr rh) in *; clearbody r.
- rewrite (join_in lr x r y) in H13; auto.
- intuition.
- apply MX.lt_eq with x; eauto.
- eauto.
-
- inv bst; safe_inv avl.
- apply bal_bst; auto.
- clear Hrl Hlr H13 H14 H16 H17 z; intro; intros.
- set (l:=Node ll lx lr lh) in *; clearbody l.
- rewrite (join_in l x rl y) in H13; auto.
- intuition.
- apply MX.eq_lt with x; eauto.
- eauto.
-
- apply create_bst; auto.
+ join_tac; auto; inv bst; apply bal_bst; auto;
+ clear Hrl Hlr z; intro; intros; rewrite join_in in *.
+ intuition; [ apply MX.lt_eq with x | ]; eauto.
+ intuition; [ apply MX.eq_lt with x | ]; eauto.
Qed.
+Hint Resolve join_bst.
-(** * Extraction of minimum element
- morally, [remove_min] is to be applied to a non-empty tree
- [t = Node l x r h]. Since we can't deal here with [assert false]
- for [t=Leaf], we pre-unpack [t] (and forget about [h]).
-*)
-
-Function remove_min (l:t)(x:elt)(r:t) { struct l } : t*elt :=
- match l with
- | Leaf => (r,x)
- | Node ll lx lr lh => let (l',m) := (remove_min ll lx lr : t*elt) in (bal l' x r, m)
- end.
-
-Lemma remove_min_avl_1 : forall l x r h, avl (Node l x r h) ->
- avl (fst (remove_min l x r)) /\
- 0 <= height (Node l x r h) - height (fst (remove_min l x r)) <= 1.
-Proof.
- intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros.
- inv avl; simpl in *; split; auto.
- avl_nns; omega_max.
- (* l = Node *)
- inversion_clear H.
- rewrite e0 in IHp;simpl in IHp;destruct (IHp lh); auto.
- split; simpl in *.
- apply bal_avl; auto; omega_max.
- omega_bal.
-Qed.
-Lemma remove_min_avl : forall l x r h, avl (Node l x r h) ->
- avl (fst (remove_min l x r)).
-Proof.
- intros; generalize (remove_min_avl_1 l x r h H); intuition.
-Qed.
+(** * Extraction of minimum element *)
-Lemma remove_min_in : forall l x r h y, avl (Node l x r h) ->
- (In y (Node l x r h) <->
- X.eq y (snd (remove_min l x r)) \/ In y (fst (remove_min l x r))).
+Lemma remove_min_in : forall l x r h y,
+ In y (Node l x r h) <->
+ X.eq y (remove_min l x r)#2 \/ In y (remove_min l x r)#1.
Proof.
intros l x r; functional induction (remove_min l x r); simpl in *; intros.
intuition_in.
- (* l = Node *)
- inversion_clear H.
- generalize (remove_min_avl ll lx lr lh H0).
- rewrite e0; simpl; intros.
- rewrite bal_in; auto.
- rewrite e0 in IHp;generalize (IHp lh y H0).
- intuition.
- inversion_clear H7; intuition.
+ rewrite bal_in, In_node_iff, IHp, e0; simpl; intuition.
Qed.
Lemma remove_min_bst : forall l x r h,
- bst (Node l x r h) -> avl (Node l x r h) -> bst (fst (remove_min l x r)).
+ bst (Node l x r h) -> bst (remove_min l x r)#1.
Proof.
- intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros.
+ intros l x r; functional induction (remove_min l x r); simpl; intros.
inv bst; auto.
- inversion_clear H; inversion_clear H0.
- rewrite_all e0;simpl in *.
+ inversion_clear H.
+ specialize IHp with (1:=H0); rewrite e0 in IHp; auto.
apply bal_bst; auto.
- firstorder.
- intro; intros.
- generalize (remove_min_in ll lx lr lh y H).
- rewrite e0; simpl.
- destruct 1.
- apply H3; intuition.
+ intro y; specialize (H2 y).
+ rewrite remove_min_in, e0 in H2; simpl in H2; intuition.
Qed.
Lemma remove_min_gt_tree : forall l x r h,
- bst (Node l x r h) -> avl (Node l x r h) ->
- gt_tree (snd (remove_min l x r)) (fst (remove_min l x r)).
+ bst (Node l x r h) ->
+ gt_tree (remove_min l x r)#2 (remove_min l x r)#1.
Proof.
- intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros.
+ intros l x r; functional induction (remove_min l x r); simpl; intros.
inv bst; auto.
- inversion_clear H; inversion_clear H0.
- intro; intro.
- generalize (IHp lh H1 H); clear H6 H7 IHp.
- generalize (remove_min_avl ll lx lr lh H).
- generalize (remove_min_in ll lx lr lh m H).
- rewrite e0; simpl; intros.
- rewrite (bal_in l' x r y H7 H5) in H0.
- destruct H6.
- firstorder.
- apply MX.lt_eq with x; auto.
- apply X.lt_trans with x; auto.
+ inversion_clear H.
+ specialize IHp with (1:=H0); rewrite e0 in IHp; simpl in IHp.
+ intro y; rewrite bal_in; intuition;
+ specialize (H2 m); rewrite remove_min_in, e0 in H2; simpl in H2;
+ [ apply MX.lt_eq with x | ]; eauto.
Qed.
+Hint Resolve remove_min_bst remove_min_gt_tree.
-(** * Merging two trees
-
- [merge t1 t2] builds the union of [t1] and [t2] assuming all elements
- of [t1] to be smaller than all elements of [t2], and
- [|height t1 - height t2| <= 2].
-*)
-Function merge (s1 s2 :t) : t:= match s1,s2 with
- | Leaf, _ => s2
- | _, Leaf => s1
- | _, Node l2 x2 r2 h2 =>
- let (s2',m) := remove_min l2 x2 r2 in bal s1 m s2'
-end.
-Lemma merge_avl_1 : forall s1 s2, avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 ->
- avl (merge s1 s2) /\
- 0<= height (merge s1 s2) - max (height s1) (height s2) <=1.
-Proof.
- intros s1 s2; functional induction (merge s1 s2); subst;simpl in *; intros.
- split; auto; avl_nns; omega_max.
- split; auto; avl_nns; simpl in *; omega_max.
- destruct s1;try contradiction;clear y.
- generalize (remove_min_avl_1 l2 x2 r2 h2 H0).
- rewrite e1; simpl; destruct 1.
- split.
- apply bal_avl; auto.
- simpl; omega_max.
- omega_bal.
-Qed.
-
-Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 ->
- -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
-Proof.
- intros; generalize (merge_avl_1 s1 s2 H H0 H1); intuition.
-Qed.
+(** * Merging two trees *)
-Lemma merge_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (In y (merge s1 s2) <-> In y s1 \/ In y s2).
-Proof.
- intros s1 s2; functional induction (merge s1 s2); subst; simpl in *; intros.
+Lemma merge_in : forall s1 s2 y,
+ In y (merge s1 s2) <-> In y s1 \/ In y s2.
+Proof.
+ intros s1 s2; functional induction (merge s1 s2); intros;
+ try factornode _x _x0 _x1 _x2 as s1.
intuition_in.
intuition_in.
- destruct s1;try contradiction;clear y.
- replace s2' with (fst (remove_min l2 x2 r2)); [|rewrite e1; auto].
- rewrite bal_in; auto.
- generalize (remove_min_avl l2 x2 r2 h2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 y0); rewrite e1; simpl; intro.
- rewrite H3 ; intuition.
+ rewrite bal_in, remove_min_in, e1; simpl; intuition.
Qed.
-Lemma merge_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
+Lemma merge_bst : forall s1 s2, bst s1 -> bst s2 ->
(forall y1 y2 : elt, In y1 s1 -> In y2 s2 -> X.lt y1 y2) ->
- bst (merge s1 s2).
+ bst (merge s1 s2).
Proof.
- intros s1 s2; functional induction (merge s1 s2); subst;simpl in *; intros; auto.
- destruct s1;try contradiction;clear y.
+ intros s1 s2; functional induction (merge s1 s2); intros; auto;
+ try factornode _x _x0 _x1 _x2 as s1.
apply bal_bst; auto.
- generalize (remove_min_bst l2 x2 r2 h2); rewrite e1; simpl in *; auto.
- intro; intro.
- apply H3; auto.
- generalize (remove_min_in l2 x2 r2 h2 m); rewrite e1; simpl; intuition.
- generalize (remove_min_gt_tree l2 x2 r2 h2); rewrite e1; simpl; auto.
-Qed.
+ change s2' with ((s2',m)#1); rewrite <-e1; eauto.
+ intros y Hy.
+ apply H1; auto.
+ rewrite remove_min_in, e1; simpl; auto.
+ change (gt_tree (s2',m)#2 (s2',m)#1); rewrite <-e1; eauto.
+Qed.
+Hint Resolve merge_bst.
-(** * Deletion *)
-Function remove (x:elt)(s:tree) { struct s } : t := match s with
- | Leaf => Leaf
- | Node l y r h =>
- match X.compare x y with
- | LT _ => bal (remove x l) y r
- | EQ _ => merge l r
- | GT _ => bal l y (remove x r)
- end
- end.
-Lemma remove_avl_1 : forall s x, avl s ->
- avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1.
-Proof.
- intros s x; functional induction (remove x s); subst;simpl; intros.
- intuition; omega_max.
- (* LT *)
- inv avl.
- destruct (IHt H0).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
- (* EQ *)
- inv avl.
- generalize (merge_avl_1 l r H0 H1 H2).
- intuition omega_max.
- (* GT *)
- inv avl.
- destruct (IHt H1).
- split.
- apply bal_avl; auto.
- omega_max.
- omega_bal.
-Qed.
-
-Lemma remove_avl : forall s x, avl s -> avl (remove x s).
-Proof.
- intros; generalize (remove_avl_1 s x H); intuition.
-Qed.
-Hint Resolve remove_avl.
+(** * Deletion *)
-Lemma remove_in : forall s x y, bst s -> avl s ->
+Lemma remove_in : forall s x y, bst s ->
(In y (remove x s) <-> ~ X.eq y x /\ In y s).
Proof.
- intros s x; functional induction (remove x s); subst;simpl; intros.
+ intros s x; functional induction (remove x s); intros; inv bst.
intuition_in.
- (* LT *)
- inv avl; inv bst; clear e0.
- rewrite bal_in; auto.
- generalize (IHt y0 H0); intuition; [ order | order | intuition_in ].
- (* EQ *)
- inv avl; inv bst; clear e0.
- rewrite merge_in; intuition; [ order | order | intuition_in ].
- elim H9; eauto.
- (* GT *)
- inv avl; inv bst; clear e0.
- rewrite bal_in; auto.
- generalize (IHt y0 H5); intuition; [ order | order | intuition_in ].
+ rewrite bal_in, IHt; clear e0 IHt; intuition; [order|order|intuition_in].
+ rewrite merge_in; clear e0; intuition; [order|order|intuition_in].
+ elim H4; eauto.
+ rewrite bal_in, IHt; clear e0 IHt; intuition; [order|order|intuition_in].
Qed.
-Lemma remove_bst : forall s x, bst s -> avl s -> bst (remove x s).
+Lemma remove_bst : forall s x, bst s -> bst (remove x s).
Proof.
- intros s x; functional induction (remove x s); simpl; intros.
+ intros s x; functional induction (remove x s); intros; inv bst.
auto.
(* LT *)
- inv avl; inv bst.
apply bal_bst; auto.
- intro; intro.
- rewrite (remove_in l x y0) in H; auto.
- destruct H; eauto.
+ intro z; rewrite remove_in; auto; destruct 1; eauto.
(* EQ *)
- inv avl; inv bst.
- apply merge_bst; eauto.
+ eauto.
(* GT *)
- inv avl; inv bst.
apply bal_bst; auto.
- intro; intro.
- rewrite (remove_in r x y0) in H; auto.
- destruct H; eauto.
+ intro z; rewrite remove_in; auto; destruct 1; eauto.
Qed.
+Hint Resolve remove_bst.
- (** * Minimum element *)
-Function min_elt (s:t) : option elt := match s with
- | Leaf => None
- | Node Leaf y _ _ => Some y
- | Node l _ _ _ => min_elt l
-end.
+(** * Minimum element *)
Lemma min_elt_1 : forall s x, min_elt s = Some x -> In x s.
Proof.
- intro s; functional induction (min_elt s); subst; simpl.
- inversion 1.
- inversion 1; auto.
- intros.
- destruct l; auto.
+ intro s; functional induction (min_elt s); auto; inversion 1; auto.
Qed.
-Lemma min_elt_2 : forall s x y, bst s ->
+Lemma min_elt_2 : forall s x y, bst s ->
min_elt s = Some x -> In y s -> ~ X.lt y x.
Proof.
- intro s; functional induction (min_elt s); subst;simpl.
+ intro s; functional induction (min_elt s);
+ try rename _x1 into l1, _x2 into x1, _x3 into r1, _x4 into h1.
inversion_clear 2.
inversion_clear 1.
inversion 1; subst.
inversion_clear 1; auto.
inversion_clear H5.
- destruct l;try contradiction.
inversion_clear 1.
simpl.
destruct l1.
inversion 1; subst.
- assert (X.lt x _x) by (apply H2; auto).
+ assert (X.lt x y) by (apply H2; auto).
inversion_clear 1; auto; order.
- assert (X.lt t _x) by auto.
+ assert (X.lt x1 y) by auto.
inversion_clear 2; auto;
- (assert (~ X.lt t x) by auto); order.
+ (assert (~ X.lt x1 x) by auto); order.
Qed.
Lemma min_elt_3 : forall s, min_elt s = None -> Empty s.
Proof.
- intro s; functional induction (min_elt s); subst;simpl.
- red; auto.
+ intro s; functional induction (min_elt s).
+ red; red; inversion 2.
inversion 1.
- destruct l;try contradiction.
- clear y;intro H0.
- destruct (IHo H0 t); auto.
+ intro H0.
+ destruct (IHo H0 _x2); auto.
Qed.
-(** * Maximum element *)
-Function max_elt (s:t) : option elt := match s with
- | Leaf => None
- | Node _ y Leaf _ => Some y
- | Node _ _ r _ => max_elt r
-end.
+(** * Maximum element *)
Lemma max_elt_1 : forall s x, max_elt s = Some x -> In x s.
Proof.
- intro s; functional induction (max_elt s); subst;simpl.
- inversion 1.
- inversion 1; auto.
- destruct r;try contradiction; auto.
+ intro s; functional induction (max_elt s); auto; inversion 1; auto.
Qed.
Lemma max_elt_2 : forall s x y, bst s ->
max_elt s = Some x -> In y s -> ~ X.lt x y.
Proof.
- intro s; functional induction (max_elt s); subst;simpl.
+ intro s; functional induction (max_elt s);
+ try rename _x1 into l1, _x2 into x1, _x3 into r1, _x4 into h1.
inversion_clear 2.
inversion_clear 1.
inversion 1; subst.
inversion_clear 1; auto.
inversion_clear H5.
- destruct r;try contradiction.
inversion_clear 1.
-(* inversion 1; subst. *)
-(* assert (X.lt y x) by (apply H4; auto). *)
-(* inversion_clear 1; auto; order. *)
- assert (X.lt _x0 t) by auto.
+ assert (X.lt y x1) by auto.
inversion_clear 2; auto;
- (assert (~ X.lt x t) by auto); order.
+ (assert (~ X.lt x x1) by auto); order.
Qed.
Lemma max_elt_3 : forall s, max_elt s = None -> Empty s.
Proof.
- intro s; functional induction (max_elt s); subst;simpl.
+ intro s; functional induction (max_elt s).
red; auto.
inversion 1.
- destruct r;try contradiction.
- intros H0; destruct (IHo H0 t); auto.
+ intros H0; destruct (IHo H0 _x2); auto.
Qed.
-(** * Any element *)
-Definition choose := min_elt.
+
+(** * Any element *)
Lemma choose_1 : forall s x, choose s = Some x -> In x s.
Proof.
@@ -1021,353 +1023,215 @@ Proof.
exact min_elt_3.
Qed.
-(** * Concatenation
+Lemma choose_3 : forall s s', bst s -> bst s' ->
+ forall x x', choose s = Some x -> choose s' = Some x' ->
+ Equal s s' -> X.eq x x'.
+Proof.
+ unfold choose, Equal; intros s s' Hb Hb' x x' Hx Hx' H.
+ assert (~X.lt x x').
+ apply min_elt_2 with s'; auto.
+ rewrite <-H; auto using min_elt_1.
+ assert (~X.lt x' x).
+ apply min_elt_2 with s; auto.
+ rewrite H; auto using min_elt_1.
+ destruct (X.compare x x'); intuition.
+Qed.
- Same as [merge] but does not assume anything about heights.
-*)
-Function concat (s1 s2 : t) : t :=
- match s1, s2 with
- | Leaf, _ => s2
- | _, Leaf => s1
- | _, Node l2 x2 r2 h2 =>
- let (s2',m) := remove_min l2 x2 r2 in
- join s1 m s2'
- end.
+(** * Concatenation *)
-Lemma concat_avl : forall s1 s2, avl s1 -> avl s2 -> avl (concat s1 s2).
+Lemma concat_in : forall s1 s2 y,
+ In y (concat s1 s2) <-> In y s1 \/ In y s2.
Proof.
- intros s1 s2; functional induction (concat s1 s2); subst;auto.
- destruct s1;try contradiction;clear y.
- intros; apply join_avl; auto.
- generalize (remove_min_avl l2 x2 r2 h2 H0); rewrite e1; simpl; auto.
+ intros s1 s2; functional induction (concat s1 s2); intros;
+ try factornode _x _x0 _x1 _x2 as s1.
+ intuition_in.
+ intuition_in.
+ rewrite join_in, remove_min_in, e1; simpl; intuition.
Qed.
-Lemma concat_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
+Lemma concat_bst : forall s1 s2, bst s1 -> bst s2 ->
(forall y1 y2 : elt, In y1 s1 -> In y2 s2 -> X.lt y1 y2) ->
bst (concat s1 s2).
Proof.
- intros s1 s2; functional induction (concat s1 s2); subst ;auto.
- destruct s1;try contradiction;clear y.
- intros; apply join_bst; auto.
- generalize (remove_min_bst l2 x2 r2 h2 H1 H2); rewrite e1; simpl; auto.
- generalize (remove_min_avl l2 x2 r2 h2 H2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 m H2); rewrite e1; simpl; auto.
- destruct 1; intuition.
- generalize (remove_min_gt_tree l2 x2 r2 h2 H1 H2); rewrite e1; simpl; auto.
-Qed.
-
-Lemma concat_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (forall y1 y2 : elt, In y1 s1 -> In y2 s2 -> X.lt y1 y2) ->
- (In y (concat s1 s2) <-> In y s1 \/ In y s2).
-Proof.
- intros s1 s2; functional induction (concat s1 s2);subst;simpl.
- intuition.
- inversion_clear H5.
- destruct s1;try contradiction;clear y;intuition.
- inversion_clear H5.
- destruct s1;try contradiction;clear y; intros.
- rewrite (join_in (Node s1_1 t s1_2 i) m s2' y H0).
- generalize (remove_min_avl l2 x2 r2 h2 H2); rewrite e1; simpl; auto.
- generalize (remove_min_in l2 x2 r2 h2 y H2); rewrite e1; simpl.
- intro EQ; rewrite EQ; intuition.
+ intros s1 s2; functional induction (concat s1 s2); intros; auto;
+ try factornode _x _x0 _x1 _x2 as s1.
+ apply join_bst; auto.
+ change (bst (s2',m)#1); rewrite <-e1; eauto.
+ intros y Hy.
+ apply H1; auto.
+ rewrite remove_min_in, e1; simpl; auto.
+ change (gt_tree (s2',m)#2 (s2',m)#1); rewrite <-e1; eauto.
Qed.
+Hint Resolve concat_bst.
-(** * Splitting
- [split x s] returns a triple [(l, present, r)] where
- - [l] is the set of elements of [s] that are [< x]
- - [r] is the set of elements of [s] that are [> x]
- - [present] is [true] if and only if [s] contains [x].
-*)
+(** * Splitting *)
-Function split (x:elt)(s:t) {struct s} : t * (bool * t) := match s with
- | Leaf => (Leaf, (false, Leaf))
- | Node l y r h =>
- match X.compare x y with
- | LT _ => match split x l with
- | (ll,(pres,rl)) => (ll, (pres, join rl y r))
- end
- | EQ _ => (l, (true, r))
- | GT _ => match split x r with
- | (rl,(pres,rr)) => (join l y rl, (pres, rr))
- end
- end
- end.
-
-Lemma split_avl : forall s x, avl s ->
- avl (fst (split x s)) /\ avl (snd (snd (split x s))).
-Proof.
- intros s x; functional induction (split x s);subst;simpl in *.
- auto.
- rewrite e1 in IHp;simpl in IHp;inversion_clear 1; intuition.
- simpl; inversion_clear 1; auto.
- rewrite e1 in IHp;simpl in IHp;inversion_clear 1; intuition.
-Qed.
-
-Lemma split_in_1 : forall s x y, bst s -> avl s ->
- (In y (fst (split x s)) <-> In y s /\ X.lt y x).
-Proof.
- intros s x; functional induction (split x s);subst;simpl in *.
- intuition; try inversion_clear H1.
- (* LT *)
- rewrite e1 in IHp;simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite (IHp y0 H0 H4); clear IHp e0.
- intuition.
- inversion_clear H6; auto; order.
- (* EQ *)
- simpl in *; inversion_clear 1; inversion_clear 1; clear H6 H5 e0.
- intuition.
- order.
+Lemma split_in_1 : forall s x y, bst s ->
+ (In y (split x s)#l <-> In y s /\ X.lt y x).
+Proof.
+ intros s x; functional induction (split x s); simpl; intros;
+ inv bst; try clear e0.
+ intuition_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
intuition_in; order.
- (* GT *)
- rewrite e1 in IHp;simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite join_in; auto.
- generalize (split_avl r x H5); rewrite e1; simpl; intuition.
- rewrite (IHp y0 H1 H5); clear e1.
- intuition; [ eauto | eauto | intuition_in ].
+ rewrite join_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
-Lemma split_in_2 : forall s x y, bst s -> avl s ->
- (In y (snd (snd (split x s))) <-> In y s /\ X.lt x y).
+Lemma split_in_2 : forall s x y, bst s ->
+ (In y (split x s)#r <-> In y s /\ X.lt x y).
Proof.
- intros s x; functional induction (split x s);subst;simpl in *.
- intuition; try inversion_clear H1.
- (* LT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite join_in; auto.
- generalize (split_avl l x H4); rewrite e1; simpl; intuition.
- rewrite (IHp y0 H0 H4); clear IHp e0.
- intuition; [ order | order | intuition_in ].
- (* EQ *)
- simpl in *; inversion_clear 1; inversion_clear 1; clear H6 H5 e0.
- intuition; [ order | intuition_in; order ].
- (* GT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite (IHp y0 H1 H5); clear IHp e0.
- intuition; intuition_in; order.
+ intros s x; functional induction (split x s); subst; simpl; intros;
+ inv bst; try clear e0.
+ intuition_in.
+ rewrite join_in.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
+ intuition_in; order.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
-Lemma split_in_3 : forall s x, bst s -> avl s ->
- (fst (snd (split x s)) = true <-> In x s).
+Lemma split_in_3 : forall s x, bst s ->
+ ((split x s)#b = true <-> In x s).
Proof.
- intros s x; functional induction (split x s);subst;simpl in *.
- intuition; try inversion_clear H1.
- (* LT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite IHp; auto.
- intuition_in; absurd (X.lt x y); eauto.
- (* EQ *)
- simpl in *; inversion_clear 1; inversion_clear 1; intuition.
- (* GT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1; clear H7 H6.
- rewrite IHp; auto.
- intuition_in; absurd (X.lt y x); eauto.
+ intros s x; functional induction (split x s); subst; simpl; intros;
+ inv bst; try clear e0.
+ intuition_in; try discriminate.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
+ intuition.
+ rewrite e1 in IHt; simpl in IHt; rewrite IHt; intuition_in; order.
Qed.
-Lemma split_bst : forall s x, bst s -> avl s ->
- bst (fst (split x s)) /\ bst (snd (snd (split x s))).
+Lemma split_bst : forall s x, bst s ->
+ bst (split x s)#l /\ bst (split x s)#r.
Proof.
- intros s x; functional induction (split x s);subst;simpl in *.
- intuition.
- (* LT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1.
- intuition.
- apply join_bst; auto.
- generalize (split_avl l x H4); rewrite e1; simpl; intuition.
- intro; intro.
- generalize (split_in_2 l x y0 H0 H4); rewrite e1; simpl; intuition.
- (* EQ *)
- simpl in *; inversion_clear 1; inversion_clear 1; intuition.
- (* GT *)
- rewrite e1 in IHp; simpl in *; inversion_clear 1; inversion_clear 1.
- intuition.
- apply join_bst; auto.
- generalize (split_avl r x H5); rewrite e1; simpl; intuition.
- intro; intro.
- generalize (split_in_1 r x y0 H1 H5); rewrite e1; simpl; intuition.
+ intros s x; functional induction (split x s); subst; simpl; intros;
+ inv bst; try clear e0; try rewrite e1 in *; simpl in *; intuition;
+ apply join_bst; auto.
+ intros y0.
+ generalize (split_in_2 x y0 H0); rewrite e1; simpl; intuition.
+ intros y0.
+ generalize (split_in_1 x y0 H1); rewrite e1; simpl; intuition.
Qed.
-(** * Intersection *)
-Fixpoint inter (s1 s2 : t) {struct s1} : t := match s1, s2 with
- | Leaf,_ => Leaf
- | _,Leaf => Leaf
- | Node l1 x1 r1 h1, _ =>
- match split x1 s2 with
- | (l2',(true,r2')) => join (inter l1 l2') x1 (inter r1 r2')
- | (l2',(false,r2')) => concat (inter l1 l2') (inter r1 r2')
- end
- end.
-Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2).
-Proof.
- (* intros s1 s2; functional induction inter s1 s2; auto. BOF BOF *)
- induction s1 as [ | l1 Hl1 x1 r1 Hr1 h1]; simpl; auto.
- destruct s2 as [ | l2 x2 r2 h2]; intros; auto.
- generalize H0; inv avl.
- set (r:=Node l2 x2 r2 h2) in *; clearbody r; intros.
- destruct (split_avl r x1 H8).
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct b; [ apply join_avl | apply concat_avl ]; auto.
-Qed.
+(** * Intersection *)
-Lemma inter_bst_in : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
+Lemma inter_bst_in : forall s1 s2, bst s1 -> bst s2 ->
bst (inter s1 s2) /\ (forall y, In y (inter s1 s2) <-> In y s1 /\ In y s2).
-Proof.
- induction s1 as [ | l1 Hl1 x1 r1 Hr1 h1]; simpl; auto.
- intuition; inversion_clear H3.
- destruct s2 as [ | l2 x2 r2 h2]; intros.
- simpl; intuition; inversion_clear H3.
- generalize H1 H2; inv avl; inv bst.
- set (r:=Node l2 x2 r2 h2) in *; clearbody r; intros.
- destruct (split_avl r x1 H17).
- destruct (split_bst r x1 H16 H17).
- split.
- (* bst *)
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct (Hl1 l2'); auto.
- destruct (Hr1 r2'); auto.
- destruct b.
+Proof.
+ intros s1 s2; functional induction inter s1 s2; intros B1 B2;
+ [intuition_in|intuition_in | | ];
+ factornode _x0 _x1 _x2 _x3 as s2;
+ generalize (split_bst x1 B2);
+ rewrite e1; simpl; destruct 1; inv bst;
+ destruct IHt as (IHb1,IHi1); auto;
+ destruct IHt0 as (IHb2,IHi2); auto;
+ generalize (@split_in_1 s2 x1)(@split_in_2 s2 x1)
+ (split_in_3 x1 B2)(split_bst x1 B2);
+ rewrite e1; simpl; split; intros.
(* bst join *)
- apply join_bst; try apply inter_avl; firstorder.
- (* bst concat *)
- apply concat_bst; try apply inter_avl; auto.
- intros; generalize (H22 y1) (H24 y2); intuition eauto.
- (* in *)
- intros.
- destruct (split_in_1 r x1 y H16 H17).
- destruct (split_in_2 r x1 y H16 H17).
- destruct (split_in_3 r x1 H16 H17).
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct (Hl1 l2'); auto.
- destruct (Hr1 r2'); auto.
- destruct b.
- (* in join *)
- rewrite join_in; try apply inter_avl; auto.
- rewrite H30.
- rewrite H28.
- intuition_in.
+ apply join_bst; auto; intro y; [rewrite IHi1|rewrite IHi2]; intuition. (* In join *)
+ rewrite join_in, IHi1, IHi2, H5, H6; intuition_in.
apply In_1 with x1; auto.
- (* in concat *)
- rewrite concat_in; try apply inter_avl; auto.
- intros.
- intros; generalize (H28 y1) (H30 y2); intuition eauto.
- rewrite H30.
- rewrite H28.
+ (* bst concat *)
+ apply concat_bst; auto; intros y1 y2; rewrite IHi1, IHi2; intuition; order.
+ (* In concat *)
+ rewrite concat_in, IHi1, IHi2, H5, H6; auto.
+ assert (~In x1 s2) by (rewrite <- H7; auto).
intuition_in.
- generalize (H26 (In_1 _ _ _ H22 H35)); intro; discriminate.
+ elim H9.
+ apply In_1 with y; auto.
Qed.
-Lemma inter_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- bst (inter s1 s2).
+Lemma inter_in : forall s1 s2 y, bst s1 -> bst s2 ->
+ (In y (inter s1 s2) <-> In y s1 /\ In y s2).
Proof.
- intros; generalize (inter_bst_in s1 s2); intuition.
+ intros s1 s2 y B1 B2; destruct (inter_bst_in B1 B2); auto.
Qed.
-Lemma inter_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (In y (inter s1 s2) <-> In y s1 /\ In y s2).
+Lemma inter_bst : forall s1 s2, bst s1 -> bst s2 -> bst (inter s1 s2).
Proof.
- intros; generalize (inter_bst_in s1 s2); firstorder.
+ intros s1 s2 B1 B2; destruct (inter_bst_in B1 B2); auto.
Qed.
-(** * Difference *)
-
-Fixpoint diff (s1 s2 : t) { struct s1 } : t := match s1, s2 with
- | Leaf, _ => Leaf
- | _, Leaf => s1
- | Node l1 x1 r1 h1, _ =>
- match split x1 s2 with
- | (l2',(true,r2')) => concat (diff l1 l2') (diff r1 r2')
- | (l2',(false,r2')) => join (diff l1 l2') x1 (diff r1 r2')
- end
-end.
-Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2).
-Proof.
- (* intros s1 s2; functional induction diff s1 s2; auto. BOF BOF *)
- induction s1 as [ | l1 Hl1 x1 r1 Hr1 h1]; simpl; auto.
- destruct s2 as [ | l2 x2 r2 h2]; intros; auto.
- generalize H0; inv avl.
- set (r:=Node l2 x2 r2 h2) in *; clearbody r; intros.
- destruct (split_avl r x1 H8).
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct b; [ apply concat_avl | apply join_avl ]; auto.
-Qed.
+(** * Difference *)
-Lemma diff_bst_in : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
+Lemma diff_bst_in : forall s1 s2, bst s1 -> bst s2 ->
bst (diff s1 s2) /\ (forall y, In y (diff s1 s2) <-> In y s1 /\ ~In y s2).
-Proof.
- induction s1 as [ | l1 Hl1 x1 r1 Hr1 h1]; simpl; auto.
- intuition; inversion_clear H3.
- destruct s2 as [ | l2 x2 r2 h2]; intros; auto.
- intuition; inversion_clear H4.
- generalize H1 H2; inv avl; inv bst.
- set (r:=Node l2 x2 r2 h2) in *; clearbody r; intros.
- destruct (split_avl r x1 H17).
- destruct (split_bst r x1 H16 H17).
- split.
- (* bst *)
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct (Hl1 l2'); auto.
- destruct (Hr1 r2'); auto.
- destruct b.
+Proof.
+ intros s1 s2; functional induction diff s1 s2; intros B1 B2;
+ [intuition_in|intuition_in | | ];
+ factornode _x0 _x1 _x2 _x3 as s2;
+ generalize (split_bst x1 B2);
+ rewrite e1; simpl; destruct 1;
+ inv avl; inv bst;
+ destruct IHt as (IHb1,IHi1); auto;
+ destruct IHt0 as (IHb2,IHi2); auto;
+ generalize (@split_in_1 s2 x1)(@split_in_2 s2 x1)
+ (split_in_3 x1 B2)(split_bst x1 B2);
+ rewrite e1; simpl; split; intros.
(* bst concat *)
- apply concat_bst; try apply diff_avl; auto.
- intros; generalize (H22 y1) (H24 y2); intuition eauto.
+ apply concat_bst; auto; intros y1 y2; rewrite IHi1, IHi2; intuition; order.
+ (* In concat *)
+ rewrite concat_in, IHi1, IHi2, H5, H6; intuition_in.
+ elim H13.
+ apply In_1 with x1; auto.
(* bst join *)
- apply join_bst; try apply diff_avl; firstorder.
- (* in *)
- intros.
- destruct (split_in_1 r x1 y H16 H17).
- destruct (split_in_2 r x1 y H16 H17).
- destruct (split_in_3 r x1 H16 H17).
- destruct (split x1 r) as [l2' (b,r2')]; simpl in *.
- destruct (Hl1 l2'); auto.
- destruct (Hr1 r2'); auto.
- destruct b.
- (* in concat *)
- rewrite concat_in; try apply diff_avl; auto.
- intros.
- intros; generalize (H28 y1) (H30 y2); intuition eauto.
- rewrite H30.
- rewrite H28.
+ apply join_bst; auto; intro y; [rewrite IHi1|rewrite IHi2]; intuition. (* In join *)
+ rewrite join_in, IHi1, IHi2, H5, H6; auto.
+ assert (~In x1 s2) by (rewrite <- H7; auto).
intuition_in.
- elim H35; apply In_1 with x1; auto.
- (* in join *)
- rewrite join_in; try apply diff_avl; auto.
- rewrite H30.
- rewrite H28.
- intuition_in.
- generalize (H26 (In_1 _ _ _ H34 H24)); intro; discriminate.
+ elim H9.
+ apply In_1 with y; auto.
Qed.
-Lemma diff_bst : forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- bst (diff s1 s2).
+Lemma diff_in : forall s1 s2 y, bst s1 -> bst s2 ->
+ (In y (diff s1 s2) <-> In y s1 /\ ~In y s2).
Proof.
- intros; generalize (diff_bst_in s1 s2); intuition.
+ intros s1 s2 y B1 B2; destruct (diff_bst_in B1 B2); auto.
Qed.
-Lemma diff_in : forall s1 s2 y, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- (In y (diff s1 s2) <-> In y s1 /\ ~In y s2).
+Lemma diff_bst : forall s1 s2, bst s1 -> bst s2 -> bst (diff s1 s2).
Proof.
- intros; generalize (diff_bst_in s1 s2); firstorder.
+ intros s1 s2 B1 B2; destruct (diff_bst_in B1 B2); auto.
Qed.
-(** * Elements *)
-(** [elements_tree_aux acc t] catenates the elements of [t] in infix
- order to the list [acc] *)
+(** * Union *)
-Fixpoint elements_aux (acc : list X.t) (t : tree) {struct t} : list X.t :=
- match t with
- | Leaf => acc
- | Node l x r _ => elements_aux (x :: elements_aux acc r) l
- end.
+Lemma union_in : forall s1 s2 y, bst s1 -> bst s2 ->
+ (In y (union s1 s2) <-> In y s1 \/ In y s2).
+Proof.
+ intros s1 s2; functional induction union s1 s2; intros y B1 B2.
+ intuition_in.
+ intuition_in.
+ factornode _x0 _x1 _x2 _x3 as s2.
+ generalize (split_in_1 x1 y B2)(split_in_2 x1 y B2)(split_bst x1 B2).
+ rewrite e1; simpl.
+ destruct 3; inv bst.
+ rewrite join_in, IHt, IHt0, H, H0; auto.
+ case (X.compare y x1); intuition_in.
+Qed.
-(** then [elements] is an instanciation with an empty [acc] *)
+Lemma union_bst : forall s1 s2, bst s1 -> bst s2 ->
+ bst (union s1 s2).
+Proof.
+ intros s1 s2; functional induction union s1 s2; intros B1 B2; auto.
+ factornode _x0 _x1 _x2 _x3 as s2.
+ generalize (@split_in_1 s2 x1)(@split_in_2 s2 x1)(split_bst x1 B2).
+ rewrite e1; simpl; destruct 3.
+ inv bst.
+ apply join_bst; auto.
+ intro y; rewrite union_in, H; intuition_in.
+ intro y; rewrite union_in, H0; intuition_in.
+Qed.
-Definition elements := elements_aux nil.
+
+(** * Elements *)
Lemma elements_aux_in : forall s acc x,
InA X.eq x (elements_aux acc s) <-> In x s \/ InA X.eq x acc.
@@ -1411,246 +1275,190 @@ Proof.
Qed.
Hint Resolve elements_sort.
-(** * Filter *)
-
-Section F.
-Variable f : elt -> bool.
+Lemma elements_nodup : forall s : tree, bst s -> NoDupA X.eq (elements s).
+Proof.
+ auto.
+Qed.
-Fixpoint filter_acc (acc:t)(s:t) { struct s } : t := match s with
- | Leaf => acc
- | Node l x r h =>
- filter_acc (filter_acc (if f x then add x acc else acc) l) r
- end.
+Lemma elements_aux_cardinal :
+ forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
+Proof.
+ simple induction s; simpl in |- *; intuition.
+ rewrite <- H.
+ simpl in |- *.
+ rewrite <- H0; omega.
+Qed.
-Definition filter := filter_acc Leaf.
+Lemma elements_cardinal : forall s : tree, cardinal s = length (elements s).
+Proof.
+ exact (fun s => elements_aux_cardinal s nil).
+Qed.
-Lemma filter_acc_avl : forall s acc, avl s -> avl acc ->
- avl (filter_acc acc s).
+Lemma elements_app :
+ forall s acc, elements_aux acc s = elements s ++ acc.
Proof.
- induction s; simpl; auto.
- intros.
- inv avl.
- apply IHs2; auto.
- apply IHs1; auto.
- destruct (f t); auto.
-Qed.
-Hint Resolve filter_acc_avl.
+ induction s; simpl; intros; auto.
+ rewrite IHs1, IHs2.
+ unfold elements; simpl.
+ rewrite 2 IHs1, IHs2, <- !app_nil_end, !app_ass; auto.
+Qed.
-Lemma filter_acc_bst : forall s acc, bst s -> avl s -> bst acc -> avl acc ->
- bst (filter_acc acc s).
+Lemma elements_node :
+ forall l x r h acc,
+ elements l ++ x :: elements r ++ acc =
+ elements (Node l x r h) ++ acc.
Proof.
- induction s; simpl; auto.
- intros.
- inv avl; inv bst.
- destruct (f t); auto.
- apply IHs2; auto.
- apply IHs1; auto.
- apply add_bst; auto.
-Qed.
+ unfold elements; simpl; intros; auto.
+ rewrite !elements_app, <- !app_nil_end, !app_ass; auto.
+Qed.
+
-Lemma filter_acc_in : forall s acc, avl s -> avl acc ->
+(** * Filter *)
+
+Section F.
+Variable f : elt -> bool.
+
+Lemma filter_acc_in : forall s acc,
compat_bool X.eq f -> forall x : elt,
- In x (filter_acc acc s) <-> In x acc \/ In x s /\ f x = true.
+ In x (filter_acc f acc s) <-> In x acc \/ In x s /\ f x = true.
Proof.
induction s; simpl; intros.
intuition_in.
- inv bst; inv avl.
- rewrite IHs2; auto.
- destruct (f t); auto.
- rewrite IHs1; auto.
- destruct (f t); auto.
+ rewrite IHs2, IHs1 by (destruct (f t); auto).
case_eq (f t); intros.
rewrite (add_in); auto.
intuition_in.
- rewrite (H1 _ _ H8).
+ rewrite (H _ _ H2).
intuition.
intuition_in.
- rewrite (H1 _ _ H8) in H9.
- rewrite H in H9; discriminate.
-Qed.
-
-Lemma filter_avl : forall s, avl s -> avl (filter s).
-Proof.
- unfold filter; intros; apply filter_acc_avl; auto.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
Qed.
-Lemma filter_bst : forall s, bst s -> avl s -> bst (filter s).
+Lemma filter_acc_bst : forall s acc, bst s -> bst acc ->
+ bst (filter_acc f acc s).
Proof.
- unfold filter; intros; apply filter_acc_bst; auto.
+ induction s; simpl; auto.
+ intros.
+ inv bst.
+ destruct (f t); auto.
Qed.
-Lemma filter_in : forall s, avl s ->
+Lemma filter_in : forall s,
compat_bool X.eq f -> forall x : elt,
- In x (filter s) <-> In x s /\ f x = true.
+ In x (filter f s) <-> In x s /\ f x = true.
Proof.
unfold filter; intros; rewrite filter_acc_in; intuition_in.
-Qed.
-
-(** * Partition *)
-
-Fixpoint partition_acc (acc : t*t)(s : t) { struct s } : t*t :=
- match s with
- | Leaf => acc
- | Node l x r _ =>
- let (acct,accf) := acc in
- partition_acc
- (partition_acc
- (if f x then (add x acct, accf) else (acct, add x accf)) l) r
- end.
-
-Definition partition := partition_acc (Leaf,Leaf).
+Qed.
-Lemma partition_acc_avl_1 : forall s acc, avl s ->
- avl (fst acc) -> avl (fst (partition_acc acc s)).
+Lemma filter_bst : forall s, bst s -> bst (filter f s).
Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl.
- apply IHs2; auto.
- apply IHs1; auto.
- destruct (f t); simpl; auto.
-Qed.
+ unfold filter; intros; apply filter_acc_bst; auto.
+Qed.
-Lemma partition_acc_avl_2 : forall s acc, avl s ->
- avl (snd acc) -> avl (snd (partition_acc acc s)).
-Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl.
- apply IHs2; auto.
- apply IHs1; auto.
- destruct (f t); simpl; auto.
-Qed.
-Hint Resolve partition_acc_avl_1 partition_acc_avl_2.
-Lemma partition_acc_bst_1 : forall s acc, bst s -> avl s ->
- bst (fst acc) -> avl (fst acc) ->
- bst (fst (partition_acc acc s)).
-Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl; inv bst.
- destruct (f t); auto.
- apply IHs2; simpl; auto.
- apply IHs1; simpl; auto.
- apply add_bst; auto.
- apply partition_acc_avl_1; simpl; auto.
-Qed.
-Lemma partition_acc_bst_2 : forall s acc, bst s -> avl s ->
- bst (snd acc) -> avl (snd acc) ->
- bst (snd (partition_acc acc s)).
-Proof.
- induction s; simpl; auto.
- destruct acc as [acct accf]; simpl in *.
- intros.
- inv avl; inv bst.
- destruct (f t); auto.
- apply IHs2; simpl; auto.
- apply IHs1; simpl; auto.
- apply add_bst; auto.
- apply partition_acc_avl_2; simpl; auto.
-Qed.
+(** * Partition *)
-Lemma partition_acc_in_1 : forall s acc, avl s -> avl (fst acc) ->
+Lemma partition_acc_in_1 : forall s acc,
compat_bool X.eq f -> forall x : elt,
- In x (fst (partition_acc acc s)) <->
- In x (fst acc) \/ In x s /\ f x = true.
+ In x (partition_acc f acc s)#1 <->
+ In x acc#1 \/ In x s /\ f x = true.
Proof.
induction s; simpl; intros.
intuition_in.
destruct acc as [acct accf]; simpl in *.
- inv bst; inv avl.
- rewrite IHs2; auto.
- destruct (f t); auto.
- apply partition_acc_avl_1; simpl; auto.
- rewrite IHs1; auto.
- destruct (f t); simpl; auto.
+ rewrite IHs2 by
+ (destruct (f t); auto; apply partition_acc_avl_1; simpl; auto).
+ rewrite IHs1 by (destruct (f t); simpl; auto).
case_eq (f t); simpl; intros.
rewrite (add_in); auto.
intuition_in.
- rewrite (H1 _ _ H8).
+ rewrite (H _ _ H2).
intuition.
intuition_in.
- rewrite (H1 _ _ H8) in H9.
- rewrite H in H9; discriminate.
-Qed.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
+Qed.
-Lemma partition_acc_in_2 : forall s acc, avl s -> avl (snd acc) ->
+Lemma partition_acc_in_2 : forall s acc,
compat_bool X.eq f -> forall x : elt,
- In x (snd (partition_acc acc s)) <->
- In x (snd acc) \/ In x s /\ f x = false.
+ In x (partition_acc f acc s)#2 <->
+ In x acc#2 \/ In x s /\ f x = false.
Proof.
induction s; simpl; intros.
intuition_in.
destruct acc as [acct accf]; simpl in *.
- inv bst; inv avl.
- rewrite IHs2; auto.
- destruct (f t); auto.
- apply partition_acc_avl_2; simpl; auto.
- rewrite IHs1; auto.
- destruct (f t); simpl; auto.
+ rewrite IHs2 by
+ (destruct (f t); auto; apply partition_acc_avl_2; simpl; auto).
+ rewrite IHs1 by (destruct (f t); simpl; auto).
case_eq (f t); simpl; intros.
intuition.
intuition_in.
- rewrite (H1 _ _ H8) in H9.
- rewrite H in H9; discriminate.
+ rewrite (H _ _ H2) in H3.
+ rewrite H0 in H3; discriminate.
rewrite (add_in); auto.
intuition_in.
- rewrite (H1 _ _ H8).
+ rewrite (H _ _ H2).
intuition.
+Qed.
+
+Lemma partition_in_1 : forall s,
+ compat_bool X.eq f -> forall x : elt,
+ In x (partition f s)#1 <-> In x s /\ f x = true.
+Proof.
+ unfold partition; intros; rewrite partition_acc_in_1;
+ simpl in *; intuition_in.
Qed.
-Lemma partition_avl_1 : forall s, avl s -> avl (fst (partition s)).
+Lemma partition_in_2 : forall s,
+ compat_bool X.eq f -> forall x : elt,
+ In x (partition f s)#2 <-> In x s /\ f x = false.
Proof.
- unfold partition; intros; apply partition_acc_avl_1; auto.
+ unfold partition; intros; rewrite partition_acc_in_2;
+ simpl in *; intuition_in.
+Qed.
+
+Lemma partition_acc_bst_1 : forall s acc, bst s -> bst acc#1 ->
+ bst (partition_acc f acc s)#1.
+Proof.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros.
+ inv bst.
+ destruct (f t); auto.
+ apply IHs2; simpl; auto.
+ apply IHs1; simpl; auto.
Qed.
-Lemma partition_avl_2 : forall s, avl s -> avl (snd (partition s)).
+Lemma partition_acc_bst_2 : forall s acc, bst s -> bst acc#2 ->
+ bst (partition_acc f acc s)#2.
Proof.
- unfold partition; intros; apply partition_acc_avl_2; auto.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros.
+ inv bst.
+ destruct (f t); auto.
+ apply IHs2; simpl; auto.
+ apply IHs1; simpl; auto.
Qed.
-Lemma partition_bst_1 : forall s, bst s -> avl s ->
- bst (fst (partition s)).
+Lemma partition_bst_1 : forall s, bst s -> bst (partition f s)#1.
Proof.
unfold partition; intros; apply partition_acc_bst_1; auto.
Qed.
-Lemma partition_bst_2 : forall s, bst s -> avl s ->
- bst (snd (partition s)).
+Lemma partition_bst_2 : forall s, bst s -> bst (partition f s)#2.
Proof.
unfold partition; intros; apply partition_acc_bst_2; auto.
Qed.
-Lemma partition_in_1 : forall s, avl s ->
- compat_bool X.eq f -> forall x : elt,
- In x (fst (partition s)) <-> In x s /\ f x = true.
-Proof.
- unfold partition; intros; rewrite partition_acc_in_1;
- simpl in *; intuition_in.
-Qed.
-
-Lemma partition_in_2 : forall s, avl s ->
- compat_bool X.eq f -> forall x : elt,
- In x (snd (partition s)) <-> In x s /\ f x = false.
-Proof.
- unfold partition; intros; rewrite partition_acc_in_2;
- simpl in *; intuition_in.
-Qed.
-(** [for_all] and [exists] *)
-Fixpoint for_all (s:t) : bool := match s with
- | Leaf => true
- | Node l x r _ => f x && for_all l && for_all r
-end.
+(** * [for_all] and [exists] *)
-Lemma for_all_1 : forall s, compat_bool E.eq f ->
- For_all (fun x => f x = true) s -> for_all s = true.
+Lemma for_all_1 : forall s, compat_bool X.eq f ->
+ For_all (fun x => f x = true) s -> for_all f s = true.
Proof.
induction s; simpl; auto.
intros.
@@ -1660,8 +1468,8 @@ Proof.
destruct (f t); simpl; auto.
Qed.
-Lemma for_all_2 : forall s, compat_bool E.eq f ->
- for_all s = true -> For_all (fun x => f x = true) s.
+Lemma for_all_2 : forall s, compat_bool X.eq f ->
+ for_all f s = true -> For_all (fun x => f x = true) s.
Proof.
induction s; simpl; auto; intros; red; intros; inv In.
destruct (andb_prop _ _ H0); auto.
@@ -1673,52 +1481,40 @@ Proof.
destruct (andb_prop _ _ H0); auto.
Qed.
-Fixpoint exists_ (s:t) : bool := match s with
- | Leaf => false
- | Node l x r _ => f x || exists_ l || exists_ r
-end.
-
-Lemma exists_1 : forall s, compat_bool E.eq f ->
- Exists (fun x => f x = true) s -> exists_ s = true.
+Lemma exists_1 : forall s, compat_bool X.eq f ->
+ Exists (fun x => f x = true) s -> exists_ f s = true.
Proof.
- induction s; simpl; destruct 2 as (x,(U,V)); inv In.
+ induction s; simpl; destruct 2 as (x,(U,V)); inv In; rewrite <- ?orb_lazy_alt.
rewrite (H _ _ (X.eq_sym H0)); rewrite V; auto.
apply orb_true_intro; left.
- apply orb_true_intro; right; apply IHs1; firstorder.
- apply orb_true_intro; right; apply IHs2; firstorder.
+ apply orb_true_intro; right; apply IHs1; auto; exists x; auto.
+ apply orb_true_intro; right; apply IHs2; auto; exists x; auto.
Qed.
-Lemma exists_2 : forall s, compat_bool E.eq f ->
- exists_ s = true -> Exists (fun x => f x = true) s.
+Lemma exists_2 : forall s, compat_bool X.eq f ->
+ exists_ f s = true -> Exists (fun x => f x = true) s.
Proof.
- induction s; simpl; intros.
+ induction s; simpl; intros; rewrite <- ?orb_lazy_alt in *.
discriminate.
destruct (orb_true_elim _ _ H0) as [H1|H1].
destruct (orb_true_elim _ _ H1) as [H2|H2].
exists t; auto.
- destruct (IHs1 H H2); firstorder.
- destruct (IHs2 H H1); firstorder.
-Qed.
+ destruct (IHs1 H H2); auto; exists x; intuition.
+ destruct (IHs2 H H1); auto; exists x; intuition.
+Qed.
End F.
-(** * Fold *)
-Module L := FSetList.Raw X.
-Fixpoint fold (A : Set) (f : elt -> A -> A)(s : tree) {struct s} : A -> A :=
- fun a => match s with
- | Leaf => a
- | Node l x r _ => fold A f r (f x (fold A f l a))
- end.
-Implicit Arguments fold [A].
+(** * Fold *)
-Definition fold' (A : Set) (f : elt -> A -> A)(s : tree) :=
+Definition fold' (A : Type) (f : elt -> A -> A)(s : tree) :=
L.fold f (elements s).
Implicit Arguments fold' [A].
Lemma fold_equiv_aux :
- forall (A : Set) (s : tree) (f : elt -> A -> A) (a : A) (acc : list elt),
+ forall (A : Type) (s : tree) (f : elt -> A -> A) (a : A) (acc : list elt),
L.fold f (elements_aux acc s) a = L.fold f acc (fold f s a).
Proof.
simple induction s.
@@ -1730,7 +1526,7 @@ Proof.
Qed.
Lemma fold_equiv :
- forall (A : Set) (s : tree) (f : elt -> A -> A) (a : A),
+ forall (A : Type) (s : tree) (f : elt -> A -> A) (a : A),
fold f s a = fold' f s a.
Proof.
unfold fold', elements in |- *.
@@ -1741,7 +1537,7 @@ Proof.
Qed.
Lemma fold_1 :
- forall (s:t)(Hs:bst s)(A : Set)(f : elt -> A -> A)(i : A),
+ forall (s:t)(Hs:bst s)(A : Type)(f : elt -> A -> A)(i : A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
intros.
@@ -1752,416 +1548,168 @@ Proof.
apply elements_sort; auto.
Qed.
-(** * Cardinal *)
-
-Fixpoint cardinal (s : tree) : nat :=
- match s with
- | Leaf => 0%nat
- | Node l _ r _ => S (cardinal l + cardinal r)
- end.
+(** * Subset *)
-Lemma cardinal_elements_aux_1 :
- forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
+Lemma subsetl_12 : forall subset_l1 l1 x1 h1 s2,
+ bst (Node l1 x1 Leaf h1) -> bst s2 ->
+ (forall s, bst s -> (subset_l1 s = true <-> Subset l1 s)) ->
+ (subsetl subset_l1 x1 s2 = true <-> Subset (Node l1 x1 Leaf h1) s2 ).
Proof.
- simple induction s; simpl in |- *; intuition.
- rewrite <- H.
- simpl in |- *.
- rewrite <- H0; omega.
-Qed.
+ induction s2 as [|l2 IHl2 x2 r2 IHr2 h2]; simpl; intros.
+ unfold Subset; intuition; try discriminate.
+ assert (H': In x1 Leaf) by auto; inversion H'.
+ inversion_clear H0.
+ specialize (IHl2 H H2 H1).
+ specialize (IHr2 H H3 H1).
+ inv bst. clear H8.
+ destruct X.compare.
+
+ rewrite IHl2; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
-Lemma cardinal_elements_1 : forall s : tree, cardinal s = length (elements s).
-Proof.
- exact (fun s => cardinal_elements_aux_1 s nil).
-Qed.
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
-(** NB: the remaining functions (union, subset, compare) are still defined
- in a dependent style, due to the use of well-founded induction. *)
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (H':=mem_2 H6); apply In_1 with x1; auto.
+ apply mem_1; auto.
+ assert (In x1 (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
-(** Induction over cardinals *)
-Lemma sorted_subset_cardinal : forall l' l : list X.t,
- sort X.lt l -> sort X.lt l' ->
- (forall x : elt, InA X.eq x l -> InA X.eq x l') -> (length l <= length l')%nat.
+Lemma subsetr_12 : forall subset_r1 r1 x1 h1 s2,
+ bst (Node Leaf x1 r1 h1) -> bst s2 ->
+ (forall s, bst s -> (subset_r1 s = true <-> Subset r1 s)) ->
+ (subsetr subset_r1 x1 s2 = true <-> Subset (Node Leaf x1 r1 h1) s2).
Proof.
- simple induction l'; simpl in |- *; intuition.
- destruct l; trivial; intros.
- absurd (InA X.eq t nil); intuition.
- inversion_clear H2.
- inversion_clear H1.
- destruct l0; simpl in |- *; intuition.
+ induction s2 as [|l2 IHl2 x2 r2 IHr2 h2]; simpl; intros.
+ unfold Subset; intuition; try discriminate.
+ assert (H': In x1 Leaf) by auto; inversion H'.
inversion_clear H0.
- apply le_n_S.
- case (X.compare t a); intro.
- absurd (InA X.eq t (a :: l)).
- intro.
- inversion_clear H0.
- order.
- assert (X.lt a t).
- apply MX.Sort_Inf_In with l; auto.
- order.
- firstorder.
- apply H; auto.
- intros.
- assert (InA X.eq x (a :: l)).
- apply H2; auto.
- inversion_clear H6; auto.
- assert (X.lt t x).
- apply MX.Sort_Inf_In with l0; auto.
- order.
- apply le_trans with (length (t :: l0)).
- simpl in |- *; omega.
- apply (H (t :: l0)); auto.
- intros.
- assert (InA X.eq x (a :: l)); firstorder.
- inversion_clear H6; auto.
- assert (X.lt a x).
- apply MX.Sort_Inf_In with (t :: l0); auto.
- elim (X.lt_not_eq (x:=a) (y:=x)); auto.
-Qed.
-
-Lemma cardinal_subset : forall a b : tree, bst a -> bst b ->
- (forall y : elt, In y a -> In y b) ->
- (cardinal a <= cardinal b)%nat.
-Proof.
- intros.
- do 2 rewrite cardinal_elements_1.
- apply sorted_subset_cardinal; auto.
- intros.
- generalize (elements_in a x) (elements_in b x).
- intuition.
+ specialize (IHl2 H H2 H1).
+ specialize (IHr2 H H3 H1).
+ inv bst. clear H7.
+ destruct X.compare.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (H':=mem_2 H1); apply In_1 with x1; auto.
+ apply mem_1; auto.
+ assert (In x1 (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite H1 by auto; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite IHr2; clear H1 IHl2 IHr2.
+ unfold Subset. intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
Qed.
-Lemma cardinal_left : forall (l r : tree) (x : elt) (h : int),
- (cardinal l < cardinal (Node l x r h))%nat.
-Proof.
- simpl in |- *; intuition.
-Qed.
-Lemma cardinal_right :
- forall (l r : tree) (x : elt) (h : int),
- (cardinal r < cardinal (Node l x r h))%nat.
+Lemma subset_12 : forall s1 s2, bst s1 -> bst s2 ->
+ (subset s1 s2 = true <-> Subset s1 s2).
Proof.
- simpl in |- *; intuition.
-Qed.
+ induction s1 as [|l1 IHl1 x1 r1 IHr1 h1]; simpl; intros.
+ unfold Subset; intuition_in.
+ destruct s2 as [|l2 x2 r2 h2]; simpl; intros.
+ unfold Subset; intuition_in; try discriminate.
+ assert (H': In x1 Leaf) by auto; inversion H'.
+ inv bst.
+ destruct X.compare.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHr1 by auto.
+ rewrite (@subsetl_12 (subset l1) l1 x1 h1) by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHl1, IHr1 by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+
+ rewrite <-andb_lazy_alt, andb_true_iff, IHl1 by auto.
+ rewrite (@subsetr_12 (subset r1) r1 x1 h1) by auto.
+ clear IHl1 IHr1.
+ unfold Subset; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
-Lemma cardinal_rec2 : forall P : tree -> tree -> Set,
- (forall s1 s2 : tree,
- (forall t1 t2 : tree,
- (cardinal t1 + cardinal t2 < cardinal s1 + cardinal s2)%nat -> P t1 t2)
- -> P s1 s2) ->
- forall s1 s2 : tree, P s1 s2.
-Proof.
- intros P H s1 s2.
- apply well_founded_induction_type_2
- with (R := fun yy' xx' : tree * tree =>
- (cardinal (fst yy') + cardinal (snd yy') <
- cardinal (fst xx') + cardinal (snd xx'))%nat); auto.
- apply (Wf_nat.well_founded_ltof _
- (fun xx' : tree * tree => (cardinal (fst xx') + cardinal (snd xx'))%nat)).
-Qed.
-
-Lemma height_0 : forall s, avl s -> height s = 0 -> s = Leaf.
-Proof.
- destruct 1; intuition; simpl in *.
- avl_nns; simpl in *; false_omega_max.
-Qed.
-
-(** * Union
-
- [union s1 s2] does an induction over the sum of the cardinals of
- [s1] and [s2]. Code is
-<<
- let rec union s1 s2 =
- match (s1, s2) with
- (Empty, t2) -> t2
- | (t1, Empty) -> t1
- | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) ->
- if h1 >= h2 then
- if h2 = 1 then add v2 s1 else begin
- let (l2', _, r2') = split v1 s2 in
- join (union l1 l2') v1 (union r1 r2')
- end
- else
- if h1 = 1 then add v1 s2 else begin
- let (l1', _, r1') = split v2 s1 in
- join (union l1' l2) v2 (union r1' r2)
- end
->>
-*)
-Definition union :
- forall s1 s2, bst s1 -> avl s1 -> bst s2 -> avl s2 ->
- {s' : t | bst s' /\ avl s' /\ forall x : elt, In x s' <-> In x s1 \/ In x s2}.
-Proof.
- intros s1 s2; pattern s1, s2; apply cardinal_rec2; clear s1 s2.
- destruct s1 as [| l1 x1 r1 h1]; intros.
- (* s = Leaf *)
- clear H.
- exists s2; intuition_in.
- (* s1 = Node l1 x1 r1 *)
- destruct s2 as [| l2 x2 r2 h2]; simpl in |- *.
- (* s2 = Leaf *)
- clear H.
- exists (Node l1 x1 r1 h1); simpl; intuition_in.
- (* x' = Node l2 x2 r2 *)
- case (ge_lt_dec h1 h2); intro.
- (* h1 >= h2 *)
- case (eq_dec h2 1); intro.
- (* h2 = 1 *)
- clear H.
- exists (add x2 (Node l1 x1 r1 h1)); auto.
- inv avl; inv bst.
- avl_nn l2; avl_nn r2.
- rewrite (height_0 _ H); [ | omega_max].
- rewrite (height_0 _ H4); [ | omega_max].
- split; [apply add_bst; auto|].
- split; [apply add_avl; auto|].
- intros.
- rewrite (add_in (Node l1 x1 r1 h1) x2 x); intuition_in.
- (* h2 <> 1 *)
- (* split x1 s2 = l2',_,r2' *)
- case_eq (split x1 (Node l2 x2 r2 h2)); intros l2' (b,r2') EqSplit.
- set (s2 := Node l2 x2 r2 h2) in *; clearbody s2.
- generalize (split_avl s2 x1 H3); rewrite EqSplit; simpl in *; intros (A,B).
- generalize (split_bst s2 x1 H2 H3); rewrite EqSplit; simpl in *; intros (C,D).
- generalize (split_in_1 s2 x1); rewrite EqSplit; simpl in *; intros.
- generalize (split_in_2 s2 x1); rewrite EqSplit; simpl in *; intros.
- (* union l1 l2' = l0 *)
- destruct (H l1 l2') as [l0 (H7,(H8,H9))]; inv avl; inv bst; auto.
- assert (cardinal l2' <= cardinal s2)%nat.
- apply cardinal_subset; trivial.
- intros y; rewrite (H4 y); intuition.
- omega.
- (* union r1 r2' = r0 *)
- destruct (H r1 r2') as [r0 (H10,(H11,H12))]; inv avl; inv bst; auto.
- assert (cardinal r2' <= cardinal s2)%nat.
- apply cardinal_subset; trivial.
- intros y; rewrite (H5 y); intuition.
- omega.
- exists (join l0 x1 r0).
- inv avl; inv bst; clear H.
- split.
- apply join_bst; auto.
- red; intros.
- rewrite (H9 y) in H.
- destruct H; auto.
- rewrite (H4 y) in H; intuition.
- red; intros.
- rewrite (H12 y) in H.
- destruct H; auto.
- rewrite (H5 y) in H; intuition.
- split.
- apply join_avl; auto.
- intros.
- rewrite join_in; auto.
- rewrite H9.
- rewrite H12.
- rewrite H4; auto.
- rewrite H5; auto.
- intuition_in.
- case (X.compare x x1); intuition.
- (* h1 < h2 *)
- case (eq_dec h1 1); intro.
- (* h1 = 1 *)
- exists (add x1 (Node l2 x2 r2 h2)); auto.
- inv avl; inv bst.
- avl_nn l1; avl_nn r1.
- rewrite (height_0 _ H3); [ | omega_max].
- rewrite (height_0 _ H8); [ | omega_max].
- split; [apply add_bst; auto|].
- split; [apply add_avl; auto|].
- intros.
- rewrite (add_in (Node l2 x2 r2 h2) x1 x); intuition_in.
- (* h1 <> 1 *)
- (* split x2 s1 = l1',_,r1' *)
- case_eq (split x2 (Node l1 x1 r1 h1)); intros l1' (b,r1') EqSplit.
- set (s1 := Node l1 x1 r1 h1) in *; clearbody s1.
- generalize (split_avl s1 x2 H1); rewrite EqSplit; simpl in *; intros (A,B).
- generalize (split_bst s1 x2 H0 H1); rewrite EqSplit; simpl in *; intros (C,D).
- generalize (split_in_1 s1 x2); rewrite EqSplit; simpl in *; intros.
- generalize (split_in_2 s1 x2); rewrite EqSplit; simpl in *; intros.
- (* union l1' l2 = l0 *)
- destruct (H l1' l2) as [l0 (H7,(H8,H9))]; inv avl; inv bst; auto.
- assert (cardinal l1' <= cardinal s1)%nat.
- apply cardinal_subset; trivial.
- intros y; rewrite (H4 y); intuition.
- omega.
- (* union r1' r2 = r0 *)
- destruct (H r1' r2) as [r0 (H10,(H11,H12))]; inv avl; inv bst; auto.
- assert (cardinal r1' <= cardinal s1)%nat.
- apply cardinal_subset; trivial.
- intros y; rewrite (H5 y); intuition.
- omega.
- exists (join l0 x2 r0).
- inv avl; inv bst; clear H.
- split.
- apply join_bst; auto.
- red; intros.
- rewrite (H9 y) in H.
- destruct H; auto.
- rewrite (H4 y) in H; intuition.
- red; intros.
- rewrite (H12 y) in H.
- destruct H; auto.
- rewrite (H5 y) in H; intuition.
- split.
- apply join_avl; auto.
- intros.
- rewrite join_in; auto.
- rewrite H9.
- rewrite H12.
- rewrite H4; auto.
- rewrite H5; auto.
- intuition_in.
- case (X.compare x x2); intuition.
-Qed.
-
-
-(** * Subset
-<<
- let rec subset s1 s2 =
- match (s1, s2) with
- Empty, _ -> true
- | _, Empty -> false
- | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) ->
- let c = Ord.compare v1 v2 in
- if c = 0 then
- subset l1 l2 && subset r1 r2
- else if c < 0 then
- subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2
- else
- subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2
->>
-*)
-
-Definition subset : forall s1 s2 : t, bst s1 -> bst s2 ->
- {Subset s1 s2} + {~ Subset s1 s2}.
-Proof.
- intros s1 s2; pattern s1, s2; apply cardinal_rec2; clear s1 s2.
- destruct s1 as [| l1 x1 r1 h1]; intros.
- (* s1 = Leaf *)
- left; red; intros; inv In.
- (* s1 = Node l1 x1 r1 h1 *)
- destruct s2 as [| l2 x2 r2 h2].
- (* s2 = Leaf *)
- right; intros; intro.
- assert (In x1 Leaf); auto.
- inversion_clear H3.
- (* s2 = Node l2 x2 r2 h2 *)
- case (X.compare x1 x2); intro.
- (* x1 < x2 *)
- case (H (Node l1 x1 Leaf 0) l2); inv bst; auto; intros.
- simpl in |- *; omega.
- case (H r1 (Node l2 x2 r2 h2)); inv bst; auto; intros.
- simpl in |- *; omega.
- clear H; left; red; intuition.
- generalize (s a) (s0 a); clear s s0; intuition_in.
- clear H; right; red; firstorder.
- clear H; right; red; inv bst; intuition.
- apply n; red; intros.
- assert (In a (Node l2 x2 r2 h2)) by (inv In; auto).
- intuition_in; order.
- (* x1 = x2 *)
- case (H l1 l2); inv bst; auto; intros.
- simpl in |- *; omega.
- case (H r1 r2); inv bst; auto; intros.
- simpl in |- *; omega.
- clear H; left; red; intuition_in; eauto.
- clear H; right; red; inv bst; intuition.
- apply n; red; intros.
- assert (In a (Node l2 x2 r2 h2)) by auto.
- intuition_in; order.
- clear H; right; red; inv bst; intuition.
- apply n; red; intros.
- assert (In a (Node l2 x2 r2 h2)) by auto.
- intuition_in; order.
- (* x1 > x2 *)
- case (H (Node Leaf x1 r1 0) r2); inv bst; auto; intros.
- simpl in |- *; omega.
- intros; case (H l1 (Node l2 x2 r2 h2)); inv bst; auto; intros.
- simpl in |- *; omega.
- clear H; left; red; intuition.
- generalize (s a) (s0 a); clear s s0; intuition_in.
- clear H; right; red; firstorder.
- clear H; right; red; inv bst; intuition.
- apply n; red; intros.
- assert (In a (Node l2 x2 r2 h2)) by (inv In; auto).
- intuition_in; order.
-Qed.
(** * Comparison *)
(** ** Relations [eq] and [lt] over trees *)
-Definition eq : t -> t -> Prop := Equal.
+Definition eq := Equal.
+Definition lt (s1 s2 : t) : Prop := L.lt (elements s1) (elements s2).
-Lemma eq_refl : forall s : t, eq s s.
+Lemma eq_refl : forall s : t, Equal s s.
Proof.
- unfold eq, Equal in |- *; intuition.
+ unfold Equal; intuition.
Qed.
-Lemma eq_sym : forall s s' : t, eq s s' -> eq s' s.
+Lemma eq_sym : forall s s' : t, Equal s s' -> Equal s' s.
Proof.
- unfold eq, Equal in |- *; firstorder.
+ unfold Equal; intros s s' H x; destruct (H x); split; auto.
Qed.
-Lemma eq_trans : forall s s' s'' : t, eq s s' -> eq s' s'' -> eq s s''.
+Lemma eq_trans : forall s s' s'' : t,
+ Equal s s' -> Equal s' s'' -> Equal s s''.
Proof.
- unfold eq, Equal in |- *; firstorder.
+ unfold Equal; intros s s' s'' H1 H2 x;
+ destruct (H1 x); destruct (H2 x); split; auto.
Qed.
Lemma eq_L_eq :
- forall s s' : t, eq s s' -> L.eq (elements s) (elements s').
+ forall s s' : t, Equal s s' -> L.eq (elements s) (elements s').
Proof.
- unfold eq, Equal, L.eq, L.Equal in |- *; intros.
- generalize (elements_in s a) (elements_in s' a).
- firstorder.
+ unfold Equal, L.eq, L.Equal; intros; do 2 rewrite elements_in; auto.
Qed.
Lemma L_eq_eq :
- forall s s' : t, L.eq (elements s) (elements s') -> eq s s'.
+ forall s s' : t, L.eq (elements s) (elements s') -> Equal s s'.
Proof.
- unfold eq, Equal, L.eq, L.Equal in |- *; intros.
- generalize (elements_in s a) (elements_in s' a).
- firstorder.
+ unfold Equal, L.eq, L.Equal; intros; do 2 rewrite <-elements_in; auto.
Qed.
Hint Resolve eq_L_eq L_eq_eq.
-Definition lt (s1 s2 : t) : Prop := L.lt (elements s1) (elements s2).
-
Definition lt_trans (s s' s'' : t) (h : lt s s')
(h' : lt s' s'') : lt s s'' := L.lt_trans h h'.
-Lemma lt_not_eq : forall s s' : t, bst s -> bst s' -> lt s s' -> ~ eq s s'.
+Lemma lt_not_eq : forall s s' : t,
+ bst s -> bst s' -> lt s s' -> ~ Equal s s'.
Proof.
unfold lt in |- *; intros; intro.
apply L.lt_not_eq with (s := elements s) (s' := elements s'); auto.
Qed.
-(** A new comparison algorithm suggested by Xavier Leroy:
-
-type enumeration = End | More of elt * t * enumeration
-
-let rec cons s e = match s with
- | Empty -> e
- | Node(l, v, r, _) -> cons l (More(v, r, e))
-
-let rec compare_aux e1 e2 = match (e1, e2) with
- | (End, End) -> 0
- | (End, More _) -> -1
- | (More _, End) -> 1
- | (More(v1, r1, k1), More(v2, r2, k2)) ->
- let c = Ord.compare v1 v2 in
- if c <> 0 then c else compare_aux (cons r1 k1) (cons r2 k2)
-
-let compare s1 s2 = compare_aux (cons s1 End) (cons s2 End)
-*)
+Lemma L_eq_cons :
+ forall (l1 l2 : list elt) (x y : elt),
+ X.eq x y -> L.eq l1 l2 -> L.eq (x :: l1) (y :: l2).
+Proof.
+ unfold L.eq, L.Equal in |- *; intuition.
+ inversion_clear H1; generalize (H0 a); clear H0; intuition.
+ apply InA_eqA with x; eauto.
+ inversion_clear H1; generalize (H0 a); clear H0; intuition.
+ apply InA_eqA with y; eauto.
+Qed.
+Hint Resolve L_eq_cons.
-(** ** Enumeration of the elements of a tree *)
-Inductive enumeration : Set :=
- | End : enumeration
- | More : elt -> tree -> enumeration -> enumeration.
+(** * A new comparison algorithm suggested by Xavier Leroy *)
(** [flatten_e e] returns the list of elements of [e] i.e. the list
of elements actually compared *)
@@ -2171,462 +1719,166 @@ Fixpoint flatten_e (e : enumeration) : list elt := match e with
| More x t r => x :: elements t ++ flatten_e r
end.
-(** [sorted_e e] expresses that elements in the enumeration [e] are
- sorted, and that all trees in [e] are binary search trees. *)
-
-Inductive In_e (x:elt) : enumeration -> Prop :=
- | InEHd1 :
- forall (y : elt) (s : tree) (e : enumeration),
- X.eq x y -> In_e x (More y s e)
- | InEHd2 :
- forall (y : elt) (s : tree) (e : enumeration),
- In x s -> In_e x (More y s e)
- | InETl :
- forall (y : elt) (s : tree) (e : enumeration),
- In_e x e -> In_e x (More y s e).
-
-Hint Constructors In_e.
-
-Inductive sorted_e : enumeration -> Prop :=
- | SortedEEnd : sorted_e End
- | SortedEMore :
- forall (x : elt) (s : tree) (e : enumeration),
- bst s ->
- (gt_tree x s) ->
- sorted_e e ->
- (forall y : elt, In_e y e -> X.lt x y) ->
- (forall y : elt,
- In y s -> forall z : elt, In_e z e -> X.lt y z) ->
- sorted_e (More x s e).
-
-Hint Constructors sorted_e.
-
-Lemma in_app :
- forall (x : elt) (l1 l2 : list elt),
- InA X.eq x (l1 ++ l2) -> InA X.eq x l1 \/ InA X.eq x l2.
-Proof.
- simple induction l1; simpl in |- *; intuition.
- inversion_clear H0; auto.
- elim (H l2 H1); auto.
-Qed.
-
-Lemma in_flatten_e :
- forall (x : elt) (e : enumeration), InA X.eq x (flatten_e e) -> In_e x e.
-Proof.
- simple induction e; simpl in |- *; intuition.
- inversion_clear H.
- inversion_clear H0; auto.
- elim (in_app x _ _ H1); auto.
- destruct (elements_in t x); auto.
-Qed.
-
-Lemma sort_app :
- forall l1 l2 : list elt, sort X.lt l1 -> sort X.lt l2 ->
- (forall x y : elt, InA X.eq x l1 -> InA X.eq y l2 -> X.lt x y) ->
- sort X.lt (l1 ++ l2).
-Proof.
- simple induction l1; simpl in |- *; intuition.
- apply cons_sort; auto.
- apply H; auto.
- inversion_clear H0; trivial.
- induction l as [| a0 l Hrecl]; simpl in |- *; intuition.
- induction l2 as [| a0 l2 Hrecl2]; simpl in |- *; intuition.
- inversion_clear H0; inversion_clear H4; auto.
-Qed.
-
-Lemma sorted_flatten_e :
- forall e : enumeration, sorted_e e -> sort X.lt (flatten_e e).
-Proof.
- simple induction e; simpl in |- *; intuition.
- apply cons_sort.
- apply sort_app; inversion H0; auto.
- intros; apply H8; auto.
- destruct (elements_in t x0); auto.
- apply in_flatten_e; auto.
- apply L.MX.ListIn_Inf.
- inversion_clear H0.
- intros; elim (in_app_or _ _ _ H0); intuition.
- destruct (elements_in t y); auto.
- apply H4; apply in_flatten_e; auto.
-Qed.
-
-Lemma elements_app :
- forall (s : tree) (acc : list elt), elements_aux acc s = elements s ++ acc.
-Proof.
- simple induction s; simpl in |- *; intuition.
- rewrite H0.
- rewrite H.
- unfold elements; simpl.
- do 2 rewrite H.
- rewrite H0.
- repeat rewrite <- app_nil_end.
- repeat rewrite app_ass; auto.
-Qed.
-
-Lemma compare_flatten_1 :
- forall (t0 t2 : tree) (t1 : elt) (z : int) (l : list elt),
- elements t0 ++ t1 :: elements t2 ++ l =
- elements (Node t0 t1 t2 z) ++ l.
+Lemma flatten_e_elements :
+ forall l x r h e,
+ elements l ++ flatten_e (More x r e) = elements (Node l x r h) ++ flatten_e e.
Proof.
- simpl in |- *; unfold elements in |- *; simpl in |- *; intuition.
- repeat rewrite elements_app.
- repeat rewrite <- app_nil_end.
- repeat rewrite app_ass; auto.
+ intros; simpl; apply elements_node.
Qed.
-(** key lemma for correctness *)
-
-Lemma flatten_e_elements :
- forall (x : elt) (l r : tree) (z : int) (e : enumeration),
- elements l ++ flatten_e (More x r e) = elements (Node l x r z) ++ flatten_e e.
+Lemma cons_1 : forall s e,
+ flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
- intros; simpl.
- apply compare_flatten_1.
+ induction s; simpl; auto; intros.
+ rewrite IHs1; apply flatten_e_elements.
Qed.
-(** termination of [compare_aux] *)
+(** Correctness of this comparison *)
-Open Local Scope Z_scope.
-
-Fixpoint measure_e_t (s : tree) : Z := match s with
- | Leaf => 0
- | Node l _ r _ => 1 + measure_e_t l + measure_e_t r
- end.
-
-Fixpoint measure_e (e : enumeration) : Z := match e with
- | End => 0
- | More _ s r => 1 + measure_e_t s + measure_e r
+Definition Cmp c :=
+ match c with
+ | Eq => L.eq
+ | Lt => L.lt
+ | Gt => (fun l1 l2 => L.lt l2 l1)
end.
-Ltac Measure_e_t := unfold measure_e_t in |- *; fold measure_e_t in |- *.
-Ltac Measure_e := unfold measure_e in |- *; fold measure_e in |- *.
-
-Lemma measure_e_t_0 : forall s : tree, measure_e_t s >= 0.
+Lemma cons_Cmp : forall c x1 x2 l1 l2, X.eq x1 x2 ->
+ Cmp c l1 l2 -> Cmp c (x1::l1) (x2::l2).
Proof.
- simple induction s.
- simpl in |- *; omega.
- intros.
- Measure_e_t; omega. (* BUG Simpl! *)
+ destruct c; simpl; auto.
Qed.
+Hint Resolve cons_Cmp.
-Ltac Measure_e_t_0 s := generalize (measure_e_t_0 s); intro.
-
-Lemma measure_e_0 : forall e : enumeration, measure_e e >= 0.
+Lemma compare_end_Cmp :
+ forall e2, Cmp (compare_end e2) nil (flatten_e e2).
Proof.
- simple induction e.
- simpl in |- *; omega.
- intros.
- Measure_e; Measure_e_t_0 t; omega.
+ destruct e2; simpl; auto.
+ apply L.eq_refl.
Qed.
-Ltac Measure_e_0 e := generalize (measure_e_0 e); intro.
-
-(** Induction principle over the sum of the measures for two lists *)
-
-Definition compare_rec2 :
- forall P : enumeration -> enumeration -> Set,
- (forall x x' : enumeration,
- (forall y y' : enumeration,
- measure_e y + measure_e y' < measure_e x + measure_e x' -> P y y') ->
- P x x') ->
- forall x x' : enumeration, P x x'.
+Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
+ Cmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
+ Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
+ (flatten_e (More x2 r2 e2)).
Proof.
- intros P H x x'.
- apply well_founded_induction_type_2
- with (R := fun yy' xx' : enumeration * enumeration =>
- measure_e (fst yy') + measure_e (snd yy') <
- measure_e (fst xx') + measure_e (snd xx')); auto.
- apply Wf_nat.well_founded_lt_compat
- with (f := fun xx' : enumeration * enumeration =>
- Zabs_nat (measure_e (fst xx') + measure_e (snd xx'))).
- intros; apply Zabs.Zabs_nat_lt.
- Measure_e_0 (fst x0); Measure_e_0 (snd x0); Measure_e_0 (fst y);
- Measure_e_0 (snd y); intros; omega.
-Qed.
-
-(** [cons t e] adds the elements of tree [t] on the head of
- enumeration [e]. Code:
-
-let rec cons s e = match s with
- | Empty -> e
- | Node(l, v, r, _) -> cons l (More(v, r, e))
-*)
-
-Definition cons : forall (s : tree) (e : enumeration), bst s -> sorted_e e ->
- (forall (x y : elt), In x s -> In_e y e -> X.lt x y) ->
- { r : enumeration
- | sorted_e r /\
- measure_e r = measure_e_t s + measure_e e /\
- flatten_e r = elements s ++ flatten_e e
- }.
-Proof.
- simple induction s; intuition.
- (* s = Leaf *)
- exists e; intuition.
- (* s = Node t t0 t1 z *)
- clear H0.
- case (H (More t0 t1 e)); clear H; intuition.
- inv bst; auto.
- constructor; inversion_clear H1; auto.
- inversion_clear H0; inv bst; intuition; order.
- exists x; intuition.
- generalize H4; Measure_e; intros; Measure_e_t; omega.
- rewrite H5.
- apply flatten_e_elements.
+ simpl; intros; destruct X.compare; simpl; auto.
Qed.
-Lemma l_eq_cons :
- forall (l1 l2 : list elt) (x y : elt),
- X.eq x y -> L.eq l1 l2 -> L.eq (x :: l1) (y :: l2).
+Lemma compare_cont_Cmp : forall s1 cont e2 l,
+ (forall e, Cmp (cont e) l (flatten_e e)) ->
+ Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
Proof.
- unfold L.eq, L.Equal in |- *; intuition.
- inversion_clear H1; generalize (H0 a); clear H0; intuition.
- apply InA_eqA with x; eauto.
- inversion_clear H1; generalize (H0 a); clear H0; intuition.
- apply InA_eqA with y; eauto.
+ induction s1 as [|l1 Hl1 x1 r1 Hr1 h1]; simpl; intros; auto.
+ rewrite <- elements_node; simpl.
+ apply Hl1; auto. clear e2. intros [|x2 r2 e2].
+ simpl; auto.
+ apply compare_more_Cmp.
+ rewrite <- cons_1; auto.
Qed.
-Definition compare_aux :
- forall e1 e2 : enumeration, sorted_e e1 -> sorted_e e2 ->
- Compare L.lt L.eq (flatten_e e1) (flatten_e e2).
-Proof.
- intros e1 e2; pattern e1, e2 in |- *; apply compare_rec2.
- simple destruct x; simple destruct x'; intuition.
- (* x = x' = End *)
- constructor 2; unfold L.eq, L.Equal in |- *; intuition.
- (* x = End x' = More *)
- constructor 1; simpl in |- *; auto.
- (* x = More x' = End *)
- constructor 3; simpl in |- *; auto.
- (* x = More e t e0, x' = More e3 t0 e4 *)
- case (X.compare e e3); intro.
- (* e < e3 *)
- constructor 1; simpl; auto.
- (* e = e3 *)
- destruct (cons t e0) as [c1 (H2,(H3,H4))]; try inversion_clear H0; auto.
- destruct (cons t0 e4) as [c2 (H5,(H6,H7))]; try inversion_clear H1; auto.
- destruct (H c1 c2); clear H; intuition.
- Measure_e; omega.
- constructor 1; simpl.
- apply L.lt_cons_eq; auto.
- rewrite H4 in l; rewrite H7 in l; auto.
- constructor 2; simpl.
- apply l_eq_cons; auto.
- rewrite H4 in e6; rewrite H7 in e6; auto.
- constructor 3; simpl.
- apply L.lt_cons_eq; auto.
- rewrite H4 in l; rewrite H7 in l; auto.
- (* e > e3 *)
- constructor 3; simpl; auto.
-Qed.
-
-Definition compare : forall s1 s2, bst s1 -> bst s2 -> Compare lt eq s1 s2.
-Proof.
- intros s1 s2 s1_bst s2_bst; unfold lt, eq; simpl.
- destruct (cons s1 End); intuition.
- inversion_clear H0.
- destruct (cons s2 End); intuition.
- inversion_clear H3.
- simpl in H2; rewrite <- app_nil_end in H2.
- simpl in H5; rewrite <- app_nil_end in H5.
- destruct (compare_aux x x0); intuition.
- constructor 1; simpl in |- *.
- rewrite H2 in l; rewrite H5 in l; auto.
- constructor 2; apply L_eq_eq; simpl in |- *.
- rewrite H2 in e; rewrite H5 in e; auto.
- constructor 3; simpl in |- *.
- rewrite H2 in l; rewrite H5 in l; auto.
+Lemma compare_Cmp : forall s1 s2,
+ Cmp (compare s1 s2) (elements s1) (elements s2).
+Proof.
+ intros; unfold compare.
+ rewrite (app_nil_end (elements s1)).
+ replace (elements s2) with (flatten_e (cons s2 End)) by
+ (rewrite cons_1; simpl; rewrite <- app_nil_end; auto).
+ apply compare_cont_Cmp; auto.
+ intros.
+ apply compare_end_Cmp; auto.
Qed.
(** * Equality test *)
-Definition equal : forall s s' : t, bst s -> bst s' -> {Equal s s'} + {~ Equal s s'}.
+Lemma equal_1 : forall s1 s2, bst s1 -> bst s2 ->
+ Equal s1 s2 -> equal s1 s2 = true.
Proof.
- intros s s' Hs Hs'; case (compare s s'); auto; intros.
- right; apply lt_not_eq; auto.
- right; intro; apply (lt_not_eq s' s); auto; apply eq_sym; auto.
-Qed.
-
-(** We provide additionally a different implementation for union, subset and
- equal, which is less efficient, but uses structural induction, hence computes
- within Coq. *)
-
-(** Alternative union based on fold.
- Complexity : [min(|s|,|s'|)*log(max(|s|,|s'|))] *)
-
-Definition union' s s' :=
- if ge_lt_dec (height s) (height s') then fold add s' s else fold add s s'.
-
-Lemma fold_add_avl : forall s s', avl s -> avl s' -> avl (fold add s s').
-Proof.
- induction s; simpl; intros; inv avl; auto.
-Qed.
-Hint Resolve fold_add_avl.
-
-Lemma union'_avl : forall s s', avl s -> avl s' -> avl (union' s s').
-Proof.
- unfold union'; intros; destruct (ge_lt_dec (height s) (height s')); auto.
-Qed.
-
-Lemma fold_add_bst : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- bst (fold add s s').
-Proof.
- induction s; simpl; intros; inv avl; inv bst; auto.
- apply IHs2; auto.
- apply add_bst; auto.
-Qed.
-
-Lemma union'_bst : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- bst (union' s s').
-Proof.
- unfold union'; intros; destruct (ge_lt_dec (height s) (height s'));
- apply fold_add_bst; auto.
+unfold equal; intros s1 s2 B1 B2 E.
+generalize (compare_Cmp s1 s2).
+destruct (compare s1 s2); simpl in *; auto; intros.
+elim (lt_not_eq B1 B2 H E); auto.
+elim (lt_not_eq B2 B1 H (eq_sym E)); auto.
Qed.
-Lemma fold_add_in : forall s s' y, bst s -> avl s -> bst s' -> avl s' ->
- (In y (fold add s s') <-> In y s \/ In y s').
-Proof.
- induction s; simpl; intros; inv avl; inv bst; auto.
- intuition_in.
- rewrite IHs2; auto.
- apply add_bst; auto.
- apply fold_add_bst; auto.
- rewrite add_in; auto.
- rewrite IHs1; auto.
- intuition_in.
-Qed.
-
-Lemma union'_in : forall s s' y, bst s -> avl s -> bst s' -> avl s' ->
- (In y (union' s s') <-> In y s \/ In y s').
+Lemma equal_2 : forall s1 s2,
+ equal s1 s2 = true -> Equal s1 s2.
Proof.
- unfold union'; intros; destruct (ge_lt_dec (height s) (height s')).
- rewrite fold_add_in; intuition.
- apply fold_add_in; auto.
-Qed.
-
-(** Alternative subset based on diff. *)
-
-Definition subset' s s' := is_empty (diff s s').
-
-Lemma subset'_1 : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- Subset s s' -> subset' s s' = true.
-Proof.
- unfold subset', Subset; intros; apply is_empty_1; red; intros.
- rewrite (diff_in); intuition.
+unfold equal; intros s1 s2 E.
+generalize (compare_Cmp s1 s2);
+ destruct compare; auto; discriminate.
Qed.
-Lemma subset'_2 : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- subset' s s' = true -> Subset s s'.
-Proof.
- unfold subset', Subset; intros; generalize (is_empty_2 _ H3 a); unfold Empty.
- rewrite (diff_in); intuition.
- generalize (mem_2 s' a) (mem_1 s' a); destruct (mem a s'); intuition.
-Qed.
+End Proofs.
-(** Alternative equal based on subset *)
+End Raw.
-Definition equal' s s' := subset' s s' && subset' s' s.
-Lemma equal'_1 : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- Equal s s' -> equal' s s' = true.
-Proof.
- unfold equal', Equal; intros.
- rewrite subset'_1; firstorder; simpl.
- apply subset'_1; firstorder.
-Qed.
-
-Lemma equal'_2 : forall s s', bst s -> avl s -> bst s' -> avl s' ->
- equal' s s' = true -> Equal s s'.
-Proof.
- unfold equal', Equal; intros; destruct (andb_prop _ _ H3); split;
- apply subset'_2; auto.
-Qed.
-
-End Raw.
(** * Encapsulation
Now, in order to really provide a functor implementing [S], we
- need to encapsulate everything into a type of balanced binary search trees. *)
+ need to encapsulate everything into a type of binary search trees.
+ They also happen to be well-balanced, but this has no influence
+ on the correctness of operations, so we won't state this here,
+ see [FSetFullAVL] if you need more than just the FSet interface.
+*)
Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Module E := X.
- Module Raw := Raw I X.
+ Module Raw := Raw I X.
+ Import Raw.Proofs.
- Record bbst : Set := Bbst {this :> Raw.t; is_bst : Raw.bst this; is_avl: Raw.avl this}.
- Definition t := bbst.
+ Record bst := Bst {this :> Raw.t; is_bst : Raw.bst this}.
+ Definition t := bst.
Definition elt := E.t.
- Definition In (x : elt) (s : t) : Prop := Raw.In x s.
- Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'.
- Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'.
- Definition Empty (s:t) : Prop := forall a : elt, ~ In a s.
- Definition For_all (P : elt -> Prop) (s:t) : Prop := forall x, In x s -> P x.
- Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x.
-
+ Definition In (x : elt) (s : t) := Raw.In x s.
+ Definition Equal (s s':t) := forall a : elt, In a s <-> In a s'.
+ Definition Subset (s s':t) := forall a : elt, In a s -> In a s'.
+ Definition Empty (s:t) := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) (s:t) := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) (s:t) := exists x, In x s /\ P x.
+
Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s.
- Proof. intro s; exact (Raw.In_1 s). Qed.
+ Proof. intro s; exact (@In_1 s). Qed.
Definition mem (x:elt)(s:t) : bool := Raw.mem x s.
- Definition empty : t := Bbst _ Raw.empty_bst Raw.empty_avl.
+ Definition empty : t := Bst empty_bst.
Definition is_empty (s:t) : bool := Raw.is_empty s.
- Definition singleton (x:elt) : t := Bbst _ (Raw.singleton_bst x) (Raw.singleton_avl x).
- Definition add (x:elt)(s:t) : t :=
- Bbst _ (Raw.add_bst s x (is_bst s) (is_avl s))
- (Raw.add_avl s x (is_avl s)).
- Definition remove (x:elt)(s:t) : t :=
- Bbst _ (Raw.remove_bst s x (is_bst s) (is_avl s))
- (Raw.remove_avl s x (is_avl s)).
- Definition inter (s s':t) : t :=
- Bbst _ (Raw.inter_bst _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (Raw.inter_avl _ _ (is_avl s) (is_avl s')).
- Definition diff (s s':t) : t :=
- Bbst _ (Raw.diff_bst _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (Raw.diff_avl _ _ (is_avl s) (is_avl s')).
+ Definition singleton (x:elt) : t := Bst (singleton_bst x).
+ Definition add (x:elt)(s:t) : t := Bst (add_bst x (is_bst s)).
+ Definition remove (x:elt)(s:t) : t := Bst (remove_bst x (is_bst s)).
+ Definition inter (s s':t) : t := Bst (inter_bst (is_bst s) (is_bst s')).
+ Definition union (s s':t) : t := Bst (union_bst (is_bst s) (is_bst s')).
+ Definition diff (s s':t) : t := Bst (diff_bst (is_bst s) (is_bst s')).
Definition elements (s:t) : list elt := Raw.elements s.
Definition min_elt (s:t) : option elt := Raw.min_elt s.
Definition max_elt (s:t) : option elt := Raw.max_elt s.
Definition choose (s:t) : option elt := Raw.choose s.
- Definition fold (B : Set) (f : elt -> B -> B) (s:t) : B -> B := Raw.fold f s.
+ Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := Raw.fold f s.
Definition cardinal (s:t) : nat := Raw.cardinal s.
Definition filter (f : elt -> bool) (s:t) : t :=
- Bbst _ (Raw.filter_bst f _ (is_bst s) (is_avl s))
- (Raw.filter_avl f _ (is_avl s)).
+ Bst (filter_bst f (is_bst s)).
Definition for_all (f : elt -> bool) (s:t) : bool := Raw.for_all f s.
Definition exists_ (f : elt -> bool) (s:t) : bool := Raw.exists_ f s.
Definition partition (f : elt -> bool) (s:t) : t * t :=
let p := Raw.partition f s in
- (Bbst (fst p) (Raw.partition_bst_1 f _ (is_bst s) (is_avl s))
- (Raw.partition_avl_1 f _ (is_avl s)),
- Bbst (snd p) (Raw.partition_bst_2 f _ (is_bst s) (is_avl s))
- (Raw.partition_avl_2 f _ (is_avl s))).
-
- Definition union (s s':t) : t :=
- let (u,p) := Raw.union _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s') in
- let (b,p) := p in
- let (a,_) := p in
- Bbst u b a.
-
- Definition union' (s s' : t) : t :=
- Bbst _ (Raw.union'_bst _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- (Raw.union'_avl _ _ (is_avl s) (is_avl s')).
-
- Definition equal (s s': t) : bool := if Raw.equal _ _ (is_bst s) (is_bst s') then true else false.
- Definition equal' (s s':t) : bool := Raw.equal' s s'.
+ (@Bst (fst p) (partition_bst_1 f (is_bst s)),
+ @Bst (snd p) (partition_bst_2 f (is_bst s))).
- Definition subset (s s':t) : bool := if Raw.subset _ _ (is_bst s) (is_bst s') then true else false.
- Definition subset' (s s':t) : bool := Raw.subset' s s'.
+ Definition equal (s s':t) : bool := Raw.equal s s'.
+ Definition subset (s s':t) : bool := Raw.subset s s'.
- Definition eq (s s':t) : Prop := Raw.eq s s'.
- Definition lt (s s':t) : Prop := Raw.lt s s'.
+ Definition eq (s s':t) : Prop := Raw.Equal s s'.
+ Definition lt (s s':t) : Prop := Raw.Proofs.lt s s'.
- Definition compare (s s':t) : Compare lt eq s s'.
+ Definition compare (s s':t) : Compare lt eq s s'.
Proof.
- intros; elim (Raw.compare _ _ (is_bst s) (is_bst s'));
- [ constructor 1 | constructor 2 | constructor 3 ];
- auto.
+ intros (s,b) (s',b').
+ generalize (compare_Cmp s s').
+ destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
Defined.
(* specs *)
@@ -2634,260 +1886,164 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Variable s s' s'': t.
Variable x y : elt.
- Hint Resolve is_bst is_avl.
+ Hint Resolve is_bst.
Lemma mem_1 : In x s -> mem x s = true.
- Proof. exact (Raw.mem_1 s x (is_bst s)). Qed.
+ Proof. exact (mem_1 (is_bst s)). Qed.
Lemma mem_2 : mem x s = true -> In x s.
- Proof. exact (Raw.mem_2 s x). Qed.
+ Proof. exact (@mem_2 s x). Qed.
Lemma equal_1 : Equal s s' -> equal s s' = true.
- Proof.
- unfold equal; destruct (Raw.equal s s'); simpl; auto.
- Qed.
-
+ Proof. exact (equal_1 (is_bst s) (is_bst s')). Qed.
Lemma equal_2 : equal s s' = true -> Equal s s'.
- Proof.
- unfold equal; destruct (Raw.equal s s'); simpl; intuition; discriminate.
- Qed.
+ Proof. exact (@equal_2 s s'). Qed.
- Lemma equal'_1 : Equal s s' -> equal' s s' = true.
- Proof. exact (Raw.equal'_1 _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s')). Qed.
- Lemma equal'_2 : equal' s s' = true -> Equal s s'.
- Proof. exact (Raw.equal'_2 _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s')). Qed.
+ Ltac wrap t H := unfold t, In; simpl; rewrite H; auto; intuition.
Lemma subset_1 : Subset s s' -> subset s s' = true.
- Proof.
- unfold subset; destruct (Raw.subset s s'); simpl; intuition.
- Qed.
-
+ Proof. wrap subset subset_12. Qed.
Lemma subset_2 : subset s s' = true -> Subset s s'.
- Proof.
- unfold subset; destruct (Raw.subset s s'); simpl; intuition discriminate.
- Qed.
-
- Lemma subset'_1 : Subset s s' -> subset' s s' = true.
- Proof. exact (Raw.subset'_1 _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s')). Qed.
- Lemma subset'_2 : subset' s s' = true -> Subset s s'.
- Proof. exact (Raw.subset'_2 _ _ (is_bst s) (is_avl s) (is_bst s') (is_avl s')). Qed.
+ Proof. wrap subset subset_12. Qed.
Lemma empty_1 : Empty empty.
- Proof. exact Raw.empty_1. Qed.
+ Proof. exact empty_1. Qed.
Lemma is_empty_1 : Empty s -> is_empty s = true.
- Proof. exact (Raw.is_empty_1 s). Qed.
+ Proof. exact (@is_empty_1 s). Qed.
Lemma is_empty_2 : is_empty s = true -> Empty s.
- Proof. exact (Raw.is_empty_2 s). Qed.
+ Proof. exact (@is_empty_2 s). Qed.
Lemma add_1 : E.eq x y -> In y (add x s).
- Proof.
- unfold add, In; simpl; rewrite Raw.add_in; auto.
- Qed.
-
+ Proof. wrap add add_in. Qed.
Lemma add_2 : In y s -> In y (add x s).
- Proof.
- unfold add, In; simpl; rewrite Raw.add_in; auto.
- Qed.
-
+ Proof. wrap add add_in. Qed.
Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
- Proof.
- unfold add, In; simpl; rewrite Raw.add_in; intuition.
- elim H; auto.
- Qed.
+ Proof. wrap add add_in. elim H; auto. Qed.
Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
- Proof.
- unfold remove, In; simpl; rewrite Raw.remove_in; intuition.
- Qed.
-
+ Proof. wrap remove remove_in. Qed.
Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
- Proof.
- unfold remove, In; simpl; rewrite Raw.remove_in; intuition.
- Qed.
-
+ Proof. wrap remove remove_in. Qed.
Lemma remove_3 : In y (remove x s) -> In y s.
- Proof.
- unfold remove, In; simpl; rewrite Raw.remove_in; intuition.
- Qed.
+ Proof. wrap remove remove_in. Qed.
Lemma singleton_1 : In y (singleton x) -> E.eq x y.
- Proof. exact (Raw.singleton_1 x y). Qed.
+ Proof. exact (@singleton_1 x y). Qed.
Lemma singleton_2 : E.eq x y -> In y (singleton x).
- Proof. exact (Raw.singleton_2 x y). Qed.
+ Proof. exact (@singleton_2 x y). Qed.
Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
- Proof.
- unfold union, In; simpl.
- destruct (Raw.union s s' (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- as (u,(b,(a,i))).
- simpl in *; rewrite i; auto.
- Qed.
-
+ Proof. wrap union union_in. Qed.
Lemma union_2 : In x s -> In x (union s s').
- Proof.
- unfold union, In; simpl.
- destruct (Raw.union s s' (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- as (u,(b,(a,i))).
- simpl in *; rewrite i; auto.
- Qed.
-
+ Proof. wrap union union_in. Qed.
Lemma union_3 : In x s' -> In x (union s s').
- Proof.
- unfold union, In; simpl.
- destruct (Raw.union s s' (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
- as (u,(b,(a,i))).
- simpl in *; rewrite i; auto.
- Qed.
-
- Lemma union'_1 : In x (union' s s') -> In x s \/ In x s'.
- Proof.
- unfold union', In; simpl; rewrite Raw.union'_in; intuition.
- Qed.
-
- Lemma union'_2 : In x s -> In x (union' s s').
- Proof.
- unfold union', In; simpl; rewrite Raw.union'_in; intuition.
- Qed.
-
- Lemma union'_3 : In x s' -> In x (union' s s').
- Proof.
- unfold union', In; simpl; rewrite Raw.union'_in; intuition.
- Qed.
+ Proof. wrap union union_in. Qed.
Lemma inter_1 : In x (inter s s') -> In x s.
- Proof.
- unfold inter, In; simpl; rewrite Raw.inter_in; intuition.
- Qed.
-
+ Proof. wrap inter inter_in. Qed.
Lemma inter_2 : In x (inter s s') -> In x s'.
- Proof.
- unfold inter, In; simpl; rewrite Raw.inter_in; intuition.
- Qed.
-
+ Proof. wrap inter inter_in. Qed.
Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
- Proof.
- unfold inter, In; simpl; rewrite Raw.inter_in; intuition.
- Qed.
+ Proof. wrap inter inter_in. Qed.
Lemma diff_1 : In x (diff s s') -> In x s.
- Proof.
- unfold diff, In; simpl; rewrite Raw.diff_in; intuition.
- Qed.
-
+ Proof. wrap diff diff_in. Qed.
Lemma diff_2 : In x (diff s s') -> ~ In x s'.
- Proof.
- unfold diff, In; simpl; rewrite Raw.diff_in; intuition.
- Qed.
-
+ Proof. wrap diff diff_in. Qed.
Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
- Proof.
- unfold diff, In; simpl; rewrite Raw.diff_in; intuition.
- Qed.
+ Proof. wrap diff diff_in. Qed.
- Lemma fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
- fold A f s i = fold_left (fun a e => f e a) (elements s) i.
- Proof.
- unfold fold, elements; intros; apply Raw.fold_1; auto.
- Qed.
+ Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (fun a e => f e a) (elements s) i.
+ Proof. unfold fold, elements; intros; apply fold_1; auto. Qed.
Lemma cardinal_1 : cardinal s = length (elements s).
Proof.
- unfold cardinal, elements; intros; apply Raw.cardinal_elements_1; auto.
+ unfold cardinal, elements; intros; apply elements_cardinal; auto.
Qed.
Section Filter.
Variable f : elt -> bool.
Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
- Proof.
- intro; unfold filter, In; simpl; rewrite Raw.filter_in; intuition.
- Qed.
-
+ Proof. intro. wrap filter filter_in. Qed.
Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
- Proof.
- intro; unfold filter, In; simpl; rewrite Raw.filter_in; intuition.
- Qed.
-
+ Proof. intro. wrap filter filter_in. Qed.
Lemma filter_3 : compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
- Proof.
- intro; unfold filter, In; simpl; rewrite Raw.filter_in; intuition.
- Qed.
+ Proof. intro. wrap filter filter_in. Qed.
Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true.
- Proof. exact (Raw.for_all_1 f s). Qed.
+ Proof. exact (@for_all_1 f s). Qed.
Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s.
- Proof. exact (Raw.for_all_2 f s). Qed.
+ Proof. exact (@for_all_2 f s). Qed.
Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
- Proof. exact (Raw.exists_1 f s). Qed.
+ Proof. exact (@exists_1 f s). Qed.
Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
- Proof. exact (Raw.exists_2 f s). Qed.
+ Proof. exact (@exists_2 f s). Qed.
Lemma partition_1 : compat_bool E.eq f ->
Equal (fst (partition f s)) (filter f s).
Proof.
unfold partition, filter, Equal, In; simpl ;intros H a.
- rewrite Raw.partition_in_1; auto.
- rewrite Raw.filter_in; intuition.
+ rewrite partition_in_1, filter_in; intuition.
Qed.
Lemma partition_2 : compat_bool E.eq f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof.
unfold partition, filter, Equal, In; simpl ;intros H a.
- rewrite Raw.partition_in_2; auto.
- rewrite Raw.filter_in; intuition.
- red; intros.
- f_equal; auto.
- destruct (f a); auto.
+ rewrite partition_in_2, filter_in; intuition.
+ rewrite H2; auto.
destruct (f a); auto.
+ red; intros; f_equal.
+ rewrite (H _ _ H0); auto.
Qed.
End Filter.
Lemma elements_1 : In x s -> InA E.eq x (elements s).
- Proof.
- unfold elements, In; rewrite Raw.elements_in; auto.
- Qed.
-
+ Proof. wrap elements elements_in. Qed.
Lemma elements_2 : InA E.eq x (elements s) -> In x s.
- Proof.
- unfold elements, In; rewrite Raw.elements_in; auto.
- Qed.
-
+ Proof. wrap elements elements_in. Qed.
Lemma elements_3 : sort E.lt (elements s).
- Proof. exact (Raw.elements_sort _ (is_bst s)). Qed.
+ Proof. exact (elements_sort (is_bst s)). Qed.
+ Lemma elements_3w : NoDupA E.eq (elements s).
+ Proof. exact (elements_nodup (is_bst s)). Qed.
Lemma min_elt_1 : min_elt s = Some x -> In x s.
- Proof. exact (Raw.min_elt_1 s x). Qed.
+ Proof. exact (@min_elt_1 s x). Qed.
Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
- Proof. exact (Raw.min_elt_2 s x y (is_bst s)). Qed.
+ Proof. exact (@min_elt_2 s x y (is_bst s)). Qed.
Lemma min_elt_3 : min_elt s = None -> Empty s.
- Proof. exact (Raw.min_elt_3 s). Qed.
+ Proof. exact (@min_elt_3 s). Qed.
Lemma max_elt_1 : max_elt s = Some x -> In x s.
- Proof. exact (Raw.max_elt_1 s x). Qed.
+ Proof. exact (@max_elt_1 s x). Qed.
Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
- Proof. exact (Raw.max_elt_2 s x y (is_bst s)). Qed.
+ Proof. exact (@max_elt_2 s x y (is_bst s)). Qed.
Lemma max_elt_3 : max_elt s = None -> Empty s.
- Proof. exact (Raw.max_elt_3 s). Qed.
+ Proof. exact (@max_elt_3 s). Qed.
Lemma choose_1 : choose s = Some x -> In x s.
- Proof. exact (Raw.choose_1 s x). Qed.
+ Proof. exact (@choose_1 s x). Qed.
Lemma choose_2 : choose s = None -> Empty s.
- Proof. exact (Raw.choose_2 s). Qed.
+ Proof. exact (@choose_2 s). Qed.
+ Lemma choose_3 : choose s = Some x -> choose s' = Some y ->
+ Equal s s' -> E.eq x y.
+ Proof. exact (@choose_3 _ _ (is_bst s) (is_bst s') x y). Qed.
Lemma eq_refl : eq s s.
- Proof. exact (Raw.eq_refl s). Qed.
+ Proof. exact (eq_refl s). Qed.
Lemma eq_sym : eq s s' -> eq s' s.
- Proof. exact (Raw.eq_sym s s'). Qed.
+ Proof. exact (@eq_sym s s'). Qed.
Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''.
- Proof. exact (Raw.eq_trans s s' s''). Qed.
+ Proof. exact (@eq_trans s s' s''). Qed.
Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''.
- Proof. exact (Raw.lt_trans s s' s''). Qed.
+ Proof. exact (@lt_trans s s' s''). Qed.
Lemma lt_not_eq : lt s s' -> ~eq s s'.
- Proof. exact (Raw.lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
+ Proof. exact (@lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
End Specs.
End IntMake.
@@ -2897,4 +2053,3 @@ End IntMake.
Module Make (X: OrderedType) <: S with Module E := X
:=IntMake(Z_as_Int)(X).
-
diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v
index 08985cfc..0622451f 100644
--- a/theories/FSets/FSetBridge.v
+++ b/theories/FSets/FSetBridge.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetBridge.v 8834 2006-05-20 00:41:35Z letouzey $ *)
+(* $Id: FSetBridge.v 10601 2008-02-28 00:20:33Z letouzey $ *)
(** * Finite sets library *)
@@ -27,7 +27,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
Definition empty : {s : t | Empty s}.
Proof.
- exists empty; auto.
+ exists empty; auto with set.
Qed.
Definition is_empty : forall s : t, {Empty s} + {~ Empty s}.
@@ -66,12 +66,12 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
{s' : t | forall y : elt, In y s' <-> ~ E.eq x y /\ In y s}.
Proof.
intros; exists (remove x s); intuition.
- absurd (In x (remove x s)); auto.
+ absurd (In x (remove x s)); auto with set.
apply In_1 with y; auto.
elim (ME.eq_dec x y); intros; auto.
- absurd (In x (remove x s)); auto.
+ absurd (In x (remove x s)); auto with set.
apply In_1 with y; auto.
- eauto.
+ eauto with set.
Qed.
Definition union :
@@ -83,14 +83,14 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
Definition inter :
forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ In x s'}.
Proof.
- intros; exists (inter s s'); intuition; eauto.
+ intros; exists (inter s s'); intuition; eauto with set.
Qed.
Definition diff :
forall s s' : t, {s'' : t | forall x : elt, In x s'' <-> In x s /\ ~ In x s'}.
Proof.
- intros; exists (diff s s'); intuition; eauto.
- absurd (In x s'); eauto.
+ intros; exists (diff s s'); intuition; eauto with set.
+ absurd (In x s'); eauto with set.
Qed.
Definition equal : forall s s' : t, {Equal s s'} + {~ Equal s s'}.
@@ -115,7 +115,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
Defined.
Definition fold :
- forall (A : Set) (f : elt -> A -> A) (s : t) (i : A),
+ forall (A : Type) (f : elt -> A -> A) (s : t) (i : A),
{r : A | let (l,_) := elements s in
r = fold_left (fun a e => f e a) l i}.
Proof.
@@ -150,7 +150,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
exists (filter (fdec Pdec) s).
intro H; assert (compat_bool E.eq (fdec Pdec)); auto.
intuition.
- eauto.
+ eauto with set.
generalize (filter_2 H0 H1).
unfold fdec in |- *.
case (Pdec x); intuition.
@@ -226,7 +226,7 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
generalize H4; unfold For_all, Equal in |- *; intuition.
elim (H0 x); intros.
assert (fdec Pdec x = true).
- eauto.
+ eapply filter_2; eauto with set.
generalize H8; unfold fdec in |- *; case (Pdec x); intuition.
inversion H9.
generalize H; unfold For_all, Equal in |- *; intuition.
@@ -238,8 +238,8 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
set (b := fdec Pdec x) in *; generalize (refl_equal b);
pattern b at -1 in |- *; case b; unfold b in |- *;
[ left | right ].
- elim (H4 x); intros _ B; apply B; auto.
- elim (H x); intros _ B; apply B; auto.
+ elim (H4 x); intros _ B; apply B; auto with set.
+ elim (H x); intros _ B; apply B; auto with set.
apply filter_3; auto.
rewrite H5; auto.
eapply (filter_1 (s:=s) (x:=x) H2); elim (H4 x); intros B _; apply B;
@@ -247,12 +247,63 @@ Module DepOfNodep (M: S) <: Sdep with Module E := M.E.
eapply (filter_1 (s:=s) (x:=x) H3); elim (H x); intros B _; apply B; auto.
Qed.
+ Definition choose_aux: forall s : t,
+ { x : elt | M.choose s = Some x } + { M.choose s = None }.
+ Proof.
+ intros.
+ destruct (M.choose s); [left | right]; auto.
+ exists e; auto.
+ Qed.
+
Definition choose : forall s : t, {x : elt | In x s} + {Empty s}.
- Proof.
- intros.
- generalize (choose_1 (s:=s)) (choose_2 (s:=s)).
- case (choose s); [ left | right ]; auto.
- exists e; auto.
+ Proof.
+ intros; destruct (choose_aux s) as [(x,Hx)|H].
+ left; exists x; apply choose_1; auto.
+ right; apply choose_2; auto.
+ Defined.
+
+ Lemma choose_ok1 :
+ forall s x, M.choose s = Some x <-> exists H:In x s,
+ choose s = inleft _ (exist (fun x => In x s) x H).
+ Proof.
+ intros s x.
+ unfold choose; split; intros.
+ destruct (choose_aux s) as [(y,Hy)|H']; try congruence.
+ replace x with y in * by congruence.
+ exists (choose_1 Hy); auto.
+ destruct H.
+ destruct (choose_aux s) as [(y,Hy)|H']; congruence.
+ Qed.
+
+ Lemma choose_ok2 :
+ forall s, M.choose s = None <-> exists H:Empty s,
+ choose s = inright _ H.
+ Proof.
+ intros s.
+ unfold choose; split; intros.
+ destruct (choose_aux s) as [(y,Hy)|H']; try congruence.
+ exists (choose_2 H'); auto.
+ destruct H.
+ destruct (choose_aux s) as [(y,Hy)|H']; congruence.
+ Qed.
+
+ Lemma choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
+ | inleft (exist x _), inleft (exist x' _) => E.eq x x'
+ | inright _, inright _ => True
+ | _, _ => False
+ end.
+ Proof.
+ intros.
+ generalize (@M.choose_1 s)(@M.choose_2 s)
+ (@M.choose_1 s')(@M.choose_2 s')(@M.choose_3 s s')
+ (choose_ok1 s)(choose_ok2 s)(choose_ok1 s')(choose_ok2 s').
+ destruct (choose s) as [(x,Hx)|Hx]; destruct (choose s') as [(x',Hx')|Hx']; auto; intros.
+ apply H4; auto.
+ rewrite H5; exists Hx; auto.
+ rewrite H7; exists Hx'; auto.
+ apply Hx' with x; unfold Equal in H; rewrite <-H; auto.
+ apply Hx with x'; unfold Equal in H; rewrite H; auto.
Qed.
Definition min_elt :
@@ -391,6 +442,15 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
intro s; unfold choose in |- *; case (M.choose s); auto.
simple destruct s0; intros; discriminate H.
Qed.
+
+ Lemma choose_3 : forall s s' x x',
+ choose s = Some x -> choose s' = Some x' -> Equal s s' -> E.eq x x'.
+ Proof.
+ unfold choose; intros.
+ generalize (M.choose_equal H1); clear H1.
+ destruct (M.choose s) as [(?,?)|?]; destruct (M.choose s') as [(?,?)|?];
+ simpl; auto; congruence.
+ Qed.
Definition elements (s : t) : list elt := let (l, _) := elements s in l.
@@ -408,6 +468,10 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Proof.
intros; unfold elements in |- *; case (M.elements s); firstorder.
Qed.
+ Hint Resolve elements_3.
+
+ Lemma elements_3w : forall s : t, NoDupA E.eq (elements s).
+ Proof. auto. Qed.
Definition min_elt (s : t) : option elt :=
match min_elt s with
@@ -578,11 +642,11 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
destruct (M.elements s); auto.
Qed.
- Definition fold (B : Set) (f : elt -> B -> B) (i : t)
+ Definition fold (B : Type) (f : elt -> B -> B) (i : t)
(s : B) : B := let (fold, _) := fold f i s in fold.
Lemma fold_1 :
- forall (s : t) (A : Set) (i : A) (f : elt -> A -> A),
+ forall (s : t) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
intros; unfold fold in |- *; case (M.fold f s i); unfold elements in *;
diff --git a/theories/FSets/FSetDecide.v b/theories/FSets/FSetDecide.v
new file mode 100644
index 00000000..0639c1f1
--- /dev/null
+++ b/theories/FSets/FSetDecide.v
@@ -0,0 +1,841 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* $Id: FSetDecide.v 11064 2008-06-06 17:00:52Z letouzey $ *)
+
+(**************************************************************)
+(* FSetDecide.v *)
+(* *)
+(* Author: Aaron Bohannon *)
+(**************************************************************)
+
+(** This file implements a decision procedure for a certain
+ class of propositions involving finite sets. *)
+
+Require Import Decidable DecidableTypeEx FSetFacts.
+
+(** First, a version for Weak Sets *)
+
+Module WDecide (E : DecidableType)(Import M : WSfun E).
+ Module F := FSetFacts.WFacts E M.
+
+(** * Overview
+ This functor defines the tactic [fsetdec], which will
+ solve any valid goal of the form
+<<
+ forall s1 ... sn,
+ forall x1 ... xm,
+ P1 -> ... -> Pk -> P
+>>
+ where [P]'s are defined by the grammar:
+<<
+
+P ::=
+| Q
+| Empty F
+| Subset F F'
+| Equal F F'
+
+Q ::=
+| E.eq X X'
+| In X F
+| Q /\ Q'
+| Q \/ Q'
+| Q -> Q'
+| Q <-> Q'
+| ~ Q
+| True
+| False
+
+F ::=
+| S
+| empty
+| singleton X
+| add X F
+| remove X F
+| union F F'
+| inter F F'
+| diff F F'
+
+X ::= x1 | ... | xm
+S ::= s1 | ... | sn
+
+>>
+
+The tactic will also work on some goals that vary slightly from
+the above form:
+- The variables and hypotheses may be mixed in any order and may
+ have already been introduced into the context. Moreover,
+ there may be additional, unrelated hypotheses mixed in (these
+ will be ignored).
+- A conjunction of hypotheses will be handled as easily as
+ separate hypotheses, i.e., [P1 /\ P2 -> P] can be solved iff
+ [P1 -> P2 -> P] can be solved.
+- [fsetdec] should solve any goal if the FSet-related hypotheses
+ are contradictory.
+- [fsetdec] will first perform any necessary zeta and beta
+ reductions and will invoke [subst] to eliminate any Coq
+ equalities between finite sets or their elements.
+- If [E.eq] is convertible with Coq's equality, it will not
+ matter which one is used in the hypotheses or conclusion.
+- The tactic can solve goals where the finite sets or set
+ elements are expressed by Coq terms that are more complicated
+ than variables. However, non-local definitions are not
+ expanded, and Coq equalities between non-variable terms are
+ not used. For example, this goal will be solved:
+<<
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g (g x2)) ->
+ In x1 s1 ->
+ In (g (g x2)) (f s2)
+>>
+ This one will not be solved:
+<<
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g x2) ->
+ In x1 s1 ->
+ g x2 = g (g x2) ->
+ In (g (g x2)) (f s2)
+>>
+*)
+
+ (** * Facts and Tactics for Propositional Logic
+ These lemmas and tactics are in a module so that they do
+ not affect the namespace if you import the enclosing
+ module [Decide]. *)
+ Module FSetLogicalFacts.
+ Require Export Decidable.
+ Require Export Setoid.
+
+ (** ** Lemmas and Tactics About Decidable Propositions *)
+
+ (** ** Propositional Equivalences Involving Negation
+ These are all written with the unfolded form of
+ negation, since I am not sure if setoid rewriting will
+ always perform conversion. *)
+
+ (** ** Tactics for Negations *)
+
+ Tactic Notation "fold" "any" "not" :=
+ repeat (
+ match goal with
+ | H: context [?P -> False] |- _ =>
+ fold (~ P) in H
+ | |- context [?P -> False] =>
+ fold (~ P)
+ end).
+
+ (** [push not using db] will pushes all negations to the
+ leaves of propositions in the goal, using the lemmas in
+ [db] to assist in checking the decidability of the
+ propositions involved. If [using db] is omitted, then
+ [core] will be used. Additional versions are provided
+ to manipulate the hypotheses or the hypotheses and goal
+ together.
+
+ XXX: This tactic and the similar subsequent ones should
+ have been defined using [autorewrite]. However, dealing
+ with multiples rewrite sites and side-conditions is
+ done more cleverly with the following explicit
+ analysis of goals. *)
+
+ Ltac or_not_l_iff P Q tac :=
+ (rewrite (or_not_l_iff_1 P Q) by tac) ||
+ (rewrite (or_not_l_iff_2 P Q) by tac).
+
+ Ltac or_not_r_iff P Q tac :=
+ (rewrite (or_not_r_iff_1 P Q) by tac) ||
+ (rewrite (or_not_r_iff_2 P Q) by tac).
+
+ Ltac or_not_l_iff_in P Q H tac :=
+ (rewrite (or_not_l_iff_1 P Q) in H by tac) ||
+ (rewrite (or_not_l_iff_2 P Q) in H by tac).
+
+ Ltac or_not_r_iff_in P Q H tac :=
+ (rewrite (or_not_r_iff_1 P Q) in H by tac) ||
+ (rewrite (or_not_r_iff_2 P Q) in H by tac).
+
+ Tactic Notation "push" "not" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff;
+ repeat (
+ match goal with
+ | |- context [True -> False] => rewrite not_true_iff
+ | |- context [False -> False] => rewrite not_false_iff
+ | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
+ | |- context [(?P -> False) -> (?Q -> False)] =>
+ rewrite (contrapositive P Q) by dec
+ | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
+ | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
+ | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
+ | |- context [?P \/ ?Q -> False] => rewrite (not_or_iff P Q)
+ | |- context [?P /\ ?Q -> False] => rewrite (not_and_iff P Q)
+ | |- context [(?P -> ?Q) -> False] => rewrite (not_imp_iff P Q) by dec
+ end);
+ fold any not.
+
+ Tactic Notation "push" "not" :=
+ push not using core.
+
+ Tactic Notation
+ "push" "not" "in" "*" "|-" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff in * |-;
+ repeat (
+ match goal with
+ | H: context [True -> False] |- _ => rewrite not_true_iff in H
+ | H: context [False -> False] |- _ => rewrite not_false_iff in H
+ | H: context [(?P -> False) -> False] |- _ =>
+ rewrite (not_not_iff P) in H by dec
+ | H: context [(?P -> False) -> (?Q -> False)] |- _ =>
+ rewrite (contrapositive P Q) in H by dec
+ | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
+ | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
+ | H: context [(?P -> False) -> ?Q] |- _ =>
+ rewrite (imp_not_l P Q) in H by dec
+ | H: context [?P \/ ?Q -> False] |- _ => rewrite (not_or_iff P Q) in H
+ | H: context [?P /\ ?Q -> False] |- _ => rewrite (not_and_iff P Q) in H
+ | H: context [(?P -> ?Q) -> False] |- _ =>
+ rewrite (not_imp_iff P Q) in H by dec
+ end);
+ fold any not.
+
+ Tactic Notation "push" "not" "in" "*" "|-" :=
+ push not in * |- using core.
+
+ Tactic Notation "push" "not" "in" "*" "using" ident(db) :=
+ push not using db; push not in * |- using db.
+ Tactic Notation "push" "not" "in" "*" :=
+ push not in * using core.
+
+ (** A simple test case to see how this works. *)
+ Lemma test_push : forall P Q R : Prop,
+ decidable P ->
+ decidable Q ->
+ (~ True) ->
+ (~ False) ->
+ (~ ~ P) ->
+ (~ (P /\ Q) -> ~ R) ->
+ ((P /\ Q) \/ ~ R) ->
+ (~ (P /\ Q) \/ R) ->
+ (R \/ ~ (P /\ Q)) ->
+ (~ R \/ (P /\ Q)) ->
+ (~ P -> R) ->
+ (~ ((R -> P) \/ (Q -> R))) ->
+ (~ (P /\ R)) ->
+ (~ (P -> R)) ->
+ True.
+ Proof.
+ intros. push not in *.
+ (* note that ~(R->P) remains (since R isnt decidable) *)
+ tauto.
+ Qed.
+
+ (** [pull not using db] will pull as many negations as
+ possible toward the top of the propositions in the goal,
+ using the lemmas in [db] to assist in checking the
+ decidability of the propositions involved. If [using
+ db] is omitted, then [core] will be used. Additional
+ versions are provided to manipulate the hypotheses or
+ the hypotheses and goal together. *)
+
+ Tactic Notation "pull" "not" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff;
+ repeat (
+ match goal with
+ | |- context [True -> False] => rewrite not_true_iff
+ | |- context [False -> False] => rewrite not_false_iff
+ | |- context [(?P -> False) -> False] => rewrite (not_not_iff P) by dec
+ | |- context [(?P -> False) -> (?Q -> False)] =>
+ rewrite (contrapositive P Q) by dec
+ | |- context [(?P -> False) \/ ?Q] => or_not_l_iff P Q dec
+ | |- context [?P \/ (?Q -> False)] => or_not_r_iff P Q dec
+ | |- context [(?P -> False) -> ?Q] => rewrite (imp_not_l P Q) by dec
+ | |- context [(?P -> False) /\ (?Q -> False)] =>
+ rewrite <- (not_or_iff P Q)
+ | |- context [?P -> ?Q -> False] => rewrite <- (not_and_iff P Q)
+ | |- context [?P /\ (?Q -> False)] => rewrite <- (not_imp_iff P Q) by dec
+ | |- context [(?Q -> False) /\ ?P] =>
+ rewrite <- (not_imp_rev_iff P Q) by dec
+ end);
+ fold any not.
+
+ Tactic Notation "pull" "not" :=
+ pull not using core.
+
+ Tactic Notation
+ "pull" "not" "in" "*" "|-" "using" ident(db) :=
+ let dec := solve_decidable using db in
+ unfold not, iff in * |-;
+ repeat (
+ match goal with
+ | H: context [True -> False] |- _ => rewrite not_true_iff in H
+ | H: context [False -> False] |- _ => rewrite not_false_iff in H
+ | H: context [(?P -> False) -> False] |- _ =>
+ rewrite (not_not_iff P) in H by dec
+ | H: context [(?P -> False) -> (?Q -> False)] |- _ =>
+ rewrite (contrapositive P Q) in H by dec
+ | H: context [(?P -> False) \/ ?Q] |- _ => or_not_l_iff_in P Q H dec
+ | H: context [?P \/ (?Q -> False)] |- _ => or_not_r_iff_in P Q H dec
+ | H: context [(?P -> False) -> ?Q] |- _ =>
+ rewrite (imp_not_l P Q) in H by dec
+ | H: context [(?P -> False) /\ (?Q -> False)] |- _ =>
+ rewrite <- (not_or_iff P Q) in H
+ | H: context [?P -> ?Q -> False] |- _ =>
+ rewrite <- (not_and_iff P Q) in H
+ | H: context [?P /\ (?Q -> False)] |- _ =>
+ rewrite <- (not_imp_iff P Q) in H by dec
+ | H: context [(?Q -> False) /\ ?P] |- _ =>
+ rewrite <- (not_imp_rev_iff P Q) in H by dec
+ end);
+ fold any not.
+
+ Tactic Notation "pull" "not" "in" "*" "|-" :=
+ pull not in * |- using core.
+
+ Tactic Notation "pull" "not" "in" "*" "using" ident(db) :=
+ pull not using db; pull not in * |- using db.
+ Tactic Notation "pull" "not" "in" "*" :=
+ pull not in * using core.
+
+ (** A simple test case to see how this works. *)
+ Lemma test_pull : forall P Q R : Prop,
+ decidable P ->
+ decidable Q ->
+ (~ True) ->
+ (~ False) ->
+ (~ ~ P) ->
+ (~ (P /\ Q) -> ~ R) ->
+ ((P /\ Q) \/ ~ R) ->
+ (~ (P /\ Q) \/ R) ->
+ (R \/ ~ (P /\ Q)) ->
+ (~ R \/ (P /\ Q)) ->
+ (~ P -> R) ->
+ (~ (R -> P) /\ ~ (Q -> R)) ->
+ (~ P \/ ~ R) ->
+ (P /\ ~ R) ->
+ (~ R /\ P) ->
+ True.
+ Proof.
+ intros. pull not in *. tauto.
+ Qed.
+
+ End FSetLogicalFacts.
+ Import FSetLogicalFacts.
+
+ (** * Auxiliary Tactics
+ Again, these lemmas and tactics are in a module so that
+ they do not affect the namespace if you import the
+ enclosing module [Decide]. *)
+ Module FSetDecideAuxiliary.
+
+ (** ** Generic Tactics
+ We begin by defining a few generic, useful tactics. *)
+
+ (** [if t then t1 else t2] executes [t] and, if it does not
+ fail, then [t1] will be applied to all subgoals
+ produced. If [t] fails, then [t2] is executed. *)
+ Tactic Notation
+ "if" tactic(t)
+ "then" tactic(t1)
+ "else" tactic(t2) :=
+ first [ t; first [ t1 | fail 2 ] | t2 ].
+
+ (** [prop P holds by t] succeeds (but does not modify the
+ goal or context) if the proposition [P] can be proved by
+ [t] in the current context. Otherwise, the tactic
+ fails. *)
+ Tactic Notation "prop" constr(P) "holds" "by" tactic(t) :=
+ let H := fresh in
+ assert P as H by t;
+ clear H.
+
+ (** This tactic acts just like [assert ... by ...] but will
+ fail if the context already contains the proposition. *)
+ Tactic Notation "assert" "new" constr(e) "by" tactic(t) :=
+ match goal with
+ | H: e |- _ => fail 1
+ | _ => assert e by t
+ end.
+
+ (** [subst++] is similar to [subst] except that
+ - it never fails (as [subst] does on recursive
+ equations),
+ - it substitutes locally defined variable for their
+ definitions,
+ - it performs beta reductions everywhere, which may
+ arise after substituting a locally defined function
+ for its definition.
+ *)
+ Tactic Notation "subst" "++" :=
+ repeat (
+ match goal with
+ | x : _ |- _ => subst x
+ end);
+ cbv zeta beta in *.
+
+ (** [decompose records] calls [decompose record H] on every
+ relevant hypothesis [H]. *)
+ Tactic Notation "decompose" "records" :=
+ repeat (
+ match goal with
+ | H: _ |- _ => progress (decompose record H); clear H
+ end).
+
+ (** ** Discarding Irrelevant Hypotheses
+ We will want to clear the context of any
+ non-FSet-related hypotheses in order to increase the
+ speed of the tactic. To do this, we will need to be
+ able to decide which are relevant. We do this by making
+ a simple inductive definition classifying the
+ propositions of interest. *)
+
+ Inductive FSet_elt_Prop : Prop -> Prop :=
+ | eq_Prop : forall (S : Set) (x y : S),
+ FSet_elt_Prop (x = y)
+ | eq_elt_prop : forall x y,
+ FSet_elt_Prop (E.eq x y)
+ | In_elt_prop : forall x s,
+ FSet_elt_Prop (In x s)
+ | True_elt_prop :
+ FSet_elt_Prop True
+ | False_elt_prop :
+ FSet_elt_Prop False
+ | conj_elt_prop : forall P Q,
+ FSet_elt_Prop P ->
+ FSet_elt_Prop Q ->
+ FSet_elt_Prop (P /\ Q)
+ | disj_elt_prop : forall P Q,
+ FSet_elt_Prop P ->
+ FSet_elt_Prop Q ->
+ FSet_elt_Prop (P \/ Q)
+ | impl_elt_prop : forall P Q,
+ FSet_elt_Prop P ->
+ FSet_elt_Prop Q ->
+ FSet_elt_Prop (P -> Q)
+ | not_elt_prop : forall P,
+ FSet_elt_Prop P ->
+ FSet_elt_Prop (~ P).
+
+ Inductive FSet_Prop : Prop -> Prop :=
+ | elt_FSet_Prop : forall P,
+ FSet_elt_Prop P ->
+ FSet_Prop P
+ | Empty_FSet_Prop : forall s,
+ FSet_Prop (Empty s)
+ | Subset_FSet_Prop : forall s1 s2,
+ FSet_Prop (Subset s1 s2)
+ | Equal_FSet_Prop : forall s1 s2,
+ FSet_Prop (Equal s1 s2).
+
+ (** Here is the tactic that will throw away hypotheses that
+ are not useful (for the intended scope of the [fsetdec]
+ tactic). *)
+ Hint Constructors FSet_elt_Prop FSet_Prop : FSet_Prop.
+ Ltac discard_nonFSet :=
+ decompose records;
+ repeat (
+ match goal with
+ | H : ?P |- _ =>
+ if prop (FSet_Prop P) holds by
+ (auto 100 with FSet_Prop)
+ then fail
+ else clear H
+ end).
+
+ (** ** Turning Set Operators into Propositional Connectives
+ The lemmas from [FSetFacts] will be used to break down
+ set operations into propositional formulas built over
+ the predicates [In] and [E.eq] applied only to
+ variables. We are going to use them with [autorewrite].
+ *)
+
+ Hint Rewrite
+ F.empty_iff F.singleton_iff F.add_iff F.remove_iff
+ F.union_iff F.inter_iff F.diff_iff
+ : set_simpl.
+
+ (** ** Decidability of FSet Propositions *)
+
+ (** [In] is decidable. *)
+ Lemma dec_In : forall x s,
+ decidable (In x s).
+ Proof.
+ red; intros; generalize (F.mem_iff s x); case (mem x s); intuition.
+ Qed.
+
+ (** [E.eq] is decidable. *)
+ Lemma dec_eq : forall (x y : E.t),
+ decidable (E.eq x y).
+ Proof.
+ red; intros x y; destruct (E.eq_dec x y); auto.
+ Qed.
+
+ (** The hint database [FSet_decidability] will be given to
+ the [push_neg] tactic from the module [Negation]. *)
+ Hint Resolve dec_In dec_eq : FSet_decidability.
+
+ (** ** Normalizing Propositions About Equality
+ We have to deal with the fact that [E.eq] may be
+ convertible with Coq's equality. Thus, we will find the
+ following tactics useful to replace one form with the
+ other everywhere. *)
+
+ (** The next tactic, [Logic_eq_to_E_eq], mentions the term
+ [E.t]; thus, we must ensure that [E.t] is used in favor
+ of any other convertible but syntactically distinct
+ term. *)
+ Ltac change_to_E_t :=
+ repeat (
+ match goal with
+ | H : ?T |- _ =>
+ progress (change T with E.t in H);
+ repeat (
+ match goal with
+ | J : _ |- _ => progress (change T with E.t in J)
+ | |- _ => progress (change T with E.t)
+ end )
+ end).
+
+ (** These two tactics take us from Coq's built-in equality
+ to [E.eq] (and vice versa) when possible. *)
+
+ Ltac Logic_eq_to_E_eq :=
+ repeat (
+ match goal with
+ | H: _ |- _ =>
+ progress (change (@Logic.eq E.t) with E.eq in H)
+ | |- _ =>
+ progress (change (@Logic.eq E.t) with E.eq)
+ end).
+
+ Ltac E_eq_to_Logic_eq :=
+ repeat (
+ match goal with
+ | H: _ |- _ =>
+ progress (change E.eq with (@Logic.eq E.t) in H)
+ | |- _ =>
+ progress (change E.eq with (@Logic.eq E.t))
+ end).
+
+ (** This tactic works like the built-in tactic [subst], but
+ at the level of set element equality (which may not be
+ the convertible with Coq's equality). *)
+ Ltac substFSet :=
+ repeat (
+ match goal with
+ | H: E.eq ?x ?y |- _ => rewrite H in *; clear H
+ end).
+
+ (** ** Considering Decidability of Base Propositions
+ This tactic adds assertions about the decidability of
+ [E.eq] and [In] to the context. This is necessary for
+ the completeness of the [fsetdec] tactic. However, in
+ order to minimize the cost of proof search, we should be
+ careful to not add more than we need. Once negations
+ have been pushed to the leaves of the propositions, we
+ only need to worry about decidability for those base
+ propositions that appear in a negated form. *)
+ Ltac assert_decidability :=
+ (** We actually don't want these rules to fire if the
+ syntactic context in the patterns below is trivially
+ empty, but we'll just do some clean-up at the
+ afterward. *)
+ repeat (
+ match goal with
+ | H: context [~ E.eq ?x ?y] |- _ =>
+ assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
+ | H: context [~ In ?x ?s] |- _ =>
+ assert new (In x s \/ ~ In x s) by (apply dec_In)
+ | |- context [~ E.eq ?x ?y] =>
+ assert new (E.eq x y \/ ~ E.eq x y) by (apply dec_eq)
+ | |- context [~ In ?x ?s] =>
+ assert new (In x s \/ ~ In x s) by (apply dec_In)
+ end);
+ (** Now we eliminate the useless facts we added (because
+ they would likely be very harmful to performance). *)
+ repeat (
+ match goal with
+ | _: ~ ?P, H : ?P \/ ~ ?P |- _ => clear H
+ end).
+
+ (** ** Handling [Empty], [Subset], and [Equal]
+ This tactic instantiates universally quantified
+ hypotheses (which arise from the unfolding of [Empty],
+ [Subset], and [Equal]) for each of the set element
+ expressions that is involved in some membership or
+ equality fact. Then it throws away those hypotheses,
+ which should no longer be needed. *)
+ Ltac inst_FSet_hypotheses :=
+ repeat (
+ match goal with
+ | H : forall a : E.t, _,
+ _ : context [ In ?x _ ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ In ?x _ ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _,
+ _ : context [ E.eq ?x _ ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ E.eq ?x _ ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _,
+ _ : context [ E.eq _ ?x ] |- _ =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ | H : forall a : E.t, _
+ |- context [ E.eq _ ?x ] =>
+ let P := type of (H x) in
+ assert new P by (exact (H x))
+ end);
+ repeat (
+ match goal with
+ | H : forall a : E.t, _ |- _ =>
+ clear H
+ end).
+
+ (** ** The Core [fsetdec] Auxiliary Tactics *)
+
+ (** Here is the crux of the proof search. Recursion through
+ [intuition]! (This will terminate if I correctly
+ understand the behavior of [intuition].) *)
+ Ltac fsetdec_rec :=
+ try (match goal with
+ | H: E.eq ?x ?x -> False |- _ => destruct H
+ end);
+ (reflexivity ||
+ contradiction ||
+ (progress substFSet; intuition fsetdec_rec)).
+
+ (** If we add [unfold Empty, Subset, Equal in *; intros;] to
+ the beginning of this tactic, it will satisfy the same
+ specification as the [fsetdec] tactic; however, it will
+ be much slower than necessary without the pre-processing
+ done by the wrapper tactic [fsetdec]. *)
+ Ltac fsetdec_body :=
+ inst_FSet_hypotheses;
+ autorewrite with set_simpl in *;
+ push not in * using FSet_decidability;
+ substFSet;
+ assert_decidability;
+ auto using E.eq_refl;
+ (intuition fsetdec_rec) ||
+ fail 1
+ "because the goal is beyond the scope of this tactic".
+
+ End FSetDecideAuxiliary.
+ Import FSetDecideAuxiliary.
+
+ (** * The [fsetdec] Tactic
+ Here is the top-level tactic (the only one intended for
+ clients of this library). It's specification is given at
+ the top of the file. *)
+ Ltac fsetdec :=
+ (** We first unfold any occurrences of [iff]. *)
+ unfold iff in *;
+ (** We fold occurrences of [not] because it is better for
+ [intros] to leave us with a goal of [~ P] than a goal of
+ [False]. *)
+ fold any not; intros;
+ (** Now we decompose conjunctions, which will allow the
+ [discard_nonFSet] and [assert_decidability] tactics to
+ do a much better job. *)
+ decompose records;
+ discard_nonFSet;
+ (** We unfold these defined propositions on finite sets. If
+ our goal was one of them, then have one more item to
+ introduce now. *)
+ unfold Empty, Subset, Equal in *; intros;
+ (** We now want to get rid of all uses of [=] in favor of
+ [E.eq]. However, the best way to eliminate a [=] is in
+ the context is with [subst], so we will try that first.
+ In fact, we may as well convert uses of [E.eq] into [=]
+ when possible before we do [subst] so that we can even
+ more mileage out of it. Then we will convert all
+ remaining uses of [=] back to [E.eq] when possible. We
+ use [change_to_E_t] to ensure that we have a canonical
+ name for set elements, so that [Logic_eq_to_E_eq] will
+ work properly. *)
+ change_to_E_t; E_eq_to_Logic_eq; subst++; Logic_eq_to_E_eq;
+ (** The next optimization is to swap a negated goal with a
+ negated hypothesis when possible. Any swap will improve
+ performance by eliminating the total number of
+ negations, but we will get the maximum benefit if we
+ swap the goal with a hypotheses mentioning the same set
+ element, so we try that first. If we reach the fourth
+ branch below, we attempt any swap. However, to maintain
+ completeness of this tactic, we can only perform such a
+ swap with a decidable proposition; hence, we first test
+ whether the hypothesis is an [FSet_elt_Prop], noting
+ that any [FSet_elt_Prop] is decidable. *)
+ pull not using FSet_decidability;
+ unfold not in *;
+ match goal with
+ | H: (In ?x ?r) -> False |- (In ?x ?s) -> False =>
+ contradict H; fsetdec_body
+ | H: (In ?x ?r) -> False |- (E.eq ?x ?y) -> False =>
+ contradict H; fsetdec_body
+ | H: (In ?x ?r) -> False |- (E.eq ?y ?x) -> False =>
+ contradict H; fsetdec_body
+ | H: ?P -> False |- ?Q -> False =>
+ if prop (FSet_elt_Prop P) holds by
+ (auto 100 with FSet_Prop)
+ then (contradict H; fsetdec_body)
+ else fsetdec_body
+ | |- _ =>
+ fsetdec_body
+ end.
+
+ (** * Examples *)
+
+ Module FSetDecideTestCases.
+
+ Lemma test_eq_trans_1 : forall x y z s,
+ E.eq x y ->
+ ~ ~ E.eq z y ->
+ In x s ->
+ In z s.
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_trans_2 : forall x y z r s,
+ In x (singleton y) ->
+ ~ In z r ->
+ ~ ~ In z (add y r) ->
+ In x s ->
+ In z s.
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_neq_trans_1 : forall w x y z s,
+ E.eq x w ->
+ ~ ~ E.eq x y ->
+ ~ E.eq y z ->
+ In w s ->
+ In w (remove z s).
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_neq_trans_2 : forall w x y z r1 r2 s,
+ In x (singleton w) ->
+ ~ In x r1 ->
+ In x (add y r1) ->
+ In y r2 ->
+ In y (remove z r2) ->
+ In w s ->
+ In w (remove z s).
+ Proof. fsetdec. Qed.
+
+ Lemma test_In_singleton : forall x,
+ In x (singleton x).
+ Proof. fsetdec. Qed.
+
+ Lemma test_Subset_add_remove : forall x s,
+ s [<=] (add x (remove x s)).
+ Proof. fsetdec. Qed.
+
+ Lemma test_eq_disjunction : forall w x y z,
+ In w (add x (add y (singleton z))) ->
+ E.eq w x \/ E.eq w y \/ E.eq w z.
+ Proof. fsetdec. Qed.
+
+ Lemma test_not_In_disj : forall x y s1 s2 s3 s4,
+ ~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
+ ~ (In x s1 \/ In x s4 \/ E.eq y x).
+ Proof. fsetdec. Qed.
+
+ Lemma test_not_In_conj : forall x y s1 s2 s3 s4,
+ ~ In x (union s1 (union s2 (union s3 (add y s4)))) ->
+ ~ In x s1 /\ ~ In x s4 /\ ~ E.eq y x.
+ Proof. fsetdec. Qed.
+
+ Lemma test_iff_conj : forall a x s s',
+ (In a s' <-> E.eq x a \/ In a s) ->
+ (In a s' <-> In a (add x s)).
+ Proof. fsetdec. Qed.
+
+ Lemma test_set_ops_1 : forall x q r s,
+ (singleton x) [<=] s ->
+ Empty (union q r) ->
+ Empty (inter (diff s q) (diff s r)) ->
+ ~ In x s.
+ Proof. fsetdec. Qed.
+
+ Lemma eq_chain_test : forall x1 x2 x3 x4 s1 s2 s3 s4,
+ Empty s1 ->
+ In x2 (add x1 s1) ->
+ In x3 s2 ->
+ ~ In x3 (remove x2 s2) ->
+ ~ In x4 s3 ->
+ In x4 (add x3 s3) ->
+ In x1 s4 ->
+ Subset (add x4 s4) s4.
+ Proof. fsetdec. Qed.
+
+ Lemma test_too_complex : forall x y z r s,
+ E.eq x y ->
+ (In x (singleton y) -> r [<=] s) ->
+ In z r ->
+ In z s.
+ Proof.
+ (** [fsetdec] is not intended to solve this directly. *)
+ intros until s; intros Heq H Hr; lapply H; fsetdec.
+ Qed.
+
+ Lemma function_test_1 :
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g (g x2)) ->
+ In x1 s1 ->
+ In (g (g x2)) (f s2).
+ Proof. fsetdec. Qed.
+
+ Lemma function_test_2 :
+ forall (f : t -> t),
+ forall (g : elt -> elt),
+ forall (s1 s2 : t),
+ forall (x1 x2 : elt),
+ Equal s1 (f s2) ->
+ E.eq x1 (g x2) ->
+ In x1 s1 ->
+ g x2 = g (g x2) ->
+ In (g (g x2)) (f s2).
+ Proof.
+ (** [fsetdec] is not intended to solve this directly. *)
+ intros until 3. intros g_eq. rewrite <- g_eq. fsetdec.
+ Qed.
+
+ End FSetDecideTestCases.
+
+End WDecide.
+
+Require Import FSetInterface.
+
+(** Now comes a special version dedicated to full sets. For this
+ one, only one argument [(M:S)] is necessary. *)
+
+Module Decide (M : S).
+ Module D:=OT_as_DT M.E.
+ Module WD := WDecide D M.
+ Ltac fsetdec := WD.fsetdec.
+End Decide. \ No newline at end of file
diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v
index d7062d5a..a397cc28 100644
--- a/theories/FSets/FSetEqProperties.v
+++ b/theories/FSets/FSetEqProperties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetEqProperties.v 8853 2006-05-23 18:17:38Z herbelin $ *)
+(* $Id: FSetEqProperties.v 11064 2008-06-06 17:00:52Z letouzey $ *)
(** * Finite sets library *)
@@ -17,21 +17,12 @@
[mem x s=true] instead of [In x s],
[equal s s'=true] instead of [Equal s s'], etc. *)
+Require Import FSetProperties Zerob Sumbool Omega DecidableTypeEx.
-Require Import FSetProperties.
-Require Import Zerob.
-Require Import Sumbool.
-Require Import Omega.
-
-Module EqProperties (M:S).
+Module WEqProperties (Import E:DecidableType)(M:WSfun E).
+Module Import MP := WProperties E M.
+Import FM Dec.F.
Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
-
-Module ME := OrderedTypeFacts E.
-Module MP := Properties M.
-Import MP.
-Import MP.FM.
Definition Add := MP.Add.
@@ -76,7 +67,7 @@ Qed.
Lemma empty_mem: mem x empty=false.
Proof.
-rewrite <- not_mem_iff; auto.
+rewrite <- not_mem_iff; auto with set.
Qed.
Lemma is_empty_equal_empty: is_empty s = equal s empty.
@@ -88,17 +79,17 @@ Qed.
Lemma choose_mem_1: choose s=Some x -> mem x s=true.
Proof.
-auto.
+auto with set.
Qed.
Lemma choose_mem_2: choose s=None -> is_empty s=true.
Proof.
-auto.
+auto with set.
Qed.
Lemma add_mem_1: mem x (add x s)=true.
Proof.
-auto.
+auto with set.
Qed.
Lemma add_mem_2: ~E.eq x y -> mem y (add x s)=mem y s.
@@ -108,7 +99,7 @@ Qed.
Lemma remove_mem_1: mem x (remove x s)=false.
Proof.
-rewrite <- not_mem_iff; auto.
+rewrite <- not_mem_iff; auto with set.
Qed.
Lemma remove_mem_2: ~E.eq x y -> mem y (remove x s)=mem y s.
@@ -216,7 +207,7 @@ Proof.
intros.
generalize (@choose_1 s) (@choose_2 s).
destruct (choose s);intros.
-exists e;auto.
+exists e;auto with set.
generalize (H1 (refl_equal None)); clear H1.
intros; rewrite (is_empty_1 H1) in H; discriminate.
Qed.
@@ -233,7 +224,7 @@ Qed.
Lemma add_mem_3:
mem y s=true -> mem y (add x s)=true.
Proof.
-auto.
+auto with set.
Qed.
Lemma add_equal:
@@ -260,7 +251,7 @@ Qed.
Lemma add_remove:
mem x s=true -> equal (add x (remove x s)) s=true.
Proof.
-intros; apply equal_1; apply add_remove; auto.
+intros; apply equal_1; apply add_remove; auto with set.
Qed.
Lemma remove_add:
@@ -275,9 +266,9 @@ Qed.
Lemma is_empty_cardinal: is_empty s = zerob (cardinal s).
Proof.
intros; apply bool_1; split; intros.
-rewrite cardinal_1; simpl; auto.
+rewrite MP.cardinal_1; simpl; auto with set.
assert (cardinal s = 0) by (apply zerob_true_elim; auto).
-auto.
+auto with set.
Qed.
(** Properties of [singleton] *)
@@ -290,12 +281,12 @@ Qed.
Lemma singleton_mem_2: ~E.eq x y -> mem y (singleton x)=false.
Proof.
intros; rewrite singleton_b.
-unfold ME.eqb; destruct (ME.eq_dec x y); intuition.
+unfold eqb; destruct (eq_dec x y); intuition.
Qed.
Lemma singleton_mem_3: mem y (singleton x)=true -> E.eq x y.
Proof.
-auto.
+intros; apply singleton_1; auto with set.
Qed.
(** Properties of [union] *)
@@ -358,7 +349,7 @@ Lemma union_subset_3:
subset s s''=true -> subset s' s''=true ->
subset (union s s') s''=true.
Proof.
-intros; apply subset_1; apply union_subset_3; auto.
+intros; apply subset_1; apply union_subset_3; auto with set.
Qed.
(** Properties of [inter] *)
@@ -433,7 +424,7 @@ Lemma inter_subset_3:
subset s'' s=true -> subset s'' s'=true ->
subset s'' (inter s s')=true.
Proof.
-intros; apply subset_1; apply inter_subset_3; auto.
+intros; apply subset_1; apply inter_subset_3; auto with set.
Qed.
(** Properties of [diff] *)
@@ -478,45 +469,37 @@ Hint Resolve equal_mem_1 subset_mem_1 choose_mem_1
add_mem_3 add_equal remove_mem_3 remove_equal : set.
-(** General recursion principes based on [cardinal] *)
+(** General recursion principle *)
-Lemma cardinal_set_rec: forall (P:t->Type),
+Lemma set_rec: forall (P:t->Type),
(forall s s', equal s s'=true -> P s -> P s') ->
(forall s x, mem x s=false -> P s -> P (add x s)) ->
- P empty -> forall n s, cardinal s=n -> P s.
+ P empty -> forall s, P s.
Proof.
intros.
-apply cardinal_induction with n; auto; intros.
+apply set_induction; auto; intros.
apply X with empty; auto with set.
apply X with (add x s0); auto with set.
-apply equal_1; intro a; rewrite add_iff; rewrite (H1 a); tauto.
+apply equal_1; intro a; rewrite add_iff; rewrite (H0 a); tauto.
apply X0; auto with set; apply mem_3; auto.
Qed.
-Lemma set_rec: forall (P:t->Type),
- (forall s s', equal s s'=true -> P s -> P s') ->
- (forall s x, mem x s=false -> P s -> P (add x s)) ->
- P empty -> forall s, P s.
-Proof.
-intros;apply cardinal_set_rec with (cardinal s);auto.
-Qed.
-
(** Properties of [fold] *)
Lemma exclusive_set : forall s s' x,
- ~In x s\/~In x s' <-> mem x s && mem x s'=false.
+ ~(In x s/\In x s') <-> mem x s && mem x s'=false.
Proof.
-intros; do 2 rewrite not_mem_iff.
+intros; do 2 rewrite mem_iff.
destruct (mem x s); destruct (mem x s'); intuition.
Qed.
Section Fold.
-Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
+Variables (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Variables (i:A).
Variables (s s':t)(x:elt).
-Lemma fold_empty: eqA (fold f empty i) i.
+Lemma fold_empty: (fold f empty i) = i.
Proof.
apply fold_empty; auto.
Qed.
@@ -524,7 +507,7 @@ Qed.
Lemma fold_equal:
equal s s'=true -> eqA (fold f s i) (fold f s' i).
Proof.
-intros; apply fold_equal with (eqA:=eqA); auto.
+intros; apply fold_equal with (eqA:=eqA); auto with set.
Qed.
Lemma fold_add:
@@ -537,13 +520,13 @@ Qed.
Lemma add_fold:
mem x s=true -> eqA (fold f (add x s) i) (fold f s i).
Proof.
-intros; apply add_fold with (eqA:=eqA); auto.
+intros; apply add_fold with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_1:
mem x s=true -> eqA (f x (fold f (remove x s) i)) (fold f s i).
Proof.
-intros; apply remove_fold_1 with (eqA:=eqA); auto.
+intros; apply remove_fold_1 with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_2:
@@ -581,13 +564,13 @@ Qed.
Lemma remove_cardinal_1:
forall s x, mem x s=true -> S (cardinal (remove x s))=cardinal s.
Proof.
-intros; apply remove_cardinal_1; auto.
+intros; apply remove_cardinal_1; auto with set.
Qed.
Lemma remove_cardinal_2:
forall s x, mem x s=false -> cardinal (remove x s)=cardinal s.
Proof.
-auto with set.
+intros; apply Equal_cardinal; apply equal_2; auto with set.
Qed.
Lemma union_cardinal:
@@ -601,7 +584,7 @@ Qed.
Lemma subset_cardinal:
forall s s', subset s s'=true -> cardinal s<=cardinal s'.
Proof.
-intros; apply subset_cardinal; auto.
+intros; apply subset_cardinal; auto with set.
Qed.
Section Bool.
@@ -644,7 +627,7 @@ Proof.
intros; apply bool_1; split; intros.
destruct (exists_2 Comp H) as (a,(Ha1,Ha2)).
apply bool_6.
-red; intros; apply (@is_empty_2 _ H0 a); auto.
+red; intros; apply (@is_empty_2 _ H0 a); auto with set.
generalize (@choose_1 (filter f s)) (@choose_2 (filter f s)).
destruct (choose (filter f s)).
intros H0 _; apply exists_1; auto.
@@ -656,13 +639,30 @@ Qed.
Lemma partition_filter_1:
forall s, equal (fst (partition f s)) (filter f s)=true.
Proof.
-auto.
+auto with set.
Qed.
Lemma partition_filter_2:
forall s, equal (snd (partition f s)) (filter (fun x => negb (f x)) s)=true.
Proof.
-auto.
+auto with set.
+Qed.
+
+Lemma filter_add_1 : forall s x, f x = true ->
+ filter f (add x s) [=] add x (filter f s).
+Proof.
+red; intros; set_iff; do 2 (rewrite filter_iff; auto); set_iff.
+intuition.
+rewrite <- H; apply Comp; auto.
+Qed.
+
+Lemma filter_add_2 : forall s x, f x = false ->
+ filter f (add x s) [=] filter f s.
+Proof.
+red; intros; do 2 (rewrite filter_iff; auto); set_iff.
+intuition.
+assert (f x = f a) by (apply Comp; auto).
+rewrite H in H1; rewrite H2 in H1; discriminate.
Qed.
Lemma add_filter_1 : forall s s' x,
@@ -837,6 +837,8 @@ Section Sum.
(** Adding a valuation function on all elements of a set. *)
Definition sum (f:elt -> nat)(s:t) := fold (fun x => plus (f x)) s 0.
+Notation compat_opL := (compat_op E.eq (@Logic.eq _)).
+Notation transposeL := (transpose (@Logic.eq _)).
Lemma sum_plus :
forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
@@ -844,12 +846,12 @@ Lemma sum_plus :
Proof.
unfold sum.
intros f g Hf Hg.
-assert (fc : compat_op E.eq (@eq _) (fun x:elt =>plus (f x))). auto.
-assert (ft : transpose (@eq _) (fun x:elt =>plus (f x))). red; intros; omega.
-assert (gc : compat_op E.eq (@eq _) (fun x:elt => plus (g x))). auto.
-assert (gt : transpose (@eq _) (fun x:elt =>plus (g x))). red; intros; omega.
-assert (fgc : compat_op E.eq (@eq _) (fun x:elt =>plus ((f x)+(g x)))). auto.
-assert (fgt : transpose (@eq _) (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega.
+assert (fc : compat_opL (fun x:elt =>plus (f x))). auto.
+assert (ft : transposeL (fun x:elt =>plus (f x))). red; intros; omega.
+assert (gc : compat_opL (fun x:elt => plus (g x))). auto.
+assert (gt : transposeL (fun x:elt =>plus (g x))). red; intros; omega.
+assert (fgc : compat_opL (fun x:elt =>plus ((f x)+(g x)))). auto.
+assert (fgt : transposeL (fun x:elt=>plus ((f x)+(g x)))). red; intros; omega.
assert (st := gen_st nat).
intros s;pattern s; apply set_rec.
intros.
@@ -858,7 +860,7 @@ rewrite <- (fold_equal _ _ st _ gc gt 0 _ _ H).
rewrite <- (fold_equal _ _ st _ fgc fgt 0 _ _ H); auto.
intros; do 3 (rewrite (fold_add _ _ st);auto).
rewrite H0;simpl;omega.
-intros; do 3 rewrite (fold_empty _ _ st);auto.
+do 3 rewrite fold_empty;auto.
Qed.
Lemma sum_filter : forall f, (compat_bool E.eq f) ->
@@ -866,11 +868,11 @@ Lemma sum_filter : forall f, (compat_bool E.eq f) ->
Proof.
unfold sum; intros f Hf.
assert (st := gen_st nat).
-assert (cc : compat_op E.eq (@eq _) (fun x => plus (if f x then 1 else 0))).
- unfold compat_op; intros.
+assert (cc : compat_opL (fun x => plus (if f x then 1 else 0))).
+ red; intros.
rewrite (Hf x x' H); auto.
-assert (ct : transpose (@eq _) (fun x => plus (if f x then 1 else 0))).
- unfold transpose; intros; omega.
+assert (ct : transposeL (fun x => plus (if f x then 1 else 0))).
+ red; intros; omega.
intros s;pattern s; apply set_rec.
intros.
change elt with E.t.
@@ -883,14 +885,14 @@ assert (~ In x (filter f s0)).
case (f x); simpl; intros.
rewrite (MP.cardinal_2 H1 (H2 (refl_equal true) (MP.Add_add s0 x))); auto.
rewrite <- (MP.Equal_cardinal (H3 (refl_equal false) (MP.Add_add s0 x))); auto.
-intros; rewrite (fold_empty _ _ st);auto.
+intros; rewrite fold_empty;auto.
rewrite MP.cardinal_1; auto.
unfold Empty; intros.
rewrite filter_iff; auto; set_iff; tauto.
Qed.
Lemma fold_compat :
- forall (A:Set)(eqA:A->A->Prop)(st:(Setoid_Theory _ eqA))
+ forall (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA)
(f g:elt->A->A),
(compat_op E.eq eqA f) -> (transpose eqA f) ->
(compat_op E.eq eqA g) -> (transpose eqA g) ->
@@ -903,26 +905,35 @@ trans_st (fold f s0 i).
apply fold_equal with (eqA:=eqA); auto.
rewrite equal_sym; auto.
trans_st (fold g s0 i).
-apply H0; intros; apply H1; auto.
-elim (equal_2 H x); auto; intros.
-apply fold_equal with (eqA:=eqA); auto.
+apply H0; intros; apply H1; auto with set.
+elim (equal_2 H x); auto with set; intros.
+apply fold_equal with (eqA:=eqA); auto with set.
trans_st (f x (fold f s0 i)).
-apply fold_add with (eqA:=eqA); auto.
-trans_st (g x (fold f s0 i)).
-trans_st (g x (fold g s0 i)).
+apply fold_add with (eqA:=eqA); auto with set.
+trans_st (g x (fold f s0 i)); auto with set.
+trans_st (g x (fold g s0 i)); auto with set.
sym_st; apply fold_add with (eqA:=eqA); auto.
-trans_st i; [idtac | sym_st ]; apply fold_empty; auto.
+do 2 rewrite fold_empty; refl_st.
Qed.
Lemma sum_compat :
forall f g, compat_nat E.eq f -> compat_nat E.eq g ->
forall s, (forall x, In x s -> f x=g x) -> sum f s=sum g s.
intros.
-unfold sum; apply (fold_compat _ (@eq nat)); auto.
-unfold transpose; intros; omega.
-unfold transpose; intros; omega.
+unfold sum; apply (fold_compat _ (@Logic.eq nat)); auto.
+red; intros; omega.
+red; intros; omega.
Qed.
End Sum.
-End EqProperties.
+End WEqProperties.
+
+
+(** Now comes a special version dedicated to full sets. For this
+ one, only one argument [(M:S)] is necessary. *)
+
+Module EqProperties (M:S).
+ Module D := OT_as_DT M.E.
+ Include WEqProperties D M.
+End EqProperties.
diff --git a/theories/FSets/FSetFacts.v b/theories/FSets/FSetFacts.v
index aa57f066..b4b834b1 100644
--- a/theories/FSets/FSetFacts.v
+++ b/theories/FSets/FSetFacts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
+(* $Id: FSetFacts.v 10765 2008-04-08 16:15:23Z msozeau $ *)
(** * Finite sets library *)
@@ -16,16 +16,19 @@
Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
*)
+Require Import DecidableTypeEx.
Require Export FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
-Module Facts (M: S).
-Module ME := OrderedTypeFacts M.E.
-Import ME.
-Import M.
-Import Logic. (* to unmask [eq] *)
-Import Peano. (* to unmask [lt] *)
+(** First, a functor for Weak Sets. Since the signature [WS] includes
+ an EqualityType and not a stronger DecidableType, this functor
+ should take two arguments in order to compensate this. *)
+
+Module WFacts (Import E : DecidableType)(Import M : WSfun E).
+
+Notation eq_dec := E.eq_dec.
+Definition eqb x y := if eq_dec x y then true else false.
(** * Specifications written using equivalences *)
@@ -259,6 +262,8 @@ symmetry.
rewrite H0; intros.
destruct H1 as (_,H1).
apply H1; auto.
+rewrite H2.
+rewrite InA_alt; eauto.
Qed.
Lemma exists_b : compat_bool E.eq f ->
@@ -271,7 +276,8 @@ destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
rewrite <- H1; intros.
destruct H0 as (H0,_).
destruct H0 as (a,(Ha1,Ha2)); auto.
-exists a; auto.
+exists a; split; auto.
+rewrite H2; rewrite InA_alt; eauto.
symmetry.
rewrite H0.
destruct H1 as (_,H1).
@@ -289,17 +295,25 @@ End BoolSpec.
Definition E_ST : Setoid_Theory elt E.eq.
Proof.
-constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
+constructor ; red; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
Qed.
-Add Setoid elt E.eq E_ST as EltSetoid.
-
Definition Equal_ST : Setoid_Theory t Equal.
Proof.
-constructor; [apply eq_refl | apply eq_sym | apply eq_trans].
+constructor ; red; [apply eq_refl | apply eq_sym | apply eq_trans].
Qed.
-Add Setoid t Equal Equal_ST as EqualSetoid.
+Add Relation elt E.eq
+ reflexivity proved by E.eq_refl
+ symmetry proved by E.eq_sym
+ transitivity proved by E.eq_trans
+ as EltSetoid.
+
+Add Relation t Equal
+ reflexivity proved by eq_refl
+ symmetry proved by eq_sym
+ transitivity proved by eq_trans
+ as EqualSetoid.
Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
Proof.
@@ -325,7 +339,7 @@ exact (H1 (refl_equal true) _ Ha).
Qed.
Add Morphism Empty with signature Equal ==> iff as Empty_m.
-Proof.
+Proof.
intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
Qed.
@@ -340,7 +354,9 @@ Qed.
Add Morphism singleton : singleton_m.
Proof.
unfold Equal; intros x y H a.
-do 2 rewrite singleton_iff; split; order.
+do 2 rewrite singleton_iff; split; intros.
+apply E.eq_trans with x; auto.
+apply E.eq_trans with y; auto.
Qed.
Add Morphism add : add_m.
@@ -396,6 +412,63 @@ rewrite H in H1; rewrite H0 in H1; intuition.
rewrite H in H1; rewrite H0 in H1; intuition.
Qed.
+
+(* [Subset] is a setoid order *)
+
+Lemma Subset_refl : forall s, s[<=]s.
+Proof. red; auto. Defined.
+
+Lemma Subset_trans : forall s s' s'', s[<=]s'->s'[<=]s''->s[<=]s''.
+Proof. unfold Subset; eauto. Defined.
+
+Add Relation t Subset
+ reflexivity proved by Subset_refl
+ transitivity proved by Subset_trans
+ as SubsetSetoid.
+(* NB: for the moment, it is important to use Defined and not Qed in
+ the two previous lemmas, in order to allow conversion of
+ SubsetSetoid coming from separate Facts modules. See bug #1738. *)
+
+Instance In_s_m : Morphism (E.eq ==> Subset ++> impl) In | 1.
+Proof.
+ simpl_relation. eauto with set.
+Qed.
+
+Add Morphism Empty with signature Subset --> impl as Empty_s_m.
+Proof.
+unfold Subset, Empty, impl; firstorder.
+Qed.
+
+Add Morphism add with signature E.eq ==> Subset ++> Subset as add_s_m.
+Proof.
+unfold Subset; intros x y H s s' H0 a.
+do 2 rewrite add_iff; rewrite H; intuition.
+Qed.
+
+Add Morphism remove with signature E.eq ==> Subset ++> Subset as remove_s_m.
+Proof.
+unfold Subset; intros x y H s s' H0 a.
+do 2 rewrite remove_iff; rewrite H; intuition.
+Qed.
+
+Add Morphism union with signature Subset ++> Subset ++> Subset as union_s_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite union_iff; intuition.
+Qed.
+
+Add Morphism inter with signature Subset ++> Subset ++> Subset as inter_s_m.
+Proof.
+unfold Equal; intros s s' H s'' s''' H0 a.
+do 2 rewrite inter_iff; intuition.
+Qed.
+
+Add Morphism diff with signature Subset ++> Subset --> Subset as diff_s_m.
+Proof.
+unfold Subset; intros s s' H s'' s''' H0 a.
+do 2 rewrite diff_iff; intuition.
+Qed.
+
(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
without additional hypothesis on [f]. For instance: *)
@@ -405,6 +478,12 @@ Proof.
unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
Qed.
+Lemma filter_subset : forall f, compat_bool E.eq f ->
+ forall s s', s[<=]s' -> filter f s [<=] filter f s'.
+Proof.
+unfold Subset; intros; rewrite filter_iff in *; intuition.
+Qed.
+
(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
structures on [list elt] and [option elt]. *)
@@ -412,4 +491,15 @@ Qed.
Add Morphism cardinal ; cardinal_m.
*)
+End WFacts.
+
+
+(** Now comes a special version dedicated to full sets. For this
+ one, only one argument [(M:S)] is necessary. *)
+
+Module Facts (Import M:S).
+ Module D:=OT_as_DT M.E.
+ Include WFacts D M.
+
End Facts.
+
diff --git a/theories/FSets/FSetFullAVL.v b/theories/FSets/FSetFullAVL.v
new file mode 100644
index 00000000..1fc109f3
--- /dev/null
+++ b/theories/FSets/FSetFullAVL.v
@@ -0,0 +1,1125 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+(* Finite sets library.
+ * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
+ * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: FSetFullAVL.v 10739 2008-04-01 14:45:20Z herbelin $ *)
+
+(** * FSetFullAVL
+
+ This file contains some complements to [FSetAVL].
+
+ - Functor [AvlProofs] proves that trees of [FSetAVL] are not only
+ binary search trees, but moreover well-balanced ones. This is done
+ by proving that all operations preserve the balancing.
+
+ - Functor [OcamlOps] contains variants of [union], [subset],
+ [compare] and [equal] that are faithful to the original ocaml codes,
+ while the versions in FSetAVL have been adapted to perform only
+ structural recursive code.
+
+ - Finally, we pack the previous elements in a [Make] functor
+ similar to the one of [FSetAVL], but richer.
+*)
+
+Require Import Recdef FSetInterface FSetList ZArith Int FSetAVL.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+Module AvlProofs (Import I:Int)(X:OrderedType).
+Module Import Raw := Raw I X.
+Import Raw.Proofs.
+Module Import II := MoreInt I.
+Open Local Scope pair_scope.
+Open Local Scope Int_scope.
+
+(** * AVL trees *)
+
+(** [avl s] : [s] is a properly balanced AVL tree,
+ i.e. for any node the heights of the two children
+ differ by at most 2 *)
+
+Inductive avl : tree -> Prop :=
+ | RBLeaf : avl Leaf
+ | RBNode : forall x l r h, avl l -> avl r ->
+ -(2) <= height l - height r <= 2 ->
+ h = max (height l) (height r) + 1 ->
+ avl (Node l x r h).
+
+(** * Automation and dedicated tactics *)
+
+Hint Constructors avl.
+
+(** A tactic for cleaning hypothesis after use of functional induction. *)
+
+Ltac clearf :=
+ match goal with
+ | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf
+ | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf
+ | _ => idtac
+ end.
+
+(** Tactics about [avl] *)
+
+Lemma height_non_negative : forall s : tree, avl s -> height s >= 0.
+Proof.
+ induction s; simpl; intros; auto with zarith.
+ inv avl; intuition; omega_max.
+Qed.
+Implicit Arguments height_non_negative.
+
+(** When [H:avl r], typing [avl_nn H] or [avl_nn r] adds [height r>=0] *)
+
+Ltac avl_nn_hyp H :=
+ let nz := fresh "nz" in assert (nz := height_non_negative H).
+
+Ltac avl_nn h :=
+ let t := type of h in
+ match type of t with
+ | Prop => avl_nn_hyp h
+ | _ => match goal with H : avl h |- _ => avl_nn_hyp H end
+ end.
+
+(* Repeat the previous tactic.
+ Drawback: need to clear the [avl _] hyps ... Thank you Ltac *)
+
+Ltac avl_nns :=
+ match goal with
+ | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns
+ | _ => idtac
+ end.
+
+(** Results about [height] *)
+
+Lemma height_0 : forall s, avl s -> height s = 0 -> s = Leaf.
+Proof.
+ destruct 1; intuition; simpl in *.
+ avl_nns; simpl in *; elimtype False; omega_max.
+Qed.
+
+(** * Results about [avl] *)
+
+Lemma avl_node :
+ forall x l r, avl l -> avl r ->
+ -(2) <= height l - height r <= 2 ->
+ avl (Node l x r (max (height l) (height r) + 1)).
+Proof.
+ intros; auto.
+Qed.
+Hint Resolve avl_node.
+
+
+(** empty *)
+
+Lemma empty_avl : avl empty.
+Proof.
+ auto.
+Qed.
+
+(** singleton *)
+
+Lemma singleton_avl : forall x : elt, avl (singleton x).
+Proof.
+ unfold singleton; intro.
+ constructor; auto; try red; simpl; omega_max.
+Qed.
+
+(** create *)
+
+Lemma create_avl :
+ forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ avl (create l x r).
+Proof.
+ unfold create; auto.
+Qed.
+
+Lemma create_height :
+ forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (create l x r) = max (height l) (height r) + 1.
+Proof.
+ unfold create; auto.
+Qed.
+
+(** bal *)
+
+Lemma bal_avl : forall l x r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 -> avl (bal l x r).
+Proof.
+ intros l x r; functional induction bal l x r; intros; clearf;
+ inv avl; simpl in *;
+ match goal with |- avl (assert_false _ _ _) => avl_nns
+ | _ => repeat apply create_avl; simpl in *; auto
+ end; omega_max.
+Qed.
+
+Lemma bal_height_1 : forall l x r, avl l -> avl r ->
+ -(3) <= height l - height r <= 3 ->
+ 0 <= height (bal l x r) - max (height l) (height r) <= 1.
+Proof.
+ intros l x r; functional induction bal l x r; intros; clearf;
+ inv avl; avl_nns; simpl in *; omega_max.
+Qed.
+
+Lemma bal_height_2 :
+ forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 ->
+ height (bal l x r) == max (height l) (height r) +1.
+Proof.
+ intros l x r; functional induction bal l x r; intros; clearf;
+ inv avl; simpl in *; omega_max.
+Qed.
+
+Ltac omega_bal := match goal with
+ | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] =>
+ generalize (bal_height_1 x H H') (bal_height_2 x H H');
+ omega_max
+ end.
+
+(** add *)
+
+Lemma add_avl_1 : forall s x, avl s ->
+ avl (add x s) /\ 0 <= height (add x s) - height s <= 1.
+Proof.
+ intros s x; functional induction (add x s); subst;intros; inv avl; simpl in *.
+ intuition; try constructor; simpl; auto; try omega_max.
+ (* LT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+ (* EQ *)
+ intuition; omega_max.
+ (* GT *)
+ destruct IHt; auto.
+ split.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma add_avl : forall s x, avl s -> avl (add x s).
+Proof.
+ intros; destruct (add_avl_1 x H); auto.
+Qed.
+Hint Resolve add_avl.
+
+(** join *)
+
+Lemma join_avl_1 : forall l x r, avl l -> avl r -> avl (join l x r) /\
+ 0<= height (join l x r) - max (height l) (height r) <= 1.
+Proof.
+ join_tac.
+
+ split; simpl; auto.
+ destruct (add_avl_1 x H0).
+ avl_nns; omega_max.
+ set (l:=Node ll lx lr lh) in *.
+ split; auto.
+ destruct (add_avl_1 x H).
+ simpl (height Leaf).
+ avl_nns; omega_max.
+
+ inversion_clear H.
+ assert (height (Node rl rx rr rh) = rh); auto.
+ set (r := Node rl rx rr rh) in *; clearbody r.
+ destruct (Hlr x r H2 H0); clear Hrl Hlr.
+ set (j := join lr x r) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height ll - height j <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ inversion_clear H0.
+ assert (height (Node ll lx lr lh) = lh); auto.
+ set (l := Node ll lx lr lh) in *; clearbody l.
+ destruct (Hrl H H1); clear Hrl Hlr.
+ set (j := join l x rl) in *; clearbody j.
+ simpl.
+ assert (-(3) <= height j - height rr <= 3) by omega_max.
+ split.
+ apply bal_avl; auto.
+ omega_bal.
+
+ clear Hrl Hlr.
+ assert (height (Node ll lx lr lh) = lh); auto.
+ assert (height (Node rl rx rr rh) = rh); auto.
+ set (l := Node ll lx lr lh) in *; clearbody l.
+ set (r := Node rl rx rr rh) in *; clearbody r.
+ assert (-(2) <= height l - height r <= 2) by omega_max.
+ split.
+ apply create_avl; auto.
+ rewrite create_height; auto; omega_max.
+Qed.
+
+Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r).
+Proof.
+ intros; destruct (join_avl_1 x H H0); auto.
+Qed.
+Hint Resolve join_avl.
+
+(** remove_min *)
+
+Lemma remove_min_avl_1 : forall l x r h, avl (Node l x r h) ->
+ avl (remove_min l x r)#1 /\
+ 0 <= height (Node l x r h) - height (remove_min l x r)#1 <= 1.
+Proof.
+ intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros.
+ inv avl; simpl in *; split; auto.
+ avl_nns; omega_max.
+ inversion_clear H.
+ rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto.
+ split; simpl in *.
+ apply bal_avl; auto; omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_min_avl : forall l x r h, avl (Node l x r h) ->
+ avl (remove_min l x r)#1.
+Proof.
+ intros; destruct (remove_min_avl_1 H); auto.
+Qed.
+
+(** merge *)
+
+Lemma merge_avl_1 : forall s1 s2, avl s1 -> avl s2 ->
+ -(2) <= height s1 - height s2 <= 2 ->
+ avl (merge s1 s2) /\
+ 0<= height (merge s1 s2) - max (height s1) (height s2) <=1.
+Proof.
+ intros s1 s2; functional induction (merge s1 s2); intros;
+ try factornode _x _x0 _x1 _x2 as s1.
+ simpl; split; auto; avl_nns; omega_max.
+ simpl; split; auto; avl_nns; simpl in *; omega_max.
+ generalize (remove_min_avl_1 H0).
+ rewrite e1; destruct 1.
+ split.
+ apply bal_avl; auto.
+ simpl; omega_max.
+ simpl in *; omega_bal.
+Qed.
+
+Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 ->
+ -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2).
+Proof.
+ intros; destruct (merge_avl_1 H H0 H1); auto.
+Qed.
+
+
+(** remove *)
+
+Lemma remove_avl_1 : forall s x, avl s ->
+ avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1.
+Proof.
+ intros s x; functional induction (remove x s); intros.
+ intuition; omega_max.
+ (* LT *)
+ inv avl.
+ destruct (IHt H0).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+ (* EQ *)
+ inv avl.
+ generalize (merge_avl_1 H0 H1 H2).
+ intuition omega_max.
+ (* GT *)
+ inv avl.
+ destruct (IHt H1).
+ split.
+ apply bal_avl; auto.
+ omega_max.
+ omega_bal.
+Qed.
+
+Lemma remove_avl : forall s x, avl s -> avl (remove x s).
+Proof.
+ intros; destruct (remove_avl_1 x H); auto.
+Qed.
+Hint Resolve remove_avl.
+
+(** concat *)
+
+Lemma concat_avl : forall s1 s2, avl s1 -> avl s2 -> avl (concat s1 s2).
+Proof.
+ intros s1 s2; functional induction (concat s1 s2); auto.
+ intros; apply join_avl; auto.
+ generalize (remove_min_avl H0); rewrite e1; simpl; auto.
+Qed.
+Hint Resolve concat_avl.
+
+(** split *)
+
+Lemma split_avl : forall s x, avl s ->
+ avl (split x s)#l /\ avl (split x s)#r.
+Proof.
+ intros s x; functional induction (split x s); simpl; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+ simpl; inversion_clear 1; auto.
+ rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition.
+Qed.
+
+(** inter *)
+
+Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2).
+Proof.
+ intros s1 s2; functional induction inter s1 s2; auto; intros A1 A2;
+ generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
+ inv avl; auto.
+Qed.
+
+(** diff *)
+
+Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2).
+Proof.
+ intros s1 s2; functional induction diff s1 s2; auto; intros A1 A2;
+ generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
+ inv avl; auto.
+Qed.
+
+(** union *)
+
+Lemma union_avl : forall s1 s2, avl s1 -> avl s2 -> avl (union s1 s2).
+Proof.
+ intros s1 s2; functional induction union s1 s2; auto; intros A1 A2;
+ generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1;
+ inv avl; auto.
+Qed.
+
+(** filter *)
+
+Lemma filter_acc_avl : forall f s acc, avl s -> avl acc ->
+ avl (filter_acc f acc s).
+Proof.
+ induction s; simpl; auto.
+ intros.
+ inv avl.
+ destruct (f t); auto.
+Qed.
+Hint Resolve filter_acc_avl.
+
+Lemma filter_avl : forall f s, avl s -> avl (filter f s).
+Proof.
+ unfold filter; intros; apply filter_acc_avl; auto.
+Qed.
+
+(** partition *)
+
+Lemma partition_acc_avl_1 : forall f s acc, avl s ->
+ avl acc#1 -> avl (partition_acc f acc s)#1.
+Proof.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros.
+ inv avl.
+ apply IHs2; auto.
+ apply IHs1; auto.
+ destruct (f t); simpl; auto.
+Qed.
+
+Lemma partition_acc_avl_2 : forall f s acc, avl s ->
+ avl acc#2 -> avl (partition_acc f acc s)#2.
+Proof.
+ induction s; simpl; auto.
+ destruct acc as [acct accf]; simpl in *.
+ intros.
+ inv avl.
+ apply IHs2; auto.
+ apply IHs1; auto.
+ destruct (f t); simpl; auto.
+Qed.
+
+Lemma partition_avl_1 : forall f s, avl s -> avl (partition f s)#1.
+Proof.
+ unfold partition; intros; apply partition_acc_avl_1; auto.
+Qed.
+
+Lemma partition_avl_2 : forall f s, avl s -> avl (partition f s)#2.
+Proof.
+ unfold partition; intros; apply partition_acc_avl_2; auto.
+Qed.
+
+End AvlProofs.
+
+
+Module OcamlOps (Import I:Int)(X:OrderedType).
+Module Import AvlProofs := AvlProofs I X.
+Import Raw.
+Import Raw.Proofs.
+Import II.
+Open Local Scope pair_scope.
+Open Local Scope nat_scope.
+
+(** Properties of cardinal *)
+
+Lemma bal_cardinal : forall l x r,
+ cardinal (bal l x r) = S (cardinal l + cardinal r).
+Proof.
+ intros l x r; functional induction bal l x r; intros; clearf;
+ simpl; auto with arith; romega with *.
+Qed.
+
+Lemma add_cardinal : forall x s,
+ cardinal (add x s) <= S (cardinal s).
+Proof.
+ intros; functional induction add x s; simpl; auto with arith;
+ rewrite bal_cardinal; romega with *.
+Qed.
+
+Lemma join_cardinal : forall l x r,
+ cardinal (join l x r) <= S (cardinal l + cardinal r).
+Proof.
+ join_tac; auto with arith.
+ simpl; apply add_cardinal.
+ simpl; destruct X.compare; simpl; auto with arith.
+ generalize (bal_cardinal (add x ll) lx lr) (add_cardinal x ll);
+ romega with *.
+ generalize (bal_cardinal ll lx (add x lr)) (add_cardinal x lr);
+ romega with *.
+ generalize (bal_cardinal ll lx (join lr x (Node rl rx rr rh)))
+ (Hlr x (Node rl rx rr rh)); simpl; romega with *.
+ simpl S in *; generalize (bal_cardinal (join (Node ll lx lr lh) x rl) rx rr).
+ romega with *.
+Qed.
+
+Lemma split_cardinal_1 : forall x s,
+ (cardinal (split x s)#l <= cardinal s)%nat.
+Proof.
+ intros x s; functional induction split x s; simpl; auto.
+ rewrite e1 in IHt; simpl in *.
+ romega with *.
+ romega with *.
+ rewrite e1 in IHt; simpl in *.
+ generalize (@join_cardinal l y rl); romega with *.
+Qed.
+
+Lemma split_cardinal_2 : forall x s,
+ (cardinal (split x s)#r <= cardinal s)%nat.
+Proof.
+ intros x s; functional induction split x s; simpl; auto.
+ rewrite e1 in IHt; simpl in *.
+ generalize (@join_cardinal rl y r); romega with *.
+ romega with *.
+ rewrite e1 in IHt; simpl in *; romega with *.
+Qed.
+
+(** * [ocaml_union], an union faithful to the original ocaml code *)
+
+Definition cardinal2 (s:t*t) := (cardinal s#1 + cardinal s#2)%nat.
+
+Ltac ocaml_union_tac :=
+ intros; unfold cardinal2; simpl fst in *; simpl snd in *;
+ match goal with H: split ?x ?s = _ |- _ =>
+ generalize (split_cardinal_1 x s) (split_cardinal_2 x s);
+ rewrite H; simpl; romega with *
+ end.
+
+Import Logic. (* Unhide eq, otherwise Function complains. *)
+
+Function ocaml_union (s : t * t) { measure cardinal2 s } : t :=
+ match s with
+ | (Leaf, Leaf) => s#2
+ | (Leaf, Node _ _ _ _) => s#2
+ | (Node _ _ _ _, Leaf) => s#1
+ | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) =>
+ if ge_lt_dec h1 h2 then
+ if eq_dec h2 1%I then add x2 s#1 else
+ let (l2',_,r2') := split x1 s#2 in
+ join (ocaml_union (l1,l2')) x1 (ocaml_union (r1,r2'))
+ else
+ if eq_dec h1 1%I then add x1 s#2 else
+ let (l1',_,r1') := split x2 s#1 in
+ join (ocaml_union (l1',l2)) x2 (ocaml_union (r1',r2))
+ end.
+Proof.
+abstract ocaml_union_tac.
+abstract ocaml_union_tac.
+abstract ocaml_union_tac.
+abstract ocaml_union_tac.
+Defined.
+
+Lemma ocaml_union_in : forall s y,
+ bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 ->
+ (In y (ocaml_union s) <-> In y s#1 \/ In y s#2).
+Proof.
+ intros s; functional induction ocaml_union s; intros y B1 A1 B2 A2;
+ simpl fst in *; simpl snd in *; try clear e0 e1.
+ intuition_in.
+ intuition_in.
+ intuition_in.
+ (* add x2 s#1 *)
+ inv avl.
+ rewrite (height_0 H); [ | avl_nn l2; omega_max].
+ rewrite (height_0 H0); [ | avl_nn r2; omega_max].
+ rewrite add_in; intuition_in.
+ (* join (union (l1,l2')) x1 (union (r1,r2')) *)
+ generalize
+ (split_avl x1 A2) (split_bst x1 B2)
+ (split_in_1 x1 y B2) (split_in_2 x1 y B2).
+ rewrite e2; simpl.
+ destruct 1; destruct 1; inv avl; inv bst.
+ rewrite join_in, IHt, IHt0; auto.
+ do 2 (intro Eq; rewrite Eq; clear Eq).
+ case (X.compare y x1); intuition_in.
+ (* add x1 s#2 *)
+ inv avl.
+ rewrite (height_0 H3); [ | avl_nn l1; omega_max].
+ rewrite (height_0 H4); [ | avl_nn r1; omega_max].
+ rewrite add_in; auto; intuition_in.
+ (* join (union (l1',l2)) x1 (union (r1',r2)) *)
+ generalize
+ (split_avl x2 A1) (split_bst x2 B1)
+ (split_in_1 x2 y B1) (split_in_2 x2 y B1).
+ rewrite e2; simpl.
+ destruct 1; destruct 1; inv avl; inv bst.
+ rewrite join_in, IHt, IHt0; auto.
+ do 2 (intro Eq; rewrite Eq; clear Eq).
+ case (X.compare y x2); intuition_in.
+Qed.
+
+Lemma ocaml_union_bst : forall s,
+ bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> bst (ocaml_union s).
+Proof.
+ intros s; functional induction ocaml_union s; intros B1 A1 B2 A2;
+ simpl fst in *; simpl snd in *; try clear e0 e1;
+ try apply add_bst; auto.
+ (* join (union (l1,l2')) x1 (union (r1,r2')) *)
+ clear _x _x0; factornode l2 x2 r2 h2 as s2.
+ generalize (split_avl x1 A2) (split_bst x1 B2)
+ (@split_in_1 s2 x1)(@split_in_2 s2 x1).
+ rewrite e2; simpl.
+ destruct 1; destruct 1; intros.
+ inv bst; inv avl.
+ apply join_bst; auto.
+ intro y; rewrite ocaml_union_in, H3; intuition_in.
+ intro y; rewrite ocaml_union_in, H4; intuition_in.
+ (* join (union (l1',l2)) x1 (union (r1',r2)) *)
+ clear _x _x0; factornode l1 x1 r1 h1 as s1.
+ generalize (split_avl x2 A1) (split_bst x2 B1)
+ (@split_in_1 s1 x2)(@split_in_2 s1 x2).
+ rewrite e2; simpl.
+ destruct 1; destruct 1; intros.
+ inv bst; inv avl.
+ apply join_bst; auto.
+ intro y; rewrite ocaml_union_in, H3; intuition_in.
+ intro y; rewrite ocaml_union_in, H4; intuition_in.
+Qed.
+
+Lemma ocaml_union_avl : forall s,
+ avl s#1 -> avl s#2 -> avl (ocaml_union s).
+Proof.
+ intros s; functional induction ocaml_union s;
+ simpl fst in *; simpl snd in *; auto.
+ intros A1 A2; generalize (split_avl x1 A2); rewrite e2; simpl.
+ inv avl; destruct 1; auto.
+ intros A1 A2; generalize (split_avl x2 A1); rewrite e2; simpl.
+ inv avl; destruct 1; auto.
+Qed.
+
+Lemma ocaml_union_alt : forall s, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 ->
+ Equal (ocaml_union s) (union s#1 s#2).
+Proof.
+ red; intros; rewrite ocaml_union_in, union_in; simpl; intuition.
+Qed.
+
+
+(** * [ocaml_subset], a subset faithful to the original ocaml code *)
+
+Function ocaml_subset (s:t*t) { measure cardinal2 s } : bool :=
+ match s with
+ | (Leaf, _) => true
+ | (Node _ _ _ _, Leaf) => false
+ | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) =>
+ match X.compare x1 x2 with
+ | EQ _ => ocaml_subset (l1,l2) && ocaml_subset (r1,r2)
+ | LT _ => ocaml_subset (Node l1 x1 Leaf 0%I, l2) && ocaml_subset (r1,s#2)
+ | GT _ => ocaml_subset (Node Leaf x1 r1 0%I, r2) && ocaml_subset (l1,s#2)
+ end
+ end.
+
+Proof.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+ intros; unfold cardinal2; simpl; abstract romega with *.
+Defined.
+
+Lemma ocaml_subset_12 : forall s,
+ bst s#1 -> bst s#2 ->
+ (ocaml_subset s = true <-> Subset s#1 s#2).
+Proof.
+ intros s; functional induction ocaml_subset s; simpl;
+ intros B1 B2; try clear e0.
+ intuition.
+ red; auto; inversion 1.
+ split; intros; try discriminate.
+ assert (H': In _x0 Leaf) by auto; inversion H'.
+ (**)
+ simpl in *; inv bst.
+ rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
+ unfold Subset; intuition_in.
+ assert (X.eq a x2) by order; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ (**)
+ simpl in *; inv bst.
+ rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
+ unfold Subset; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ (**)
+ simpl in *; inv bst.
+ rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0.
+ unfold Subset; intuition_in.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+ assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order.
+Qed.
+
+Lemma ocaml_subset_alt : forall s, bst s#1 -> bst s#2 ->
+ ocaml_subset s = subset s#1 s#2.
+Proof.
+ intros.
+ generalize (ocaml_subset_12 H H0); rewrite <-subset_12 by auto.
+ destruct ocaml_subset; destruct subset; intuition.
+Qed.
+
+
+
+(** [ocaml_compare], a compare faithful to the original ocaml code *)
+
+(** termination of [compare_aux] *)
+
+Fixpoint cardinal_e e := match e with
+ | End => 0
+ | More _ s r => S (cardinal s + cardinal_e r)
+ end.
+
+Lemma cons_cardinal_e : forall s e,
+ cardinal_e (cons s e) = cardinal s + cardinal_e e.
+Proof.
+ induction s; simpl; intros; auto.
+ rewrite IHs1; simpl; rewrite <- plus_n_Sm; auto with arith.
+Qed.
+
+Definition cardinal_e_2 e := cardinal_e e#1 + cardinal_e e#2.
+
+Function ocaml_compare_aux
+ (e:enumeration*enumeration) { measure cardinal_e_2 e } : comparison :=
+ match e with
+ | (End,End) => Eq
+ | (End,More _ _ _) => Lt
+ | (More _ _ _, End) => Gt
+ | (More x1 r1 e1, More x2 r2 e2) =>
+ match X.compare x1 x2 with
+ | EQ _ => ocaml_compare_aux (cons r1 e1, cons r2 e2)
+ | LT _ => Lt
+ | GT _ => Gt
+ end
+ end.
+
+Proof.
+intros; unfold cardinal_e_2; simpl;
+abstract (do 2 rewrite cons_cardinal_e; romega with *).
+Defined.
+
+Definition ocaml_compare s1 s2 :=
+ ocaml_compare_aux (cons s1 End, cons s2 End).
+
+Lemma ocaml_compare_aux_Cmp : forall e,
+ Cmp (ocaml_compare_aux e) (flatten_e e#1) (flatten_e e#2).
+Proof.
+ intros e; functional induction ocaml_compare_aux e; simpl; intros;
+ auto; try discriminate.
+ apply L.eq_refl.
+ simpl in *.
+ apply cons_Cmp; auto.
+ rewrite <- 2 cons_1; auto.
+Qed.
+
+Lemma ocaml_compare_Cmp : forall s1 s2,
+ Cmp (ocaml_compare s1 s2) (elements s1) (elements s2).
+Proof.
+ unfold ocaml_compare; intros.
+ assert (H1:=cons_1 s1 End).
+ assert (H2:=cons_1 s2 End).
+ simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2.
+ apply (@ocaml_compare_aux_Cmp (cons s1 End, cons s2 End)).
+Qed.
+
+Lemma ocaml_compare_alt : forall s1 s2, bst s1 -> bst s2 ->
+ ocaml_compare s1 s2 = compare s1 s2.
+Proof.
+ intros s1 s2 B1 B2.
+ generalize (ocaml_compare_Cmp s1 s2)(compare_Cmp s1 s2).
+ unfold Cmp.
+ destruct ocaml_compare; destruct compare; auto; intros; elimtype False.
+ elim (lt_not_eq B1 B2 H0); auto.
+ elim (lt_not_eq B2 B1 H0); auto.
+ apply eq_sym; auto.
+ elim (lt_not_eq B1 B2 H); auto.
+ elim (lt_not_eq B1 B1).
+ red; eapply L.lt_trans; eauto.
+ apply eq_refl.
+ elim (lt_not_eq B2 B1 H); auto.
+ apply eq_sym; auto.
+ elim (lt_not_eq B1 B2 H0); auto.
+ elim (lt_not_eq B1 B1).
+ red; eapply L.lt_trans; eauto.
+ apply eq_refl.
+Qed.
+
+
+(** * Equality test *)
+
+Definition ocaml_equal s1 s2 : bool :=
+ match ocaml_compare s1 s2 with
+ | Eq => true
+ | _ => false
+ end.
+
+Lemma ocaml_equal_1 : forall s1 s2, bst s1 -> bst s2 ->
+ Equal s1 s2 -> ocaml_equal s1 s2 = true.
+Proof.
+unfold ocaml_equal; intros s1 s2 B1 B2 E.
+generalize (ocaml_compare_Cmp s1 s2).
+destruct (ocaml_compare s1 s2); auto; intros.
+elim (lt_not_eq B1 B2 H E); auto.
+elim (lt_not_eq B2 B1 H (eq_sym E)); auto.
+Qed.
+
+Lemma ocaml_equal_2 : forall s1 s2,
+ ocaml_equal s1 s2 = true -> Equal s1 s2.
+Proof.
+unfold ocaml_equal; intros s1 s2 E.
+generalize (ocaml_compare_Cmp s1 s2);
+ destruct ocaml_compare; auto; discriminate.
+Qed.
+
+Lemma ocaml_equal_alt : forall s1 s2, bst s1 -> bst s2 ->
+ ocaml_equal s1 s2 = equal s1 s2.
+Proof.
+intros; unfold ocaml_equal, equal; rewrite ocaml_compare_alt; auto.
+Qed.
+
+End OcamlOps.
+
+
+
+(** * Encapsulation
+
+ We can implement [S] with balanced binary search trees.
+ When compared to [FSetAVL], we maintain here two invariants
+ (bst and avl) instead of only bst, which is enough for fulfilling
+ the FSet interface.
+
+ This encapsulation propose the non-structural variants
+ [ocaml_union], [ocaml_subset], [ocaml_compare], [ocaml_equal].
+*)
+
+Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
+
+ Module E := X.
+ Module Import OcamlOps := OcamlOps I X.
+ Import AvlProofs.
+ Import Raw.
+ Import Raw.Proofs.
+
+ Record bbst := Bbst {this :> Raw.t; is_bst : bst this; is_avl : avl this}.
+ Definition t := bbst.
+ Definition elt := E.t.
+
+ Definition In (x : elt) (s : t) : Prop := In x s.
+ Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'.
+ Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'.
+ Definition Empty (s:t) : Prop := forall a : elt, ~ In a s.
+ Definition For_all (P : elt -> Prop) (s:t) : Prop := forall x, In x s -> P x.
+ Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x.
+
+ Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s.
+ Proof. intro s; exact (@In_1 s). Qed.
+
+ Definition mem (x:elt)(s:t) : bool := mem x s.
+
+ Definition empty : t := Bbst empty_bst empty_avl.
+ Definition is_empty (s:t) : bool := is_empty s.
+ Definition singleton (x:elt) : t :=
+ Bbst (singleton_bst x) (singleton_avl x).
+ Definition add (x:elt)(s:t) : t :=
+ Bbst (add_bst x (is_bst s)) (add_avl x (is_avl s)).
+ Definition remove (x:elt)(s:t) : t :=
+ Bbst (remove_bst x (is_bst s)) (remove_avl x (is_avl s)).
+ Definition inter (s s':t) : t :=
+ Bbst (inter_bst (is_bst s) (is_bst s'))
+ (inter_avl (is_avl s) (is_avl s')).
+ Definition union (s s':t) : t :=
+ Bbst (union_bst (is_bst s) (is_bst s'))
+ (union_avl (is_avl s) (is_avl s')).
+ Definition ocaml_union (s s':t) : t :=
+ Bbst (@ocaml_union_bst (s.(this),s'.(this))
+ (is_bst s) (is_avl s) (is_bst s') (is_avl s'))
+ (@ocaml_union_avl (s.(this),s'.(this)) (is_avl s) (is_avl s')).
+ Definition diff (s s':t) : t :=
+ Bbst (diff_bst (is_bst s) (is_bst s'))
+ (diff_avl (is_avl s) (is_avl s')).
+ Definition elements (s:t) : list elt := elements s.
+ Definition min_elt (s:t) : option elt := min_elt s.
+ Definition max_elt (s:t) : option elt := max_elt s.
+ Definition choose (s:t) : option elt := choose s.
+ Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := fold f s.
+ Definition cardinal (s:t) : nat := cardinal s.
+ Definition filter (f : elt -> bool) (s:t) : t :=
+ Bbst (filter_bst f (is_bst s)) (filter_avl f (is_avl s)).
+ Definition for_all (f : elt -> bool) (s:t) : bool := for_all f s.
+ Definition exists_ (f : elt -> bool) (s:t) : bool := exists_ f s.
+ Definition partition (f : elt -> bool) (s:t) : t * t :=
+ let p := partition f s in
+ (@Bbst (fst p) (partition_bst_1 f (is_bst s))
+ (partition_avl_1 f (is_avl s)),
+ @Bbst (snd p) (partition_bst_2 f (is_bst s))
+ (partition_avl_2 f (is_avl s))).
+
+ Definition equal (s s':t) : bool := equal s s'.
+ Definition ocaml_equal (s s':t) : bool := ocaml_equal s s'.
+ Definition subset (s s':t) : bool := subset s s'.
+ Definition ocaml_subset (s s':t) : bool :=
+ ocaml_subset (s.(this),s'.(this)).
+
+ Definition eq (s s':t) : Prop := Equal s s'.
+ Definition lt (s s':t) : Prop := lt s s'.
+
+ Definition compare (s s':t) : Compare lt eq s s'.
+ Proof.
+ intros (s,b,a) (s',b',a').
+ generalize (compare_Cmp s s').
+ destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
+ change (Raw.Equal s s'); auto.
+ Defined.
+
+ Definition ocaml_compare (s s':t) : Compare lt eq s s'.
+ Proof.
+ intros (s,b,a) (s',b',a').
+ generalize (ocaml_compare_Cmp s s').
+ destruct ocaml_compare; intros; [apply EQ|apply LT|apply GT]; red; auto.
+ change (Raw.Equal s s'); auto.
+ Defined.
+
+ (* specs *)
+ Section Specs.
+ Variable s s' s'': t.
+ Variable x y : elt.
+
+ Hint Resolve is_bst is_avl.
+
+ Lemma mem_1 : In x s -> mem x s = true.
+ Proof. exact (mem_1 (is_bst s)). Qed.
+ Lemma mem_2 : mem x s = true -> In x s.
+ Proof. exact (@mem_2 s x). Qed.
+
+ Lemma equal_1 : Equal s s' -> equal s s' = true.
+ Proof. exact (equal_1 (is_bst s) (is_bst s')). Qed.
+ Lemma equal_2 : equal s s' = true -> Equal s s'.
+ Proof. exact (@equal_2 s s'). Qed.
+
+ Lemma ocaml_equal_alt : ocaml_equal s s' = equal s s'.
+ Proof.
+ destruct s; destruct s'; unfold ocaml_equal, equal; simpl.
+ apply ocaml_equal_alt; auto.
+ Qed.
+
+ Lemma ocaml_equal_1 : Equal s s' -> ocaml_equal s s' = true.
+ Proof. exact (ocaml_equal_1 (is_bst s) (is_bst s')). Qed.
+ Lemma ocaml_equal_2 : ocaml_equal s s' = true -> Equal s s'.
+ Proof. exact (@ocaml_equal_2 s s'). Qed.
+
+ Ltac wrap t H := unfold t, In; simpl; rewrite H; auto; intuition.
+
+ Lemma subset_1 : Subset s s' -> subset s s' = true.
+ Proof. wrap subset subset_12. Qed.
+ Lemma subset_2 : subset s s' = true -> Subset s s'.
+ Proof. wrap subset subset_12. Qed.
+
+ Lemma ocaml_subset_alt : ocaml_subset s s' = subset s s'.
+ Proof.
+ destruct s; destruct s'; unfold ocaml_subset, subset; simpl.
+ rewrite ocaml_subset_alt; auto.
+ Qed.
+
+ Lemma ocaml_subset_1 : Subset s s' -> ocaml_subset s s' = true.
+ Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed.
+ Lemma ocaml_subset_2 : ocaml_subset s s' = true -> Subset s s'.
+ Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed.
+
+ Lemma empty_1 : Empty empty.
+ Proof. exact empty_1. Qed.
+
+ Lemma is_empty_1 : Empty s -> is_empty s = true.
+ Proof. exact (@is_empty_1 s). Qed.
+ Lemma is_empty_2 : is_empty s = true -> Empty s.
+ Proof. exact (@is_empty_2 s). Qed.
+
+ Lemma add_1 : E.eq x y -> In y (add x s).
+ Proof. wrap add add_in. Qed.
+ Lemma add_2 : In y s -> In y (add x s).
+ Proof. wrap add add_in. Qed.
+ Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
+ Proof. wrap add add_in. elim H; auto. Qed.
+
+ Lemma remove_1 : E.eq x y -> ~ In y (remove x s).
+ Proof. wrap remove remove_in. Qed.
+ Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
+ Proof. wrap remove remove_in. Qed.
+ Lemma remove_3 : In y (remove x s) -> In y s.
+ Proof. wrap remove remove_in. Qed.
+
+ Lemma singleton_1 : In y (singleton x) -> E.eq x y.
+ Proof. exact (@singleton_1 x y). Qed.
+ Lemma singleton_2 : E.eq x y -> In y (singleton x).
+ Proof. exact (@singleton_2 x y). Qed.
+
+ Lemma union_1 : In x (union s s') -> In x s \/ In x s'.
+ Proof. wrap union union_in. Qed.
+ Lemma union_2 : In x s -> In x (union s s').
+ Proof. wrap union union_in. Qed.
+ Lemma union_3 : In x s' -> In x (union s s').
+ Proof. wrap union union_in. Qed.
+
+ Lemma ocaml_union_alt : Equal (ocaml_union s s') (union s s').
+ Proof.
+ unfold ocaml_union, union, Equal, In.
+ destruct s as (s0,b,a); destruct s' as (s0',b',a'); simpl.
+ exact (@ocaml_union_alt (s0,s0') b a b' a').
+ Qed.
+
+ Lemma ocaml_union_1 : In x (ocaml_union s s') -> In x s \/ In x s'.
+ Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
+ Lemma ocaml_union_2 : In x s -> In x (ocaml_union s s').
+ Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
+ Lemma ocaml_union_3 : In x s' -> In x (ocaml_union s s').
+ Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed.
+
+ Lemma inter_1 : In x (inter s s') -> In x s.
+ Proof. wrap inter inter_in. Qed.
+ Lemma inter_2 : In x (inter s s') -> In x s'.
+ Proof. wrap inter inter_in. Qed.
+ Lemma inter_3 : In x s -> In x s' -> In x (inter s s').
+ Proof. wrap inter inter_in. Qed.
+
+ Lemma diff_1 : In x (diff s s') -> In x s.
+ Proof. wrap diff diff_in. Qed.
+ Lemma diff_2 : In x (diff s s') -> ~ In x s'.
+ Proof. wrap diff diff_in. Qed.
+ Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
+ Proof. wrap diff diff_in. Qed.
+
+ Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
+ fold f s i = fold_left (fun a e => f e a) (elements s) i.
+ Proof.
+ unfold fold, elements; intros; apply fold_1; auto.
+ Qed.
+
+ Lemma cardinal_1 : cardinal s = length (elements s).
+ Proof.
+ unfold cardinal, elements; intros; apply elements_cardinal; auto.
+ Qed.
+
+ Section Filter.
+ Variable f : elt -> bool.
+
+ Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
+ Proof. intro. wrap filter filter_in. Qed.
+ Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
+ Proof. intro. wrap filter filter_in. Qed.
+ Lemma filter_3 : compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
+ Proof. intro. wrap filter filter_in. Qed.
+
+ Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true.
+ Proof. exact (@for_all_1 f s). Qed.
+ Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s.
+ Proof. exact (@for_all_2 f s). Qed.
+
+ Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true.
+ Proof. exact (@exists_1 f s). Qed.
+ Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s.
+ Proof. exact (@exists_2 f s). Qed.
+
+ Lemma partition_1 : compat_bool E.eq f ->
+ Equal (fst (partition f s)) (filter f s).
+ Proof.
+ unfold partition, filter, Equal, In; simpl ;intros H a.
+ rewrite partition_in_1, filter_in; intuition.
+ Qed.
+
+ Lemma partition_2 : compat_bool E.eq f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
+ Proof.
+ unfold partition, filter, Equal, In; simpl ;intros H a.
+ rewrite partition_in_2, filter_in; intuition.
+ rewrite H2; auto.
+ destruct (f a); auto.
+ red; intros; f_equal.
+ rewrite (H _ _ H0); auto.
+ Qed.
+
+ End Filter.
+
+ Lemma elements_1 : In x s -> InA E.eq x (elements s).
+ Proof. wrap elements elements_in. Qed.
+ Lemma elements_2 : InA E.eq x (elements s) -> In x s.
+ Proof. wrap elements elements_in. Qed.
+ Lemma elements_3 : sort E.lt (elements s).
+ Proof. exact (elements_sort (is_bst s)). Qed.
+ Lemma elements_3w : NoDupA E.eq (elements s).
+ Proof. exact (elements_nodup (is_bst s)). Qed.
+
+ Lemma min_elt_1 : min_elt s = Some x -> In x s.
+ Proof. exact (@min_elt_1 s x). Qed.
+ Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
+ Proof. exact (@min_elt_2 s x y (is_bst s)). Qed.
+ Lemma min_elt_3 : min_elt s = None -> Empty s.
+ Proof. exact (@min_elt_3 s). Qed.
+
+ Lemma max_elt_1 : max_elt s = Some x -> In x s.
+ Proof. exact (@max_elt_1 s x). Qed.
+ Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
+ Proof. exact (@max_elt_2 s x y (is_bst s)). Qed.
+ Lemma max_elt_3 : max_elt s = None -> Empty s.
+ Proof. exact (@max_elt_3 s). Qed.
+
+ Lemma choose_1 : choose s = Some x -> In x s.
+ Proof. exact (@choose_1 s x). Qed.
+ Lemma choose_2 : choose s = None -> Empty s.
+ Proof. exact (@choose_2 s). Qed.
+ Lemma choose_3 : choose s = Some x -> choose s' = Some y ->
+ Equal s s' -> E.eq x y.
+ Proof. exact (@choose_3 _ _ (is_bst s) (is_bst s') x y). Qed.
+
+ Lemma eq_refl : eq s s.
+ Proof. exact (eq_refl s). Qed.
+ Lemma eq_sym : eq s s' -> eq s' s.
+ Proof. exact (@eq_sym s s'). Qed.
+ Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''.
+ Proof. exact (@eq_trans s s' s''). Qed.
+
+ Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''.
+ Proof. exact (@lt_trans s s' s''). Qed.
+ Lemma lt_not_eq : lt s s' -> ~eq s s'.
+ Proof. exact (@lt_not_eq _ _ (is_bst s) (is_bst s')). Qed.
+
+ End Specs.
+End IntMake.
+
+(* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *)
+
+Module Make (X: OrderedType) <: S with Module E := X
+ :=IntMake(Z_as_Int)(X).
+
diff --git a/theories/FSets/FSetInterface.v b/theories/FSets/FSetInterface.v
index 64ad234b..1255fcc8 100644
--- a/theories/FSets/FSetInterface.v
+++ b/theories/FSets/FSetInterface.v
@@ -6,40 +6,53 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetInterface.v 8820 2006-05-15 11:44:05Z letouzey $ *)
+(* $Id: FSetInterface.v 10616 2008-03-04 17:33:35Z letouzey $ *)
(** * Finite set library *)
-(** Set interfaces *)
-
-(* begin hide *)
-Require Export Bool.
-Require Export OrderedType.
+(** Set interfaces, inspired by the one of Ocaml. When compared with
+ Ocaml, the main differences are:
+ - the lack of [iter] function, useless since Coq is purely functional
+ - the use of [option] types instead of [Not_found] exceptions
+ - the use of [nat] instead of [int] for the [cardinal] function
+
+ Several variants of the set interfaces are available:
+ - [WSfun] : functorial signature for weak sets, non-dependent style
+ - [WS] : self-contained version of [WSfun]
+ - [Sfun] : functorial signature for ordered sets, non-dependent style
+ - [S] : self-contained version of [Sfun]
+ - [Sdep] : analog of [S] written using dependent style
+
+ If unsure, [S] is probably what you're looking for: other signatures
+ are subsets of it, apart from [Sdep] which is isomorphic to [S] (see
+ [FSetBridge]).
+*)
+
+Require Export Bool OrderedType DecidableType.
Set Implicit Arguments.
Unset Strict Implicit.
-(* end hide *)
-(** Compatibility of a boolean function with respect to an equality. *)
-Definition compat_bool (A:Set)(eqA: A->A->Prop)(f: A-> bool) :=
- forall x y : A, eqA x y -> f x = f y.
+(** * Non-dependent signatures
-(** Compatibility of a predicate with respect to an equality. *)
-Definition compat_P (A:Set)(eqA: A->A->Prop)(P : A -> Prop) :=
- forall x y : A, eqA x y -> P x -> P y.
+ The following signatures presents sets as purely informative
+ programs together with axioms *)
-Hint Unfold compat_bool compat_P.
-(** * Non-dependent signature
- Signature [S] presents sets as purely informative programs
- together with axioms *)
+(** ** Functorial signature for weak sets
-Module Type S.
+ Weak sets are sets without ordering on base elements, only
+ a decidable equality. *)
+
+Module Type WSfun (E : EqualityType).
+
+ (** The module E of base objects is meant to be a [DecidableType]
+ (and used to be so). But requiring only an [EqualityType] here
+ allows subtyping between weak and ordered sets *)
- Declare Module E : OrderedType.
Definition elt := E.t.
- Parameter t : Set. (** the abstract type of sets *)
+ Parameter t : Type. (** the abstract type of sets *)
(** Logical predicates *)
Parameter In : elt -> t -> Prop.
@@ -82,10 +95,12 @@ Module Type S.
(** Set difference. *)
Definition eq : t -> t -> Prop := Equal.
- Parameter lt : t -> t -> Prop.
- Parameter compare : forall s s' : t, Compare lt eq s s'.
- (** Total ordering between sets. Can be used as the ordering function
- for doing sets of sets. *)
+ (** In order to have the subtyping WS < S between weak and ordered
+ sets, we do not require here an [eq_dec]. This interface is hence
+ not compatible with [DecidableType], but only with [EqualityType],
+ so in general it may not possible to form weak sets of weak sets.
+ Some particular implementations may allow this nonetheless, in
+ particular [FSetWeakList.Make]. *)
Parameter equal : t -> t -> bool.
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
@@ -95,15 +110,11 @@ Module Type S.
(** [subset s1 s2] tests whether the set [s1] is a subset of
the set [s2]. *)
- (** Coq comment: [iter] is useless in a purely functional world *)
- (** iter: (elt -> unit) -> set -> unit. i*)
- (** [iter f s] applies [f] in turn to all elements of [s].
- The order in which the elements of [s] are presented to [f]
- is unspecified. *)
-
- Parameter fold : forall A : Set, (elt -> A -> A) -> t -> A -> A.
+ Parameter fold : forall A : Type, (elt -> A -> A) -> t -> A -> A.
(** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
- where [x1 ... xN] are the elements of [s], in increasing order. *)
+ where [x1 ... xN] are the elements of [s].
+ The order in which elements of [s] are presented to [f] is
+ unspecified. *)
Parameter for_all : (elt -> bool) -> t -> bool.
(** [for_all p s] checks if all elements of the set
@@ -125,59 +136,39 @@ Module Type S.
Parameter cardinal : t -> nat.
(** Return the number of elements of a set. *)
- (** Coq comment: nat instead of int ... *)
Parameter elements : t -> list elt.
- (** Return the list of all elements of the given set.
- The returned list is sorted in increasing order with respect
- to the ordering [Ord.compare], where [Ord] is the argument
- given to {!Set.Make}. *)
-
- Parameter min_elt : t -> option elt.
- (** Return the smallest element of the given set
- (with respect to the [Ord.compare] ordering), or raise
- [Not_found] if the set is empty. *)
- (** Coq comment: [Not_found] is represented by the option type *)
-
- Parameter max_elt : t -> option elt.
- (** Same as {!Set.S.min_elt}, but returns the largest element of the
- given set. *)
- (** Coq comment: [Not_found] is represented by the option type *)
+ (** Return the list of all elements of the given set, in any order. *)
Parameter choose : t -> option elt.
- (** Return one element of the given set, or raise [Not_found] if
- the set is empty. Which element is chosen is unspecified,
- but equal elements will be chosen for equal sets. *)
- (** Coq comment: [Not_found] is represented by the option type *)
+ (** Return one element of the given set, or [None] if
+ the set is empty. Which element is chosen is unspecified.
+ Equal sets could return different elements. *)
Section Spec.
- Variable s s' s'' : t.
+ Variable s s' s'': t.
Variable x y : elt.
(** Specification of [In] *)
Parameter In_1 : E.eq x y -> In x s -> In y s.
-
+
(** Specification of [eq] *)
Parameter eq_refl : eq s s.
Parameter eq_sym : eq s s' -> eq s' s.
Parameter eq_trans : eq s s' -> eq s' s'' -> eq s s''.
-
- (** Specification of [lt] *)
- Parameter lt_trans : lt s s' -> lt s' s'' -> lt s s''.
- Parameter lt_not_eq : lt s s' -> ~ eq s s'.
(** Specification of [mem] *)
Parameter mem_1 : In x s -> mem x s = true.
Parameter mem_2 : mem x s = true -> In x s.
(** Specification of [equal] *)
- Parameter equal_1 : s[=]s' -> equal s s' = true.
- Parameter equal_2 : equal s s' = true ->s[=]s'.
+ Parameter equal_1 : Equal s s' -> equal s s' = true.
+ Parameter equal_2 : equal s s' = true -> Equal s s'.
(** Specification of [subset] *)
- Parameter subset_1 : s[<=]s' -> subset s s' = true.
- Parameter subset_2 : subset s s' = true -> s[<=]s'.
+ Parameter subset_1 : Subset s s' -> subset s s' = true.
+ Parameter subset_2 : subset s s' = true -> Subset s s'.
(** Specification of [empty] *)
Parameter empty_1 : Empty empty.
@@ -216,7 +207,7 @@ Module Type S.
Parameter diff_3 : In x s -> ~ In x s' -> In x (diff s s').
(** Specification of [fold] *)
- Parameter fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
+ Parameter fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
(** Specification of [cardinal] *)
@@ -249,18 +240,93 @@ Module Type S.
exists_ f s = true -> Exists (fun x => f x = true) s.
(** Specification of [partition] *)
- Parameter partition_1 : compat_bool E.eq f ->
- fst (partition f s) [=] filter f s.
- Parameter partition_2 : compat_bool E.eq f ->
- snd (partition f s) [=] filter (fun x => negb (f x)) s.
+ Parameter partition_1 :
+ compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
+ Parameter partition_2 :
+ compat_bool E.eq f ->
+ Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
End Filter.
(** Specification of [elements] *)
Parameter elements_1 : In x s -> InA E.eq x (elements s).
Parameter elements_2 : InA E.eq x (elements s) -> In x s.
+ (** When compared with ordered sets, here comes the only
+ property that is really weaker: *)
+ Parameter elements_3w : NoDupA E.eq (elements s).
+
+ (** Specification of [choose] *)
+ Parameter choose_1 : choose s = Some x -> In x s.
+ Parameter choose_2 : choose s = None -> Empty s.
+
+ End Spec.
+
+ Hint Resolve mem_1 equal_1 subset_1 empty_1
+ is_empty_1 choose_1 choose_2 add_1 add_2 remove_1
+ remove_2 singleton_2 union_1 union_2 union_3
+ inter_3 diff_3 fold_1 filter_3 for_all_1 exists_1
+ partition_1 partition_2 elements_1 elements_3w
+ : set.
+ Hint Immediate In_1 mem_2 equal_2 subset_2 is_empty_2 add_3
+ remove_3 singleton_1 inter_1 inter_2 diff_1 diff_2
+ filter_1 filter_2 for_all_2 exists_2 elements_2
+ : set.
+
+End WSfun.
+
+
+
+(** ** Static signature for weak sets
+
+ Similar to the functorial signature [SW], except that the
+ module [E] of base elements is incorporated in the signature. *)
+
+Module Type WS.
+ Declare Module E : EqualityType.
+ Include Type WSfun E.
+End WS.
+
+
+
+(** ** Functorial signature for sets on ordered elements
+
+ Based on [WSfun], plus ordering on sets and [min_elt] and [max_elt]
+ and some stronger specifications for other functions. *)
+
+Module Type Sfun (E : OrderedType).
+ Include Type WSfun E.
+
+ Parameter lt : t -> t -> Prop.
+ Parameter compare : forall s s' : t, Compare lt eq s s'.
+ (** Total ordering between sets. Can be used as the ordering function
+ for doing sets of sets. *)
+
+ Parameter min_elt : t -> option elt.
+ (** Return the smallest element of the given set
+ (with respect to the [E.compare] ordering),
+ or [None] if the set is empty. *)
+
+ Parameter max_elt : t -> option elt.
+ (** Same as [min_elt], but returns the largest element of the
+ given set. *)
+
+ Section Spec.
+
+ Variable s s' s'' : t.
+ Variable x y : elt.
+
+ (** Specification of [lt] *)
+ Parameter lt_trans : lt s s' -> lt s' s'' -> lt s s''.
+ Parameter lt_not_eq : lt s s' -> ~ eq s s'.
+
+ (** Additional specification of [elements] *)
Parameter elements_3 : sort E.lt (elements s).
+ (** Remark: since [fold] is specified via [elements], this stronger
+ specification of [elements] has an indirect impact on [fold],
+ which can now be proved to receive elements in increasing order.
+ *)
+
(** Specification of [min_elt] *)
Parameter min_elt_1 : min_elt s = Some x -> In x s.
Parameter min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x.
@@ -271,37 +337,56 @@ Module Type S.
Parameter max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y.
Parameter max_elt_3 : max_elt s = None -> Empty s.
- (** Specification of [choose] *)
- Parameter choose_1 : choose s = Some x -> In x s.
- Parameter choose_2 : choose s = None -> Empty s.
-(* Parameter choose_equal:
- (equal s s')=true -> E.eq (choose s) (choose s'). *)
+ (** Additional specification of [choose] *)
+ Parameter choose_3 : choose s = Some x -> choose s' = Some y ->
+ Equal s s' -> E.eq x y.
End Spec.
- (* begin hide *)
- Hint Immediate In_1.
-
- Hint Resolve mem_1 mem_2 equal_1 equal_2 subset_1 subset_2 empty_1
- is_empty_1 is_empty_2 choose_1 choose_2 add_1 add_2 add_3 remove_1
- remove_2 remove_3 singleton_1 singleton_2 union_1 union_2 union_3 inter_1
- inter_2 inter_3 diff_1 diff_2 diff_3 filter_1 filter_2 filter_3 for_all_1
- for_all_2 exists_1 exists_2 partition_1 partition_2 elements_1 elements_2
- elements_3 min_elt_1 min_elt_2 min_elt_3 max_elt_1 max_elt_2 max_elt_3.
- (* end hide *)
+ Hint Resolve elements_3 : set.
+ Hint Immediate
+ min_elt_1 min_elt_2 min_elt_3 max_elt_1 max_elt_2 max_elt_3 : set.
+
+End Sfun.
+
+(** ** Static signature for sets on ordered elements
+
+ Similar to the functorial signature [Sfun], except that the
+ module [E] of base elements is incorporated in the signature. *)
+
+Module Type S.
+ Declare Module E : OrderedType.
+ Include Type Sfun E.
End S.
+
+(** ** Some subtyping tests
+<<
+WSfun ---> WS
+ | |
+ | |
+ V V
+Sfun ---> S
+
+
+Module S_WS (M : S) <: SW := M.
+Module Sfun_WSfun (E:OrderedType)(M : Sfun E) <: WSfun E := M.
+Module S_Sfun (E:OrderedType)(M : S with Module E:=E) <: Sfun E := M.
+Module WS_WSfun (E:EqualityType)(M : WS with Module E:=E) <: WSfun E := M.
+>>
+*)
+
(** * Dependent signature
- Signature [Sdep] presents sets using dependent types *)
+ Signature [Sdep] presents ordered sets using dependent types *)
Module Type Sdep.
Declare Module E : OrderedType.
Definition elt := E.t.
- Parameter t : Set.
+ Parameter t : Type.
Parameter In : elt -> t -> Prop.
Definition Equal s s' := forall a : elt, In a s <-> In a s'.
@@ -397,7 +482,7 @@ Module Type Sdep.
Parameter
fold :
- forall (A : Set) (f : elt -> A -> A) (s : t) (i : A),
+ forall (A : Type) (f : elt -> A -> A) (s : t) (i : A),
{r : A | let (l,_) := elements s in
r = fold_left (fun a e => f e a) l i}.
@@ -418,4 +503,14 @@ Module Type Sdep.
Parameter choose : forall s : t, {x : elt | In x s} + {Empty s}.
+ (** The [choose_3] specification of [S] cannot be packed
+ in the dependent version of [choose], so we leave it separate. *)
+ Parameter choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
+ | inleft (exist x _), inleft (exist x' _) => E.eq x x'
+ | inright _, inright _ => True
+ | _, _ => False
+ end.
+
End Sdep.
+
diff --git a/theories/FSets/FSetList.v b/theories/FSets/FSetList.v
index f6205542..a205d5b0 100644
--- a/theories/FSets/FSetList.v
+++ b/theories/FSets/FSetList.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetList.v 8834 2006-05-20 00:41:35Z letouzey $ *)
+(* $Id: FSetList.v 10616 2008-03-04 17:33:35Z letouzey $ *)
(** * Finite sets library *)
@@ -25,7 +25,6 @@ Unset Strict Implicit.
Module Raw (X: OrderedType).
- Module E := X.
Module MX := OrderedTypeFacts X.
Import MX.
@@ -145,7 +144,7 @@ Module Raw (X: OrderedType).
| _, _ => false
end.
- Fixpoint fold (B : Set) (f : elt -> B -> B) (s : t) {struct s} :
+ Fixpoint fold (B : Type) (f : elt -> B -> B) (s : t) {struct s} :
B -> B := fun i => match s with
| nil => i
| x :: l => fold f l (f x i)
@@ -649,6 +648,11 @@ Module Raw (X: OrderedType).
unfold elements; auto.
Qed.
+ Lemma elements_3w : forall (s : t) (Hs : Sort s), NoDupA X.eq (elements s).
+ Proof.
+ unfold elements; auto.
+ Qed.
+
Lemma min_elt_1 : forall (s : t) (x : elt), min_elt s = Some x -> In x s.
Proof.
intro s; case s; simpl; intros; inversion H; auto.
@@ -718,8 +722,21 @@ Module Raw (X: OrderedType).
Definition choose_2 : forall s : t, choose s = None -> Empty s := min_elt_3.
+ Lemma choose_3: forall s s', Sort s -> Sort s' -> forall x x',
+ choose s = Some x -> choose s' = Some x' -> Equal s s' -> X.eq x x'.
+ Proof.
+ unfold choose, Equal; intros s s' Hs Hs' x x' Hx Hx' H.
+ assert (~X.lt x x').
+ apply min_elt_2 with s'; auto.
+ rewrite <-H; auto using min_elt_1.
+ assert (~X.lt x' x).
+ apply min_elt_2 with s; auto.
+ rewrite H; auto using min_elt_1.
+ destruct (X.compare x x'); intuition.
+ Qed.
+
Lemma fold_1 :
- forall (s : t) (Hs : Sort s) (A : Set) (i : A) (f : elt -> A -> A),
+ forall (s : t) (Hs : Sort s) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
induction s.
@@ -1037,7 +1054,7 @@ Module Make (X: OrderedType) <: S with Module E := X.
Module Raw := Raw X.
Module E := X.
- Record slist : Set := {this :> Raw.t; sorted : sort E.lt this}.
+ Record slist := {this :> Raw.t; sorted : sort E.lt this}.
Definition t := slist.
Definition elt := E.t.
@@ -1066,7 +1083,7 @@ Module Make (X: OrderedType) <: S with Module E := X.
Definition min_elt (s : t) : option elt := Raw.min_elt s.
Definition max_elt (s : t) : option elt := Raw.max_elt s.
Definition choose (s : t) : option elt := Raw.choose s.
- Definition fold (B : Set) (f : elt -> B -> B) (s : t) : B -> B := Raw.fold (B:=B) f s.
+ Definition fold (B : Type) (f : elt -> B -> B) (s : t) : B -> B := Raw.fold (B:=B) f s.
Definition cardinal (s : t) : nat := Raw.cardinal s.
Definition filter (f : elt -> bool) (s : t) : t :=
Build_slist (Raw.filter_sort (sorted s) f).
@@ -1149,7 +1166,7 @@ Module Make (X: OrderedType) <: S with Module E := X.
Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
Proof. exact (fun H => Raw.diff_3 s.(sorted) s'.(sorted) H). Qed.
- Lemma fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
+ Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof. exact (Raw.fold_1 s.(sorted)). Qed.
@@ -1202,6 +1219,8 @@ Module Make (X: OrderedType) <: S with Module E := X.
Proof. exact (fun H => Raw.elements_2 H). Qed.
Lemma elements_3 : sort E.lt (elements s).
Proof. exact (Raw.elements_3 s.(sorted)). Qed.
+ Lemma elements_3w : NoDupA E.eq (elements s).
+ Proof. exact (Raw.elements_3w s.(sorted)). Qed.
Lemma min_elt_1 : min_elt s = Some x -> In x s.
Proof. exact (fun H => Raw.min_elt_1 H). Qed.
@@ -1221,6 +1240,9 @@ Module Make (X: OrderedType) <: S with Module E := X.
Proof. exact (fun H => Raw.choose_1 H). Qed.
Lemma choose_2 : choose s = None -> Empty s.
Proof. exact (fun H => Raw.choose_2 H). Qed.
+ Lemma choose_3 : choose s = Some x -> choose s' = Some y ->
+ Equal s s' -> E.eq x y.
+ Proof. exact (@Raw.choose_3 _ _ s.(sorted) s'.(sorted) x y). Qed.
Lemma eq_refl : eq s s.
Proof. exact (Raw.eq_refl s). Qed.
diff --git a/theories/FSets/FSetProperties.v b/theories/FSets/FSetProperties.v
index 6e93a546..7413b06b 100644
--- a/theories/FSets/FSetProperties.v
+++ b/theories/FSets/FSetProperties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetProperties.v 8853 2006-05-23 18:17:38Z herbelin $ *)
+(* $Id: FSetProperties.v 11064 2008-06-06 17:00:52Z letouzey $ *)
(** * Finite sets library *)
@@ -16,414 +16,259 @@
[In x s] instead of [mem x s=true],
[Equal s s'] instead of [equal s s'=true], etc. *)
-Require Export FSetInterface.
-Require Import FSetFacts.
+Require Export FSetInterface.
+Require Import DecidableTypeEx FSetFacts FSetDecide.
Set Implicit Arguments.
Unset Strict Implicit.
-Hint Unfold transpose compat_op compat_nat.
+Hint Unfold transpose compat_op.
Hint Extern 1 (Setoid_Theory _ _) => constructor; congruence.
-Module Properties (M: S).
- Module ME:=OrderedTypeFacts(M.E).
- Import ME. (* for ME.eq_dec *)
- Import M.E.
- Import M.
- Import Logic. (* to unmask [eq] *)
- Import Peano. (* to unmask [lt] *)
-
- (** Results about lists without duplicates *)
+(** First, a functor for Weak Sets. Since the signature [WS] includes
+ an EqualityType and not a stronger DecidableType, this functor
+ should take two arguments in order to compensate this. *)
- Module FM := Facts M.
- Import FM.
-
- Definition Add (x : elt) (s s' : t) :=
- forall y : elt, In y s' <-> E.eq x y \/ In y s.
+Module WProperties (Import E : DecidableType)(M : WSfun E).
+ Module Import Dec := WDecide E M.
+ Module Import FM := Dec.F (* FSetFacts.WFacts E M *).
+ Import M.
Lemma In_dec : forall x s, {In x s} + {~ In x s}.
Proof.
intros; generalize (mem_iff s x); case (mem x s); intuition.
Qed.
- Section BasicProperties.
-
- (** properties of [Equal] *)
+ Definition Add x s s' := forall y, In y s' <-> E.eq x y \/ In y s.
- Lemma equal_refl : forall s, s[=]s.
+ Lemma Add_Equal : forall x s s', Add x s s' <-> s' [=] add x s.
Proof.
- unfold Equal; intuition.
- Qed.
-
- Lemma equal_sym : forall s s', s[=]s' -> s'[=]s.
- Proof.
- unfold Equal; intros.
- rewrite H; intuition.
+ unfold Add.
+ split; intros.
+ red; intros.
+ rewrite H; clear H.
+ fsetdec.
+ fsetdec.
Qed.
+
+ Ltac expAdd := repeat rewrite Add_Equal.
- Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3.
- Proof.
- unfold Equal; intros.
- rewrite H; exact (H0 a).
- Qed.
+ Section BasicProperties.
Variable s s' s'' s1 s2 s3 : t.
Variable x x' : elt.
- (** properties of [Subset] *)
-
- Lemma subset_refl : s[<=]s.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Lemma equal_refl : s[=]s.
+ Proof. fsetdec. Qed.
- Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
- Proof.
- unfold Subset, Equal; intuition.
- Qed.
+ Lemma equal_sym : s[=]s' -> s'[=]s.
+ Proof. fsetdec. Qed.
+
+ Lemma equal_trans : s1[=]s2 -> s2[=]s3 -> s1[=]s3.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_refl : s[<=]s.
+ Proof. fsetdec. Qed.
Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Proof. fsetdec. Qed.
+
+ Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
+ Proof. fsetdec. Qed.
Lemma subset_equal : s[=]s' -> s[<=]s'.
- Proof.
- unfold Subset, Equal; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma subset_empty : empty[<=]s.
- Proof.
- unfold Subset; intros a; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
+ Proof. fsetdec. Qed.
+
Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- rewrite <- H2; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
- Proof.
- unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition.
- Qed.
-
- (** properties of [empty] *)
+ Proof. intuition fsetdec. Qed.
Lemma empty_is_empty_1 : Empty s -> s[=]empty.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_is_empty_2 : s[=]empty -> Empty s.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
-
- (** properties of [add] *)
+ Proof. fsetdec. Qed.
Lemma add_equal : In x s -> add x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma add_add : add x (add x' s) [=] add x' (add x s).
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- (** properties of [remove] *)
+ Proof. fsetdec. Qed.
Lemma remove_equal : ~ In x s -> remove x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite H1 in H; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- (** properties of [add] and [remove] *)
+ Proof. fsetdec. Qed.
Lemma add_remove : In x s -> add x (remove x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite <- H1; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite H1 in H; auto.
- Qed.
-
- (** properties of [singleton] *)
+ Proof. fsetdec. Qed.
Lemma singleton_equal_add : singleton x [=] add x empty.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- (** properties of [union] *)
+ Proof. fsetdec. Qed.
Lemma union_sym : union s s' [=] union s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma add_union_singleton : add x s [=] union (singleton x) s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_add : union (add x s) s' [=] add x (union s s').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_1 :
+ union (remove x s) (add x s') [=] union (add x s) (remove x s').
+ Proof. fsetdec. Qed.
+
+ Lemma union_remove_add_2 : In x s ->
+ union (remove x s) (add x s') [=] union s s'.
+ Proof. fsetdec. Qed.
Lemma union_subset_1 : s [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_2 : s' [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_union_1 : Empty s -> union s s' [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_union_2 : Empty s -> union s' s [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
- Proof.
- intros; set_iff; intuition.
- Qed.
-
- (** properties of [inter] *)
+ Proof. fsetdec. Qed.
Lemma inter_sym : inter s s' [=] inter s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- destruct H; rewrite H0; auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_inter_1 : Empty s -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_subset_1 : inter s s' [<=] s.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_subset_2 : inter s s' [<=] s'.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma inter_subset_3 :
s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
- Proof.
- unfold Subset; intros H H' a; set_iff; intuition.
- Qed.
-
- (** properties of [diff] *)
+ Proof. fsetdec. Qed.
Lemma empty_diff_1 : Empty s -> Empty (diff s s').
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
+ Proof. fsetdec. Qed.
Lemma diff_subset : diff s s' [<=] s.
- Proof.
- unfold Subset; intros a; set_iff; tauto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma remove_diff_singleton :
remove x s [=] diff s (singleton x).
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
+ Proof. fsetdec. Qed.
Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
- Proof.
- unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
+ Proof. fsetdec. Qed.
Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- elim (In_dec a s'); auto.
- Qed.
-
- (** properties of [Add] *)
+ Proof. fsetdec. Qed.
Lemma Add_add : Add x s (add x s).
- Proof.
- unfold Add; intros; set_iff; intuition.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma Add_remove : In x s -> Add x (remove x s) s.
- Proof.
- unfold Add; intros; set_iff; intuition.
- elim (eq_dec x y); auto.
- rewrite <- H1; auto.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H; tauto.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma inter_Add :
In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H0; intuition.
- rewrite <- H2; auto.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma union_Equal :
In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- rewrite <- H1; auto.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
Lemma inter_Add_2 :
~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- destruct H; rewrite H1; auto.
- Qed.
+ Proof. expAdd; fsetdec. Qed.
End BasicProperties.
- Hint Immediate equal_sym: set.
- Hint Resolve equal_refl equal_trans : set.
-
- Hint Immediate add_remove remove_add union_sym inter_sym: set.
- Hint Resolve subset_refl subset_equal subset_antisym
+ Hint Immediate equal_sym add_remove remove_add union_sym inter_sym: set.
+ Hint Resolve equal_refl equal_trans subset_refl subset_equal subset_antisym
subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
remove_equal singleton_equal_add union_subset_equal union_equal_1
@@ -436,6 +281,31 @@ Module Properties (M: S).
remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
Equal_remove add_add : set.
+ (** * Properties of elements *)
+
+ Lemma elements_Empty : forall s, Empty s <-> elements s = nil.
+ Proof.
+ intros.
+ unfold Empty.
+ split; intros.
+ assert (forall a, ~ List.In a (elements s)).
+ red; intros.
+ apply (H a).
+ rewrite elements_iff.
+ rewrite InA_alt; exists a; auto.
+ destruct (elements s); auto.
+ elim (H0 e); simpl; auto.
+ red; intros.
+ rewrite elements_iff in H0.
+ rewrite InA_alt in H0; destruct H0.
+ rewrite H in H0; destruct H0 as (_,H0); inversion H0.
+ Qed.
+
+ Lemma elements_empty : elements empty = nil.
+ Proof.
+ rewrite <-elements_Empty; auto with set.
+ Qed.
+
(** * Alternative (weaker) specifications for [fold] *)
Section Old_Spec_Now_Properties.
@@ -447,14 +317,14 @@ Module Properties (M: S).
*)
Lemma fold_0 :
- forall s (A : Set) (i : A) (f : elt -> A -> A),
+ forall s (A : Type) (i : A) (f : elt -> A -> A),
exists l : list elt,
NoDup l /\
(forall x : elt, In x s <-> InA E.eq x l) /\
fold f s i = fold_right f i l.
Proof.
intros; exists (rev (elements s)); split.
- apply NoDupA_rev; auto.
+ apply NoDupA_rev; auto with set.
exact E.eq_trans.
split; intros.
rewrite elements_iff; do 2 rewrite InA_alt.
@@ -468,7 +338,7 @@ Module Properties (M: S).
[fold_2]. *)
Lemma fold_1 :
- forall s (A : Set) (eqA : A -> A -> Prop)
+ forall s (A : Type) (eqA : A -> A -> Prop)
(st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
Empty s -> eqA (fold f s i) i.
Proof.
@@ -481,7 +351,7 @@ Module Properties (M: S).
Qed.
Lemma fold_2 :
- forall s s' x (A : Set) (eqA : A -> A -> Prop)
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
(st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
compat_op E.eq eqA f ->
transpose eqA f ->
@@ -492,9 +362,21 @@ Module Properties (M: S).
rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
eauto.
- exact eq_dec.
rewrite <- Hl1; auto.
- intros; rewrite <- Hl1; rewrite <- Hl'1; auto.
+ intros a; rewrite InA_cons; rewrite <- Hl1; rewrite <- Hl'1;
+ rewrite (H2 a); intuition.
+ Qed.
+
+ (** In fact, [fold] on empty sets is more than equivalent to
+ the initial element, it is Leibniz-equal to it. *)
+
+ Lemma fold_1b :
+ forall s (A : Type)(i : A) (f : elt -> A -> A),
+ Empty s -> (fold f s i) = i.
+ Proof.
+ intros.
+ rewrite M.fold_1.
+ rewrite elements_Empty in H; rewrite H; simpl; auto.
Qed.
(** Similar specifications for [cardinal]. *)
@@ -531,41 +413,46 @@ Module Properties (M: S).
(** * Induction principle over sets *)
+ Lemma cardinal_Empty : forall s, Empty s <-> cardinal s = 0.
+ Proof.
+ intros.
+ rewrite elements_Empty, M.cardinal_1.
+ destruct (elements s); intuition; discriminate.
+ Qed.
+
Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
- Proof.
- intros s; rewrite M.cardinal_1; intros H a; red.
- rewrite elements_iff.
- destruct (elements s); simpl in *; discriminate || inversion 1.
+ Proof.
+ intros; rewrite cardinal_Empty; auto.
Qed.
Hint Resolve cardinal_inv_1.
Lemma cardinal_inv_2 :
forall s n, cardinal s = S n -> { x : elt | In x s }.
Proof.
- intros; rewrite M.cardinal_1 in H.
- generalize (elements_2 (s:=s)).
- destruct (elements s); try discriminate.
- exists e; auto.
+ intros; rewrite M.cardinal_1 in H.
+ generalize (elements_2 (s:=s)).
+ destruct (elements s); try discriminate.
+ exists e; auto.
Qed.
- Lemma Equal_cardinal_aux :
- forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'.
+ Lemma cardinal_inv_2b :
+ forall s, cardinal s <> 0 -> { x : elt | In x s }.
Proof.
- simple induction n; intros.
- rewrite H; symmetry .
- apply cardinal_1.
- rewrite <- H0; auto.
- destruct (cardinal_inv_2 H0) as (x,H2).
- revert H0.
- rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
- rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set.
- rewrite H1 in H2; auto with set.
+ intro; generalize (@cardinal_inv_2 s); destruct cardinal;
+ [intuition|eauto].
Qed.
Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
Proof.
- intros; apply Equal_cardinal_aux with (cardinal s); auto.
- Qed.
+ symmetry.
+ remember (cardinal s) as n; symmetry in Heqn; revert s s' Heqn H.
+ induction n; intros.
+ apply cardinal_1; rewrite <- H; auto.
+ destruct (cardinal_inv_2 Heqn) as (x,H2).
+ revert Heqn.
+ rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
+ rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); eauto with set.
+ Qed.
Add Morphism cardinal : cardinal_m.
Proof.
@@ -574,40 +461,33 @@ Module Properties (M: S).
Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
- Lemma cardinal_induction :
- forall P : t -> Type,
- (forall s, Empty s -> P s) ->
- (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
- forall n s, cardinal s = n -> P s.
- Proof.
- simple induction n; intros; auto.
- destruct (cardinal_inv_2 H) as (x,H0).
- apply X0 with (remove x s) x; auto.
- apply X1; auto.
- rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto.
- Qed.
-
Lemma set_induction :
forall P : t -> Type,
(forall s : t, Empty s -> P s) ->
(forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') ->
forall s : t, P s.
Proof.
- intros; apply cardinal_induction with (cardinal s); auto.
- Qed.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ destruct (cardinal_inv_2 (sym_eq Heqn)) as (x,H0).
+ apply X0 with (remove x s) x; auto with set.
+ apply IHn; auto.
+ assert (S n = S (cardinal (remove x s))).
+ rewrite Heqn; apply cardinal_2 with x; auto with set.
+ inversion H; auto.
+ Qed.
(** Other properties of [fold]. *)
Section Fold.
- Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
+ Variables (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
Section Fold_1.
Variable i i':A.
- Lemma fold_empty : eqA (fold f empty i) i.
+ Lemma fold_empty : (fold f empty i) = i.
Proof.
- apply fold_1; auto.
+ apply fold_1b; auto with set.
Qed.
Lemma fold_equal :
@@ -642,7 +522,7 @@ Module Properties (M: S).
Proof.
intros.
sym_st.
- apply fold_2 with (eqA:=eqA); auto.
+ apply fold_2 with (eqA:=eqA); auto with set.
Qed.
Lemma remove_fold_2: forall s x, ~In x s ->
@@ -742,7 +622,8 @@ Module Properties (M: S).
apply fold_1; auto with set.
Qed.
- Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') ->
+ Lemma fold_union: forall s s',
+ (forall x, ~(In x s/\In x s')) ->
eqA (fold f (union s s') i) (fold f s (fold f s' i)).
Proof.
intros.
@@ -760,8 +641,8 @@ Module Properties (M: S).
forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
Proof.
assert (st := gen_st nat).
- assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto).
- assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto).
+ assert (fe : compat_op E.eq (@Logic.eq _) (fun _ => S)) by (unfold compat_op; auto).
+ assert (fp : transpose (@Logic.eq _) (fun _:elt => S)) by (unfold transpose; auto).
intros s p; pattern s; apply set_induction; clear s; intros.
rewrite (fold_1 st p (fun _ => S) H).
rewrite (fold_1 st 0 (fun _ => S) H); trivial.
@@ -774,11 +655,11 @@ Module Properties (M: S).
simpl; auto.
Qed.
- (** properties of [cardinal] *)
+ (** more properties of [cardinal] *)
Lemma empty_cardinal : cardinal empty = 0.
Proof.
- rewrite cardinal_fold; apply fold_1; auto.
+ rewrite cardinal_fold; apply fold_1; auto with set.
Qed.
Hint Immediate empty_cardinal cardinal_1 : set.
@@ -798,11 +679,11 @@ Module Properties (M: S).
Proof.
intros; do 3 rewrite cardinal_fold.
rewrite <- fold_plus.
- apply fold_diff_inter with (eqA:=@eq nat); auto.
+ apply fold_diff_inter with (eqA:=@Logic.eq nat); auto.
Qed.
Lemma union_cardinal:
- forall s s', (forall x, ~In x s\/~In x s') ->
+ forall s s', (forall x, ~(In x s/\In x s')) ->
cardinal (union s s')=cardinal s+cardinal s'.
Proof.
intros; do 3 rewrite cardinal_fold.
@@ -841,7 +722,7 @@ Module Properties (M: S).
intros.
do 4 rewrite cardinal_fold.
do 2 rewrite <- fold_plus.
- apply fold_union_inter with (eqA:=@eq nat); auto.
+ apply fold_union_inter with (eqA:=@Logic.eq nat); auto.
Qed.
Lemma union_cardinal_inter :
@@ -872,7 +753,7 @@ Module Properties (M: S).
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ => S) x);
- apply fold_add with (eqA:=@eq nat); auto.
+ apply fold_add with (eqA:=@Logic.eq nat); auto.
Qed.
Lemma remove_cardinal_1 :
@@ -881,7 +762,7 @@ Module Properties (M: S).
intros.
do 2 rewrite cardinal_fold.
change S with ((fun _ =>S) x).
- apply remove_fold_1 with (eqA:=@eq nat); auto.
+ apply remove_fold_1 with (eqA:=@Logic.eq nat); auto.
Qed.
Lemma remove_cardinal_2 :
@@ -892,4 +773,295 @@ Module Properties (M: S).
Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
+End WProperties.
+
+
+(** A clone of [WProperties] working on full sets. *)
+
+Module Properties (M:S).
+ Module D := OT_as_DT M.E.
+ Include WProperties D M.
End Properties.
+
+
+(** Now comes some properties specific to the element ordering,
+ invalid for Weak Sets. *)
+
+Module OrdProperties (M:S).
+ Module ME:=OrderedTypeFacts(M.E).
+ Module Import P := Properties M.
+ Import FM.
+ Import M.E.
+ Import M.
+
+ (** First, a specialized version of SortA_equivlistA_eqlistA: *)
+ Lemma sort_equivlistA_eqlistA : forall l l' : list elt,
+ sort E.lt l -> sort E.lt l' -> equivlistA E.eq l l' -> eqlistA E.eq l l'.
+ Proof.
+ apply SortA_equivlistA_eqlistA; eauto.
+ Qed.
+
+ Definition gtb x y := match E.compare x y with GT _ => true | _ => false end.
+ Definition leb x := fun y => negb (gtb x y).
+
+ Definition elements_lt x s := List.filter (gtb x) (elements s).
+ Definition elements_ge x s := List.filter (leb x) (elements s).
+
+ Lemma gtb_1 : forall x y, gtb x y = true <-> E.lt y x.
+ Proof.
+ intros; unfold gtb; destruct (E.compare x y); intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma leb_1 : forall x y, leb x y = true <-> ~E.lt y x.
+ Proof.
+ intros; unfold leb, gtb; destruct (E.compare x y); intuition; try discriminate; ME.order.
+ Qed.
+
+ Lemma gtb_compat : forall x, compat_bool E.eq (gtb x).
+ Proof.
+ red; intros x a b H.
+ generalize (gtb_1 x a)(gtb_1 x b); destruct (gtb x a); destruct (gtb x b); auto.
+ intros.
+ symmetry; rewrite H1.
+ apply ME.eq_lt with a; auto.
+ rewrite <- H0; auto.
+ intros.
+ rewrite H0.
+ apply ME.eq_lt with b; auto.
+ rewrite <- H1; auto.
+ Qed.
+
+ Lemma leb_compat : forall x, compat_bool E.eq (leb x).
+ Proof.
+ red; intros x a b H; unfold leb.
+ f_equal; apply gtb_compat; auto.
+ Qed.
+ Hint Resolve gtb_compat leb_compat.
+
+ Lemma elements_split : forall x s,
+ elements s = elements_lt x s ++ elements_ge x s.
+ Proof.
+ unfold elements_lt, elements_ge, leb; intros.
+ eapply (@filter_split _ E.eq); eauto with set. ME.order. ME.order. ME.order.
+ intros.
+ rewrite gtb_1 in H.
+ assert (~E.lt y x).
+ unfold gtb in *; destruct (E.compare x y); intuition; try discriminate; ME.order.
+ ME.order.
+ Qed.
+
+ Lemma elements_Add : forall s s' x, ~In x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements_lt x s ++ x :: elements_ge x s).
+ Proof.
+ intros; unfold elements_ge, elements_lt.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto.
+ apply (@filter_sort _ E.eq); auto with set; eauto with set.
+ constructor; auto.
+ apply (@filter_sort _ E.eq); auto with set; eauto with set.
+ rewrite ME.Inf_alt by (apply (@filter_sort _ E.eq); eauto with set).
+ intros.
+ rewrite filter_InA in H1; auto; destruct H1.
+ rewrite leb_1 in H2.
+ rewrite <- elements_iff in H1.
+ assert (~E.eq x y).
+ contradict H; rewrite H; auto.
+ ME.order.
+ intros.
+ rewrite filter_InA in H1; auto; destruct H1.
+ rewrite gtb_1 in H3.
+ inversion_clear H2.
+ ME.order.
+ rewrite filter_InA in H4; auto; destruct H4.
+ rewrite leb_1 in H4.
+ ME.order.
+ red; intros a.
+ rewrite InA_app_iff; rewrite InA_cons.
+ do 2 (rewrite filter_InA; auto).
+ do 2 rewrite <- elements_iff.
+ rewrite leb_1; rewrite gtb_1.
+ rewrite (H0 a); intuition.
+ destruct (E.compare a x); intuition.
+ right; right; split; auto.
+ ME.order.
+ Qed.
+
+ Definition Above x s := forall y, In y s -> E.lt y x.
+ Definition Below x s := forall y, In y s -> E.lt x y.
+
+ Lemma elements_Add_Above : forall s s' x,
+ Above x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (elements s ++ x::nil).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ apply (@SortA_app _ E.eq); auto with set.
+ intros.
+ inversion_clear H2.
+ rewrite <- elements_iff in H1.
+ apply ME.lt_eq with x; auto.
+ inversion H3.
+ red; intros a.
+ rewrite InA_app_iff; rewrite InA_cons; rewrite InA_nil.
+ do 2 rewrite <- elements_iff; rewrite (H0 a); intuition.
+ Qed.
+
+ Lemma elements_Add_Below : forall s s' x,
+ Below x s -> Add x s s' ->
+ eqlistA E.eq (elements s') (x::elements s).
+ Proof.
+ intros.
+ apply sort_equivlistA_eqlistA; auto with set.
+ change (sort E.lt ((x::nil) ++ elements s)).
+ apply (@SortA_app _ E.eq); auto with set.
+ intros.
+ inversion_clear H1.
+ rewrite <- elements_iff in H2.
+ apply ME.eq_lt with x; auto.
+ inversion H3.
+ red; intros a.
+ rewrite InA_cons.
+ do 2 rewrite <- elements_iff; rewrite (H0 a); intuition.
+ Qed.
+
+ (** Two other induction principles on sets: we can be more restrictive
+ on the element we add at each step. *)
+
+ Lemma set_induction_max :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Above x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (max_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@max_elt_2 s e y H H0); ME.order.
+
+ assert (H0:=max_elt_3 H).
+ rewrite cardinal_Empty in H0; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ Lemma set_induction_min :
+ forall P : t -> Type,
+ (forall s : t, Empty s -> P s) ->
+ (forall s s', P s -> forall x, Below x s -> Add x s s' -> P s') ->
+ forall s : t, P s.
+ Proof.
+ intros; remember (cardinal s) as n; revert s Heqn; induction n; intros; auto.
+ case_eq (min_elt s); intros.
+ apply X0 with (remove e s) e; auto with set.
+ apply IHn.
+ assert (S n = S (cardinal (remove e s))).
+ rewrite Heqn; apply cardinal_2 with e; auto with set.
+ inversion H0; auto.
+ red; intros.
+ rewrite remove_iff in H0; destruct H0.
+ generalize (@min_elt_2 s e y H H0); ME.order.
+
+ assert (H0:=min_elt_3 H).
+ rewrite cardinal_Empty in H0; auto; rewrite H0 in Heqn; inversion Heqn.
+ Qed.
+
+ (** More properties of [fold] : behavior with respect to Above/Below *)
+
+ Lemma fold_3 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
+ compat_op E.eq eqA f ->
+ Above x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
+ Proof.
+ intros.
+ do 2 rewrite M.fold_1.
+ do 2 rewrite <- fold_left_rev_right.
+ change (f x (fold_right f i (rev (elements s)))) with
+ (fold_right f i (rev (x::nil)++rev (elements s))).
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ rewrite <- distr_rev.
+ apply eqlistA_rev.
+ apply elements_Add_Above; auto.
+ Qed.
+
+ Lemma fold_4 :
+ forall s s' x (A : Type) (eqA : A -> A -> Prop)
+ (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
+ compat_op E.eq eqA f ->
+ Below x s -> Add x s s' -> eqA (fold f s' i) (fold f s (f x i)).
+ Proof.
+ intros.
+ do 2 rewrite M.fold_1.
+ set (g:=fun (a : A) (e : elt) => f e a).
+ change (eqA (fold_left g (elements s') i) (fold_left g (x::elements s) i)).
+ unfold g.
+ do 2 rewrite <- fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply elements_Add_Below; auto.
+ Qed.
+
+ (** The following results have already been proved earlier,
+ but we can now prove them with one hypothesis less:
+ no need for [(transpose eqA f)]. *)
+
+ Section FoldOpt.
+ Variables (A:Type)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
+ Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f).
+
+ Lemma fold_equal :
+ forall i s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
+ Proof.
+ intros; do 2 rewrite M.fold_1.
+ do 2 rewrite <- fold_left_rev_right.
+ apply (@fold_right_eqlistA E.t E.eq A eqA st); auto.
+ apply eqlistA_rev.
+ apply sort_equivlistA_eqlistA; auto with set.
+ red; intro a; do 2 rewrite <- elements_iff; auto.
+ Qed.
+
+ Lemma fold_init : forall i i' s, eqA i i' ->
+ eqA (fold f s i) (fold f s i').
+ Proof.
+ intros; do 2 rewrite M.fold_1.
+ do 2 rewrite <- fold_left_rev_right.
+ induction (rev (elements s)); simpl; auto.
+ Qed.
+
+ Lemma add_fold : forall i s x, In x s ->
+ eqA (fold f (add x s) i) (fold f s i).
+ Proof.
+ intros; apply fold_equal; auto with set.
+ Qed.
+
+ Lemma remove_fold_2: forall i s x, ~In x s ->
+ eqA (fold f (remove x s) i) (fold f s i).
+ Proof.
+ intros.
+ apply fold_equal; auto with set.
+ Qed.
+
+ End FoldOpt.
+
+ (** An alternative version of [choose_3] *)
+
+ Lemma choose_equal : forall s s', Equal s s' ->
+ match choose s, choose s' with
+ | Some x, Some x' => E.eq x x'
+ | None, None => True
+ | _, _ => False
+ end.
+ Proof.
+ intros s s' H;
+ generalize (@choose_1 s)(@choose_2 s)
+ (@choose_1 s')(@choose_2 s')(@choose_3 s s');
+ destruct (choose s); destruct (choose s'); simpl; intuition.
+ apply H5 with e; rewrite <-H; auto.
+ apply H5 with e; rewrite H; auto.
+ Qed.
+
+End OrdProperties.
diff --git a/theories/FSets/FSetToFiniteSet.v b/theories/FSets/FSetToFiniteSet.v
index 8cf85efe..ae51d905 100644
--- a/theories/FSets/FSetToFiniteSet.v
+++ b/theories/FSets/FSetToFiniteSet.v
@@ -11,16 +11,16 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: FSetToFiniteSet.v 8876 2006-05-30 13:43:15Z letouzey $ *)
+(* $Id: FSetToFiniteSet.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import Ensembles Finite_sets.
-Require Import FSetInterface FSetProperties OrderedTypeEx.
+Require Import FSetInterface FSetProperties OrderedTypeEx DecidableTypeEx.
-(** * Going from [FSets] with usual equality
- to the old [Ensembles] and [Finite_sets] theory. *)
+(** * Going from [FSets] with usual Leibniz equality
+ to the good old [Ensembles] and [Finite_sets] theory. *)
-Module S_to_Finite_set (U:UsualOrderedType)(M:S with Module E := U).
- Module MP:= Properties(M).
+Module WS_to_Finite_set (U:UsualDecidableType)(M: WSfun U).
+ Module MP:= WProperties U M.
Import M MP FM Ensembles Finite_sets.
Definition mkEns : M.t -> Ensemble M.elt :=
@@ -82,7 +82,7 @@ Module S_to_Finite_set (U:UsualOrderedType)(M:S with Module E := U).
Lemma add_Add : forall x s, !!(add x s) === Add _ (!!s) x.
Proof.
unfold Same_set, Included, mkEns, In.
- split; intro; set_iff; inversion 1; unfold E.eq; auto with sets.
+ split; intro; set_iff; inversion 1; auto with sets.
inversion H0.
constructor 2; constructor.
constructor 1; auto.
@@ -97,7 +97,7 @@ Module S_to_Finite_set (U:UsualOrderedType)(M:S with Module E := U).
inversion H0.
constructor 2; constructor.
constructor 1; auto.
- red in H; rewrite H; unfold E.eq in *.
+ red in H; rewrite H.
inversion H0; auto.
inversion H1; auto.
Qed.
@@ -105,10 +105,10 @@ Module S_to_Finite_set (U:UsualOrderedType)(M:S with Module E := U).
Lemma remove_Subtract : forall x s, !!(remove x s) === Subtract _ (!!s) x.
Proof.
unfold Same_set, Included, mkEns, In.
- split; intro; set_iff; inversion 1; unfold E.eq in *; auto with sets.
+ split; intro; set_iff; inversion 1; auto with sets.
split; auto.
- swap H1.
- inversion H2; auto.
+ contradict H1.
+ inversion H1; auto.
Qed.
Lemma mkEns_Finite : forall s, Finite _ (!!s).
@@ -136,4 +136,28 @@ Module S_to_Finite_set (U:UsualOrderedType)(M:S with Module E := U).
apply Add_Add; auto.
Qed.
+ (** we can even build a function from Finite Ensemble to FSet
+ ... at least in Prop. *)
+
+ Lemma Ens_to_FSet : forall e : Ensemble M.elt, Finite _ e ->
+ exists s:M.t, !!s === e.
+ Proof.
+ induction 1.
+ exists M.empty.
+ apply empty_Empty_Set.
+ destruct IHFinite as (s,Hs).
+ exists (M.add x s).
+ apply Extensionality_Ensembles in Hs.
+ rewrite <- Hs.
+ apply add_Add.
+ Qed.
+
+End WS_to_Finite_set.
+
+
+Module S_to_Finite_set (U:UsualOrderedType)(M: Sfun U).
+ Module D := OT_as_DT U.
+ Include WS_to_Finite_set D M.
End S_to_Finite_set.
+
+
diff --git a/theories/FSets/FSetWeak.v b/theories/FSets/FSetWeak.v
deleted file mode 100644
index c88a7869..00000000
--- a/theories/FSets/FSetWeak.v
+++ /dev/null
@@ -1,16 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeak.v 9278 2006-10-25 13:43:17Z letouzey $ *)
-
-Require Export DecidableType.
-Require Export DecidableTypeEx.
-Require Export FSetWeakInterface.
-Require Export FSetWeakFacts.
-Require Export FSetWeakProperties.
-Require Export FSetWeakList.
diff --git a/theories/FSets/FSetWeakFacts.v b/theories/FSets/FSetWeakFacts.v
deleted file mode 100644
index 61797a95..00000000
--- a/theories/FSets/FSetWeakFacts.v
+++ /dev/null
@@ -1,421 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeakFacts.v 8882 2006-05-31 21:55:30Z letouzey $ *)
-
-(** * Finite sets library *)
-
-(** This functor derives additional facts from [FSetInterface.S]. These
- facts are mainly the specifications of [FSetInterface.S] written using
- different styles: equivalence and boolean equalities.
- Moreover, we prove that [E.Eq] and [Equal] are setoid equalities.
-*)
-
-Require Export FSetWeakInterface.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Module Facts (M: S).
-Import M.E.
-Import M.
-Import Logic. (* to unmask [eq] *)
-
-(** * Specifications written using equivalences *)
-
-Section IffSpec.
-Variable s s' s'' : t.
-Variable x y z : elt.
-
-Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s).
-Proof.
-split; apply In_1; auto.
-Qed.
-
-Lemma mem_iff : In x s <-> mem x s = true.
-Proof.
-split; [apply mem_1|apply mem_2].
-Qed.
-
-Lemma not_mem_iff : ~In x s <-> mem x s = false.
-Proof.
-rewrite mem_iff; destruct (mem x s); intuition.
-Qed.
-
-Lemma equal_iff : s[=]s' <-> equal s s' = true.
-Proof.
-split; [apply equal_1|apply equal_2].
-Qed.
-
-Lemma subset_iff : s[<=]s' <-> subset s s' = true.
-Proof.
-split; [apply subset_1|apply subset_2].
-Qed.
-
-Lemma empty_iff : In x empty <-> False.
-Proof.
-intuition; apply (empty_1 H).
-Qed.
-
-Lemma is_empty_iff : Empty s <-> is_empty s = true.
-Proof.
-split; [apply is_empty_1|apply is_empty_2].
-Qed.
-
-Lemma singleton_iff : In y (singleton x) <-> E.eq x y.
-Proof.
-split; [apply singleton_1|apply singleton_2].
-Qed.
-
-Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s.
-Proof.
-split; [ | destruct 1; [apply add_1|apply add_2]]; auto.
-destruct (eq_dec x y) as [E|E]; auto.
-intro H; right; exact (add_3 E H).
-Qed.
-
-Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s).
-Proof.
-split; [apply add_3|apply add_2]; auto.
-Qed.
-
-Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y.
-Proof.
-split; [split; [apply remove_3 with x |] | destruct 1; apply remove_2]; auto.
-intro.
-apply (remove_1 H0 H).
-Qed.
-
-Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s).
-Proof.
-split; [apply remove_3|apply remove_2]; auto.
-Qed.
-
-Lemma union_iff : In x (union s s') <-> In x s \/ In x s'.
-Proof.
-split; [apply union_1 | destruct 1; [apply union_2|apply union_3]]; auto.
-Qed.
-
-Lemma inter_iff : In x (inter s s') <-> In x s /\ In x s'.
-Proof.
-split; [split; [apply inter_1 with s' | apply inter_2 with s] | destruct 1; apply inter_3]; auto.
-Qed.
-
-Lemma diff_iff : In x (diff s s') <-> In x s /\ ~ In x s'.
-Proof.
-split; [split; [apply diff_1 with s' | apply diff_2 with s] | destruct 1; apply diff_3]; auto.
-Qed.
-
-Variable f : elt->bool.
-
-Lemma filter_iff : compat_bool E.eq f -> (In x (filter f s) <-> In x s /\ f x = true).
-Proof.
-split; [split; [apply filter_1 with f | apply filter_2 with s] | destruct 1; apply filter_3]; auto.
-Qed.
-
-Lemma for_all_iff : compat_bool E.eq f ->
- (For_all (fun x => f x = true) s <-> for_all f s = true).
-Proof.
-split; [apply for_all_1 | apply for_all_2]; auto.
-Qed.
-
-Lemma exists_iff : compat_bool E.eq f ->
- (Exists (fun x => f x = true) s <-> exists_ f s = true).
-Proof.
-split; [apply exists_1 | apply exists_2]; auto.
-Qed.
-
-Lemma elements_iff : In x s <-> InA E.eq x (elements s).
-Proof.
-split; [apply elements_1 | apply elements_2].
-Qed.
-
-End IffSpec.
-
-(** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *)
-
-Ltac set_iff :=
- repeat (progress (
- rewrite add_iff || rewrite remove_iff || rewrite singleton_iff
- || rewrite union_iff || rewrite inter_iff || rewrite diff_iff
- || rewrite empty_iff)).
-
-(** * Specifications written using boolean predicates *)
-
-Definition eqb x y := if eq_dec x y then true else false.
-
-Section BoolSpec.
-Variable s s' s'' : t.
-Variable x y z : elt.
-
-Lemma mem_b : E.eq x y -> mem x s = mem y s.
-Proof.
-intros.
-generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H).
-destruct (mem x s); destruct (mem y s); intuition.
-Qed.
-
-Lemma empty_b : mem y empty = false.
-Proof.
-generalize (empty_iff y)(mem_iff empty y).
-destruct (mem y empty); intuition.
-Qed.
-
-Lemma add_b : mem y (add x s) = eqb x y || mem y s.
-Proof.
-generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb.
-destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition.
-Qed.
-
-Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s.
-Proof.
-intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H).
-destruct (mem y s); destruct (mem y (add x s)); intuition.
-Qed.
-
-Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y).
-Proof.
-generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb.
-destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition.
-Qed.
-
-Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s.
-Proof.
-intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H).
-destruct (mem y s); destruct (mem y (remove x s)); intuition.
-Qed.
-
-Lemma singleton_b : mem y (singleton x) = eqb x y.
-Proof.
-generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb.
-destruct (eq_dec x y); destruct (mem y (singleton x)); intuition.
-Qed.
-
-Lemma union_b : mem x (union s s') = mem x s || mem x s'.
-Proof.
-generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x).
-destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition.
-Qed.
-
-Lemma inter_b : mem x (inter s s') = mem x s && mem x s'.
-Proof.
-generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x).
-destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition.
-Qed.
-
-Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s').
-Proof.
-generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x).
-destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition.
-Qed.
-
-Lemma elements_b : mem x s = existsb (eqb x) (elements s).
-Proof.
-generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)).
-rewrite InA_alt.
-destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros.
-symmetry.
-rewrite H1.
-destruct H0 as (H0,_).
-destruct H0 as (a,(Ha1,Ha2)); [ intuition |].
-exists a; intuition.
-unfold eqb; destruct (eq_dec x a); auto.
-rewrite <- H.
-rewrite H0.
-destruct H1 as (H1,_).
-destruct H1 as (a,(Ha1,Ha2)); [intuition|].
-exists a; intuition.
-unfold eqb in *; destruct (eq_dec x a); auto; discriminate.
-Qed.
-
-Variable f : elt->bool.
-
-Lemma filter_b : compat_bool E.eq f -> mem x (filter f s) = mem x s && f x.
-Proof.
-intros.
-generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H).
-destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition.
-Qed.
-
-Lemma for_all_b : compat_bool E.eq f ->
- for_all f s = forallb f (elements s).
-Proof.
-intros.
-generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s).
-unfold For_all.
-destruct (forallb f (elements s)); destruct (for_all f s); auto; intros.
-rewrite <- H1; intros.
-destruct H0 as (H0,_).
-rewrite (H2 x0) in H3.
-rewrite (InA_alt E.eq x0 (elements s)) in H3.
-destruct H3 as (a,(Ha1,Ha2)).
-rewrite (H _ _ Ha1).
-apply H0; auto.
-symmetry.
-rewrite H0; intros.
-destruct H1 as (_,H1).
-apply H1; auto.
-rewrite H2.
-rewrite InA_alt; eauto.
-Qed.
-
-Lemma exists_b : compat_bool E.eq f ->
- exists_ f s = existsb f (elements s).
-Proof.
-intros.
-generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s).
-unfold Exists.
-destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros.
-rewrite <- H1; intros.
-destruct H0 as (H0,_).
-destruct H0 as (a,(Ha1,Ha2)); auto.
-exists a; auto.
-split; auto.
-rewrite H2; rewrite InA_alt; eauto.
-symmetry.
-rewrite H0.
-destruct H1 as (_,H1).
-destruct H1 as (a,(Ha1,Ha2)); auto.
-rewrite (H2 a) in Ha1.
-rewrite (InA_alt E.eq a (elements s)) in Ha1.
-destruct Ha1 as (b,(Hb1,Hb2)).
-exists b; auto.
-rewrite <- (H _ _ Hb1); auto.
-Qed.
-
-End BoolSpec.
-
-(** * [E.eq] and [Equal] are setoid equalities *)
-
-Definition E_ST : Setoid_Theory elt E.eq.
-Proof.
-constructor; [apply E.eq_refl|apply E.eq_sym|apply E.eq_trans].
-Qed.
-
-Add Setoid elt E.eq E_ST as EltSetoid.
-
-Definition Equal_ST : Setoid_Theory t Equal.
-Proof.
-constructor; unfold Equal; firstorder.
-Qed.
-
-Add Setoid t Equal Equal_ST as EqualSetoid.
-
-Add Morphism In with signature E.eq ==> Equal ==> iff as In_m.
-Proof.
-unfold Equal; intros x y H s s' H0.
-rewrite (In_eq_iff s H); auto.
-Qed.
-
-Add Morphism is_empty : is_empty_m.
-Proof.
-unfold Equal; intros s s' H.
-generalize (is_empty_iff s)(is_empty_iff s').
-destruct (is_empty s); destruct (is_empty s');
- unfold Empty; auto; intros.
-symmetry.
-rewrite <- H1; intros a Ha.
-rewrite <- (H a) in Ha.
-destruct H0 as (_,H0).
-exact (H0 (refl_equal true) _ Ha).
-rewrite <- H0; intros a Ha.
-rewrite (H a) in Ha.
-destruct H1 as (_,H1).
-exact (H1 (refl_equal true) _ Ha).
-Qed.
-
-Add Morphism Empty with signature Equal ==> iff as Empty_m.
-Proof.
-intros; do 2 rewrite is_empty_iff; rewrite H; intuition.
-Qed.
-
-Add Morphism mem : mem_m.
-Proof.
-unfold Equal; intros x y H s s' H0.
-generalize (H0 x); clear H0; rewrite (In_eq_iff s' H).
-generalize (mem_iff s x)(mem_iff s' y).
-destruct (mem x s); destruct (mem y s'); intuition.
-Qed.
-
-Add Morphism singleton : singleton_m.
-Proof.
-unfold Equal; intros x y H a.
-do 2 rewrite singleton_iff; split.
-intros; apply E.eq_trans with x; auto.
-intros; apply E.eq_trans with y; auto.
-Qed.
-
-Add Morphism add : add_m.
-Proof.
-unfold Equal; intros x y H s s' H0 a.
-do 2 rewrite add_iff; rewrite H; rewrite H0; intuition.
-Qed.
-
-Add Morphism remove : remove_m.
-Proof.
-unfold Equal; intros x y H s s' H0 a.
-do 2 rewrite remove_iff; rewrite H; rewrite H0; intuition.
-Qed.
-
-Add Morphism union : union_m.
-Proof.
-unfold Equal; intros s s' H s'' s''' H0 a.
-do 2 rewrite union_iff; rewrite H; rewrite H0; intuition.
-Qed.
-
-Add Morphism inter : inter_m.
-Proof.
-unfold Equal; intros s s' H s'' s''' H0 a.
-do 2 rewrite inter_iff; rewrite H; rewrite H0; intuition.
-Qed.
-
-Add Morphism diff : diff_m.
-Proof.
-unfold Equal; intros s s' H s'' s''' H0 a.
-do 2 rewrite diff_iff; rewrite H; rewrite H0; intuition.
-Qed.
-
-Add Morphism Subset with signature Equal ==> Equal ==> iff as Subset_m.
-Proof.
-unfold Equal, Subset; firstorder.
-Qed.
-
-Add Morphism subset : subset_m.
-Proof.
-intros s s' H s'' s''' H0.
-generalize (subset_iff s s'') (subset_iff s' s''').
-destruct (subset s s''); destruct (subset s' s'''); auto; intros.
-rewrite H in H1; rewrite H0 in H1; intuition.
-rewrite H in H1; rewrite H0 in H1; intuition.
-Qed.
-
-Add Morphism equal : equal_m.
-Proof.
-intros s s' H s'' s''' H0.
-generalize (equal_iff s s'') (equal_iff s' s''').
-destruct (equal s s''); destruct (equal s' s'''); auto; intros.
-rewrite H in H1; rewrite H0 in H1; intuition.
-rewrite H in H1; rewrite H0 in H1; intuition.
-Qed.
-
-(* [fold], [filter], [for_all], [exists_] and [partition] cannot be proved morphism
- without additional hypothesis on [f]. For instance: *)
-
-Lemma filter_equal : forall f, compat_bool E.eq f ->
- forall s s', s[=]s' -> filter f s [=] filter f s'.
-Proof.
-unfold Equal; intros; repeat rewrite filter_iff; auto; rewrite H0; tauto.
-Qed.
-
-(* For [elements], [min_elt], [max_elt] and [choose], we would need setoid
- structures on [list elt] and [option elt]. *)
-
-(* Later:
-Add Morphism cardinal ; cardinal_m.
-*)
-
-End Facts.
diff --git a/theories/FSets/FSetWeakInterface.v b/theories/FSets/FSetWeakInterface.v
deleted file mode 100644
index a281ce22..00000000
--- a/theories/FSets/FSetWeakInterface.v
+++ /dev/null
@@ -1,251 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeakInterface.v 8820 2006-05-15 11:44:05Z letouzey $ *)
-
-(** * Finite sets library *)
-
-(** Set interfaces for types with only a decidable equality, but no ordering *)
-
-Require Export Bool.
-Require Export DecidableType.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-(** Compatibility of a boolean function with respect to an equality. *)
-Definition compat_bool (A:Set)(eqA: A->A->Prop)(f: A-> bool) :=
- forall x y : A, eqA x y -> f x = f y.
-
-(** Compatibility of a predicate with respect to an equality. *)
-Definition compat_P (A:Set)(eqA: A->A->Prop)(P : A -> Prop) :=
- forall x y : A, eqA x y -> P x -> P y.
-
-Hint Unfold compat_bool compat_P.
-
-(** * Non-dependent signature
-
- Signature [S] presents sets as purely informative programs
- together with axioms *)
-
-Module Type S.
-
- Declare Module E : DecidableType.
- Definition elt := E.t.
-
- Parameter t : Set. (** the abstract type of sets *)
-
- (** Logical predicates *)
- Parameter In : elt -> t -> Prop.
- Definition Equal s s' := forall a : elt, In a s <-> In a s'.
- Definition Subset s s' := forall a : elt, In a s -> In a s'.
- Definition Empty s := forall a : elt, ~ In a s.
- Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x.
- Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x.
-
- Notation "s [=] t" := (Equal s t) (at level 70, no associativity).
- Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
-
- Parameter empty : t.
- (** The empty set. *)
-
- Parameter is_empty : t -> bool.
- (** Test whether a set is empty or not. *)
-
- Parameter mem : elt -> t -> bool.
- (** [mem x s] tests whether [x] belongs to the set [s]. *)
-
- Parameter add : elt -> t -> t.
- (** [add x s] returns a set containing all elements of [s],
- plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
-
- Parameter singleton : elt -> t.
- (** [singleton x] returns the one-element set containing only [x]. *)
-
- Parameter remove : elt -> t -> t.
- (** [remove x s] returns a set containing all elements of [s],
- except [x]. If [x] was not in [s], [s] is returned unchanged. *)
-
- Parameter union : t -> t -> t.
- (** Set union. *)
-
- Parameter inter : t -> t -> t.
- (** Set intersection. *)
-
- Parameter diff : t -> t -> t.
- (** Set difference. *)
-
- Parameter equal : t -> t -> bool.
- (** [equal s1 s2] tests whether the sets [s1] and [s2] are
- equal, that is, contain equal elements. *)
-
- Parameter subset : t -> t -> bool.
- (** [subset s1 s2] tests whether the set [s1] is a subset of
- the set [s2]. *)
-
- (** Coq comment: [iter] is useless in a purely functional world *)
- (** iter: (elt -> unit) -> set -> unit. i*)
- (** [iter f s] applies [f] in turn to all elements of [s].
- The order in which the elements of [s] are presented to [f]
- is unspecified. *)
-
- Parameter fold : forall A : Set, (elt -> A -> A) -> t -> A -> A.
- (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
- where [x1 ... xN] are the elements of [s].
- The order in which elements of [s] are presented to [f] is
- unspecified. *)
-
- Parameter for_all : (elt -> bool) -> t -> bool.
- (** [for_all p s] checks if all elements of the set
- satisfy the predicate [p]. *)
-
- Parameter exists_ : (elt -> bool) -> t -> bool.
- (** [exists p s] checks if at least one element of
- the set satisfies the predicate [p]. *)
-
- Parameter filter : (elt -> bool) -> t -> t.
- (** [filter p s] returns the set of all elements in [s]
- that satisfy predicate [p]. *)
-
- Parameter partition : (elt -> bool) -> t -> t * t.
- (** [partition p s] returns a pair of sets [(s1, s2)], where
- [s1] is the set of all the elements of [s] that satisfy the
- predicate [p], and [s2] is the set of all the elements of
- [s] that do not satisfy [p]. *)
-
- Parameter cardinal : t -> nat.
- (** Return the number of elements of a set. *)
- (** Coq comment: nat instead of int ... *)
-
- Parameter elements : t -> list elt.
- (** Return the list of all elements of the given set, in any order. *)
-
- Parameter choose : t -> option elt.
- (** Return one element of the given set, or raise [Not_found] if
- the set is empty. Which element is chosen is unspecified.
- Equal sets could return different elements. *)
- (** Coq comment: [Not_found] is represented by the option type *)
-
- Section Spec.
-
- Variable s s' : t.
- Variable x y : elt.
-
- (** Specification of [In] *)
- Parameter In_1 : E.eq x y -> In x s -> In y s.
-
- (** Specification of [mem] *)
- Parameter mem_1 : In x s -> mem x s = true.
- Parameter mem_2 : mem x s = true -> In x s.
-
- (** Specification of [equal] *)
- Parameter equal_1 : Equal s s' -> equal s s' = true.
- Parameter equal_2 : equal s s' = true -> Equal s s'.
-
- (** Specification of [subset] *)
- Parameter subset_1 : Subset s s' -> subset s s' = true.
- Parameter subset_2 : subset s s' = true -> Subset s s'.
-
- (** Specification of [empty] *)
- Parameter empty_1 : Empty empty.
-
- (** Specification of [is_empty] *)
- Parameter is_empty_1 : Empty s -> is_empty s = true.
- Parameter is_empty_2 : is_empty s = true -> Empty s.
-
- (** Specification of [add] *)
- Parameter add_1 : E.eq x y -> In y (add x s).
- Parameter add_2 : In y s -> In y (add x s).
- Parameter add_3 : ~ E.eq x y -> In y (add x s) -> In y s.
-
- (** Specification of [remove] *)
- Parameter remove_1 : E.eq x y -> ~ In y (remove x s).
- Parameter remove_2 : ~ E.eq x y -> In y s -> In y (remove x s).
- Parameter remove_3 : In y (remove x s) -> In y s.
-
- (** Specification of [singleton] *)
- Parameter singleton_1 : In y (singleton x) -> E.eq x y.
- Parameter singleton_2 : E.eq x y -> In y (singleton x).
-
- (** Specification of [union] *)
- Parameter union_1 : In x (union s s') -> In x s \/ In x s'.
- Parameter union_2 : In x s -> In x (union s s').
- Parameter union_3 : In x s' -> In x (union s s').
-
- (** Specification of [inter] *)
- Parameter inter_1 : In x (inter s s') -> In x s.
- Parameter inter_2 : In x (inter s s') -> In x s'.
- Parameter inter_3 : In x s -> In x s' -> In x (inter s s').
-
- (** Specification of [diff] *)
- Parameter diff_1 : In x (diff s s') -> In x s.
- Parameter diff_2 : In x (diff s s') -> ~ In x s'.
- Parameter diff_3 : In x s -> ~ In x s' -> In x (diff s s').
-
- (** Specification of [fold] *)
- Parameter fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
- fold f s i = fold_left (fun a e => f e a) (elements s) i.
-
- (** Specification of [cardinal] *)
- Parameter cardinal_1 : cardinal s = length (elements s).
-
- Section Filter.
-
- Variable f : elt -> bool.
-
- (** Specification of [filter] *)
- Parameter filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s.
- Parameter filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true.
- Parameter filter_3 :
- compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
-
- (** Specification of [for_all] *)
- Parameter for_all_1 :
- compat_bool E.eq f ->
- For_all (fun x => f x = true) s -> for_all f s = true.
- Parameter for_all_2 :
- compat_bool E.eq f ->
- for_all f s = true -> For_all (fun x => f x = true) s.
-
- (** Specification of [exists] *)
- Parameter exists_1 :
- compat_bool E.eq f ->
- Exists (fun x => f x = true) s -> exists_ f s = true.
- Parameter exists_2 :
- compat_bool E.eq f ->
- exists_ f s = true -> Exists (fun x => f x = true) s.
-
- (** Specification of [partition] *)
- Parameter partition_1 :
- compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s).
- Parameter partition_2 :
- compat_bool E.eq f ->
- Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
-
- End Filter.
-
- (** Specification of [elements] *)
- Parameter elements_1 : In x s -> InA E.eq x (elements s).
- Parameter elements_2 : InA E.eq x (elements s) -> In x s.
- Parameter elements_3 : NoDupA E.eq (elements s).
-
- (** Specification of [choose] *)
- Parameter choose_1 : choose s = Some x -> In x s.
- Parameter choose_2 : choose s = None -> Empty s.
-
- End Spec.
-
- Hint Immediate In_1.
-
- Hint Resolve mem_1 mem_2 equal_1 equal_2 subset_1 subset_2 empty_1
- is_empty_1 is_empty_2 choose_1 choose_2 add_1 add_2 add_3 remove_1
- remove_2 remove_3 singleton_1 singleton_2 union_1 union_2 union_3 inter_1
- inter_2 inter_3 diff_1 diff_2 diff_3 filter_1 filter_2 filter_3 for_all_1
- for_all_2 exists_1 exists_2 partition_1 partition_2 elements_1 elements_2
- elements_3.
-
-End S.
diff --git a/theories/FSets/FSetWeakList.v b/theories/FSets/FSetWeakList.v
index 97080b7a..71a0d584 100644
--- a/theories/FSets/FSetWeakList.v
+++ b/theories/FSets/FSetWeakList.v
@@ -6,14 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSetWeakList.v 8834 2006-05-20 00:41:35Z letouzey $ *)
+(* $Id: FSetWeakList.v 10631 2008-03-06 18:17:24Z msozeau $ *)
(** * Finite sets library *)
(** This file proposes an implementation of the non-dependant
interface [FSetWeakInterface.S] using lists without redundancy. *)
-Require Import FSetWeakInterface.
+Require Import FSetInterface.
Set Implicit Arguments.
Unset Strict Implicit.
@@ -24,8 +24,6 @@ Unset Strict Implicit.
And the functions returning sets are proved to preserve this invariant. *)
Module Raw (X: DecidableType).
-
- Module E := X.
Definition elt := X.t.
Definition t := list elt.
@@ -59,7 +57,7 @@ Module Raw (X: DecidableType).
if X.eq_dec x y then l else y :: remove x l
end.
- Fixpoint fold (B : Set) (f : elt -> B -> B) (s : t) {struct s} :
+ Fixpoint fold (B : Type) (f : elt -> B -> B) (s : t) {struct s} :
B -> B := fun i => match s with
| nil => i
| x :: l => fold f l (f x i)
@@ -127,7 +125,7 @@ Module Raw (X: DecidableType).
Lemma In_eq :
forall (s : t) (x y : elt), X.eq x y -> In x s -> In y s.
Proof.
- intros s x y; do 2 setoid_rewrite InA_alt; firstorder eauto.
+ intros s x y; setoid_rewrite InA_alt; firstorder eauto.
Qed.
Hint Immediate In_eq.
@@ -287,13 +285,13 @@ Module Raw (X: DecidableType).
unfold elements; auto.
Qed.
- Lemma elements_3 : forall (s : t) (Hs : NoDup s), NoDup (elements s).
+ Lemma elements_3w : forall (s : t) (Hs : NoDup s), NoDup (elements s).
Proof.
unfold elements; auto.
Qed.
Lemma fold_1 :
- forall (s : t) (Hs : NoDup s) (A : Set) (i : A) (f : elt -> A -> A),
+ forall (s : t) (Hs : NoDup s) (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
induction s; simpl; auto; intros.
@@ -732,22 +730,68 @@ Module Raw (X: DecidableType).
generalize (Hrec H0 f).
case (f x); case (partition f l); simpl; auto.
Qed.
-
+
Definition eq : t -> t -> Prop := Equal.
- Lemma eq_refl : forall s : t, eq s s.
- Proof.
- unfold eq, Equal; intuition.
- Qed.
+ Lemma eq_refl : forall s, eq s s.
+ Proof. firstorder. Qed.
- Lemma eq_sym : forall s s' : t, eq s s' -> eq s' s.
- Proof.
- unfold eq, Equal; firstorder.
- Qed.
+ Lemma eq_sym : forall s s', eq s s' -> eq s' s.
+ Proof. firstorder. Qed.
- Lemma eq_trans : forall s s' s'' : t, eq s s' -> eq s' s'' -> eq s s''.
- Proof.
- unfold eq, Equal; firstorder.
+ Lemma eq_trans :
+ forall s s' s'', eq s s' -> eq s' s'' -> eq s s''.
+ Proof. firstorder. Qed.
+
+ Definition eq_dec : forall (s s':t)(Hs:NoDup s)(Hs':NoDup s'),
+ { eq s s' }+{ ~eq s s' }.
+ Proof.
+ unfold eq.
+ induction s; intros s'.
+ (* nil *)
+ destruct s'; [left|right].
+ firstorder.
+ unfold not, Equal.
+ intros H; generalize (H e); clear H.
+ rewrite InA_nil, InA_cons; intuition.
+ (* cons *)
+ intros.
+ case_eq (mem a s'); intros H;
+ [ destruct (IHs (remove a s')) as [H'|H'];
+ [ | | left|right]|right];
+ clear IHs.
+ inversion_clear Hs; auto.
+ apply remove_unique; auto.
+ (* In a s' /\ s [=] remove a s' *)
+ generalize (mem_2 H); clear H; intro H.
+ unfold Equal in *; intros b.
+ rewrite InA_cons; split.
+ destruct 1.
+ apply In_eq with a; auto.
+ rewrite H' in H0.
+ apply remove_3 with a; auto.
+ destruct (X.eq_dec b a); [left|right]; auto.
+ rewrite H'.
+ apply remove_2; auto.
+ (* In a s' /\ ~ s [=] remove a s' *)
+ generalize (mem_2 H); clear H; intro H.
+ contradict H'.
+ unfold Equal in *; intros b.
+ split; intros.
+ apply remove_2; auto.
+ inversion_clear Hs.
+ contradict H1; apply In_eq with b; auto.
+ rewrite <- H'; rewrite InA_cons; auto.
+ assert (In b s') by (apply remove_3 with a; auto).
+ rewrite <- H', InA_cons in H1; destruct H1; auto.
+ elim (remove_1 Hs' (X.eq_sym H1) H0).
+ (* ~ In a s' *)
+ assert (~In a s').
+ red; intro H'; rewrite (mem_1 H') in H; discriminate.
+ contradict H0.
+ unfold Equal in *.
+ rewrite <- H0.
+ rewrite InA_cons; auto.
Qed.
End ForNotations.
@@ -758,12 +802,12 @@ End Raw.
Now, in order to really provide a functor implementing [S], we
need to encapsulate everything into a type of lists without redundancy. *)
-Module Make (X: DecidableType) <: S with Module E := X.
+Module Make (X: DecidableType) <: WS with Module E := X.
Module Raw := Raw X.
Module E := X.
- Record slist : Set := {this :> Raw.t; unique : NoDupA E.eq this}.
+ Record slist := {this :> Raw.t; unique : NoDupA E.eq this}.
Definition t := slist.
Definition elt := E.t.
@@ -791,7 +835,7 @@ Module Make (X: DecidableType) <: S with Module E := X.
Definition is_empty (s : t) : bool := Raw.is_empty s.
Definition elements (s : t) : list elt := Raw.elements s.
Definition choose (s:t) : option elt := Raw.choose s.
- Definition fold (B : Set) (f : elt -> B -> B) (s : t) : B -> B := Raw.fold (B:=B) f s.
+ Definition fold (B : Type) (f : elt -> B -> B) (s : t) : B -> B := Raw.fold (B:=B) f s.
Definition cardinal (s : t) : nat := Raw.cardinal s.
Definition filter (f : elt -> bool) (s : t) : t :=
Build_slist (Raw.filter_unique (unique s) f).
@@ -872,7 +916,7 @@ Module Make (X: DecidableType) <: S with Module E := X.
Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s').
Proof. exact (fun H => Raw.diff_3 s.(unique) s'.(unique) H). Qed.
- Lemma fold_1 : forall (A : Set) (i : A) (f : elt -> A -> A),
+ Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof. exact (Raw.fold_1 s.(unique)). Qed.
@@ -923,8 +967,8 @@ Module Make (X: DecidableType) <: S with Module E := X.
Proof. exact (fun H => Raw.elements_1 H). Qed.
Lemma elements_2 : InA E.eq x (elements s) -> In x s.
Proof. exact (fun H => Raw.elements_2 H). Qed.
- Lemma elements_3 : NoDupA E.eq (elements s).
- Proof. exact (Raw.elements_3 s.(unique)). Qed.
+ Lemma elements_3w : NoDupA E.eq (elements s).
+ Proof. exact (Raw.elements_3w s.(unique)). Qed.
Lemma choose_1 : choose s = Some x -> In x s.
Proof. exact (fun H => Raw.choose_1 H). Qed.
@@ -933,4 +977,22 @@ Module Make (X: DecidableType) <: S with Module E := X.
End Spec.
+ Definition eq : t -> t -> Prop := Equal.
+
+ Lemma eq_refl : forall s, eq s s.
+ Proof. firstorder. Qed.
+
+ Lemma eq_sym : forall s s', eq s s' -> eq s' s.
+ Proof. firstorder. Qed.
+
+ Lemma eq_trans :
+ forall s s' s'', eq s s' -> eq s' s'' -> eq s s''.
+ Proof. firstorder. Qed.
+
+ Definition eq_dec : forall (s s':t),
+ { eq s s' }+{ ~eq s s' }.
+ Proof.
+ intros s s'; exact (Raw.eq_dec s.(unique) s'.(unique)).
+ Qed.
+
End Make.
diff --git a/theories/FSets/FSetWeakProperties.v b/theories/FSets/FSetWeakProperties.v
deleted file mode 100644
index a0054d36..00000000
--- a/theories/FSets/FSetWeakProperties.v
+++ /dev/null
@@ -1,896 +0,0 @@
-(***********************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
-(* \VV/ *************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(***********************************************************************)
-
-(* $Id: FSetWeakProperties.v 8853 2006-05-23 18:17:38Z herbelin $ *)
-
-(** * Finite sets library *)
-
-(** NB: this file is a clone of [FSetProperties] for weak sets
- and should remain so until we find a way to share the two. *)
-
-(** This functor derives additional properties from [FSetWeakInterface.S].
- Contrary to the functor in [FSetWeakEqProperties] it uses
- predicates over sets instead of sets operations, i.e.
- [In x s] instead of [mem x s=true],
- [Equal s s'] instead of [equal s s'=true], etc. *)
-
-Require Export FSetWeakInterface.
-Require Import FSetWeakFacts.
-Set Implicit Arguments.
-Unset Strict Implicit.
-
-Hint Unfold transpose compat_op.
-Hint Extern 1 (Setoid_Theory _ _) => constructor; congruence.
-
-Module Properties (M: S).
- Import M.E.
- Import M.
- Import Logic. (* to unmask [eq] *)
- Import Peano. (* to unmask [lt] *)
-
- (** Results about lists without duplicates *)
-
- Module FM := Facts M.
- Import FM.
-
- Definition Add (x : elt) (s s' : t) :=
- forall y : elt, In y s' <-> E.eq x y \/ In y s.
-
- Lemma In_dec : forall x s, {In x s} + {~ In x s}.
- Proof.
- intros; generalize (mem_iff s x); case (mem x s); intuition.
- Qed.
-
- Section BasicProperties.
-
- (** properties of [Equal] *)
-
- Lemma equal_refl : forall s, s[=]s.
- Proof.
- unfold Equal; intuition.
- Qed.
-
- Lemma equal_sym : forall s s', s[=]s' -> s'[=]s.
- Proof.
- unfold Equal; intros.
- rewrite H; intuition.
- Qed.
-
- Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3.
- Proof.
- unfold Equal; intros.
- rewrite H; exact (H0 a).
- Qed.
-
- Variable s s' s'' s1 s2 s3 : t.
- Variable x x' : elt.
-
- (** properties of [Subset] *)
-
- Lemma subset_refl : s[<=]s.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'.
- Proof.
- unfold Subset, Equal; intuition.
- Qed.
-
- Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma subset_equal : s[=]s' -> s[<=]s'.
- Proof.
- unfold Subset, Equal; firstorder.
- Qed.
-
- Lemma subset_empty : empty[<=]s.
- Proof.
- unfold Subset; intros a; set_iff; intuition.
- Qed.
-
- Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- rewrite <- H2; auto.
- Qed.
-
- Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1.
- Proof.
- unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition.
- Qed.
-
- (** properties of [empty] *)
-
- Lemma empty_is_empty_1 : Empty s -> s[=]empty.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
-
- Lemma empty_is_empty_2 : s[=]empty -> Empty s.
- Proof.
- unfold Empty, Equal; intros; generalize (H a); set_iff; tauto.
- Qed.
-
- (** properties of [add] *)
-
- Lemma add_equal : In x s -> add x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma add_add : add x (add x' s) [=] add x' (add x s).
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- (** properties of [remove] *)
-
- Lemma remove_equal : ~ In x s -> remove x s [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite H1 in H; auto.
- Qed.
-
- Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- (** properties of [add] and [remove] *)
-
- Lemma add_remove : In x s -> add x (remove x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma remove_add : ~In x s -> remove x (add x s) [=] s.
- Proof.
- unfold Equal; intros; set_iff; elim (eq_dec x a); intuition.
- rewrite H1 in H; auto.
- Qed.
-
- (** properties of [singleton] *)
-
- Lemma singleton_equal_add : singleton x [=] add x empty.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- (** properties of [union] *)
-
- Lemma union_sym : union s s' [=] union s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma union_assoc : union (union s s') s'' [=] union s (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma add_union_singleton : add x s [=] union (singleton x) s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_add : union (add x s) s' [=] add x (union s s').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_subset_1 : s [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma union_subset_2 : s' [<=] union s s'.
- Proof.
- unfold Subset; intuition.
- Qed.
-
- Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''.
- Proof.
- unfold Subset; intros H H0 a; set_iff; intuition.
- Qed.
-
- Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'.
- Proof.
- unfold Subset; intros H a; set_iff; intuition.
- Qed.
-
- Lemma empty_union_1 : Empty s -> union s s' [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_union_2 : Empty s -> union s' s [=] s'.
- Proof.
- unfold Equal, Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s').
- Proof.
- intros; set_iff; intuition.
- Qed.
-
- (** properties of [inter] *)
-
- Lemma inter_sym : inter s s' [=] inter s' s.
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''.
- Proof.
- intros; rewrite H; apply equal_refl.
- Qed.
-
- Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s'').
- Proof.
- unfold Equal; intros; set_iff; tauto.
- Qed.
-
- Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s').
- Proof.
- unfold Equal; intros; set_iff; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- destruct H; rewrite H0; auto.
- Qed.
-
- Lemma empty_inter_1 : Empty s -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_inter_2 : Empty s' -> Empty (inter s s').
- Proof.
- unfold Empty; intros; set_iff; firstorder.
- Qed.
-
- Lemma inter_subset_1 : inter s s' [<=] s.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_2 : inter s s' [<=] s'.
- Proof.
- unfold Subset; intro a; set_iff; tauto.
- Qed.
-
- Lemma inter_subset_3 :
- s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'.
- Proof.
- unfold Subset; intros H H' a; set_iff; intuition.
- Qed.
-
- (** properties of [diff] *)
-
- Lemma empty_diff_1 : Empty s -> Empty (diff s s').
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
-
- Lemma empty_diff_2 : Empty s -> diff s' s [=] s'.
- Proof.
- unfold Empty, Equal; intros; set_iff; firstorder.
- Qed.
-
- Lemma diff_subset : diff s s' [<=] s.
- Proof.
- unfold Subset; intros a; set_iff; tauto.
- Qed.
-
- Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty.
- Proof.
- unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
-
- Lemma remove_diff_singleton :
- remove x s [=] diff s (singleton x).
- Proof.
- unfold Equal; intros; set_iff; intuition.
- Qed.
-
- Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty.
- Proof.
- unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto.
- Qed.
-
- Lemma diff_inter_all : union (diff s s') (inter s s') [=] s.
- Proof.
- unfold Equal; intros; set_iff; intuition.
- elim (In_dec a s'); auto.
- Qed.
-
- (** properties of [Add] *)
-
- Lemma Add_add : Add x s (add x s).
- Proof.
- unfold Add; intros; set_iff; intuition.
- Qed.
-
- Lemma Add_remove : In x s -> Add x (remove x s) s.
- Proof.
- unfold Add; intros; set_iff; intuition.
- elim (eq_dec x y); auto.
- rewrite <- H1; auto.
- Qed.
-
- Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H; tauto.
- Qed.
-
- Lemma inter_Add :
- In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s'').
- Proof.
- unfold Add; intros; set_iff; rewrite H0; intuition.
- rewrite <- H2; auto.
- Qed.
-
- Lemma union_Equal :
- In x s'' -> Add x s s' -> union s s'' [=] union s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- rewrite <- H1; auto.
- Qed.
-
- Lemma inter_Add_2 :
- ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''.
- Proof.
- unfold Add, Equal; intros; set_iff; rewrite H0; intuition.
- destruct H; rewrite H1; auto.
- Qed.
-
- End BasicProperties.
-
- Hint Immediate equal_sym: set.
- Hint Resolve equal_refl equal_trans : set.
-
- Hint Immediate add_remove remove_add union_sym inter_sym: set.
- Hint Resolve subset_refl subset_equal subset_antisym
- subset_trans subset_empty subset_remove_3 subset_diff subset_add_3
- subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal
- remove_equal singleton_equal_add union_subset_equal union_equal_1
- union_equal_2 union_assoc add_union_singleton union_add union_subset_1
- union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2
- inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2
- empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1
- empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union
- inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal
- remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove
- Equal_remove add_add : set.
-
- (** * Alternative (weaker) specifications for [fold] *)
-
- Section Old_Spec_Now_Properties.
-
- Notation NoDup := (NoDupA E.eq).
-
- (** When [FSets] was first designed, the order in which Ocaml's [Set.fold]
- takes the set elements was unspecified. This specification reflects this fact:
- *)
-
- Lemma fold_0 :
- forall s (A : Set) (i : A) (f : elt -> A -> A),
- exists l : list elt,
- NoDup l /\
- (forall x : elt, In x s <-> InA E.eq x l) /\
- fold f s i = fold_right f i l.
- Proof.
- intros; exists (rev (elements s)); split.
- apply NoDupA_rev; auto.
- exact E.eq_trans.
- split; intros.
- rewrite elements_iff; do 2 rewrite InA_alt.
- split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition.
- rewrite fold_left_rev_right.
- apply fold_1.
- Qed.
-
- (** An alternate (and previous) specification for [fold] was based on
- the recursive structure of a set. It is now lemmas [fold_1] and
- [fold_2]. *)
-
- Lemma fold_1 :
- forall s (A : Set) (eqA : A -> A -> Prop)
- (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
- Empty s -> eqA (fold f s i) i.
- Proof.
- unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))).
- rewrite H3; clear H3.
- generalize H H2; clear H H2; case l; simpl; intros.
- refl_st.
- elim (H e).
- elim (H2 e); intuition.
- Qed.
-
- Lemma fold_2 :
- forall s s' x (A : Set) (eqA : A -> A -> Prop)
- (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A),
- compat_op E.eq eqA f ->
- transpose eqA f ->
- ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)).
- Proof.
- intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2)));
- destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))).
- rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2.
- apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto.
- eauto.
- exact eq_dec.
- rewrite <- Hl1; auto.
- intros; rewrite <- Hl1; rewrite <- Hl'1; auto.
- Qed.
-
- (** Similar specifications for [cardinal]. *)
-
- Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0.
- Proof.
- intros; rewrite cardinal_1; rewrite M.fold_1.
- symmetry; apply fold_left_length; auto.
- Qed.
-
- Lemma cardinal_0 :
- forall s, exists l : list elt,
- NoDupA E.eq l /\
- (forall x : elt, In x s <-> InA E.eq x l) /\
- cardinal s = length l.
- Proof.
- intros; exists (elements s); intuition; apply cardinal_1.
- Qed.
-
- Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0.
- Proof.
- intros; rewrite cardinal_fold; apply fold_1; auto.
- Qed.
-
- Lemma cardinal_2 :
- forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s).
- Proof.
- intros; do 2 rewrite cardinal_fold.
- change S with ((fun _ => S) x).
- apply fold_2; auto.
- Qed.
-
- End Old_Spec_Now_Properties.
-
- (** * Induction principle over sets *)
-
- Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s.
- Proof.
- intros s; rewrite M.cardinal_1; intros H a; red.
- rewrite elements_iff.
- destruct (elements s); simpl in *; discriminate || inversion 1.
- Qed.
- Hint Resolve cardinal_inv_1.
-
- Lemma cardinal_inv_2 :
- forall s n, cardinal s = S n -> { x : elt | In x s }.
- Proof.
- intros; rewrite M.cardinal_1 in H.
- generalize (elements_2 (s:=s)).
- destruct (elements s); try discriminate.
- exists e; auto.
- Qed.
-
- Lemma Equal_cardinal_aux :
- forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'.
- Proof.
- simple induction n; intros.
- rewrite H; symmetry .
- apply cardinal_1.
- rewrite <- H0; auto.
- destruct (cardinal_inv_2 H0) as (x,H2).
- revert H0.
- rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set.
- rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set.
- rewrite H1 in H2; auto with set.
- Qed.
-
- Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'.
- Proof.
- intros; apply Equal_cardinal_aux with (cardinal s); auto.
- Qed.
-
- Add Morphism cardinal : cardinal_m.
- Proof.
- exact Equal_cardinal.
- Qed.
-
- Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal.
-
- Lemma cardinal_induction :
- forall P : t -> Type,
- (forall s, Empty s -> P s) ->
- (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') ->
- forall n s, cardinal s = n -> P s.
- Proof.
- simple induction n; intros; auto.
- destruct (cardinal_inv_2 H) as (x,H0).
- apply X0 with (remove x s) x; auto.
- apply X1; auto.
- rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto.
- Qed.
-
- Lemma set_induction :
- forall P : t -> Type,
- (forall s : t, Empty s -> P s) ->
- (forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') ->
- forall s : t, P s.
- Proof.
- intros; apply cardinal_induction with (cardinal s); auto.
- Qed.
-
- (** Other properties of [fold]. *)
-
- Section Fold.
- Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA).
- Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f).
-
- Section Fold_1.
- Variable i i':A.
-
- Lemma fold_empty : eqA (fold f empty i) i.
- Proof.
- apply fold_1; auto.
- Qed.
-
- Lemma fold_equal :
- forall s s', s[=]s' -> eqA (fold f s i) (fold f s' i).
- Proof.
- intros s; pattern s; apply set_induction; clear s; intros.
- trans_st i.
- apply fold_1; auto.
- sym_st; apply fold_1; auto.
- rewrite <- H0; auto.
- trans_st (f x (fold f s i)).
- apply fold_2 with (eqA := eqA); auto.
- sym_st; apply fold_2 with (eqA := eqA); auto.
- unfold Add in *; intros.
- rewrite <- H2; auto.
- Qed.
-
- Lemma fold_add : forall s x, ~In x s ->
- eqA (fold f (add x s) i) (f x (fold f s i)).
- Proof.
- intros; apply fold_2 with (eqA := eqA); auto.
- Qed.
-
- Lemma add_fold : forall s x, In x s ->
- eqA (fold f (add x s) i) (fold f s i).
- Proof.
- intros; apply fold_equal; auto with set.
- Qed.
-
- Lemma remove_fold_1: forall s x, In x s ->
- eqA (f x (fold f (remove x s) i)) (fold f s i).
- Proof.
- intros.
- sym_st.
- apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- Lemma remove_fold_2: forall s x, ~In x s ->
- eqA (fold f (remove x s) i) (fold f s i).
- Proof.
- intros.
- apply fold_equal; auto with set.
- Qed.
-
- Lemma fold_commutes : forall s x,
- eqA (fold f s (f x i)) (f x (fold f s i)).
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st (f x i).
- apply fold_1; auto.
- sym_st.
- apply Comp; auto.
- apply fold_1; auto.
- trans_st (f x0 (fold f s (f x i))).
- apply fold_2 with (eqA:=eqA); auto.
- trans_st (f x0 (f x (fold f s i))).
- trans_st (f x (f x0 (fold f s i))).
- apply Comp; auto.
- sym_st.
- apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- Lemma fold_init : forall s, eqA i i' ->
- eqA (fold f s i) (fold f s i').
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st i.
- apply fold_1; auto.
- trans_st i'.
- sym_st; apply fold_1; auto.
- trans_st (f x (fold f s i)).
- apply fold_2 with (eqA:=eqA); auto.
- trans_st (f x (fold f s i')).
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- End Fold_1.
- Section Fold_2.
- Variable i:A.
-
- Lemma fold_union_inter : forall s s',
- eqA (fold f (union s s') (fold f (inter s s') i))
- (fold f s (fold f s' i)).
- Proof.
- intros; pattern s; apply set_induction; clear s; intros.
- trans_st (fold f s' (fold f (inter s s') i)).
- apply fold_equal; auto with set.
- trans_st (fold f s' i).
- apply fold_init; auto.
- apply fold_1; auto with set.
- sym_st; apply fold_1; auto.
- rename s'0 into s''.
- destruct (In_dec x s').
- (* In x s' *)
- trans_st (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set.
- apply fold_init; auto.
- apply fold_2 with (eqA:=eqA); auto with set.
- rewrite inter_iff; intuition.
- trans_st (f x (fold f s (fold f s' i))).
- trans_st (fold f (union s s') (f x (fold f (inter s s') i))).
- apply fold_equal; auto.
- apply equal_sym; apply union_Equal with x; auto with set.
- trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
- apply fold_commutes; auto.
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- (* ~(In x s') *)
- trans_st (f x (fold f (union s s') (fold f (inter s'' s') i))).
- apply fold_2 with (eqA:=eqA); auto with set.
- trans_st (f x (fold f (union s s') (fold f (inter s s') i))).
- apply Comp;auto.
- apply fold_init;auto.
- apply fold_equal;auto.
- apply equal_sym; apply inter_Add_2 with x; auto with set.
- trans_st (f x (fold f s (fold f s' i))).
- sym_st; apply fold_2 with (eqA:=eqA); auto.
- Qed.
-
- End Fold_2.
- Section Fold_3.
- Variable i:A.
-
- Lemma fold_diff_inter : forall s s',
- eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i).
- Proof.
- intros.
- trans_st (fold f (union (diff s s') (inter s s'))
- (fold f (inter (diff s s') (inter s s')) i)).
- sym_st; apply fold_union_inter; auto.
- trans_st (fold f s (fold f (inter (diff s s') (inter s s')) i)).
- apply fold_equal; auto with set.
- apply fold_init; auto.
- apply fold_1; auto with set.
- Qed.
-
- Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') ->
- eqA (fold f (union s s') i) (fold f s (fold f s' i)).
- Proof.
- intros.
- trans_st (fold f (union s s') (fold f (inter s s') i)).
- apply fold_init; auto.
- sym_st; apply fold_1; auto with set.
- unfold Empty; intro a; generalize (H a); set_iff; tauto.
- apply fold_union_inter; auto.
- Qed.
-
- End Fold_3.
- End Fold.
-
- Lemma fold_plus :
- forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p.
- Proof.
- assert (st := gen_st nat).
- assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto).
- assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto).
- intros s p; pattern s; apply set_induction; clear s; intros.
- rewrite (fold_1 st p (fun _ => S) H).
- rewrite (fold_1 st 0 (fun _ => S) H); trivial.
- assert (forall p s', Add x s s' -> fold (fun _ => S) s' p = S (fold (fun _ => S) s p)).
- change S with ((fun _ => S) x).
- intros; apply fold_2; auto.
- rewrite H2; auto.
- rewrite (H2 0); auto.
- rewrite H.
- simpl; auto.
- Qed.
-
- (** properties of [cardinal] *)
-
- Lemma empty_cardinal : cardinal empty = 0.
- Proof.
- rewrite cardinal_fold; apply fold_1; auto.
- Qed.
-
- Hint Immediate empty_cardinal cardinal_1 : set.
-
- Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1.
- Proof.
- intros.
- rewrite (singleton_equal_add x).
- replace 0 with (cardinal empty); auto with set.
- apply cardinal_2 with x; auto with set.
- Qed.
-
- Hint Resolve singleton_cardinal: set.
-
- Lemma diff_inter_cardinal :
- forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s .
- Proof.
- intros; do 3 rewrite cardinal_fold.
- rewrite <- fold_plus.
- apply fold_diff_inter with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma union_cardinal:
- forall s s', (forall x, ~In x s\/~In x s') ->
- cardinal (union s s')=cardinal s+cardinal s'.
- Proof.
- intros; do 3 rewrite cardinal_fold.
- rewrite <- fold_plus.
- apply fold_union; auto.
- Qed.
-
- Lemma subset_cardinal :
- forall s s', s[<=]s' -> cardinal s <= cardinal s' .
- Proof.
- intros.
- rewrite <- (diff_inter_cardinal s' s).
- rewrite (inter_sym s' s).
- rewrite (inter_subset_equal H); auto with arith.
- Qed.
-
- Lemma subset_cardinal_lt :
- forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'.
- Proof.
- intros.
- rewrite <- (diff_inter_cardinal s' s).
- rewrite (inter_sym s' s).
- rewrite (inter_subset_equal H).
- generalize (@cardinal_inv_1 (diff s' s)).
- destruct (cardinal (diff s' s)).
- intro H2; destruct (H2 (refl_equal _) x).
- set_iff; auto.
- intros _.
- change (0 + cardinal s < S n + cardinal s).
- apply Plus.plus_lt_le_compat; auto with arith.
- Qed.
-
- Theorem union_inter_cardinal :
- forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' .
- Proof.
- intros.
- do 4 rewrite cardinal_fold.
- do 2 rewrite <- fold_plus.
- apply fold_union_inter with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma union_cardinal_inter :
- forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s').
- Proof.
- intros.
- rewrite <- union_inter_cardinal.
- rewrite Plus.plus_comm.
- auto with arith.
- Qed.
-
- Lemma union_cardinal_le :
- forall s s', cardinal (union s s') <= cardinal s + cardinal s'.
- Proof.
- intros; generalize (union_inter_cardinal s s').
- intros; rewrite <- H; auto with arith.
- Qed.
-
- Lemma add_cardinal_1 :
- forall s x, In x s -> cardinal (add x s) = cardinal s.
- Proof.
- auto with set.
- Qed.
-
- Lemma add_cardinal_2 :
- forall s x, ~In x s -> cardinal (add x s) = S (cardinal s).
- Proof.
- intros.
- do 2 rewrite cardinal_fold.
- change S with ((fun _ => S) x);
- apply fold_add with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma remove_cardinal_1 :
- forall s x, In x s -> S (cardinal (remove x s)) = cardinal s.
- Proof.
- intros.
- do 2 rewrite cardinal_fold.
- change S with ((fun _ =>S) x).
- apply remove_fold_1 with (eqA:=@eq nat); auto.
- Qed.
-
- Lemma remove_cardinal_2 :
- forall s x, ~In x s -> cardinal (remove x s) = cardinal s.
- Proof.
- auto with set.
- Qed.
-
- Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2.
-
-End Properties.
diff --git a/theories/FSets/FSets.v b/theories/FSets/FSets.v
index b0402db6..a73c1da7 100644
--- a/theories/FSets/FSets.v
+++ b/theories/FSets/FSets.v
@@ -6,13 +6,19 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: FSets.v 8897 2006-06-05 21:04:10Z letouzey $ *)
+(* $Id: FSets.v 10699 2008-03-19 20:56:43Z letouzey $ *)
Require Export OrderedType.
Require Export OrderedTypeEx.
Require Export OrderedTypeAlt.
+Require Export DecidableType.
+Require Export DecidableTypeEx.
Require Export FSetInterface.
Require Export FSetBridge.
+Require Export FSetFacts.
+Require Export FSetDecide.
Require Export FSetProperties.
Require Export FSetEqProperties.
+Require Export FSetWeakList.
Require Export FSetList.
+Require Export FSetAVL. \ No newline at end of file
diff --git a/theories/FSets/OrderedType.v b/theories/FSets/OrderedType.v
index f966cd4d..c56a24cf 100644
--- a/theories/FSets/OrderedType.v
+++ b/theories/FSets/OrderedType.v
@@ -6,32 +6,25 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: OrderedType.v 8834 2006-05-20 00:41:35Z letouzey $ *)
+(* $Id: OrderedType.v 10616 2008-03-04 17:33:35Z letouzey $ *)
Require Export SetoidList.
Set Implicit Arguments.
Unset Strict Implicit.
-(* TODO concernant la tactique order:
- * propagate_lt n'est sans doute pas complet
- * un propagate_le
- * exploiter les hypotheses negatives restant a la fin
- * faire que ca marche meme quand une hypothese depend d'un eq ou lt.
-*)
-
(** * Ordered types *)
-Inductive Compare (X : Set) (lt eq : X -> X -> Prop) (x y : X) : Set :=
+Inductive Compare (X : Type) (lt eq : X -> X -> Prop) (x y : X) : Type :=
| LT : lt x y -> Compare lt eq x y
| EQ : eq x y -> Compare lt eq x y
| GT : lt y x -> Compare lt eq x y.
Module Type OrderedType.
- Parameter t : Set.
+ Parameter Inline t : Type.
- Parameter eq : t -> t -> Prop.
- Parameter lt : t -> t -> Prop.
+ Parameter Inline eq : t -> t -> Prop.
+ Parameter Inline lt : t -> t -> Prop.
Axiom eq_refl : forall x : t, eq x x.
Axiom eq_sym : forall x y : t, eq x y -> eq y x.
@@ -122,6 +115,13 @@ Module OrderedTypeFacts (O: OrderedType).
intuition.
Qed.
+(* TODO concernant la tactique order:
+ * propagate_lt n'est sans doute pas complet
+ * un propagate_le
+ * exploiter les hypotheses negatives restant a la fin
+ * faire que ca marche meme quand une hypothese depend d'un eq ou lt.
+*)
+
Ltac abstraction := match goal with
(* First, some obvious simplifications *)
| H : False |- _ => elim H
@@ -137,9 +137,9 @@ Ltac abstraction := match goal with
| H1: ~lt ?x ?y, H2: ~eq ?y ?x |- _ =>
generalize (le_neq H1 (neq_sym H2)); clear H1 H2; intro; abstraction
(* Then, we generalize all interesting facts *)
- | H : lt ?x ?y |- _ => revert H; abstraction
- | H : ~lt ?x ?y |- _ => revert H; abstraction
| H : ~eq ?x ?y |- _ => revert H; abstraction
+ | H : ~lt ?x ?y |- _ => revert H; abstraction
+ | H : lt ?x ?y |- _ => revert H; abstraction
| H : eq ?x ?y |- _ => revert H; abstraction
| _ => idtac
end.
@@ -192,7 +192,7 @@ Ltac do_lt x y LT := match goal with
| |- lt ?z x -> _ => let H := fresh "H" in
(intro H; generalize (lt_trans H LT); intro); do_lt x y LT
| |- lt _ _ -> _ => intro; do_lt x y LT
- (* Ge *)
+ (* GE *)
| |- ~lt y x -> _ => intros _; do_lt x y LT
| |- ~lt x ?z -> _ => let H := fresh "H" in
(intro H; generalize (le_lt_trans H LT); intro); do_lt x y LT
@@ -296,12 +296,12 @@ Ltac false_order := elimtype False; order.
Lemma eq_dec : forall x y : t, {eq x y} + {~ eq x y}.
Proof.
intros; elim (compare x y); [ right | left | right ]; auto.
- Qed.
+ Defined.
Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}.
Proof.
intros; elim (compare x y); [ left | right | right ]; auto.
- Qed.
+ Defined.
Definition eqb x y : bool := if eq_dec x y then true else false.
@@ -361,7 +361,7 @@ Module KeyOrderedType(O:OrderedType).
Import MO.
Section Elt.
- Variable elt : Set.
+ Variable elt : Type.
Notation key:=t.
Definition eqk (p p':key*elt) := eq (fst p) (fst p').
diff --git a/theories/FSets/OrderedTypeAlt.v b/theories/FSets/OrderedTypeAlt.v
index 9bcfbfc7..516df0f0 100644
--- a/theories/FSets/OrderedTypeAlt.v
+++ b/theories/FSets/OrderedTypeAlt.v
@@ -11,19 +11,19 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: OrderedTypeAlt.v 8773 2006-04-29 14:31:32Z letouzey $ *)
+(* $Id: OrderedTypeAlt.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import OrderedType.
(** * An alternative (but equivalent) presentation for an Ordered Type inferface. *)
-(** NB: [comparison], defined in [theories/Init/datatypes.v] is [Eq|Lt|Gt]
-whereas [compare], defined in [theories/FSets/OrderedType.v] is [EQ _ | LT _ | GT _ ]
+(** NB: [comparison], defined in [Datatypes.v] is [Eq|Lt|Gt]
+whereas [compare], defined in [OrderedType.v] is [EQ _ | LT _ | GT _ ]
*)
Module Type OrderedTypeAlt.
- Parameter t : Set.
+ Parameter t : Type.
Parameter compare : t -> t -> comparison.
@@ -103,24 +103,16 @@ Module OrderedType_to_Alt (O:OrderedType) <: OrderedTypeAlt.
Lemma compare_sym :
forall x y, (y?=x) = CompOpp (x?=y).
Proof.
- intros x y.
- unfold compare.
- destruct (O.compare y x); elim_comp; simpl; auto.
+ intros x y; unfold compare.
+ destruct O.compare; elim_comp; simpl; auto.
Qed.
Lemma compare_trans :
forall c x y z, (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
Proof.
intros c x y z.
- destruct c; unfold compare.
- destruct (O.compare x y); intros; try discriminate.
- destruct (O.compare y z); intros; try discriminate.
- elim_comp; auto.
- destruct (O.compare x y); intros; try discriminate.
- destruct (O.compare y z); intros; try discriminate.
- elim_comp; auto.
- destruct (O.compare x y); intros; try discriminate.
- destruct (O.compare y z); intros; try discriminate.
+ destruct c; unfold compare;
+ do 2 (destruct O.compare; intros; try discriminate);
elim_comp; auto.
Qed.
diff --git a/theories/FSets/OrderedTypeEx.v b/theories/FSets/OrderedTypeEx.v
index 28a5705d..03171396 100644
--- a/theories/FSets/OrderedTypeEx.v
+++ b/theories/FSets/OrderedTypeEx.v
@@ -11,7 +11,7 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: OrderedTypeEx.v 9940 2007-07-05 12:32:47Z letouzey $ *)
+(* $Id: OrderedTypeEx.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import OrderedType.
Require Import ZArith.
@@ -25,9 +25,9 @@ Require Import Compare_dec.
the equality is the usual one of Coq. *)
Module Type UsualOrderedType.
- Parameter t : Set.
+ Parameter Inline t : Type.
Definition eq := @eq t.
- Parameter lt : t -> t -> Prop.
+ Parameter Inline lt : t -> t -> Prop.
Definition eq_refl := @refl_equal t.
Definition eq_sym := @sym_eq t.
Definition eq_trans := @trans_eq t.
@@ -154,16 +154,16 @@ Module N_as_OT <: UsualOrderedType.
Definition eq_sym := @sym_eq t.
Definition eq_trans := @trans_eq t.
- Definition lt p q:= Nle q p = false.
+ Definition lt p q:= Nleb q p = false.
- Definition lt_trans := Nlt_trans.
+ Definition lt_trans := Nltb_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
intros; intro.
rewrite H0 in H.
unfold lt in H.
- rewrite Nle_refl in H; discriminate.
+ rewrite Nleb_refl in H; discriminate.
Qed.
Definition compare : forall x y : t, Compare lt eq x y.
@@ -172,16 +172,15 @@ Module N_as_OT <: UsualOrderedType.
case_eq ((x ?= y)%N); intros.
apply EQ; apply Ncompare_Eq_eq; auto.
apply LT; unfold lt; auto.
- generalize (Nle_Ncompare y x).
- destruct (Nle y x); auto.
- rewrite <- Ncompare_antisym.
+ generalize (Nleb_Nle y x).
+ unfold Nle; rewrite <- Ncompare_antisym.
destruct (x ?= y)%N; simpl; try discriminate.
- intros (H0,_); elim H0; auto.
+ clear H; intros H.
+ destruct (Nleb y x); intuition.
apply GT; unfold lt.
- generalize (Nle_Ncompare x y).
- destruct (Nle x y); auto.
- destruct (x ?= y)%N; simpl; try discriminate.
- intros (H0,_); elim H0; auto.
+ generalize (Nleb_Nle x y).
+ unfold Nle; destruct (x ?= y)%N; simpl; try discriminate.
+ destruct (Nleb x y); intuition.
Defined.
End N_as_OT.
diff --git a/theories/Init/Datatypes.v b/theories/Init/Datatypes.v
index 56dc7e95..e5e6fd23 100644
--- a/theories/Init/Datatypes.v
+++ b/theories/Init/Datatypes.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Datatypes.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Datatypes.v 11073 2008-06-08 20:24:51Z herbelin $ i*)
Set Implicit Arguments.
@@ -26,6 +26,52 @@ Inductive bool : Set :=
Add Printing If bool.
+Delimit Scope bool_scope with bool.
+
+Bind Scope bool_scope with bool.
+
+(** Basic boolean operators *)
+
+Definition andb (b1 b2:bool) : bool := if b1 then b2 else false.
+
+Definition orb (b1 b2:bool) : bool := if b1 then true else b2.
+
+Definition implb (b1 b2:bool) : bool := if b1 then b2 else true.
+
+Definition xorb (b1 b2:bool) : bool :=
+ match b1, b2 with
+ | true, true => false
+ | true, false => true
+ | false, true => true
+ | false, false => false
+ end.
+
+Definition negb (b:bool) := if b then false else true.
+
+Infix "||" := orb : bool_scope.
+Infix "&&" := andb : bool_scope.
+
+(*******************************)
+(** * Properties of [andb] *)
+(*******************************)
+
+Lemma andb_prop : forall a b:bool, andb a b = true -> a = true /\ b = true.
+Proof.
+ destruct a; destruct b; intros; split; try (reflexivity || discriminate).
+Qed.
+Hint Resolve andb_prop: bool v62.
+
+Lemma andb_true_intro :
+ forall b1 b2:bool, b1 = true /\ b2 = true -> andb b1 b2 = true.
+Proof.
+ destruct b1; destruct b2; simpl in |- *; tauto || auto with bool.
+Qed.
+Hint Resolve andb_true_intro: bool v62.
+
+(** Interpretation of booleans as propositions *)
+
+Inductive eq_true : bool -> Prop := is_eq_true : eq_true true.
+
(** [nat] is the datatype of natural numbers built from [O] and successor [S];
note that the constructor name is the letter O.
Numbers in [nat] can be denoted using a decimal notation;
@@ -70,7 +116,7 @@ Definition option_map (A B:Type) (f:A->B) o :=
end.
(** [sum A B], written [A + B], is the disjoint sum of [A] and [B] *)
-(* Syntax defined in Specif.v *)
+
Inductive sum (A B:Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.
@@ -82,6 +128,7 @@ Notation "x + y" := (sum x y) : type_scope.
Inductive prod (A B:Type) : Type :=
pair : A -> B -> prod A B.
+
Add Printing Let prod.
Notation "x * y" := (prod x y) : type_scope.
@@ -135,6 +182,13 @@ Definition CompOpp (r:comparison) :=
| Gt => Lt
end.
+(** Identity *)
+
+Definition ID := forall A:Type, A -> A.
+Definition id : ID := fun A x => x.
+
+(* begin hide *)
+
(* Compatibility *)
Notation prodT := prod (only parsing).
@@ -146,3 +200,5 @@ Notation fstT := fst (only parsing).
Notation sndT := snd (only parsing).
Notation prodT_uncurry := prod_uncurry (only parsing).
Notation prodT_curry := prod_curry (only parsing).
+
+(* end hide *)
diff --git a/theories/Init/Logic.v b/theories/Init/Logic.v
index 8b487432..6a636ccc 100644
--- a/theories/Init/Logic.v
+++ b/theories/Init/Logic.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Logic.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Logic.v 10304 2007-11-08 17:06:32Z emakarov $ i*)
Set Implicit Arguments.
@@ -16,10 +16,10 @@ Require Import Notations.
(** [True] is the always true proposition *)
Inductive True : Prop :=
- I : True.
+ I : True.
(** [False] is the always false proposition *)
-Inductive False : Prop :=.
+Inductive False : Prop :=.
(** [not A], written [~A], is the negation of [A] *)
Definition not (A:Prop) := A -> False.
@@ -30,14 +30,14 @@ Hint Unfold not: core.
(** [and A B], written [A /\ B], is the conjunction of [A] and [B]
- [conj p q] is a proof of [A /\ B] as soon as
+ [conj p q] is a proof of [A /\ B] as soon as
[p] is a proof of [A] and [q] a proof of [B]
[proj1] and [proj2] are first and second projections of a conjunction *)
Inductive and (A B:Prop) : Prop :=
- conj : A -> B -> A /\ B
-
+ conj : A -> B -> A /\ B
+
where "A /\ B" := (and A B) : type_scope.
Section Conjunction.
@@ -60,7 +60,7 @@ End Conjunction.
Inductive or (A B:Prop) : Prop :=
| or_introl : A -> A \/ B
- | or_intror : B -> A \/ B
+ | or_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
@@ -89,6 +89,67 @@ Theorem iff_sym : forall A B:Prop, (A <-> B) -> (B <-> A).
End Equivalence.
+Hint Unfold iff: extcore.
+
+(** Some equivalences *)
+
+Theorem neg_false : forall A : Prop, ~ A <-> (A <-> False).
+Proof.
+intro A; unfold not; split.
+intro H; split; [exact H | intro H1; elim H1].
+intros [H _]; exact H.
+Qed.
+
+Theorem and_cancel_l : forall A B C : Prop,
+ (B -> A) -> (C -> A) -> ((A /\ B <-> A /\ C) <-> (B <-> C)).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem and_cancel_r : forall A B C : Prop,
+ (B -> A) -> (C -> A) -> ((B /\ A <-> C /\ A) <-> (B <-> C)).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem or_cancel_l : forall A B C : Prop,
+ (B -> ~ A) -> (C -> ~ A) -> ((A \/ B <-> A \/ C) <-> (B <-> C)).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem or_cancel_r : forall A B C : Prop,
+ (B -> ~ A) -> (C -> ~ A) -> ((B \/ A <-> C \/ A) <-> (B <-> C)).
+Proof.
+intros; tauto.
+Qed.
+
+(** Backward direction of the equivalences above does not need assumptions *)
+
+Theorem and_iff_compat_l : forall A B C : Prop,
+ (B <-> C) -> (A /\ B <-> A /\ C).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem and_iff_compat_r : forall A B C : Prop,
+ (B <-> C) -> (B /\ A <-> C /\ A).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem or_iff_compat_l : forall A B C : Prop,
+ (B <-> C) -> (A \/ B <-> A \/ C).
+Proof.
+intros; tauto.
+Qed.
+
+Theorem or_iff_compat_r : forall A B C : Prop,
+ (B <-> C) -> (B \/ A <-> C \/ A).
+Proof.
+intros; tauto.
+Qed.
+
(** [(IF_then_else P Q R)], written [IF P then Q else R] denotes
either [P] and [Q], or [~P] and [Q] *)
@@ -103,7 +164,7 @@ Notation "'IF' c1 'then' c2 'else' c3" := (IF_then_else c1 c2 c3)
expresses the existence of an [x] of some type [A] in [Set] which
satisfies the predicate [P]. This is existential quantification.
- [ex2 P Q], or simply [exists2 x, P x & Q x], or also
+ [ex2 P Q], or simply [exists2 x, P x & Q x], or also
[exists2 x:A, P x & Q x], expresses the existence of an [x] of
type [A] which satisfies both predicates [P] and [Q].
@@ -123,14 +184,14 @@ Inductive ex (A:Type) (P:A -> Prop) : Prop :=
Inductive ex2 (A:Type) (P Q:A -> Prop) : Prop :=
ex_intro2 : forall x:A, P x -> Q x -> ex2 (A:=A) P Q.
-Definition all (A:Type) (P:A -> Prop) := forall x:A, P x.
+Definition all (A:Type) (P:A -> Prop) := forall x:A, P x.
(* Rule order is important to give printing priority to fully typed exists *)
Notation "'exists' x , p" := (ex (fun x => p))
(at level 200, x ident, right associativity) : type_scope.
Notation "'exists' x : t , p" := (ex (fun x:t => p))
- (at level 200, x ident, right associativity,
+ (at level 200, x ident, right associativity,
format "'[' 'exists' '/ ' x : t , '/ ' p ']'")
: type_scope.
@@ -165,14 +226,14 @@ End universal_quantification.
(** [eq x y], or simply [x=y] expresses the equality of [x] and
[y]. Both [x] and [y] must belong to the same type [A].
The definition is inductive and states the reflexivity of the equality.
- The others properties (symmetry, transitivity, replacement of
+ The others properties (symmetry, transitivity, replacement of
equals by equals) are proved below. The type of [x] and [y] can be
made explicit using the notation [x = y :> A]. This is Leibniz equality
as it expresses that [x] and [y] are equal iff every property on
[A] which is true of [x] is also true of [y] *)
Inductive eq (A:Type) (x:A) : A -> Prop :=
- refl_equal : x = x :>A
+ refl_equal : x = x :>A
where "x = y :> A" := (@eq A x y) : type_scope.
@@ -222,7 +283,7 @@ Section Logic_lemmas.
Proof.
red in |- *; intros h1 h2; apply h1; destruct h2; trivial.
Qed.
-
+
Definition sym_equal := sym_eq.
Definition sym_not_equal := sym_not_eq.
Definition trans_equal := trans_eq.
@@ -233,12 +294,12 @@ Section Logic_lemmas.
forall (A:Type) (x:A) (P:A -> Prop), P x -> forall y:A, y = x -> P y.
intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
Defined.
-
+
Definition eq_rec_r :
forall (A:Type) (x:A) (P:A -> Set), P x -> forall y:A, y = x -> P y.
intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
Defined.
-
+
Definition eq_rect_r :
forall (A:Type) (x:A) (P:A -> Type), P x -> forall y:A, y = x -> P y.
intros A x P H y H0; elim sym_eq with (1 := H0); assumption.
@@ -246,14 +307,14 @@ Section Logic_lemmas.
End Logic_lemmas.
Theorem f_equal2 :
- forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1)
+ forall (A1 A2 B:Type) (f:A1 -> A2 -> B) (x1 y1:A1)
(x2 y2:A2), x1 = y1 -> x2 = y2 -> f x1 x2 = f y1 y2.
Proof.
destruct 1; destruct 1; reflexivity.
Qed.
Theorem f_equal3 :
- forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1)
+ forall (A1 A2 A3 B:Type) (f:A1 -> A2 -> A3 -> B) (x1 y1:A1)
(x2 y2:A2) (x3 y3:A3),
x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3.
Proof.
@@ -261,7 +322,7 @@ Proof.
Qed.
Theorem f_equal4 :
- forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B)
+ forall (A1 A2 A3 A4 B:Type) (f:A1 -> A2 -> A3 -> A4 -> B)
(x1 y1:A1) (x2 y2:A2) (x3 y3:A3) (x4 y4:A4),
x1 = y1 -> x2 = y2 -> x3 = y3 -> x4 = y4 -> f x1 x2 x3 x4 = f y1 y2 y3 y4.
Proof.
@@ -295,7 +356,7 @@ Definition uniqueness (A:Type) (P:A->Prop) := forall x y, P x -> P y -> x = y.
Notation "'exists' ! x , P" := (ex (unique (fun x => P)))
(at level 200, x ident, right associativity,
format "'[' 'exists' ! '/ ' x , '/ ' P ']'") : type_scope.
-Notation "'exists' ! x : A , P" :=
+Notation "'exists' ! x : A , P" :=
(ex (unique (fun x:A => P)))
(at level 200, x ident, right associativity,
format "'[' 'exists' ! '/ ' x : A , '/ ' P ']'") : type_scope.
@@ -305,15 +366,47 @@ Lemma unique_existence : forall (A:Type) (P:A->Prop),
Proof.
intros A P; split.
intros ((x,Hx),Huni); exists x; red; auto.
- intros (x,(Hx,Huni)); split.
+ intros (x,(Hx,Huni)); split.
exists x; assumption.
intros x' x'' Hx' Hx''; transitivity x.
symmetry; auto.
auto.
Qed.
-(** Being inhabited *)
+(** * Being inhabited *)
+
+(** The predicate [inhabited] can be used in different contexts. If [A] is
+ thought as a type, [inhabited A] states that [A] is inhabited. If [A] is
+ thought as a computationally relevant proposition, then
+ [inhabited A] weakens [A] so as to hide its computational meaning.
+ The so-weakened proof remains computationally relevant but only in
+ a propositional context.
+*)
Inductive inhabited (A:Type) : Prop := inhabits : A -> inhabited A.
Hint Resolve inhabits: core.
+
+Lemma exists_inhabited : forall (A:Type) (P:A->Prop),
+ (exists x, P x) -> inhabited A.
+Proof.
+ destruct 1; auto.
+Qed.
+
+(** Declaration of stepl and stepr for eq and iff *)
+
+Lemma eq_stepl : forall (A : Type) (x y z : A), x = y -> x = z -> z = y.
+Proof.
+intros A x y z H1 H2. rewrite <- H2; exact H1.
+Qed.
+
+Declare Left Step eq_stepl.
+Declare Right Step trans_eq.
+
+Lemma iff_stepl : forall A B C : Prop, (A <-> B) -> (A <-> C) -> (C <-> B).
+Proof.
+intros; tauto.
+Qed.
+
+Declare Left Step iff_stepl.
+Declare Right Step iff_trans.
diff --git a/theories/Init/Logic_Type.v b/theories/Init/Logic_Type.v
index dbe944b0..c4e5f6c7 100644
--- a/theories/Init/Logic_Type.v
+++ b/theories/Init/Logic_Type.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Logic_Type.v 8866 2006-05-28 16:21:04Z herbelin $ i*)
+(*i $Id: Logic_Type.v 10840 2008-04-23 21:29:34Z herbelin $ i*)
(** This module defines type constructors for types in [Type]
([Datatypes.v] and [Logic.v] defined them for types in [Set]) *)
@@ -32,17 +32,17 @@ Section identity_is_a_congruence.
Lemma sym_id : identity x y -> identity y x.
Proof.
destruct 1; trivial.
- Qed.
+ Defined.
Lemma trans_id : identity x y -> identity y z -> identity x z.
Proof.
destruct 2; trivial.
- Qed.
+ Defined.
Lemma congr_id : identity x y -> identity (f x) (f y).
Proof.
destruct 1; trivial.
- Qed.
+ Defined.
Lemma sym_not_id : notT (identity x y) -> notT (identity y x).
Proof.
diff --git a/theories/Init/Notations.v b/theories/Init/Notations.v
index 416647b4..3dc6385d 100644
--- a/theories/Init/Notations.v
+++ b/theories/Init/Notations.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Notations.v 8866 2006-05-28 16:21:04Z herbelin $ i*)
+(*i $Id: Notations.v 11073 2008-06-08 20:24:51Z herbelin $ i*)
(** These are the notations whose level and associativity are imposed by Coq *)
@@ -19,13 +19,13 @@ Reserved Notation "~ x" (at level 75, right associativity).
(** Notations for equality and inequalities *)
-Reserved Notation "x = y :> T"
+Reserved Notation "x = y :> T"
(at level 70, y at next level, no associativity).
Reserved Notation "x = y" (at level 70, no associativity).
Reserved Notation "x = y = z"
(at level 70, no associativity, y at next level).
-Reserved Notation "x <> y :> T"
+Reserved Notation "x <> y :> T"
(at level 70, y at next level, no associativity).
Reserved Notation "x <> y" (at level 70, no associativity).
@@ -49,6 +49,11 @@ Reserved Notation "- x" (at level 35, right associativity).
Reserved Notation "/ x" (at level 35, right associativity).
Reserved Notation "x ^ y" (at level 30, right associativity).
+(** Notations for booleans *)
+
+Reserved Notation "x || y" (at level 50, left associativity).
+Reserved Notation "x && y" (at level 40, left associativity).
+
(** Notations for pairs *)
Reserved Notation "( x , y , .. , z )" (at level 0).
diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v
index 3df2b566..9ef63cc8 100644
--- a/theories/Init/Peano.v
+++ b/theories/Init/Peano.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Peano.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Peano.v 11115 2008-06-12 16:03:32Z werner $ i*)
(** The type [nat] of Peano natural numbers (built from [O] and [S])
is defined in [Datatypes.v] *)
@@ -40,7 +40,7 @@ Hint Resolve (f_equal (A:=nat)): core.
(** The predecessor function *)
Definition pred (n:nat) : nat := match n with
- | O => 0
+ | O => n
| S u => u
end.
Hint Resolve (f_equal pred): v62.
@@ -123,6 +123,11 @@ Proof.
auto.
Qed.
+(** Standard associated names *)
+
+Notation plus_0_r_reverse := plus_n_O (only parsing).
+Notation plus_succ_r_reverse := plus_n_Sm (only parsing).
+
(** Multiplication *)
Fixpoint mult (n m:nat) {struct n} : nat :=
@@ -149,12 +154,21 @@ Proof.
Qed.
Hint Resolve mult_n_Sm: core v62.
+(** Standard associated names *)
+
+Notation mult_0_r_reverse := mult_n_O (only parsing).
+Notation mult_succ_r_reverse := mult_n_Sm (only parsing).
+
(** Truncated subtraction: [m-n] is [0] if [n>=m] *)
Fixpoint minus (n m:nat) {struct n} : nat :=
match n, m with
- | O, _ => 0
- | S k, O => S k
+ | O, _ => n
+ | S k, O => n
+(*=======
+
+ | O, _ => n
+ | S k, O => S k *)
| S k, S l => k - l
end
@@ -211,5 +225,3 @@ Proof.
induction n; auto.
destruct m as [| n0]; auto.
Qed.
-
-(** Notations *)
diff --git a/theories/Init/Prelude.v b/theories/Init/Prelude.v
index 5f6f1eab..6492c948 100644
--- a/theories/Init/Prelude.v
+++ b/theories/Init/Prelude.v
@@ -6,12 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Prelude.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Prelude.v 10064 2007-08-08 15:32:36Z msozeau $ i*)
Require Export Notations.
Require Export Logic.
Require Export Datatypes.
Require Export Specif.
Require Export Peano.
-Require Export Wf.
-Require Export Tactics.
+Require Export Coq.Init.Wf.
+Require Export Coq.Init.Tactics.
diff --git a/theories/Init/Specif.v b/theories/Init/Specif.v
index dd2f7697..c0f5c42a 100644
--- a/theories/Init/Specif.v
+++ b/theories/Init/Specif.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Specif.v 8866 2006-05-28 16:21:04Z herbelin $ i*)
+(*i $Id: Specif.v 10923 2008-05-12 18:25:06Z herbelin $ i*)
(** Basic specifications : sets that may contain logical information *)
@@ -46,12 +46,12 @@ Arguments Scope sigT [type_scope type_scope].
Arguments Scope sigT2 [type_scope type_scope type_scope].
Notation "{ x | P }" := (sig (fun x => P)) : type_scope.
-Notation "{ x | P & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
+Notation "{ x | P & Q }" := (sig2 (fun x => P) (fun x => Q)) : type_scope.
Notation "{ x : A | P }" := (sig (fun x:A => P)) : type_scope.
-Notation "{ x : A | P & Q }" := (sig2 (fun x:A => P) (fun x:A => Q)) :
+Notation "{ x : A | P & Q }" := (sig2 (fun x:A => P) (fun x:A => Q)) :
type_scope.
-Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
-Notation "{ x : A & P & Q }" := (sigT2 (fun x:A => P) (fun x:A => Q)) :
+Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
+Notation "{ x : A & P & Q }" := (sigT2 (fun x:A => P) (fun x:A => Q)) :
type_scope.
Add Printing Let sig.
@@ -107,6 +107,16 @@ Section Projections.
End Projections.
+(** [sigT] of a predicate is equivalent to [sig] *)
+
+Lemma sig_of_sigT : forall (A:Type) (P:A->Prop), sigT P -> sig P.
+Proof. destruct 1 as (x,H); exists x; trivial. Defined.
+
+Lemma sigT_of_sig : forall (A:Type) (P:A->Prop), sig P -> sigT P.
+Proof. destruct 1 as (x,H); exists x; trivial. Defined.
+
+Coercion sigT_of_sig : sig >-> sigT.
+Coercion sig_of_sigT : sigT >-> sig.
(** [sumbool] is a boolean type equipped with the justification of
their value *)
@@ -201,6 +211,7 @@ Proof.
Qed.
Hint Resolve left right inleft inright: core v62.
+Hint Resolve exist exist2 existT existT2: core.
(* Compatibility *)
diff --git a/theories/Init/Tactics.v b/theories/Init/Tactics.v
index ba210dd6..afe8297e 100644
--- a/theories/Init/Tactics.v
+++ b/theories/Init/Tactics.v
@@ -6,59 +6,143 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Tactics.v 9268 2006-10-24 12:56:16Z herbelin $ i*)
+(*i $Id: Tactics.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
Require Import Notations.
Require Import Logic.
-(** Useful tactics *)
+(** * Useful tactics *)
+
+(** A tactic for proof by contradiction. With contradict H,
+ - H:~A |- B gives |- A
+ - H:~A |- ~B gives H: B |- A
+ - H: A |- B gives |- ~A
+ - H: A |- ~B gives H: B |- ~A
+ - H:False leads to a resolved subgoal.
+ Moreover, negations may be in unfolded forms,
+ and A or B may live in Type *)
+
+Ltac contradict H :=
+ let save tac H := let x:=fresh in intro x; tac H; rename x into H
+ in
+ let negpos H := case H; clear H
+ in
+ let negneg H := save negpos H
+ in
+ let pospos H :=
+ let A := type of H in (elimtype False; revert H; try fold (~A))
+ in
+ let posneg H := save pospos H
+ in
+ let neg H := match goal with
+ | |- (~_) => negneg H
+ | |- (_->False) => negneg H
+ | |- _ => negpos H
+ end in
+ let pos H := match goal with
+ | |- (~_) => posneg H
+ | |- (_->False) => posneg H
+ | |- _ => pospos H
+ end in
+ match type of H with
+ | (~_) => neg H
+ | (_->False) => neg H
+ | _ => (elim H;fail) || pos H
+ end.
-(* A shorter name for generalize + clear, can be seen as an anti-intro *)
+(* Transforming a negative goal [ H:~A |- ~B ] into a positive one [ B |- A ]*)
-Tactic Notation "revert" ne_hyp_list(l) := generalize l; clear l.
+Ltac swap H :=
+ idtac "swap is OBSOLETE: use contradict instead.";
+ intro; apply H; clear H.
-(* to contradict an hypothesis without copying its type. *)
+(* To contradict an hypothesis without copying its type. *)
-Ltac absurd_hyp h :=
- let T := type of h in
+Ltac absurd_hyp H :=
+ idtac "absurd_hyp is OBSOLETE: use contradict instead.";
+ let T := type of H in
absurd T.
-(* Transforming a negative goal [ H:~A |- ~B ] into a positive one [ B |- A ]*)
+(* A useful complement to contradict. Here H:A while G allows to conclude ~A *)
-Ltac swap H := intro; apply H; clear H.
+Ltac false_hyp H G :=
+ let T := type of H in absurd T; [ apply G | assumption ].
(* A case with no loss of information. *)
Ltac case_eq x := generalize (refl_equal x); pattern x at -1; case x.
-(* A tactic for easing the use of lemmas f_equal, f_equal2, ... *)
-
-Ltac f_equal :=
- let cg := try congruence in
- let r := try reflexivity in
- match goal with
- | |- ?f ?a = ?f' ?a' => cut (a=a'); [cg|r]
- | |- ?f ?a ?b = ?f' ?a' ?b' =>
- cut (b=b');[cut (a=a');[cg|r]|r]
- | |- ?f ?a ?b ?c = ?f' ?a' ?b' ?c'=>
- cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r]
- | |- ?f ?a ?b ?c ?d= ?f' ?a' ?b' ?c' ?d'=>
- cut (d=d');[cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r]|r]
- | |- ?f ?a ?b ?c ?d ?e= ?f' ?a' ?b' ?c' ?d' ?e'=>
- cut (e=e');[cut (d=d');[cut (c=c');[cut (b=b');[cut (a=a');[cg|r]|r]|r]|r]|r]
- | _ => idtac
- end.
-
(* Rewriting in all hypothesis several times everywhere *)
Tactic Notation "rewrite_all" constr(eq) := repeat rewrite eq in *.
Tactic Notation "rewrite_all" "<-" constr(eq) := repeat rewrite <- eq in *.
-(* Keeping a copy of an expression *)
-
-Ltac remembertac x a :=
- let x := fresh x in
- let H := fresh "Heq" x in
- (set (x:=a) in *; assert (H: x=a) by reflexivity; clearbody x).
-
-Tactic Notation "remember" constr(c) "as" ident(x) := remembertac x c.
+(** Tactics for applying equivalences.
+
+The following code provides tactics "apply -> t", "apply <- t",
+"apply -> t in H" and "apply <- t in H". Here t is a term whose type
+consists of nested dependent and nondependent products with an
+equivalence A <-> B as the conclusion. The tactics with "->" in their
+names apply A -> B while those with "<-" in the name apply B -> A. *)
+
+(* The idea of the tactics is to first provide a term in the context
+whose type is the implication (in one of the directions), and then
+apply it. The first idea is to produce a statement "forall ..., A ->
+B" (call this type T) and then do "assert (H : T)" for a fresh H.
+Thus, T can be proved from the original equivalence and then used to
+perform the application. However, currently in Ltac it is difficult
+to produce such T from the original formula.
+
+Therefore, we first pose the original equivalence as H. If the type of
+H is a dependent product, we create an existential variable and apply
+H to this variable. If the type of H has the form C -> D, then we do a
+cut on C. Once we eliminate all products, we split (i.e., destruct)
+the conjunction into two parts and apply the relevant one. *)
+
+Ltac find_equiv H :=
+let T := type of H in
+lazymatch T with
+| ?A -> ?B =>
+ let H1 := fresh in
+ let H2 := fresh in
+ cut A;
+ [intro H1; pose proof (H H1) as H2; clear H H1;
+ rename H2 into H; find_equiv H |
+ clear H]
+| forall x : ?t, _ =>
+ let a := fresh "a" with
+ H1 := fresh "H" in
+ evar (a : t); pose proof (H a) as H1; unfold a in H1;
+ clear a; clear H; rename H1 into H; find_equiv H
+| ?A <-> ?B => idtac
+| _ => fail "The given statement does not seem to end with an equivalence"
+end.
+
+Ltac bapply lemma todo :=
+let H := fresh in
+ pose proof lemma as H;
+ find_equiv H; [todo H; clear H | .. ].
+
+Tactic Notation "apply" "->" constr(lemma) :=
+bapply lemma ltac:(fun H => destruct H as [H _]; apply H).
+
+Tactic Notation "apply" "<-" constr(lemma) :=
+bapply lemma ltac:(fun H => destruct H as [_ H]; apply H).
+
+Tactic Notation "apply" "->" constr(lemma) "in" ident(J) :=
+bapply lemma ltac:(fun H => destruct H as [H _]; apply H in J).
+
+Tactic Notation "apply" "<-" constr(lemma) "in" ident(J) :=
+bapply lemma ltac:(fun H => destruct H as [_ H]; apply H in J).
+
+(** A tactic simpler than auto that is useful for ending proofs "in one step" *)
+Tactic Notation "now" tactic(t) :=
+t;
+match goal with
+| H : _ |- _ => solve [inversion H]
+| _ => solve [trivial | reflexivity | symmetry; trivial | discriminate | split]
+| _ => fail 1 "Cannot solve this goal"
+end.
+
+(** A tactic to document or check what is proved at some point of a script *)
+Ltac now_show c := change c.
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
index 4e0f3745..f46b2b11 100644
--- a/theories/Init/Wf.v
+++ b/theories/Init/Wf.v
@@ -6,12 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Wf.v 8988 2006-06-25 22:15:32Z letouzey $ i*)
+(*i $Id: Wf.v 10712 2008-03-23 11:38:38Z herbelin $ i*)
-(** This module proves the validity of
- - well-founded recursion (also called course of values)
+(** * This module proves the validity of
+ - well-founded recursion (also known as course of values)
- well-founded induction
-
from a well-founded ordering on a given set *)
Set Implicit Arguments.
@@ -40,6 +39,7 @@ Section Well_founded.
[let Acc_rec F = let rec wf x = F x wf in wf] *)
Section AccRecType.
+
Variable P : A -> Type.
Variable F : forall x:A,
(forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
@@ -51,17 +51,6 @@ Section Well_founded.
Definition Acc_rec (P:A -> Set) := Acc_rect P.
- (** A simplified version of [Acc_rect] *)
-
- Section AccIter.
- Variable P : A -> Type.
- Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
-
- Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x :=
- F (fun (y:A) (h:R y x) => Acc_iter (Acc_inv a h)).
-
- End AccIter.
-
(** A relation is well-founded if every element is accessible *)
Definition well_founded := forall a:A, Acc a.
@@ -74,7 +63,7 @@ Section Well_founded.
forall P:A -> Type,
(forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
Proof.
- intros; apply (Acc_iter P); auto.
+ intros; apply Acc_rect; auto.
Defined.
Theorem well_founded_induction :
@@ -91,16 +80,26 @@ Section Well_founded.
exact (fun P:A -> Prop => well_founded_induction_type P).
Defined.
-(** Building fixpoints *)
+(** Well-founded fixpoints *)
Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
- Notation Fix_F := (Acc_iter P F) (only parsing). (* alias *)
+ Fixpoint Fix_F (x:A) (a:Acc x) {struct a} : P x :=
+ F (fun (y:A) (h:R y x) => Fix_F (Acc_inv a h)).
+
+ Scheme Acc_inv_dep := Induction for Acc Sort Prop.
+
+ Lemma Fix_F_eq :
+ forall (x:A) (r:Acc x),
+ F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)) = Fix_F (x:=x) r.
+ Proof.
+ destruct r using Acc_inv_dep; auto.
+ Qed.
- Definition Fix (x:A) := Acc_iter P F (Rwf x).
+ Definition Fix (x:A) := Fix_F (Rwf x).
(** Proof that [well_founded_induction] satisfies the fixpoint equation.
It requires an extra property of the functional *)
@@ -110,16 +109,7 @@ Section Well_founded.
forall (x:A) (f g:forall y:A, R y x -> P y),
(forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.
- Scheme Acc_inv_dep := Induction for Acc Sort Prop.
-
- Lemma Fix_F_eq :
- forall (x:A) (r:Acc x),
- F (fun (y:A) (p:R y x) => Fix_F y (Acc_inv r p)) = Fix_F x r.
- Proof.
- destruct r using Acc_inv_dep; auto.
- Qed.
-
- Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
+ Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s.
Proof.
intro x; induction (Rwf x); intros.
rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
@@ -129,7 +119,7 @@ Section Well_founded.
Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
Proof.
intro x; unfold Fix in |- *.
- rewrite <- (Fix_F_eq (x:=x)).
+ rewrite <- Fix_F_eq.
apply F_ext; intros.
apply Fix_F_inv.
Qed.
@@ -138,27 +128,29 @@ Section Well_founded.
End Well_founded.
-(** A recursor over pairs *)
+(** Well-founded fixpoints over pairs *)
Section Well_founded_2.
- Variables A B : Set.
+ Variables A B : Type.
Variable R : A * B -> A * B -> Prop.
Variable P : A -> B -> Type.
- Section Acc_iter_2.
+ Section FixPoint_2.
+
Variable
F :
forall (x:A) (x':B),
(forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x'.
- Fixpoint Acc_iter_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} :
+ Fixpoint Fix_F_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} :
P x x' :=
F
(fun (y:A) (y':B) (h:R (y, y') (x, x')) =>
- Acc_iter_2 (x:=y) (x':=y') (Acc_inv a (y, y') h)).
- End Acc_iter_2.
+ Fix_F_2 (x:=y) (x':=y') (Acc_inv a (y,y') h)).
+
+ End FixPoint_2.
Hypothesis Rwf : well_founded R.
@@ -167,9 +159,10 @@ Section Well_founded_2.
(forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x') ->
forall (a:A) (b:B), P a b.
Proof.
- intros; apply Acc_iter_2; auto.
+ intros; apply Fix_F_2; auto.
Defined.
End Well_founded_2.
-Notation Fix_F := Acc_iter (only parsing). (* compatibility *)
+Notation Acc_iter := Fix_F (only parsing). (* compatibility *)
+Notation Acc_iter_2 := Fix_F_2 (only parsing). (* compatibility *)
diff --git a/theories/IntMap/.depend b/theories/IntMap/.depend
deleted file mode 100644
index 8c90ac99..00000000
--- a/theories/IntMap/.depend
+++ /dev/null
@@ -1,48 +0,0 @@
-Mapsubset.vo: Mapsubset.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo
-Mapsubset.vi: Mapsubset.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo
-Maplists.vo: Maplists.v Addr.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapsubset.vo Mapcard.vo Mapcanon.vo Mapc.vo Mapiter.vo Mapfold.vo
-Maplists.vi: Maplists.v Addr.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapsubset.vo Mapcard.vo Mapcanon.vo Mapc.vo Mapiter.vo Mapfold.vo
-Mapiter.vo: Mapiter.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo
-Mapiter.vi: Mapiter.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo
-Mapfold.vo: Mapfold.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Lsort.vo Mapsubset.vo
-Mapfold.vi: Mapfold.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Lsort.vo Mapsubset.vo
-Mapcard.vo: Mapcard.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Mapsubset.vo Lsort.vo
-Mapcard.vi: Mapcard.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Mapsubset.vo Lsort.vo
-Mapcanon.vo: Mapcanon.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Lsort.vo Mapsubset.vo Mapcard.vo
-Mapcanon.vi: Mapcanon.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Mapiter.vo Fset.vo Lsort.vo Mapsubset.vo Mapcard.vo
-Mapc.vo: Mapc.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapcard.vo Mapcanon.vo
-Mapc.vi: Mapc.v Addr.vo Adist.vo Addec.vo Map.vo Mapaxioms.vo Fset.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapcard.vo Mapcanon.vo
-Mapaxioms.vo: Mapaxioms.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
-Mapaxioms.vi: Mapaxioms.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
-Map.vo: Map.v Addr.vo Adist.vo Addec.vo
-Map.vi: Map.v Addr.vo Adist.vo Addec.vo
-Lsort.vo: Lsort.v Addr.vo Adist.vo Addec.vo Map.vo Mapiter.vo
-Lsort.vi: Lsort.v Addr.vo Adist.vo Addec.vo Map.vo Mapiter.vo
-Fset.vo: Fset.v Addr.vo Adist.vo Addec.vo Map.vo
-Fset.vi: Fset.v Addr.vo Adist.vo Addec.vo Map.vo
-Allmaps.vo: Allmaps.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapfold.vo Mapcard.vo Mapcanon.vo Mapc.vo Maplists.vo Adalloc.vo
-Allmaps.vi: Allmaps.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo Mapaxioms.vo Mapiter.vo Mapsubset.vo Lsort.vo Mapfold.vo Mapcard.vo Mapcanon.vo Mapc.vo Maplists.vo Adalloc.vo
-Adist.vo: Adist.v Addr.vo
-Adist.vi: Adist.v Addr.vo
-Addr.vo: Addr.v
-Addr.vi: Addr.v
-Addec.vo: Addec.v Addr.vo
-Addec.vi: Addec.v Addr.vo
-Adalloc.vo: Adalloc.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
-Adalloc.vi: Adalloc.v Addr.vo Adist.vo Addec.vo Map.vo Fset.vo
-Mapsubset.html: Mapsubset.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html
-Maplists.html: Maplists.v Addr.html Addec.html Map.html Fset.html Mapaxioms.html Mapsubset.html Mapcard.html Mapcanon.html Mapc.html Mapiter.html Mapfold.html
-Mapiter.html: Mapiter.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Fset.html
-Mapfold.html: Mapfold.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html Lsort.html Mapsubset.html
-Mapcard.html: Mapcard.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Mapiter.html Fset.html Mapsubset.html Lsort.html
-Mapcanon.html: Mapcanon.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Mapiter.html Fset.html Lsort.html Mapsubset.html Mapcard.html
-Mapc.html: Mapc.v Addr.html Adist.html Addec.html Map.html Mapaxioms.html Fset.html Mapiter.html Mapsubset.html Lsort.html Mapcard.html Mapcanon.html
-Mapaxioms.html: Mapaxioms.v Addr.html Adist.html Addec.html Map.html Fset.html
-Map.html: Map.v Addr.html Adist.html Addec.html
-Lsort.html: Lsort.v Addr.html Adist.html Addec.html Map.html Mapiter.html
-Fset.html: Fset.v Addr.html Adist.html Addec.html Map.html
-Allmaps.html: Allmaps.v Addr.html Adist.html Addec.html Map.html Fset.html Mapaxioms.html Mapiter.html Mapsubset.html Lsort.html Mapfold.html Mapcard.html Mapcanon.html Mapc.html Maplists.html Adalloc.html
-Adist.html: Adist.v Addr.html
-Addr.html: Addr.v
-Addec.html: Addec.v Addr.html
-Adalloc.html: Adalloc.v Addr.html Adist.html Addec.html Map.html Fset.html
diff --git a/theories/IntMap/Adalloc.v b/theories/IntMap/Adalloc.v
deleted file mode 100644
index ca8e7eeb..00000000
--- a/theories/IntMap/Adalloc.v
+++ /dev/null
@@ -1,94 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Adalloc.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Nnat.
-Require Import Map.
-Require Import Fset.
-
-Section AdAlloc.
-
- Variable A : Set.
-
- (** Allocator: returns an address not in the domain of [m].
- This allocator is optimal in that it returns the lowest possible address,
- in the usual ordering on integers. It is not the most efficient, however. *)
- Fixpoint ad_alloc_opt (m:Map A) : ad :=
- match m with
- | M0 => N0
- | M1 a _ => if Neqb a N0 then Npos 1 else N0
- | M2 m1 m2 =>
- Nmin (Ndouble (ad_alloc_opt m1))
- (Ndouble_plus_one (ad_alloc_opt m2))
- end.
-
- Lemma ad_alloc_opt_allocates_1 :
- forall m:Map A, MapGet A m (ad_alloc_opt m) = None.
- Proof.
- induction m as [| a| m0 H m1 H0]. reflexivity.
- simpl in |- *. elim (sumbool_of_bool (Neqb a N0)). intro H. rewrite H.
- rewrite (Neqb_complete _ _ H). reflexivity.
- intro H. rewrite H. rewrite H. reflexivity.
- intros. change
- (ad_alloc_opt (M2 A m0 m1)) with (Nmin (Ndouble (ad_alloc_opt m0))
- (Ndouble_plus_one (ad_alloc_opt m1)))
- in |- *.
- elim
- (Nmin_choice (Ndouble (ad_alloc_opt m0))
- (Ndouble_plus_one (ad_alloc_opt m1))).
- intro H1. rewrite H1. rewrite MapGet_M2_bit_0_0. rewrite Ndouble_div2. assumption.
- apply Ndouble_bit0.
- intro H1. rewrite H1. rewrite MapGet_M2_bit_0_1. rewrite Ndouble_plus_one_div2. assumption.
- apply Ndouble_plus_one_bit0.
- Qed.
-
- Lemma ad_alloc_opt_allocates :
- forall m:Map A, in_dom A (ad_alloc_opt m) m = false.
- Proof.
- unfold in_dom in |- *. intro. rewrite (ad_alloc_opt_allocates_1 m). reflexivity.
- Qed.
-
- (** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)]
- are in [dom m]: *)
-
- Lemma ad_alloc_opt_optimal_1 :
- forall (m:Map A) (a:ad),
- Nle (ad_alloc_opt m) a = false -> {y : A | MapGet A m a = Some y}.
- Proof.
- induction m as [| a y| m0 H m1 H0]. simpl in |- *. unfold Nle in |- *. simpl in |- *. intros. discriminate H.
- simpl in |- *. intros b H. elim (sumbool_of_bool (Neqb a N0)). intro H0. rewrite H0 in H.
- unfold Nle in H. cut (N0 = b). intro. split with y. rewrite <- H1. rewrite H0. reflexivity.
- rewrite <- (N_of_nat_of_N b).
- rewrite <- (le_n_O_eq _ (le_S_n _ _ (leb_complete_conv _ _ H))). reflexivity.
- intro H0. rewrite H0 in H. discriminate H.
- intros. simpl in H1. elim (Ndouble_or_double_plus_un a). intro H2. elim H2. intros a0 H3.
- rewrite H3 in H1. elim (H _ (Nlt_double_mono_conv _ _ (Nmin_lt_3 _ _ _ H1))). intros y H4.
- split with y. rewrite H3. rewrite MapGet_M2_bit_0_0. rewrite Ndouble_div2. assumption.
- apply Ndouble_bit0.
- intro H2. elim H2. intros a0 H3. rewrite H3 in H1.
- elim (H0 _ (Nlt_double_plus_one_mono_conv _ _ (Nmin_lt_4 _ _ _ H1))). intros y H4.
- split with y. rewrite H3. rewrite MapGet_M2_bit_0_1. rewrite Ndouble_plus_one_div2.
- assumption.
- apply Ndouble_plus_one_bit0.
- Qed.
-
- Lemma ad_alloc_opt_optimal :
- forall (m:Map A) (a:ad),
- Nle (ad_alloc_opt m) a = false -> in_dom A a m = true.
- Proof.
- intros. unfold in_dom in |- *. elim (ad_alloc_opt_optimal_1 m a H). intros y H0. rewrite H0.
- reflexivity.
- Qed.
-
-End AdAlloc.
diff --git a/theories/IntMap/Fset.v b/theories/IntMap/Fset.v
deleted file mode 100644
index 5b46c969..00000000
--- a/theories/IntMap/Fset.v
+++ /dev/null
@@ -1,371 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Fset.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-(*s Sets operations on maps *)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-
-Section Dom.
-
- Variables A B : Set.
-
- Fixpoint MapDomRestrTo (m:Map A) : Map B -> Map A :=
- match m with
- | M0 => fun _:Map B => M0 A
- | M1 a y =>
- fun m':Map B => match MapGet B m' a with
- | None => M0 A
- | _ => m
- end
- | M2 m1 m2 =>
- fun m':Map B =>
- match m' with
- | M0 => M0 A
- | M1 a' y' =>
- match MapGet A m a' with
- | None => M0 A
- | Some y => M1 A a' y
- end
- | M2 m'1 m'2 =>
- makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2)
- end
- end.
-
- Lemma MapDomRestrTo_semantics :
- forall (m:Map A) (m':Map B),
- eqm A (MapGet A (MapDomRestrTo m m'))
- (fun a0:ad =>
- match MapGet B m' a0 with
- | None => None
- | _ => MapGet A m a0
- end).
- Proof.
- unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
- intros. simpl in |- *. elim (sumbool_of_bool (Neqb a a1)). intro H. rewrite H.
- rewrite <- (Neqb_complete _ _ H). case (MapGet B m' a); try reflexivity.
- intro. apply M1_semantics_1.
- intro H. rewrite H. case (MapGet B m' a).
- case (MapGet B m' a1); intros; exact (M1_semantics_2 A a a1 a0 H).
- case (MapGet B m' a1); reflexivity.
- simple induction m'. trivial.
- unfold MapDomRestrTo in |- *. intros. elim (sumbool_of_bool (Neqb a a1)).
- intro H1.
- rewrite (Neqb_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0).
- case (MapGet A (M2 A m0 m1) a1); try reflexivity.
- intro. apply M1_semantics_1.
- intro H1. rewrite (M1_semantics_2 B a a1 a0 H1). case (MapGet A (M2 A m0 m1) a); try reflexivity.
- intro. exact (M1_semantics_2 A a a1 a2 H1).
- intros. change
- (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a =
- match MapGet B (M2 B m2 m3) a with
- | None => None
- | Some _ => MapGet A (M2 A m0 m1) a
- end) in |- *.
- rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a).
- rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)).
- rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- case (Nbit0 a); reflexivity.
- Qed.
-
- Fixpoint MapDomRestrBy (m:Map A) : Map B -> Map A :=
- match m with
- | M0 => fun _:Map B => M0 A
- | M1 a y =>
- fun m':Map B => match MapGet B m' a with
- | None => m
- | _ => M0 A
- end
- | M2 m1 m2 =>
- fun m':Map B =>
- match m' with
- | M0 => m
- | M1 a' y' => MapRemove A m a'
- | M2 m'1 m'2 =>
- makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2)
- end
- end.
-
- Lemma MapDomRestrBy_semantics :
- forall (m:Map A) (m':Map B),
- eqm A (MapGet A (MapDomRestrBy m m'))
- (fun a0:ad =>
- match MapGet B m' a0 with
- | None => MapGet A m a0
- | _ => None
- end).
- Proof.
- unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial.
- intros. simpl in |- *. elim (sumbool_of_bool (Neqb a a1)). intro H. rewrite H.
- rewrite (Neqb_complete _ _ H). case (MapGet B m' a1). trivial.
- apply M1_semantics_1.
- intro H. rewrite H. case (MapGet B m' a).
- case (MapGet B m' a1); trivial.
- rewrite (M1_semantics_2 A a a1 a0 H).
- case (MapGet B m' a1); trivial.
- simple induction m'. trivial.
- unfold MapDomRestrBy in |- *. intros. rewrite (MapRemove_semantics A (M2 A m0 m1) a a1).
- elim (sumbool_of_bool (Neqb a a1)). intro H1. rewrite H1. rewrite (Neqb_complete _ _ H1).
- rewrite (M1_semantics_1 B a1 a0). reflexivity.
- intro H1. rewrite H1. rewrite (M1_semantics_2 B a a1 a0 H1). reflexivity.
- intros. change
- (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a =
- match MapGet B (M2 B m2 m3) a with
- | None => MapGet A (M2 A m0 m1) a
- | Some _ => None
- end) in |- *.
- rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a).
- rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)).
- rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- case (Nbit0 a); reflexivity.
- Qed.
-
- Definition in_dom (a:ad) (m:Map A) :=
- match MapGet A m a with
- | None => false
- | _ => true
- end.
-
- Lemma in_dom_M0 : forall a:ad, in_dom a (M0 A) = false.
- Proof.
- trivial.
- Qed.
-
- Lemma in_dom_M1 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = Neqb a a0.
- Proof.
- unfold in_dom in |- *. intros. simpl in |- *. case (Neqb a a0); reflexivity.
- Qed.
-
- Lemma in_dom_M1_1 : forall (a:ad) (y:A), in_dom a (M1 A a y) = true.
- Proof.
- intros. rewrite in_dom_M1. apply Neqb_correct.
- Qed.
-
- Lemma in_dom_M1_2 :
- forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = true -> a = a0.
- Proof.
- intros. apply (Neqb_complete a a0). rewrite (in_dom_M1 a a0 y) in H. assumption.
- Qed.
-
- Lemma in_dom_some :
- forall (m:Map A) (a:ad),
- in_dom a m = true -> {y : A | MapGet A m a = Some y}.
- Proof.
- unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). trivial.
- intro H0. rewrite H0 in H. discriminate H.
- Qed.
-
- Lemma in_dom_none :
- forall (m:Map A) (a:ad), in_dom a m = false -> MapGet A m a = None.
- Proof.
- unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H0. elim H0.
- intros y H1. rewrite H1 in H. discriminate H.
- trivial.
- Qed.
-
- Lemma in_dom_put :
- forall (m:Map A) (a0:ad) (y0:A) (a:ad),
- in_dom a (MapPut A m a0 y0) = orb (Neqb a a0) (in_dom a m).
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapPut_semantics A m a0 y0 a).
- elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H.
- rewrite H. rewrite orb_true_b. reflexivity.
- intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H. rewrite orb_false_b.
- reflexivity.
- Qed.
-
- Lemma in_dom_put_behind :
- forall (m:Map A) (a0:ad) (y0:A) (a:ad),
- in_dom a (MapPut_behind A m a0 y0) = orb (Neqb a a0) (in_dom a m).
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapPut_behind_semantics A m a0 y0 a).
- elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H.
- rewrite H. case (MapGet A m a); reflexivity.
- intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H. case (MapGet A m a); trivial.
- Qed.
-
- Lemma in_dom_remove :
- forall (m:Map A) (a0 a:ad),
- in_dom a (MapRemove A m a0) = andb (negb (Neqb a a0)) (in_dom a m).
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapRemove_semantics A m a0 a).
- elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H. rewrite (Neqb_comm a a0) in H.
- rewrite H. reflexivity.
- intro H. rewrite H. rewrite (Neqb_comm a a0) in H. rewrite H.
- case (MapGet A m a); reflexivity.
- Qed.
-
- Lemma in_dom_merge :
- forall (m m':Map A) (a:ad),
- in_dom a (MapMerge A m m') = orb (in_dom a m) (in_dom a m').
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapMerge_semantics A m m' a).
- elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
- case (MapGet A m a); reflexivity.
- intro H. rewrite H. rewrite orb_b_false. reflexivity.
- Qed.
-
- Lemma in_dom_delta :
- forall (m m':Map A) (a:ad),
- in_dom a (MapDelta A m m') = xorb (in_dom a m) (in_dom a m').
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapDelta_semantics A m m' a).
- elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0.
- case (MapGet A m a); reflexivity.
- intro H. rewrite H. case (MapGet A m a); reflexivity.
- Qed.
-
-End Dom.
-
-Section InDom.
-
- Variables A B : Set.
-
- Lemma in_dom_restrto :
- forall (m:Map A) (m':Map B) (a:ad),
- in_dom A a (MapDomRestrTo A B m m') =
- andb (in_dom A a m) (in_dom B a m').
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
- elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
- rewrite andb_b_true. reflexivity.
- intro H. rewrite H. rewrite andb_b_false. reflexivity.
- Qed.
-
- Lemma in_dom_restrby :
- forall (m:Map A) (m':Map B) (a:ad),
- in_dom A a (MapDomRestrBy A B m m') =
- andb (in_dom A a m) (negb (in_dom B a m')).
- Proof.
- unfold in_dom in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
- elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0.
- unfold negb in |- *. rewrite andb_b_false. reflexivity.
- intro H. rewrite H. unfold negb in |- *. rewrite andb_b_true. reflexivity.
- Qed.
-
-End InDom.
-
-Definition FSet := Map unit.
-
-Section FSetDefs.
-
- Variable A : Set.
-
- Definition in_FSet : ad -> FSet -> bool := in_dom unit.
-
- Fixpoint MapDom (m:Map A) : FSet :=
- match m with
- | M0 => M0 unit
- | M1 a _ => M1 unit a tt
- | M2 m m' => M2 unit (MapDom m) (MapDom m')
- end.
-
- Lemma MapDom_semantics_1 :
- forall (m:Map A) (a:ad) (y:A),
- MapGet A m a = Some y -> in_FSet a (MapDom m) = true.
- Proof.
- simple induction m. intros. discriminate H.
- unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0 y0.
- case (Neqb a a0). trivial.
- intro. discriminate H.
- intros m0 H m1 H0 a y. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
- unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
- case (Nbit0 a). unfold in_FSet, in_dom in H0. intro. apply H0 with (y := y). assumption.
- unfold in_FSet, in_dom in H. intro. apply H with (y := y). assumption.
- Qed.
-
- Lemma MapDom_semantics_2 :
- forall (m:Map A) (a:ad),
- in_FSet a (MapDom m) = true -> {y : A | MapGet A m a = Some y}.
- Proof.
- simple induction m. intros. discriminate H.
- unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0. case (Neqb a a0).
- intro. split with y. reflexivity.
- intro. discriminate H.
- intros m0 H m1 H0 a. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *.
- unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a).
- case (Nbit0 a). unfold in_FSet, in_dom in H0. intro. apply H0. assumption.
- unfold in_FSet, in_dom in H. intro. apply H. assumption.
- Qed.
-
- Lemma MapDom_semantics_3 :
- forall (m:Map A) (a:ad),
- MapGet A m a = None -> in_FSet a (MapDom m) = false.
- Proof.
- intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H0.
- elim (MapDom_semantics_2 m a H0). intros y H1. rewrite H in H1. discriminate H1.
- trivial.
- Qed.
-
- Lemma MapDom_semantics_4 :
- forall (m:Map A) (a:ad),
- in_FSet a (MapDom m) = false -> MapGet A m a = None.
- Proof.
- intros. elim (option_sum A (MapGet A m a)). intro H0. elim H0. intros y H1.
- rewrite (MapDom_semantics_1 m a y H1) in H. discriminate H.
- trivial.
- Qed.
-
- Lemma MapDom_Dom :
- forall (m:Map A) (a:ad), in_dom A a m = in_FSet a (MapDom m).
- Proof.
- intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H.
- elim (MapDom_semantics_2 m a H). intros y H0. rewrite H. unfold in_dom in |- *. rewrite H0.
- reflexivity.
- intro H. rewrite H. unfold in_dom in |- *. rewrite (MapDom_semantics_4 m a H). reflexivity.
- Qed.
-
- Definition FSetUnion (s s':FSet) : FSet := MapMerge unit s s'.
-
- Lemma in_FSet_union :
- forall (s s':FSet) (a:ad),
- in_FSet a (FSetUnion s s') = orb (in_FSet a s) (in_FSet a s').
- Proof.
- exact (in_dom_merge unit).
- Qed.
-
- Definition FSetInter (s s':FSet) : FSet := MapDomRestrTo unit unit s s'.
-
- Lemma in_FSet_inter :
- forall (s s':FSet) (a:ad),
- in_FSet a (FSetInter s s') = andb (in_FSet a s) (in_FSet a s').
- Proof.
- exact (in_dom_restrto unit unit).
- Qed.
-
- Definition FSetDiff (s s':FSet) : FSet := MapDomRestrBy unit unit s s'.
-
- Lemma in_FSet_diff :
- forall (s s':FSet) (a:ad),
- in_FSet a (FSetDiff s s') = andb (in_FSet a s) (negb (in_FSet a s')).
- Proof.
- exact (in_dom_restrby unit unit).
- Qed.
-
- Definition FSetDelta (s s':FSet) : FSet := MapDelta unit s s'.
-
- Lemma in_FSet_delta :
- forall (s s':FSet) (a:ad),
- in_FSet a (FSetDelta s s') = xorb (in_FSet a s) (in_FSet a s').
- Proof.
- exact (in_dom_delta unit).
- Qed.
-
-End FSetDefs.
-
-Lemma FSet_Dom : forall s:FSet, MapDom unit s = s.
-Proof.
- simple induction s. trivial.
- simpl in |- *. intros a t. elim t. reflexivity.
- intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
-Qed. \ No newline at end of file
diff --git a/theories/IntMap/Lsort.v b/theories/IntMap/Lsort.v
deleted file mode 100644
index c8d793a1..00000000
--- a/theories/IntMap/Lsort.v
+++ /dev/null
@@ -1,413 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Lsort.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import List.
-Require Import Mapiter.
-
-Section LSort.
-
- Variable A : Set.
-
- Fixpoint alist_sorted (l:alist A) : bool :=
- match l with
- | nil => true
- | (a, _) :: l' =>
- match l' with
- | nil => true
- | (a', y') :: l'' => andb (Nless a a') (alist_sorted l')
- end
- end.
-
- Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad :=
- match l with
- | nil => N0 (* dummy *)
- | (a, y) :: l' => match n with
- | O => a
- | S n' => alist_nth_ad n' l'
- end
- end.
-
- Definition alist_sorted_1 (l:alist A) :=
- forall n:nat,
- S (S n) <= length l ->
- Nless (alist_nth_ad n l) (alist_nth_ad (S n) l) = true.
-
- Lemma alist_sorted_imp_1 :
- forall l:alist A, alist_sorted l = true -> alist_sorted_1 l.
- Proof.
- unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0).
- intro r. elim r. intros a y. simple induction l0. intros. simpl in H1.
- elim (le_Sn_O n (le_S_n (S n) 0 H1)).
- intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1.
- exact (proj1 (andb_prop _ _ H1)).
- intros. change
- (Nless (alist_nth_ad n0 ((a0, y0) :: l1))
- (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true)
- in |- *.
- apply H0. exact (proj2 (andb_prop _ _ H1)).
- apply le_S_n. exact H3.
- Qed.
-
- Definition alist_sorted_2 (l:alist A) :=
- forall m n:nat,
- m < n ->
- S n <= length l -> Nless (alist_nth_ad m l) (alist_nth_ad n l) = true.
-
- Lemma alist_sorted_1_imp_2 :
- forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l.
- Proof.
- unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m).
- intros. apply Nless_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le.
- assumption.
- apply H. assumption.
- Qed.
-
- Lemma alist_sorted_2_imp :
- forall l:alist A, alist_sorted_2 l -> alist_sorted l = true.
- Proof.
- unfold alist_sorted_2, lt in |- *. simple induction l. trivial.
- intro r. elim r. intros a y. simple induction l0. trivial.
- intro r0. elim r0. intros a0 y0. intros.
- change (andb (Nless a a0) (alist_sorted ((a0, y0) :: l1)) = true)
- in |- *.
- apply andb_true_intro. split. apply (H1 0 1). apply le_n.
- simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
- apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption.
- exact (le_n_S _ _ H3).
- Qed.
-
- Lemma app_length :
- forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (H l'). reflexivity.
- Qed.
-
- Lemma aapp_length :
- forall l l':alist A, length (aapp A l l') = length l + length l'.
- Proof.
- exact (app_length (ad * A)).
- Qed.
-
- Lemma alist_nth_ad_aapp_1 :
- forall (l l':alist A) (n:nat),
- S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l.
- Proof.
- simple induction l. intros. elim (le_Sn_O n H).
- intro r. elim r. intros a y l' H l''. simple induction n. trivial.
- intros. simpl in |- *. apply H. apply le_S_n. exact H1.
- Qed.
-
- Lemma alist_nth_ad_aapp_2 :
- forall (l l':alist A) (n:nat),
- S n <= length l' ->
- alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'.
- Proof.
- simple induction l. trivial.
- intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0.
- Qed.
-
- Lemma interval_split :
- forall p q n:nat,
- S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}.
- Proof.
- simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ].
- intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n.
- intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3.
- elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ].
- intro H2. right. apply le_n_S. assumption.
- Qed.
-
- Lemma alist_conc_sorted :
- forall l l':alist A,
- alist_sorted_2 l ->
- alist_sorted_2 l' ->
- (forall n n':nat,
- S n <= length l ->
- S n' <= length l' ->
- Nless (alist_nth_ad n l) (alist_nth_ad n' l') = true) ->
- alist_sorted_2 (aapp A l l').
- Proof.
- unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3.
- elim
- (interval_split (length l) (length l') m
- (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)).
- intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7.
- rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3).
- intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11.
- rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2.
- change (S (length l) + m' <= length l + n') in H2.
- rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2).
- exact H10.
- intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9).
- apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')).
- apply le_trans with (m := length l + m'). apply le_plus_l.
- apply le_n_Sn.
- exact H2.
- exact H8.
- intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4).
- elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6.
- intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7).
- intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5).
- Qed.
-
- Lemma alist_nth_ad_semantics :
- forall (l:alist A) (n:nat),
- S n <= length l ->
- {y : A | alist_semantics A l (alist_nth_ad n l) = Some y}.
- Proof.
- simple induction l. intros. elim (le_Sn_O _ H).
- intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y.
- rewrite (Neqb_correct a). reflexivity.
- intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2.
- elim (sumbool_of_bool (Neqb a (alist_nth_ad n0 l0))). intro H3. split with y.
- rewrite (Neqb_complete _ _ H3). simpl in |- *. rewrite (Neqb_correct (alist_nth_ad n0 l0)).
- reflexivity.
- intro H3. split with y0. simpl in |- *. rewrite H3. assumption.
- Qed.
-
- Lemma alist_of_Map_nth_ad :
- forall (m:Map A) (pf:ad -> ad) (l:alist A),
- l =
- MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m ->
- forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}.
- Proof.
- intros. elim (alist_nth_ad_semantics l n H0). intros y H1.
- apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y).
- rewrite <- H. assumption.
- Qed.
-
- Definition ad_monotonic (pf:ad -> ad) :=
- forall a a':ad, Nless a a' = true -> Nless (pf a) (pf a') = true.
-
- Lemma Ndouble_monotonic : ad_monotonic Ndouble.
- Proof.
- unfold ad_monotonic in |- *. intros. rewrite Nless_def_1. assumption.
- Qed.
-
- Lemma Ndouble_plus_one_monotonic : ad_monotonic Ndouble_plus_one.
- Proof.
- unfold ad_monotonic in |- *. intros. rewrite Nless_def_2. assumption.
- Qed.
-
- Lemma ad_comp_monotonic :
- forall pf pf':ad -> ad,
- ad_monotonic pf ->
- ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)).
- Proof.
- unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1.
- Qed.
-
- Lemma ad_comp_double_monotonic :
- forall pf:ad -> ad,
- ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (Ndouble a0)).
- Proof.
- intros. apply ad_comp_monotonic. assumption.
- exact Ndouble_monotonic.
- Qed.
-
- Lemma ad_comp_double_plus_un_monotonic :
- forall pf:ad -> ad,
- ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (Ndouble_plus_one a0)).
- Proof.
- intros. apply ad_comp_monotonic. assumption.
- exact Ndouble_plus_one_monotonic.
- Qed.
-
- Lemma alist_of_Map_sorts_1 :
- forall (m:Map A) (pf:ad -> ad),
- ad_monotonic pf ->
- alist_sorted_2
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m).
- Proof.
- simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
- intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity.
- intros. simpl in |- *. apply alist_conc_sorted.
- exact
- (H (fun a0:ad => pf (Ndouble a0)) (ad_comp_double_monotonic pf H1)).
- exact
- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))
- (ad_comp_double_plus_un_monotonic pf H1)).
- intros. elim
- (alist_of_Map_nth_ad m0 (fun a0:ad => pf (Ndouble a0))
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
- (fun a0:ad => pf (Ndouble a0)) m0) (refl_equal _) n H2).
- intros a H4. rewrite H4. elim
- (alist_of_Map_nth_ad m1 (fun a0:ad => pf (Ndouble_plus_one a0))
- (MapFold1 A (alist A) (anil A) (aapp A)
- (fun (a0:ad) (y:A) => acons A (a0, y) (anil A))
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1) (
- refl_equal _) n' H3).
- intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply Nless_def_3.
- Qed.
-
- Lemma alist_of_Map_sorts :
- forall m:Map A, alist_sorted (alist_of_Map A m) = true.
- Proof.
- intro. apply alist_sorted_2_imp.
- exact
- (alist_of_Map_sorts_1 m (fun a0:ad => a0)
- (fun (a a':ad) (p:Nless a a' = true) => p)).
- Qed.
-
- Lemma alist_of_Map_sorts1 :
- forall m:Map A, alist_sorted_1 (alist_of_Map A m).
- Proof.
- intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts.
- Qed.
-
- Lemma alist_of_Map_sorts2 :
- forall m:Map A, alist_sorted_2 (alist_of_Map A m).
- Proof.
- intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1.
- Qed.
-
- Lemma alist_too_low :
- forall (l:alist A) (a a':ad) (y:A),
- Nless a a' = true ->
- alist_sorted_2 ((a', y) :: l) ->
- alist_semantics A ((a', y) :: l) a = None.
- Proof.
- simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (Neqb a' a)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (Nless_not_refl a) in H. discriminate H.
- intro H1. rewrite H1. reflexivity.
- intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1.
- change
- (match Neqb a1 a0 with
- | true => Some y0
- | false => alist_semantics A ((a, y) :: l0) a0
- end = None) in |- *.
- elim (sumbool_of_bool (Neqb a1 a0)). intro H2. rewrite (Neqb_complete _ _ H2) in H0.
- rewrite (Nless_not_refl a0) in H0. discriminate H0.
- intro H2. rewrite H2. apply H. apply Nless_trans with (a' := a1). assumption.
- unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn.
- simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n.
- apply alist_sorted_1_imp_2. apply alist_sorted_imp_1.
- cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3.
- exact (proj2 (andb_prop _ _ H3)).
- apply alist_sorted_2_imp. assumption.
- Qed.
-
- Lemma alist_semantics_nth_ad :
- forall (l:alist A) (a:ad) (y:A),
- alist_semantics A l a = Some y ->
- {n : nat | S n <= length l /\ alist_nth_ad n l = a}.
- Proof.
- simple induction l. intros. discriminate H.
- intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (Neqb a a0)).
- intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n.
- simpl in |- *. exact (Neqb_complete _ _ H1).
- intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split.
- simpl in |- *. apply le_n_S. exact (proj1 H2).
- exact (proj2 H2).
- Qed.
-
- Lemma alist_semantics_tail :
- forall (l:alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) ->
- eqm A (alist_semantics A l)
- (fun a0:ad =>
- if Neqb a a0 then None else alist_semantics A ((a, y) :: l) a0).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete _ _ H0). unfold alist_sorted_2 in H.
- elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2.
- elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros.
- cut
- (Nless (alist_nth_ad 0 ((a, y) :: l))
- (alist_nth_ad (S n) ((a, y) :: l)) = true).
- intro. simpl in H6. rewrite H5 in H6. rewrite (Nless_not_refl a) in H6. discriminate H6.
- apply H. apply lt_O_Sn.
- simpl in |- *. apply le_n_S. assumption.
- trivial.
- intro H0. simpl in |- *. rewrite H0. reflexivity.
- Qed.
-
- Lemma alist_semantics_same_tail :
- forall (l l':alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) ->
- alist_sorted_2 ((a, y) :: l') ->
- eqm A (alist_semantics A ((a, y) :: l))
- (alist_semantics A ((a, y) :: l')) ->
- eqm A (alist_semantics A l) (alist_semantics A l').
- Proof.
- unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0).
- rewrite (alist_semantics_tail _ _ _ H0 a0). case (Neqb a a0). reflexivity.
- exact (H1 a0).
- Qed.
-
- Lemma alist_sorted_tail :
- forall (l:alist A) (a:ad) (y:A),
- alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l.
- Proof.
- unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption.
- simpl in |- *. apply le_n_S. assumption.
- Qed.
-
- Lemma alist_canonical :
- forall l l':alist A,
- eqm A (alist_semantics A l) (alist_semantics A l') ->
- alist_sorted_2 l -> alist_sorted_2 l' -> l = l'.
- Proof.
- unfold eqm in |- *. simple induction l. simple induction l'. trivial.
- intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0.
- cut
- (None =
- match Neqb a a with
- | true => Some y
- | false => alist_semantics A l0 a
- end).
- rewrite (Neqb_correct a). intro. discriminate H3.
- exact (H0 a).
- intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0.
- cut
- (match Neqb a a with
- | true => Some y
- | false => alist_semantics A l0 a
- end = None).
- rewrite (Neqb_correct a). intro. discriminate H3.
- exact (H0 a).
- intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (Nless_total a a'). intro H4.
- elim H4. intro H5.
- cut
- (alist_semantics A ((a, y) :: l0) a =
- alist_semantics A ((a', y') :: l'0) a).
- intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6.
- rewrite (Neqb_correct a) in H6. discriminate H6.
- exact (H1 a).
- intro H5. cut
- (alist_semantics A ((a, y) :: l0) a' =
- alist_semantics A ((a', y') :: l'0) a').
- intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6.
- rewrite (Neqb_correct a') in H6. discriminate H6.
- exact (H1 a').
- intro H4. rewrite H4.
- cut
- (alist_semantics A ((a, y) :: l0) a =
- alist_semantics A ((a', y') :: l'0) a).
- intro. simpl in H5. rewrite H4 in H5. rewrite (Neqb_correct a') in H5. inversion H5.
- rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity.
- apply H. rewrite H4 in H2. rewrite H7 in H2.
- exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1).
- exact (alist_sorted_tail _ _ _ H2).
- exact (alist_sorted_tail _ _ _ H3).
- exact (H1 a).
- Qed.
-
-End LSort. \ No newline at end of file
diff --git a/theories/IntMap/Map.v b/theories/IntMap/Map.v
deleted file mode 100644
index 2be6de04..00000000
--- a/theories/IntMap/Map.v
+++ /dev/null
@@ -1,869 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Map.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-(** Definition of finite sets as trees indexed by adresses *)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-
-(* The type [ad] of addresses is now [N] in [BinNat]. *)
-
-Definition ad := N.
-
-(* a Notation or complete replacement would be nice,
- but that would changes hyps names *)
-
-Section MapDefs.
-
-(** We now define maps from ad to A. *)
- Variable A : Set.
-
- Inductive Map : Set :=
- | M0 : Map
- | M1 : ad -> A -> Map
- | M2 : Map -> Map -> Map.
-
- Lemma option_sum : forall o:option A, {y : A | o = Some y} + {o = None}.
- Proof.
- simple induction o.
- left. split with a. reflexivity.
- right. reflexivity.
- Qed.
-
- (** The semantics of maps is given by the function [MapGet].
- The semantics of a map [m] is a partial, finite function from
- [ad] to [A]: *)
-
- Fixpoint MapGet (m:Map) : ad -> option A :=
- match m with
- | M0 => fun a:ad => None
- | M1 x y => fun a:ad => if Neqb x a then Some y else None
- | M2 m1 m2 =>
- fun a:ad =>
- match a with
- | N0 => MapGet m1 N0
- | Npos xH => MapGet m2 N0
- | Npos (xO p) => MapGet m1 (Npos p)
- | Npos (xI p) => MapGet m2 (Npos p)
- end
- end.
-
- Definition newMap := M0.
-
- Definition MapSingleton := M1.
-
- Definition eqm (g g':ad -> option A) := forall a:ad, g a = g' a.
-
- Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => None).
- Proof.
- simpl in |- *. unfold eqm in |- *. trivial.
- Qed.
-
- Lemma MapSingleton_semantics :
- forall (a:ad) (y:A),
- eqm (MapGet (MapSingleton a y))
- (fun a':ad => if Neqb a a' then Some y else None).
- Proof.
- simpl in |- *. unfold eqm in |- *. trivial.
- Qed.
-
- Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = Some y.
- Proof.
- unfold MapGet in |- *. intros. rewrite (Neqb_correct a). reflexivity.
- Qed.
-
- Lemma M1_semantics_2 :
- forall (a a':ad) (y:A), Neqb a a' = false -> MapGet (M1 a y) a' = None.
- Proof.
- intros. simpl in |- *. rewrite H. reflexivity.
- Qed.
-
- Lemma Map2_semantics_1 :
- forall m m':Map,
- eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (Ndouble a)).
- Proof.
- unfold eqm in |- *. simple induction a; trivial.
- Qed.
-
- Lemma Map2_semantics_1_eq :
- forall (m m':Map) (f:ad -> option A),
- eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (Ndouble a)).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndouble a)).
- exact (Map2_semantics_1 m m' a).
- Qed.
-
- Lemma Map2_semantics_2 :
- forall m m':Map,
- eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (Ndouble_plus_one a)).
- Proof.
- unfold eqm in |- *. simple induction a; trivial.
- Qed.
-
- Lemma Map2_semantics_2_eq :
- forall (m m':Map) (f:ad -> option A),
- eqm (MapGet (M2 m m')) f ->
- eqm (MapGet m') (fun a:ad => f (Ndouble_plus_one a)).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndouble_plus_one a)).
- exact (Map2_semantics_2 m m' a).
- Qed.
-
- Lemma MapGet_M2_bit_0_0 :
- forall a:ad,
- Nbit0 a = false ->
- forall m m':Map, MapGet (M2 m m') a = MapGet m (Ndiv2 a).
- Proof.
- simple induction a; trivial. simple induction p. intros. discriminate H0.
- trivial.
- intros. discriminate H.
- Qed.
-
- Lemma MapGet_M2_bit_0_1 :
- forall a:ad,
- Nbit0 a = true ->
- forall m m':Map, MapGet (M2 m m') a = MapGet m' (Ndiv2 a).
- Proof.
- simple induction a. intros. discriminate H.
- simple induction p. trivial.
- intros. discriminate H0.
- trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_if :
- forall (m m':Map) (a:ad),
- MapGet (M2 m m') a =
- (if Nbit0 a then MapGet m' (Ndiv2 a) else MapGet m (Ndiv2 a)).
- Proof.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H. rewrite H.
- apply MapGet_M2_bit_0_1; assumption.
- intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
- Qed.
-
- Lemma MapGet_M2_bit_0 :
- forall (m m' m'':Map) (a:ad),
- (if Nbit0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) =
- MapGet m (Ndiv2 a).
- Proof.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H. rewrite H.
- apply MapGet_M2_bit_0_1; assumption.
- intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
- Qed.
-
- Lemma Map2_semantics_3 :
- forall m m':Map,
- eqm (MapGet (M2 m m'))
- (fun a:ad =>
- match Nbit0 a with
- | false => MapGet m (Ndiv2 a)
- | true => MapGet m' (Ndiv2 a)
- end).
- Proof.
- unfold eqm in |- *.
- simple induction a; trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma Map2_semantics_3_eq :
- forall (m m':Map) (f f':ad -> option A),
- eqm (MapGet m) f ->
- eqm (MapGet m') f' ->
- eqm (MapGet (M2 m m'))
- (fun a:ad =>
- match Nbit0 a with
- | false => f (Ndiv2 a)
- | true => f' (Ndiv2 a)
- end).
- Proof.
- unfold eqm in |- *.
- intros.
- rewrite <- (H (Ndiv2 a)).
- rewrite <- (H0 (Ndiv2 a)).
- exact (Map2_semantics_3 m m' a).
- Qed.
-
- Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} :
- Map :=
- match p with
- | xO p' =>
- let m := MapPut1 (Ndiv2 a) y (Ndiv2 a') y' p' in
- match Nbit0 a with
- | false => M2 m M0
- | true => M2 M0 m
- end
- | _ =>
- match Nbit0 a with
- | false => M2 (M1 (Ndiv2 a) y) (M1 (Ndiv2 a') y')
- | true => M2 (M1 (Ndiv2 a') y') (M1 (Ndiv2 a) y)
- end
- end.
-
- Lemma MapGet_if_commute :
- forall (b:bool) (m m':Map) (a:ad),
- MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a).
- Proof.
- intros. case b; trivial.
- Qed.
-
- (*i
- Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map)
- (a:ad) (MapGet (if (Nbit0 a) then (M2 m m') else (M2 m'' m''')) a)=
- (MapGet (if (Nbit0 a) then m' else m'') (Ndiv2 a)).
- Proof.
- Intros. Rewrite (MapGet_if_commute (Nbit0 a)). Rewrite (MapGet_if_commute (Nbit0 a)).
- Cut (Nbit0 a)=false\/(Nbit0 a)=true. Intros. Elim H. Intros. Rewrite H0.
- Apply MapGet_M2_bit_0_0. Assumption.
- Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption.
- Case (Nbit0 a); Auto.
- Qed.
- i*)
-
- Lemma MapGet_if_same :
- forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a.
- Proof.
- simple induction b; trivial.
- Qed.
-
- Lemma MapGet_M2_bit_0_2 :
- forall (m m' m'':Map) (a:ad),
- MapGet (if Nbit0 a then M2 m m' else M2 m' m'') a =
- MapGet m' (Ndiv2 a).
- Proof.
- intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0.
- Qed.
-
- Lemma MapPut1_semantics_1 :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p -> MapGet (MapPut1 a y a' y' p) a = Some y.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- Nxor_div2. rewrite H0.
- reflexivity.
- intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- Qed.
-
- Lemma MapPut1_semantics_2 :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p -> MapGet (MapPut1 a y a' y' p) a' = Some y'.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. rewrite (Nneg_bit0_2 a a' p0 H0).
- rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- intros. simpl in |- *. rewrite (Nsame_bit0 a a' p0 H0). rewrite MapGet_M2_bit_0_2.
- apply H. rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intros. unfold MapPut1 in |- *. rewrite (Nneg_bit0_1 a a' H). rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
- Qed.
-
- Lemma MapGet_M2_both_None :
- forall (m m':Map) (a:ad),
- MapGet m (Ndiv2 a) = None ->
- MapGet m' (Ndiv2 a) = None -> MapGet (M2 m m') a = None.
- Proof.
- intros. rewrite (Map2_semantics_3 m m' a).
- case (Nbit0 a); assumption.
- Qed.
-
- Lemma MapPut1_semantics_3 :
- forall (p:positive) (a a' a0:ad) (y y':A),
- Nxor a a' = Npos p ->
- Neqb a a0 = false ->
- Neqb a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = None.
- Proof.
- simple induction p. intros. unfold MapPut1 in |- *. elim (Nneq_elim a a0 H1). intro. rewrite H3. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply Ndiv2_bit_neq. assumption.
- rewrite (Nneg_bit0_2 a a' p0 H0) in H3. rewrite (negb_intro (Nbit0 a')).
- rewrite (negb_intro (Nbit0 a0)). rewrite H3. reflexivity.
- intro. elim (Nneq_elim a' a0 H2). intro. rewrite (Nneg_bit0_2 a a' p0 H0). rewrite H4.
- rewrite (negb_elim (Nbit0 a0)). rewrite MapGet_M2_bit_0_2.
- apply M1_semantics_2; assumption.
- intro; case (Nbit0 a); apply MapGet_M2_both_None; apply M1_semantics_2;
- assumption.
- intros. simpl in |- *. elim (Nneq_elim a a0 H1). intro. rewrite H3. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. reflexivity.
- intro. elim (Nneq_elim a' a0 H2). intro. rewrite (Nsame_bit0 a a' p0 H0). rewrite H4.
- rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity.
- intro. cut (Nxor (Ndiv2 a) (Ndiv2 a') = Npos p0). intro.
- case (Nbit0 a); apply MapGet_M2_both_None; trivial; apply H;
- assumption.
- rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intros. simpl in |- *. elim (Nneq_elim a a0 H0). intro. rewrite H2. rewrite if_negb.
- rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply Ndiv2_bit_neq. assumption.
- rewrite (Nneg_bit0_1 a a' H) in H2. rewrite (negb_intro (Nbit0 a')).
- rewrite (negb_intro (Nbit0 a0)). rewrite H2. reflexivity.
- intro. elim (Nneq_elim a' a0 H1). intro. rewrite (Nneg_bit0_1 a a' H). rewrite H3.
- rewrite (negb_elim (Nbit0 a0)). rewrite MapGet_M2_bit_0_2.
- apply M1_semantics_2; assumption.
- intro. case (Nbit0 a); apply MapGet_M2_both_None; apply M1_semantics_2;
- assumption.
- Qed.
-
- Lemma MapPut1_semantics :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p ->
- eqm (MapGet (MapPut1 a y a' y' p))
- (fun a0:ad =>
- if Neqb a a0
- then Some y
- else if Neqb a' a0 then Some y' else None).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H).
- intro H0. rewrite H0. elim (sumbool_of_bool (Neqb a' a0)). intro H1.
- rewrite <- (Neqb_complete _ _ H1). rewrite (Neqb_correct a').
- exact (MapPut1_semantics_2 p a a' y y' H).
- intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
- Qed.
-
- Lemma MapPut1_semantics' :
- forall (p:positive) (a a':ad) (y y':A),
- Nxor a a' = Npos p ->
- eqm (MapGet (MapPut1 a y a' y' p))
- (fun a0:ad =>
- if Neqb a' a0
- then Some y'
- else if Neqb a a0 then Some y else None).
- Proof.
- unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0.
- rewrite <- (Neqb_complete a a0 H0). rewrite (Neqb_comm a' a).
- rewrite (Nxor_eq_false a a' p H). reflexivity.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Fixpoint MapPut (m:Map) : ad -> A -> Map :=
- match m with
- | M0 => M1
- | M1 a y =>
- fun (a':ad) (y':A) =>
- match Nxor a a' with
- | N0 => M1 a' y'
- | Npos p => MapPut1 a y a' y' p
- end
- | M2 m1 m2 =>
- fun (a:ad) (y:A) =>
- match a with
- | N0 => M2 (MapPut m1 N0 y) m2
- | Npos xH => M2 m1 (MapPut m2 N0 y)
- | Npos (xO p) => M2 (MapPut m1 (Npos p) y) m2
- | Npos (xI p) => M2 m1 (MapPut m2 (Npos p) y)
- end
- end.
-
- Lemma MapPut_semantics_1 :
- forall (a:ad) (y:A) (a0:ad),
- MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0.
- Proof.
- trivial.
- Qed.
-
- Lemma MapPut_semantics_2_1 :
- forall (a:ad) (y y':A) (a0:ad),
- MapGet (MapPut (M1 a y) a y') a0 =
- (if Neqb a a0 then Some y' else None).
- Proof.
- simpl in |- *. intros. rewrite (Nxor_nilpotent a). trivial.
- Qed.
-
- Lemma MapPut_semantics_2_2 :
- forall (a a':ad) (y y':A) (a0 a'':ad),
- Nxor a a' = a'' ->
- MapGet (MapPut (M1 a y) a' y') a0 =
- (if Neqb a' a0 then Some y' else if Neqb a a0 then Some y else None).
- Proof.
- simple induction a''. intro. rewrite (Nxor_eq _ _ H). rewrite MapPut_semantics_2_1.
- case (Neqb a' a0); trivial.
- intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H0. rewrite H0. rewrite <- (Neqb_complete _ _ H0).
- rewrite (Neqb_comm a' a). rewrite (Nxor_eq_false _ _ _ H). reflexivity.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapPut_semantics_2 :
- forall (a a':ad) (y y':A) (a0:ad),
- MapGet (MapPut (M1 a y) a' y') a0 =
- (if Neqb a' a0 then Some y' else if Neqb a a0 then Some y else None).
- Proof.
- intros. apply MapPut_semantics_2_2 with (a'' := Nxor a a'); trivial.
- Qed.
-
- Lemma MapPut_semantics_3_1 :
- forall (m m':Map) (a:ad) (y:A),
- MapPut (M2 m m') a y =
- (if Nbit0 a
- then M2 m (MapPut m' (Ndiv2 a) y)
- else M2 (MapPut m (Ndiv2 a) y) m').
- Proof.
- simple induction a. trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma MapPut_semantics :
- forall (m:Map) (a:ad) (y:A),
- eqm (MapGet (MapPut m a y))
- (fun a':ad => if Neqb a a' then Some y else MapGet m a').
- Proof.
- unfold eqm in |- *. simple induction m. exact MapPut_semantics_1.
- intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption.
- intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0).
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if.
- elim (sumbool_of_bool (Nbit0 a0)). intro H2. rewrite H2.
- rewrite (H0 (Ndiv2 a) y (Ndiv2 a0)). elim (sumbool_of_bool (Neqb a a0)).
- intro H3. rewrite H3. rewrite (Ndiv2_eq _ _ H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1). reflexivity.
- intro H2. rewrite H2. rewrite (Neqb_comm a a0). rewrite (Nbit0_neq a0 a H2 H1).
- reflexivity.
- intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a0)).
- intro H2. rewrite H2. rewrite (Nbit0_neq a a0 H1 H2). reflexivity.
- intro H2. rewrite H2. rewrite (H (Ndiv2 a) y (Ndiv2 a0)).
- elim (sumbool_of_bool (Neqb a a0)). intro H3. rewrite H3.
- rewrite (Ndiv2_eq a a0 H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq a a0 H3 H1). reflexivity.
- Qed.
-
- Fixpoint MapPut_behind (m:Map) : ad -> A -> Map :=
- match m with
- | M0 => M1
- | M1 a y =>
- fun (a':ad) (y':A) =>
- match Nxor a a' with
- | N0 => m
- | Npos p => MapPut1 a y a' y' p
- end
- | M2 m1 m2 =>
- fun (a:ad) (y:A) =>
- match a with
- | N0 => M2 (MapPut_behind m1 N0 y) m2
- | Npos xH => M2 m1 (MapPut_behind m2 N0 y)
- | Npos (xO p) => M2 (MapPut_behind m1 (Npos p) y) m2
- | Npos (xI p) => M2 m1 (MapPut_behind m2 (Npos p) y)
- end
- end.
-
- Lemma MapPut_behind_semantics_3_1 :
- forall (m m':Map) (a:ad) (y:A),
- MapPut_behind (M2 m m') a y =
- (if Nbit0 a
- then M2 m (MapPut_behind m' (Ndiv2 a) y)
- else M2 (MapPut_behind m (Ndiv2 a) y) m').
- Proof.
- simple induction a. trivial.
- simple induction p; trivial.
- Qed.
-
- Lemma MapPut_behind_as_before_1 :
- forall a a' a0:ad,
- Neqb a' a0 = false ->
- forall y y':A,
- MapGet (MapPut (M1 a y) a' y') a0 =
- MapGet (MapPut_behind (M1 a y) a' y') a0.
- Proof.
- intros a a' a0. simpl in |- *. intros H y y'. elim (Ndiscr (Nxor a a')). intro H0. elim H0.
- intros p H1. rewrite H1. reflexivity.
- intro H0. rewrite H0. rewrite (Nxor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H).
- exact (M1_semantics_2 a' a0 y' H).
- Qed.
-
- Lemma MapPut_behind_as_before :
- forall (m:Map) (a:ad) (y:A) (a0:ad),
- Neqb a a0 = false ->
- MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0.
- Proof.
- simple induction m. trivial.
- intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y').
- intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1.
- elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if.
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a0)). intro H3.
- rewrite H3. apply H0. rewrite <- H3 in H2. exact (Ndiv2_bit_neq a a0 H1 H2).
- intro H3. rewrite H3. reflexivity.
- intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
- elim (sumbool_of_bool (Nbit0 a0)). intro H3. rewrite H3. reflexivity.
- intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (Ndiv2_bit_neq a a0 H1 H2).
- Qed.
-
- Lemma MapPut_behind_new :
- forall (m:Map) (a:ad) (y:A),
- MapGet (MapPut_behind m a y) a =
- match MapGet m a with
- | Some y' => Some y'
- | _ => Some y
- end.
- Proof.
- simple induction m. simpl in |- *. intros. rewrite (Neqb_correct a). reflexivity.
- intros. elim (Ndiscr (Nxor a a1)). intro H. elim H. intros p H0. simpl in |- *.
- rewrite H0. rewrite (Nxor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0).
- assumption.
- intro H. simpl in |- *. rewrite H. rewrite <- (Nxor_eq _ _ H). rewrite (Neqb_correct a).
- exact (M1_semantics_1 a a0).
- intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a).
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1).
- exact (H0 (Ndiv2 a) y).
- intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (Ndiv2 a) y).
- Qed.
-
- Lemma MapPut_behind_semantics :
- forall (m:Map) (a:ad) (y:A),
- eqm (MapGet (MapPut_behind m a y))
- (fun a':ad =>
- match MapGet m a' with
- | Some y' => Some y'
- | _ => if Neqb a a' then Some y else None
- end).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H. rewrite H.
- rewrite (Neqb_complete _ _ H). apply MapPut_behind_new.
- intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H).
- rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial.
- Qed.
-
- Definition makeM2 (m m':Map) :=
- match m, m' with
- | M0, M0 => M0
- | M0, M1 a y => M1 (Ndouble_plus_one a) y
- | M1 a y, M0 => M1 (Ndouble a) y
- | _, _ => M2 m m'
- end.
-
- Lemma makeM2_M2 :
- forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')).
- Proof.
- unfold eqm in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H.
- rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity.
- intros a0 y. simpl in |- *. rewrite (Nodd_not_double a H a0). reflexivity.
- intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (Neqb a0 (Ndiv2 a))).
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H0). rewrite (Ndiv2_double_plus_one a H).
- rewrite (Neqb_correct a). reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_comm a0 (Ndiv2 a)) in H0.
- rewrite (Nnot_div2_not_double_plus_one a a0 H0). reflexivity.
- intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
- assumption.
- intros m1 m2. unfold makeM2 in |- *.
- cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (Ndiv2 a)).
- case m; trivial.
- exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
- intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity.
- intros a0 y. simpl in |- *. rewrite (Neven_not_double_plus_one a H a0). reflexivity.
- intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (Neqb a0 (Ndiv2 a))). intro H0.
- rewrite H0. rewrite (Neqb_complete _ _ H0). rewrite (Ndiv2_double a H).
- rewrite (Neqb_correct a). reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_comm (Ndouble a0) a).
- rewrite (Neqb_comm a0 (Ndiv2 a)) in H0. rewrite (Nnot_div2_not_double a a0 H0).
- reflexivity.
- intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
- assumption.
- intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
- Qed.
-
- Fixpoint MapRemove (m:Map) : ad -> Map :=
- match m with
- | M0 => fun _:ad => M0
- | M1 a y =>
- fun a':ad => match Neqb a a' with
- | true => M0
- | false => m
- end
- | M2 m1 m2 =>
- fun a:ad =>
- if Nbit0 a
- then makeM2 m1 (MapRemove m2 (Ndiv2 a))
- else makeM2 (MapRemove m1 (Ndiv2 a)) m2
- end.
-
- Lemma MapRemove_semantics :
- forall (m:Map) (a:ad),
- eqm (MapGet (MapRemove m a))
- (fun a':ad => if Neqb a a' then None else MapGet m a').
- Proof.
- unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (Neqb a a0); trivial.
- intros. simpl in |- *. elim (sumbool_of_bool (Neqb a1 a2)). intro H. rewrite H.
- elim (sumbool_of_bool (Neqb a a1)). intro H0. rewrite H0. reflexivity.
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0).
- intro H. elim (sumbool_of_bool (Neqb a a1)). intro H0. rewrite H0. rewrite H.
- rewrite <- (Neqb_complete _ _ H0) in H. rewrite H. reflexivity.
- intro H0. rewrite H0. rewrite H. reflexivity.
- intros. change
- (MapGet
- (if Nbit0 a
- then makeM2 m0 (MapRemove m1 (Ndiv2 a))
- else makeM2 (MapRemove m0 (Ndiv2 a)) m1) a0 =
- (if Neqb a a0 then None else MapGet (M2 m0 m1) a0))
- in |- *.
- elim (sumbool_of_bool (Nbit0 a)). intro H1. rewrite H1.
- rewrite (makeM2_M2 m0 (MapRemove m1 (Ndiv2 a)) a0). elim (sumbool_of_bool (Nbit0 a0)).
- intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (Ndiv2 a) (Ndiv2 a0)).
- elim (sumbool_of_bool (Neqb a a0)). intro H3. rewrite H3. rewrite (Ndiv2_eq _ _ H3).
- reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1).
- rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity.
- assumption.
- intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (Ndiv2 a))).
- rewrite (Neqb_comm a a0). rewrite (Nbit0_neq _ _ H2 H1).
- rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity.
- intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (Ndiv2 a)) m1 a0).
- elim (sumbool_of_bool (Nbit0 a0)). intro H2. rewrite MapGet_M2_bit_0_1.
- rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (Nbit0_neq a a0 H1 H2). reflexivity.
- assumption.
- intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (Ndiv2 a) (Ndiv2 a0)).
- rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (Neqb a a0)). intro H3.
- rewrite H3. rewrite (Ndiv2_eq _ _ H3). reflexivity.
- intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (Ndiv2_bit_neq _ _ H3 H1). reflexivity.
- assumption.
- Qed.
-
- Fixpoint MapCard (m:Map) : nat :=
- match m with
- | M0 => 0
- | M1 _ _ => 1
- | M2 m m' => MapCard m + MapCard m'
- end.
-
- Fixpoint MapMerge (m:Map) : Map -> Map :=
- match m with
- | M0 => fun m':Map => m'
- | M1 a y => fun m':Map => MapPut_behind m' a y
- | M2 m1 m2 =>
- fun m':Map =>
- match m' with
- | M0 => m
- | M1 a' y' => MapPut m a' y'
- | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2)
- end
- end.
-
- Lemma MapMerge_semantics :
- forall m m':Map,
- eqm (MapGet (MapMerge m m'))
- (fun a0:ad =>
- match MapGet m' a0 with
- | Some y' => Some y'
- | None => MapGet m a0
- end).
- Proof.
- unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial.
- intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity.
- simple induction m'. trivial.
- intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
- elim (sumbool_of_bool (Neqb a a1)). intro H1. rewrite H1. rewrite (Neqb_complete _ _ H1).
- rewrite (M1_semantics_1 a1 a0). reflexivity.
- intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity.
- intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)).
- intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (Ndiv2 a)).
- rewrite (H m2 (Ndiv2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a).
- rewrite (MapGet_M2_bit_0_if m0 m1 a). case (Nbit0 a); trivial.
- reflexivity.
- Qed.
-
- (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse]
- not implemented: need a decidable equality on [A]. *)
-
- Fixpoint MapDelta (m:Map) : Map -> Map :=
- match m with
- | M0 => fun m':Map => m'
- | M1 a y =>
- fun m':Map =>
- match MapGet m' a with
- | None => MapPut m' a y
- | _ => MapRemove m' a
- end
- | M2 m1 m2 =>
- fun m':Map =>
- match m' with
- | M0 => m
- | M1 a' y' =>
- match MapGet m a' with
- | None => MapPut m a' y'
- | _ => MapRemove m a'
- end
- | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2)
- end
- end.
-
- Lemma MapDelta_semantics_comm :
- forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)).
- Proof.
- unfold eqm in |- *. simple induction m. simple induction m'; reflexivity.
- simple induction m'. reflexivity.
- unfold MapDelta in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H.
- rewrite <- (Neqb_complete _ _ H). rewrite (M1_semantics_1 a a2).
- rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (Neqb_correct a). reflexivity.
- intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (Neqb_comm a a1) in H.
- rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
- rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (Neqb a a3)).
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H0) in H. rewrite H.
- rewrite (Neqb_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity.
- intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0).
- elim (sumbool_of_bool (Neqb a1 a3)). intro H1. rewrite H1.
- rewrite (Neqb_complete _ _ H1). exact (M1_semantics_1 a3 a2).
- intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1).
- intros. reflexivity.
- simple induction m'. reflexivity.
- reflexivity.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
- rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
- rewrite (H0 m3 (Ndiv2 a)). rewrite (H m2 (Ndiv2 a)). reflexivity.
- Qed.
-
- Lemma MapDelta_semantics_1_1 :
- forall (a:ad) (y:A) (m':Map) (a0:ad),
- MapGet (M1 a y) a0 = None ->
- MapGet m' a0 = None -> MapGet (MapDelta (M1 a y) m') a0 = None.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
- intro H1. case (MapGet m' a).
- rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
- rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
- Qed.
-
- Lemma MapDelta_semantics_1 :
- forall (m m':Map) (a:ad),
- MapGet m a = None ->
- MapGet m' a = None -> MapGet (MapDelta m m') a = None.
- Proof.
- simple induction m. trivial.
- exact MapDelta_semantics_1_1.
- simple induction m'. trivial.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- apply MapDelta_semantics_1_1; trivial.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3.
- rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4.
- intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3.
- rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4.
- Qed.
-
- Lemma MapDelta_semantics_2_1 :
- forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
- MapGet (M1 a y) a0 = None ->
- MapGet m' a0 = Some y0 -> MapGet (MapDelta (M1 a y) m') a0 = Some y0.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
- intro H1. case (MapGet m' a).
- rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
- rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
- Qed.
-
- Lemma MapDelta_semantics_2_2 :
- forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
- MapGet (M1 a y) a0 = Some y0 ->
- MapGet m' a0 = None -> MapGet (MapDelta (M1 a y) m') a0 = Some y0.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a a0)). intro H1.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (Neqb_complete _ _ H1).
- rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (Neqb_correct a0).
- rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption.
- intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_2 :
- forall (m m':Map) (a:ad) (y:A),
- MapGet m a = None ->
- MapGet m' a = Some y -> MapGet (MapDelta m m') a = Some y.
- Proof.
- simple induction m. trivial.
- exact MapDelta_semantics_2_1.
- simple induction m'. intros. discriminate H2.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- apply MapDelta_semantics_2_2; assumption.
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
- intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
- Qed.
-
- Lemma MapDelta_semantics_3_1 :
- forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A),
- MapGet (M1 a0 y0) a = Some y ->
- MapGet m' a = Some y' -> MapGet (MapDelta (M1 a0 y0) m') a = None.
- Proof.
- intros. unfold MapDelta in |- *. elim (sumbool_of_bool (Neqb a0 a)). intro H1.
- rewrite (Neqb_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a).
- rewrite (Neqb_correct a). reflexivity.
- intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H.
- Qed.
-
- Lemma MapDelta_semantics_3 :
- forall (m m':Map) (a:ad) (y y':A),
- MapGet m a = Some y ->
- MapGet m' a = Some y' -> MapGet (MapDelta m m') a = None.
- Proof.
- simple induction m. intros. discriminate H.
- exact MapDelta_semantics_3_1.
- simple induction m'. intros. discriminate H2.
- intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
- exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
- intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
- rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (Nbit0 a)). intro H5. rewrite H5.
- apply (H0 m3 (Ndiv2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
- intro H5. rewrite H5. apply (H m2 (Ndiv2 a) y y').
- rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
- rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
- Qed.
-
- Lemma MapDelta_semantics :
- forall m m':Map,
- eqm (MapGet (MapDelta m m'))
- (fun a0:ad =>
- match MapGet m a0, MapGet m' a0 with
- | None, Some y' => Some y'
- | Some y, None => Some y
- | _, _ => None
- end).
- Proof.
- unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0.
- rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2.
- exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
- intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0).
- intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1.
- rewrite H1. rewrite (MapDelta_semantics_comm m m' a).
- exact (MapDelta_semantics_2 m' m a a0 H H1).
- intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H).
- Qed.
-
- Definition MapEmptyp (m:Map) := match m with
- | M0 => true
- | _ => false
- end.
-
- Lemma MapEmptyp_correct : MapEmptyp M0 = true.
- Proof.
- reflexivity.
- Qed.
-
- Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0.
- Proof.
- simple induction m; trivial. intros. discriminate H.
- intros. discriminate H1.
- Qed.
-
- (** [MapSplit] not implemented: not the preferred way of recursing over Maps
- (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)
-
-End MapDefs. \ No newline at end of file
diff --git a/theories/IntMap/Mapaxioms.v b/theories/IntMap/Mapaxioms.v
deleted file mode 100644
index 0722bcfa..00000000
--- a/theories/IntMap/Mapaxioms.v
+++ /dev/null
@@ -1,761 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapaxioms.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Fset.
-
-Section MapAxioms.
-
- Variables A B C : Set.
-
- Lemma eqm_sym : forall f f':ad -> option A, eqm A f f' -> eqm A f' f.
- Proof.
- unfold eqm in |- *. intros. rewrite H. reflexivity.
- Qed.
-
- Lemma eqm_refl : forall f:ad -> option A, eqm A f f.
- Proof.
- unfold eqm in |- *. trivial.
- Qed.
-
- Lemma eqm_trans :
- forall f f' f'':ad -> option A, eqm A f f' -> eqm A f' f'' -> eqm A f f''.
- Proof.
- unfold eqm in |- *. intros. rewrite H. exact (H0 a).
- Qed.
-
- Definition eqmap (m m':Map A) := eqm A (MapGet A m) (MapGet A m').
-
- Lemma eqmap_sym : forall m m':Map A, eqmap m m' -> eqmap m' m.
- Proof.
- intros. unfold eqmap in |- *. apply eqm_sym. assumption.
- Qed.
-
- Lemma eqmap_refl : forall m:Map A, eqmap m m.
- Proof.
- intros. unfold eqmap in |- *. apply eqm_refl.
- Qed.
-
- Lemma eqmap_trans :
- forall m m' m'':Map A, eqmap m m' -> eqmap m' m'' -> eqmap m m''.
- Proof.
- intros. exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0).
- Qed.
-
- Lemma MapPut_as_Merge :
- forall (m:Map A) (a:ad) (y:A),
- eqmap (MapPut A m a y) (MapMerge A m (M1 A a y)).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m a y a0).
- rewrite (MapMerge_semantics A m (M1 A a y) a0). unfold MapGet at 2.
- elim (sumbool_of_bool (Neqb a a0)); intro H; rewrite H; reflexivity.
- Qed.
-
- Lemma MapPut_ext :
- forall m m':Map A,
- eqmap m m' ->
- forall (a:ad) (y:A), eqmap (MapPut A m a y) (MapPut A m' a y).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m' a y a0).
- rewrite (MapPut_semantics A m a y a0).
- case (Neqb a a0); [ reflexivity | apply H ].
- Qed.
-
- Lemma MapPut_behind_as_Merge :
- forall (m:Map A) (a:ad) (y:A),
- eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m a y a0).
- rewrite (MapMerge_semantics A (M1 A a y) m a0). reflexivity.
- Qed.
-
- Lemma MapPut_behind_ext :
- forall m m':Map A,
- eqmap m m' ->
- forall (a:ad) (y:A),
- eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m' a y a0).
- rewrite (MapPut_behind_semantics A m a y a0). rewrite (H a0). reflexivity.
- Qed.
-
- Lemma MapMerge_empty_m_1 : forall m:Map A, MapMerge A (M0 A) m = m.
- Proof.
- trivial.
- Qed.
-
- Lemma MapMerge_empty_m : forall m:Map A, eqmap (MapMerge A (M0 A) m) m.
- Proof.
- unfold eqmap, eqm in |- *. trivial.
- Qed.
-
- Lemma MapMerge_m_empty_1 : forall m:Map A, MapMerge A m (M0 A) = m.
- Proof.
- simple induction m; trivial.
- Qed.
-
- Lemma MapMerge_m_empty : forall m:Map A, eqmap (MapMerge A m (M0 A)) m.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite MapMerge_m_empty_1. reflexivity.
- Qed.
-
- Lemma MapMerge_empty_l :
- forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
- rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a); trivial.
- intros. discriminate H0.
- exact (H a).
- Qed.
-
- Lemma MapMerge_empty_r :
- forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m' (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a).
- rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a); trivial.
- exact (H a).
- Qed.
-
- Lemma MapMerge_assoc :
- forall m m' m'':Map A,
- eqmap (MapMerge A (MapMerge A m m') m'')
- (MapMerge A m (MapMerge A m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapMerge A m m') m'' a).
- rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). rewrite (MapMerge_semantics A m m' a).
- rewrite (MapMerge_semantics A m' m'' a).
- case (MapGet A m'' a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapMerge_idempotent : forall m:Map A, eqmap (MapMerge A m m) m.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m m a).
- case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapMerge_ext :
- forall m1 m2 m'1 m'2:Map A,
- eqmap m1 m'1 ->
- eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m1 m2 a).
- rewrite (MapMerge_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
- Qed.
-
- Lemma MapMerge_ext_l :
- forall m1 m'1 m2:Map A,
- eqmap m1 m'1 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2).
- Proof.
- intros. apply MapMerge_ext. assumption.
- apply eqmap_refl.
- Qed.
-
- Lemma MapMerge_ext_r :
- forall m1 m2 m'2:Map A,
- eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2).
- Proof.
- intros. apply MapMerge_ext. apply eqmap_refl.
- assumption.
- Qed.
-
- Lemma MapMerge_RestrTo_l :
- forall m m' m'':Map A,
- eqmap (MapMerge A (MapDomRestrTo A A m m') m'')
- (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a).
- rewrite (MapDomRestrTo_semantics A A m m' a).
- rewrite
- (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a)
- .
- rewrite (MapMerge_semantics A m' m'' a). rewrite (MapMerge_semantics A m m'' a).
- case (MapGet A m'' a); case (MapGet A m' a); reflexivity.
- Qed.
-
- Lemma MapRemove_as_RestrBy :
- forall (m:Map A) (a:ad) (y:B),
- eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y)).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m a a0).
- rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). elim (sumbool_of_bool (Neqb a a0)).
- intro H. rewrite H. rewrite (Neqb_complete a a0 H). rewrite (M1_semantics_1 B a0 y).
- reflexivity.
- intro H. rewrite H. rewrite (M1_semantics_2 B a a0 y H). reflexivity.
- Qed.
-
- Lemma MapRemove_ext :
- forall m m':Map A,
- eqmap m m' -> forall a:ad, eqmap (MapRemove A m a) (MapRemove A m' a).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m' a a0).
- rewrite (MapRemove_semantics A m a a0).
- case (Neqb a a0); [ reflexivity | apply H ].
- Qed.
-
- Lemma MapDomRestrTo_empty_m_1 :
- forall m:Map B, MapDomRestrTo A B (M0 A) m = M0 A.
- Proof.
- trivial.
- Qed.
-
- Lemma MapDomRestrTo_empty_m :
- forall m:Map B, eqmap (MapDomRestrTo A B (M0 A) m) (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. trivial.
- Qed.
-
- Lemma MapDomRestrTo_m_empty_1 :
- forall m:Map A, MapDomRestrTo A B m (M0 B) = M0 A.
- Proof.
- simple induction m; trivial.
- Qed.
-
- Lemma MapDomRestrTo_m_empty :
- forall m:Map A, eqmap (MapDomRestrTo A B m (M0 B)) (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_m_empty_1 m). reflexivity.
- Qed.
-
- Lemma MapDomRestrTo_assoc :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a).
- rewrite (MapDomRestrTo_semantics B C m' m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrTo_idempotent :
- forall m:Map A, eqmap (MapDomRestrTo A A m m) m.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A m m a).
- case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapDomRestrTo_Dom :
- forall (m:Map A) (m':Map B),
- eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m')).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a).
- elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
- elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H.
- generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1.
- intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
- generalize H. case (MapGet unit (MapDom B m') a); trivial.
- intros H0 H1. discriminate H1.
- Qed.
-
- Lemma MapDomRestrBy_empty_m_1 :
- forall m:Map B, MapDomRestrBy A B (M0 A) m = M0 A.
- Proof.
- trivial.
- Qed.
-
- Lemma MapDomRestrBy_empty_m :
- forall m:Map B, eqmap (MapDomRestrBy A B (M0 A) m) (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. trivial.
- Qed.
-
- Lemma MapDomRestrBy_m_empty_1 :
- forall m:Map A, MapDomRestrBy A B m (M0 B) = m.
- Proof.
- simple induction m; trivial.
- Qed.
-
- Lemma MapDomRestrBy_m_empty :
- forall m:Map A, eqmap (MapDomRestrBy A B m (M0 B)) m.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_m_empty_1 m). reflexivity.
- Qed.
-
- Lemma MapDomRestrBy_Dom :
- forall (m:Map A) (m':Map B),
- eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m')).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a).
- elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H.
- elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0.
- unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial.
- intro H1. discriminate H1.
- intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H.
- generalize H. case (MapGet unit (MapDom B m') a); trivial.
- intros H0 H1. discriminate H1.
- Qed.
-
- Lemma MapDomRestrBy_m_m_1 :
- forall m:Map A, eqmap (MapDomRestrBy A A m m) (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A A m m a).
- case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapDomRestrBy_By :
- forall (m:Map A) (m' m'':Map B),
- eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B m (MapMerge B m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a).
- rewrite (MapMerge_semantics B m' m'' a).
- case (MapGet B m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrBy_By_comm :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B (MapDomRestrBy A C m m'') m').
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a).
- rewrite (MapDomRestrBy_semantics A C m m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrBy_To :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a).
- rewrite (MapDomRestrBy_semantics B C m' m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrBy_To_comm :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B (MapDomRestrBy A C m m'') m').
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a).
- rewrite (MapDomRestrBy_semantics A C m m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrTo_By :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a).
- rewrite (MapDomRestrBy_semantics C B m'' m' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrTo_By_comm :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'')
- (MapDomRestrBy A B (MapDomRestrTo A C m m'') m').
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a).
- rewrite (MapDomRestrTo_semantics A C m m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapDomRestrTo_To_comm :
- forall (m:Map A) (m':Map B) (m'':Map C),
- eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'')
- (MapDomRestrTo A B (MapDomRestrTo A C m m'') m').
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a).
- rewrite (MapDomRestrTo_semantics A C m m'' a).
- case (MapGet C m'' a); case (MapGet B m' a); trivial.
- Qed.
-
- Lemma MapMerge_DomRestrTo :
- forall (m m':Map A) (m'':Map B),
- eqmap (MapDomRestrTo A B (MapMerge A m m') m'')
- (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a).
- rewrite (MapMerge_semantics A m m' a).
- rewrite
- (MapMerge_semantics A (MapDomRestrTo A B m m'')
- (MapDomRestrTo A B m' m'') a).
- rewrite (MapDomRestrTo_semantics A B m' m'' a).
- rewrite (MapDomRestrTo_semantics A B m m'' a).
- case (MapGet B m'' a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapMerge_DomRestrBy :
- forall (m m':Map A) (m'':Map B),
- eqmap (MapDomRestrBy A B (MapMerge A m m') m'')
- (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a).
- rewrite (MapMerge_semantics A m m' a).
- rewrite
- (MapMerge_semantics A (MapDomRestrBy A B m m'')
- (MapDomRestrBy A B m' m'') a).
- rewrite (MapDomRestrBy_semantics A B m' m'' a).
- rewrite (MapDomRestrBy_semantics A B m m'' a).
- case (MapGet B m'' a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapDelta_empty_m_1 : forall m:Map A, MapDelta A (M0 A) m = m.
- Proof.
- trivial.
- Qed.
-
- Lemma MapDelta_empty_m : forall m:Map A, eqmap (MapDelta A (M0 A) m) m.
- Proof.
- unfold eqmap, eqm in |- *. trivial.
- Qed.
-
- Lemma MapDelta_m_empty_1 : forall m:Map A, MapDelta A m (M0 A) = m.
- Proof.
- simple induction m; trivial.
- Qed.
-
- Lemma MapDelta_m_empty : forall m:Map A, eqmap (MapDelta A m (M0 A)) m.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite MapDelta_m_empty_1. reflexivity.
- Qed.
-
- Lemma MapDelta_nilpotent : forall m:Map A, eqmap (MapDelta A m m) (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m a).
- case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapDelta_as_Merge :
- forall m m':Map A,
- eqmap (MapDelta A m m')
- (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite (MapDelta_semantics A m m' a).
- rewrite
- (MapMerge_semantics A (MapDomRestrBy A A m m') (
- MapDomRestrBy A A m' m) a).
- rewrite (MapDomRestrBy_semantics A A m' m a).
- rewrite (MapDomRestrBy_semantics A A m m' a).
- case (MapGet A m a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapDelta_as_DomRestrBy :
- forall m m':Map A,
- eqmap (MapDelta A m m')
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
- rewrite
- (MapDomRestrBy_semantics A A (MapMerge A m m') (
- MapDomRestrTo A A m m') a).
- rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapMerge_semantics A m m' a).
- case (MapGet A m a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapDelta_as_DomRestrBy_2 :
- forall m m':Map A,
- eqmap (MapDelta A m m')
- (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
- rewrite
- (MapDomRestrBy_semantics A A (MapMerge A m m') (
- MapDomRestrTo A A m' m) a).
- rewrite (MapDomRestrTo_semantics A A m' m a). rewrite (MapMerge_semantics A m m' a).
- case (MapGet A m a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapDelta_sym :
- forall m m':Map A, eqmap (MapDelta A m m') (MapDelta A m' m).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a).
- rewrite (MapDelta_semantics A m' m a).
- case (MapGet A m a); case (MapGet A m' a); trivial.
- Qed.
-
- Lemma MapDelta_ext :
- forall m1 m2 m'1 m'2:Map A,
- eqmap m1 m'1 ->
- eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m1 m2 a).
- rewrite (MapDelta_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
- Qed.
-
- Lemma MapDelta_ext_l :
- forall m1 m'1 m2:Map A,
- eqmap m1 m'1 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2).
- Proof.
- intros. apply MapDelta_ext. assumption.
- apply eqmap_refl.
- Qed.
-
- Lemma MapDelta_ext_r :
- forall m1 m2 m'2:Map A,
- eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2).
- Proof.
- intros. apply MapDelta_ext. apply eqmap_refl.
- assumption.
- Qed.
-
- Lemma MapDom_Split_1 :
- forall (m:Map A) (m':Map B),
- eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite
- (MapMerge_semantics A (MapDomRestrTo A B m m') (
- MapDomRestrBy A B m m') a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- case (MapGet B m' a); case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapDom_Split_2 :
- forall (m:Map A) (m':Map B),
- eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite
- (MapMerge_semantics A (MapDomRestrBy A B m m') (
- MapDomRestrTo A B m m') a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- case (MapGet B m' a); case (MapGet A m a); trivial.
- Qed.
-
- Lemma MapDom_Split_3 :
- forall (m:Map A) (m':Map B),
- eqmap
- (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m'))
- (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros.
- rewrite
- (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m')
- (MapDomRestrBy A B m m') a).
- rewrite (MapDomRestrBy_semantics A B m m' a).
- rewrite (MapDomRestrTo_semantics A B m m' a).
- case (MapGet B m' a); case (MapGet A m a); trivial.
- Qed.
-
-End MapAxioms.
-
-Lemma MapDomRestrTo_ext :
- forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
- (m'2:Map B),
- eqmap A m1 m'1 ->
- eqmap B m2 m'2 ->
- eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2).
-Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m1 m2 a).
- rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
-Qed.
-
-Lemma MapDomRestrTo_ext_l :
- forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
- eqmap A m1 m'1 ->
- eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2).
-Proof.
- intros. apply MapDomRestrTo_ext; [ assumption | apply eqmap_refl ].
-Qed.
-
-Lemma MapDomRestrTo_ext_r :
- forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
- eqmap B m2 m'2 ->
- eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2).
-Proof.
- intros. apply MapDomRestrTo_ext; [ apply eqmap_refl | assumption ].
-Qed.
-
-Lemma MapDomRestrBy_ext :
- forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A)
- (m'2:Map B),
- eqmap A m1 m'1 ->
- eqmap B m2 m'2 ->
- eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2).
-Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m1 m2 a).
- rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity.
-Qed.
-
-Lemma MapDomRestrBy_ext_l :
- forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A),
- eqmap A m1 m'1 ->
- eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2).
-Proof.
- intros. apply MapDomRestrBy_ext; [ assumption | apply eqmap_refl ].
-Qed.
-
-Lemma MapDomRestrBy_ext_r :
- forall (A B:Set) (m1:Map A) (m2 m'2:Map B),
- eqmap B m2 m'2 ->
- eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2).
-Proof.
- intros. apply MapDomRestrBy_ext; [ apply eqmap_refl | assumption ].
-Qed.
-
-Lemma MapDomRestrBy_m_m :
- forall (A:Set) (m:Map A),
- eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A).
-Proof.
- intros. apply eqmap_trans with (m' := MapDomRestrBy A A m m). apply eqmap_sym.
- apply MapDomRestrBy_Dom.
- apply MapDomRestrBy_m_m_1.
-Qed.
-
-Lemma FSetDelta_assoc :
- forall s s' s'':FSet,
- eqmap unit (MapDelta _ (MapDelta _ s s') s'')
- (MapDelta _ s (MapDelta _ s' s'')).
-Proof.
- unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a).
- rewrite (MapDelta_semantics unit s s' a).
- rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a).
- rewrite (MapDelta_semantics unit s' s'' a).
- case (MapGet _ s a); case (MapGet _ s' a); case (MapGet _ s'' a); trivial.
- intros. elim u. elim u1. reflexivity.
-Qed.
-
-Lemma FSet_ext :
- forall s s':FSet,
- (forall a:ad, in_FSet a s = in_FSet a s') -> eqmap unit s s'.
-Proof.
- unfold in_FSet, eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_dom _ a s)). intro H0.
- elim (in_dom_some _ s a H0). intros y H1. rewrite (H a) in H0. elim (in_dom_some _ s' a H0).
- intros y' H2. rewrite H1. rewrite H2. elim y. elim y'. reflexivity.
- intro H0. rewrite (in_dom_none _ s a H0). rewrite (H a) in H0. rewrite (in_dom_none _ s' a H0).
- reflexivity.
-Qed.
-
-Lemma FSetUnion_comm :
- forall s s':FSet, eqmap unit (FSetUnion s s') (FSetUnion s' s).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_union. apply orb_comm.
-Qed.
-
-Lemma FSetUnion_assoc :
- forall s s' s'':FSet,
- eqmap unit (FSetUnion (FSetUnion s s') s'')
- (FSetUnion s (FSetUnion s' s'')).
-Proof.
- exact (MapMerge_assoc unit).
-Qed.
-
-Lemma FSetUnion_M0_s : forall s:FSet, eqmap unit (FSetUnion (M0 unit) s) s.
-Proof.
- exact (MapMerge_empty_m unit).
-Qed.
-
-Lemma FSetUnion_s_M0 : forall s:FSet, eqmap unit (FSetUnion s (M0 unit)) s.
-Proof.
- exact (MapMerge_m_empty unit).
-Qed.
-
-Lemma FSetUnion_idempotent : forall s:FSet, eqmap unit (FSetUnion s s) s.
-Proof.
- exact (MapMerge_idempotent unit).
-Qed.
-
-Lemma FSetInter_comm :
- forall s s':FSet, eqmap unit (FSetInter s s') (FSetInter s' s).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_inter. apply andb_comm.
-Qed.
-
-Lemma FSetInter_assoc :
- forall s s' s'':FSet,
- eqmap unit (FSetInter (FSetInter s s') s'')
- (FSetInter s (FSetInter s' s'')).
-Proof.
- exact (MapDomRestrTo_assoc unit unit unit).
-Qed.
-
-Lemma FSetInter_M0_s :
- forall s:FSet, eqmap unit (FSetInter (M0 unit) s) (M0 unit).
-Proof.
- exact (MapDomRestrTo_empty_m unit unit).
-Qed.
-
-Lemma FSetInter_s_M0 :
- forall s:FSet, eqmap unit (FSetInter s (M0 unit)) (M0 unit).
-Proof.
- exact (MapDomRestrTo_m_empty unit unit).
-Qed.
-
-Lemma FSetInter_idempotent : forall s:FSet, eqmap unit (FSetInter s s) s.
-Proof.
- exact (MapDomRestrTo_idempotent unit).
-Qed.
-
-Lemma FSetUnion_Inter_l :
- forall s s' s'':FSet,
- eqmap unit (FSetUnion (FSetInter s s') s'')
- (FSetInter (FSetUnion s s'') (FSetUnion s' s'')).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
- rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
- case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
-Qed.
-
-Lemma FSetUnion_Inter_r :
- forall s s' s'':FSet,
- eqmap unit (FSetUnion s (FSetInter s' s''))
- (FSetInter (FSetUnion s s') (FSetUnion s s'')).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter.
- rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union.
- case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
-Qed.
-
-Lemma FSetInter_Union_l :
- forall s s' s'':FSet,
- eqmap unit (FSetInter (FSetUnion s s') s'')
- (FSetUnion (FSetInter s s'') (FSetInter s' s'')).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
- rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
- case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
-Qed.
-
-Lemma FSetInter_Union_r :
- forall s s' s'':FSet,
- eqmap unit (FSetInter s (FSetUnion s' s''))
- (FSetUnion (FSetInter s s') (FSetInter s s'')).
-Proof.
- intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union.
- rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter.
- case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity.
-Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapc.v b/theories/IntMap/Mapc.v
deleted file mode 100644
index 163373bf..00000000
--- a/theories/IntMap/Mapc.v
+++ /dev/null
@@ -1,539 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapc.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Map.
-Require Import Mapaxioms.
-Require Import Fset.
-Require Import Mapiter.
-Require Import Mapsubset.
-Require Import List.
-Require Import Lsort.
-Require Import Mapcard.
-Require Import Mapcanon.
-
-Section MapC.
-
- Variables A B C : Set.
-
- Lemma MapPut_as_Merge_c :
- forall m:Map A,
- mapcanon A m ->
- forall (a:ad) (y:A), MapPut A m a y = MapMerge A m (M1 A a y).
- Proof.
- intros. apply mapcanon_unique. exact (MapPut_canon A m H a y).
- apply MapMerge_canon. assumption.
- apply M1_canon.
- apply MapPut_as_Merge.
- Qed.
-
- Lemma MapPut_behind_as_Merge_c :
- forall m:Map A,
- mapcanon A m ->
- forall (a:ad) (y:A), MapPut_behind A m a y = MapMerge A (M1 A a y) m.
- Proof.
- intros. apply mapcanon_unique. exact (MapPut_behind_canon A m H a y).
- apply MapMerge_canon. apply M1_canon.
- assumption.
- apply MapPut_behind_as_Merge.
- Qed.
-
- Lemma MapMerge_empty_m_c : forall m:Map A, MapMerge A (M0 A) m = m.
- Proof.
- trivial.
- Qed.
-
- Lemma MapMerge_assoc_c :
- forall m m' m'':Map A,
- mapcanon A m ->
- mapcanon A m' ->
- mapcanon A m'' ->
- MapMerge A (MapMerge A m m') m'' = MapMerge A m (MapMerge A m' m'').
- Proof.
- intros. apply mapcanon_unique.
- apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
- apply MapMerge_canon; try assumption. apply MapMerge_canon; try assumption.
- apply MapMerge_assoc.
- Qed.
-
- Lemma MapMerge_idempotent_c :
- forall m:Map A, mapcanon A m -> MapMerge A m m = m.
- Proof.
- intros. apply mapcanon_unique. apply MapMerge_canon; assumption.
- assumption.
- apply MapMerge_idempotent.
- Qed.
-
- Lemma MapMerge_RestrTo_l_c :
- forall m m' m'':Map A,
- mapcanon A m ->
- mapcanon A m'' ->
- MapMerge A (MapDomRestrTo A A m m') m'' =
- MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
- assumption.
- apply MapDomRestrTo_canon; apply MapMerge_canon; assumption.
- apply MapMerge_RestrTo_l.
- Qed.
-
- Lemma MapRemove_as_RestrBy_c :
- forall m:Map A,
- mapcanon A m ->
- forall (a:ad) (y:B), MapRemove A m a = MapDomRestrBy A B m (M1 B a y).
- Proof.
- intros. apply mapcanon_unique. apply MapRemove_canon; assumption.
- apply MapDomRestrBy_canon; assumption.
- apply MapRemove_as_RestrBy.
- Qed.
-
- Lemma MapDomRestrTo_assoc_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
- MapDomRestrTo A B m (MapDomRestrTo B C m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon; try assumption.
- apply MapDomRestrTo_canon; try assumption.
- apply MapDomRestrTo_canon; try assumption.
- apply MapDomRestrTo_assoc.
- Qed.
-
- Lemma MapDomRestrTo_idempotent_c :
- forall m:Map A, mapcanon A m -> MapDomRestrTo A A m m = m.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
- assumption.
- apply MapDomRestrTo_idempotent.
- Qed.
-
- Lemma MapDomRestrTo_Dom_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- MapDomRestrTo A B m m' = MapDomRestrTo A unit m (MapDom B m').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_Dom.
- Qed.
-
- Lemma MapDomRestrBy_Dom_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- MapDomRestrBy A B m m' = MapDomRestrBy A unit m (MapDom B m').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_Dom.
- Qed.
-
- Lemma MapDomRestrBy_By_c :
- forall (m:Map A) (m' m'':Map B),
- mapcanon A m ->
- MapDomRestrBy A B (MapDomRestrBy A B m m') m'' =
- MapDomRestrBy A B m (MapMerge B m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon; try assumption.
- apply MapDomRestrBy_canon; try assumption.
- apply MapDomRestrBy_canon; try assumption.
- apply MapDomRestrBy_By.
- Qed.
-
- Lemma MapDomRestrBy_By_comm_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrBy A C (MapDomRestrBy A B m m') m'' =
- MapDomRestrBy A B (MapDomRestrBy A C m m'') m'.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
- apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_canon. apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_By_comm.
- Qed.
-
- Lemma MapDomRestrBy_To_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
- MapDomRestrTo A B m (MapDomRestrBy B C m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrBy_To.
- Qed.
-
- Lemma MapDomRestrBy_To_comm_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrBy A C (MapDomRestrTo A B m m') m'' =
- MapDomRestrTo A B (MapDomRestrBy A C m m'') m'.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_canon. apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_To_comm.
- Qed.
-
- Lemma MapDomRestrTo_By_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
- MapDomRestrTo A C m (MapDomRestrBy C B m'' m').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
- apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_By.
- Qed.
-
- Lemma MapDomRestrTo_By_comm_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrTo A C (MapDomRestrBy A B m m') m'' =
- MapDomRestrBy A B (MapDomRestrTo A C m m'') m'.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
- apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_canon. apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_By_comm.
- Qed.
-
- Lemma MapDomRestrTo_To_comm_c :
- forall (m:Map A) (m':Map B) (m'':Map C),
- mapcanon A m ->
- MapDomRestrTo A C (MapDomRestrTo A B m m') m'' =
- MapDomRestrTo A B (MapDomRestrTo A C m m'') m'.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
- apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_canon. apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_To_comm.
- Qed.
-
- Lemma MapMerge_DomRestrTo_c :
- forall (m m':Map A) (m'':Map B),
- mapcanon A m ->
- mapcanon A m' ->
- MapDomRestrTo A B (MapMerge A m m') m'' =
- MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
- apply MapMerge_canon; assumption.
- apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrTo_canon; assumption.
- apply MapMerge_DomRestrTo.
- Qed.
-
- Lemma MapMerge_DomRestrBy_c :
- forall (m m':Map A) (m'':Map B),
- mapcanon A m ->
- mapcanon A m' ->
- MapDomRestrBy A B (MapMerge A m m') m'' =
- MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'').
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
- apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrBy_canon; assumption.
- apply MapMerge_DomRestrBy.
- Qed.
-
- Lemma MapDelta_nilpotent_c :
- forall m:Map A, mapcanon A m -> MapDelta A m m = M0 A.
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply M0_canon.
- apply MapDelta_nilpotent.
- Qed.
-
- Lemma MapDelta_as_Merge_c :
- forall m m':Map A,
- mapcanon A m ->
- mapcanon A m' ->
- MapDelta A m m' =
- MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m).
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply MapMerge_canon; apply MapDomRestrBy_canon; assumption.
- apply MapDelta_as_Merge.
- Qed.
-
- Lemma MapDelta_as_DomRestrBy_c :
- forall m m':Map A,
- mapcanon A m ->
- mapcanon A m' ->
- MapDelta A m m' =
- MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m').
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
- apply MapDelta_as_DomRestrBy.
- Qed.
-
- Lemma MapDelta_as_DomRestrBy_2_c :
- forall m m':Map A,
- mapcanon A m ->
- mapcanon A m' ->
- MapDelta A m m' =
- MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m).
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply MapDomRestrBy_canon. apply MapMerge_canon; assumption.
- apply MapDelta_as_DomRestrBy_2.
- Qed.
-
- Lemma MapDelta_sym_c :
- forall m m':Map A,
- mapcanon A m -> mapcanon A m' -> MapDelta A m m' = MapDelta A m' m.
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply MapDelta_canon; assumption. apply MapDelta_sym.
- Qed.
-
- Lemma MapDom_Split_1_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- m = MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m').
- Proof.
- intros. apply mapcanon_unique. assumption.
- apply MapMerge_canon. apply MapDomRestrTo_canon; assumption.
- apply MapDomRestrBy_canon; assumption.
- apply MapDom_Split_1.
- Qed.
-
- Lemma MapDom_Split_2_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- m = MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m').
- Proof.
- intros. apply mapcanon_unique. assumption.
- apply MapMerge_canon. apply MapDomRestrBy_canon; assumption.
- apply MapDomRestrTo_canon; assumption.
- apply MapDom_Split_2.
- Qed.
-
- Lemma MapDom_Split_3_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') =
- M0 A.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrTo_canon.
- apply MapDomRestrTo_canon; assumption.
- apply M0_canon.
- apply MapDom_Split_3.
- Qed.
-
- Lemma Map_of_alist_of_Map_c :
- forall m:Map A, mapcanon A m -> Map_of_alist A (alist_of_Map A m) = m.
- Proof.
- intros. apply mapcanon_unique; try assumption. apply Map_of_alist_canon.
- apply Map_of_alist_of_Map.
- Qed.
-
- Lemma alist_of_Map_of_alist_c :
- forall l:alist A,
- alist_sorted_2 A l -> alist_of_Map A (Map_of_alist A l) = l.
- Proof.
- intros. apply alist_canonical. apply alist_of_Map_of_alist.
- apply alist_of_Map_sorts2.
- assumption.
- Qed.
-
- Lemma MapSubset_antisym_c :
- forall (m:Map A) (m':Map B),
- mapcanon A m ->
- mapcanon B m' ->
- MapSubset A B m m' -> MapSubset B A m' m -> MapDom A m = MapDom B m'.
- Proof.
- intros. apply (mapcanon_unique unit). apply MapDom_canon; assumption.
- apply MapDom_canon; assumption.
- apply MapSubset_antisym; assumption.
- Qed.
-
- Lemma FSubset_antisym_c :
- forall s s':FSet,
- mapcanon unit s ->
- mapcanon unit s' -> MapSubset _ _ s s' -> MapSubset _ _ s' s -> s = s'.
- Proof.
- intros. apply (mapcanon_unique unit); try assumption. apply FSubset_antisym; assumption.
- Qed.
-
- Lemma MapDisjoint_empty_c :
- forall m:Map A, mapcanon A m -> MapDisjoint A A m m -> m = M0 A.
- Proof.
- intros. apply mapcanon_unique; try assumption; try apply M0_canon.
- apply MapDisjoint_empty; assumption.
- Qed.
-
- Lemma MapDelta_disjoint_c :
- forall m m':Map A,
- mapcanon A m ->
- mapcanon A m' ->
- MapDisjoint A A m m' -> MapDelta A m m' = MapMerge A m m'.
- Proof.
- intros. apply mapcanon_unique. apply MapDelta_canon; assumption.
- apply MapMerge_canon; assumption. apply MapDelta_disjoint; assumption.
- Qed.
-
-End MapC.
-
-Lemma FSetDelta_assoc_c :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s' ->
- mapcanon unit s'' ->
- MapDelta _ (MapDelta _ s s') s'' = MapDelta _ s (MapDelta _ s' s'').
-Proof.
- intros. apply (mapcanon_unique unit). apply MapDelta_canon. apply MapDelta_canon; assumption.
- assumption.
- apply MapDelta_canon. assumption.
- apply MapDelta_canon; assumption.
- apply FSetDelta_assoc; assumption.
-Qed.
-
-Lemma FSet_ext_c :
- forall s s':FSet,
- mapcanon unit s ->
- mapcanon unit s' -> (forall a:ad, in_FSet a s = in_FSet a s') -> s = s'.
-Proof.
- intros. apply (mapcanon_unique unit); try assumption. apply FSet_ext. assumption.
-Qed.
-
-Lemma FSetUnion_comm_c :
- forall s s':FSet,
- mapcanon unit s -> mapcanon unit s' -> FSetUnion s s' = FSetUnion s' s.
-Proof.
- intros.
- apply (mapcanon_unique unit);
- try (unfold FSetUnion in |- *; apply MapMerge_canon; assumption).
- apply FSetUnion_comm.
-Qed.
-
-Lemma FSetUnion_assoc_c :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s' ->
- mapcanon unit s'' ->
- FSetUnion (FSetUnion s s') s'' = FSetUnion s (FSetUnion s' s'').
-Proof.
- exact (MapMerge_assoc_c unit).
-Qed.
-
-Lemma FSetUnion_M0_s_c : forall s:FSet, FSetUnion (M0 unit) s = s.
-Proof.
- exact (MapMerge_empty_m_c unit).
-Qed.
-
-Lemma FSetUnion_s_M0_c : forall s:FSet, FSetUnion s (M0 unit) = s.
-Proof.
- exact (MapMerge_m_empty_1 unit).
-Qed.
-
-Lemma FSetUnion_idempotent :
- forall s:FSet, mapcanon unit s -> FSetUnion s s = s.
-Proof.
- exact (MapMerge_idempotent_c unit).
-Qed.
-
-Lemma FSetInter_comm_c :
- forall s s':FSet,
- mapcanon unit s -> mapcanon unit s' -> FSetInter s s' = FSetInter s' s.
-Proof.
- intros.
- apply (mapcanon_unique unit);
- try (unfold FSetInter in |- *; apply MapDomRestrTo_canon; assumption).
- apply FSetInter_comm.
-Qed.
-
-Lemma FSetInter_assoc_c :
- forall s s' s'':FSet,
- mapcanon unit s ->
- FSetInter (FSetInter s s') s'' = FSetInter s (FSetInter s' s'').
-Proof.
- exact (MapDomRestrTo_assoc_c unit unit unit).
-Qed.
-
-Lemma FSetInter_M0_s_c : forall s:FSet, FSetInter (M0 unit) s = M0 unit.
-Proof.
- trivial.
-Qed.
-
-Lemma FSetInter_s_M0_c : forall s:FSet, FSetInter s (M0 unit) = M0 unit.
-Proof.
- exact (MapDomRestrTo_m_empty_1 unit unit).
-Qed.
-
-Lemma FSetInter_idempotent :
- forall s:FSet, mapcanon unit s -> FSetInter s s = s.
-Proof.
- exact (MapDomRestrTo_idempotent_c unit).
-Qed.
-
-Lemma FSetUnion_Inter_l_c :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s'' ->
- FSetUnion (FSetInter s s') s'' =
- FSetInter (FSetUnion s s'') (FSetUnion s' s'').
-Proof.
- intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
- unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
- unfold FSetInter in |- *; unfold FSetUnion in |- *;
- apply MapDomRestrTo_canon; apply MapMerge_canon;
- assumption.
- apply FSetUnion_Inter_l.
-Qed.
-
-Lemma FSetUnion_Inter_r :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s' ->
- FSetUnion s (FSetInter s' s'') =
- FSetInter (FSetUnion s s') (FSetUnion s s'').
-Proof.
- intros. apply (mapcanon_unique unit). unfold FSetUnion in |- *. apply MapMerge_canon; try assumption.
- unfold FSetInter in |- *. apply MapDomRestrTo_canon; assumption.
- unfold FSetInter in |- *; unfold FSetUnion in |- *;
- apply MapDomRestrTo_canon; apply MapMerge_canon;
- assumption.
- apply FSetUnion_Inter_r.
-Qed.
-
-Lemma FSetInter_Union_l_c :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s' ->
- FSetInter (FSetUnion s s') s'' =
- FSetUnion (FSetInter s s'') (FSetInter s' s'').
-Proof.
- intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
- apply MapDomRestrTo_canon; try assumption. unfold FSetUnion in |- *.
- apply MapMerge_canon; assumption.
- unfold FSetUnion in |- *; unfold FSetInter in |- *; apply MapMerge_canon;
- apply MapDomRestrTo_canon; assumption.
- apply FSetInter_Union_l.
-Qed.
-
-Lemma FSetInter_Union_r :
- forall s s' s'':FSet,
- mapcanon unit s ->
- mapcanon unit s' ->
- FSetInter s (FSetUnion s' s'') =
- FSetUnion (FSetInter s s') (FSetInter s s'').
-Proof.
- intros. apply (mapcanon_unique unit). unfold FSetInter in |- *.
- apply MapDomRestrTo_canon; try assumption.
- unfold FSetUnion in |- *. apply MapMerge_canon; unfold FSetInter in |- *; apply MapDomRestrTo_canon;
- assumption.
- apply FSetInter_Union_r.
-Qed. \ No newline at end of file
diff --git a/theories/IntMap/Mapcanon.v b/theories/IntMap/Mapcanon.v
deleted file mode 100644
index 33741b98..00000000
--- a/theories/IntMap/Mapcanon.v
+++ /dev/null
@@ -1,401 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapcanon.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Mapaxioms.
-Require Import Mapiter.
-Require Import Fset.
-Require Import List.
-Require Import Lsort.
-Require Import Mapsubset.
-Require Import Mapcard.
-
-Section MapCanon.
-
- Variable A : Set.
-
- Inductive mapcanon : Map A -> Prop :=
- | M0_canon : mapcanon (M0 A)
- | M1_canon : forall (a:ad) (y:A), mapcanon (M1 A a y)
- | M2_canon :
- forall m1 m2:Map A,
- mapcanon m1 ->
- mapcanon m2 -> 2 <= MapCard A (M2 A m1 m2) -> mapcanon (M2 A m1 m2).
-
- Lemma mapcanon_M2 :
- forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> 2 <= MapCard A (M2 A m1 m2).
- Proof.
- intros. inversion H. assumption.
- Qed.
-
- Lemma mapcanon_M2_1 :
- forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m1.
- Proof.
- intros. inversion H. assumption.
- Qed.
-
- Lemma mapcanon_M2_2 :
- forall m1 m2:Map A, mapcanon (M2 A m1 m2) -> mapcanon m2.
- Proof.
- intros. inversion H. assumption.
- Qed.
-
- Lemma M2_eqmap_1 :
- forall m0 m1 m2 m3:Map A,
- eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m0 m2.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite <- (Ndouble_div2 a).
- rewrite <- (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m0 m1).
- rewrite <- (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m2 m3).
- exact (H (Ndouble a)).
- Qed.
-
- Lemma M2_eqmap_2 :
- forall m0 m1 m2 m3:Map A,
- eqmap A (M2 A m0 m1) (M2 A m2 m3) -> eqmap A m1 m3.
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite <- (Ndouble_plus_one_div2 a).
- rewrite <- (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m0 m1).
- rewrite <- (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m2 m3).
- exact (H (Ndouble_plus_one a)).
- Qed.
-
- Lemma mapcanon_unique :
- forall m m':Map A, mapcanon m -> mapcanon m' -> eqmap A m m' -> m = m'.
- Proof.
- simple induction m. simple induction m'. trivial.
- intros a y H H0 H1. cut (None = MapGet A (M1 A a y) a). simpl in |- *. rewrite (Neqb_correct a).
- intro. discriminate H2.
- exact (H1 a).
- intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
- rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
- intros a y. simple induction m'. intros. cut (MapGet A (M1 A a y) a = None). simpl in |- *.
- rewrite (Neqb_correct a). intro. discriminate H2.
- exact (H1 a).
- intros a0 y0 H H0 H1. cut (MapGet A (M1 A a y) a = MapGet A (M1 A a0 y0) a). simpl in |- *.
- rewrite (Neqb_correct a). intro. elim (sumbool_of_bool (Neqb a0 a)). intro H3.
- rewrite H3 in H2. inversion H2. rewrite (Neqb_complete _ _ H3). reflexivity.
- intro H3. rewrite H3 in H2. discriminate H2.
- exact (H1 a).
- intros. cut (2 <= MapCard A (M1 A a y)). intro. elim (le_Sn_O _ (le_S_n _ _ H4)).
- rewrite (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H2).
- simple induction m'. intros. cut (2 <= MapCard A (M0 A)). intro. elim (le_Sn_O _ H4).
- rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
- intros a y H1 H2 H3. cut (2 <= MapCard A (M1 A a y)). intro.
- elim (le_Sn_O _ (le_S_n _ _ H4)).
- rewrite <- (MapCard_ext A _ _ H3). exact (mapcanon_M2 _ _ H1).
- intros. rewrite (H m2). rewrite (H0 m3). reflexivity.
- exact (mapcanon_M2_2 _ _ H3).
- exact (mapcanon_M2_2 _ _ H4).
- exact (M2_eqmap_2 _ _ _ _ H5).
- exact (mapcanon_M2_1 _ _ H3).
- exact (mapcanon_M2_1 _ _ H4).
- exact (M2_eqmap_1 _ _ _ _ H5).
- Qed.
-
- Lemma MapPut1_canon :
- forall (p:positive) (a a':ad) (y y':A), mapcanon (MapPut1 A a y a' y' p).
- Proof.
- simple induction p. simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M1_canon.
- apply M1_canon.
- apply le_n.
- apply M2_canon. apply M1_canon.
- apply M1_canon.
- apply le_n.
- simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M0_canon.
- apply H.
- simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
- apply M2_canon. apply H.
- apply M0_canon.
- simpl in |- *. rewrite MapCard_Put1_equals_2. apply le_n.
- simpl in |- *. simpl in |- *. intros. case (Nbit0 a). apply M2_canon. apply M1_canon.
- apply M1_canon.
- simpl in |- *. apply le_n.
- apply M2_canon. apply M1_canon.
- apply M1_canon.
- simpl in |- *. apply le_n.
- Qed.
-
- Lemma MapPut_canon :
- forall m:Map A,
- mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut A m a y).
- Proof.
- simple induction m. intros. simpl in |- *. apply M1_canon.
- intros a0 y0 H a y. simpl in |- *. case (Nxor a0 a). apply M1_canon.
- intro. apply MapPut1_canon.
- intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
- exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
- apply plus_le_compat. exact (MapCard_Put_lb A m0 N0 y).
- apply le_n.
- intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
- apply H0. exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_l. exact (MapCard_Put_lb A m1 (Npos p0) y).
- intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
- exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_r. exact (MapCard_Put_lb A m0 (Npos p0) y).
- apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
- apply H0. apply (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_l. exact (MapCard_Put_lb A m1 N0 y).
- Qed.
-
- Lemma MapPut_behind_canon :
- forall m:Map A,
- mapcanon m -> forall (a:ad) (y:A), mapcanon (MapPut_behind A m a y).
- Proof.
- simple induction m. intros. simpl in |- *. apply M1_canon.
- intros a0 y0 H a y. simpl in |- *. case (Nxor a0 a). apply M1_canon.
- intro. apply MapPut1_canon.
- intros. simpl in |- *. elim a. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
- exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1). exact (mapcanon_M2 _ _ H1).
- apply plus_le_compat. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 N0 y).
- apply le_n.
- intro. case p. intro. apply M2_canon. exact (mapcanon_M2_1 m0 m1 H1).
- apply H0. exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 (Npos p0) y).
- intro. apply M2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
- exact (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_r. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m0 (Npos p0) y).
- apply M2_canon. apply (mapcanon_M2_1 m0 m1 H1).
- apply H0. apply (mapcanon_M2_2 m0 m1 H1).
- simpl in |- *. apply le_trans with (m := MapCard A m0 + MapCard A m1).
- exact (mapcanon_M2 m0 m1 H1).
- apply plus_le_compat_l. rewrite MapCard_Put_behind_Put. exact (MapCard_Put_lb A m1 N0 y).
- Qed.
-
- Lemma makeM2_canon :
- forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (makeM2 A m m').
- Proof.
- intro. case m. intro. case m'. intros. exact M0_canon.
- intros a y H H0. exact (M1_canon (Ndouble_plus_one a) y).
- intros. simpl in |- *. apply M2_canon; try assumption. exact (mapcanon_M2 m0 m1 H0).
- intros a y m'. case m'. intros. exact (M1_canon (Ndouble a) y).
- intros a0 y0 H H0. simpl in |- *. apply M2_canon; try assumption. apply le_n.
- intros. simpl in |- *. apply M2_canon; try assumption.
- apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H0).
- exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
- simpl in |- *. intros. apply M2_canon; try assumption.
- apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H).
- exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
- Qed.
-
- Fixpoint MapCanonicalize (m:Map A) : Map A :=
- match m with
- | M2 m0 m1 => makeM2 A (MapCanonicalize m0) (MapCanonicalize m1)
- | _ => m
- end.
-
- Lemma mapcanon_exists_1 : forall m:Map A, eqmap A m (MapCanonicalize m).
- Proof.
- simple induction m. apply eqmap_refl.
- intros. apply eqmap_refl.
- intros. simpl in |- *. unfold eqmap, eqm in |- *. intro.
- rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
- rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
- rewrite <- (H (Ndiv2 a)). rewrite <- (H0 (Ndiv2 a)). reflexivity.
- Qed.
-
- Lemma mapcanon_exists_2 : forall m:Map A, mapcanon (MapCanonicalize m).
- Proof.
- simple induction m. apply M0_canon.
- intros. simpl in |- *. apply M1_canon.
- intros. simpl in |- *. apply makeM2_canon; assumption.
- Qed.
-
- Lemma mapcanon_exists :
- forall m:Map A, {m' : Map A | eqmap A m m' /\ mapcanon m'}.
- Proof.
- intro. split with (MapCanonicalize m). split. apply mapcanon_exists_1.
- apply mapcanon_exists_2.
- Qed.
-
- Lemma MapRemove_canon :
- forall m:Map A, mapcanon m -> forall a:ad, mapcanon (MapRemove A m a).
- Proof.
- simple induction m. intros. exact M0_canon.
- intros a y H a0. simpl in |- *. case (Neqb a a0). exact M0_canon.
- assumption.
- intros. simpl in |- *. case (Nbit0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
- apply H0. exact (mapcanon_M2_2 _ _ H1).
- apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
- exact (mapcanon_M2_2 _ _ H1).
- Qed.
-
- Lemma MapMerge_canon :
- forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapMerge A m m').
- Proof.
- simple induction m. intros. exact H0.
- simpl in |- *. intros a y m' H H0. exact (MapPut_behind_canon m' H0 a y).
- simple induction m'. intros. exact H1.
- intros a y H1 H2. unfold MapMerge in |- *. exact (MapPut_canon _ H1 a y).
- intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
- exact (mapcanon_M2_1 _ _ H4).
- apply H0. exact (mapcanon_M2_2 _ _ H3).
- exact (mapcanon_M2_2 _ _ H4).
- change (2 <= MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3))) in |- *.
- apply le_trans with (m := MapCard A (M2 A m0 m1)). exact (mapcanon_M2 _ _ H3).
- exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
- Qed.
-
- Lemma MapDelta_canon :
- forall m m':Map A, mapcanon m -> mapcanon m' -> mapcanon (MapDelta A m m').
- Proof.
- simple induction m. intros. exact H0.
- simpl in |- *. intros a y m' H H0. case (MapGet A m' a).
- intro. exact (MapRemove_canon m' H0 a).
- exact (MapPut_canon m' H0 a y).
- simple induction m'. intros. exact H1.
- unfold MapDelta in |- *. intros a y H1 H2. case (MapGet A (M2 A m0 m1) a).
- intro. exact (MapRemove_canon _ H1 a).
- exact (MapPut_canon _ H1 a y).
- intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H3).
- exact (mapcanon_M2_1 _ _ H4).
- apply H0. exact (mapcanon_M2_2 _ _ H3).
- exact (mapcanon_M2_2 _ _ H4).
- Qed.
-
- Variable B : Set.
-
- Lemma MapDomRestrTo_canon :
- forall m:Map A,
- mapcanon m -> forall m':Map B, mapcanon (MapDomRestrTo A B m m').
- Proof.
- simple induction m. intros. exact M0_canon.
- simpl in |- *. intros a y H m'. case (MapGet B m' a).
- intro. apply M1_canon.
- exact M0_canon.
- simple induction m'. exact M0_canon.
- unfold MapDomRestrTo in |- *. intros a y. case (MapGet A (M2 A m0 m1) a).
- intro. apply M1_canon.
- exact M0_canon.
- intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 m0 m1 H1).
- apply H0. exact (mapcanon_M2_2 m0 m1 H1).
- Qed.
-
- Lemma MapDomRestrBy_canon :
- forall m:Map A,
- mapcanon m -> forall m':Map B, mapcanon (MapDomRestrBy A B m m').
- Proof.
- simple induction m. intros. exact M0_canon.
- simpl in |- *. intros a y H m'. case (MapGet B m' a); try assumption.
- intro. exact M0_canon.
- simple induction m'. exact H1.
- intros a y. simpl in |- *. case (Nbit0 a). apply makeM2_canon. exact (mapcanon_M2_1 _ _ H1).
- apply MapRemove_canon. exact (mapcanon_M2_2 _ _ H1).
- apply makeM2_canon. apply MapRemove_canon. exact (mapcanon_M2_1 _ _ H1).
- exact (mapcanon_M2_2 _ _ H1).
- intros. simpl in |- *. apply makeM2_canon. apply H. exact (mapcanon_M2_1 _ _ H1).
- apply H0. exact (mapcanon_M2_2 _ _ H1).
- Qed.
-
- Lemma Map_of_alist_canon : forall l:alist A, mapcanon (Map_of_alist A l).
- Proof.
- simple induction l. exact M0_canon.
- intro r. elim r. intros a y l0 H. simpl in |- *. apply MapPut_canon. assumption.
- Qed.
-
- Lemma MapSubset_c_1 :
- forall (m:Map A) (m':Map B),
- mapcanon m -> MapSubset A B m m' -> MapDomRestrBy A B m m' = M0 A.
- Proof.
- intros. apply mapcanon_unique. apply MapDomRestrBy_canon. assumption.
- apply M0_canon.
- exact (MapSubset_imp_2 _ _ m m' H0).
- Qed.
-
- Lemma MapSubset_c_2 :
- forall (m:Map A) (m':Map B),
- MapDomRestrBy A B m m' = M0 A -> MapSubset A B m m'.
- Proof.
- intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. rewrite H. apply eqmap_refl.
- Qed.
-
-End MapCanon.
-
-Section FSetCanon.
-
- Variable A : Set.
-
- Lemma MapDom_canon :
- forall m:Map A, mapcanon A m -> mapcanon unit (MapDom A m).
- Proof.
- simple induction m. intro. exact (M0_canon unit).
- intros a y H. exact (M1_canon unit a _).
- intros. simpl in |- *. apply M2_canon. apply H. exact (mapcanon_M2_1 A _ _ H1).
- apply H0. exact (mapcanon_M2_2 A _ _ H1).
- change (2 <= MapCard unit (MapDom A (M2 A m0 m1))) in |- *. rewrite <- MapCard_Dom.
- exact (mapcanon_M2 A _ _ H1).
- Qed.
-
-End FSetCanon.
-
-Section MapFoldCanon.
-
- Variables A B : Set.
-
- Lemma MapFold_canon_1 :
- forall m0:Map B,
- mapcanon B m0 ->
- forall op:Map B -> Map B -> Map B,
- (forall m1:Map B,
- mapcanon B m1 ->
- forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
- forall f:ad -> A -> Map B,
- (forall (a:ad) (y:A), mapcanon B (f a y)) ->
- forall (m:Map A) (pf:ad -> ad),
- mapcanon B (MapFold1 A (Map B) m0 op f pf m).
- Proof.
- simple induction m. intro. exact H.
- intros a y pf. simpl in |- *. apply H1.
- intros. simpl in |- *. apply H0. apply H2.
- apply H3.
- Qed.
-
- Lemma MapFold_canon :
- forall m0:Map B,
- mapcanon B m0 ->
- forall op:Map B -> Map B -> Map B,
- (forall m1:Map B,
- mapcanon B m1 ->
- forall m2:Map B, mapcanon B m2 -> mapcanon B (op m1 m2)) ->
- forall f:ad -> A -> Map B,
- (forall (a:ad) (y:A), mapcanon B (f a y)) ->
- forall m:Map A, mapcanon B (MapFold A (Map B) m0 op f m).
- Proof.
- intros. exact (MapFold_canon_1 m0 H op H0 f H1 m (fun a:ad => a)).
- Qed.
-
- Lemma MapCollect_canon :
- forall f:ad -> A -> Map B,
- (forall (a:ad) (y:A), mapcanon B (f a y)) ->
- forall m:Map A, mapcanon B (MapCollect A B f m).
- Proof.
- intros. rewrite MapCollect_as_Fold. apply MapFold_canon. apply M0_canon.
- intros. exact (MapMerge_canon B m1 m2 H0 H1).
- assumption.
- Qed.
-
-End MapFoldCanon. \ No newline at end of file
diff --git a/theories/IntMap/Mapcard.v b/theories/IntMap/Mapcard.v
deleted file mode 100644
index 36be9bf9..00000000
--- a/theories/IntMap/Mapcard.v
+++ /dev/null
@@ -1,764 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapcard.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Mapaxioms.
-Require Import Mapiter.
-Require Import Fset.
-Require Import Mapsubset.
-Require Import List.
-Require Import Lsort.
-Require Import Peano_dec.
-
-Section MapCard.
-
- Variables A B : Set.
-
- Lemma MapCard_M0 : MapCard A (M0 A) = 0.
- Proof.
- trivial.
- Qed.
-
- Lemma MapCard_M1 : forall (a:ad) (y:A), MapCard A (M1 A a y) = 1.
- Proof.
- trivial.
- Qed.
-
- Lemma MapCard_is_O :
- forall m:Map A, MapCard A m = 0 -> forall a:ad, MapGet A m a = None.
- Proof.
- simple induction m. trivial.
- intros a y H. discriminate H.
- intros. simpl in H1. elim (plus_is_O _ _ H1). intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- case (Nbit0 a). apply H0. assumption.
- apply H. assumption.
- Qed.
-
- Lemma MapCard_is_not_O :
- forall (m:Map A) (a:ad) (y:A),
- MapGet A m a = Some y -> {n : nat | MapCard A m = S n}.
- Proof.
- simple induction m. intros. discriminate H.
- intros a y a0 y0 H. simpl in H. elim (sumbool_of_bool (Neqb a a0)). intro H0. split with 0.
- reflexivity.
- intro H0. rewrite H0 in H. discriminate H.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H2.
- rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. elim (H0 (Ndiv2 a) y H1). intros n H3.
- simpl in |- *. rewrite H3. split with (MapCard A m0 + n).
- rewrite <- (plus_Snm_nSm (MapCard A m0) n). reflexivity.
- intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. elim (H (Ndiv2 a) y H1).
- intros n H3. simpl in |- *. rewrite H3. split with (n + MapCard A m1). reflexivity.
- Qed.
-
- Lemma MapCard_is_one :
- forall m:Map A,
- MapCard A m = 1 -> {a : ad & {y : A | MapGet A m a = Some y}}.
- Proof.
- simple induction m. intro. discriminate H.
- intros a y H. split with a. split with y. apply M1_semantics_1.
- intros. simpl in H1. elim (plus_is_one (MapCard A m0) (MapCard A m1) H1).
- intro H2. elim H2. intros. elim (H0 H4). intros a H5. split with (Ndouble_plus_one a).
- rewrite (MapGet_M2_bit_0_1 A _ (Ndouble_plus_one_bit0 a) m0 m1).
- rewrite Ndouble_plus_one_div2. exact H5.
- intro H2. elim H2. intros. elim (H H3). intros a H5. split with (Ndouble a).
- rewrite (MapGet_M2_bit_0_0 A _ (Ndouble_bit0 a) m0 m1).
- rewrite Ndouble_div2. exact H5.
- Qed.
-
- Lemma MapCard_is_one_unique :
- forall m:Map A,
- MapCard A m = 1 ->
- forall (a a':ad) (y y':A),
- MapGet A m a = Some y ->
- MapGet A m a' = Some y' -> a = a' /\ y = y'.
- Proof.
- simple induction m. intro. discriminate H.
- intros. elim (sumbool_of_bool (Neqb a a1)). intro H2. rewrite (Neqb_complete _ _ H2) in H0.
- rewrite (M1_semantics_1 A a1 a0) in H0. inversion H0. elim (sumbool_of_bool (Neqb a a')).
- intro H5. rewrite (Neqb_complete _ _ H5) in H1. rewrite (M1_semantics_1 A a' a0) in H1.
- inversion H1. rewrite <- (Neqb_complete _ _ H2). rewrite <- (Neqb_complete _ _ H5).
- rewrite <- H4. rewrite <- H6. split; reflexivity.
- intro H5. rewrite (M1_semantics_2 A a a' a0 H5) in H1. discriminate H1.
- intro H2. rewrite (M1_semantics_2 A a a1 a0 H2) in H0. discriminate H0.
- intros. simpl in H1. elim (plus_is_one _ _ H1). intro H4. elim H4. intros.
- rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2. elim (sumbool_of_bool (Nbit0 a)).
- intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
- elim (sumbool_of_bool (Nbit0 a')). intro H8. rewrite H8 in H3. elim (H0 H6 _ _ _ _ H2 H3).
- intros. split. rewrite <- (Ndiv2_double_plus_one a H7).
- rewrite <- (Ndiv2_double_plus_one a' H8). rewrite H9. reflexivity.
- assumption.
- intro H8. rewrite H8 in H3. rewrite (MapCard_is_O m0 H5 (Ndiv2 a')) in H3.
- discriminate H3.
- intro H7. rewrite H7 in H2. rewrite (MapCard_is_O m0 H5 (Ndiv2 a)) in H2.
- discriminate H2.
- intro H4. elim H4. intros. rewrite (MapGet_M2_bit_0_if A m0 m1 a) in H2.
- elim (sumbool_of_bool (Nbit0 a)). intro H7. rewrite H7 in H2.
- rewrite (MapCard_is_O m1 H6 (Ndiv2 a)) in H2. discriminate H2.
- intro H7. rewrite H7 in H2. rewrite (MapGet_M2_bit_0_if A m0 m1 a') in H3.
- elim (sumbool_of_bool (Nbit0 a')). intro H8. rewrite H8 in H3.
- rewrite (MapCard_is_O m1 H6 (Ndiv2 a')) in H3. discriminate H3.
- intro H8. rewrite H8 in H3. elim (H H5 _ _ _ _ H2 H3). intros. split.
- rewrite <- (Ndiv2_double a H7). rewrite <- (Ndiv2_double a' H8).
- rewrite H9. reflexivity.
- assumption.
- Qed.
-
- Lemma length_as_fold :
- forall (C:Set) (l:list C),
- length l = fold_right (fun (_:C) (n:nat) => S n) 0 l.
- Proof.
- simple induction l. reflexivity.
- intros. simpl in |- *. rewrite H. reflexivity.
- Qed.
-
- Lemma length_as_fold_2 :
- forall l:alist A,
- length l =
- fold_right (fun (r:ad * A) (n:nat) => let (a, y) := r in 1 + n) 0 l.
- Proof.
- simple induction l. reflexivity.
- intros. simpl in |- *. rewrite H. elim a; reflexivity.
- Qed.
-
- Lemma MapCard_as_Fold_1 :
- forall (m:Map A) (pf:ad -> ad),
- MapCard A m = MapFold1 A nat 0 plus (fun (_:ad) (_:A) => 1) pf m.
- Proof.
- simple induction m. trivial.
- trivial.
- intros. simpl in |- *. rewrite <- (H (fun a0:ad => pf (Ndouble a0))).
- rewrite <- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity.
- Qed.
-
- Lemma MapCard_as_Fold :
- forall m:Map A,
- MapCard A m = MapFold A nat 0 plus (fun (_:ad) (_:A) => 1) m.
- Proof.
- intro. exact (MapCard_as_Fold_1 m (fun a0:ad => a0)).
- Qed.
-
- Lemma MapCard_as_length :
- forall m:Map A, MapCard A m = length (alist_of_Map A m).
- Proof.
- intro. rewrite MapCard_as_Fold. rewrite length_as_fold_2.
- apply MapFold_as_fold with
- (op := plus) (neutral := 0) (f := fun (_:ad) (_:A) => 1). exact plus_assoc_reverse.
- trivial.
- intro. rewrite <- plus_n_O. reflexivity.
- Qed.
-
- Lemma MapCard_Put1_equals_2 :
- forall (p:positive) (a a':ad) (y y':A),
- MapCard A (MapPut1 A a y a' y' p) = 2.
- Proof.
- simple induction p. intros. simpl in |- *. case (Nbit0 a); reflexivity.
- intros. simpl in |- *. case (Nbit0 a). exact (H (Ndiv2 a) (Ndiv2 a') y y').
- simpl in |- *. rewrite <- plus_n_O. exact (H (Ndiv2 a) (Ndiv2 a') y y').
- intros. simpl in |- *. case (Nbit0 a); reflexivity.
- Qed.
-
- Lemma MapCard_Put_sum :
- forall (m m':Map A) (a:ad) (y:A) (n n':nat),
- m' = MapPut A m a y ->
- n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
- Proof.
- simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. right.
- rewrite H0. rewrite H1. reflexivity.
- intros a y m' a0 y0 n n' H H0 H1. simpl in H. elim (Ndiscr (Nxor a a0)). intro H2.
- elim H2. intros p H3. rewrite H3 in H. rewrite H in H1.
- rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H1. simpl in H0. right.
- rewrite H0. rewrite H1. reflexivity.
- intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. simpl in H0. left.
- rewrite H0. rewrite H1. reflexivity.
- intros. simpl in H2. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1.
- elim (sumbool_of_bool (Nbit0 a)). intro H4. rewrite H4 in H1.
- elim
- (H0 (MapPut A m1 (Ndiv2 a) y) (Ndiv2 a) y (
- MapCard A m1) (MapCard A (MapPut A m1 (Ndiv2 a) y)) (
- refl_equal _) (refl_equal _) (refl_equal _)).
- intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3. left.
- assumption.
- intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3.
- rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)) in H3.
- simpl in H3. rewrite <- H2 in H3. right. assumption.
- intro H4. rewrite H4 in H1.
- elim
- (H (MapPut A m0 (Ndiv2 a) y) (Ndiv2 a) y (
- MapCard A m0) (MapCard A (MapPut A m0 (Ndiv2 a) y)) (
- refl_equal _) (refl_equal _) (refl_equal _)).
- intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. rewrite <- H2 in H3.
- left. assumption.
- intro H5. rewrite H1 in H3. simpl in H3. rewrite H5 in H3. simpl in H3. rewrite <- H2 in H3.
- right. assumption.
- Qed.
-
- Lemma MapCard_Put_lb :
- forall (m:Map A) (a:ad) (y:A), MapCard A (MapPut A m a y) >= MapCard A m.
- Proof.
- unfold ge in |- *. intros.
- elim
- (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H. rewrite H. apply le_n.
- intro H. rewrite H. apply le_n_Sn.
- Qed.
-
- Lemma MapCard_Put_ub :
- forall (m:Map A) (a:ad) (y:A),
- MapCard A (MapPut A m a y) <= S (MapCard A m).
- Proof.
- intros.
- elim
- (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H. rewrite H. apply le_n_Sn.
- intro H. rewrite H. apply le_n.
- Qed.
-
- Lemma MapCard_Put_1 :
- forall (m:Map A) (a:ad) (y:A),
- MapCard A (MapPut A m a y) = MapCard A m ->
- {y : A | MapGet A m a = Some y}.
- Proof.
- simple induction m. intros. discriminate H.
- intros a y a0 y0 H. simpl in H. elim (Ndiscr (Nxor a a0)). intro H0. elim H0.
- intros p H1. rewrite H1 in H. rewrite (MapCard_Put1_equals_2 p a a0 y y0) in H.
- discriminate H.
- intro H0. rewrite H0 in H. rewrite (Nxor_eq _ _ H0). split with y. apply M1_semantics_1.
- intros. rewrite (MapPut_semantics_3_1 A m0 m1 a y) in H1. elim (sumbool_of_bool (Nbit0 a)).
- intro H2. rewrite H2 in H1. simpl in H1. elim (H0 (Ndiv2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)).
- intros y0 H3. split with y0. rewrite <- H3. exact (MapGet_M2_bit_0_1 A a H2 m0 m1).
- intro H2. rewrite H2 in H1. simpl in H1.
- rewrite
- (plus_comm (MapCard A (MapPut A m0 (Ndiv2 a) y)) (MapCard A m1))
- in H1.
- rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1.
- elim (H (Ndiv2 a) y ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1)). intros y0 H3. split with y0.
- rewrite <- H3. exact (MapGet_M2_bit_0_0 A a H2 m0 m1).
- Qed.
-
- Lemma MapCard_Put_2 :
- forall (m:Map A) (a:ad) (y:A),
- MapCard A (MapPut A m a y) = S (MapCard A m) -> MapGet A m a = None.
- Proof.
- simple induction m. trivial.
- intros. simpl in H. elim (sumbool_of_bool (Neqb a a1)). intro H0.
- rewrite (Neqb_complete _ _ H0) in H. rewrite (Nxor_nilpotent a1) in H. discriminate H.
- intro H0. exact (M1_semantics_2 A a a1 a0 H0).
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H2.
- rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply (H0 (Ndiv2 a) y).
- apply (fun n m p:nat => plus_reg_l m p n) with (n := MapCard A m0).
- rewrite <- (plus_Snm_nSm (MapCard A m0) (MapCard A m1)). simpl in H1. simpl in |- *. rewrite <- H1.
- clear H1.
- induction a. discriminate H2.
- induction p. reflexivity.
- discriminate H2.
- reflexivity.
- intro H2. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply (H (Ndiv2 a) y).
- cut
- (MapCard A (MapPut A m0 (Ndiv2 a) y) + MapCard A m1 =
- S (MapCard A m0) + MapCard A m1).
- intro. rewrite (plus_comm (MapCard A (MapPut A m0 (Ndiv2 a) y)) (MapCard A m1))
- in H3.
- rewrite (plus_comm (S (MapCard A m0)) (MapCard A m1)) in H3. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H3).
- simpl in |- *. simpl in H1. rewrite <- H1. induction a. trivial.
- induction p. discriminate H2.
- reflexivity.
- discriminate H2.
- Qed.
-
- Lemma MapCard_Put_1_conv :
- forall (m:Map A) (a:ad) (y y':A),
- MapGet A m a = Some y -> MapCard A (MapPut A m a y') = MapCard A m.
- Proof.
- intros.
- elim
- (MapCard_Put_sum m (MapPut A m a y') a y' (MapCard A m)
- (MapCard A (MapPut A m a y')) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- trivial.
- intro H0. rewrite (MapCard_Put_2 m a y' H0) in H. discriminate H.
- Qed.
-
- Lemma MapCard_Put_2_conv :
- forall (m:Map A) (a:ad) (y:A),
- MapGet A m a = None -> MapCard A (MapPut A m a y) = S (MapCard A m).
- Proof.
- intros.
- elim
- (MapCard_Put_sum m (MapPut A m a y) a y (MapCard A m)
- (MapCard A (MapPut A m a y)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H0. elim (MapCard_Put_1 m a y H0). intros y' H1. rewrite H1 in H. discriminate H.
- trivial.
- Qed.
-
- Lemma MapCard_ext :
- forall m m':Map A,
- eqm A (MapGet A m) (MapGet A m') -> MapCard A m = MapCard A m'.
- Proof.
- unfold eqm in |- *. intros. rewrite (MapCard_as_length m). rewrite (MapCard_as_length m').
- rewrite (alist_canonical A (alist_of_Map A m) (alist_of_Map A m')). reflexivity.
- unfold eqm in |- *. intro. rewrite (Map_of_alist_semantics A (alist_of_Map A m) a).
- rewrite (Map_of_alist_semantics A (alist_of_Map A m') a). rewrite (Map_of_alist_of_Map A m' a).
- rewrite (Map_of_alist_of_Map A m a). exact (H a).
- apply alist_of_Map_sorts2.
- apply alist_of_Map_sorts2.
- Qed.
-
- Lemma MapCard_Dom : forall m:Map A, MapCard A m = MapCard unit (MapDom A m).
- Proof.
- simple induction m; trivial. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapCard_Dom_Put_behind :
- forall (m:Map A) (a:ad) (y:A),
- MapDom A (MapPut_behind A m a y) = MapDom A (MapPut A m a y).
- Proof.
- simple induction m. trivial.
- intros a y a0 y0. simpl in |- *. elim (Ndiscr (Nxor a a0)). intro H. elim H.
- intros p H0. rewrite H0. reflexivity.
- intro H. rewrite H. rewrite (Nxor_eq _ _ H). reflexivity.
- intros. simpl in |- *. elim (Ndiscr a). intro H1. elim H1. intros p H2. rewrite H2. case p.
- intro p0. simpl in |- *. rewrite H0. reflexivity.
- intro p0. simpl in |- *. rewrite H. reflexivity.
- simpl in |- *. rewrite H0. reflexivity.
- intro H1. rewrite H1. simpl in |- *. rewrite H. reflexivity.
- Qed.
-
- Lemma MapCard_Put_behind_Put :
- forall (m:Map A) (a:ad) (y:A),
- MapCard A (MapPut_behind A m a y) = MapCard A (MapPut A m a y).
- Proof.
- intros. rewrite MapCard_Dom. rewrite MapCard_Dom. rewrite MapCard_Dom_Put_behind.
- reflexivity.
- Qed.
-
- Lemma MapCard_Put_behind_sum :
- forall (m m':Map A) (a:ad) (y:A) (n n':nat),
- m' = MapPut_behind A m a y ->
- n = MapCard A m -> n' = MapCard A m' -> {n' = n} + {n' = S n}.
- Proof.
- intros. apply (MapCard_Put_sum m (MapPut A m a y) a y n n'); trivial.
- rewrite <- MapCard_Put_behind_Put. rewrite <- H. assumption.
- Qed.
-
- Lemma MapCard_makeM2 :
- forall m m':Map A, MapCard A (makeM2 A m m') = MapCard A m + MapCard A m'.
- Proof.
- intros. rewrite (MapCard_ext _ _ (makeM2_M2 A m m')). reflexivity.
- Qed.
-
- Lemma MapCard_Remove_sum :
- forall (m m':Map A) (a:ad) (n n':nat),
- m' = MapRemove A m a ->
- n = MapCard A m -> n' = MapCard A m' -> {n = n'} + {n = S n'}.
- Proof.
- simple induction m. simpl in |- *. intros. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
- simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H2. rewrite H2 in H.
- rewrite H in H1. simpl in H1. right. rewrite H1. assumption.
- intro H2. rewrite H2 in H. rewrite H in H1. simpl in H1. left. rewrite H1. assumption.
- intros. simpl in H1. simpl in H2. elim (sumbool_of_bool (Nbit0 a)). intro H4.
- rewrite H4 in H1. rewrite H1 in H3.
- rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H3.
- elim
- (H0 (MapRemove A m1 (Ndiv2 a)) (Ndiv2 a) (
- MapCard A m1) (MapCard A (MapRemove A m1 (Ndiv2 a)))
- (refl_equal _) (refl_equal _) (refl_equal _)).
- intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
- intro H5. rewrite H5 in H2.
- rewrite <-
- (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (Ndiv2 a))))
- in H2.
- right. rewrite H3. exact H2.
- intro H4. rewrite H4 in H1. rewrite H1 in H3.
- rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H3.
- elim
- (H (MapRemove A m0 (Ndiv2 a)) (Ndiv2 a) (
- MapCard A m0) (MapCard A (MapRemove A m0 (Ndiv2 a)))
- (refl_equal _) (refl_equal _) (refl_equal _)).
- intro H5. rewrite H5 in H2. left. rewrite H3. exact H2.
- intro H5. rewrite H5 in H2. right. rewrite H3. exact H2.
- Qed.
-
- Lemma MapCard_Remove_ub :
- forall (m:Map A) (a:ad), MapCard A (MapRemove A m a) <= MapCard A m.
- Proof.
- intros.
- elim
- (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H. rewrite H. apply le_n.
- intro H. rewrite H. apply le_n_Sn.
- Qed.
-
- Lemma MapCard_Remove_lb :
- forall (m:Map A) (a:ad), S (MapCard A (MapRemove A m a)) >= MapCard A m.
- Proof.
- unfold ge in |- *. intros.
- elim
- (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H. rewrite H. apply le_n_Sn.
- intro H. rewrite H. apply le_n.
- Qed.
-
- Lemma MapCard_Remove_1 :
- forall (m:Map A) (a:ad),
- MapCard A (MapRemove A m a) = MapCard A m -> MapGet A m a = None.
- Proof.
- simple induction m. trivial.
- simpl in |- *. intros a y a0 H. elim (sumbool_of_bool (Neqb a a0)). intro H0.
- rewrite H0 in H. discriminate H.
- intro H0. rewrite H0. reflexivity.
- intros. simpl in H1. elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2 in H1.
- rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H1.
- rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
- intro H2. rewrite H2 in H1.
- rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H1.
- rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
- rewrite
- (plus_comm (MapCard A (MapRemove A m0 (Ndiv2 a))) (MapCard A m1))
- in H1.
- rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
- Qed.
-
- Lemma MapCard_Remove_2 :
- forall (m:Map A) (a:ad),
- S (MapCard A (MapRemove A m a)) = MapCard A m ->
- {y : A | MapGet A m a = Some y}.
- Proof.
- simple induction m. intros. discriminate H.
- intros a y a0 H. simpl in H. elim (sumbool_of_bool (Neqb a a0)). intro H0.
- rewrite (Neqb_complete _ _ H0). split with y. exact (M1_semantics_1 A a0 y).
- intro H0. rewrite H0 in H. discriminate H.
- intros. simpl in H1. elim (sumbool_of_bool (Nbit0 a)). intro H2. rewrite H2 in H1.
- rewrite (MapCard_makeM2 m0 (MapRemove A m1 (Ndiv2 a))) in H1.
- rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1). apply H0.
- change
- (S (MapCard A m0) + MapCard A (MapRemove A m1 (Ndiv2 a)) =
- MapCard A m0 + MapCard A m1) in H1.
- rewrite
- (plus_Snm_nSm (MapCard A m0) (MapCard A (MapRemove A m1 (Ndiv2 a))))
- in H1.
- exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
- intro H2. rewrite H2 in H1. rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1). apply H.
- rewrite (MapCard_makeM2 (MapRemove A m0 (Ndiv2 a)) m1) in H1.
- change
- (S (MapCard A (MapRemove A m0 (Ndiv2 a))) + MapCard A m1 =
- MapCard A m0 + MapCard A m1) in H1.
- rewrite
- (plus_comm (S (MapCard A (MapRemove A m0 (Ndiv2 a)))) (MapCard A m1))
- in H1.
- rewrite (plus_comm (MapCard A m0) (MapCard A m1)) in H1. exact ((fun n m p:nat => plus_reg_l m p n) _ _ _ H1).
- Qed.
-
- Lemma MapCard_Remove_1_conv :
- forall (m:Map A) (a:ad),
- MapGet A m a = None -> MapCard A (MapRemove A m a) = MapCard A m.
- Proof.
- intros.
- elim
- (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H0. rewrite H0. reflexivity.
- intro H0. elim (MapCard_Remove_2 m a (sym_eq H0)). intros y H1. rewrite H1 in H.
- discriminate H.
- Qed.
-
- Lemma MapCard_Remove_2_conv :
- forall (m:Map A) (a:ad) (y:A),
- MapGet A m a = Some y -> S (MapCard A (MapRemove A m a)) = MapCard A m.
- Proof.
- intros.
- elim
- (MapCard_Remove_sum m (MapRemove A m a) a (MapCard A m)
- (MapCard A (MapRemove A m a)) (refl_equal _) (
- refl_equal _) (refl_equal _)).
- intro H0. rewrite (MapCard_Remove_1 m a (sym_eq H0)) in H. discriminate H.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapMerge_Restr_Card :
- forall m m':Map A,
- MapCard A m + MapCard A m' =
- MapCard A (MapMerge A m m') + MapCard A (MapDomRestrTo A A m m').
- Proof.
- simple induction m. simpl in |- *. intro. apply plus_n_O.
- simpl in |- *. intros a y m'. elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y0 H0.
- rewrite H0. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_1_conv m' a y0 y H0).
- simpl in |- *. rewrite <- plus_Snm_nSm. apply plus_n_O.
- intro H. rewrite H. rewrite MapCard_Put_behind_Put. rewrite (MapCard_Put_2_conv m' a y H).
- apply plus_n_O.
- intros.
- change
- (MapCard A m0 + MapCard A m1 + MapCard A m' =
- MapCard A (MapMerge A (M2 A m0 m1) m') +
- MapCard A (MapDomRestrTo A A (M2 A m0 m1) m'))
- in |- *.
- elim m'. reflexivity.
- intros a y. unfold MapMerge in |- *. unfold MapDomRestrTo in |- *.
- elim (option_sum A (MapGet A (M2 A m0 m1) a)). intro H1. elim H1. intros y0 H2. rewrite H2.
- rewrite (MapCard_Put_1_conv (M2 A m0 m1) a y0 y H2). reflexivity.
- intro H1. rewrite H1. rewrite (MapCard_Put_2_conv (M2 A m0 m1) a y H1). simpl in |- *.
- rewrite <- (plus_Snm_nSm (MapCard A m0 + MapCard A m1) 0). reflexivity.
- intros. simpl in |- *.
- rewrite
- (plus_permute_2_in_4 (MapCard A m0) (MapCard A m1) (
- MapCard A m2) (MapCard A m3)).
- rewrite (H m2). rewrite (H0 m3).
- rewrite
- (MapCard_makeM2 (MapDomRestrTo A A m0 m2) (MapDomRestrTo A A m1 m3))
- .
- apply plus_permute_2_in_4.
- Qed.
-
- Lemma MapMerge_disjoint_Card :
- forall m m':Map A,
- MapDisjoint A A m m' ->
- MapCard A (MapMerge A m m') = MapCard A m + MapCard A m'.
- Proof.
- intros. rewrite (MapMerge_Restr_Card m m').
- rewrite (MapCard_ext _ _ (MapDisjoint_imp_2 _ _ _ _ H)). apply plus_n_O.
- Qed.
-
- Lemma MapSplit_Card :
- forall (m:Map A) (m':Map B),
- MapCard A m =
- MapCard A (MapDomRestrTo A B m m') + MapCard A (MapDomRestrBy A B m m').
- Proof.
- intros. rewrite (MapCard_ext _ _ (MapDom_Split_1 A B m m')). apply MapMerge_disjoint_Card.
- apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply MapDom_Split_3.
- Qed.
-
- Lemma MapMerge_Card_ub :
- forall m m':Map A,
- MapCard A (MapMerge A m m') <= MapCard A m + MapCard A m'.
- Proof.
- intros. rewrite MapMerge_Restr_Card. apply le_plus_l.
- Qed.
-
- Lemma MapDomRestrTo_Card_ub_l :
- forall (m:Map A) (m':Map B),
- MapCard A (MapDomRestrTo A B m m') <= MapCard A m.
- Proof.
- intros. rewrite (MapSplit_Card m m'). apply le_plus_l.
- Qed.
-
- Lemma MapDomRestrBy_Card_ub_l :
- forall (m:Map A) (m':Map B),
- MapCard A (MapDomRestrBy A B m m') <= MapCard A m.
- Proof.
- intros. rewrite (MapSplit_Card m m'). apply le_plus_r.
- Qed.
-
- Lemma MapMerge_Card_disjoint :
- forall m m':Map A,
- MapCard A (MapMerge A m m') = MapCard A m + MapCard A m' ->
- MapDisjoint A A m m'.
- Proof.
- simple induction m. intros. apply Map_M0_disjoint.
- simpl in |- *. intros. rewrite (MapCard_Put_behind_Put m' a a0) in H. unfold MapDisjoint, in_dom in |- *.
- simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H2.
- rewrite (Neqb_complete _ _ H2) in H. rewrite (MapCard_Put_2 m' a1 a0 H) in H1.
- discriminate H1.
- intro H2. rewrite H2 in H0. discriminate H0.
- simple induction m'. intros. apply Map_disjoint_M0.
- intros a y H1. rewrite <- (MapCard_ext _ _ (MapPut_as_Merge A (M2 A m0 m1) a y)) in H1.
- unfold MapCard at 3 in H1. rewrite <- (plus_Snm_nSm (MapCard A (M2 A m0 m1)) 0) in H1.
- rewrite <- (plus_n_O (S (MapCard A (M2 A m0 m1)))) in H1. unfold MapDisjoint, in_dom in |- *.
- unfold MapGet at 2 in |- *. intros. elim (sumbool_of_bool (Neqb a a0)). intro H4.
- rewrite <- (Neqb_complete _ _ H4) in H2. rewrite (MapCard_Put_2 _ _ _ H1) in H2.
- discriminate H2.
- intro H4. rewrite H4 in H3. discriminate H3.
- intros. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H6.
- unfold MapDisjoint in H0. apply H0 with (m' := m3) (a := Ndiv2 a). apply le_antisym.
- apply MapMerge_Card_ub.
- apply (fun p n m:nat => plus_le_reg_l n m p) with
- (p := MapCard A m0 + MapCard A m2).
- rewrite
- (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
- MapCard A m1) (MapCard A m3)).
- change
- (MapCard A (M2 A (MapMerge A m0 m2) (MapMerge A m1 m3)) =
- MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
- in H3.
- rewrite <- H3. simpl in |- *. apply plus_le_compat_r. apply MapMerge_Card_ub.
- elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m0 m1) in H7.
- unfold in_dom in |- *. rewrite H7. reflexivity.
- elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_1 _ a H6 m2 m3) in H7.
- unfold in_dom in |- *. rewrite H7. reflexivity.
- intro H6. unfold MapDisjoint in H. apply H with (m' := m2) (a := Ndiv2 a). apply le_antisym.
- apply MapMerge_Card_ub.
- apply (fun p n m:nat => plus_le_reg_l n m p) with
- (p := MapCard A m1 + MapCard A m3).
- rewrite
- (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A m0 + MapCard A m2))
- .
- rewrite
- (plus_permute_2_in_4 (MapCard A m0) (MapCard A m2) (
- MapCard A m1) (MapCard A m3)).
- rewrite
- (plus_comm (MapCard A m1 + MapCard A m3) (MapCard A (MapMerge A m0 m2)))
- .
- change
- (MapCard A (MapMerge A m0 m2) + MapCard A (MapMerge A m1 m3) =
- MapCard A m0 + MapCard A m1 + (MapCard A m2 + MapCard A m3))
- in H3.
- rewrite <- H3. apply plus_le_compat_l. apply MapMerge_Card_ub.
- elim (in_dom_some _ _ _ H4). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m0 m1) in H7.
- unfold in_dom in |- *. rewrite H7. reflexivity.
- elim (in_dom_some _ _ _ H5). intros y H7. rewrite (MapGet_M2_bit_0_0 _ a H6 m2 m3) in H7.
- unfold in_dom in |- *. rewrite H7. reflexivity.
- Qed.
-
- Lemma MapCard_is_Sn :
- forall (m:Map A) (n:nat),
- MapCard _ m = S n -> {a : ad | in_dom _ a m = true}.
- Proof.
- simple induction m. intros. discriminate H.
- intros a y n H. split with a. unfold in_dom in |- *. rewrite (M1_semantics_1 _ a y). reflexivity.
- intros. simpl in H1. elim (O_or_S (MapCard _ m0)). intro H2. elim H2. intros m2 H3.
- elim (H _ (sym_eq H3)). intros a H4. split with (Ndouble a). unfold in_dom in |- *.
- rewrite (MapGet_M2_bit_0_0 A (Ndouble a) (Ndouble_bit0 a) m0 m1).
- rewrite (Ndouble_div2 a). elim (in_dom_some _ _ _ H4). intros y H5. rewrite H5. reflexivity.
- intro H2. rewrite <- H2 in H1. simpl in H1. elim (H0 _ H1). intros a H3.
- split with (Ndouble_plus_one a). unfold in_dom in |- *.
- rewrite
- (MapGet_M2_bit_0_1 A (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a)
- m0 m1).
- rewrite (Ndouble_plus_one_div2 a). elim (in_dom_some _ _ _ H3). intros y H4. rewrite H4.
- reflexivity.
- Qed.
-
-End MapCard.
-
-Section MapCard2.
-
- Variables A B : Set.
-
- Lemma MapSubset_card_eq_1 :
- forall (n:nat) (m:Map A) (m':Map B),
- MapSubset _ _ m m' ->
- MapCard _ m = n -> MapCard _ m' = n -> MapSubset _ _ m' m.
- Proof.
- simple induction n. intros. unfold MapSubset, in_dom in |- *. intro. rewrite (MapCard_is_O _ m H0 a).
- rewrite (MapCard_is_O _ m' H1 a). intro H2. discriminate H2.
- intros. elim (MapCard_is_Sn A m n0 H1). intros a H3. elim (in_dom_some _ _ _ H3).
- intros y H4. elim (in_dom_some _ _ _ (H0 _ H3)). intros y' H6.
- cut (eqmap _ (MapPut _ (MapRemove _ m a) a y) m). intro.
- cut (eqmap _ (MapPut _ (MapRemove _ m' a) a y') m'). intro.
- apply MapSubset_ext with
- (m0 := MapPut _ (MapRemove _ m' a) a y')
- (m2 := MapPut _ (MapRemove _ m a) a y).
- assumption.
- assumption.
- apply MapSubset_Put_mono. apply H. apply MapSubset_Remove_mono. assumption.
- rewrite <- (MapCard_Remove_2_conv _ m a y H4) in H1. inversion_clear H1. reflexivity.
- rewrite <- (MapCard_Remove_2_conv _ m' a y' H6) in H2. inversion_clear H2. reflexivity.
- unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove B m' a) a y' a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H7. rewrite H7. rewrite <- (Neqb_complete _ _ H7).
- apply sym_eq. assumption.
- intro H7. rewrite H7. rewrite (MapRemove_semantics _ m' a a0). rewrite H7. reflexivity.
- unfold eqmap, eqm in |- *. intro. rewrite (MapPut_semantics _ (MapRemove A m a) a y a0).
- elim (sumbool_of_bool (Neqb a a0)). intro H7. rewrite H7. rewrite <- (Neqb_complete _ _ H7).
- apply sym_eq. assumption.
- intro H7. rewrite H7. rewrite (MapRemove_semantics A m a a0). rewrite H7. reflexivity.
- Qed.
-
- Lemma MapDomRestrTo_Card_ub_r :
- forall (m:Map A) (m':Map B),
- MapCard A (MapDomRestrTo A B m m') <= MapCard B m'.
- Proof.
- simple induction m. intro. simpl in |- *. apply le_O_n.
- intros a y m'. simpl in |- *. elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y0 H0.
- rewrite H0. elim (MapCard_is_not_O B m' a y0 H0). intros n H1. rewrite H1. simpl in |- *.
- apply le_n_S. apply le_O_n.
- intro H. rewrite H. simpl in |- *. apply le_O_n.
- simple induction m'. simpl in |- *. apply le_O_n.
-
- intros a y. unfold MapDomRestrTo in |- *. case (MapGet A (M2 A m0 m1) a). simpl in |- *.
- intro. simpl in |- *. apply le_n.
- apply le_O_n.
- intros. simpl in |- *. rewrite
- (MapCard_makeM2 A (MapDomRestrTo A B m0 m2) (MapDomRestrTo A B m1 m3))
- .
- apply plus_le_compat. apply H.
- apply H0.
- Qed.
-
-End MapCard2.
-
-Section MapCard3.
-
- Variables A B : Set.
-
- Lemma MapMerge_Card_lb_l :
- forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m.
- Proof.
- unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m')).
- rewrite (plus_comm (MapCard A m') (MapCard A m)).
- rewrite (plus_comm (MapCard A m') (MapCard A (MapMerge A m m'))).
- rewrite (MapMerge_Restr_Card A m m'). apply plus_le_compat_l. apply MapDomRestrTo_Card_ub_r.
- Qed.
-
- Lemma MapMerge_Card_lb_r :
- forall m m':Map A, MapCard A (MapMerge A m m') >= MapCard A m'.
- Proof.
- unfold ge in |- *. intros. apply ((fun p n m:nat => plus_le_reg_l n m p) (MapCard A m)). rewrite (MapMerge_Restr_Card A m m').
- rewrite
- (plus_comm (MapCard A (MapMerge A m m'))
- (MapCard A (MapDomRestrTo A A m m'))).
- apply plus_le_compat_r. apply MapDomRestrTo_Card_ub_l.
- Qed.
-
- Lemma MapDomRestrBy_Card_lb :
- forall (m:Map A) (m':Map B),
- MapCard B m' + MapCard A (MapDomRestrBy A B m m') >= MapCard A m.
- Proof.
- unfold ge in |- *. intros. rewrite (MapSplit_Card A B m m'). apply plus_le_compat_r.
- apply MapDomRestrTo_Card_ub_r.
- Qed.
-
- Lemma MapSubset_Card_le :
- forall (m:Map A) (m':Map B),
- MapSubset A B m m' -> MapCard A m <= MapCard B m'.
- Proof.
- intros. apply le_trans with (m := MapCard B m' + MapCard A (MapDomRestrBy A B m m')).
- exact (MapDomRestrBy_Card_lb m m').
- rewrite (MapCard_ext _ _ _ (MapSubset_imp_2 _ _ _ _ H)). simpl in |- *. rewrite <- plus_n_O.
- apply le_n.
- Qed.
-
- Lemma MapSubset_card_eq :
- forall (m:Map A) (m':Map B),
- MapSubset _ _ m m' ->
- MapCard _ m' <= MapCard _ m -> eqmap _ (MapDom _ m) (MapDom _ m').
- Proof.
- intros. apply MapSubset_antisym. assumption.
- cut (MapCard B m' = MapCard A m). intro. apply (MapSubset_card_eq_1 A B (MapCard A m)).
- assumption.
- reflexivity.
- assumption.
- apply le_antisym. assumption.
- apply MapSubset_Card_le. assumption.
- Qed.
-
-End MapCard3. \ No newline at end of file
diff --git a/theories/IntMap/Mapfold.v b/theories/IntMap/Mapfold.v
deleted file mode 100644
index eb58cb64..00000000
--- a/theories/IntMap/Mapfold.v
+++ /dev/null
@@ -1,425 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapfold.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Fset.
-Require Import Mapaxioms.
-Require Import Mapiter.
-Require Import Lsort.
-Require Import Mapsubset.
-Require Import List.
-
-Section MapFoldResults.
-
- Variable A : Set.
-
- Variable M : Set.
- Variable neutral : M.
- Variable op : M -> M -> M.
-
- Variable nleft : forall a:M, op neutral a = a.
- Variable nright : forall a:M, op a neutral = a.
- Variable assoc : forall a b c:M, op (op a b) c = op a (op b c).
-
- Lemma MapFold_ext :
- forall (f:ad -> A -> M) (m m':Map A),
- eqmap A m m' -> MapFold _ _ neutral op f m = MapFold _ _ neutral op f m'.
- Proof.
- intros. rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m).
- rewrite (MapFold_as_fold A M neutral op assoc nleft nright f m').
- cut (alist_of_Map A m = alist_of_Map A m'). intro. rewrite H0. reflexivity.
- apply alist_canonical. unfold eqmap in H. apply eqm_trans with (f' := MapGet A m).
- apply eqm_sym. apply alist_of_Map_semantics.
- apply eqm_trans with (f' := MapGet A m'). assumption.
- apply alist_of_Map_semantics.
- apply alist_of_Map_sorts2.
- apply alist_of_Map_sorts2.
- Qed.
-
- Lemma MapFold_ext_f_1 :
- forall (m:Map A) (f g:ad -> A -> M) (pf:ad -> ad),
- (forall (a:ad) (y:A), MapGet _ m a = Some y -> f (pf a) y = g (pf a) y) ->
- MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op g pf m.
- Proof.
- simple induction m. trivial.
- simpl in |- *. intros. apply H. rewrite (Neqb_correct a). reflexivity.
- intros. simpl in |- *. rewrite (H f g (fun a0:ad => pf (Ndouble a0))).
- rewrite (H0 f g (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity.
- intros. apply H1. rewrite MapGet_M2_bit_0_1. rewrite Ndouble_plus_one_div2. assumption.
- apply Ndouble_plus_one_bit0.
- intros. apply H1. rewrite MapGet_M2_bit_0_0. rewrite Ndouble_div2. assumption.
- apply Ndouble_bit0.
- Qed.
-
- Lemma MapFold_ext_f :
- forall (f g:ad -> A -> M) (m:Map A),
- (forall (a:ad) (y:A), MapGet _ m a = Some y -> f a y = g a y) ->
- MapFold _ _ neutral op f m = MapFold _ _ neutral op g m.
- Proof.
- intros. exact (MapFold_ext_f_1 m f g (fun a0:ad => a0) H).
- Qed.
-
- Lemma MapFold1_as_Fold_1 :
- forall (m:Map A) (f f':ad -> A -> M) (pf pf':ad -> ad),
- (forall (a:ad) (y:A), f (pf a) y = f' (pf' a) y) ->
- MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f' pf' m.
- Proof.
- simple induction m. trivial.
- intros. simpl in |- *. apply H.
- intros. simpl in |- *.
- rewrite
- (H f f' (fun a0:ad => pf (Ndouble a0))
- (fun a0:ad => pf' (Ndouble a0))).
- rewrite
- (H0 f f' (fun a0:ad => pf (Ndouble_plus_one a0))
- (fun a0:ad => pf' (Ndouble_plus_one a0))).
- reflexivity.
- intros. apply H1.
- intros. apply H1.
- Qed.
-
- Lemma MapFold1_as_Fold :
- forall (f:ad -> A -> M) (pf:ad -> ad) (m:Map A),
- MapFold1 _ _ neutral op f pf m =
- MapFold _ _ neutral op (fun (a:ad) (y:A) => f (pf a) y) m.
- Proof.
- intros. unfold MapFold in |- *. apply MapFold1_as_Fold_1. trivial.
- Qed.
-
- Lemma MapFold1_ext :
- forall (f:ad -> A -> M) (m m':Map A),
- eqmap A m m' ->
- forall pf:ad -> ad,
- MapFold1 _ _ neutral op f pf m = MapFold1 _ _ neutral op f pf m'.
- Proof.
- intros. rewrite MapFold1_as_Fold. rewrite MapFold1_as_Fold. apply MapFold_ext. assumption.
- Qed.
-
- Variable comm : forall a b:M, op a b = op b a.
-
- Lemma MapFold_Put_disjoint_1 :
- forall (p:positive) (f:ad -> A -> M) (pf:ad -> ad)
- (a1 a2:ad) (y1 y2:A),
- Nxor a1 a2 = Npos p ->
- MapFold1 A M neutral op f pf (MapPut1 A a1 y1 a2 y2 p) =
- op (f (pf a1) y1) (f (pf a2) y2).
- Proof.
- simple induction p. intros. simpl in |- *. elim (sumbool_of_bool (Nbit0 a1)). intro H1. rewrite H1.
- simpl in |- *. rewrite Ndiv2_double_plus_one. rewrite Ndiv2_double. apply comm.
- change (Nbit0 a2 = negb true) in |- *. rewrite <- H1. rewrite (Nneg_bit0_2 _ _ _ H0).
- rewrite negb_elim. reflexivity.
- assumption.
- intro H1. rewrite H1. simpl in |- *. rewrite Ndiv2_double. rewrite Ndiv2_double_plus_one.
- reflexivity.
- change (Nbit0 a2 = negb false) in |- *. rewrite <- H1. rewrite (Nneg_bit0_2 _ _ _ H0).
- rewrite negb_elim. reflexivity.
- assumption.
- simpl in |- *. intros. elim (sumbool_of_bool (Nbit0 a1)). intro H1. rewrite H1. simpl in |- *.
- rewrite nleft.
- rewrite
- (H f (fun a0:ad => pf (Ndouble_plus_one a0)) (
- Ndiv2 a1) (Ndiv2 a2) y1 y2).
- rewrite Ndiv2_double_plus_one. rewrite Ndiv2_double_plus_one. reflexivity.
- unfold Nodd.
- rewrite <- (Nsame_bit0 _ _ _ H0). assumption.
- assumption.
- rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intro H1. rewrite H1. simpl in |- *. rewrite nright.
- rewrite
- (H f (fun a0:ad => pf (Ndouble a0)) (Ndiv2 a1) (Ndiv2 a2) y1 y2)
- .
- rewrite Ndiv2_double. rewrite Ndiv2_double. reflexivity.
- unfold Neven.
- rewrite <- (Nsame_bit0 _ _ _ H0). assumption.
- assumption.
- rewrite <- Nxor_div2. rewrite H0. reflexivity.
- intros. simpl in |- *. elim (sumbool_of_bool (Nbit0 a1)). intro H0. rewrite H0. simpl in |- *.
- rewrite Ndiv2_double. rewrite Ndiv2_double_plus_one. apply comm.
- assumption.
- change (Nbit0 a2 = negb true) in |- *. rewrite <- H0. rewrite (Nneg_bit0_1 _ _ H).
- rewrite negb_elim. reflexivity.
- intro H0. rewrite H0. simpl in |- *. rewrite Ndiv2_double. rewrite Ndiv2_double_plus_one.
- reflexivity.
- change (Nbit0 a2 = negb false) in |- *. rewrite <- H0. rewrite (Nneg_bit0_1 _ _ H).
- rewrite negb_elim. reflexivity.
- assumption.
- Qed.
-
- Lemma MapFold_Put_disjoint_2 :
- forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
- MapGet A m a = None ->
- MapFold1 A M neutral op f pf (MapPut A m a y) =
- op (f (pf a) y) (MapFold1 A M neutral op f pf m).
- Proof.
- simple induction m. intros. simpl in |- *. rewrite (nright (f (pf a) y)). reflexivity.
- intros a1 y1 a2 y2 pf H. simpl in |- *. elim (Ndiscr (Nxor a1 a2)). intro H0. elim H0.
- intros p H1. rewrite H1. rewrite comm. exact (MapFold_Put_disjoint_1 p f pf a1 a2 y1 y2 H1).
- intro H0. rewrite (Neqb_complete _ _ (Nxor_eq_true _ _ H0)) in H.
- rewrite (M1_semantics_1 A a2 y1) in H. discriminate H.
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H2.
- cut (MapPut A (M2 A m0 m1) a y = M2 A m0 (MapPut A m1 (Ndiv2 a) y)). intro.
- rewrite H3. simpl in |- *. rewrite (H0 (Ndiv2 a) y (fun a0:ad => pf (Ndouble_plus_one a0))).
- rewrite Ndiv2_double_plus_one. rewrite <- assoc.
- rewrite
- (comm (MapFold1 A M neutral op f (fun a0:ad => pf (Ndouble a0)) m0)
- (f (pf a) y)).
- rewrite assoc. reflexivity.
- assumption.
- rewrite (MapGet_M2_bit_0_1 A a H2 m0 m1) in H1. assumption.
- simpl in |- *. elim (Ndiscr a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5.
- reflexivity.
- intros p0 H4 H5. rewrite H5 in H2. discriminate H2.
- intro H4. rewrite H4. reflexivity.
- intro H3. rewrite H3 in H2. discriminate H2.
- intro H2. cut (MapPut A (M2 A m0 m1) a y = M2 A (MapPut A m0 (Ndiv2 a) y) m1).
- intro. rewrite H3. simpl in |- *. rewrite (H (Ndiv2 a) y (fun a0:ad => pf (Ndouble a0))).
- rewrite Ndiv2_double. rewrite <- assoc. reflexivity.
- assumption.
- rewrite (MapGet_M2_bit_0_0 A a H2 m0 m1) in H1. assumption.
- simpl in |- *. elim (Ndiscr a). intro H3. elim H3. intro p. elim p. intros p0 H4 H5. rewrite H5 in H2.
- discriminate H2.
- intros p0 H4 H5. rewrite H5. reflexivity.
- intro H4. rewrite H4 in H2. discriminate H2.
- intro H3. rewrite H3. reflexivity.
- Qed.
-
- Lemma MapFold_Put_disjoint :
- forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
- MapGet A m a = None ->
- MapFold A M neutral op f (MapPut A m a y) =
- op (f a y) (MapFold A M neutral op f m).
- Proof.
- intros. exact (MapFold_Put_disjoint_2 f m a y (fun a0:ad => a0) H).
- Qed.
-
- Lemma MapFold_Put_behind_disjoint_2 :
- forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A) (pf:ad -> ad),
- MapGet A m a = None ->
- MapFold1 A M neutral op f pf (MapPut_behind A m a y) =
- op (f (pf a) y) (MapFold1 A M neutral op f pf m).
- Proof.
- intros. cut (eqmap A (MapPut_behind A m a y) (MapPut A m a y)). intro.
- rewrite (MapFold1_ext f _ _ H0 pf). apply MapFold_Put_disjoint_2. assumption.
- apply eqmap_trans with (m' := MapMerge A (M1 A a y) m). apply MapPut_behind_as_Merge.
- apply eqmap_trans with (m' := MapMerge A m (M1 A a y)).
- apply eqmap_trans with (m' := MapDelta A (M1 A a y) m). apply eqmap_sym. apply MapDelta_disjoint.
- unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a0)).
- intro H2. rewrite (Neqb_complete _ _ H2) in H. rewrite H in H1. discriminate H1.
- intro H2. rewrite H2 in H0. discriminate H0.
- apply eqmap_trans with (m' := MapDelta A m (M1 A a y)). apply MapDelta_sym.
- apply MapDelta_disjoint. unfold MapDisjoint in |- *. unfold in_dom in |- *. simpl in |- *. intros.
- elim (sumbool_of_bool (Neqb a a0)). intro H2. rewrite (Neqb_complete _ _ H2) in H.
- rewrite H in H0. discriminate H0.
- intro H2. rewrite H2 in H1. discriminate H1.
- apply eqmap_sym. apply MapPut_as_Merge.
- Qed.
-
- Lemma MapFold_Put_behind_disjoint :
- forall (f:ad -> A -> M) (m:Map A) (a:ad) (y:A),
- MapGet A m a = None ->
- MapFold A M neutral op f (MapPut_behind A m a y) =
- op (f a y) (MapFold A M neutral op f m).
- Proof.
- intros. exact (MapFold_Put_behind_disjoint_2 f m a y (fun a0:ad => a0) H).
- Qed.
-
- Lemma MapFold_Merge_disjoint_1 :
- forall (f:ad -> A -> M) (m1 m2:Map A) (pf:ad -> ad),
- MapDisjoint A A m1 m2 ->
- MapFold1 A M neutral op f pf (MapMerge A m1 m2) =
- op (MapFold1 A M neutral op f pf m1) (MapFold1 A M neutral op f pf m2).
- Proof.
- simple induction m1. simpl in |- *. intros. rewrite nleft. reflexivity.
- intros. unfold MapMerge in |- *. apply (MapFold_Put_behind_disjoint_2 f m2 a a0 pf).
- apply in_dom_none. exact (MapDisjoint_M1_l _ _ m2 a a0 H).
- simple induction m2. intros. simpl in |- *. rewrite nright. reflexivity.
- intros. unfold MapMerge in |- *. rewrite (MapFold_Put_disjoint_2 f (M2 A m m0) a a0 pf). apply comm.
- apply in_dom_none. exact (MapDisjoint_M1_r _ _ (M2 A m m0) a a0 H1).
- intros. simpl in |- *. rewrite (H m3 (fun a0:ad => pf (Ndouble a0))).
- rewrite (H0 m4 (fun a0:ad => pf (Ndouble_plus_one a0))).
- cut (forall a b c d:M, op (op a b) (op c d) = op (op a c) (op b d)). intro. apply H4.
- intros. rewrite assoc. rewrite <- (assoc b c d). rewrite (comm b c). rewrite (assoc c b d).
- rewrite assoc. reflexivity.
- exact (MapDisjoint_M2_r _ _ _ _ _ _ H3).
- exact (MapDisjoint_M2_l _ _ _ _ _ _ H3).
- Qed.
-
- Lemma MapFold_Merge_disjoint :
- forall (f:ad -> A -> M) (m1 m2:Map A),
- MapDisjoint A A m1 m2 ->
- MapFold A M neutral op f (MapMerge A m1 m2) =
- op (MapFold A M neutral op f m1) (MapFold A M neutral op f m2).
- Proof.
- intros. exact (MapFold_Merge_disjoint_1 f m1 m2 (fun a0:ad => a0) H).
- Qed.
-
-End MapFoldResults.
-
-Section MapFoldDistr.
-
- Variable A : Set.
-
- Variable M : Set.
- Variable neutral : M.
- Variable op : M -> M -> M.
-
- Variable M' : Set.
- Variable neutral' : M'.
- Variable op' : M' -> M' -> M'.
-
- Variable N : Set.
-
- Variable times : M -> N -> M'.
-
- Variable absorb : forall c:N, times neutral c = neutral'.
- Variable
- distr :
- forall (a b:M) (c:N), times (op a b) c = op' (times a c) (times b c).
-
- Lemma MapFold_distr_r_1 :
- forall (f:ad -> A -> M) (m:Map A) (c:N) (pf:ad -> ad),
- times (MapFold1 A M neutral op f pf m) c =
- MapFold1 A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) pf m.
- Proof.
- simple induction m. intros. exact (absorb c).
- trivial.
- intros. simpl in |- *. rewrite distr. rewrite H. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapFold_distr_r :
- forall (f:ad -> A -> M) (m:Map A) (c:N),
- times (MapFold A M neutral op f m) c =
- MapFold A M' neutral' op' (fun (a:ad) (y:A) => times (f a y) c) m.
- Proof.
- intros. exact (MapFold_distr_r_1 f m c (fun a:ad => a)).
- Qed.
-
-End MapFoldDistr.
-
-Section MapFoldDistrL.
-
- Variable A : Set.
-
- Variable M : Set.
- Variable neutral : M.
- Variable op : M -> M -> M.
-
- Variable M' : Set.
- Variable neutral' : M'.
- Variable op' : M' -> M' -> M'.
-
- Variable N : Set.
-
- Variable times : N -> M -> M'.
-
- Variable absorb : forall c:N, times c neutral = neutral'.
- Variable
- distr :
- forall (a b:M) (c:N), times c (op a b) = op' (times c a) (times c b).
-
- Lemma MapFold_distr_l :
- forall (f:ad -> A -> M) (m:Map A) (c:N),
- times c (MapFold A M neutral op f m) =
- MapFold A M' neutral' op' (fun (a:ad) (y:A) => times c (f a y)) m.
- Proof.
- intros. apply MapFold_distr_r with (times := fun (a:M) (b:N) => times b a);
- assumption.
- Qed.
-
-End MapFoldDistrL.
-
-Section MapFoldExists.
-
- Variable A : Set.
-
- Lemma MapFold_orb_1 :
- forall (f:ad -> A -> bool) (m:Map A) (pf:ad -> ad),
- MapFold1 A bool false orb f pf m =
- match MapSweep1 A f pf m with
- | Some _ => true
- | _ => false
- end.
- Proof.
- simple induction m. trivial.
- intros a y pf. simpl in |- *. unfold MapSweep2 in |- *. case (f (pf a) y); reflexivity.
- intros. simpl in |- *. rewrite (H (fun a0:ad => pf (Ndouble a0))).
- rewrite (H0 (fun a0:ad => pf (Ndouble_plus_one a0))).
- case (MapSweep1 A f (fun a0:ad => pf (Ndouble a0)) m0); reflexivity.
- Qed.
-
- Lemma MapFold_orb :
- forall (f:ad -> A -> bool) (m:Map A),
- MapFold A bool false orb f m =
- match MapSweep A f m with
- | Some _ => true
- | _ => false
- end.
- Proof.
- intros. exact (MapFold_orb_1 f m (fun a:ad => a)).
- Qed.
-
-End MapFoldExists.
-
-Section DMergeDef.
-
- Variable A : Set.
-
- Definition DMerge :=
- MapFold (Map A) (Map A) (M0 A) (MapMerge A) (fun (_:ad) (m:Map A) => m).
-
- Lemma in_dom_DMerge_1 :
- forall (m:Map (Map A)) (a:ad),
- in_dom A a (DMerge m) =
- match MapSweep _ (fun (_:ad) (m0:Map A) => in_dom A a m0) m with
- | Some _ => true
- | _ => false
- end.
- Proof.
- unfold DMerge in |- *. intros.
- rewrite
- (MapFold_distr_l (Map A) (Map A) (M0 A) (MapMerge A) bool false orb ad
- (in_dom A) (fun c:ad => refl_equal _) (in_dom_merge A))
- .
- apply MapFold_orb.
- Qed.
-
- Lemma in_dom_DMerge_2 :
- forall (m:Map (Map A)) (a:ad),
- in_dom A a (DMerge m) = true ->
- {b : ad &
- {m0 : Map A | MapGet _ m b = Some m0 /\ in_dom A a m0 = true}}.
- Proof.
- intros m a. rewrite in_dom_DMerge_1.
- elim
- (option_sum _
- (MapSweep (Map A) (fun (_:ad) (m0:Map A) => in_dom A a m0) m)).
- intro H. elim H. intro r. elim r. intros b m0 H0. intro. split with b. split with m0.
- split. exact (MapSweep_semantics_2 _ _ _ _ _ H0).
- exact (MapSweep_semantics_1 _ _ _ _ _ H0).
- intro H. rewrite H. intro. discriminate H0.
- Qed.
-
- Lemma in_dom_DMerge_3 :
- forall (m:Map (Map A)) (a b:ad) (m0:Map A),
- MapGet _ m a = Some m0 ->
- in_dom A b m0 = true -> in_dom A b (DMerge m) = true.
- Proof.
- intros m a b m0 H H0. rewrite in_dom_DMerge_1.
- elim
- (MapSweep_semantics_4 _ (fun (_:ad) (m'0:Map A) => in_dom A b m'0) _ _ _
- H H0).
- intros a' H1. elim H1. intros m'0 H2. rewrite H2. reflexivity.
- Qed.
-
-End DMergeDef. \ No newline at end of file
diff --git a/theories/IntMap/Mapiter.v b/theories/IntMap/Mapiter.v
deleted file mode 100644
index a8ba7e39..00000000
--- a/theories/IntMap/Mapiter.v
+++ /dev/null
@@ -1,618 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapiter.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Mapaxioms.
-Require Import Fset.
-Require Import List.
-
-Section MapIter.
-
- Variable A : Set.
-
- Section MapSweepDef.
-
- Variable f : ad -> A -> bool.
-
- Definition MapSweep2 (a0:ad) (y:A) :=
- if f a0 y then Some (a0, y) else None.
-
- Fixpoint MapSweep1 (pf:ad -> ad) (m:Map A) {struct m} :
- option (ad * A) :=
- match m with
- | M0 => None
- | M1 a y => MapSweep2 (pf a) y
- | M2 m m' =>
- match MapSweep1 (fun a:ad => pf (Ndouble a)) m with
- | Some r => Some r
- | None => MapSweep1 (fun a:ad => pf (Ndouble_plus_one a)) m'
- end
- end.
-
- Definition MapSweep (m:Map A) := MapSweep1 (fun a:ad => a) m.
-
- Lemma MapSweep_semantics_1_1 :
- forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
- MapSweep1 pf m = Some (a, y) -> f a y = true.
- Proof.
- simple induction m. intros. discriminate H.
- simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (f (pf a) y)). intro H. unfold MapSweep2 in |- *.
- rewrite H. intro H0. inversion H0. rewrite <- H3. assumption.
- intro H. unfold MapSweep2 in |- *. rewrite H. intro H0. discriminate H0.
- simpl in |- *. intros. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (Ndouble a0)) m0)).
- intro H2. elim H2. intros r H3. rewrite H3 in H1. inversion H1. rewrite H5 in H3.
- exact (H (fun a0:ad => pf (Ndouble a0)) a y H3).
- intro H2. rewrite H2 in H1. exact (H0 (fun a0:ad => pf (Ndouble_plus_one a0)) a y H1).
- Qed.
-
- Lemma MapSweep_semantics_1 :
- forall (m:Map A) (a:ad) (y:A), MapSweep m = Some (a, y) -> f a y = true.
- Proof.
- intros. exact (MapSweep_semantics_1_1 m (fun a:ad => a) a y H).
- Qed.
-
- Lemma MapSweep_semantics_2_1 :
- forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
- MapSweep1 pf m = Some (a, y) -> {a' : ad | a = pf a'}.
- Proof.
- simple induction m. intros. discriminate H.
- simpl in |- *. unfold MapSweep2 in |- *. intros a y pf a0 y0. case (f (pf a) y). intros. split with a.
- inversion H. reflexivity.
- intro. discriminate H.
- intros m0 H m1 H0 pf a y. simpl in |- *.
- elim
- (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (Ndouble a0)) m0)). intro H1. elim H1.
- intros r H2. rewrite H2. intro H3. inversion H3. rewrite H5 in H2.
- elim (H (fun a0:ad => pf (Ndouble a0)) a y H2). intros a0 H6. split with (Ndouble a0).
- assumption.
- intro H1. rewrite H1. intro H2. elim (H0 (fun a0:ad => pf (Ndouble_plus_one a0)) a y H2).
- intros a0 H3. split with (Ndouble_plus_one a0). assumption.
- Qed.
-
- Lemma MapSweep_semantics_2_2 :
- forall (m:Map A) (pf fp:ad -> ad),
- (forall a0:ad, fp (pf a0) = a0) ->
- forall (a:ad) (y:A),
- MapSweep1 pf m = Some (a, y) -> MapGet A m (fp a) = Some y.
- Proof.
- simple induction m. intros. discriminate H0.
- simpl in |- *. intros a y pf fp H a0 y0. unfold MapSweep2 in |- *. elim (sumbool_of_bool (f (pf a) y)).
- intro H0. rewrite H0. intro H1. inversion H1. rewrite (H a). rewrite (Neqb_correct a).
- reflexivity.
- intro H0. rewrite H0. intro H1. discriminate H1.
- intros. rewrite (MapGet_M2_bit_0_if A m0 m1 (fp a)). elim (sumbool_of_bool (Nbit0 (fp a))).
- intro H3. rewrite H3. elim (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (Ndouble a0)) m0)).
- intro H4. simpl in H2. apply
- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))
- (fun a0:ad => Ndiv2 (fp a0))).
- intro. rewrite H1. apply Ndouble_plus_one_div2.
- elim
- (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (Ndouble a0)) m0)). intro H5. elim H5.
- intros r H6. rewrite H6 in H2. inversion H2. rewrite H8 in H6.
- elim (MapSweep_semantics_2_1 m0 (fun a0:ad => pf (Ndouble a0)) a y H6). intros a0 H9.
- rewrite H9 in H3. rewrite (H1 (Ndouble a0)) in H3. rewrite (Ndouble_bit0 a0) in H3.
- discriminate H3.
- intro H5. rewrite H5 in H2. assumption.
- intro H4. simpl in H2. rewrite H4 in H2.
- apply
- (H0 (fun a0:ad => pf (Ndouble_plus_one a0))
- (fun a0:ad => Ndiv2 (fp a0))). intro.
- rewrite H1. apply Ndouble_plus_one_div2.
- assumption.
- intro H3. rewrite H3. simpl in H2.
- elim
- (option_sum (ad * A) (MapSweep1 (fun a0:ad => pf (Ndouble a0)) m0)). intro H4. elim H4.
- intros r H5. rewrite H5 in H2. inversion H2. rewrite H7 in H5.
- apply
- (H (fun a0:ad => pf (Ndouble a0)) (fun a0:ad => Ndiv2 (fp a0))). intro. rewrite H1.
- apply Ndouble_div2.
- assumption.
- intro H4. rewrite H4 in H2.
- elim
- (MapSweep_semantics_2_1 m1 (fun a0:ad => pf (Ndouble_plus_one a0)) a y
- H2).
- intros a0 H5. rewrite H5 in H3. rewrite (H1 (Ndouble_plus_one a0)) in H3.
- rewrite (Ndouble_plus_one_bit0 a0) in H3. discriminate H3.
- Qed.
-
- Lemma MapSweep_semantics_2 :
- forall (m:Map A) (a:ad) (y:A),
- MapSweep m = Some (a, y) -> MapGet A m a = Some y.
- Proof.
- intros.
- exact
- (MapSweep_semantics_2_2 m (fun a0:ad => a0) (fun a0:ad => a0)
- (fun a0:ad => refl_equal a0) a y H).
- Qed.
-
- Lemma MapSweep_semantics_3_1 :
- forall (m:Map A) (pf:ad -> ad),
- MapSweep1 pf m = None ->
- forall (a:ad) (y:A), MapGet A m a = Some y -> f (pf a) y = false.
- Proof.
- simple induction m. intros. discriminate H0.
- simpl in |- *. unfold MapSweep2 in |- *. intros a y pf. elim (sumbool_of_bool (f (pf a) y)). intro H.
- rewrite H. intro. discriminate H0.
- intro H. rewrite H. intros H0 a0 y0. elim (sumbool_of_bool (Neqb a a0)). intro H1. rewrite H1.
- intro H2. inversion H2. rewrite <- H4. rewrite <- (Neqb_complete _ _ H1). assumption.
- intro H1. rewrite H1. intro. discriminate H2.
- intros. simpl in H1. elim (option_sum (ad * A) (MapSweep1 (fun a:ad => pf (Ndouble a)) m0)).
- intro H3. elim H3. intros r H4. rewrite H4 in H1. discriminate H1.
- intro H3. rewrite H3 in H1. elim (sumbool_of_bool (Nbit0 a)). intro H4.
- rewrite (MapGet_M2_bit_0_1 A a H4 m0 m1) in H2. rewrite <- (Ndiv2_double_plus_one a H4).
- exact (H0 (fun a:ad => pf (Ndouble_plus_one a)) H1 (Ndiv2 a) y H2).
- intro H4. rewrite (MapGet_M2_bit_0_0 A a H4 m0 m1) in H2. rewrite <- (Ndiv2_double a H4).
- exact (H (fun a:ad => pf (Ndouble a)) H3 (Ndiv2 a) y H2).
- Qed.
-
- Lemma MapSweep_semantics_3 :
- forall m:Map A,
- MapSweep m = None ->
- forall (a:ad) (y:A), MapGet A m a = Some y -> f a y = false.
- Proof.
- intros.
- exact (MapSweep_semantics_3_1 m (fun a0:ad => a0) H a y H0).
- Qed.
-
- Lemma MapSweep_semantics_4_1 :
- forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
- MapGet A m a = Some y ->
- f (pf a) y = true ->
- {a' : ad & {y' : A | MapSweep1 pf m = Some (a', y')}}.
- Proof.
- simple induction m. intros. discriminate H.
- intros. elim (sumbool_of_bool (Neqb a a1)). intro H1. split with (pf a1). split with y.
- rewrite (Neqb_complete _ _ H1). unfold MapSweep1, MapSweep2 in |- *.
- rewrite (Neqb_complete _ _ H1) in H. rewrite (M1_semantics_1 _ a1 a0) in H.
- inversion H. rewrite H0. reflexivity.
-
- intro H1. rewrite (M1_semantics_2 _ a a1 a0 H1) in H. discriminate H.
-
- intros. elim (sumbool_of_bool (Nbit0 a)). intro H3.
- rewrite (MapGet_M2_bit_0_1 _ _ H3 m0 m1) in H1.
- rewrite <- (Ndiv2_double_plus_one a H3) in H2.
- elim (H0 (fun a0:ad => pf (Ndouble_plus_one a0)) (Ndiv2 a) y H1 H2). intros a'' H4. elim H4.
- intros y'' H5. simpl in |- *. elim (option_sum _ (MapSweep1 (fun a:ad => pf (Ndouble a)) m0)).
- intro H6. elim H6. intro r. elim r. intros a''' y''' H7. rewrite H7. split with a'''.
- split with y'''. reflexivity.
- intro H6. rewrite H6. split with a''. split with y''. assumption.
- intro H3. rewrite (MapGet_M2_bit_0_0 _ _ H3 m0 m1) in H1.
- rewrite <- (Ndiv2_double a H3) in H2.
- elim (H (fun a0:ad => pf (Ndouble a0)) (Ndiv2 a) y H1 H2). intros a'' H4. elim H4.
- intros y'' H5. split with a''. split with y''. simpl in |- *. rewrite H5. reflexivity.
- Qed.
-
- Lemma MapSweep_semantics_4 :
- forall (m:Map A) (a:ad) (y:A),
- MapGet A m a = Some y ->
- f a y = true -> {a' : ad & {y' : A | MapSweep m = Some (a', y')}}.
- Proof.
- intros. exact (MapSweep_semantics_4_1 m (fun a0:ad => a0) a y H H0).
- Qed.
-
- End MapSweepDef.
-
- Variable B : Set.
-
- Fixpoint MapCollect1 (f:ad -> A -> Map B) (pf:ad -> ad)
- (m:Map A) {struct m} : Map B :=
- match m with
- | M0 => M0 B
- | M1 a y => f (pf a) y
- | M2 m1 m2 =>
- MapMerge B (MapCollect1 f (fun a0:ad => pf (Ndouble a0)) m1)
- (MapCollect1 f (fun a0:ad => pf (Ndouble_plus_one a0)) m2)
- end.
-
- Definition MapCollect (f:ad -> A -> Map B) (m:Map A) :=
- MapCollect1 f (fun a:ad => a) m.
-
- Section MapFoldDef.
-
- Variable M : Set.
- Variable neutral : M.
- Variable op : M -> M -> M.
-
- Fixpoint MapFold1 (f:ad -> A -> M) (pf:ad -> ad)
- (m:Map A) {struct m} : M :=
- match m with
- | M0 => neutral
- | M1 a y => f (pf a) y
- | M2 m1 m2 =>
- op (MapFold1 f (fun a0:ad => pf (Ndouble a0)) m1)
- (MapFold1 f (fun a0:ad => pf (Ndouble_plus_one a0)) m2)
- end.
-
- Definition MapFold (f:ad -> A -> M) (m:Map A) :=
- MapFold1 f (fun a:ad => a) m.
-
- Lemma MapFold_empty : forall f:ad -> A -> M, MapFold f (M0 A) = neutral.
- Proof.
- trivial.
- Qed.
-
- Lemma MapFold_M1 :
- forall (f:ad -> A -> M) (a:ad) (y:A), MapFold f (M1 A a y) = f a y.
- Proof.
- trivial.
- Qed.
-
- Variable State : Set.
- Variable f : State -> ad -> A -> State * M.
-
- Fixpoint MapFold1_state (state:State) (pf:ad -> ad)
- (m:Map A) {struct m} : State * M :=
- match m with
- | M0 => (state, neutral)
- | M1 a y => f state (pf a) y
- | M2 m1 m2 =>
- match MapFold1_state state (fun a0:ad => pf (Ndouble a0)) m1 with
- | (state1, x1) =>
- match
- MapFold1_state state1
- (fun a0:ad => pf (Ndouble_plus_one a0)) m2
- with
- | (state2, x2) => (state2, op x1 x2)
- end
- end
- end.
-
- Definition MapFold_state (state:State) :=
- MapFold1_state state (fun a:ad => a).
-
- Lemma pair_sp : forall (B C:Set) (x:B * C), x = (fst x, snd x).
- Proof.
- simple induction x. trivial.
- Qed.
-
- Lemma MapFold_state_stateless_1 :
- forall (m:Map A) (g:ad -> A -> M) (pf:ad -> ad),
- (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
- forall state:State, snd (MapFold1_state state pf m) = MapFold1 g pf m.
- Proof.
- simple induction m. trivial.
- intros. simpl in |- *. apply H.
- intros. simpl in |- *. rewrite
- (pair_sp _ _ (MapFold1_state state (fun a0:ad => pf (Ndouble a0)) m0))
- .
- rewrite (H g (fun a0:ad => pf (Ndouble a0)) H1 state).
- rewrite
- (pair_sp _ _
- (MapFold1_state
- (fst (MapFold1_state state (fun a0:ad => pf (Ndouble a0)) m0))
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1))
- .
- simpl in |- *.
- rewrite
- (H0 g (fun a0:ad => pf (Ndouble_plus_one a0)) H1
- (fst (MapFold1_state state (fun a0:ad => pf (Ndouble a0)) m0)))
- .
- reflexivity.
- Qed.
-
- Lemma MapFold_state_stateless :
- forall g:ad -> A -> M,
- (forall (state:State) (a:ad) (y:A), snd (f state a y) = g a y) ->
- forall (state:State) (m:Map A),
- snd (MapFold_state state m) = MapFold g m.
- Proof.
- intros. exact (MapFold_state_stateless_1 m g (fun a0:ad => a0) H state).
- Qed.
-
- End MapFoldDef.
-
- Lemma MapCollect_as_Fold :
- forall (f:ad -> A -> Map B) (m:Map A),
- MapCollect f m = MapFold (Map B) (M0 B) (MapMerge B) f m.
- Proof.
- simple induction m; trivial.
- Qed.
-
- Definition alist := list (ad * A).
- Definition anil := nil (A:=(ad * A)).
- Definition acons := cons (A:=(ad * A)).
- Definition aapp := app (A:=(ad * A)).
-
- Definition alist_of_Map :=
- MapFold alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil).
-
- Fixpoint alist_semantics (l:alist) : ad -> option A :=
- match l with
- | nil => fun _:ad => None
- | (a, y) :: l' =>
- fun a0:ad => if Neqb a a0 then Some y else alist_semantics l' a0
- end.
-
- Lemma alist_semantics_app :
- forall (l l':alist) (a:ad),
- alist_semantics (aapp l l') a =
- match alist_semantics l a with
- | None => alist_semantics l' a
- | Some y => Some y
- end.
- Proof.
- unfold aapp in |- *. simple induction l. trivial.
- intros. elim a. intros a1 y1. simpl in |- *. case (Neqb a1 a0). reflexivity.
- apply H.
- Qed.
-
- Lemma alist_of_Map_semantics_1_1 :
- forall (m:Map A) (pf:ad -> ad) (a:ad) (y:A),
- alist_semantics
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil) pf
- m) a = Some y -> {a' : ad | a = pf a'}.
- Proof.
- simple induction m. simpl in |- *. intros. discriminate H.
- simpl in |- *. intros a y pf a0 y0. elim (sumbool_of_bool (Neqb (pf a) a0)). intro H. rewrite H.
- intro H0. split with a. rewrite (Neqb_complete _ _ H). reflexivity.
- intro H. rewrite H. intro H0. discriminate H0.
- intros. change
- (alist_semantics
- (aapp
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
- (fun a0:ad => pf (Ndouble a0)) m0)
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1)) a =
- Some y) in H1.
- rewrite
- (alist_semantics_app
- (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
- (fun a0:ad => pf (Ndouble a0)) m0)
- (MapFold1 alist anil aapp (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1) a)
- in H1.
- elim
- (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp
- (fun (a0:ad) (y0:A) => acons (a0, y0) anil)
- (fun a0:ad => pf (Ndouble a0)) m0) a)).
- intro H2. elim H2. intros y0 H3. elim (H (fun a0:ad => pf (Ndouble a0)) a y0 H3). intros a0 H4.
- split with (Ndouble a0). assumption.
- intro H2. rewrite H2 in H1. elim (H0 (fun a0:ad => pf (Ndouble_plus_one a0)) a y H1).
- intros a0 H3. split with (Ndouble_plus_one a0). assumption.
- Qed.
-
- Definition ad_inj (pf:ad -> ad) :=
- forall a0 a1:ad, pf a0 = pf a1 -> a0 = a1.
-
- Lemma ad_comp_double_inj :
- forall pf:ad -> ad, ad_inj pf -> ad_inj (fun a0:ad => pf (Ndouble a0)).
- Proof.
- unfold ad_inj in |- *. intros. apply Ndouble_inj. exact (H _ _ H0).
- Qed.
-
- Lemma ad_comp_double_plus_un_inj :
- forall pf:ad -> ad,
- ad_inj pf -> ad_inj (fun a0:ad => pf (Ndouble_plus_one a0)).
- Proof.
- unfold ad_inj in |- *. intros. apply Ndouble_plus_one_inj. exact (H _ _ H0).
- Qed.
-
- Lemma alist_of_Map_semantics_1 :
- forall (m:Map A) (pf:ad -> ad),
- ad_inj pf ->
- forall a:ad,
- MapGet A m a =
- alist_semantics
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
- pf m) (pf a).
- Proof.
- simple induction m. trivial.
- simpl in |- *. intros. elim (sumbool_of_bool (Neqb a a1)). intro H0. rewrite H0.
- rewrite (Neqb_complete _ _ H0). rewrite (Neqb_correct (pf a1)). reflexivity.
- intro H0. rewrite H0. elim (sumbool_of_bool (Neqb (pf a) (pf a1))). intro H1.
- rewrite (H a a1 (Neqb_complete _ _ H1)) in H0. rewrite (Neqb_correct a1) in H0.
- discriminate H0.
- intro H1. rewrite H1. reflexivity.
- intros. change
- (MapGet A (M2 A m0 m1) a =
- alist_semantics
- (aapp
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
- (fun a0:ad => pf (Ndouble a0)) m0)
- (MapFold1 alist anil aapp (fun (a0:ad) (y:A) => acons (a0, y) anil)
- (fun a0:ad => pf (Ndouble_plus_one a0)) m1)) (
- pf a)) in |- *.
- rewrite alist_semantics_app. rewrite (MapGet_M2_bit_0_if A m0 m1 a).
- elim (Ndouble_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3.
- rewrite (Ndouble_bit0 a0).
- rewrite <-
- (H (fun a1:ad => pf (Ndouble a1)) (ad_comp_double_inj pf H1) a0)
- .
- rewrite Ndouble_div2. case (MapGet A m0 a0); trivial.
- elim
- (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp
- (fun (a1:ad) (y:A) => acons (a1, y) anil)
- (fun a1:ad => pf (Ndouble_plus_one a1)) m1)
- (pf (Ndouble a0)))).
- intro H4. elim H4. intros y H5.
- elim
- (alist_of_Map_semantics_1_1 m1 (fun a1:ad => pf (Ndouble_plus_one a1))
- (pf (Ndouble a0)) y H5).
- intros a1 H6. cut (Nbit0 (Ndouble a0) = Nbit0 (Ndouble_plus_one a1)).
- intro. rewrite (Ndouble_bit0 a0) in H7. rewrite (Ndouble_plus_one_bit0 a1) in H7.
- discriminate H7.
- rewrite (H1 (Ndouble a0) (Ndouble_plus_one a1) H6). reflexivity.
- intro H4. rewrite H4. reflexivity.
- intro H2. elim H2. intros a0 H3. rewrite H3. rewrite (Ndouble_plus_one_bit0 a0).
- rewrite <-
- (H0 (fun a1:ad => pf (Ndouble_plus_one a1))
- (ad_comp_double_plus_un_inj pf H1) a0).
- rewrite Ndouble_plus_one_div2.
- elim
- (option_sum A
- (alist_semantics
- (MapFold1 alist anil aapp
- (fun (a1:ad) (y:A) => acons (a1, y) anil)
- (fun a1:ad => pf (Ndouble a1)) m0)
- (pf (Ndouble_plus_one a0)))).
- intro H4. elim H4. intros y H5.
- elim
- (alist_of_Map_semantics_1_1 m0 (fun a1:ad => pf (Ndouble a1))
- (pf (Ndouble_plus_one a0)) y H5).
- intros a1 H6. cut (Nbit0 (Ndouble_plus_one a0) = Nbit0 (Ndouble a1)).
- intro H7. rewrite (Ndouble_plus_one_bit0 a0) in H7. rewrite (Ndouble_bit0 a1) in H7.
- discriminate H7.
- rewrite (H1 (Ndouble_plus_one a0) (Ndouble a1) H6). reflexivity.
- intro H4. rewrite H4. reflexivity.
- Qed.
-
- Lemma alist_of_Map_semantics :
- forall m:Map A, eqm A (MapGet A m) (alist_semantics (alist_of_Map m)).
- Proof.
- unfold eqm in |- *. intros. exact
- (alist_of_Map_semantics_1 m (fun a0:ad => a0)
- (fun (a0 a1:ad) (p:a0 = a1) => p) a).
- Qed.
-
- Fixpoint Map_of_alist (l:alist) : Map A :=
- match l with
- | nil => M0 A
- | (a, y) :: l' => MapPut A (Map_of_alist l') a y
- end.
-
- Lemma Map_of_alist_semantics :
- forall l:alist, eqm A (alist_semantics l) (MapGet A (Map_of_alist l)).
- Proof.
- unfold eqm in |- *. simple induction l. trivial.
- intros r l0 H a. elim r. intros a0 y0. simpl in |- *. elim (sumbool_of_bool (Neqb a0 a)).
- intro H0. rewrite H0. rewrite (Neqb_complete _ _ H0).
- rewrite (MapPut_semantics A (Map_of_alist l0) a y0 a). rewrite (Neqb_correct a).
- reflexivity.
- intro H0. rewrite H0. rewrite (MapPut_semantics A (Map_of_alist l0) a0 y0 a).
- rewrite H0. apply H.
- Qed.
-
- Lemma Map_of_alist_of_Map :
- forall m:Map A, eqmap A (Map_of_alist (alist_of_Map m)) m.
- Proof.
- unfold eqmap in |- *. intro. apply eqm_trans with (f' := alist_semantics (alist_of_Map m)).
- apply eqm_sym. apply Map_of_alist_semantics.
- apply eqm_sym. apply alist_of_Map_semantics.
- Qed.
-
- Lemma alist_of_Map_of_alist :
- forall l:alist,
- eqm A (alist_semantics (alist_of_Map (Map_of_alist l)))
- (alist_semantics l).
- Proof.
- intro. apply eqm_trans with (f' := MapGet A (Map_of_alist l)).
- apply eqm_sym. apply alist_of_Map_semantics.
- apply eqm_sym. apply Map_of_alist_semantics.
- Qed.
-
- Lemma fold_right_aapp :
- forall (M:Set) (neutral:M) (op:M -> M -> M),
- (forall a b c:M, op (op a b) c = op a (op b c)) ->
- (forall a:M, op neutral a = a) ->
- forall (f:ad -> A -> M) (l l':alist),
- fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
- neutral (aapp l l') =
- op
- (fold_right
- (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
- l)
- (fold_right
- (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m) neutral
- l').
- Proof.
- simple induction l. simpl in |- *. intro. rewrite H0. reflexivity.
- intros r l0 H1 l'. elim r. intros a y. simpl in |- *. rewrite H. rewrite (H1 l'). reflexivity.
- Qed.
-
- Lemma MapFold_as_fold_1 :
- forall (M:Set) (neutral:M) (op:M -> M -> M),
- (forall a b c:M, op (op a b) c = op a (op b c)) ->
- (forall a:M, op neutral a = a) ->
- (forall a:M, op a neutral = a) ->
- forall (f:ad -> A -> M) (m:Map A) (pf:ad -> ad),
- MapFold1 M neutral op f pf m =
- fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
- neutral
- (MapFold1 alist anil aapp (fun (a:ad) (y:A) => acons (a, y) anil) pf
- m).
- Proof.
- simple induction m. trivial.
- intros. simpl in |- *. rewrite H1. reflexivity.
- intros. simpl in |- *. rewrite (fold_right_aapp M neutral op H H0 f).
- rewrite (H2 (fun a0:ad => pf (Ndouble a0))). rewrite (H3 (fun a0:ad => pf (Ndouble_plus_one a0))).
- reflexivity.
- Qed.
-
- Lemma MapFold_as_fold :
- forall (M:Set) (neutral:M) (op:M -> M -> M),
- (forall a b c:M, op (op a b) c = op a (op b c)) ->
- (forall a:M, op neutral a = a) ->
- (forall a:M, op a neutral = a) ->
- forall (f:ad -> A -> M) (m:Map A),
- MapFold M neutral op f m =
- fold_right (fun (r:ad * A) (m:M) => let (a, y) := r in op (f a y) m)
- neutral (alist_of_Map m).
- Proof.
- intros. exact (MapFold_as_fold_1 M neutral op H H0 H1 f m (fun a0:ad => a0)).
- Qed.
-
- Lemma alist_MapMerge_semantics :
- forall m m':Map A,
- eqm A (alist_semantics (aapp (alist_of_Map m') (alist_of_Map m)))
- (alist_semantics (alist_of_Map (MapMerge A m m'))).
- Proof.
- unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
- rewrite <- (alist_of_Map_semantics m' a).
- rewrite <- (alist_of_Map_semantics (MapMerge A m m') a).
- rewrite (MapMerge_semantics A m m' a). reflexivity.
- Qed.
-
- Lemma alist_MapMerge_semantics_disjoint :
- forall m m':Map A,
- eqmap A (MapDomRestrTo A A m m') (M0 A) ->
- eqm A (alist_semantics (aapp (alist_of_Map m) (alist_of_Map m')))
- (alist_semantics (alist_of_Map (MapMerge A m m'))).
- Proof.
- unfold eqm in |- *. intros. rewrite alist_semantics_app. rewrite <- (alist_of_Map_semantics m a).
- rewrite <- (alist_of_Map_semantics m' a).
- rewrite <- (alist_of_Map_semantics (MapMerge A m m') a). rewrite (MapMerge_semantics A m m' a).
- elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1.
- elim (option_sum _ (MapGet A m' a)). intro H2. elim H2. intros y' H3.
- cut (MapGet A (MapDomRestrTo A A m m') a = None).
- rewrite (MapDomRestrTo_semantics A A m m' a). rewrite H3. rewrite H1. intro. discriminate H4.
- exact (H a).
- intro H2. rewrite H2. reflexivity.
- intro H0. rewrite H0. case (MapGet A m' a); trivial.
- Qed.
-
- Lemma alist_semantics_disjoint_comm :
- forall l l':alist,
- eqmap A (MapDomRestrTo A A (Map_of_alist l) (Map_of_alist l')) (M0 A) ->
- eqm A (alist_semantics (aapp l l')) (alist_semantics (aapp l' l)).
- Proof.
- unfold eqm in |- *. intros. rewrite (alist_semantics_app l l' a). rewrite (alist_semantics_app l' l a).
- rewrite <- (alist_of_Map_of_alist l a). rewrite <- (alist_of_Map_of_alist l' a).
- rewrite <-
- (alist_semantics_app (alist_of_Map (Map_of_alist l))
- (alist_of_Map (Map_of_alist l')) a).
- rewrite <-
- (alist_semantics_app (alist_of_Map (Map_of_alist l'))
- (alist_of_Map (Map_of_alist l)) a).
- rewrite (alist_MapMerge_semantics (Map_of_alist l) (Map_of_alist l') a).
- rewrite
- (alist_MapMerge_semantics_disjoint (Map_of_alist l) (
- Map_of_alist l') H a).
- reflexivity.
- Qed.
-
-End MapIter.
diff --git a/theories/IntMap/Maplists.v b/theories/IntMap/Maplists.v
deleted file mode 100644
index 56a3c160..00000000
--- a/theories/IntMap/Maplists.v
+++ /dev/null
@@ -1,438 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Maplists.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import BinNat.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Fset.
-Require Import Mapaxioms.
-Require Import Mapsubset.
-Require Import Mapcard.
-Require Import Mapcanon.
-Require Import Mapc.
-Require Import Bool.
-Require Import Sumbool.
-Require Import List.
-Require Import Arith.
-Require Import Mapiter.
-Require Import Mapfold.
-
-Section MapLists.
-
- Fixpoint ad_in_list (a:ad) (l:list ad) {struct l} : bool :=
- match l with
- | nil => false
- | a' :: l' => orb (Neqb a a') (ad_in_list a l')
- end.
-
- Fixpoint ad_list_stutters (l:list ad) : bool :=
- match l with
- | nil => false
- | a :: l' => orb (ad_in_list a l') (ad_list_stutters l')
- end.
-
- Lemma ad_in_list_forms_circuit :
- forall (x:ad) (l:list ad),
- ad_in_list x l = true ->
- {l1 : list ad & {l2 : list ad | l = l1 ++ x :: l2}}.
- Proof.
- simple induction l. intro. discriminate H.
- intros. elim (sumbool_of_bool (Neqb x a)). intro H1. simpl in H0. split with (nil (A:=ad)).
- split with l0. rewrite (Neqb_complete _ _ H1). reflexivity.
- intro H2. simpl in H0. rewrite H2 in H0. simpl in H0. elim (H H0). intros l'1 H3.
- split with (a :: l'1). elim H3. intros l2 H4. split with l2. rewrite H4. reflexivity.
- Qed.
-
- Lemma ad_list_stutters_has_circuit :
- forall l:list ad,
- ad_list_stutters l = true ->
- {x : ad &
- {l0 : list ad &
- {l1 : list ad & {l2 : list ad | l = l0 ++ x :: l1 ++ x :: l2}}}}.
- Proof.
- simple induction l. intro. discriminate H.
- intros. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. split with a.
- split with (nil (A:=ad)). simpl in |- *. elim (ad_in_list_forms_circuit a l0 H1). intros l1 H2.
- split with l1. elim H2. intros l2 H3. split with l2. rewrite H3. reflexivity.
- intro H1. elim (H H1). intros x H2. split with x. elim H2. intros l1 H3.
- split with (a :: l1). elim H3. intros l2 H4. split with l2. elim H4. intros l3 H5.
- split with l3. rewrite H5. reflexivity.
- Qed.
-
- Fixpoint Elems (l:list ad) : FSet :=
- match l with
- | nil => M0 unit
- | a :: l' => MapPut _ (Elems l') a tt
- end.
-
- Lemma Elems_canon : forall l:list ad, mapcanon _ (Elems l).
- Proof.
- simple induction l. exact (M0_canon unit).
- intros. simpl in |- *. apply MapPut_canon. assumption.
- Qed.
-
- Lemma Elems_app :
- forall l l':list ad, Elems (l ++ l') = FSetUnion (Elems l) (Elems l').
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
- rewrite (MapPut_as_Merge_c unit (Elems (l0 ++ l'))).
- change
- (FSetUnion (Elems (l0 ++ l')) (M1 unit a tt) =
- FSetUnion (FSetUnion (Elems l0) (M1 unit a tt)) (Elems l'))
- in |- *.
- rewrite FSetUnion_comm_c. rewrite (FSetUnion_comm_c (Elems l0) (M1 unit a tt)).
- rewrite FSetUnion_assoc_c. rewrite (H l'). reflexivity.
- apply M1_canon.
- apply Elems_canon.
- apply Elems_canon.
- apply Elems_canon.
- apply M1_canon.
- apply Elems_canon.
- apply M1_canon.
- apply Elems_canon.
- apply Elems_canon.
- Qed.
-
- Lemma Elems_rev : forall l:list ad, Elems (rev l) = Elems l.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite Elems_app. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)).
- rewrite H. reflexivity.
- apply Elems_canon.
- Qed.
-
- Lemma ad_in_elems_in_list :
- forall (l:list ad) (a:ad), in_FSet a (Elems l) = ad_in_list a l.
- Proof.
- simple induction l. trivial.
- simpl in |- *. unfold in_FSet in |- *. intros. rewrite (in_dom_put _ (Elems l0) a tt a0).
- rewrite (H a0). reflexivity.
- Qed.
-
- Lemma ad_list_not_stutters_card :
- forall l:list ad,
- ad_list_stutters l = false -> length l = MapCard _ (Elems l).
- Proof.
- simple induction l. trivial.
- simpl in |- *. intros. rewrite MapCard_Put_2_conv. rewrite H. reflexivity.
- elim (orb_false_elim _ _ H0). trivial.
- elim (sumbool_of_bool (in_FSet a (Elems l0))). rewrite ad_in_elems_in_list.
- intro H1. rewrite H1 in H0. discriminate H0.
- exact (in_dom_none unit (Elems l0) a).
- Qed.
-
- Lemma ad_list_card : forall l:list ad, MapCard _ (Elems l) <= length l.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. apply le_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
- apply le_n_S. assumption.
- Qed.
-
- Lemma ad_list_stutters_card :
- forall l:list ad,
- ad_list_stutters l = true -> MapCard _ (Elems l) < length l.
- Proof.
- simple induction l. intro. discriminate H.
- intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
- rewrite <- (ad_in_elems_in_list l0 a) in H1. elim (in_dom_some _ _ _ H1). intros y H2.
- rewrite (MapCard_Put_1_conv _ _ _ _ tt H2). apply le_lt_trans with (m := length l0).
- apply ad_list_card.
- apply lt_n_Sn.
- intro H1. apply le_lt_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub.
- apply lt_n_S. apply H. assumption.
- Qed.
-
- Lemma ad_list_not_stutters_card_conv :
- forall l:list ad,
- length l = MapCard _ (Elems l) -> ad_list_stutters l = false.
- Proof.
- intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
- cut (MapCard _ (Elems l) < length l). intro. rewrite H in H1. elim (lt_irrefl _ H1).
- exact (ad_list_stutters_card _ H0).
- trivial.
- Qed.
-
- Lemma ad_list_stutters_card_conv :
- forall l:list ad,
- MapCard _ (Elems l) < length l -> ad_list_stutters l = true.
- Proof.
- intros. elim (sumbool_of_bool (ad_list_stutters l)). trivial.
- intro H0. rewrite (ad_list_not_stutters_card _ H0) in H. elim (lt_irrefl _ H).
- Qed.
-
- Lemma ad_in_list_l :
- forall (l l':list ad) (a:ad),
- ad_in_list a l = true -> ad_in_list a (l ++ l') = true.
- Proof.
- simple induction l. intros. discriminate H.
- intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
- intro H1. rewrite (H l' a0 H1). apply orb_b_true.
- Qed.
-
- Lemma ad_list_stutters_app_l :
- forall l l':list ad,
- ad_list_stutters l = true -> ad_list_stutters (l ++ l') = true.
- Proof.
- simple induction l. intros. discriminate H.
- intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1.
- rewrite (ad_in_list_l l0 l' a H1). reflexivity.
- intro H1. rewrite (H l' H1). apply orb_b_true.
- Qed.
-
- Lemma ad_in_list_r :
- forall (l l':list ad) (a:ad),
- ad_in_list a l' = true -> ad_in_list a (l ++ l') = true.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (H l' a0 H0). apply orb_b_true.
- Qed.
-
- Lemma ad_list_stutters_app_r :
- forall l l':list ad,
- ad_list_stutters l' = true -> ad_list_stutters (l ++ l') = true.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (H l' H0). apply orb_b_true.
- Qed.
-
- Lemma ad_list_stutters_app_conv_l :
- forall l l':list ad,
- ad_list_stutters (l ++ l') = false -> ad_list_stutters l = false.
- Proof.
- intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0.
- rewrite (ad_list_stutters_app_l l l' H0) in H. discriminate H.
- trivial.
- Qed.
-
- Lemma ad_list_stutters_app_conv_r :
- forall l l':list ad,
- ad_list_stutters (l ++ l') = false -> ad_list_stutters l' = false.
- Proof.
- intros. elim (sumbool_of_bool (ad_list_stutters l')). intro H0.
- rewrite (ad_list_stutters_app_r l l' H0) in H. discriminate H.
- trivial.
- Qed.
-
- Lemma ad_in_list_app_1 :
- forall (l l':list ad) (x:ad), ad_in_list x (l ++ x :: l') = true.
- Proof.
- simple induction l. simpl in |- *. intros. rewrite (Neqb_correct x). reflexivity.
- intros. simpl in |- *. rewrite (H l' x). apply orb_b_true.
- Qed.
-
- Lemma ad_in_list_app :
- forall (l l':list ad) (x:ad),
- ad_in_list x (l ++ l') = orb (ad_in_list x l) (ad_in_list x l').
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite <- orb_assoc. rewrite (H l' x). reflexivity.
- Qed.
-
- Lemma ad_in_list_rev :
- forall (l:list ad) (x:ad), ad_in_list x (rev l) = ad_in_list x l.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite ad_in_list_app. rewrite (H x). simpl in |- *. rewrite orb_b_false.
- apply orb_comm.
- Qed.
-
- Lemma ad_list_has_circuit_stutters :
- forall (l0 l1 l2:list ad) (x:ad),
- ad_list_stutters (l0 ++ x :: l1 ++ x :: l2) = true.
- Proof.
- simple induction l0. simpl in |- *. intros. rewrite (ad_in_list_app_1 l1 l2 x). reflexivity.
- intros. simpl in |- *. rewrite (H l1 l2 x). apply orb_b_true.
- Qed.
-
- Lemma ad_list_stutters_prev_l :
- forall (l l':list ad) (x:ad),
- ad_in_list x l = true -> ad_list_stutters (l ++ x :: l') = true.
- Proof.
- intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
- rewrite H1. rewrite app_ass. simpl in |- *. apply ad_list_has_circuit_stutters.
- Qed.
-
- Lemma ad_list_stutters_prev_conv_l :
- forall (l l':list ad) (x:ad),
- ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l = false.
- Proof.
- intros. elim (sumbool_of_bool (ad_in_list x l)). intro H0.
- rewrite (ad_list_stutters_prev_l l l' x H0) in H. discriminate H.
- trivial.
- Qed.
-
- Lemma ad_list_stutters_prev_r :
- forall (l l':list ad) (x:ad),
- ad_in_list x l' = true -> ad_list_stutters (l ++ x :: l') = true.
- Proof.
- intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1.
- rewrite H1. apply ad_list_has_circuit_stutters.
- Qed.
-
- Lemma ad_list_stutters_prev_conv_r :
- forall (l l':list ad) (x:ad),
- ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l' = false.
- Proof.
- intros. elim (sumbool_of_bool (ad_in_list x l')). intro H0.
- rewrite (ad_list_stutters_prev_r l l' x H0) in H. discriminate H.
- trivial.
- Qed.
-
- Lemma ad_list_Elems :
- forall l l':list ad,
- MapCard _ (Elems l) = MapCard _ (Elems l') ->
- length l = length l' -> ad_list_stutters l = ad_list_stutters l'.
- Proof.
- intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H1. rewrite H1. apply sym_eq.
- apply ad_list_stutters_card_conv. rewrite <- H. rewrite <- H0. apply ad_list_stutters_card.
- assumption.
- intro H1. rewrite H1. apply sym_eq. apply ad_list_not_stutters_card_conv. rewrite <- H.
- rewrite <- H0. apply ad_list_not_stutters_card. assumption.
- Qed.
-
- Lemma ad_list_app_length :
- forall l l':list ad, length (l ++ l') = length l + length l'.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (H l'). reflexivity.
- Qed.
-
- Lemma ad_list_stutters_permute :
- forall l l':list ad,
- ad_list_stutters (l ++ l') = ad_list_stutters (l' ++ l).
- Proof.
- intros. apply ad_list_Elems. rewrite Elems_app. rewrite Elems_app.
- rewrite (FSetUnion_comm_c _ _ (Elems_canon l) (Elems_canon l')). reflexivity.
- rewrite ad_list_app_length. rewrite ad_list_app_length. apply plus_comm.
- Qed.
-
- Lemma ad_list_rev_length : forall l:list ad, length (rev l) = length l.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite ad_list_app_length. simpl in |- *. rewrite H. rewrite <- plus_Snm_nSm.
- rewrite <- plus_n_O. reflexivity.
- Qed.
-
- Lemma ad_list_stutters_rev :
- forall l:list ad, ad_list_stutters (rev l) = ad_list_stutters l.
- Proof.
- intros. apply ad_list_Elems. rewrite Elems_rev. reflexivity.
- apply ad_list_rev_length.
- Qed.
-
- Lemma ad_list_app_rev :
- forall (l l':list ad) (x:ad), rev l ++ x :: l' = rev (x :: l) ++ l'.
- Proof.
- simple induction l. trivial.
- intros. simpl in |- *. rewrite (app_ass (rev l0) (a :: nil) (x :: l')). simpl in |- *.
- rewrite (H (x :: l') a). simpl in |- *.
- rewrite (app_ass (rev l0) (a :: nil) (x :: nil)). simpl in |- *.
- rewrite app_ass. simpl in |- *. rewrite app_ass. reflexivity.
- Qed.
-
- Section ListOfDomDef.
-
- Variable A : Set.
-
- Definition ad_list_of_dom :=
- MapFold A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil).
-
- Lemma ad_in_list_of_dom_in_dom :
- forall (m:Map A) (a:ad), ad_in_list a (ad_list_of_dom m) = in_dom A a m.
- Proof.
- unfold ad_list_of_dom in |- *. intros.
- rewrite
- (MapFold_distr_l A (list ad) nil (app (A:=ad)) bool false orb ad
- (fun (a:ad) (l:list ad) => ad_in_list a l) (
- fun c:ad => refl_equal _) ad_in_list_app
- (fun (a0:ad) (_:A) => a0 :: nil) m a).
- simpl in |- *. rewrite (MapFold_orb A (fun (a0:ad) (_:A) => orb (Neqb a a0) false) m).
- elim
- (option_sum _
- (MapSweep A (fun (a0:ad) (_:A) => orb (Neqb a a0) false) m)). intro H. elim H.
- intro r. elim r. intros a0 y H0. rewrite H0. unfold in_dom in |- *.
- elim (orb_prop _ _ (MapSweep_semantics_1 _ _ _ _ _ H0)). intro H1.
- rewrite (Neqb_complete _ _ H1). rewrite (MapSweep_semantics_2 A _ _ _ _ H0). reflexivity.
- intro H1. discriminate H1.
- intro H. rewrite H. elim (sumbool_of_bool (in_dom A a m)). intro H0.
- elim (in_dom_some A m a H0). intros y H1.
- elim (orb_false_elim _ _ (MapSweep_semantics_3 _ _ _ H _ _ H1)). intro H2.
- rewrite (Neqb_correct a) in H2. discriminate H2.
- exact (sym_eq (y:=_)).
- Qed.
-
- Lemma Elems_of_list_of_dom :
- forall m:Map A, eqmap unit (Elems (ad_list_of_dom m)) (MapDom A m).
- Proof.
- unfold eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_FSet a (Elems (ad_list_of_dom m)))).
- intro H. elim (in_dom_some _ _ _ H). intro t. elim t. intro H0.
- rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
- rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
- elim (in_dom_some _ _ _ H). intro t'. elim t'. intro H1. rewrite H1. assumption.
- intro H. rewrite (in_dom_none _ _ _ H).
- rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H.
- rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H.
- rewrite (in_dom_none _ _ _ H). reflexivity.
- Qed.
-
- Lemma Elems_of_list_of_dom_c :
- forall m:Map A, mapcanon A m -> Elems (ad_list_of_dom m) = MapDom A m.
- Proof.
- intros. apply (mapcanon_unique unit). apply Elems_canon.
- apply MapDom_canon. assumption.
- apply Elems_of_list_of_dom.
- Qed.
-
- Lemma ad_list_of_dom_card_1 :
- forall (m:Map A) (pf:ad -> ad),
- length
- (MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil)
- pf m) = MapCard A m.
- Proof.
- simple induction m; try trivial. simpl in |- *. intros. rewrite ad_list_app_length.
- rewrite (H (fun a0:ad => pf (Ndouble a0))). rewrite (H0 (fun a0:ad => pf (Ndouble_plus_one a0))).
- reflexivity.
- Qed.
-
- Lemma ad_list_of_dom_card :
- forall m:Map A, length (ad_list_of_dom m) = MapCard A m.
- Proof.
- exact (fun m:Map A => ad_list_of_dom_card_1 m (fun a:ad => a)).
- Qed.
-
- Lemma ad_list_of_dom_not_stutters :
- forall m:Map A, ad_list_stutters (ad_list_of_dom m) = false.
- Proof.
- intro. apply ad_list_not_stutters_card_conv. rewrite ad_list_of_dom_card. apply sym_eq.
- rewrite (MapCard_Dom A m). apply MapCard_ext. exact (Elems_of_list_of_dom m).
- Qed.
-
- End ListOfDomDef.
-
- Lemma ad_list_of_dom_Dom_1 :
- forall (A:Set) (m:Map A) (pf:ad -> ad),
- MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil) pf
- m =
- MapFold1 unit (list ad) nil (app (A:=ad))
- (fun (a:ad) (_:unit) => a :: nil) pf (MapDom A m).
- Proof.
- simple induction m; try trivial. simpl in |- *. intros. rewrite (H (fun a0:ad => pf (Ndouble a0))).
- rewrite (H0 (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity.
- Qed.
-
- Lemma ad_list_of_dom_Dom :
- forall (A:Set) (m:Map A),
- ad_list_of_dom A m = ad_list_of_dom unit (MapDom A m).
- Proof.
- intros. exact (ad_list_of_dom_Dom_1 A m (fun a0:ad => a0)).
- Qed.
-
-End MapLists. \ No newline at end of file
diff --git a/theories/IntMap/Mapsubset.v b/theories/IntMap/Mapsubset.v
deleted file mode 100644
index 6771c03e..00000000
--- a/theories/IntMap/Mapsubset.v
+++ /dev/null
@@ -1,605 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapsubset.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
-
-Require Import Bool.
-Require Import Sumbool.
-Require Import Arith.
-Require Import NArith.
-Require Import Ndigits.
-Require Import Ndec.
-Require Import Map.
-Require Import Fset.
-Require Import Mapaxioms.
-Require Import Mapiter.
-
-Section MapSubsetDef.
-
- Variables A B : Set.
-
- Definition MapSubset (m:Map A) (m':Map B) :=
- forall a:ad, in_dom A a m = true -> in_dom B a m' = true.
-
- Definition MapSubset_1 (m:Map A) (m':Map B) :=
- match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with
- | None => true
- | _ => false
- end.
-
- Definition MapSubset_2 (m:Map A) (m':Map B) :=
- eqmap A (MapDomRestrBy A B m m') (M0 A).
-
- Lemma MapSubset_imp_1 :
- forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true.
- Proof.
- unfold MapSubset, MapSubset_1 in |- *. intros.
- elim
- (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)).
- intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true).
- intro. cut (in_dom A a m = false). intro. unfold in_dom in H3.
- rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3.
- elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2.
- trivial.
- exact (MapSweep_semantics_1 _ _ m a y H1).
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapSubset_1_imp :
- forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'.
- Proof.
- unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)).
- intro H1. elim H1. intros y H2.
- elim
- (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3.
- elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H.
- intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')).
- rewrite H4. reflexivity.
- exact (MapSweep_semantics_3 _ _ m H3 a y H2).
- intro H1. rewrite H1 in H0. discriminate H0.
- Qed.
-
- Lemma map_dom_empty_1 :
- forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false.
- Proof.
- unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity.
- Qed.
-
- Lemma map_dom_empty_2 :
- forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A).
- Proof.
- unfold eqmap, eqm, in_dom in |- *. intros.
- cut
- (match MapGet A m a with
- | None => false
- | Some _ => true
- end = false).
- case (MapGet A m a); trivial.
- intros. discriminate H0.
- exact (H a).
- Qed.
-
- Lemma MapSubset_imp_2 :
- forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'.
- Proof.
- unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby.
- elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity.
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapSubset_2_imp :
- forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'.
- Proof.
- unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false).
- rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0.
- intro H2. discriminate H2.
- intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity.
- exact (map_dom_empty_1 _ H a).
- Qed.
-
-End MapSubsetDef.
-
-Section MapSubsetOrder.
-
- Variables A B C : Set.
-
- Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m.
- Proof.
- unfold MapSubset in |- *. trivial.
- Qed.
-
- Lemma MapSubset_antisym :
- forall (m:Map A) (m':Map B),
- MapSubset A B m m' ->
- MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m').
- Proof.
- unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)).
- intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)).
- intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2.
- intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4.
- unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4.
- apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity.
- intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3.
- cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4.
- rewrite H1 in H4. discriminate H4.
- apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity.
- intro H2. rewrite H2. exact H1.
- Qed.
-
- Lemma MapSubset_trans :
- forall (m:Map A) (m':Map B) (m'':Map C),
- MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''.
- Proof.
- unfold MapSubset in |- *. intros. apply H0. apply H. assumption.
- Qed.
-
-End MapSubsetOrder.
-
-Section FSubsetOrder.
-
- Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s.
- Proof.
- exact (MapSubset_refl unit).
- Qed.
-
- Lemma FSubset_antisym :
- forall s s':FSet,
- MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'.
- Proof.
- intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s').
- exact (MapSubset_antisym _ _ s s' H H0).
- Qed.
-
- Lemma FSubset_trans :
- forall s s' s'':FSet,
- MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''.
- Proof.
- exact (MapSubset_trans unit unit unit).
- Qed.
-
-End FSubsetOrder.
-
-Section MapSubsetExtra.
-
- Variables A B : Set.
-
- Lemma MapSubset_Dom_1 :
- forall (m:Map A) (m':Map B),
- MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m').
- Proof.
- unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1.
- cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2.
- rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3.
- intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4).
- intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4.
- apply H2. reflexivity.
- exact (H a).
- Qed.
-
- Lemma MapSubset_Dom_2 :
- forall (m:Map A) (m':Map B),
- MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'.
- Proof.
- unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)).
- intro H1. elim H1. intros y H2.
- elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3.
- unfold in_dom in |- *. rewrite H3. reflexivity.
- intro H1. rewrite H1 in H0. discriminate H0.
- Qed.
-
- Lemma MapSubset_1_Dom :
- forall (m:Map A) (m':Map B),
- MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m').
- Proof.
- intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H.
- apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H).
- intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))).
- intro H0.
- rewrite
- (MapSubset_imp_1 _ _ _ _
- (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0)))
- in H.
- discriminate H.
- intro. apply sym_eq. assumption.
- Qed.
-
- Lemma MapSubset_Put :
- forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y).
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true.
- Qed.
-
- Lemma MapSubset_Put_mono :
- forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
- MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0.
- elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
- intro H1. rewrite (H _ H1). apply orb_b_true.
- Qed.
-
- Lemma MapSubset_Put_behind :
- forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y).
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true.
- Qed.
-
- Lemma MapSubset_Put_behind_mono :
- forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B),
- MapSubset A B m m' ->
- MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_put_behind.
- rewrite (in_dom_put_behind A m a y a0) in H0.
- elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity.
- intro H1. rewrite (H _ H1). apply orb_b_true.
- Qed.
-
- Lemma MapSubset_Remove :
- forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m.
- Proof.
- unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H.
- elim (andb_prop _ _ H). trivial.
- Qed.
-
- Lemma MapSubset_Remove_mono :
- forall (m:Map A) (m':Map B) (a:ad),
- MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a).
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0.
- elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity.
- Qed.
-
- Lemma MapSubset_Merge_l :
- forall m m':Map A, MapSubset A A m (MapMerge A m m').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity.
- Qed.
-
- Lemma MapSubset_Merge_r :
- forall m m':Map A, MapSubset A A m' (MapMerge A m m').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true.
- Qed.
-
- Lemma MapSubset_Merge_mono :
- forall (m m':Map A) (m'' m''':Map B),
- MapSubset A B m m'' ->
- MapSubset A B m' m''' ->
- MapSubset A B (MapMerge A m m') (MapMerge B m'' m''').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1.
- elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity.
- intro H2. rewrite (H0 _ H2). apply orb_b_true.
- Qed.
-
- Lemma MapSubset_DomRestrTo_l :
- forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m.
- Proof.
- unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
- trivial.
- Qed.
-
- Lemma MapSubset_DomRestrTo_r :
- forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'.
- Proof.
- unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H).
- trivial.
- Qed.
-
- Lemma MapSubset_ext :
- forall (m0 m1:Map A) (m2 m3:Map B),
- eqmap A m0 m1 ->
- eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3.
- Proof.
- intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *.
- apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym.
- assumption.
- apply eqmap_sym. assumption.
- exact (MapSubset_imp_2 _ _ _ _ H1).
- Qed.
-
- Variables C D : Set.
-
- Lemma MapSubset_DomRestrTo_mono :
- forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
- MapSubset _ _ m m'' ->
- MapSubset _ _ m' m''' ->
- MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m''').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1.
- elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity.
- Qed.
-
- Lemma MapSubset_DomRestrBy_l :
- forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m.
- Proof.
- unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H).
- trivial.
- Qed.
-
- Lemma MapSubset_DomRestrBy_mono :
- forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
- MapSubset _ _ m m'' ->
- MapSubset _ _ m''' m' ->
- MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m''').
- Proof.
- unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1.
- elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')).
- intro H4. rewrite (H0 _ H4) in H3. discriminate H3.
- intro H4. rewrite H4. reflexivity.
- Qed.
-
-End MapSubsetExtra.
-
-Section MapDisjointDef.
-
- Variables A B : Set.
-
- Definition MapDisjoint (m:Map A) (m':Map B) :=
- forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False.
-
- Definition MapDisjoint_1 (m:Map A) (m':Map B) :=
- match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with
- | None => true
- | _ => false
- end.
-
- Definition MapDisjoint_2 (m:Map A) (m':Map B) :=
- eqmap A (MapDomRestrTo A B m m') (M0 A).
-
- Lemma MapDisjoint_imp_1 :
- forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true.
- Proof.
- unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
- elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0.
- intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False).
- intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2.
- rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)).
- exact (H a).
- intro H0. rewrite H0. reflexivity.
- Qed.
-
- Lemma MapDisjoint_1_imp :
- forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'.
- Proof.
- unfold MapDisjoint, MapDisjoint_1 in |- *. intros.
- elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2.
- intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H.
- intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3.
- intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1.
- intro H3. rewrite H3 in H0. discriminate H0.
- Qed.
-
- Lemma MapDisjoint_imp_2 :
- forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'.
- Proof.
- unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros.
- rewrite (MapDomRestrTo_semantics A B m m' a).
- cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro.
- elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0.
- elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0.
- rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)).
- intro H3. rewrite H3. reflexivity.
- intro H1. rewrite H1. case (MapGet B m' a); reflexivity.
- exact (H a).
- Qed.
-
- Lemma MapDisjoint_2_imp :
- forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'.
- Proof.
- unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0).
- intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3.
- cut (MapGet A (MapDomRestrTo A B m m') a = None). intro.
- rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4.
- discriminate H4.
- exact (H a).
- Qed.
-
- Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m.
- Proof.
- unfold MapDisjoint, in_dom in |- *. intros. discriminate H.
- Qed.
-
- Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B).
- Proof.
- unfold MapDisjoint, in_dom in |- *. intros. discriminate H0.
- Qed.
-
-End MapDisjointDef.
-
-Section MapDisjointExtra.
-
- Variables A B : Set.
-
- Lemma MapDisjoint_ext :
- forall (m0 m1:Map A) (m2 m3:Map B),
- eqmap A m0 m1 ->
- eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3.
- Proof.
- intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *.
- apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext.
- assumption.
- assumption.
- exact (MapDisjoint_imp_2 _ _ _ _ H1).
- Qed.
-
- Lemma MapMerge_disjoint :
- forall m m':Map A,
- MapDisjoint A A m m' ->
- forall a:ad,
- in_dom A a (MapMerge A m m') =
- orb (andb (in_dom A a m) (negb (in_dom A a m')))
- (andb (in_dom A a m') (negb (in_dom A a m))).
- Proof.
- unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)).
- intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1).
- intro H1. rewrite H1. reflexivity.
- intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity.
- Qed.
-
- Lemma MapDisjoint_M2_l :
- forall (m0 m1:Map A) (m2 m3:Map B),
- MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2.
- Proof.
- unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2.
- elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4.
- intros y' H5. apply (H (Ndouble a)).
- rewrite (MapGet_M2_bit_0_0 _ (Ndouble a) (Ndouble_bit0 a) m0 m1).
- rewrite (Ndouble_div2 a). rewrite H3. reflexivity.
- rewrite (MapGet_M2_bit_0_0 _ (Ndouble a) (Ndouble_bit0 a) m2 m3).
- rewrite (Ndouble_div2 a). rewrite H5. reflexivity.
- intro H4. rewrite H4 in H1. discriminate H1.
- intro H2. rewrite H2 in H0. discriminate H0.
- Qed.
-
- Lemma MapDisjoint_M2_r :
- forall (m0 m1:Map A) (m2 m3:Map B),
- MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3.
- Proof.
- unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2.
- elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4.
- intros y' H5. apply (H (Ndouble_plus_one a)).
- rewrite
- (MapGet_M2_bit_0_1 _ (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a)
- m0 m1).
- rewrite (Ndouble_plus_one_div2 a). rewrite H3. reflexivity.
- rewrite
- (MapGet_M2_bit_0_1 _ (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a)
- m2 m3).
- rewrite (Ndouble_plus_one_div2 a). rewrite H5. reflexivity.
- intro H4. rewrite H4 in H1. discriminate H1.
- intro H2. rewrite H2 in H0. discriminate H0.
- Qed.
-
- Lemma MapDisjoint_M2 :
- forall (m0 m1:Map A) (m2 m3:Map B),
- MapDisjoint A B m0 m2 ->
- MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3).
- Proof.
- unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H3.
- rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1.
- rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (Ndiv2 a) H1 H2).
- intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1.
- rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (Ndiv2 a) H1 H2).
- Qed.
-
- Lemma MapDisjoint_M1_l :
- forall (m:Map A) (a:ad) (y:B),
- MapDisjoint B A (M1 B a y) m -> in_dom A a m = false.
- Proof.
- unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
- elim (H a (in_dom_M1_1 B a y) H0).
- trivial.
- Qed.
-
- Lemma MapDisjoint_M1_r :
- forall (m:Map A) (a:ad) (y:B),
- MapDisjoint A B m (M1 B a y) -> in_dom A a m = false.
- Proof.
- unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0.
- elim (H a H0 (in_dom_M1_1 B a y)).
- trivial.
- Qed.
-
- Lemma MapDisjoint_M1_conv_l :
- forall (m:Map A) (a:ad) (y:B),
- in_dom A a m = false -> MapDisjoint B A (M1 B a y) m.
- Proof.
- unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H.
- discriminate H.
- Qed.
-
- Lemma MapDisjoint_M1_conv_r :
- forall (m:Map A) (a:ad) (y:B),
- in_dom A a m = false -> MapDisjoint A B m (M1 B a y).
- Proof.
- unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H.
- discriminate H.
- Qed.
-
- Lemma MapDisjoint_sym :
- forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m.
- Proof.
- unfold MapDisjoint in |- *. intros. exact (H _ H1 H0).
- Qed.
-
- Lemma MapDisjoint_empty :
- forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A).
- Proof.
- unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a).
- exact (MapDisjoint_imp_2 A A m m H a).
- Qed.
-
- Lemma MapDelta_disjoint :
- forall m m':Map A,
- MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m').
- Proof.
- intros.
- apply eqmap_trans with
- (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')).
- apply MapDelta_as_DomRestrBy.
- apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)).
- apply MapDomRestrBy_ext. apply eqmap_refl.
- exact (MapDisjoint_imp_2 A A m m' H).
- apply MapDomRestrBy_m_empty.
- Qed.
-
- Variable C : Set.
-
- Lemma MapDomRestr_disjoint :
- forall (m:Map A) (m':Map B) (m'':Map C),
- MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m'').
- Proof.
- unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby.
- intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2.
- discriminate H2.
- Qed.
-
- Lemma MapDelta_RestrTo_disjoint :
- forall m m':Map A,
- MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m').
- Proof.
- unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
- intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
- Qed.
-
- Lemma MapDelta_RestrTo_disjoint_2 :
- forall m m':Map A,
- MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m).
- Proof.
- unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto.
- intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H.
- Qed.
-
- Variable D : Set.
-
- Lemma MapSubset_Disjoint :
- forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D),
- MapSubset _ _ m m' ->
- MapSubset _ _ m'' m''' ->
- MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''.
- Proof.
- unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)).
- Qed.
-
- Lemma MapSubset_Disjoint_l :
- forall (m:Map A) (m':Map B) (m'':Map C),
- MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''.
- Proof.
- unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2).
- Qed.
-
- Lemma MapSubset_Disjoint_r :
- forall (m:Map A) (m'':Map C) (m''':Map D),
- MapSubset _ _ m'' m''' ->
- MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''.
- Proof.
- unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)).
- Qed.
-
-End MapDisjointExtra. \ No newline at end of file
diff --git a/theories/IntMap/intro.tex b/theories/IntMap/intro.tex
deleted file mode 100644
index 9ad93050..00000000
--- a/theories/IntMap/intro.tex
+++ /dev/null
@@ -1,6 +0,0 @@
-\section{Maps indexed by binary integers : IntMap}\label{IntMap}
-
-This library contains a data structure for finite sets implemented by
-an efficient structure of map (trees indexed by binary integers).
-It was initially developed by Jean Goubault.
-
diff --git a/theories/Lists/List.v b/theories/Lists/List.v
index c80d0b15..a72283d9 100644
--- a/theories/Lists/List.v
+++ b/theories/Lists/List.v
@@ -1,15 +1,14 @@
- (************************************************************************)
- (* v * The Coq Proof Assistant / The Coq Development Team *)
- (* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
- (* \VV/ **************************************************************)
- (* // * This file is distributed under the terms of the *)
- (* * GNU Lesser General Public License Version 2.1 *)
- (************************************************************************)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
- (*i $Id: List.v 9290 2006-10-26 19:20:42Z herbelin $ i*)
+(*i $Id: List.v 10999 2008-05-27 15:55:22Z letouzey $ i*)
Require Import Le Gt Minus Min Bool.
-Require Import Setoid.
Set Implicit Arguments.
@@ -82,8 +81,6 @@ End Lists.
Implicit Arguments nil [A].
Infix "::" := cons (at level 60, right associativity) : list_scope.
Infix "++" := app (right associativity, at level 60) : list_scope.
-
-Ltac now_show c := change c in |- *.
Open Scope list_scope.
@@ -314,7 +311,27 @@ Section Facts.
now_show (H = a \/ In a (y ++ m)).
elim H2; auto.
Qed.
-
+
+ Lemma app_inv_head:
+ forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
+ Proof.
+ induction l; simpl; auto; injection 1; auto.
+ Qed.
+
+ Lemma app_inv_tail:
+ forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
+ Proof.
+ intros l l1 l2; revert l1 l2 l.
+ induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
+ simpl; auto; intros l H.
+ absurd (length (x2 :: l2 ++ l) <= length l).
+ simpl; rewrite app_length; auto with arith.
+ rewrite <- H; auto with arith.
+ absurd (length (x1 :: l1 ++ l) <= length l).
+ simpl; rewrite app_length; auto with arith.
+ rewrite H; auto with arith.
+ injection H; clear H; intros; f_equal; eauto.
+ Qed.
End Facts.
@@ -512,6 +529,20 @@ Section Elts.
exists (a::l'); exists a'; auto.
Qed.
+ Lemma removelast_app :
+ forall l l', l' <> nil -> removelast (l++l') = l ++ removelast l'.
+ Proof.
+ induction l.
+ simpl; auto.
+ simpl; intros.
+ assert (l++l' <> nil).
+ destruct l.
+ simpl; auto.
+ simpl; discriminate.
+ specialize (IHl l' H).
+ destruct (l++l'); [elim H0; auto|f_equal; auto].
+ Qed.
+
(****************************************)
(** ** Counting occurences of a element *)
@@ -534,8 +565,7 @@ Section Elts.
simpl; intros; split; [destruct 1 | apply gt_irrefl].
simpl. intro x; destruct (eqA_dec y x) as [Heq|Hneq].
rewrite Heq; intuition.
- rewrite <- (IHl x).
- tauto.
+ pose (IHl x). intuition.
Qed.
Theorem count_occ_inv_nil : forall (l : list A), (forall x:A, count_occ l x = 0) <-> l = nil.
@@ -668,8 +698,8 @@ Section ListOps.
rewrite app_nth1; auto.
rewrite (minus_plus_simpl_l_reverse (length l) n 1).
replace (1 + length l) with (S (length l)); auto with arith.
- rewrite <- minus_Sn_m; auto with arith; simpl.
- apply IHl; auto.
+ rewrite <- minus_Sn_m; auto with arith.
+ apply IHl ; auto with arith.
rewrite rev_length; auto.
Qed.
@@ -899,7 +929,7 @@ Section ListOps.
apply perm_trans with (l1'++a::l2); auto using Permutation_cons_app.
apply perm_skip.
apply (IH a l1' l2 l3' l4); auto.
- (* swap *)
+ (* contradict *)
intros x y l l' Hp IH; intros.
break_list l1 b l1' H; break_list l3 c l3' H0.
auto.
@@ -1345,7 +1375,7 @@ End Fold_Right_Recursor.
destruct n; destruct d; simpl; auto.
destruct a; destruct (split l); simpl; auto.
destruct a; destruct (split l); simpl in *; auto.
- rewrite IHl; simpl; auto.
+ apply IHl.
Qed.
Lemma split_length_l : forall (l:list (A*B)),
@@ -1618,7 +1648,7 @@ Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons
(**************************************)
-(* ** Cutting a list at some position *)
+(** * Cutting a list at some position *)
(**************************************)
Section Cutting.
@@ -1651,6 +1681,45 @@ Section Cutting.
f_equal; auto.
Qed.
+ Lemma firstn_length : forall n l, length (firstn n l) = min n (length l).
+ Proof.
+ induction n; destruct l; simpl; auto.
+ Qed.
+
+ Lemma removelast_firstn : forall n l, n < length l ->
+ removelast (firstn (S n) l) = firstn n l.
+ Proof.
+ induction n; destruct l.
+ simpl; auto.
+ simpl; auto.
+ simpl; auto.
+ intros.
+ simpl in H.
+ change (firstn (S (S n)) (a::l)) with ((a::nil)++firstn (S n) l).
+ change (firstn (S n) (a::l)) with (a::firstn n l).
+ rewrite removelast_app.
+ rewrite IHn; auto with arith.
+
+ clear IHn; destruct l; simpl in *; try discriminate.
+ inversion_clear H.
+ inversion_clear H0.
+ Qed.
+
+ Lemma firstn_removelast : forall n l, n < length l ->
+ firstn n (removelast l) = firstn n l.
+ Proof.
+ induction n; destruct l.
+ simpl; auto.
+ simpl; auto.
+ simpl; auto.
+ intros.
+ simpl in H.
+ change (removelast (a :: l)) with (removelast ((a::nil)++l)).
+ rewrite removelast_app.
+ simpl; f_equal; auto with arith.
+ intro H0; rewrite H0 in H; inversion_clear H; inversion_clear H1.
+ Qed.
+
End Cutting.
@@ -1672,8 +1741,8 @@ Section ReDun.
inversion_clear 1; auto.
inversion_clear 1.
constructor.
- swap H0.
- apply in_or_app; destruct (in_app_or _ _ _ H); simpl; tauto.
+ contradict H0.
+ apply in_or_app; destruct (in_app_or _ _ _ H0); simpl; tauto.
apply IHl with a0; auto.
Qed.
@@ -1682,8 +1751,8 @@ Section ReDun.
induction l; simpl.
inversion_clear 1; auto.
inversion_clear 1.
- swap H0.
- destruct H.
+ contradict H0.
+ destruct H0.
subst a0.
apply in_or_app; right; red; auto.
destruct (IHl _ _ H1); auto.
diff --git a/theories/Lists/ListSet.v b/theories/Lists/ListSet.v
index 4e009ed5..021a64c1 100644
--- a/theories/Lists/ListSet.v
+++ b/theories/Lists/ListSet.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ListSet.v 6844 2005-03-16 13:09:55Z herbelin $ i*)
+(*i $Id: ListSet.v 10616 2008-03-04 17:33:35Z letouzey $ i*)
(** A Library for finite sets, implemented as lists *)
@@ -20,7 +20,7 @@ Set Implicit Arguments.
Section first_definitions.
- Variable A : Set.
+ Variable A : Type.
Hypothesis Aeq_dec : forall x y:A, {x = y} + {x <> y}.
Definition set := list A.
@@ -100,7 +100,7 @@ Section first_definitions.
Qed.
Lemma set_mem_ind :
- forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set),
(set_In a x -> P y) -> P z -> P (if set_mem a x then y else z).
Proof.
@@ -110,7 +110,7 @@ Section first_definitions.
Qed.
Lemma set_mem_ind2 :
- forall (B:Set) (P:B -> Prop) (y z:B) (a:A) (x:set),
+ forall (B:Type) (P:B -> Prop) (y z:B) (a:A) (x:set),
(set_In a x -> P y) ->
(~ set_In a x -> P z) -> P (if set_mem a x then y else z).
@@ -373,7 +373,7 @@ End first_definitions.
Section other_definitions.
- Variables A B : Set.
+ Variables A B : Type.
Definition set_prod : set A -> set B -> set (A * B) :=
list_prod (A:=A) (B:=B).
diff --git a/theories/Lists/ListTactics.v b/theories/Lists/ListTactics.v
index e46f1279..515ed138 100644
--- a/theories/Lists/ListTactics.v
+++ b/theories/Lists/ListTactics.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ListTactics.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: ListTactics.v 9427 2006-12-11 18:46:35Z bgregoir $ i*)
Require Import BinPos.
Require Import List.
diff --git a/theories/Lists/SetoidList.v b/theories/Lists/SetoidList.v
index eb40594b..4edc1581 100644
--- a/theories/Lists/SetoidList.v
+++ b/theories/Lists/SetoidList.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: SetoidList.v 8853 2006-05-23 18:17:38Z herbelin $ *)
+(* $Id: SetoidList.v 10616 2008-03-04 17:33:35Z letouzey $ *)
Require Export List.
Require Export Sorting.
@@ -21,7 +21,7 @@ Unset Strict Implicit.
found in [Sorting]. *)
Section Type_with_equality.
-Variable A : Set.
+Variable A : Type.
Variable eqA : A -> A -> Prop.
(** Being in a list modulo an equality relation over type [A]. *)
@@ -32,6 +32,18 @@ Inductive InA (x : A) : list A -> Prop :=
Hint Constructors InA.
+Lemma InA_cons : forall x y l, InA x (y::l) <-> eqA x y \/ InA x l.
+Proof.
+ intuition.
+ inversion H; auto.
+Qed.
+
+Lemma InA_nil : forall x, InA x nil <-> False.
+Proof.
+ intuition.
+ inversion H.
+Qed.
+
(** An alternative definition of [InA]. *)
Lemma InA_alt : forall x l, InA x l <-> exists y, eqA x y /\ In y l.
@@ -53,7 +65,28 @@ Hint Constructors NoDupA.
(** lists with same elements modulo [eqA] *)
-Definition eqlistA l l' := forall x, InA x l <-> InA x l'.
+Definition equivlistA l l' := forall x, InA x l <-> InA x l'.
+
+(** lists with same elements modulo [eqA] at the same place *)
+
+Inductive eqlistA : list A -> list A -> Prop :=
+ | eqlistA_nil : eqlistA nil nil
+ | eqlistA_cons : forall x x' l l',
+ eqA x x' -> eqlistA l l' -> eqlistA (x::l) (x'::l').
+
+Hint Constructors eqlistA.
+
+(** Compatibility of a boolean function with respect to an equality. *)
+
+Definition compat_bool (f : A->bool) := forall x y, eqA x y -> f x = f y.
+
+(** Compatibility of a function upon natural numbers. *)
+
+Definition compat_nat (f : A->nat) := forall x y, eqA x y -> f x = f y.
+
+(** Compatibility of a predicate with respect to an equality. *)
+
+Definition compat_P (P : A->Prop) := forall x y, eqA x y -> P x -> P y.
(** Results concerning lists modulo [eqA] *)
@@ -91,6 +124,35 @@ exists (a::l1); exists y; exists l2; auto.
split; simpl; f_equal; auto.
Qed.
+Lemma InA_app : forall l1 l2 x,
+ InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
+Proof.
+ induction l1; simpl in *; intuition.
+ inversion_clear H; auto.
+ elim (IHl1 l2 x H0); auto.
+Qed.
+
+Lemma InA_app_iff : forall l1 l2 x,
+ InA x (l1 ++ l2) <-> InA x l1 \/ InA x l2.
+Proof.
+ split.
+ apply InA_app.
+ destruct 1; generalize H; do 2 rewrite InA_alt.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+ destruct 1 as (y,(H1,H2)); exists y; split; auto.
+ apply in_or_app; auto.
+Qed.
+
+Lemma InA_rev : forall p m,
+ InA p (rev m) <-> InA p m.
+Proof.
+ intros; do 2 rewrite InA_alt.
+ split; intros (y,H); exists y; intuition.
+ rewrite In_rev; auto.
+ rewrite <- In_rev; auto.
+Qed.
+
(** Results concerning lists modulo [eqA] and [ltA] *)
Variable ltA : A -> A -> Prop.
@@ -106,10 +168,12 @@ Hint Immediate ltA_eqA eqA_ltA.
Notation InfA:=(lelistA ltA).
Notation SortA:=(sort ltA).
+Hint Constructors lelistA sort.
+
Lemma InfA_ltA :
forall l x y, ltA x y -> InfA y l -> InfA x l.
Proof.
- intro s; case s; constructor; inversion_clear H0.
+ destruct l; constructor; inversion_clear H0;
eapply ltA_trans; eauto.
Qed.
@@ -153,6 +217,26 @@ intros; eapply SortA_InfA_InA; eauto.
apply InA_InfA.
Qed.
+Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
+Proof.
+ induction l1; simpl; auto.
+ inversion_clear 1; auto.
+Qed.
+
+Lemma SortA_app :
+ forall l1 l2, SortA l1 -> SortA l2 ->
+ (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
+ SortA (l1 ++ l2).
+Proof.
+ induction l1; simpl in *; intuition.
+ inversion_clear H.
+ constructor; auto.
+ apply InfA_app; auto.
+ destruct l2; auto.
+Qed.
+
+Section NoDupA.
+
Lemma SortA_NoDupA : forall l, SortA l -> NoDupA l.
Proof.
simple induction l; auto.
@@ -185,7 +269,6 @@ intros.
apply (H1 x); auto.
Qed.
-
Lemma NoDupA_rev : forall l, NoDupA l -> NoDupA (rev l).
Proof.
induction l.
@@ -206,33 +289,240 @@ rewrite In_rev; auto.
inversion H4.
Qed.
+Lemma NoDupA_split : forall l l' x, NoDupA (l++x::l') -> NoDupA (l++l').
+Proof.
+ induction l; simpl in *; inversion_clear 1; auto.
+ constructor; eauto.
+ contradict H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; intuition.
+Qed.
-Lemma InA_app : forall l1 l2 x,
- InA x (l1 ++ l2) -> InA x l1 \/ InA x l2.
+Lemma NoDupA_swap : forall l l' x, NoDupA (l++x::l') -> NoDupA (x::l++l').
Proof.
- induction l1; simpl in *; intuition.
- inversion_clear H; auto.
- elim (IHl1 l2 x H0); auto.
+ induction l; simpl in *; inversion_clear 1; auto.
+ constructor; eauto.
+ assert (H2:=IHl _ _ H1).
+ inversion_clear H2.
+ rewrite InA_cons.
+ red; destruct 1.
+ apply H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; auto.
+ apply H; auto.
+ constructor.
+ contradict H0.
+ rewrite InA_app_iff in *; rewrite InA_cons; intuition.
+ eapply NoDupA_split; eauto.
Qed.
- Hint Constructors lelistA sort.
+End NoDupA.
-Lemma InfA_app : forall l1 l2 a, InfA a l1 -> InfA a l2 -> InfA a (l1++l2).
+(** Some results about [eqlistA] *)
+
+Section EqlistA.
+
+Lemma eqlistA_length : forall l l', eqlistA l l' -> length l = length l'.
Proof.
- induction l1; simpl; auto.
- inversion_clear 1; auto.
+induction 1; auto; simpl; congruence.
Qed.
-Lemma SortA_app :
- forall l1 l2, SortA l1 -> SortA l2 ->
- (forall x y, InA x l1 -> InA y l2 -> ltA x y) ->
- SortA (l1 ++ l2).
+Lemma eqlistA_app : forall l1 l1' l2 l2',
+ eqlistA l1 l1' -> eqlistA l2 l2' -> eqlistA (l1++l2) (l1'++l2').
Proof.
- induction l1; simpl in *; intuition.
- inversion_clear H.
- constructor; auto.
- apply InfA_app; auto.
- destruct l2; auto.
+intros l1 l1' l2 l2' H; revert l2 l2'; induction H; simpl; auto.
+Qed.
+
+Lemma eqlistA_rev_app : forall l1 l1',
+ eqlistA l1 l1' -> forall l2 l2', eqlistA l2 l2' ->
+ eqlistA ((rev l1)++l2) ((rev l1')++l2').
+Proof.
+induction 1; auto.
+simpl; intros.
+do 2 rewrite app_ass; simpl; auto.
+Qed.
+
+Lemma eqlistA_rev : forall l1 l1',
+ eqlistA l1 l1' -> eqlistA (rev l1) (rev l1').
+Proof.
+intros.
+rewrite (app_nil_end (rev l1)).
+rewrite (app_nil_end (rev l1')).
+apply eqlistA_rev_app; auto.
+Qed.
+
+Lemma SortA_equivlistA_eqlistA : forall l l',
+ SortA l -> SortA l' -> equivlistA l l' -> eqlistA l l'.
+Proof.
+induction l; destruct l'; simpl; intros; auto.
+destruct (H1 a); assert (H4 : InA a nil) by auto; inversion H4.
+destruct (H1 a); assert (H4 : InA a nil) by auto; inversion H4.
+inversion_clear H; inversion_clear H0.
+assert (forall y, InA y l -> ltA a y).
+intros; eapply SortA_InfA_InA with (l:=l); eauto.
+assert (forall y, InA y l' -> ltA a0 y).
+intros; eapply SortA_InfA_InA with (l:=l'); eauto.
+clear H3 H4.
+assert (eqA a a0).
+ destruct (H1 a).
+ destruct (H1 a0).
+ assert (InA a (a0::l')) by auto.
+ inversion_clear H8; auto.
+ assert (InA a0 (a::l)) by auto.
+ inversion_clear H8; auto.
+ elim (@ltA_not_eqA a a); auto.
+ apply ltA_trans with a0; auto.
+constructor; auto.
+apply IHl; auto.
+split; intros.
+destruct (H1 x).
+assert (H8 : InA x (a0::l')) by auto; inversion_clear H8; auto.
+elim (@ltA_not_eqA a x); eauto.
+destruct (H1 x).
+assert (H8 : InA x (a::l)) by auto; inversion_clear H8; auto.
+elim (@ltA_not_eqA a0 x); eauto.
+Qed.
+
+End EqlistA.
+
+(** A few things about [filter] *)
+
+Section Filter.
+
+Lemma filter_sort : forall f l, SortA l -> SortA (List.filter f l).
+Proof.
+induction l; simpl; auto.
+inversion_clear 1; auto.
+destruct (f a); auto.
+constructor; auto.
+apply In_InfA; auto.
+intros.
+rewrite filter_In in H; destruct H.
+eapply SortA_InfA_InA; eauto.
+Qed.
+
+Lemma filter_InA : forall f, (compat_bool f) ->
+ forall l x, InA x (List.filter f l) <-> InA x l /\ f x = true.
+Proof.
+intros; do 2 rewrite InA_alt; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; exists y; intuition.
+destruct H0 as (y,(H0,H1)); rewrite filter_In in H1; intuition.
+ rewrite (H _ _ H0); auto.
+destruct H1 as (y,(H0,H1)); exists y; rewrite filter_In; intuition.
+ rewrite <- (H _ _ H0); auto.
+Qed.
+
+Lemma filter_split :
+ forall f, (forall x y, f x = true -> f y = false -> ltA x y) ->
+ forall l, SortA l -> l = filter f l ++ filter (fun x=>negb (f x)) l.
+Proof.
+induction l; simpl; intros; auto.
+inversion_clear H0.
+pattern l at 1; rewrite IHl; auto.
+case_eq (f a); simpl; intros; auto.
+assert (forall e, In e l -> f e = false).
+ intros.
+ assert (H4:=SortA_InfA_InA H1 H2 (In_InA H3)).
+ case_eq (f e); simpl; intros; auto.
+ elim (@ltA_not_eqA e e); auto.
+ apply ltA_trans with a; eauto.
+replace (List.filter f l) with (@nil A); auto.
+generalize H3; clear; induction l; simpl; auto.
+case_eq (f a); auto; intros.
+rewrite H3 in H; auto; try discriminate.
+Qed.
+
+End Filter.
+
+Section Fold.
+
+Variable B:Type.
+Variable eqB:B->B->Prop.
+
+(** Compatibility of a two-argument function with respect to two equalities. *)
+Definition compat_op (f : A -> B -> B) :=
+ forall (x x' : A) (y y' : B), eqA x x' -> eqB y y' -> eqB (f x y) (f x' y').
+
+(** Two-argument functions that allow to reorder their arguments. *)
+Definition transpose (f : A -> B -> B) :=
+ forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
+
+Variable st:Setoid_Theory _ eqB.
+Variable f:A->B->B.
+Variable i:B.
+Variable Comp:compat_op f.
+
+Lemma fold_right_eqlistA :
+ forall s s', eqlistA s s' ->
+ eqB (fold_right f i s) (fold_right f i s').
+Proof.
+induction 1; simpl; auto.
+refl_st.
+Qed.
+
+Variable Ass:transpose f.
+
+Lemma fold_right_commutes : forall s1 s2 x,
+ eqB (fold_right f i (s1++x::s2)) (f x (fold_right f i (s1++s2))).
+Proof.
+induction s1; simpl; auto; intros.
+refl_st.
+trans_st (f a (f x (fold_right f i (s1++s2)))).
+Qed.
+
+Lemma equivlistA_NoDupA_split : forall l l1 l2 x y, eqA x y ->
+ NoDupA (x::l) -> NoDupA (l1++y::l2) ->
+ equivlistA (x::l) (l1++y::l2) -> equivlistA l (l1++l2).
+Proof.
+ intros; intro a.
+ generalize (H2 a).
+ repeat rewrite InA_app_iff.
+ do 2 rewrite InA_cons.
+ inversion_clear H0.
+ assert (SW:=NoDupA_swap H1).
+ inversion_clear SW.
+ rewrite InA_app_iff in H0.
+ split; intros.
+ assert (~eqA a x).
+ contradict H3; apply InA_eqA with a; auto.
+ assert (~eqA a y).
+ contradict H8; eauto.
+ intuition.
+ assert (eqA a x \/ InA a l) by intuition.
+ destruct H8; auto.
+ elim H0.
+ destruct H7; [left|right]; eapply InA_eqA; eauto.
+Qed.
+
+Lemma fold_right_equivlistA :
+ forall s s', NoDupA s -> NoDupA s' ->
+ equivlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
+Proof.
+ simple induction s.
+ destruct s'; simpl.
+ intros; refl_st; auto.
+ unfold equivlistA; intros.
+ destruct (H1 a).
+ assert (X : InA a nil); auto; inversion X.
+ intros x l Hrec s' N N' E; simpl in *.
+ assert (InA x s').
+ rewrite <- (E x); auto.
+ destruct (InA_split H) as (s1,(y,(s2,(H1,H2)))).
+ subst s'.
+ trans_st (f x (fold_right f i (s1++s2))).
+ apply Comp; auto.
+ apply Hrec; auto.
+ inversion_clear N; auto.
+ eapply NoDupA_split; eauto.
+ eapply equivlistA_NoDupA_split; eauto.
+ trans_st (f y (fold_right f i (s1++s2))).
+ apply Comp; auto; refl_st.
+ sym_st; apply fold_right_commutes.
+Qed.
+
+Lemma fold_right_add :
+ forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
+ equivlistA s' (x::s) -> eqB (fold_right f i s') (f x (fold_right f i s)).
+Proof.
+ intros; apply (@fold_right_equivlistA s' (x::s)); auto.
Qed.
Section Remove.
@@ -279,7 +569,7 @@ destruct H0; apply eqA_trans with a; auto.
split.
inversion_clear 1.
split; auto.
-swap n.
+contradict n.
apply eqA_trans with y; auto.
rewrite (IHl x y) in H0; destruct H0; auto.
destruct 1; inversion_clear H; auto.
@@ -298,14 +588,14 @@ rewrite removeA_InA.
intuition.
Qed.
-Lemma removeA_eqlistA : forall l l' x,
- ~InA x l -> eqlistA (x :: l) l' -> eqlistA l (removeA x l').
+Lemma removeA_equivlistA : forall l l' x,
+ ~InA x l -> equivlistA (x :: l) l' -> equivlistA l (removeA x l').
Proof.
-unfold eqlistA; intros.
+unfold equivlistA; intros.
rewrite removeA_InA.
split; intros.
rewrite <- H0; split; auto.
-swap H.
+contradict H.
apply InA_eqA with x0; auto.
rewrite <- (H0 x0) in H1.
destruct H1.
@@ -313,160 +603,17 @@ inversion_clear H1; auto.
elim H2; auto.
Qed.
-Let addlistA x l l' := forall y, InA y l' <-> eqA x y \/ InA y l.
-
-Lemma removeA_add :
- forall s s' x x', NoDupA s -> NoDupA (x' :: s') ->
- ~ eqA x x' -> ~ InA x s ->
- addlistA x s (x' :: s') -> addlistA x (removeA x' s) s'.
-Proof.
-unfold addlistA; intros.
-inversion_clear H0.
-rewrite removeA_InA; auto.
-split; intros.
-destruct (eqA_dec x y); auto; intros.
-right; split; auto.
-destruct (H3 y); clear H3.
-destruct H6; intuition.
-swap H4; apply InA_eqA with y; auto.
-destruct H0.
-assert (InA y (x' :: s')) by (rewrite H3; auto).
-inversion_clear H6; auto.
-elim H1; apply eqA_trans with y; auto.
-destruct H0.
-assert (InA y (x' :: s')) by (rewrite H3; auto).
-inversion_clear H7; auto.
-elim H6; auto.
-Qed.
-
-Section Fold.
-
-Variable B:Set.
-Variable eqB:B->B->Prop.
-
-(** Two-argument functions that allow to reorder its arguments. *)
-Definition transpose (f : A -> B -> B) :=
- forall (x y : A) (z : B), eqB (f x (f y z)) (f y (f x z)).
-
-(** Compatibility of a two-argument function with respect to two equalities. *)
-Definition compat_op (f : A -> B -> B) :=
- forall (x x' : A) (y y' : B), eqA x x' -> eqB y y' -> eqB (f x y) (f x' y').
-
-(** Compatibility of a function upon natural numbers. *)
-Definition compat_nat (f : A -> nat) :=
- forall x x' : A, eqA x x' -> f x = f x'.
-
-Variable st:Setoid_Theory _ eqB.
-Variable f:A->B->B.
-Variable Comp:compat_op f.
-Variable Ass:transpose f.
-Variable i:B.
-
-Lemma removeA_fold_right_0 :
- forall s x, ~InA x s ->
- eqB (fold_right f i s) (fold_right f i (removeA x s)).
-Proof.
- simple induction s; simpl; intros.
- refl_st.
- destruct (eqA_dec x a); simpl; intros.
- absurd_hyp e; auto.
- apply Comp; auto.
-Qed.
-
-Lemma removeA_fold_right :
- forall s x, NoDupA s -> InA x s ->
- eqB (fold_right f i s) (f x (fold_right f i (removeA x s))).
-Proof.
- simple induction s; simpl.
- inversion_clear 2.
- intros.
- inversion_clear H0.
- destruct (eqA_dec x a); simpl; intros.
- apply Comp; auto.
- apply removeA_fold_right_0; auto.
- swap H2; apply InA_eqA with x; auto.
- inversion_clear H1.
- destruct n; auto.
- trans_st (f a (f x (fold_right f i (removeA x l)))).
-Qed.
-
-Lemma fold_right_equal :
- forall s s', NoDupA s -> NoDupA s' ->
- eqlistA s s' -> eqB (fold_right f i s) (fold_right f i s').
-Proof.
- simple induction s.
- destruct s'; simpl.
- intros; refl_st; auto.
- unfold eqlistA; intros.
- destruct (H1 a).
- assert (X : InA a nil); auto; inversion X.
- intros x l Hrec s' N N' E; simpl in *.
- trans_st (f x (fold_right f i (removeA x s'))).
- apply Comp; auto.
- apply Hrec; auto.
- inversion N; auto.
- apply removeA_NoDupA; auto; apply eqA_trans.
- apply removeA_eqlistA; auto.
- inversion_clear N; auto.
- sym_st.
- apply removeA_fold_right; auto.
- unfold eqlistA in E.
- rewrite <- E; auto.
-Qed.
-
-Lemma fold_right_add :
- forall s' s x, NoDupA s -> NoDupA s' -> ~ InA x s ->
- addlistA x s s' -> eqB (fold_right f i s') (f x (fold_right f i s)).
-Proof.
- simple induction s'.
- unfold addlistA; intros.
- destruct (H2 x); clear H2.
- assert (X : InA x nil); auto; inversion X.
- intros x' l' Hrec s x N N' IN EQ; simpl.
- (* if x=x' *)
- destruct (eqA_dec x x').
- apply Comp; auto.
- apply fold_right_equal; auto.
- inversion_clear N'; trivial.
- unfold eqlistA; unfold addlistA in EQ; intros.
- destruct (EQ x0); clear EQ.
- split; intros.
- destruct H; auto.
- inversion_clear N'.
- destruct H2; apply InA_eqA with x0; auto.
- apply eqA_trans with x; auto.
- assert (X:InA x0 (x' :: l')); auto; inversion_clear X; auto.
- destruct IN; apply InA_eqA with x0; auto.
- apply eqA_trans with x'; auto.
- (* else x<>x' *)
- trans_st (f x' (f x (fold_right f i (removeA x' s)))).
- apply Comp; auto.
- apply Hrec; auto.
- apply removeA_NoDupA; auto; apply eqA_trans.
- inversion_clear N'; auto.
- rewrite removeA_InA; intuition.
- apply removeA_add; auto.
- trans_st (f x (f x' (fold_right f i (removeA x' s)))).
- apply Comp; auto.
- sym_st.
- apply removeA_fold_right; auto.
- destruct (EQ x').
- destruct H; auto; destruct n; auto.
-Qed.
+End Remove.
End Fold.
-End Remove.
-
End Type_with_equality.
-Hint Constructors InA.
-Hint Constructors NoDupA.
-Hint Constructors sort.
-Hint Constructors lelistA.
+Hint Unfold compat_bool compat_nat compat_P.
+Hint Constructors InA NoDupA sort lelistA eqlistA.
Section Find.
-Variable A B : Set.
+Variable A B : Type.
Variable eqA : A -> A -> Prop.
Hypothesis eqA_sym : forall x y, eqA x y -> eqA y x.
Hypothesis eqA_trans : forall x y z, eqA x y -> eqA y z -> eqA x z.
diff --git a/theories/Lists/StreamMemo.v b/theories/Lists/StreamMemo.v
new file mode 100644
index 00000000..bdbe0ecc
--- /dev/null
+++ b/theories/Lists/StreamMemo.v
@@ -0,0 +1,205 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Eqdep_dec.
+Require Import Streams.
+
+(** * Memoization *)
+
+(** Successive outputs of a given function [f] are stored in
+ a stream in order to avoid duplicated computations. *)
+
+Section MemoFunction.
+
+Variable A: Type.
+Variable f: nat -> A.
+
+CoFixpoint memo_make (n:nat) : Stream A := Cons (f n) (memo_make (S n)).
+
+Definition memo_list := memo_make 0.
+
+Fixpoint memo_get (n:nat) (l:Stream A) : A :=
+ match n with
+ | O => hd l
+ | S n1 => memo_get n1 (tl l)
+ end.
+
+Theorem memo_get_correct: forall n, memo_get n memo_list = f n.
+Proof.
+assert (F1: forall n m, memo_get n (memo_make m) = f (n + m)).
+ induction n as [| n Hrec]; try (intros m; refine (refl_equal _)).
+ intros m; simpl; rewrite Hrec.
+ rewrite plus_n_Sm; auto.
+intros n; apply trans_equal with (f (n + 0)); try exact (F1 n 0).
+rewrite <- plus_n_O; auto.
+Qed.
+
+(** Building with possible sharing using a iterator [g] :
+ We now suppose in addition that [f n] is in fact the [n]-th
+ iterate of a function [g].
+*)
+
+Variable g: A -> A.
+
+Hypothesis Hg_correct: forall n, f (S n) = g (f n).
+
+CoFixpoint imemo_make (fn:A) : Stream A :=
+ let fn1 := g fn in
+ Cons fn1 (imemo_make fn1).
+
+Definition imemo_list := let f0 := f 0 in
+ Cons f0 (imemo_make f0).
+
+Theorem imemo_get_correct: forall n, memo_get n imemo_list = f n.
+Proof.
+assert (F1: forall n m,
+ memo_get n (imemo_make (f m)) = f (S (n + m))).
+ induction n as [| n Hrec]; try (intros m; exact (sym_equal (Hg_correct m))).
+ simpl; intros m; rewrite <- Hg_correct; rewrite Hrec; rewrite <- plus_n_Sm; auto.
+destruct n as [| n]; try apply refl_equal.
+unfold imemo_list; simpl; rewrite F1.
+rewrite <- plus_n_O; auto.
+Qed.
+
+End MemoFunction.
+
+(** For a dependent function, the previous solution is
+ reused thanks to a temporarly hiding of the dependency
+ in a "container" [memo_val]. *)
+
+Section DependentMemoFunction.
+
+Variable A: nat -> Type.
+Variable f: forall n, A n.
+
+Inductive memo_val: Type :=
+ memo_mval: forall n, A n -> memo_val.
+
+Fixpoint is_eq (n m : nat) {struct n}: {n = m} + {True} :=
+ match n, m return {n = m} + {True} with
+ | 0, 0 =>left True (refl_equal 0)
+ | 0, S m1 => right (0 = S m1) I
+ | S n1, 0 => right (S n1 = 0) I
+ | S n1, S m1 =>
+ match is_eq n1 m1 with
+ | left H => left True (f_equal S H)
+ | right _ => right (S n1 = S m1) I
+ end
+ end.
+
+Definition memo_get_val n (v: memo_val): A n :=
+match v with
+| memo_mval m x =>
+ match is_eq n m with
+ | left H =>
+ match H in (@eq _ _ y) return (A y -> A n) with
+ | refl_equal => fun v1 : A n => v1
+ end
+ | right _ => fun _ : A m => f n
+ end x
+end.
+
+Let mf n := memo_mval n (f n).
+
+Definition dmemo_list := memo_list _ mf.
+
+Definition dmemo_get n l := memo_get_val n (memo_get _ n l).
+
+Theorem dmemo_get_correct: forall n, dmemo_get n dmemo_list = f n.
+Proof.
+intros n; unfold dmemo_get, dmemo_list.
+rewrite (memo_get_correct memo_val mf n); simpl.
+case (is_eq n n); simpl; auto; intros e.
+assert (e = refl_equal n).
+ apply eq_proofs_unicity.
+ induction x as [| x Hx]; destruct y as [| y].
+ left; auto.
+ right; intros HH; discriminate HH.
+ right; intros HH; discriminate HH.
+ case (Hx y).
+ intros HH; left; case HH; auto.
+ intros HH; right; intros HH1; case HH.
+ injection HH1; auto.
+rewrite H; auto.
+Qed.
+
+(** Finally, a version with both dependency and iterator *)
+
+Variable g: forall n, A n -> A (S n).
+
+Hypothesis Hg_correct: forall n, f (S n) = g n (f n).
+
+Let mg v := match v with
+ memo_mval n1 v1 => memo_mval (S n1) (g n1 v1) end.
+
+Definition dimemo_list := imemo_list _ mf mg.
+
+Theorem dimemo_get_correct: forall n, dmemo_get n dimemo_list = f n.
+Proof.
+intros n; unfold dmemo_get, dimemo_list.
+rewrite (imemo_get_correct memo_val mf mg); simpl.
+case (is_eq n n); simpl; auto; intros e.
+assert (e = refl_equal n).
+ apply eq_proofs_unicity.
+ induction x as [| x Hx]; destruct y as [| y].
+ left; auto.
+ right; intros HH; discriminate HH.
+ right; intros HH; discriminate HH.
+ case (Hx y).
+ intros HH; left; case HH; auto.
+ intros HH; right; intros HH1; case HH.
+ injection HH1; auto.
+rewrite H; auto.
+intros n1; unfold mf; rewrite Hg_correct; auto.
+Qed.
+
+End DependentMemoFunction.
+
+(** An example with the memo function on factorial *)
+
+(*
+Require Import ZArith.
+Open Scope Z_scope.
+
+Fixpoint tfact (n: nat) :=
+ match n with
+ | O => 1
+ | S n1 => Z_of_nat n * tfact n1
+ end.
+
+Definition lfact_list :=
+ dimemo_list _ tfact (fun n z => (Z_of_nat (S n) * z)).
+
+Definition lfact n := dmemo_get _ tfact n lfact_list.
+
+Theorem lfact_correct n: lfact n = tfact n.
+Proof.
+intros n; unfold lfact, lfact_list.
+rewrite dimemo_get_correct; auto.
+Qed.
+
+Fixpoint nop p :=
+ match p with
+ | xH => 0
+ | xI p1 => nop p1
+ | xO p1 => nop p1
+ end.
+
+Fixpoint test z :=
+ match z with
+ | Z0 => 0
+ | Zpos p1 => nop p1
+ | Zneg p1 => nop p1
+ end.
+
+Time Eval vm_compute in test (lfact 2000).
+Time Eval vm_compute in test (lfact 2000).
+Time Eval vm_compute in test (lfact 1500).
+Time Eval vm_compute in (lfact 1500).
+*)
+
diff --git a/theories/Lists/Streams.v b/theories/Lists/Streams.v
index 7bc6a09d..49990502 100644
--- a/theories/Lists/Streams.v
+++ b/theories/Lists/Streams.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Streams.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Streams.v 9967 2007-07-11 15:25:03Z roconnor $ i*)
Set Implicit Arguments.
@@ -14,9 +14,9 @@ Set Implicit Arguments.
Section Streams.
-Variable A : Set.
+Variable A : Type.
-CoInductive Stream : Set :=
+CoInductive Stream : Type :=
Cons : A -> Stream -> Stream.
@@ -146,6 +146,15 @@ Inductive Exists ( x: Stream ) : Prop :=
CoInductive ForAll (x: Stream) : Prop :=
HereAndFurther : P x -> ForAll (tl x) -> ForAll x.
+Lemma ForAll_Str_nth_tl : forall m x, ForAll x -> ForAll (Str_nth_tl m x).
+Proof.
+induction m.
+ tauto.
+intros x [_ H].
+simpl.
+apply IHm.
+assumption.
+Qed.
Section Co_Induction_ForAll.
Variable Inv : Stream -> Prop.
@@ -162,15 +171,78 @@ End Stream_Properties.
End Streams.
Section Map.
-Variables A B : Set.
+Variables A B : Type.
Variable f : A -> B.
CoFixpoint map (s:Stream A) : Stream B := Cons (f (hd s)) (map (tl s)).
+
+Lemma Str_nth_tl_map : forall n s, Str_nth_tl n (map s)= map (Str_nth_tl n s).
+Proof.
+induction n.
+reflexivity.
+simpl.
+intros s.
+apply IHn.
+Qed.
+
+Lemma Str_nth_map : forall n s, Str_nth n (map s)= f (Str_nth n s).
+Proof.
+intros n s.
+unfold Str_nth.
+rewrite Str_nth_tl_map.
+reflexivity.
+Qed.
+
+Lemma ForAll_map : forall (P:Stream B -> Prop) (S:Stream A), ForAll (fun s => P
+(map s)) S <-> ForAll P (map S).
+Proof.
+intros P S.
+split; generalize S; clear S; cofix; intros S; constructor;
+destruct H as [H0 H]; firstorder.
+Qed.
+
+Lemma Exists_map : forall (P:Stream B -> Prop) (S:Stream A), Exists (fun s => P
+(map s)) S -> Exists P (map S).
+Proof.
+intros P S H.
+(induction H;[left|right]); firstorder.
+Defined.
+
End Map.
Section Constant_Stream.
-Variable A : Set.
+Variable A : Type.
Variable a : A.
CoFixpoint const : Stream A := Cons a const.
End Constant_Stream.
-Unset Implicit Arguments. \ No newline at end of file
+Section Zip.
+
+Variable A B C : Type.
+Variable f: A -> B -> C.
+
+CoFixpoint zipWith (a:Stream A) (b:Stream B) : Stream C :=
+Cons (f (hd a) (hd b)) (zipWith (tl a) (tl b)).
+
+Lemma Str_nth_tl_zipWith : forall n (a:Stream A) (b:Stream B),
+ Str_nth_tl n (zipWith a b)= zipWith (Str_nth_tl n a) (Str_nth_tl n b).
+Proof.
+induction n.
+reflexivity.
+intros [x xs] [y ys].
+unfold Str_nth in *.
+simpl in *.
+apply IHn.
+Qed.
+
+Lemma Str_nth_zipWith : forall n (a:Stream A) (b:Stream B), Str_nth n (zipWith a
+ b)= f (Str_nth n a) (Str_nth n b).
+Proof.
+intros.
+unfold Str_nth.
+rewrite Str_nth_tl_zipWith.
+reflexivity.
+Qed.
+
+End Zip.
+
+Unset Implicit Arguments.
diff --git a/theories/Logic/ChoiceFacts.v b/theories/Logic/ChoiceFacts.v
index 3b066cfc..3d434b37 100644
--- a/theories/Logic/ChoiceFacts.v
+++ b/theories/Logic/ChoiceFacts.v
@@ -1,4 +1,3 @@
-(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
@@ -7,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ChoiceFacts.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: ChoiceFacts.v 10756 2008-04-04 17:10:45Z herbelin $ i*)
(** Some facts and definitions concerning choice and description in
intuitionistic logic.
@@ -30,7 +29,7 @@ description principles
- OAC_rel = "omniscient" relational form of the (non extensional) axiom of choice
- OAC_fun = "omniscient" functional form of the (non extensional) axiom of choice
- (called AC* in Bell [Bell])
+ (called AC* in Bell [[Bell]])
- OAC!
- ID_iota = intuitionistic definite description
@@ -44,13 +43,15 @@ description principles
(an unconstrained generalisation of the constructive principle of
independence of premises)
- Drinker = drinker's paradox (small form)
- (called Ex in Bell [Bell])
+ (called Ex in Bell [[Bell]])
We let also
-IPL_2^2 = 2nd-order impredicative, 2nd-order functional minimal predicate logic
-IPL_2 = 2nd-order impredicative minimal predicate logic
+IPL_2 = 2nd-order impredicative minimal predicate logic (with ex. quant.)
IPL^2 = 2nd-order functional minimal predicate logic (with ex. quant.)
+IPL_2^2 = 2nd-order impredicative, 2nd-order functional minimal pred. logic (with ex. quant.)
+
+with no prerequisite on the non-emptyness of domains
Table of contents
@@ -58,24 +59,26 @@ Table of contents
2. IPL_2^2 |- AC_rel + AC! = AC_fun
-3. 1. AC_rel + PI -> GAC_rel and PL_2 |- AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel
+3.1. typed IPL_2 + Sigma-types + PI |- AC_rel = GAC_rel and IPL_2 |- AC_rel + IGP -> GAC_rel and IPL_2 |- GAC_rel = OAC_rel
+
+3.2. IPL^2 |- AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker
-4. 2. IPL^2 |- AC_fun + IGP = GAC_fun = OAC_fun = AC_fun + Drinker
+3.3. D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker
-5. Derivability of choice for decidable relations with well-ordered codomain
+4. Derivability of choice for decidable relations with well-ordered codomain
-6. Equivalence of choices on dependent or non dependent functional types
+5. Equivalence of choices on dependent or non dependent functional types
-7. Non contradiction of constructive descriptions wrt functional choices
+6. Non contradiction of constructive descriptions wrt functional choices
-8. Definite description transports classical logic to the computational world
+7. Definite description transports classical logic to the computational world
References:
-[Bell] John L. Bell, Choice principles in intuitionistic set theory,
+[[Bell]] John L. Bell, Choice principles in intuitionistic set theory,
unpublished.
-[Bell93] John L. Bell, Hilbert's Epsilon Operator in Intuitionistic
+[[Bell93]] John L. Bell, Hilbert's Epsilon Operator in Intuitionistic
Type Theories, Mathematical Logic Quarterly, volume 39, 1993.
[Carlstrøm05] Jesper Carlstrøm, Interpreting descriptions in
@@ -84,8 +87,6 @@ intentional type theory, Journal of Symbolic Logic 70(2):488-514, 2005.
Set Implicit Arguments.
-Notation Local "'inhabited' A" := A (at level 10, only parsing).
-
(**********************************************************************)
(** * Definitions *)
@@ -95,9 +96,9 @@ Section ChoiceSchemes.
Variables A B :Type.
-Variables P:A->Prop.
+Variable P:A->Prop.
-Variables R:A->B->Prop.
+Variable R:A->B->Prop.
(** ** Constructive choice and description *)
@@ -183,15 +184,15 @@ Definition OmniscientFunctionalChoice_on :=
(** D_epsilon *)
-Definition ClassicalIndefiniteDescription :=
+Definition EpsilonStatement_on :=
forall P:A->Prop,
- A -> { x:A | (exists x, P x) -> P x }.
+ inhabited A -> { x:A | (exists x, P x) -> P x }.
(** D_iota *)
-Definition ClassicalDefiniteDescription :=
+Definition IotaStatement_on :=
forall P:A->Prop,
- A -> { x:A | (exists! x, P x) -> P x }.
+ inhabited A -> { x:A | (exists! x, P x) -> P x }.
End ChoiceSchemes.
@@ -223,6 +224,11 @@ Notation ConstructiveDefiniteDescription :=
Notation ConstructiveIndefiniteDescription :=
(forall A, ConstructiveIndefiniteDescription_on A).
+Notation IotaStatement :=
+ (forall A, IotaStatement_on A).
+Notation EpsilonStatement :=
+ (forall A, EpsilonStatement_on A).
+
(** Subclassical schemes *)
Definition ProofIrrelevance :=
@@ -238,16 +244,17 @@ Definition SmallDrinker'sParadox :=
exists x, (exists x, P x) -> P x.
(**********************************************************************)
-(** * AC_rel + PDP = AC_fun
+(** * AC_rel + AC! = AC_fun
We show that the functional formulation of the axiom of Choice
(usual formulation in type theory) is equivalent to its relational
- formulation (only formulation of set theory) + the axiom of
- (parametric) definite description (aka axiom of unique choice) *)
+ formulation (only formulation of set theory) + functional relation
+ reification (aka axiom of unique choice, or, principle of (parametric)
+ definite descriptions) *)
(** This shows that the axiom of choice can be assumed (under its
relational formulation) without known inconsistency with classical logic,
- though definite description conflicts with classical logic *)
+ though functional relation reification conflicts with classical logic *)
Lemma description_rel_choice_imp_funct_choice :
forall A B : Type,
@@ -289,7 +296,7 @@ Proof.
exists f; exact H0.
Qed.
-Theorem FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
+Corollary FunChoice_Equiv_RelChoice_and_ParamDefinDescr :
forall A B, FunctionalChoice_on A B <->
RelationalChoice_on A B /\ FunctionalRelReification_on A B.
Proof.
@@ -301,11 +308,13 @@ Proof.
Qed.
(**********************************************************************)
-(** * Connection between the guarded, non guarded and descriptive choices and *)
+(** * Connection between the guarded, non guarded and omniscient choices *)
-(** We show that the guarded relational formulation of the axiom of Choice
- comes from the non guarded formulation in presence either of the
- independance of premises or proof-irrelevance *)
+(** We show that the guarded formulations of the axiom of choice
+ are equivalent to their "omniscient" variant and comes from the non guarded
+ formulation in presence either of the independance of general premises
+ or subset types (themselves derivable from subtypes thanks to proof-
+ irrelevance) *)
(**********************************************************************)
(** ** AC_rel + PI -> GAC_rel and AC_rel + IGP -> GAC_rel and GAC_rel = OAC_rel *)
@@ -352,9 +361,17 @@ Proof.
exists R'; firstorder.
Qed.
+Lemma subset_types_imp_guarded_rel_choice_iff_rel_choice :
+ ProofIrrelevance -> (GuardedRelationalChoice <-> RelationalChoice).
+Proof.
+ auto decomp using
+ guarded_rel_choice_imp_rel_choice,
+ rel_choice_and_proof_irrel_imp_guarded_rel_choice.
+Qed.
+
(** OAC_rel = GAC_rel *)
-Lemma guarded_iff_omniscient_rel_choice :
+Corollary guarded_iff_omniscient_rel_choice :
GuardedRelationalChoice <-> OmniscientRelationalChoice.
Proof.
split.
@@ -378,6 +395,7 @@ Proof.
exists (f tt); auto.
Qed.
+
Lemma guarded_fun_choice_imp_fun_choice :
GuardedFunctionalChoice -> FunctionalChoiceOnInhabitedSet.
Proof.
@@ -396,9 +414,19 @@ Proof.
intro x; apply IndPrem; eauto.
Qed.
+Corollary fun_choice_and_indep_general_prem_iff_guarded_fun_choice :
+ FunctionalChoiceOnInhabitedSet /\ IndependenceOfGeneralPremises
+ <-> GuardedFunctionalChoice.
+Proof.
+ auto decomp using
+ guarded_fun_choice_imp_indep_of_general_premises,
+ guarded_fun_choice_imp_fun_choice,
+ fun_choice_and_indep_general_prem_imp_guarded_fun_choice.
+Qed.
+
(** AC_fun + Drinker = OAC_fun *)
-(** This was already observed by Bell [Bell] *)
+(** This was already observed by Bell [[Bell]] *)
Lemma omniscient_fun_choice_imp_small_drinker :
OmniscientFunctionalChoice -> SmallDrinker'sParadox.
@@ -427,12 +455,22 @@ Proof.
exists f; assumption.
Qed.
+Corollary fun_choice_and_small_drinker_iff_omniscient_fun_choice :
+ FunctionalChoiceOnInhabitedSet /\ SmallDrinker'sParadox
+ <-> OmniscientFunctionalChoice.
+Proof.
+ auto decomp using
+ omniscient_fun_choice_imp_small_drinker,
+ omniscient_fun_choice_imp_fun_choice,
+ fun_choice_and_small_drinker_imp_omniscient_fun_choice.
+Qed.
+
(** OAC_fun = GAC_fun *)
(** This is derivable from the intuitionistic equivalence between IGP and Drinker
but we give a direct proof *)
-Lemma guarded_iff_omniscient_fun_choice :
+Theorem guarded_iff_omniscient_fun_choice :
GuardedFunctionalChoice <-> OmniscientFunctionalChoice.
Proof.
split.
@@ -444,6 +482,57 @@ Proof.
Qed.
(**********************************************************************)
+(** ** D_iota -> ID_iota and D_epsilon <-> ID_epsilon + Drinker *)
+
+(** D_iota -> ID_iota *)
+
+Lemma iota_imp_constructive_definite_description :
+ IotaStatement -> ConstructiveDefiniteDescription.
+Proof.
+ intros D_iota A P H.
+ destruct D_iota with (P:=P) as (x,H1).
+ destruct H; red in H; auto.
+ exists x; apply H1; assumption.
+Qed.
+
+(** ID_epsilon + Drinker <-> D_epsilon *)
+
+Lemma epsilon_imp_constructive_indefinite_description:
+ EpsilonStatement -> ConstructiveIndefiniteDescription.
+Proof.
+ intros D_epsilon A P H.
+ destruct D_epsilon with (P:=P) as (x,H1).
+ destruct H; auto.
+ exists x; apply H1; assumption.
+Qed.
+
+Lemma constructive_indefinite_description_and_small_drinker_imp_epsilon :
+ SmallDrinker'sParadox -> ConstructiveIndefiniteDescription ->
+ EpsilonStatement.
+Proof.
+ intros Drinkers D_epsilon A P Inh;
+ apply D_epsilon; apply Drinkers; assumption.
+Qed.
+
+Lemma epsilon_imp_small_drinker :
+ EpsilonStatement -> SmallDrinker'sParadox.
+Proof.
+ intros D_epsilon A P Inh; edestruct D_epsilon; eauto.
+Qed.
+
+Theorem constructive_indefinite_description_and_small_drinker_iff_epsilon :
+ (SmallDrinker'sParadox * ConstructiveIndefiniteDescription ->
+ EpsilonStatement) *
+ (EpsilonStatement ->
+ SmallDrinker'sParadox * ConstructiveIndefiniteDescription).
+Proof.
+ auto decomp using
+ epsilon_imp_constructive_indefinite_description,
+ constructive_indefinite_description_and_small_drinker_imp_epsilon,
+ epsilon_imp_small_drinker.
+Qed.
+
+(**********************************************************************)
(** * Derivability of choice for decidable relations with well-ordered codomain *)
(** Countable codomains, such as [nat], can be equipped with a
@@ -457,45 +546,7 @@ Qed.
*)
Require Import Wf_nat.
-Require Import Compare_dec.
Require Import Decidable.
-Require Import Arith.
-
-Definition has_unique_least_element (A:Type) (R:A->A->Prop) (P:A->Prop) :=
- exists! x, P x /\ forall x', P x' -> R x x'.
-
-Lemma dec_inh_nat_subset_has_unique_least_element :
- forall P:nat->Prop, (forall n, P n \/ ~ P n) ->
- (exists n, P n) -> has_unique_least_element le P.
-Proof.
- intros P Pdec (n0,HPn0).
- assert
- (forall n, (exists n', n'<n /\ P n' /\ forall n'', P n'' -> n'<=n'')
- \/(forall n', P n' -> n<=n')).
- induction n.
- right.
- intros n' Hn'.
- apply le_O_n.
- destruct IHn.
- left; destruct H as (n', (Hlt', HPn')).
- exists n'; split.
- apply lt_S; assumption.
- assumption.
- destruct (Pdec n).
- left; exists n; split.
- apply lt_n_Sn.
- split; assumption.
- right.
- intros n' Hltn'.
- destruct (le_lt_eq_dec n n') as [Hltn|Heqn].
- apply H; assumption.
- assumption.
- destruct H0.
- rewrite Heqn; assumption.
- destruct (H n0) as [(n,(Hltn,(Hmin,Huniqn)))|]; [exists n | exists n0];
- repeat split;
- assumption || intros n' (HPn',Hminn'); apply le_antisym; auto.
-Qed.
Definition FunctionalChoice_on_rel (A B:Type) (R:A->B->Prop) :=
(forall x:A, exists y : B, R x y) ->
@@ -614,16 +665,24 @@ Proof.
destruct Heq using eq_indd; trivial.
Qed.
+Corollary dep_iff_non_dep_functional_rel_reification :
+ FunctionalRelReification <-> DependentFunctionalRelReification.
+Proof.
+ auto decomp using
+ non_dep_dep_functional_rel_reification,
+ dep_non_dep_functional_rel_reification.
+Qed.
+
(**********************************************************************)
(** * Non contradiction of constructive descriptions wrt functional axioms of choice *)
(** ** Non contradiction of indefinite description *)
-Lemma relative_non_contradiction_of_indefinite_desc :
- (ConstructiveIndefiniteDescription -> False)
- -> (FunctionalChoice -> False).
+Lemma relative_non_contradiction_of_indefinite_descr :
+ forall C:Prop, (ConstructiveIndefiniteDescription -> C)
+ -> (FunctionalChoice -> C).
Proof.
- intros H AC_fun.
+ intros C H AC_fun.
assert (AC_depfun := non_dep_dep_functional_choice AC_fun).
pose (A0 := { A:Type & { P:A->Prop & exists x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
@@ -632,11 +691,8 @@ Proof.
destruct (AC_depfun A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
- exists (f (existT (fun _ => sigT _) A
- (existT (fun P => exists x, P x) P H'))).
- pose (Hf' :=
- Hf (existT (fun _ => sigT _) A
- (existT (fun P => exists x, P x) P H'))).
+ exists (f (existT _ A (existT _ P H'))).
+ pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
@@ -652,10 +708,10 @@ Qed.
(** ** Non contradiction of definite description *)
Lemma relative_non_contradiction_of_definite_descr :
- (ConstructiveDefiniteDescription -> False)
- -> (FunctionalRelReification -> False).
+ forall C:Prop, (ConstructiveDefiniteDescription -> C)
+ -> (FunctionalRelReification -> C).
Proof.
- intros H FunReify.
+ intros C H FunReify.
assert (DepFunReify := non_dep_dep_functional_rel_reification FunReify).
pose (A0 := { A:Type & { P:A->Prop & exists! x, P x }}).
pose (B0 := fun x:A0 => projT1 x).
@@ -664,11 +720,8 @@ Proof.
destruct (DepFunReify A0 B0 R0 H0) as (f, Hf).
apply H.
intros A P H'.
- exists (f (existT (fun _ => sigT _) A
- (existT (fun P => exists! x, P x) P H'))).
- pose (Hf' :=
- Hf (existT (fun _ => sigT _) A
- (existT (fun P => exists! x, P x) P H'))).
+ exists (f (existT _ A (existT _ P H'))).
+ pose (Hf' := Hf (existT _ A (existT _ P H'))).
assumption.
Qed.
@@ -681,20 +734,37 @@ Proof.
apply (proj2_sig (DefDescr B (R x) (H x))).
Qed.
+(** Remark, the following corollaries morally hold:
+
+Definition In_propositional_context (A:Type) := forall C:Prop, (A -> C) -> C.
+
+Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
+ In_propositional_context ConstructiveIndefiniteDescription
+ <-> FunctionalChoice.
+
+Corollary constructive_definite_descr_in_prop_context_iff_fun_reification :
+ In_propositional_context ConstructiveDefiniteDescription
+ <-> FunctionalRelReification.
+
+but expecting [FunctionalChoice] (resp. [FunctionalRelReification]) to
+be applied on the same Type universes on both sides of the first
+(resp. second) equivalence breaks the stratification of universes.
+*)
+
(**********************************************************************)
(** * Excluded-middle + definite description => computational excluded-middle *)
-(** The idea for the following proof comes from [ChicliPottierSimpson02] *)
+(** The idea for the following proof comes from [[ChicliPottierSimpson02]] *)
(** Classical logic and axiom of unique choice (i.e. functional
- relation reification), as shown in [ChicliPottierSimpson02],
+ relation reification), as shown in [[ChicliPottierSimpson02]],
implies the double-negation of excluded-middle in [Set] (which is
incompatible with the impredicativity of [Set]).
We adapt the proof to show that constructive definite description
transports excluded-middle from [Prop] to [Set].
- [ChicliPottierSimpson02] Laurent Chicli, Loïc Pottier, Carlos
+ [[ChicliPottierSimpson02]] Laurent Chicli, Loïc Pottier, Carlos
Simpson, Mathematical Quotients and Quotient Types in Coq,
Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646,
Springer Verlag. *)
@@ -717,3 +787,13 @@ Proof.
left; trivial.
right; trivial.
Qed.
+
+Corollary fun_reification_descr_computational_excluded_middle_in_prop_context :
+ FunctionalRelReification ->
+ (forall P:Prop, P \/ ~ P) ->
+ forall C:Prop, ((forall P:Prop, {P} + {~ P}) -> C) -> C.
+Proof.
+ intros FunReify EM C; auto decomp using
+ constructive_definite_descr_excluded_middle,
+ (relative_non_contradiction_of_definite_descr (C:=C)).
+Qed.
diff --git a/theories/Logic/ClassicalChoice.v b/theories/Logic/ClassicalChoice.v
index bb8186ae..f9b59a6a 100644
--- a/theories/Logic/ClassicalChoice.v
+++ b/theories/Logic/ClassicalChoice.v
@@ -6,11 +6,17 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalChoice.v 8892 2006-06-04 17:59:53Z herbelin $ i*)
+(*i $Id: ClassicalChoice.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
-(** This file provides classical logic, and functional choice *)
+(** This file provides classical logic and functional choice; this
+ especially provides both indefinite descriptions and choice functions
+ but this is weaker than providing epsilon operator and classical logic
+ as the indefinite descriptions provided by the axiom of choice can
+ be used only in a propositional context (especially, they cannot
+ be used to build choice functions outside the scope of a theorem
+ proof) *)
-(** This file extends ClassicalUniqueChoice.v with the axiom of choice.
+(** This file extends ClassicalUniqueChoice.v with full choice.
As ClassicalUniqueChoice.v, it implies the double-negation of
excluded-middle in [Set] and leads to a classical world populated
with non computable functions. Especially it conflicts with the
diff --git a/theories/Logic/ClassicalDescription.v b/theories/Logic/ClassicalDescription.v
index 1f1c34bf..3737abf6 100644
--- a/theories/Logic/ClassicalDescription.v
+++ b/theories/Logic/ClassicalDescription.v
@@ -6,14 +6,15 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalDescription.v 9514 2007-01-22 14:58:50Z herbelin $ i*)
+(*i $Id: ClassicalDescription.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
-(** This file provides classical logic and definite description *)
+(** This file provides classical logic and definite description, which is
+ equivalent to providing classical logic and Church's iota operator *)
-(** Classical definite description operator (i.e. iota) implies
- excluded-middle in [Set] and leads to a classical world populated
- with non computable functions. It conflicts with the
- impredicativity of [Set] *)
+(** Classical logic and definite descriptions implies excluded-middle
+ in [Set] and leads to a classical world populated with non
+ computable functions. It conflicts with the impredicativity of
+ [Set] *)
Set Implicit Arguments.
diff --git a/theories/Logic/ClassicalEpsilon.v b/theories/Logic/ClassicalEpsilon.v
index 6d0a9c77..2a4de511 100644
--- a/theories/Logic/ClassicalEpsilon.v
+++ b/theories/Logic/ClassicalEpsilon.v
@@ -6,12 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalEpsilon.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: ClassicalEpsilon.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
-(** This file provides classical logic and indefinite description
- (Hilbert's epsilon operator) *)
+(** This file provides classical logic and indefinite description under
+ the form of Hilbert's epsilon operator *)
-(** Classical epsilon's operator (i.e. indefinite description) implies
+(** Hilbert's epsilon operator and classical logic implies
excluded-middle in [Set] and leads to a classical world populated
with non computable functions. It conflicts with the
impredicativity of [Set] *)
diff --git a/theories/Logic/ClassicalFacts.v b/theories/Logic/ClassicalFacts.v
index dd911db6..734de52d 100644
--- a/theories/Logic/ClassicalFacts.v
+++ b/theories/Logic/ClassicalFacts.v
@@ -7,7 +7,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalFacts.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: ClassicalFacts.v 10156 2007-09-30 19:02:14Z herbelin $ i*)
(** Some facts and definitions about classical logic
@@ -31,8 +31,8 @@ Table of contents:
3.1. Weak excluded middle
-3.2. Gödel-Dummet axiom and right distributivity of implication over
- disjunction
+3.2. Gödel-Dummett axiom and right distributivity of implication over
+ disjunction
3 3. Independence of general premises and drinker's paradox
@@ -91,6 +91,17 @@ Proof.
right; apply (Ext A False); split; [ exact H | apply False_ind ].
Qed.
+(** A weakest form of propositional extensionality: extensionality for
+ provable propositions only *)
+
+Definition provable_prop_extensionality := forall A:Prop, A -> A = True.
+
+Lemma provable_prop_ext :
+ prop_extensionality -> provable_prop_extensionality.
+Proof.
+ intros Ext A Ha; apply Ext; split; trivial.
+Qed.
+
(************************************************************************)
(** * Classical logic and proof-irrelevance *)
@@ -105,6 +116,7 @@ Qed.
(just take the identity), which
implies the existence of a fixpoint operator in [A]
(e.g. take the Y combinator of lambda-calculus)
+
*)
Definition inhabited (A:Prop) := A.
@@ -143,6 +155,10 @@ Proof.
reflexivity.
Qed.
+(** Remark: [prop_extensionality] can be replaced in lemma [ext_prop_fixpoint]
+ by the weakest property [provable_prop_extensionality].
+*)
+
(************************************************************************)
(** ** CC |- prop_ext /\ dep elim on bool -> proof-irrelevance *)
@@ -230,6 +246,11 @@ Section Proof_irrelevance_Prop_Ext_CC.
End Proof_irrelevance_Prop_Ext_CC.
+(** Remark: [prop_extensionality] can be replaced in lemma
+ [ext_prop_dep_proof_irrel_gen] by the weakest property
+ [provable_prop_extensionality].
+*)
+
(************************************************************************)
(** ** CIC |- prop. ext. -> proof-irrelevance *)
@@ -396,7 +417,7 @@ End Proof_irrelevance_CCI.
(** We show the following increasing in the strength of axioms:
- weak excluded-middle
- - right distributivity of implication over disjunction and Gödel-Dummet axiom
+ - right distributivity of implication over disjunction and Gödel-Dummett axiom
- independence of general premises and drinker's paradox
- excluded-middle
*)
@@ -533,7 +554,11 @@ Proof.
Qed.
(** Independence of general premises is weaker than (generalized)
- excluded middle *)
+ excluded middle
+
+Remark: generalized excluded middle is preferred here to avoid relying on
+the "ex falso quodlibet" property (i.e. [False -> forall A, A])
+*)
Definition generalized_excluded_middle :=
forall A B:Prop, A \/ (A -> B).
diff --git a/theories/Logic/ClassicalUniqueChoice.v b/theories/Logic/ClassicalUniqueChoice.v
index 28d32fcc..bb846aa6 100644
--- a/theories/Logic/ClassicalUniqueChoice.v
+++ b/theories/Logic/ClassicalUniqueChoice.v
@@ -6,9 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ClassicalUniqueChoice.v 9026 2006-07-06 15:16:20Z herbelin $ i*)
+(*i $Id: ClassicalUniqueChoice.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
-(** This file provides classical logic and unique choice *)
+(** This file provides classical logic and unique choice; this is
+ weaker than providing iota operator and classical logic as the
+ definite descriptions provided by the axiom of unique choice can
+ be used only in a propositional context (especially, they cannot
+ be used to build functions outside the scope of a theorem proof) *)
(** Classical logic and unique choice, as shown in
[ChicliPottierSimpson02], implies the double-negation of
diff --git a/theories/Logic/ConstructiveEpsilon.v b/theories/Logic/ConstructiveEpsilon.v
index 61e377ea..f1503d24 100644
--- a/theories/Logic/ConstructiveEpsilon.v
+++ b/theories/Logic/ConstructiveEpsilon.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id:$ i*)
+(*i $Id: ConstructiveEpsilon.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
(** This module proves the constructive description schema, which
infers the sigma-existence (i.e., [Set]-existence) of a witness to a
@@ -20,17 +20,19 @@ show [{n : nat | P n}]. However, one can perform a recursion on an
inductive predicate in sort [Prop] so that the returning type of the
recursion is in [Set]. This trick is described in Coq'Art book, Sect.
14.2.3 and 15.4. In particular, this trick is used in the proof of
-[Acc_iter] in the module Coq.Init.Wf. There, recursion is done on an
+[Fix_F] in the module Coq.Init.Wf. There, recursion is done on an
inductive predicate [Acc] and the resulting type is in [Type].
The predicate [Acc] delineates elements that are accessible via a
given relation [R]. An element is accessible if there are no infinite
[R]-descending chains starting from it.
-To use [Acc_iter], we define a relation R and prove that if [exists n,
+To use [Fix_F], we define a relation R and prove that if [exists n,
P n] then 0 is accessible with respect to R. Then, by induction on the
definition of [Acc R 0], we show [{n : nat | P n}]. *)
+(** Based on ideas from Benjamin Werner and Jean-François Monin *)
+
(** Contributed by Yevgeniy Makarov *)
Require Import Arith.
@@ -49,7 +51,8 @@ numbers we try. Namely, [y] is [R]-less then [x] if we try [y] after
infinite [R]-descending chain from 0 is equivalent to the termination
of our searching algorithm. *)
-Let R (x y : nat) := (x = S y /\ ~ P y).
+Let R (x y : nat) : Prop := x = S y /\ ~ P y.
+
Notation Local "'acc' x" := (Acc R x) (at level 10).
Lemma P_implies_acc : forall x : nat, P x -> acc x.
@@ -78,7 +81,7 @@ Defined.
Theorem acc_implies_P_eventually : acc 0 -> {n : nat | P n}.
Proof.
-intros Acc_0. pattern 0. apply Acc_iter with (R := R); [| assumption].
+intros Acc_0. pattern 0. apply Fix_F with (R := R); [| assumption].
clear Acc_0; intros x IH.
destruct (P_decidable x) as [Px | not_Px].
exists x; simpl; assumption.
@@ -102,7 +105,7 @@ Section ConstructiveEpsilon.
there are functions [f : A -> nat] and [g : nat -> A] such that [g] is
a left inverse of [f]. *)
-Variable A : Type.
+Variable A : Set.
Variable f : A -> nat.
Variable g : nat -> A.
@@ -132,24 +135,11 @@ Proof.
intros; apply constructive_indefinite_description; firstorder.
Defined.
-Definition epsilon (E : exists x : A, P x) : A
+Definition constructive_epsilon (E : exists x : A, P x) : A
:= proj1_sig (constructive_indefinite_description E).
-Definition epsilon_spec (E : (exists x, P x)) : P (epsilon E)
+Definition constructive_epsilon_spec (E : (exists x, P x)) : P (constructive_epsilon E)
:= proj2_sig (constructive_indefinite_description E).
End ConstructiveEpsilon.
-Theorem choice :
- forall (A B : Type) (f : B -> nat) (g : nat -> B),
- (forall x : B, g (f x) = x) ->
- forall (R : A -> B -> Prop),
- (forall (x : A) (y : B), {R x y} + {~ R x y}) ->
- (forall x : A, exists y : B, R x y) ->
- (exists f : A -> B, forall x : A, R x (f x)).
-Proof.
-intros A B f g gof_eq_id R R_dec H.
-exists (fun x : A => epsilon B f g gof_eq_id (R x) (R_dec x) (H x)).
-intro x.
-apply (epsilon_spec B f g gof_eq_id (R x) (R_dec x) (H x)).
-Qed.
diff --git a/theories/Logic/Decidable.v b/theories/Logic/Decidable.v
index 8317f6bb..a7c098e8 100644
--- a/theories/Logic/Decidable.v
+++ b/theories/Logic/Decidable.v
@@ -5,56 +5,191 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Decidable.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Decidable.v 10500 2008-02-02 15:51:00Z letouzey $ i*)
(** Properties of decidable propositions *)
Definition decidable (P:Prop) := P \/ ~ P.
Theorem dec_not_not : forall P:Prop, decidable P -> (~ P -> False) -> P.
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
Qed.
Theorem dec_True : decidable True.
-unfold decidable in |- *; auto.
+Proof.
+unfold decidable; auto.
Qed.
Theorem dec_False : decidable False.
-unfold decidable, not in |- *; auto.
+Proof.
+unfold decidable, not; auto.
Qed.
Theorem dec_or :
forall A B:Prop, decidable A -> decidable B -> decidable (A \/ B).
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
Qed.
Theorem dec_and :
forall A B:Prop, decidable A -> decidable B -> decidable (A /\ B).
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
Qed.
Theorem dec_not : forall A:Prop, decidable A -> decidable (~ A).
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
Qed.
Theorem dec_imp :
forall A B:Prop, decidable A -> decidable B -> decidable (A -> B).
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
+Qed.
+
+Theorem dec_iff :
+ forall A B:Prop, decidable A -> decidable B -> decidable (A<->B).
+Proof.
+unfold decidable; tauto.
Qed.
Theorem not_not : forall P:Prop, decidable P -> ~ ~ P -> P.
-unfold decidable in |- *; tauto. Qed.
+Proof.
+unfold decidable; tauto.
+Qed.
Theorem not_or : forall A B:Prop, ~ (A \/ B) -> ~ A /\ ~ B.
-tauto. Qed.
+Proof.
+tauto.
+Qed.
Theorem not_and : forall A B:Prop, decidable A -> ~ (A /\ B) -> ~ A \/ ~ B.
-unfold decidable in |- *; tauto. Qed.
+Proof.
+unfold decidable; tauto.
+Qed.
Theorem not_imp : forall A B:Prop, decidable A -> ~ (A -> B) -> A /\ ~ B.
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
Qed.
Theorem imp_simp : forall A B:Prop, decidable A -> (A -> B) -> ~ A \/ B.
-unfold decidable in |- *; tauto.
+Proof.
+unfold decidable; tauto.
+Qed.
+
+(** Results formulated with iff, used in FSetDecide.
+ Negation are expanded since it is unclear whether setoid rewrite
+ will always perform conversion. *)
+
+(** We begin with lemmas that, when read from left to right,
+ can be understood as ways to eliminate uses of [not]. *)
+
+Theorem not_true_iff : (True -> False) <-> False.
+Proof.
+tauto.
+Qed.
+
+Theorem not_false_iff : (False -> False) <-> True.
+Proof.
+tauto.
+Qed.
+
+Theorem not_not_iff : forall A:Prop, decidable A ->
+ (((A -> False) -> False) <-> A).
+Proof.
+unfold decidable; tauto.
+Qed.
+
+Theorem contrapositive : forall A B:Prop, decidable A ->
+ (((A -> False) -> (B -> False)) <-> (B -> A)).
+Proof.
+unfold decidable; tauto.
+Qed.
+
+Lemma or_not_l_iff_1 : forall A B: Prop, decidable A ->
+ ((A -> False) \/ B <-> (A -> B)).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+Lemma or_not_l_iff_2 : forall A B: Prop, decidable B ->
+ ((A -> False) \/ B <-> (A -> B)).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+Lemma or_not_r_iff_1 : forall A B: Prop, decidable A ->
+ (A \/ (B -> False) <-> (B -> A)).
+Proof.
+unfold decidable. tauto.
Qed.
+
+Lemma or_not_r_iff_2 : forall A B: Prop, decidable B ->
+ (A \/ (B -> False) <-> (B -> A)).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+Lemma imp_not_l : forall A B: Prop, decidable A ->
+ (((A -> False) -> B) <-> (A \/ B)).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+
+(** Moving Negations Around:
+ We have four lemmas that, when read from left to right,
+ describe how to push negations toward the leaves of a
+ proposition and, when read from right to left, describe
+ how to pull negations toward the top of a proposition. *)
+
+Theorem not_or_iff : forall A B:Prop,
+ (A \/ B -> False) <-> (A -> False) /\ (B -> False).
+Proof.
+tauto.
+Qed.
+
+Lemma not_and_iff : forall A B:Prop,
+ (A /\ B -> False) <-> (A -> B -> False).
+Proof.
+tauto.
+Qed.
+
+Lemma not_imp_iff : forall A B:Prop, decidable A ->
+ (((A -> B) -> False) <-> A /\ (B -> False)).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+Lemma not_imp_rev_iff : forall A B : Prop, decidable A ->
+ (((A -> B) -> False) <-> (B -> False) /\ A).
+Proof.
+unfold decidable. tauto.
+Qed.
+
+
+
+(** With the following hint database, we can leverage [auto] to check
+ decidability of propositions. *)
+
+Hint Resolve dec_True dec_False dec_or dec_and dec_imp dec_not dec_iff
+ : decidable_prop.
+
+(** [solve_decidable using lib] will solve goals about the
+ decidability of a proposition, assisted by an auxiliary
+ database of lemmas. The database is intended to contain
+ lemmas stating the decidability of base propositions,
+ (e.g., the decidability of equality on a particular
+ inductive type). *)
+
+Tactic Notation "solve_decidable" "using" ident(db) :=
+ match goal with
+ | |- decidable _ =>
+ solve [ auto 100 with decidable_prop db ]
+ end.
+
+Tactic Notation "solve_decidable" :=
+ solve_decidable using core.
diff --git a/theories/Logic/DecidableType.v b/theories/Logic/DecidableType.v
index a38b111f..a65e2c52 100644
--- a/theories/Logic/DecidableType.v
+++ b/theories/Logic/DecidableType.v
@@ -6,19 +6,36 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: DecidableType.v 8933 2006-06-09 14:08:38Z herbelin $ *)
+(* $Id: DecidableType.v 10616 2008-03-04 17:33:35Z letouzey $ *)
Require Export SetoidList.
Set Implicit Arguments.
Unset Strict Implicit.
+(** * Types with Equalities, and nothing more (for subtyping purpose) *)
+
+Module Type EqualityType.
+
+ Parameter Inline t : Type.
+
+ Parameter Inline eq : t -> t -> Prop.
+
+ Axiom eq_refl : forall x : t, eq x x.
+ Axiom eq_sym : forall x y : t, eq x y -> eq y x.
+ Axiom eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
+
+ Hint Immediate eq_sym.
+ Hint Resolve eq_refl eq_trans.
+
+End EqualityType.
+
(** * Types with decidable Equalities (but no ordering) *)
Module Type DecidableType.
- Parameter t : Set.
+ Parameter Inline t : Type.
- Parameter eq : t -> t -> Prop.
+ Parameter Inline eq : t -> t -> Prop.
Axiom eq_refl : forall x : t, eq x x.
Axiom eq_sym : forall x y : t, eq x y -> eq y x.
@@ -37,7 +54,7 @@ Module KeyDecidableType(D:DecidableType).
Import D.
Section Elt.
- Variable elt : Set.
+ Variable elt : Type.
Notation key:=t.
Definition eqk (p p':key*elt) := eq (fst p) (fst p').
diff --git a/theories/Logic/DecidableTypeEx.v b/theories/Logic/DecidableTypeEx.v
index a4f99de2..9c928598 100644
--- a/theories/Logic/DecidableTypeEx.v
+++ b/theories/Logic/DecidableTypeEx.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: DecidableTypeEx.v 8933 2006-06-09 14:08:38Z herbelin $ *)
+(* $Id: DecidableTypeEx.v 10739 2008-04-01 14:45:20Z herbelin $ *)
Require Import DecidableType OrderedType OrderedTypeEx.
Set Implicit Arguments.
@@ -18,7 +18,7 @@ Unset Strict Implicit.
the equality is the usual one of Coq. *)
Module Type UsualDecidableType.
- Parameter t : Set.
+ Parameter Inline t : Type.
Definition eq := @eq t.
Definition eq_refl := @refl_equal t.
Definition eq_sym := @sym_eq t.
@@ -30,6 +30,22 @@ End UsualDecidableType.
Module UDT_to_DT (U:UsualDecidableType) <: DecidableType := U.
+(** an shortcut for easily building a UsualDecidableType *)
+
+Module Type MiniDecidableType.
+ Parameter Inline t : Type.
+ Parameter eq_dec : forall x y:t, { x=y }+{ x<>y }.
+End MiniDecidableType.
+
+Module Make_UDT (M:MiniDecidableType) <: UsualDecidableType.
+ Definition t:=M.t.
+ Definition eq := @eq t.
+ Definition eq_refl := @refl_equal t.
+ Definition eq_sym := @sym_eq t.
+ Definition eq_trans := @trans_eq t.
+ Definition eq_dec := M.eq_dec.
+End Make_UDT.
+
(** An OrderedType can be seen as a DecidableType *)
Module OT_as_DT (O:OrderedType) <: DecidableType.
@@ -48,3 +64,54 @@ Module Nat_as_DT <: UsualDecidableType := OT_as_DT (Nat_as_OT).
Module Positive_as_DT <: UsualDecidableType := OT_as_DT (Positive_as_OT).
Module N_as_DT <: UsualDecidableType := OT_as_DT (N_as_OT).
Module Z_as_DT <: UsualDecidableType := OT_as_DT (Z_as_OT).
+
+(** From two decidable types, we can build a new DecidableType
+ over their cartesian product. *)
+
+Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.
+
+ Definition t := prod D1.t D2.t.
+
+ Definition eq x y := D1.eq (fst x) (fst y) /\ D2.eq (snd x) (snd y).
+
+ Lemma eq_refl : forall x : t, eq x x.
+ Proof.
+ intros (x1,x2); red; simpl; auto.
+ Qed.
+
+ Lemma eq_sym : forall x y : t, eq x y -> eq y x.
+ Proof.
+ intros (x1,x2) (y1,y2); unfold eq; simpl; intuition.
+ Qed.
+
+ Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
+ Proof.
+ intros (x1,x2) (y1,y2) (z1,z2); unfold eq; simpl; intuition eauto.
+ Qed.
+
+ Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
+ Proof.
+ intros (x1,x2) (y1,y2); unfold eq; simpl.
+ destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2); intuition.
+ Defined.
+
+End PairDecidableType.
+
+(** Similarly for pairs of UsualDecidableType *)
+
+Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: DecidableType.
+ Definition t := prod D1.t D2.t.
+ Definition eq := @eq t.
+ Definition eq_refl := @refl_equal t.
+ Definition eq_sym := @sym_eq t.
+ Definition eq_trans := @trans_eq t.
+ Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
+ Proof.
+ intros (x1,x2) (y1,y2);
+ destruct (D1.eq_dec x1 y1); destruct (D2.eq_dec x2 y2);
+ unfold eq, D1.eq, D2.eq in *; simpl;
+ (left; f_equal; auto; fail) ||
+ (right; intro H; injection H; auto).
+ Defined.
+
+End PairUsualDecidableType.
diff --git a/theories/Logic/Description.v b/theories/Logic/Description.v
new file mode 100644
index 00000000..962f2a2a
--- /dev/null
+++ b/theories/Logic/Description.v
@@ -0,0 +1,21 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Description.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
+
+(** This file provides a constructive form of definite description; it
+ allows to build functions from the proof of their existence in any
+ context; this is weaker than Church's iota operator *)
+
+Require Import ChoiceFacts.
+
+Set Implicit Arguments.
+
+Axiom constructive_definite_description :
+ forall (A : Type) (P : A->Prop),
+ (exists! x, P x) -> { x : A | P x }.
diff --git a/theories/Logic/Epsilon.v b/theories/Logic/Epsilon.v
new file mode 100644
index 00000000..65d4d853
--- /dev/null
+++ b/theories/Logic/Epsilon.v
@@ -0,0 +1,72 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Epsilon.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
+
+(** This file provides indefinite description under the form of
+ Hilbert's epsilon operator; it does not assume classical logic. *)
+
+Require Import ChoiceFacts.
+
+Set Implicit Arguments.
+
+(** Hilbert's epsilon: operator and specification in one statement *)
+
+Axiom epsilon_statement :
+ forall (A : Type) (P : A->Prop), inhabited A ->
+ { x : A | (exists x, P x) -> P x }.
+
+Lemma constructive_indefinite_description :
+ forall (A : Type) (P : A->Prop),
+ (exists x, P x) -> { x : A | P x }.
+Proof.
+ apply epsilon_imp_constructive_indefinite_description.
+ exact epsilon_statement.
+Qed.
+
+Lemma small_drinkers'_paradox :
+ forall (A:Type) (P:A -> Prop), inhabited A ->
+ exists x, (exists x, P x) -> P x.
+Proof.
+ apply epsilon_imp_small_drinker.
+ exact epsilon_statement.
+Qed.
+
+Theorem iota_statement :
+ forall (A : Type) (P : A->Prop), inhabited A ->
+ { x : A | (exists! x : A, P x) -> P x }.
+Proof.
+ intros; destruct epsilon_statement with (P:=P); firstorder.
+Qed.
+
+Lemma constructive_definite_description :
+ forall (A : Type) (P : A->Prop),
+ (exists! x, P x) -> { x : A | P x }.
+Proof.
+ apply iota_imp_constructive_definite_description.
+ exact iota_statement.
+Qed.
+
+(** Hilbert's epsilon operator and its specification *)
+
+Definition epsilon (A : Type) (i:inhabited A) (P : A->Prop) : A
+ := proj1_sig (epsilon_statement P i).
+
+Definition epsilon_spec (A : Type) (i:inhabited A) (P : A->Prop) :
+ (exists x, P x) -> P (epsilon i P)
+ := proj2_sig (epsilon_statement P i).
+
+(** Church's iota operator and its specification *)
+
+Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A
+ := proj1_sig (iota_statement P i).
+
+Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) :
+ (exists! x:A, P x) -> P (iota i P)
+ := proj2_sig (iota_statement P i).
+
diff --git a/theories/Logic/EqdepFacts.v b/theories/Logic/EqdepFacts.v
index 94a577ca..844bff88 100644
--- a/theories/Logic/EqdepFacts.v
+++ b/theories/Logic/EqdepFacts.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: EqdepFacts.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: EqdepFacts.v 11095 2008-06-10 19:36:10Z herbelin $ i*)
(** This file defines dependent equality and shows its equivalence with
equality on dependent pairs (inhabiting sigma-types). It derives
@@ -104,7 +104,7 @@ Implicit Arguments eq_dep1 [U P].
(** Dependent equality is equivalent to equality on dependent pairs *)
-Lemma eq_sigS_eq_dep :
+Lemma eq_sigT_eq_dep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
existT P p x = existT P q y -> eq_dep p x q y.
Proof.
@@ -113,26 +113,19 @@ Proof.
apply eq_dep_intro.
Qed.
+Notation eq_sigS_eq_dep := eq_sigT_eq_dep (only parsing). (* Compatibility *)
+
Lemma equiv_eqex_eqdep :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- existS P p x = existS P q y <-> eq_dep p x q y.
+ existT P p x = existT P q y <-> eq_dep p x q y.
Proof.
split.
(* -> *)
- apply eq_sigS_eq_dep.
+ apply eq_sigT_eq_dep.
(* <- *)
destruct 1; reflexivity.
Qed.
-Lemma eq_sigT_eq_dep :
- forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
- existT P p x = existT P q y -> eq_dep p x q y.
-Proof.
- intros.
- dependent rewrite H.
- apply eq_dep_intro.
-Qed.
-
Lemma eq_dep_eq_sigT :
forall (U:Type) (P:U -> Type) (p q:U) (x:P p) (y:P q),
eq_dep p x q y -> existT P p x = existT P q y.
@@ -258,7 +251,7 @@ Section Corollaries.
Proof.
intro eq_dep_eq; red; intros.
apply eq_dep_eq.
- apply eq_sigS_eq_dep.
+ apply eq_sigT_eq_dep.
assumption.
Qed.
@@ -270,7 +263,7 @@ Notation eq_dep_eq__inj_pairT2 := eq_dep_eq__inj_pair2.
(************************************************************************)
-(** *** C. Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)
+(** * Definition of the functor that builds properties of dependent equalities assuming axiom eq_rect_eq *)
Module Type EqdepElimination.
diff --git a/theories/Logic/Eqdep_dec.v b/theories/Logic/Eqdep_dec.v
index 103efd22..0281916e 100644
--- a/theories/Logic/Eqdep_dec.v
+++ b/theories/Logic/Eqdep_dec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Eqdep_dec.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Eqdep_dec.v 10144 2007-09-26 15:12:17Z vsiles $ i*)
(** We prove that there is only one proof of [x=x], i.e [refl_equal x].
This holds if the equality upon the set of [x] is decidable.
@@ -158,6 +158,13 @@ Proof.
apply (Streicher_K__eq_rect_eq A (K_dec_type eq_dec)).
Qed.
+(** We deduce the injectivity of dependent equality for decidable types *)
+Theorem eq_dep_eq_dec :
+ forall A:Type,
+ (forall x y:A, {x = y} + {x <> y}) ->
+ forall (P:A->Type) (p:A) (x y:P p), eq_dep A P p x p y -> x = y.
+Proof (fun A eq_dec => eq_rect_eq__eq_dep_eq A (eq_rect_eq_dec eq_dec)).
+
Unset Implicit Arguments.
(************************************************************************)
@@ -229,7 +236,7 @@ Module DecidableEqDep (M:DecidableType).
End DecidableEqDep.
(************************************************************************)
-(** ** B Definition of the functor that builds properties of dependent equalities on decidable sets in Set *)
+(** ** Definition of the functor that builds properties of dependent equalities on decidable sets in Set *)
(** The signature of decidable sets in [Set] *)
@@ -296,3 +303,15 @@ Module DecidableEqDepSet (M:DecidableSet).
Notation inj_pairT2 := inj_pair2.
End DecidableEqDepSet.
+
+ (** From decidability to inj_pair2 **)
+Lemma inj_pair2_eq_dec : forall A:Type, (forall x y:A, {x=y}+{x<>y}) ->
+ ( forall (P:A -> Type) (p:A) (x y:P p), existT P p x = existT P p y -> x = y ).
+Proof.
+ intros A eq_dec.
+ apply eq_dep_eq__inj_pair2.
+ apply eq_rect_eq__eq_dep_eq.
+ unfold Eq_rect_eq.
+ apply eq_rect_eq_dec.
+ apply eq_dec.
+Qed.
diff --git a/theories/Logic/IndefiniteDescription.v b/theories/Logic/IndefiniteDescription.v
new file mode 100644
index 00000000..740b889a
--- /dev/null
+++ b/theories/Logic/IndefiniteDescription.v
@@ -0,0 +1,39 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: IndefiniteDescription.v 10170 2007-10-03 14:41:25Z herbelin $ i*)
+
+(** This file provides a constructive form of indefinite description that
+ allows to build choice functions; this is weaker than Hilbert's
+ epsilon operator (which implies weakly classical properties) but
+ stronger than the axiom of choice (which cannot be used outside
+ the context of a theorem proof). *)
+
+Require Import ChoiceFacts.
+
+Set Implicit Arguments.
+
+Axiom constructive_indefinite_description :
+ forall (A : Type) (P : A->Prop),
+ (exists x, P x) -> { x : A | P x }.
+
+Lemma constructive_definite_description :
+ forall (A : Type) (P : A->Prop),
+ (exists! x, P x) -> { x : A | P x }.
+Proof.
+ intros; apply constructive_indefinite_description; firstorder.
+Qed.
+
+Lemma functional_choice :
+ forall (A B : Type) (R:A->B->Prop),
+ (forall x : A, exists y : B, R x y) ->
+ (exists f : A->B, forall x : A, R x (f x)).
+Proof.
+ apply constructive_indefinite_descr_fun_choice.
+ exact constructive_indefinite_description.
+Qed.
diff --git a/theories/Logic/JMeq.v b/theories/Logic/JMeq.v
index 6a723e43..c3573ac3 100644
--- a/theories/Logic/JMeq.v
+++ b/theories/Logic/JMeq.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: JMeq.v 9077 2006-08-24 08:44:32Z herbelin $ i*)
+(*i $Id: JMeq.v 9849 2007-05-22 20:40:04Z herbelin $ i*)
(** John Major's Equality as proposed by Conor McBride
@@ -19,9 +19,12 @@
Set Implicit Arguments.
+Unset Elimination Schemes.
+
Inductive JMeq (A:Type) (x:A) : forall B:Type, B -> Prop :=
JMeq_refl : JMeq x x.
-Reset JMeq_rect.
+
+Set Elimination Schemes.
Hint Resolve JMeq_refl.
@@ -65,20 +68,42 @@ Lemma JMeq_rect_r :
intros A x y P H H'; case JMeq_eq with (1 := sym_JMeq H'); trivial.
Qed.
-(** [JMeq] is equivalent to [(eq_dep Type [X]X)] *)
+(** [JMeq] is equivalent to [eq_dep Type (fun X => X)] *)
Require Import Eqdep.
-Lemma JMeq_eq_dep :
+Lemma JMeq_eq_dep_id :
forall (A B:Type) (x:A) (y:B), JMeq x y -> eq_dep Type (fun X => X) A x B y.
Proof.
destruct 1.
apply eq_dep_intro.
Qed.
-Lemma eq_dep_JMeq :
+Lemma eq_dep_id_JMeq :
forall (A B:Type) (x:A) (y:B), eq_dep Type (fun X => X) A x B y -> JMeq x y.
Proof.
destruct 1.
-apply JMeq_refl.
+apply JMeq_refl.
+Qed.
+
+(** [eq_dep U P p x q y] is strictly finer than [JMeq (P p) x (P q) y] *)
+
+Lemma eq_dep_JMeq :
+ forall U P p x q y, eq_dep U P p x q y -> JMeq x y.
+Proof.
+destruct 1.
+apply JMeq_refl.
+Qed.
+
+Lemma eq_dep_strictly_stronger_JMeq :
+ exists U, exists P, exists p, exists q, exists x, exists y,
+ JMeq x y /\ ~ eq_dep U P p x q y.
+Proof.
+exists bool. exists (fun _ => True). exists true. exists false.
+exists I. exists I.
+split.
+trivial.
+intro H.
+assert (true=false) by (destruct H; reflexivity).
+discriminate.
Qed.
diff --git a/theories/Logic/SetIsType.v b/theories/Logic/SetIsType.v
new file mode 100644
index 00000000..3286beb4
--- /dev/null
+++ b/theories/Logic/SetIsType.v
@@ -0,0 +1,17 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * The Set universe seen as a synonym for Type *)
+
+(** After loading this file, Set becomes just another name for Type.
+ This allows to easily perform a Set-to-Type migration, or at least
+ test whether a development relies or not on specific features of
+ Set: simply insert some Require Export of this file at starting
+ points of the development and try to recompile... *)
+
+Notation "'Set'" := Type (only parsing). \ No newline at end of file
diff --git a/theories/NArith/BinNat.v b/theories/NArith/BinNat.v
index 78353145..20dabed2 100644
--- a/theories/NArith/BinNat.v
+++ b/theories/NArith/BinNat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: BinNat.v 8771 2006-04-29 11:55:57Z letouzey $ i*)
+(*i $Id: BinNat.v 10806 2008-04-16 23:51:06Z letouzey $ i*)
Require Import BinPos.
Unset Boxed Definitions.
@@ -59,6 +59,16 @@ Definition Nsucc n :=
| Npos p => Npos (Psucc p)
end.
+(** Predecessor *)
+
+Definition Npred (n : N) := match n with
+| N0 => N0
+| Npos p => match p with
+ | xH => N0
+ | _ => Npos (Ppred p)
+ end
+end.
+
(** Addition *)
Definition Nplus n m :=
@@ -70,6 +80,21 @@ Definition Nplus n m :=
Infix "+" := Nplus : N_scope.
+(** Subtraction *)
+
+Definition Nminus (n m : N) :=
+match n, m with
+| N0, _ => N0
+| n, N0 => n
+| Npos n', Npos m' =>
+ match Pminus_mask n' m' with
+ | IsPos p => Npos p
+ | _ => N0
+ end
+end.
+
+Infix "-" := Nminus : N_scope.
+
(** Multiplication *)
Definition Nmult n m :=
@@ -93,6 +118,28 @@ Definition Ncompare n m :=
Infix "?=" := Ncompare (at level 70, no associativity) : N_scope.
+Definition Nlt (x y:N) := (x ?= y) = Lt.
+Definition Ngt (x y:N) := (x ?= y) = Gt.
+Definition Nle (x y:N) := (x ?= y) <> Gt.
+Definition Nge (x y:N) := (x ?= y) <> Lt.
+
+Infix "<=" := Nle : N_scope.
+Infix "<" := Nlt : N_scope.
+Infix ">=" := Nge : N_scope.
+Infix ">" := Ngt : N_scope.
+
+(** Min and max *)
+
+Definition Nmin (n n' : N) := match Ncompare n n' with
+ | Lt | Eq => n
+ | Gt => n'
+ end.
+
+Definition Nmax (n n' : N) := match Ncompare n n' with
+ | Lt | Eq => n'
+ | Gt => n
+ end.
+
(** convenient induction principles *)
Lemma N_ind_double :
@@ -123,15 +170,48 @@ Qed.
(** Peano induction on binary natural numbers *)
-Theorem Nind :
- forall P:N -> Prop,
- P N0 -> (forall n:N, P n -> P (Nsucc n)) -> forall n:N, P n.
+Definition Nrect
+ (P : N -> Type) (a : P N0)
+ (f : forall n : N, P n -> P (Nsucc n)) (n : N) : P n :=
+let f' (p : positive) (x : P (Npos p)) := f (Npos p) x in
+let P' (p : positive) := P (Npos p) in
+match n return (P n) with
+| N0 => a
+| Npos p => Prect P' (f N0 a) f' p
+end.
+
+Theorem Nrect_base : forall P a f, Nrect P a f N0 = a.
+Proof.
+intros P a f; simpl; reflexivity.
+Qed.
+
+Theorem Nrect_step : forall P a f n, Nrect P a f (Nsucc n) = f n (Nrect P a f n).
+Proof.
+intros P a f; destruct n as [| p]; simpl;
+[rewrite Prect_base | rewrite Prect_succ]; reflexivity.
+Qed.
+
+Definition Nind (P : N -> Prop) := Nrect P.
+
+Definition Nrec (P : N -> Set) := Nrect P.
+
+Theorem Nrec_base : forall P a f, Nrec P a f N0 = a.
Proof.
-destruct n.
- assumption.
- apply Pind with (P := fun p => P (Npos p)).
-exact (H0 N0 H).
-intro p'; exact (H0 (Npos p')).
+intros P a f; unfold Nrec; apply Nrect_base.
+Qed.
+
+Theorem Nrec_step : forall P a f n, Nrec P a f (Nsucc n) = f n (Nrec P a f n).
+Proof.
+intros P a f; unfold Nrec; apply Nrect_step.
+Qed.
+
+(** Properties of successor and predecessor *)
+
+Theorem Npred_succ : forall n : N, Npred (Nsucc n) = n.
+Proof.
+destruct n as [| p]; simpl. reflexivity.
+case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
+intro H; false_hyp H Psucc_not_one.
Qed.
(** Properties of addition *)
@@ -171,6 +251,11 @@ destruct n; destruct m.
simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
Qed.
+Theorem Nsucc_0 : forall n : N, Nsucc n <> N0.
+Proof.
+intro n; elim n; simpl Nsucc; intros; discriminate.
+Qed.
+
Theorem Nsucc_inj : forall n m:N, Nsucc n = Nsucc m -> n = m.
Proof.
destruct n; destruct m; simpl in |- *; intro H; reflexivity || injection H;
@@ -188,13 +273,51 @@ intro n; pattern n in |- *; apply Nind; clear n; simpl in |- *.
apply IHn; apply Nsucc_inj; assumption.
Qed.
+(** Properties of subtraction. *)
+
+Lemma Nminus_N0_Nle : forall n n' : N, n - n' = N0 <-> n <= n'.
+Proof.
+destruct n as [| p]; destruct n' as [| q]; unfold Nle; simpl;
+split; intro H; try discriminate; try reflexivity.
+now elim H.
+intro H1; apply Pminus_mask_Gt in H1. destruct H1 as [h [H1 _]].
+rewrite H1 in H; discriminate.
+case_eq (Pcompare p q Eq); intro H1; rewrite H1 in H; try now elim H.
+assert (H2 : p = q); [now apply Pcompare_Eq_eq |]. now rewrite H2, Pminus_mask_diag.
+now rewrite Pminus_mask_Lt.
+Qed.
+
+Theorem Nminus_0_r : forall n : N, n - N0 = n.
+Proof.
+now destruct n.
+Qed.
+
+Theorem Nminus_succ_r : forall n m : N, n - (Nsucc m) = Npred (n - m).
+Proof.
+destruct n as [| p]; destruct m as [| q]; try reflexivity.
+now destruct p.
+simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
+Qed.
+
(** Properties of multiplication *)
+Theorem Nmult_0_l : forall n:N, N0 * n = N0.
+Proof.
+reflexivity.
+Qed.
+
Theorem Nmult_1_l : forall n:N, Npos 1 * n = n.
Proof.
destruct n; reflexivity.
Qed.
+Theorem Nmult_Sn_m : forall n m : N, (Nsucc n) * m = m + n * m.
+Proof.
+destruct n as [| n]; destruct m as [| m]; simpl; auto.
+rewrite Pmult_Sn_m; reflexivity.
+Qed.
+
Theorem Nmult_1_r : forall n:N, n * Npos 1%positive = n.
Proof.
destruct n; simpl in |- *; try reflexivity.
@@ -233,13 +356,14 @@ destruct n; destruct m; reflexivity || (try discriminate H).
injection H; clear H; intro H; rewrite Pmult_reg_r with (1 := H); reflexivity.
Qed.
-Theorem Nmult_0_l : forall n:N, N0 * n = N0.
+(** Properties of comparison *)
+
+Lemma Ncompare_refl : forall n, (n ?= n) = Eq.
Proof.
-reflexivity.
+destruct n; simpl; auto.
+apply Pcompare_refl.
Qed.
-(** Properties of comparison *)
-
Theorem Ncompare_Eq_eq : forall n m:N, (n ?= m) = Eq -> n = m.
Proof.
destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
@@ -247,10 +371,10 @@ destruct n as [| n]; destruct m as [| m]; simpl in |- *; intro H;
rewrite (Pcompare_Eq_eq n m H); reflexivity.
Qed.
-Lemma Ncompare_refl : forall n, (n ?= n) = Eq.
+Theorem Ncompare_eq_correct : forall n m:N, (n ?= m) = Eq <-> n = m.
Proof.
-destruct n; simpl; auto.
-apply Pcompare_refl.
+split; intros;
+ [ apply Ncompare_Eq_eq; auto | subst; apply Ncompare_refl ].
Qed.
Lemma Ncompare_antisym : forall n m, CompOpp (n ?= m) = (m ?= n).
@@ -259,6 +383,30 @@ destruct n; destruct m; simpl; auto.
exact (Pcompare_antisym p p0 Eq).
Qed.
+Theorem Nlt_irrefl : forall n : N, ~ n < n.
+Proof.
+intro n; unfold Nlt; now rewrite Ncompare_refl.
+Qed.
+
+Theorem Ncompare_n_Sm :
+ forall n m : N, Ncompare n (Nsucc m) = Lt <-> Ncompare n m = Lt \/ n = m.
+Proof.
+intros n m; split; destruct n as [| p]; destruct m as [| q]; simpl; auto.
+destruct p; simpl; intros; discriminate.
+pose proof (proj1 (Pcompare_p_Sq p q));
+assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
+intros H; destruct H; discriminate.
+pose proof (proj2 (Pcompare_p_Sq p q));
+assert (p = q <-> Npos p = Npos q); [split; congruence | tauto].
+Qed.
+
+(** 0 is the least natural number *)
+
+Theorem Ncompare_0 : forall n : N, Ncompare n N0 <> Lt.
+Proof.
+destruct n; discriminate.
+Qed.
+
(** Dividing by 2 *)
Definition Ndiv2 (n:N) :=
diff --git a/theories/NArith/BinPos.v b/theories/NArith/BinPos.v
index 513a67c2..e3293e70 100644
--- a/theories/NArith/BinPos.v
+++ b/theories/NArith/BinPos.v
@@ -6,19 +6,19 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: BinPos.v 6699 2005-02-07 14:30:08Z coq $ i*)
+(*i $Id: BinPos.v 11033 2008-06-01 22:56:50Z letouzey $ i*)
Unset Boxed Definitions.
(**********************************************************************)
(** Binary positive numbers *)
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
Inductive positive : Set :=
- | xI : positive -> positive
- | xO : positive -> positive
- | xH : positive.
+| xI : positive -> positive
+| xO : positive -> positive
+| xH : positive.
(** Declare binding key for scope positive_scope *)
@@ -30,164 +30,181 @@ Bind Scope positive_scope with positive.
Arguments Scope xO [positive_scope].
Arguments Scope xI [positive_scope].
+(** Postfix notation for positive numbers, allowing to mimic
+ the position of bits in a big-endian representation.
+ For instance, we can write 1~1~0 instead of (xO (xI xH))
+ for the number 6 (which is 110 in binary notation).
+*)
+
+Notation "p ~ 1" := (xI p)
+ (at level 7, left associativity, format "p '~' '1'") : positive_scope.
+Notation "p ~ 0" := (xO p)
+ (at level 7, left associativity, format "p '~' '0'") : positive_scope.
+
+Open Local Scope positive_scope.
+
+(* In the current file, [xH] cannot yet be written as [1], since the
+ interpretation of positive numerical constants is not available
+ yet. We fix this here with an ad-hoc temporary notation. *)
+
+Notation Local "1" := xH (at level 7).
+
(** Successor *)
Fixpoint Psucc (x:positive) : positive :=
match x with
- | xI x' => xO (Psucc x')
- | xO x' => xI x'
- | xH => xO xH
+ | p~1 => (Psucc p)~0
+ | p~0 => p~1
+ | 1 => 1~0
end.
(** Addition *)
Set Boxed Definitions.
-Fixpoint Pplus (x y:positive) {struct x} : positive :=
+Fixpoint Pplus (x y:positive) : positive :=
match x, y with
- | xI x', xI y' => xO (Pplus_carry x' y')
- | xI x', xO y' => xI (Pplus x' y')
- | xI x', xH => xO (Psucc x')
- | xO x', xI y' => xI (Pplus x' y')
- | xO x', xO y' => xO (Pplus x' y')
- | xO x', xH => xI x'
- | xH, xI y' => xO (Psucc y')
- | xH, xO y' => xI y'
- | xH, xH => xO xH
+ | p~1, q~1 => (Pplus_carry p q)~0
+ | p~1, q~0 => (Pplus p q)~1
+ | p~1, 1 => (Psucc p)~0
+ | p~0, q~1 => (Pplus p q)~1
+ | p~0, q~0 => (Pplus p q)~0
+ | p~0, 1 => p~1
+ | 1, q~1 => (Psucc q)~0
+ | 1, q~0 => q~1
+ | 1, 1 => 1~0
end
-
- with Pplus_carry (x y:positive) {struct x} : positive :=
+
+with Pplus_carry (x y:positive) : positive :=
match x, y with
- | xI x', xI y' => xI (Pplus_carry x' y')
- | xI x', xO y' => xO (Pplus_carry x' y')
- | xI x', xH => xI (Psucc x')
- | xO x', xI y' => xO (Pplus_carry x' y')
- | xO x', xO y' => xI (Pplus x' y')
- | xO x', xH => xO (Psucc x')
- | xH, xI y' => xI (Psucc y')
- | xH, xO y' => xO (Psucc y')
- | xH, xH => xI xH
+ | p~1, q~1 => (Pplus_carry p q)~1
+ | p~1, q~0 => (Pplus_carry p q)~0
+ | p~1, 1 => (Psucc p)~1
+ | p~0, q~1 => (Pplus_carry p q)~0
+ | p~0, q~0 => (Pplus p q)~1
+ | p~0, 1 => (Psucc p)~0
+ | 1, q~1 => (Psucc q)~1
+ | 1, q~0 => (Psucc q)~0
+ | 1, 1 => 1~1
end.
Unset Boxed Definitions.
Infix "+" := Pplus : positive_scope.
-Open Local Scope positive_scope.
-
(** From binary positive numbers to Peano natural numbers *)
-Fixpoint Pmult_nat (x:positive) (pow2:nat) {struct x} : nat :=
+Fixpoint Pmult_nat (x:positive) (pow2:nat) : nat :=
match x with
- | xI x' => (pow2 + Pmult_nat x' (pow2 + pow2))%nat
- | xO x' => Pmult_nat x' (pow2 + pow2)%nat
- | xH => pow2
+ | p~1 => (pow2 + Pmult_nat p (pow2 + pow2))%nat
+ | p~0 => Pmult_nat p (pow2 + pow2)%nat
+ | 1 => pow2
end.
-Definition nat_of_P (x:positive) := Pmult_nat x 1.
+Definition nat_of_P (x:positive) := Pmult_nat x (S O).
(** From Peano natural numbers to binary positive numbers *)
Fixpoint P_of_succ_nat (n:nat) : positive :=
match n with
- | O => xH
- | S x' => Psucc (P_of_succ_nat x')
+ | O => 1
+ | S x => Psucc (P_of_succ_nat x)
end.
(** Operation x -> 2*x-1 *)
Fixpoint Pdouble_minus_one (x:positive) : positive :=
match x with
- | xI x' => xI (xO x')
- | xO x' => xI (Pdouble_minus_one x')
- | xH => xH
+ | p~1 => p~0~1
+ | p~0 => (Pdouble_minus_one p)~1
+ | 1 => 1
end.
(** Predecessor *)
Definition Ppred (x:positive) :=
match x with
- | xI x' => xO x'
- | xO x' => Pdouble_minus_one x'
- | xH => xH
+ | p~1 => p~0
+ | p~0 => Pdouble_minus_one p
+ | 1 => 1
end.
(** An auxiliary type for subtraction *)
Inductive positive_mask : Set :=
- | IsNul : positive_mask
- | IsPos : positive -> positive_mask
- | IsNeg : positive_mask.
+| IsNul : positive_mask
+| IsPos : positive -> positive_mask
+| IsNeg : positive_mask.
(** Operation x -> 2*x+1 *)
Definition Pdouble_plus_one_mask (x:positive_mask) :=
match x with
- | IsNul => IsPos xH
- | IsNeg => IsNeg
- | IsPos p => IsPos (xI p)
+ | IsNul => IsPos 1
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~1
end.
(** Operation x -> 2*x *)
Definition Pdouble_mask (x:positive_mask) :=
match x with
- | IsNul => IsNul
- | IsNeg => IsNeg
- | IsPos p => IsPos (xO p)
+ | IsNul => IsNul
+ | IsNeg => IsNeg
+ | IsPos p => IsPos p~0
end.
(** Operation x -> 2*x-2 *)
Definition Pdouble_minus_two (x:positive) :=
match x with
- | xI x' => IsPos (xO (xO x'))
- | xO x' => IsPos (xO (Pdouble_minus_one x'))
- | xH => IsNul
+ | p~1 => IsPos p~0~0
+ | p~0 => IsPos (Pdouble_minus_one p)~0
+ | 1 => IsNul
end.
(** Subtraction of binary positive numbers into a positive numbers mask *)
Fixpoint Pminus_mask (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xO y' => Pdouble_plus_one_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (xO x')
- | xO x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xO x', xH => IsPos (Pdouble_minus_one x')
- | xH, xH => IsNul
- | xH, _ => IsNeg
+ | p~1, q~1 => Pdouble_mask (Pminus_mask p q)
+ | p~1, q~0 => Pdouble_plus_one_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos p~0
+ | p~0, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~0, 1 => IsPos (Pdouble_minus_one p)
+ | 1, 1 => IsNul
+ | 1, _ => IsNeg
end
-
- with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
+
+with Pminus_mask_carry (x y:positive) {struct y} : positive_mask :=
match x, y with
- | xI x', xI y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xI x', xO y' => Pdouble_mask (Pminus_mask x' y')
- | xI x', xH => IsPos (Pdouble_minus_one x')
- | xO x', xI y' => Pdouble_mask (Pminus_mask_carry x' y')
- | xO x', xO y' => Pdouble_plus_one_mask (Pminus_mask_carry x' y')
- | xO x', xH => Pdouble_minus_two x'
- | xH, _ => IsNeg
+ | p~1, q~1 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~1, q~0 => Pdouble_mask (Pminus_mask p q)
+ | p~1, 1 => IsPos (Pdouble_minus_one p)
+ | p~0, q~1 => Pdouble_mask (Pminus_mask_carry p q)
+ | p~0, q~0 => Pdouble_plus_one_mask (Pminus_mask_carry p q)
+ | p~0, 1 => Pdouble_minus_two p
+ | 1, _ => IsNeg
end.
(** Subtraction of binary positive numbers x and y, returns 1 if x<=y *)
Definition Pminus (x y:positive) :=
match Pminus_mask x y with
- | IsPos z => z
- | _ => xH
+ | IsPos z => z
+ | _ => 1
end.
Infix "-" := Pminus : positive_scope.
(** Multiplication on binary positive numbers *)
-Fixpoint Pmult (x y:positive) {struct x} : positive :=
+Fixpoint Pmult (x y:positive) : positive :=
match x with
- | xI x' => y + xO (Pmult x' y)
- | xO x' => xO (Pmult x' y)
- | xH => y
+ | p~1 => y + (Pmult p y)~0
+ | p~0 => (Pmult p y)~0
+ | 1 => y
end.
Infix "*" := Pmult : positive_scope.
@@ -196,9 +213,9 @@ Infix "*" := Pmult : positive_scope.
Definition Pdiv2 (z:positive) :=
match z with
- | xH => xH
- | xO p => p
- | xI p => p
+ | 1 => 1
+ | p~0 => p
+ | p~1 => p
end.
Infix "/" := Pdiv2 : positive_scope.
@@ -207,25 +224,51 @@ Infix "/" := Pdiv2 : positive_scope.
Fixpoint Pcompare (x y:positive) (r:comparison) {struct y} : comparison :=
match x, y with
- | xI x', xI y' => Pcompare x' y' r
- | xI x', xO y' => Pcompare x' y' Gt
- | xI x', xH => Gt
- | xO x', xI y' => Pcompare x' y' Lt
- | xO x', xO y' => Pcompare x' y' r
- | xO x', xH => Gt
- | xH, xI y' => Lt
- | xH, xO y' => Lt
- | xH, xH => r
+ | p~1, q~1 => Pcompare p q r
+ | p~1, q~0 => Pcompare p q Gt
+ | p~1, 1 => Gt
+ | p~0, q~1 => Pcompare p q Lt
+ | p~0, q~0 => Pcompare p q r
+ | p~0, 1 => Gt
+ | 1, q~1 => Lt
+ | 1, q~0 => Lt
+ | 1, 1 => r
end.
Infix "?=" := Pcompare (at level 70, no associativity) : positive_scope.
+Definition Plt (x y:positive) := (Pcompare x y Eq) = Lt.
+Definition Pgt (x y:positive) := (Pcompare x y Eq) = Gt.
+Definition Ple (x y:positive) := (Pcompare x y Eq) <> Gt.
+Definition Pge (x y:positive) := (Pcompare x y Eq) <> Lt.
+
+Infix "<=" := Ple : positive_scope.
+Infix "<" := Plt : positive_scope.
+Infix ">=" := Pge : positive_scope.
+Infix ">" := Pgt : positive_scope.
+
+Notation "x <= y <= z" := (x <= y /\ y <= z) : positive_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : positive_scope.
+Notation "x < y < z" := (x < y /\ y < z) : positive_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : positive_scope.
+
+
+Definition Pmin (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p
+ | Gt => p'
+ end.
+
+Definition Pmax (p p' : positive) := match Pcompare p p' Eq with
+ | Lt | Eq => p'
+ | Gt => p
+ end.
+
(**********************************************************************)
(** Miscellaneous properties of binary positive numbers *)
-Lemma ZL11 : forall p:positive, p = xH \/ p <> xH.
+Lemma ZL11 : forall p:positive, p = 1 \/ p <> 1.
Proof.
-intros x; case x; intros; (left; reflexivity) || (right; discriminate).
+ intros x; case x; intros; (left; reflexivity) || (right; discriminate).
Qed.
(**********************************************************************)
@@ -233,78 +276,70 @@ Qed.
(** Specification of [xI] in term of [Psucc] and [xO] *)
-Lemma xI_succ_xO : forall p:positive, xI p = Psucc (xO p).
+Lemma xI_succ_xO : forall p:positive, p~1 = Psucc p~0.
Proof.
-reflexivity.
+ reflexivity.
Qed.
Lemma Psucc_discr : forall p:positive, p <> Psucc p.
Proof.
-intro x; destruct x as [p| p| ]; discriminate.
+ destruct p; discriminate.
Qed.
(** Successor and double *)
Lemma Psucc_o_double_minus_one_eq_xO :
- forall p:positive, Psucc (Pdouble_minus_one p) = xO p.
+ forall p:positive, Psucc (Pdouble_minus_one p) = p~0.
Proof.
-intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
- reflexivity.
+ induction p; simpl; f_equal; auto.
Qed.
Lemma Pdouble_minus_one_o_succ_eq_xI :
- forall p:positive, Pdouble_minus_one (Psucc p) = xI p.
+ forall p:positive, Pdouble_minus_one (Psucc p) = p~1.
Proof.
-intro x; induction x as [x IHx| x| ]; simpl in |- *; try rewrite IHx;
- reflexivity.
+ induction p; simpl; f_equal; auto.
Qed.
Lemma xO_succ_permute :
- forall p:positive, xO (Psucc p) = Psucc (Psucc (xO p)).
+ forall p:positive, (Psucc p)~0 = Psucc (Psucc p~0).
Proof.
-intro y; induction y as [y Hrecy| y Hrecy| ]; simpl in |- *; auto.
+ induction p; simpl; auto.
Qed.
Lemma double_moins_un_xO_discr :
- forall p:positive, Pdouble_minus_one p <> xO p.
+ forall p:positive, Pdouble_minus_one p <> p~0.
Proof.
-intro x; destruct x as [p| p| ]; discriminate.
+ destruct p; discriminate.
Qed.
(** Successor and predecessor *)
-Lemma Psucc_not_one : forall p:positive, Psucc p <> xH.
+Lemma Psucc_not_one : forall p:positive, Psucc p <> 1.
Proof.
-intro x; destruct x as [x| x| ]; discriminate.
+ destruct p; discriminate.
Qed.
Lemma Ppred_succ : forall p:positive, Ppred (Psucc p) = p.
Proof.
-intro x; destruct x as [p| p| ]; [ idtac | idtac | simpl in |- *; auto ];
- (induction p as [p IHp| | ]; [ idtac | reflexivity | reflexivity ]);
- simpl in |- *; simpl in IHp; try rewrite <- IHp; reflexivity.
+ intros [[p|p| ]|[p|p| ]| ]; simpl; auto.
+ f_equal; apply Pdouble_minus_one_o_succ_eq_xI.
Qed.
-Lemma Psucc_pred : forall p:positive, p = xH \/ Psucc (Ppred p) = p.
+Lemma Psucc_pred : forall p:positive, p = 1 \/ Psucc (Ppred p) = p.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ];
- [ simpl in |- *; auto
- | simpl in |- *; intros; right; apply Psucc_o_double_minus_one_eq_xO
- | auto ].
+ induction p; simpl; auto.
+ right; apply Psucc_o_double_minus_one_eq_xO.
Qed.
+Ltac destr_eq H := discriminate H || (try (injection H; clear H; intro H)).
+
(** Injectivity of successor *)
Lemma Psucc_inj : forall p q:positive, Psucc p = Psucc q -> p = q.
Proof.
-intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
- discriminate H || (try (injection H; clear H; intro H)).
-rewrite (IHx y H); reflexivity.
-absurd (Psucc x = xH); [ apply Psucc_not_one | assumption ].
-apply f_equal with (1 := H); assumption.
-absurd (Psucc y = xH);
- [ apply Psucc_not_one | symmetry in |- *; assumption ].
-reflexivity.
+ induction p; intros [q|q| ] H; simpl in *; destr_eq H; f_equal; auto.
+ elim (Psucc_not_one p); auto.
+ elim (Psucc_not_one q); auto.
Qed.
(**********************************************************************)
@@ -312,656 +347,758 @@ Qed.
(** Specification of [Psucc] in term of [Pplus] *)
-Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + xH.
+Lemma Pplus_one_succ_r : forall p:positive, Psucc p = p + 1.
Proof.
-intro q; destruct q as [p| p| ]; reflexivity.
+ destruct p; reflexivity.
Qed.
-Lemma Pplus_one_succ_l : forall p:positive, Psucc p = xH + p.
+Lemma Pplus_one_succ_l : forall p:positive, Psucc p = 1 + p.
Proof.
-intro q; destruct q as [p| p| ]; reflexivity.
+ destruct p; reflexivity.
Qed.
(** Specification of [Pplus_carry] *)
Theorem Pplus_carry_spec :
- forall p q:positive, Pplus_carry p q = Psucc (p + q).
+ forall p q:positive, Pplus_carry p q = Psucc (p + q).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto; rewrite IHp;
- auto.
+ induction p; destruct q; simpl; f_equal; auto.
Qed.
(** Commutativity *)
Theorem Pplus_comm : forall p q:positive, p + q = q + p.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto;
- try do 2 rewrite Pplus_carry_spec; rewrite IHp; auto.
+ induction p; destruct q; simpl; f_equal; auto.
+ rewrite 2 Pplus_carry_spec; f_equal; auto.
Qed.
(** Permutation of [Pplus] and [Psucc] *)
Theorem Pplus_succ_permute_r :
- forall p q:positive, p + Psucc q = Psucc (p + q).
+ forall p q:positive, p + Psucc q = Psucc (p + q).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; auto;
- [ rewrite Pplus_carry_spec; rewrite IHp; auto
- | rewrite Pplus_carry_spec; auto
- | destruct p; simpl in |- *; auto
- | rewrite IHp; auto
- | destruct p; simpl in |- *; auto ].
+ induction p; destruct q; simpl; f_equal;
+ auto using Pplus_one_succ_r; rewrite Pplus_carry_spec; auto.
Qed.
Theorem Pplus_succ_permute_l :
- forall p q:positive, Psucc p + q = Psucc (p + q).
+ forall p q:positive, Psucc p + q = Psucc (p + q).
Proof.
-intros x y; rewrite Pplus_comm; rewrite Pplus_comm with (p := x);
- apply Pplus_succ_permute_r.
+ intros p q; rewrite Pplus_comm, (Pplus_comm p);
+ apply Pplus_succ_permute_r.
Qed.
Theorem Pplus_carry_pred_eq_plus :
- forall p q:positive, q <> xH -> Pplus_carry p (Ppred q) = p + q.
+ forall p q:positive, q <> 1 -> Pplus_carry p (Ppred q) = p + q.
Proof.
-intros q z H; elim (Psucc_pred z);
- [ intro; absurd (z = xH); auto
- | intros E; pattern z at 2 in |- *; rewrite <- E;
- rewrite Pplus_succ_permute_r; rewrite Pplus_carry_spec;
- trivial ].
-Qed.
+ intros p q H; rewrite Pplus_carry_spec, <- Pplus_succ_permute_r; f_equal.
+ destruct (Psucc_pred q); [ elim H; assumption | assumption ].
+Qed.
(** No neutral for addition on strictly positive numbers *)
Lemma Pplus_no_neutral : forall p q:positive, q + p <> p.
Proof.
-intro x; induction x; intro y; destruct y as [y| y| ]; simpl in |- *; intro H;
- discriminate H || injection H; clear H; intro H; apply (IHx y H).
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H;
+ destr_eq H; apply (IHp q H).
Qed.
Lemma Pplus_carry_no_neutral :
- forall p q:positive, Pplus_carry q p <> Psucc p.
+ forall p q:positive, Pplus_carry q p <> Psucc p.
Proof.
-intros x y H; absurd (y + x = x);
- [ apply Pplus_no_neutral
- | apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption ].
+ intros p q H; elim (Pplus_no_neutral p q).
+ apply Psucc_inj; rewrite <- Pplus_carry_spec; assumption.
Qed.
(** Simplification *)
Lemma Pplus_carry_plus :
- forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
+ forall p q r s:positive, Pplus_carry p r = Pplus_carry q s -> p + r = q + s.
Proof.
-intros x y z t H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
- assumption.
+ intros p q r s H; apply Psucc_inj; do 2 rewrite <- Pplus_carry_spec;
+ assumption.
Qed.
Lemma Pplus_reg_r : forall p q r:positive, p + r = q + r -> p = q.
Proof.
-intros x y z; generalize x y; clear x y.
-induction z as [z| z| ].
- destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
- intro H; discriminate H || (try (injection H; clear H; intro H)).
- rewrite IHz with (1 := Pplus_carry_plus _ _ _ _ H); reflexivity.
- absurd (Pplus_carry x z = Psucc z);
- [ apply Pplus_carry_no_neutral | assumption ].
- rewrite IHz with (1 := H); reflexivity.
- symmetry in H; absurd (Pplus_carry y z = Psucc z);
- [ apply Pplus_carry_no_neutral | assumption ].
- reflexivity.
- destruct x as [x| x| ]; intro y; destruct y as [y| y| ]; simpl in |- *;
- intro H; discriminate H || (try (injection H; clear H; intro H)).
- rewrite IHz with (1 := H); reflexivity.
- absurd (x + z = z); [ apply Pplus_no_neutral | assumption ].
- rewrite IHz with (1 := H); reflexivity.
- symmetry in H; absurd (y + z = z);
- [ apply Pplus_no_neutral | assumption ].
- reflexivity.
- intros H x y; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
+ intros p q r; revert p q; induction r.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H;
+ f_equal; auto using Pplus_carry_plus;
+ contradict H; auto using Pplus_carry_no_neutral.
+ intros [p|p| ] [q|q| ] H; simpl; destr_eq H; f_equal; auto;
+ contradict H; auto using Pplus_no_neutral.
+ intros p q H; apply Psucc_inj; do 2 rewrite Pplus_one_succ_r; assumption.
Qed.
Lemma Pplus_reg_l : forall p q r:positive, p + q = p + r -> q = r.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := x);
- rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
- assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=p).
+ rewrite (Pplus_comm r), (Pplus_comm q); assumption.
Qed.
Lemma Pplus_carry_reg_r :
- forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
+ forall p q r:positive, Pplus_carry p r = Pplus_carry q r -> p = q.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := z); apply Pplus_carry_plus;
- assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=r); apply Pplus_carry_plus;
+ assumption.
Qed.
Lemma Pplus_carry_reg_l :
- forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
+ forall p q r:positive, Pplus_carry p q = Pplus_carry p r -> q = r.
Proof.
-intros x y z H; apply Pplus_reg_r with (r := x);
- rewrite Pplus_comm with (p := z); rewrite Pplus_comm with (p := y);
- apply Pplus_carry_plus; assumption.
+ intros p q r H; apply Pplus_reg_r with (r:=p);
+ rewrite (Pplus_comm r), (Pplus_comm q); apply Pplus_carry_plus; assumption.
Qed.
(** Addition on positive is associative *)
Theorem Pplus_assoc : forall p q r:positive, p + (q + r) = p + q + r.
Proof.
-intros x y; generalize x; clear x.
-induction y as [y| y| ]; intro x.
- destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
- repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
- repeat rewrite Pplus_succ_permute_l;
- reflexivity || (repeat apply f_equal with (A := positive));
- apply IHy.
- destruct x as [x| x| ]; intro z; destruct z as [z| z| ]; simpl in |- *;
- repeat rewrite Pplus_carry_spec; repeat rewrite Pplus_succ_permute_r;
- repeat rewrite Pplus_succ_permute_l;
- reflexivity || (repeat apply f_equal with (A := positive));
- apply IHy.
- intro z; rewrite Pplus_comm with (p := xH);
- do 2 rewrite <- Pplus_one_succ_r; rewrite Pplus_succ_permute_l;
- rewrite Pplus_succ_permute_r; reflexivity.
+ induction p.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros [q|q| ] [r|r| ]; simpl; f_equal; auto;
+ rewrite ?Pplus_carry_spec, ?Pplus_succ_permute_r,
+ ?Pplus_succ_permute_l, ?Pplus_one_succ_r; f_equal; auto.
+ intros p r; rewrite <- 2 Pplus_one_succ_l, Pplus_succ_permute_l; auto.
Qed.
(** Commutation of addition with the double of a positive number *)
+Lemma Pplus_xO : forall m n : positive, (m + n)~0 = m~0 + n~0.
+Proof.
+ destruct n; destruct m; simpl; auto.
+Qed.
+
Lemma Pplus_xI_double_minus_one :
- forall p q:positive, xO (p + q) = xI p + Pdouble_minus_one q.
+ forall p q:positive, (p + q)~0 = p~1 + Pdouble_minus_one q.
Proof.
-intros; change (xI p) with (xO p + xH) in |- *.
-rewrite <- Pplus_assoc; rewrite <- Pplus_one_succ_l;
- rewrite Psucc_o_double_minus_one_eq_xO.
-reflexivity.
+ intros; change (p~1) with (p~0 + 1).
+ rewrite <- Pplus_assoc, <- Pplus_one_succ_l, Psucc_o_double_minus_one_eq_xO.
+ reflexivity.
Qed.
Lemma Pplus_xO_double_minus_one :
- forall p q:positive, Pdouble_minus_one (p + q) = xO p + Pdouble_minus_one q.
+ forall p q:positive, Pdouble_minus_one (p + q) = p~0 + Pdouble_minus_one q.
Proof.
-induction p as [p IHp| p IHp| ]; destruct q as [q| q| ]; simpl in |- *;
- try rewrite Pplus_carry_spec; try rewrite Pdouble_minus_one_o_succ_eq_xI;
- try rewrite IHp; try rewrite Pplus_xI_double_minus_one;
- try reflexivity.
- rewrite <- Psucc_o_double_minus_one_eq_xO; rewrite Pplus_one_succ_l;
- reflexivity.
+ induction p as [p IHp| p IHp| ]; destruct q; simpl;
+ rewrite ?Pplus_carry_spec, ?Pdouble_minus_one_o_succ_eq_xI,
+ ?Pplus_xI_double_minus_one; try reflexivity.
+ rewrite IHp; auto.
+ rewrite <- Psucc_o_double_minus_one_eq_xO, Pplus_one_succ_l; reflexivity.
Qed.
(** Misc *)
-Lemma Pplus_diag : forall p:positive, p + p = xO p.
+Lemma Pplus_diag : forall p:positive, p + p = p~0.
Proof.
-intro x; induction x; simpl in |- *; try rewrite Pplus_carry_spec;
- try rewrite IHx; reflexivity.
+ induction p as [p IHp| p IHp| ]; simpl;
+ try rewrite ?Pplus_carry_spec, ?IHp; reflexivity.
Qed.
(**********************************************************************)
-(** Peano induction on binary positive positive numbers *)
+(** Peano induction and recursion on binary positive positive numbers *)
+(** (a nice proof from Conor McBride, see "The view from the left") *)
-Fixpoint plus_iter (x y:positive) {struct x} : positive :=
- match x with
- | xH => Psucc y
- | xO x => plus_iter x (plus_iter x y)
- | xI x => plus_iter x (plus_iter x (Psucc y))
+Inductive PeanoView : positive -> Type :=
+| PeanoOne : PeanoView 1
+| PeanoSucc : forall p, PeanoView p -> PeanoView (Psucc p).
+
+Fixpoint peanoView_xO p (q:PeanoView p) : PeanoView (p~0) :=
+ match q in PeanoView x return PeanoView (x~0) with
+ | PeanoOne => PeanoSucc _ PeanoOne
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xO _ q))
end.
-Lemma plus_iter_eq_plus : forall p q:positive, plus_iter p q = p + q.
-Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; simpl in |- *; reflexivity || (do 2 rewrite IHp);
- rewrite Pplus_assoc; rewrite Pplus_diag; try reflexivity.
-rewrite Pplus_carry_spec; rewrite <- Pplus_succ_permute_r; reflexivity.
-rewrite Pplus_one_succ_r; reflexivity.
-Qed.
+Fixpoint peanoView_xI p (q:PeanoView p) : PeanoView (p~1) :=
+ match q in PeanoView x return PeanoView (x~1) with
+ | PeanoOne => PeanoSucc _ (PeanoSucc _ PeanoOne)
+ | PeanoSucc _ q => PeanoSucc _ (PeanoSucc _ (peanoView_xI _ q))
+ end.
+
+Fixpoint peanoView p : PeanoView p :=
+ match p return PeanoView p with
+ | 1 => PeanoOne
+ | p~0 => peanoView_xO p (peanoView p)
+ | p~1 => peanoView_xI p (peanoView p)
+ end.
-Lemma plus_iter_xO : forall p:positive, plus_iter p p = xO p.
+Definition PeanoView_iter (P:positive->Type)
+ (a:P 1) (f:forall p, P p -> P (Psucc p)) :=
+ (fix iter p (q:PeanoView p) : P p :=
+ match q in PeanoView p return P p with
+ | PeanoOne => a
+ | PeanoSucc _ q => f _ (iter _ q)
+ end).
+
+Require Import Eqdep_dec EqdepFacts.
+
+Theorem eq_dep_eq_positive :
+ forall (P:positive->Type) (p:positive) (x y:P p),
+ eq_dep positive P p x p y -> x = y.
Proof.
-intro; rewrite <- Pplus_diag; apply plus_iter_eq_plus.
+ apply eq_dep_eq_dec.
+ decide equality.
Qed.
-Lemma plus_iter_xI : forall p:positive, Psucc (plus_iter p p) = xI p.
+Theorem PeanoViewUnique : forall p (q q':PeanoView p), q = q'.
Proof.
-intro; rewrite xI_succ_xO; rewrite <- Pplus_diag;
- apply (f_equal (A:=positive)); apply plus_iter_eq_plus.
+ intros.
+ induction q as [ | p q IHq ].
+ apply eq_dep_eq_positive.
+ cut (1=1). pattern 1 at 1 2 5, q'. destruct q'. trivial.
+ destruct p0; intros; discriminate.
+ trivial.
+ apply eq_dep_eq_positive.
+ cut (Psucc p=Psucc p). pattern (Psucc p) at 1 2 5, q'. destruct q'.
+ intro. destruct p; discriminate.
+ intro. unfold p0 in H. apply Psucc_inj in H.
+ generalize q'. rewrite H. intro.
+ rewrite (IHq q'0).
+ trivial.
+ trivial.
Qed.
-Lemma iterate_add :
- forall P:positive -> Type,
- (forall n:positive, P n -> P (Psucc n)) ->
- forall p q:positive, P q -> P (plus_iter p q).
-Proof.
-intros P H; induction p; simpl in |- *; intros.
-apply IHp; apply IHp; apply H; assumption.
-apply IHp; apply IHp; assumption.
-apply H; assumption.
-Defined.
+Definition Prect (P:positive->Type) (a:P 1) (f:forall p, P p -> P (Psucc p))
+ (p:positive) :=
+ PeanoView_iter P a f p (peanoView p).
-(** Peano induction *)
+Theorem Prect_succ : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)) (p:positive),
+ Prect P a f (Psucc p) = f _ (Prect P a f p).
+Proof.
+ intros.
+ unfold Prect.
+ rewrite (PeanoViewUnique _ (peanoView (Psucc p)) (PeanoSucc _ (peanoView p))).
+ trivial.
+Qed.
-Theorem Pind :
- forall P:positive -> Prop,
- P xH -> (forall n:positive, P n -> P (Psucc n)) -> forall p:positive, P p.
+Theorem Prect_base : forall (P:positive->Type) (a:P 1)
+ (f:forall p, P p -> P (Psucc p)), Prect P a f 1 = a.
Proof.
-intros P H1 Hsucc n; induction n.
-rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
-rewrite <- plus_iter_xO; apply iterate_add; assumption.
-assumption.
+ trivial.
Qed.
-(** Peano recursion *)
+Definition Prec (P:positive->Set) := Prect P.
-Definition Prec (A:Set) (a:A) (f:positive -> A -> A) :
- positive -> A :=
- (fix Prec (p:positive) : A :=
- match p with
- | xH => a
- | xO p => iterate_add (fun _ => A) f p p (Prec p)
- | xI p => f (plus_iter p p) (iterate_add (fun _ => A) f p p (Prec p))
- end).
+(** Peano induction *)
+
+Definition Pind (P:positive->Prop) := Prect P.
(** Peano case analysis *)
Theorem Pcase :
- forall P:positive -> Prop,
- P xH -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
+ forall P:positive -> Prop,
+ P 1 -> (forall n:positive, P (Psucc n)) -> forall p:positive, P p.
Proof.
-intros; apply Pind; auto.
+ intros; apply Pind; auto.
Qed.
-(*
-Check
- (let fact := Prec positive xH (fun p r => Psucc p * r) in
- let seven := xI (xI xH) in
- let five_thousand_forty :=
- xO (xO (xO (xO (xI (xI (xO (xI (xI (xI (xO (xO xH))))))))))) in
- refl_equal _:fact seven = five_thousand_forty).
-*)
-
(**********************************************************************)
(** Properties of multiplication on binary positive numbers *)
(** One is right neutral for multiplication *)
-Lemma Pmult_1_r : forall p:positive, p * xH = p.
+Lemma Pmult_1_r : forall p:positive, p * 1 = p.
Proof.
-intro x; induction x; simpl in |- *.
- rewrite IHx; reflexivity.
- rewrite IHx; reflexivity.
+ induction p; simpl; f_equal; auto.
+Qed.
+
+(** Successor and multiplication *)
+
+Lemma Pmult_Sn_m : forall n m : positive, (Psucc n) * m = m + n * m.
+Proof.
+ induction n as [n IHn | n IHn | ]; simpl; intro m.
+ rewrite IHn, Pplus_assoc, Pplus_diag, <-Pplus_xO; reflexivity.
reflexivity.
+ symmetry; apply Pplus_diag.
Qed.
(** Right reduction properties for multiplication *)
-Lemma Pmult_xO_permute_r : forall p q:positive, p * xO q = xO (p * q).
+Lemma Pmult_xO_permute_r : forall p q:positive, p * q~0 = (p * q)~0.
Proof.
-intros x y; induction x; simpl in |- *.
- rewrite IHx; reflexivity.
- rewrite IHx; reflexivity.
- reflexivity.
+ intros p q; induction p; simpl; do 2 (f_equal; auto).
Qed.
-Lemma Pmult_xI_permute_r : forall p q:positive, p * xI q = p + xO (p * q).
+Lemma Pmult_xI_permute_r : forall p q:positive, p * q~1 = p + (p * q)~0.
Proof.
-intros x y; induction x; simpl in |- *.
- rewrite IHx; do 2 rewrite Pplus_assoc; rewrite Pplus_comm with (p := y);
- reflexivity.
- rewrite IHx; reflexivity.
- reflexivity.
+ intros p q; induction p as [p IHp|p IHp| ]; simpl; f_equal; auto.
+ rewrite IHp, 2 Pplus_assoc, (Pplus_comm p); reflexivity.
Qed.
(** Commutativity of multiplication *)
Theorem Pmult_comm : forall p q:positive, p * q = q * p.
Proof.
-intros x y; induction y; simpl in |- *.
- rewrite <- IHy; apply Pmult_xI_permute_r.
- rewrite <- IHy; apply Pmult_xO_permute_r.
- apply Pmult_1_r.
+ intros p q; induction q as [q IHq|q IHq| ]; simpl; try rewrite <- IHq;
+ auto using Pmult_xI_permute_r, Pmult_xO_permute_r, Pmult_1_r.
Qed.
(** Distributivity of multiplication over addition *)
Theorem Pmult_plus_distr_l :
- forall p q r:positive, p * (q + r) = p * q + p * r.
-Proof.
-intros x y z; induction x; simpl in |- *.
- rewrite IHx; rewrite <- Pplus_assoc with (q := xO (x * y));
- rewrite Pplus_assoc with (p := xO (x * y));
- rewrite Pplus_comm with (p := xO (x * y));
- rewrite <- Pplus_assoc with (q := xO (x * y));
- rewrite Pplus_assoc with (q := z); reflexivity.
- rewrite IHx; reflexivity.
+ forall p q r:positive, p * (q + r) = p * q + p * r.
+Proof.
+ intros p q r; induction p as [p IHp|p IHp| ]; simpl.
+ rewrite IHp. set (m:=(p*q)~0). set (n:=(p*r)~0).
+ change ((p*q+p*r)~0) with (m+n).
+ rewrite 2 Pplus_assoc; f_equal.
+ rewrite <- 2 Pplus_assoc; f_equal.
+ apply Pplus_comm.
+ f_equal; auto.
reflexivity.
Qed.
Theorem Pmult_plus_distr_r :
- forall p q r:positive, (p + q) * r = p * r + q * r.
+ forall p q r:positive, (p + q) * r = p * r + q * r.
Proof.
-intros x y z; do 3 rewrite Pmult_comm with (q := z); apply Pmult_plus_distr_l.
+ intros p q r; do 3 rewrite Pmult_comm with (q:=r); apply Pmult_plus_distr_l.
Qed.
(** Associativity of multiplication *)
Theorem Pmult_assoc : forall p q r:positive, p * (q * r) = p * q * r.
Proof.
-intro x; induction x as [x| x| ]; simpl in |- *; intros y z.
- rewrite IHx; rewrite Pmult_plus_distr_r; reflexivity.
- rewrite IHx; reflexivity.
+ induction p as [p IHp| p IHp | ]; simpl; intros q r.
+ rewrite IHp; rewrite Pmult_plus_distr_r; reflexivity.
+ rewrite IHp; reflexivity.
reflexivity.
Qed.
(** Parity properties of multiplication *)
-Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, xI p * r <> xO q * r.
+Lemma Pmult_xI_mult_xO_discr : forall p q r:positive, p~1 * r <> q~0 * r.
Proof.
-intros x y z; induction z as [| z IHz| ]; try discriminate.
-intro H; apply IHz; clear IHz.
-do 2 rewrite Pmult_xO_permute_r in H.
-injection H; clear H; intro H; exact H.
+ intros p q r; induction r; try discriminate.
+ rewrite 2 Pmult_xO_permute_r; intro H; destr_eq H; auto.
Qed.
-Lemma Pmult_xO_discr : forall p q:positive, xO p * q <> q.
+Lemma Pmult_xO_discr : forall p q:positive, p~0 * q <> q.
Proof.
-intros x y; induction y; try discriminate.
-rewrite Pmult_xO_permute_r; injection; assumption.
+ intros p q; induction q; try discriminate.
+ rewrite Pmult_xO_permute_r; injection; assumption.
Qed.
(** Simplification properties of multiplication *)
Theorem Pmult_reg_r : forall p q r:positive, p * r = q * r -> p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- intros z H; reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
- simpl in H; apply IHp with (xO z); simpl in |- *;
- do 2 rewrite Pmult_xO_permute_r; apply Pplus_reg_l with (1 := H).
- apply Pmult_xI_mult_xO_discr with (1 := H).
- simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1 := H).
- symmetry in H; apply Pmult_xI_mult_xO_discr with (1 := H).
- apply IHp with (xO z); simpl in |- *; do 2 rewrite Pmult_xO_permute_r;
- assumption.
- apply Pmult_xO_discr with (1 := H).
- simpl in H; symmetry in H; rewrite Pplus_comm in H;
- apply Pplus_no_neutral with (1 := H).
- symmetry in H; apply Pmult_xO_discr with (1 := H).
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] r H;
+ reflexivity || apply (f_equal (A:=positive)) || apply False_ind.
+ apply IHp with (r~0); simpl in *;
+ rewrite 2 Pmult_xO_permute_r; apply Pplus_reg_l with (1:=H).
+ apply Pmult_xI_mult_xO_discr with (1:=H).
+ simpl in H; rewrite Pplus_comm in H; apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xI_mult_xO_discr with (1:=H).
+ apply IHp with (r~0); simpl; rewrite 2 Pmult_xO_permute_r; assumption.
+ apply Pmult_xO_discr with (1:= H).
+ simpl in H; symmetry in H; rewrite Pplus_comm in H;
+ apply Pplus_no_neutral with (1:=H).
+ symmetry in H; apply Pmult_xO_discr with (1:=H).
Qed.
Theorem Pmult_reg_l : forall p q r:positive, r * p = r * q -> p = q.
Proof.
-intros x y z H; apply Pmult_reg_r with (r := z).
-rewrite Pmult_comm with (p := x); rewrite Pmult_comm with (p := y);
- assumption.
+ intros p q r H; apply Pmult_reg_r with (r:=r).
+ rewrite (Pmult_comm p), (Pmult_comm q); assumption.
Qed.
(** Inversion of multiplication *)
-Lemma Pmult_1_inversion_l : forall p q:positive, p * q = xH -> p = xH.
+Lemma Pmult_1_inversion_l : forall p q:positive, p * q = 1 -> p = 1.
Proof.
-intros x y; destruct x as [p| p| ]; simpl in |- *.
- destruct y as [p0| p0| ]; intro; discriminate.
- intro; discriminate.
- reflexivity.
+ intros [p|p| ] [q|q| ] H; destr_eq H; auto.
Qed.
(**********************************************************************)
(** Properties of comparison on binary positive numbers *)
+Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
+ induction p; auto.
+Qed.
+
+(* A generalization of Pcompare_refl *)
+
+Theorem Pcompare_refl_id : forall (p : positive) (r : comparison), (p ?= p) r = r.
+ induction p; auto.
+Qed.
+
Theorem Pcompare_not_Eq :
- forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
+ forall p q:positive, (p ?= q) Gt <> Eq /\ (p ?= q) Lt <> Eq.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- split; simpl in |- *; auto; discriminate || (elim (IHp q); auto).
+ induction p as [p IHp| p IHp| ]; intros [q| q| ]; split; simpl; auto;
+ discriminate || (elim (IHp q); auto).
Qed.
Theorem Pcompare_Eq_eq : forall p q:positive, (p ?= q) Eq = Eq -> p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; intro H;
- [ rewrite (IHp q); trivial
- | absurd ((p ?= q) Gt = Eq);
- [ elim (Pcompare_not_Eq p q); auto | assumption ]
- | discriminate H
- | absurd ((p ?= q) Lt = Eq);
- [ elim (Pcompare_not_Eq p q); auto | assumption ]
- | rewrite (IHp q); auto
- | discriminate H
- | discriminate H
- | discriminate H ].
+ induction p; intros [q| q| ] H; simpl in *; auto;
+ try discriminate H; try (f_equal; auto; fail).
+ destruct (Pcompare_not_Eq p q) as (H',_); elim H'; auto.
+ destruct (Pcompare_not_Eq p q) as (_,H'); elim H'; auto.
Qed.
Lemma Pcompare_Gt_Lt :
- forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
+ forall p q:positive, (p ?= q) Gt = Lt -> (p ?= q) Eq = Lt.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
- [ induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
- auto; discriminate || intros H; discriminate H.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Lt :
+ forall p q : positive, (p ?= q) Eq = Lt <-> (p ?= q) Gt = Lt.
+Proof.
+ intros p q; split; [| apply Pcompare_Gt_Lt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.
Lemma Pcompare_Lt_Gt :
- forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
+ forall p q:positive, (p ?= q) Lt = Gt -> (p ?= q) Eq = Gt.
Proof.
-intro x; induction x as [x Hrecx| x Hrecx| ]; intro y;
- [ induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ]
- | induction y as [y Hrecy| y Hrecy| ] ]; simpl in |- *;
- auto; discriminate || intros H; discriminate H.
+ induction p; intros [q|q| ] H; simpl; auto; discriminate.
+Qed.
+
+Lemma Pcompare_eq_Gt :
+ forall p q : positive, (p ?= q) Eq = Gt <-> (p ?= q) Lt = Gt.
+Proof.
+ intros p q; split; [| apply Pcompare_Lt_Gt].
+ revert q; induction p; intros [q|q| ] H; simpl; auto; discriminate.
Qed.
Lemma Pcompare_Lt_Lt :
- forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
+ forall p q:positive, (p ?= q) Lt = Lt -> (p ?= q) Eq = Lt \/ p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
- auto; intros E; rewrite E; auto.
+ induction p as [p IHp| p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Lt_eq_Lt :
+ forall p q:positive, (p ?= q) Lt = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split; [apply Pcompare_Lt_Lt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
Qed.
Lemma Pcompare_Gt_Gt :
- forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+ forall p q:positive, (p ?= q) Gt = Gt -> (p ?= q) Eq = Gt \/ p = q.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ destruct (IHp q H); subst; auto.
+Qed.
+
+Lemma Pcompare_Gt_eq_Gt :
+ forall p q:positive, (p ?= q) Gt = Gt <-> (p ?= q) Eq = Gt \/ p = q.
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; auto; try discriminate; intro H2; elim (IHp q H2);
- auto; intros E; rewrite E; auto.
+ intros p q; split; [apply Pcompare_Gt_Gt |].
+ intros [H|H]; [|subst; apply Pcompare_refl_id].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; discriminate.
Qed.
Lemma Dcompare : forall r:comparison, r = Eq \/ r = Lt \/ r = Gt.
Proof.
-simple induction r; auto.
+ destruct r; auto.
Qed.
Ltac ElimPcompare c1 c2 :=
elim (Dcompare ((c1 ?= c2) Eq));
- [ idtac | let x := fresh "H" in
- (intro x; case x; clear x) ].
-
-Theorem Pcompare_refl : forall p:positive, (p ?= p) Eq = Eq.
-intro x; induction x as [x Hrecx| x Hrecx| ]; auto.
-Qed.
+ [ idtac | let x := fresh "H" in (intro x; case x; clear x) ].
Lemma Pcompare_antisym :
- forall (p q:positive) (r:comparison),
- CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
+ forall (p q:positive) (r:comparison),
+ CompOpp ((p ?= q) r) = (q ?= p) (CompOpp r).
Proof.
-intro x; induction x as [p IHp| p IHp| ]; intro y;
- [ destruct y as [p0| p0| ]
- | destruct y as [p0| p0| ]
- | destruct y as [p| p| ] ]; intro r;
- reflexivity ||
- (symmetry in |- *; assumption) || discriminate H || simpl in |- *;
- apply IHp || (try rewrite IHp); try reflexivity.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] r; simpl; auto;
+ rewrite IHp; auto.
Qed.
Lemma ZC1 : forall p q:positive, (p ?= q) Eq = Gt -> (q ?= p) Eq = Lt.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC2 : forall p q:positive, (p ?= q) Eq = Lt -> (q ?= p) Eq = Gt.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC3 : forall p q:positive, (p ?= q) Eq = Eq -> (q ?= p) Eq = Eq.
Proof.
-intros; change Eq with (CompOpp Eq) in |- *.
-rewrite <- Pcompare_antisym; rewrite H; reflexivity.
+ intros p q H; change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym, H; reflexivity.
Qed.
Lemma ZC4 : forall p q:positive, (p ?= q) Eq = CompOpp ((q ?= p) Eq).
Proof.
-intros; change Eq at 1 with (CompOpp Eq) in |- *.
-symmetry in |- *; apply Pcompare_antisym.
+ intros; change Eq at 1 with (CompOpp Eq).
+ symmetry; apply Pcompare_antisym.
+Qed.
+
+(** Comparison and the successor *)
+
+Lemma Pcompare_p_Sp : forall p : positive, (p ?= Psucc p) Eq = Lt.
+Proof.
+ induction p; simpl in *;
+ [ elim (Pcompare_eq_Lt p (Psucc p)); auto |
+ apply Pcompare_refl_id | reflexivity].
+Qed.
+
+Theorem Pcompare_p_Sq : forall p q : positive,
+ (p ?= Psucc q) Eq = Lt <-> (p ?= q) Eq = Lt \/ p = q.
+Proof.
+ intros p q; split.
+ (* -> *)
+ revert p q; induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *;
+ try (left; reflexivity); try (right; reflexivity).
+ destruct (IHp q (Pcompare_Gt_Lt _ _ H)); subst; auto.
+ destruct (Pcompare_eq_Lt p q); auto.
+ destruct p; discriminate.
+ left; destruct (IHp q H);
+ [ elim (Pcompare_Lt_eq_Lt p q); auto | subst; apply Pcompare_refl_id].
+ destruct (Pcompare_Lt_Lt p q H); subst; auto.
+ destruct p; discriminate.
+ (* <- *)
+ intros [H|H]; [|subst; apply Pcompare_p_Sp].
+ revert q H; induction p; intros [q|q| ] H; simpl in *;
+ auto; try discriminate.
+ destruct (Pcompare_eq_Lt p (Psucc q)); auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt p q H); subst; auto using Pcompare_p_Sp.
+ destruct (Pcompare_Lt_eq_Lt p q); auto.
+Qed.
+
+(** 1 is the least positive number *)
+
+Lemma Pcompare_1 : forall p, ~ (p ?= 1) Eq = Lt.
+Proof.
+ destruct p; discriminate.
+Qed.
+
+(** Properties of the strict order on positive numbers *)
+
+Lemma Plt_1 : forall p, ~ p < 1.
+Proof.
+ exact Pcompare_1.
+Qed.
+
+Lemma Plt_lt_succ : forall n m : positive, n < m -> n < Psucc m.
+Proof.
+ unfold Plt; intros n m H; apply <- Pcompare_p_Sq; auto.
+Qed.
+
+Lemma Plt_irrefl : forall p : positive, ~ p < p.
+Proof.
+ unfold Plt; intro p; rewrite Pcompare_refl; discriminate.
+Qed.
+
+Lemma Plt_trans : forall n m p : positive, n < m -> m < p -> n < p.
+Proof.
+ intros n m p; induction p using Pind; intros H H0.
+ elim (Plt_1 _ H0).
+ apply Plt_lt_succ.
+ destruct (Pcompare_p_Sq m p) as (H',_); destruct (H' H0); subst; auto.
+Qed.
+
+Theorem Plt_ind : forall (A : positive -> Prop) (n : positive),
+ A (Psucc n) ->
+ (forall m : positive, n < m -> A m -> A (Psucc m)) ->
+ forall m : positive, n < m -> A m.
+Proof.
+ intros A n AB AS m. induction m using Pind; intros H.
+ elim (Plt_1 _ H).
+ destruct (Pcompare_p_Sq n m) as (H',_); destruct (H' H); subst; auto.
Qed.
(**********************************************************************)
(** Properties of subtraction on binary positive numbers *)
+Lemma Ppred_minus : forall p, Ppred p = Pminus p 1.
+Proof.
+ destruct p; auto.
+Qed.
+
+Definition Ppred_mask (p : positive_mask) :=
+match p with
+| IsPos 1 => IsNul
+| IsPos q => IsPos (Ppred q)
+| IsNul => IsNeg
+| IsNeg => IsNeg
+end.
+
+Lemma Pminus_mask_succ_r :
+ forall p q : positive, Pminus_mask p (Psucc q) = Pminus_mask_carry p q.
+Proof.
+ induction p ; destruct q; simpl; f_equal; auto; destruct p; auto.
+Qed.
+
+Theorem Pminus_mask_carry_spec :
+ forall p q : positive, Pminus_mask_carry p q = Ppred_mask (Pminus_mask p q).
+Proof.
+ induction p as [p IHp|p IHp| ]; destruct q; simpl;
+ try reflexivity; try rewrite IHp;
+ destruct (Pminus_mask p q) as [|[r|r| ]|] || destruct p; auto.
+Qed.
+
+Theorem Pminus_succ_r : forall p q : positive, p - (Psucc q) = Ppred (p - q).
+Proof.
+ intros p q; unfold Pminus;
+ rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+ destruct (Pminus_mask p q) as [|[r|r| ]|]; auto.
+Qed.
+
Lemma double_eq_zero_inversion :
- forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
+ forall p:positive_mask, Pdouble_mask p = IsNul -> p = IsNul.
Proof.
-destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+ destruct p; simpl; intros; trivial; discriminate.
Qed.
Lemma double_plus_one_zero_discr :
- forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
+ forall p:positive_mask, Pdouble_plus_one_mask p <> IsNul.
Proof.
-simple induction p; intros; discriminate.
+ destruct p; discriminate.
Qed.
Lemma double_plus_one_eq_one_inversion :
- forall p:positive_mask, Pdouble_plus_one_mask p = IsPos xH -> p = IsNul.
+ forall p:positive_mask, Pdouble_plus_one_mask p = IsPos 1 -> p = IsNul.
Proof.
-destruct p; simpl in |- *; [ trivial | discriminate 1 | discriminate 1 ].
+ destruct p; simpl; intros; trivial; discriminate.
Qed.
Lemma double_eq_one_discr :
- forall p:positive_mask, Pdouble_mask p <> IsPos xH.
+ forall p:positive_mask, Pdouble_mask p <> IsPos 1.
Proof.
-simple induction p; intros; discriminate.
+ destruct p; discriminate.
Qed.
Theorem Pminus_mask_diag : forall p:positive, Pminus_mask p p = IsNul.
Proof.
-intro x; induction x as [p IHp| p IHp| ];
- [ simpl in |- *; rewrite IHp; simpl in |- *; trivial
- | simpl in |- *; rewrite IHp; auto
- | auto ].
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_carry_diag : forall p, Pminus_mask_carry p p = IsNeg.
+Proof.
+ induction p as [p IHp| p IHp| ]; simpl; try rewrite IHp; auto.
+Qed.
+
+Lemma Pminus_mask_IsNeg : forall p q:positive,
+ Pminus_mask p q = IsNeg -> Pminus_mask_carry p q = IsNeg.
+Proof.
+ induction p as [p IHp|p IHp| ]; intros [q|q| ] H; simpl in *; auto;
+ try discriminate; unfold Pdouble_mask, Pdouble_plus_one_mask in H;
+ specialize IHp with q.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
+ destruct (Pminus_mask p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask_carry p q); simpl; auto; try discriminate.
+ destruct (Pminus_mask p q); try discriminate; rewrite IHp; auto.
Qed.
Lemma ZL10 :
- forall p q:positive,
- Pminus_mask p q = IsPos xH -> Pminus_mask_carry p q = IsNul.
-Proof.
-intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; intro H; try discriminate H;
- [ absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
- [ apply double_eq_one_discr | assumption ]
- | assert (Heq : Pminus_mask p q = IsNul);
- [ apply double_plus_one_eq_one_inversion; assumption
- | rewrite Heq; reflexivity ]
- | assert (Heq : Pminus_mask_carry p q = IsNul);
- [ apply double_plus_one_eq_one_inversion; assumption
- | rewrite Heq; reflexivity ]
- | absurd (Pdouble_mask (Pminus_mask p q) = IsPos xH);
- [ apply double_eq_one_discr | assumption ]
- | destruct p; simpl in |- *;
- [ discriminate H | discriminate H | reflexivity ] ].
+ forall p q:positive,
+ Pminus_mask p q = IsPos 1 -> Pminus_mask_carry p q = IsNul.
+Proof.
+ induction p; intros [q|q| ] H; simpl in *; try discriminate.
+ elim (double_eq_one_discr _ H).
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ rewrite (double_plus_one_eq_one_inversion _ H); auto.
+ elim (double_eq_one_discr _ H).
+ destruct p; simpl; auto; discriminate.
Qed.
(** Properties of subtraction valid only for x>y *)
Lemma Pminus_mask_Gt :
- forall p q:positive,
- (p ?= q) Eq = Gt ->
+ forall p q:positive,
+ (p ?= q) Eq = Gt ->
exists h : positive,
- Pminus_mask p q = IsPos h /\
- q + h = p /\ (h = xH \/ Pminus_mask_carry p q = IsPos (Ppred h)).
-Proof.
-intro x; induction x as [p| p| ]; intro y; destruct y as [q| q| ];
- simpl in |- *; intro H; try discriminate H.
- destruct (IHp q H) as [z [H4 [H6 H7]]]; exists (xO z); split.
- rewrite H4; reflexivity.
- split.
- simpl in |- *; rewrite H6; reflexivity.
- right; clear H6; destruct (ZL11 z) as [H8| H8];
- [ rewrite H8; rewrite H8 in H4; rewrite ZL10;
- [ reflexivity | assumption ]
- | clear H4; destruct H7 as [H9| H9];
- [ absurd (z = xH); assumption
- | rewrite H9; clear H9; destruct z as [p0| p0| ];
- [ reflexivity | reflexivity | absurd (xH = xH); trivial ] ] ].
- case Pcompare_Gt_Gt with (1 := H);
- [ intros H3; elim (IHp q H3); intros z H4; exists (xI z); elim H4;
- intros H5 H6; elim H6; intros H7 H8; split;
- [ simpl in |- *; rewrite H5; auto
- | split;
- [ simpl in |- *; rewrite H7; trivial
- | right;
- change (Pdouble_mask (Pminus_mask p q) = IsPos (Ppred (xI z)))
- in |- *; rewrite H5; auto ] ]
- | intros H3; exists xH; rewrite H3; split;
- [ simpl in |- *; rewrite Pminus_mask_diag; auto | split; auto ] ].
- exists (xO p); auto.
- destruct (IHp q) as [z [H4 [H6 H7]]].
- apply Pcompare_Lt_Gt; assumption.
- destruct (ZL11 z) as [vZ| ];
- [ exists xH; split;
- [ rewrite ZL10; [ reflexivity | rewrite vZ in H4; assumption ]
- | split;
- [ simpl in |- *; rewrite Pplus_one_succ_r; rewrite <- vZ;
- rewrite H6; trivial
- | auto ] ]
- | exists (xI (Ppred z)); destruct H7 as [| H8];
- [ absurd (z = xH); assumption
- | split;
- [ rewrite H8; trivial
- | split;
- [ simpl in |- *; rewrite Pplus_carry_pred_eq_plus;
- [ rewrite H6; trivial | assumption ]
- | right; rewrite H8; reflexivity ] ] ] ].
- destruct (IHp q H) as [z [H4 [H6 H7]]].
- exists (xO z); split;
- [ rewrite H4; auto
- | split;
- [ simpl in |- *; rewrite H6; reflexivity
- | right;
- change
- (Pdouble_plus_one_mask (Pminus_mask_carry p q) =
- IsPos (Pdouble_minus_one z)) in |- *;
- destruct (ZL11 z) as [H8| H8];
- [ rewrite H8; simpl in |- *;
- assert (H9 : Pminus_mask_carry p q = IsNul);
- [ apply ZL10; rewrite <- H8; assumption
- | rewrite H9; reflexivity ]
- | destruct H7 as [H9| H9];
- [ absurd (z = xH); auto
- | rewrite H9; destruct z as [p0| p0| ]; simpl in |- *;
- [ reflexivity
- | reflexivity
- | absurd (xH = xH); [ assumption | reflexivity ] ] ] ] ] ].
- exists (Pdouble_minus_one p); split;
- [ reflexivity
- | clear IHp; split;
- [ destruct p; simpl in |- *;
- [ reflexivity
- | rewrite Psucc_o_double_minus_one_eq_xO; reflexivity
- | reflexivity ]
- | destruct p; [ right | right | left ]; reflexivity ] ].
+ Pminus_mask p q = IsPos h /\
+ q + h = p /\ (h = 1 \/ Pminus_mask_carry p q = IsPos (Ppred h)).
+Proof.
+ induction p as [p IHp| p IHp| ]; intros [q| q| ] H; simpl in *;
+ try discriminate H.
+ (* p~1, q~1 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~1, q~0 *)
+ destruct (Pcompare_Gt_Gt _ _ H) as [H'|H']; clear H; rename H' into H.
+ destruct (IHp q H) as (r & U & V & W); exists (r~1); rewrite ?U, ?V; auto.
+ exists 1; subst; rewrite Pminus_mask_diag; auto.
+ (* p~1, 1 *)
+ exists (p~0); auto.
+ (* p~0, q~1 *)
+ destruct (IHp q (Pcompare_Lt_Gt _ _ H)) as (r & U & V & W).
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ exists 1; subst; rewrite ZL10, Pplus_one_succ_r; auto.
+ exists ((Ppred r)~1); rewrite W, Pplus_carry_pred_eq_plus, V; auto.
+ (* p~0, q~0 *)
+ destruct (IHp q H) as (r & U & V & W); exists (r~0); rewrite ?U, ?V; auto.
+ repeat split; auto; right.
+ destruct (ZL11 r) as [EQ|NE]; [|destruct W as [|W]; [elim NE; auto|]].
+ rewrite ZL10; subst; auto.
+ rewrite W; simpl; destruct r; auto; elim NE; auto.
+ (* p~0, 1 *)
+ exists (Pdouble_minus_one p); repeat split; destruct p; simpl; auto.
+ rewrite Psucc_o_double_minus_one_eq_xO; auto.
Qed.
Theorem Pplus_minus :
- forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+ forall p q:positive, (p ?= q) Eq = Gt -> q + (p - q) = p.
+Proof.
+ intros p q H; destruct (Pminus_mask_Gt p q H) as (r & U & V & _).
+ unfold Pminus; rewrite U; simpl; auto.
+Qed.
+
+(** When x<y, the substraction of x by y returns 1 *)
+
+Lemma Pminus_mask_Lt : forall p q:positive, p<q -> Pminus_mask p q = IsNeg.
+Proof.
+ unfold Plt; induction p as [p IHp|p IHp| ]; destruct q; simpl; intros;
+ try discriminate; try rewrite IHp; auto.
+ apply Pcompare_Gt_Lt; auto.
+ destruct (Pcompare_Lt_Lt _ _ H).
+ rewrite Pminus_mask_IsNeg; simpl; auto.
+ subst; rewrite Pminus_mask_carry_diag; auto.
+Qed.
+
+Lemma Pminus_Lt : forall p q:positive, p<q -> p-q = 1.
Proof.
-intros x y H; elim Pminus_mask_Gt with (1 := H); intros z H1; elim H1;
- intros H2 H3; elim H3; intros H4 H5; unfold Pminus in |- *;
- rewrite H2; exact H4.
+ intros; unfold Plt, Pminus; rewrite Pminus_mask_Lt; auto.
Qed.
+
+(** The substraction of x by x returns 1 *)
+
+Lemma Pminus_Eq : forall p:positive, p-p = 1.
+Proof.
+ intros; unfold Pminus; rewrite Pminus_mask_diag; auto.
+Qed.
+
+(** Number of digits in a number *)
+
+Fixpoint Psize (p:positive) : nat :=
+ match p with
+ | 1 => S O
+ | p~1 => S (Psize p)
+ | p~0 => S (Psize p)
+ end.
+
+Lemma Psize_monotone : forall p q, (p?=q) Eq = Lt -> (Psize p <= Psize q)%nat.
+Proof.
+ assert (le0 : forall n, (0<=n)%nat) by (induction n; auto).
+ assert (leS : forall n m, (n<=m -> S n <= S m)%nat) by (induction 1; auto).
+ induction p; destruct q; simpl; auto; intros; try discriminate.
+ intros; generalize (Pcompare_Gt_Lt _ _ H); auto.
+ intros; destruct (Pcompare_Lt_Lt _ _ H); auto; subst; auto.
+Qed.
+
+
+
+
+
diff --git a/theories/NArith/NArith.v b/theories/NArith/NArith.v
index 019ef5f7..6ece00d7 100644
--- a/theories/NArith/NArith.v
+++ b/theories/NArith/NArith.v
@@ -6,11 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: NArith.v 9210 2006-10-05 10:12:15Z barras $ *)
+(* $Id: NArith.v 10751 2008-04-04 10:23:35Z herbelin $ *)
(** Library for binary natural numbers *)
Require Export BinPos.
Require Export BinNat.
+Require Export Nnat.
+Require Export Ndigits.
Require Export NArithRing.
diff --git a/theories/NArith/Ndec.v b/theories/NArith/Ndec.v
index df2da25b..5bd9a378 100644
--- a/theories/NArith/Ndec.v
+++ b/theories/NArith/Ndec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndec.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
+(*i $Id: Ndec.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Bool.
Require Import Sumbool.
@@ -37,6 +37,13 @@ Proof.
induction p; destruct p'; simpl; intros; try discriminate; auto.
Qed.
+Lemma Peqb_complete : forall p p', Peqb p p' = true -> p = p'.
+Proof.
+ intros.
+ apply Pcompare_Eq_eq.
+ apply Peqb_Pcompare; auto.
+Qed.
+
Lemma Pcompare_Peqb : forall p p', Pcompare p p' Eq = Eq -> Peqb p p' = true.
Proof.
intros; rewrite <- (Pcompare_Eq_eq _ _ H).
@@ -208,205 +215,220 @@ Qed.
(** A boolean order on [N] *)
-Definition Nle (a b:N) := leb (nat_of_N a) (nat_of_N b).
+Definition Nleb (a b:N) := leb (nat_of_N a) (nat_of_N b).
-Lemma Nle_Ncompare : forall a b, Nle a b = true <-> Ncompare a b <> Gt.
+Lemma Nleb_Nle : forall a b, Nleb a b = true <-> Nle a b.
Proof.
- intros; rewrite nat_of_Ncompare.
- unfold Nle; apply leb_compare.
+ intros; unfold Nle; rewrite nat_of_Ncompare.
+ unfold Nleb; apply leb_compare.
Qed.
-Lemma Nle_refl : forall a, Nle a a = true.
+Lemma Nleb_refl : forall a, Nleb a a = true.
Proof.
- intro. unfold Nle in |- *. apply leb_correct. apply le_n.
+ intro. unfold Nleb in |- *. apply leb_correct. apply le_n.
Qed.
-Lemma Nle_antisym :
- forall a b, Nle a b = true -> Nle b a = true -> a = b.
+Lemma Nleb_antisym :
+ forall a b, Nleb a b = true -> Nleb b a = true -> a = b.
Proof.
- unfold Nle in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
+ unfold Nleb in |- *. intros. rewrite <- (N_of_nat_of_N a). rewrite <- (N_of_nat_of_N b).
rewrite (le_antisym _ _ (leb_complete _ _ H) (leb_complete _ _ H0)). reflexivity.
Qed.
-Lemma Nle_trans :
- forall a b c, Nle a b = true -> Nle b c = true -> Nle a c = true.
+Lemma Nleb_trans :
+ forall a b c, Nleb a b = true -> Nleb b c = true -> Nleb a c = true.
Proof.
- unfold Nle in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct. apply le_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete. assumption.
Qed.
-Lemma Nle_lt_trans :
+Lemma Nleb_ltb_trans :
forall a b c,
- Nle a b = true -> Nle c b = false -> Nle c a = false.
+ Nleb a b = true -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply le_lt_trans with (m := nat_of_N b).
apply leb_complete. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nlt_le_trans :
+Lemma Nltb_leb_trans :
forall a b c,
- Nle b a = false -> Nle b c = true -> Nle c a = false.
+ Nleb b a = false -> Nleb b c = true -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_le_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete. assumption.
Qed.
-Lemma Nlt_trans :
+Lemma Nltb_trans :
forall a b c,
- Nle b a = false -> Nle c b = false -> Nle c a = false.
+ Nleb b a = false -> Nleb c b = false -> Nleb c a = false.
Proof.
- unfold Nle in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
+ unfold Nleb in |- *. intros. apply leb_correct_conv. apply lt_trans with (m := nat_of_N b).
apply leb_complete_conv. assumption.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nlt_le_weak : forall a b:N, Nle b a = false -> Nle a b = true.
+Lemma Nltb_leb_weak : forall a b:N, Nleb b a = false -> Nleb a b = true.
Proof.
- unfold Nle in |- *. intros. apply leb_correct. apply lt_le_weak.
+ unfold Nleb in |- *. intros. apply leb_correct. apply lt_le_weak.
apply leb_complete_conv. assumption.
Qed.
-Lemma Nle_double_mono :
+Lemma Nleb_double_mono :
forall a b,
- Nle a b = true -> Nle (Ndouble a) (Ndouble b) = true.
+ Nleb a b = true -> Nleb (Ndouble a) (Ndouble b) = true.
Proof.
- unfold Nle in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
+ unfold Nleb in |- *. intros. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. apply leb_correct.
simpl in |- *. apply plus_le_compat. apply leb_complete. assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
-Lemma Nle_double_plus_one_mono :
+Lemma Nleb_double_plus_one_mono :
forall a b,
- Nle a b = true ->
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
+ Nleb a b = true ->
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true.
Proof.
- unfold Nle in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
+ unfold Nleb in |- *. intros. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
apply leb_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply leb_complete.
assumption.
apply plus_le_compat. apply leb_complete. assumption.
apply le_n.
Qed.
-Lemma Nle_double_mono_conv :
+Lemma Nleb_double_mono_conv :
forall a b,
- Nle (Ndouble a) (Ndouble b) = true -> Nle a b = true.
+ Nleb (Ndouble a) (Ndouble b) = true -> Nleb a b = true.
Proof.
- unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
+ unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble. rewrite nat_of_Ndouble. intro.
apply leb_correct. apply (mult_S_le_reg_l 1). apply leb_complete. assumption.
Qed.
-Lemma Nle_double_plus_one_mono_conv :
+Lemma Nleb_double_plus_one_mono_conv :
forall a b,
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
- Nle a b = true.
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = true ->
+ Nleb a b = true.
Proof.
- unfold Nle in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
+ unfold Nleb in |- *. intros a b. rewrite nat_of_Ndouble_plus_one. rewrite nat_of_Ndouble_plus_one.
intro. apply leb_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply leb_complete.
assumption.
Qed.
-Lemma Nlt_double_mono :
+Lemma Nltb_double_mono :
forall a b,
- Nle a b = false -> Nle (Ndouble a) (Ndouble b) = false.
+ Nleb a b = false -> Nleb (Ndouble a) (Ndouble b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nle (Ndouble a) (Ndouble b))). intro H0.
- rewrite (Nle_double_mono_conv _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb (Ndouble a) (Ndouble b))). intro H0.
+ rewrite (Nleb_double_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nlt_double_plus_one_mono :
+Lemma Nltb_double_plus_one_mono :
forall a b,
- Nle a b = false ->
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
+ Nleb a b = false ->
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false.
Proof.
- intros. elim (sumbool_of_bool (Nle (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
- rewrite (Nle_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb (Ndouble_plus_one a) (Ndouble_plus_one b))). intro H0.
+ rewrite (Nleb_double_plus_one_mono_conv _ _ H0) in H. discriminate H.
trivial.
Qed.
-Lemma Nlt_double_mono_conv :
+Lemma Nltb_double_mono_conv :
forall a b,
- Nle (Ndouble a) (Ndouble b) = false -> Nle a b = false.
+ Nleb (Ndouble a) (Ndouble b) = false -> Nleb a b = false.
Proof.
- intros. elim (sumbool_of_bool (Nle a b)). intro H0. rewrite (Nle_double_mono _ _ H0) in H.
+ intros. elim (sumbool_of_bool (Nleb a b)). intro H0. rewrite (Nleb_double_mono _ _ H0) in H.
discriminate H.
trivial.
Qed.
-Lemma Nlt_double_plus_one_mono_conv :
+Lemma Nltb_double_plus_one_mono_conv :
forall a b,
- Nle (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
- Nle a b = false.
+ Nleb (Ndouble_plus_one a) (Ndouble_plus_one b) = false ->
+ Nleb a b = false.
Proof.
- intros. elim (sumbool_of_bool (Nle a b)). intro H0.
- rewrite (Nle_double_plus_one_mono _ _ H0) in H. discriminate H.
+ intros. elim (sumbool_of_bool (Nleb a b)). intro H0.
+ rewrite (Nleb_double_plus_one_mono _ _ H0) in H. discriminate H.
trivial.
Qed.
-(* A [min] function over [N] *)
+(* An alternate [min] function over [N] *)
-Definition Nmin (a b:N) := if Nle a b then a else b.
+Definition Nmin' (a b:N) := if Nleb a b then a else b.
+
+Lemma Nmin_Nmin' : forall a b, Nmin a b = Nmin' a b.
+Proof.
+ unfold Nmin, Nmin', Nleb; intros.
+ rewrite nat_of_Ncompare.
+ generalize (leb_compare (nat_of_N a) (nat_of_N b));
+ destruct (nat_compare (nat_of_N a) (nat_of_N b));
+ destruct (leb (nat_of_N a) (nat_of_N b)); intuition.
+ lapply H1; intros; discriminate.
+ lapply H1; intros; discriminate.
+Qed.
Lemma Nmin_choice : forall a b, {Nmin a b = a} + {Nmin a b = b}.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. left. rewrite H.
- reflexivity.
- intro H. right. rewrite H. reflexivity.
+ unfold Nmin in *; intros; destruct (Ncompare a b); auto.
Qed.
-Lemma Nmin_le_1 : forall a b, Nle (Nmin a b) a = true.
+Lemma Nmin_le_1 : forall a b, Nleb (Nmin a b) a = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H.
- apply Nle_refl.
- intro H. rewrite H. apply Nlt_le_weak. assumption.
+ intros; rewrite Nmin_Nmin'.
+ unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H.
+ apply Nleb_refl.
+ intro H. rewrite H. apply Nltb_leb_weak. assumption.
Qed.
-Lemma Nmin_le_2 : forall a b, Nle (Nmin a b) b = true.
+Lemma Nmin_le_2 : forall a b, Nleb (Nmin a b) b = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle a b)). intro H. rewrite H. assumption.
- intro H. rewrite H. apply Nle_refl.
+ intros; rewrite Nmin_Nmin'.
+ unfold Nmin'; elim (sumbool_of_bool (Nleb a b)). intro H. rewrite H. assumption.
+ intro H. rewrite H. apply Nleb_refl.
Qed.
Lemma Nmin_le_3 :
- forall a b c, Nle a (Nmin b c) = true -> Nle a b = true.
+ forall a b c, Nleb a (Nmin b c) = true -> Nleb a b = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
- intro H0. rewrite H0 in H. apply Nlt_le_weak. apply Nle_lt_trans with (b := c); assumption.
+ intro H0. rewrite H0 in H. apply Nltb_leb_weak. apply Nleb_ltb_trans with (b := c); assumption.
Qed.
Lemma Nmin_le_4 :
- forall a b c, Nle a (Nmin b c) = true -> Nle a c = true.
+ forall a b c, Nleb a (Nmin b c) = true -> Nleb a c = true.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
- apply Nle_trans with (b := b); assumption.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *; elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
+ apply Nleb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
Lemma Nmin_le_5 :
forall a b c,
- Nle a b = true -> Nle a c = true -> Nle a (Nmin b c) = true.
+ Nleb a b = true -> Nleb a c = true -> Nleb a (Nmin b c) = true.
Proof.
intros. elim (Nmin_choice b c). intro H1. rewrite H1. assumption.
intro H1. rewrite H1. assumption.
Qed.
Lemma Nmin_lt_3 :
- forall a b c, Nle (Nmin b c) a = false -> Nle b a = false.
+ forall a b c, Nleb (Nmin b c) a = false -> Nleb b a = false.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *. intros. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
assumption.
- intro H0. rewrite H0 in H. apply Nlt_trans with (b := c); assumption.
+ intro H0. rewrite H0 in H. apply Nltb_trans with (b := c); assumption.
Qed.
Lemma Nmin_lt_4 :
- forall a b c, Nle (Nmin b c) a = false -> Nle c a = false.
+ forall a b c, Nleb (Nmin b c) a = false -> Nleb c a = false.
Proof.
- unfold Nmin in |- *. intros. elim (sumbool_of_bool (Nle b c)). intro H0. rewrite H0 in H.
- apply Nlt_le_trans with (b := b); assumption.
+ intros; rewrite Nmin_Nmin' in *.
+ unfold Nmin' in *. elim (sumbool_of_bool (Nleb b c)). intro H0. rewrite H0 in H.
+ apply Nltb_leb_trans with (b := b); assumption.
intro H0. rewrite H0 in H. assumption.
Qed.
diff --git a/theories/NArith/Ndigits.v b/theories/NArith/Ndigits.v
index ed8ced5b..dcdb5f92 100644
--- a/theories/NArith/Ndigits.v
+++ b/theories/NArith/Ndigits.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndigits.v 8736 2006-04-26 21:18:44Z letouzey $ i*)
+(*i $Id: Ndigits.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Bool.
Require Import Bvector.
@@ -577,13 +577,6 @@ Qed.
(** Number of digits in a number *)
-Fixpoint Psize (p:positive) : nat :=
- match p with
- | xH => 1%nat
- | xI p => S (Psize p)
- | xO p => S (Psize p)
- end.
-
Definition Nsize (n:N) : nat := match n with
| N0 => 0%nat
| Npos p => Psize p
diff --git a/theories/NArith/Ndist.v b/theories/NArith/Ndist.v
index d5bfc15c..af90b8e7 100644
--- a/theories/NArith/Ndist.v
+++ b/theories/NArith/Ndist.v
@@ -5,7 +5,7 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ndist.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
+(*i $Id: Ndist.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Arith.
Require Import Min.
diff --git a/theories/NArith/Nnat.v b/theories/NArith/Nnat.v
index 94f50bd0..bc3711ee 100644
--- a/theories/NArith/Nnat.v
+++ b/theories/NArith/Nnat.v
@@ -6,15 +6,21 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Nnat.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Nnat.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Arith_base.
Require Import Compare_dec.
Require Import Sumbool.
Require Import Div2.
+Require Import Min.
+Require Import Max.
Require Import BinPos.
Require Import BinNat.
+Require Import BinInt.
Require Import Pnat.
+Require Import Zmax.
+Require Import Zmin.
+Require Import Znat.
(** Translation from [N] to [nat] and back. *)
@@ -108,6 +114,30 @@ Proof.
apply N_of_nat_of_N.
Qed.
+Lemma nat_of_Nminus :
+ forall a a', nat_of_N (Nminus a a') = ((nat_of_N a)-(nat_of_N a'))%nat.
+Proof.
+ destruct a; destruct a'; simpl; auto with arith.
+ case_eq (Pcompare p p0 Eq); simpl; intros.
+ rewrite (Pcompare_Eq_eq _ _ H); auto with arith.
+ rewrite Pminus_mask_diag. simpl. apply minus_n_n.
+ rewrite Pminus_mask_Lt. pose proof (nat_of_P_lt_Lt_compare_morphism _ _ H). simpl.
+ symmetry; apply not_le_minus_0. auto with arith. assumption.
+ pose proof (Pminus_mask_Gt p p0 H) as H1. destruct H1 as [q [H1 _]]. rewrite H1; simpl.
+ replace q with (Pminus p p0) by (unfold Pminus; now rewrite H1).
+ apply nat_of_P_minus_morphism; auto.
+Qed.
+
+Lemma N_of_minus :
+ forall n n', N_of_nat (n-n') = Nminus (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nminus.
+ apply N_of_nat_of_N.
+Qed.
+
Lemma nat_of_Nmult :
forall a a', nat_of_N (Nmult a a') = (nat_of_N a)*(nat_of_N a').
Proof.
@@ -175,3 +205,176 @@ Proof.
pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
symmetry; apply nat_of_Ncompare.
Qed.
+
+Lemma nat_of_Nmin :
+ forall a a', nat_of_N (Nmin a a') = min (nat_of_N a) (nat_of_N a').
+Proof.
+ intros; unfold Nmin; rewrite nat_of_Ncompare.
+ unfold nat_compare.
+ destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
+ simpl; intros; symmetry; auto with arith.
+ apply min_l; rewrite e; auto with arith.
+Qed.
+
+Lemma N_of_min :
+ forall n n', N_of_nat (min n n') = Nmin (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nmin.
+ apply N_of_nat_of_N.
+Qed.
+
+Lemma nat_of_Nmax :
+ forall a a', nat_of_N (Nmax a a') = max (nat_of_N a) (nat_of_N a').
+Proof.
+ intros; unfold Nmax; rewrite nat_of_Ncompare.
+ unfold nat_compare.
+ destruct (lt_eq_lt_dec (nat_of_N a) (nat_of_N a')) as [[|]|];
+ simpl; intros; symmetry; auto with arith.
+ apply max_r; rewrite e; auto with arith.
+Qed.
+
+Lemma N_of_max :
+ forall n n', N_of_nat (max n n') = Nmax (N_of_nat n) (N_of_nat n').
+Proof.
+ intros.
+ pattern n at 1; rewrite <- (nat_of_N_of_nat n).
+ pattern n' at 1; rewrite <- (nat_of_N_of_nat n').
+ rewrite <- nat_of_Nmax.
+ apply N_of_nat_of_N.
+Qed.
+
+(** Properties concerning [Z_of_N] *)
+
+Lemma Z_of_nat_of_N : forall n:N, Z_of_nat (nat_of_N n) = Z_of_N n.
+Proof.
+ destruct n; simpl; auto; symmetry; apply Zpos_eq_Z_of_nat_o_nat_of_P.
+Qed.
+
+Lemma Z_of_N_eq : forall n m, n = m -> Z_of_N n = Z_of_N m.
+Proof.
+ intros; f_equal; assumption.
+Qed.
+
+Lemma Z_of_N_eq_rev : forall n m, Z_of_N n = Z_of_N m -> n = m.
+Proof.
+ intros [|n] [|m]; simpl; intros; try discriminate; congruence.
+Qed.
+
+Lemma Z_of_N_eq_iff : forall n m, n = m <-> Z_of_N n = Z_of_N m.
+Proof.
+ split; [apply Z_of_N_eq | apply Z_of_N_eq_rev].
+Qed.
+
+Lemma Z_of_N_le : forall n m, (n<=m)%N -> (Z_of_N n <= Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_rev : forall n m, (Z_of_N n <= Z_of_N m)%Z -> (n<=m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_iff : forall n m, (n<=m)%N <-> (Z_of_N n <= Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_le | apply Z_of_N_le_rev].
+Qed.
+
+Lemma Z_of_N_lt : forall n m, (n<m)%N -> (Z_of_N n < Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_lt_rev : forall n m, (Z_of_N n < Z_of_N m)%Z -> (n<m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_lt_iff : forall n m, (n<m)%N <-> (Z_of_N n < Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_lt | apply Z_of_N_lt_rev].
+Qed.
+
+Lemma Z_of_N_ge : forall n m, (n>=m)%N -> (Z_of_N n >= Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_ge_rev : forall n m, (Z_of_N n >= Z_of_N m)%Z -> (n>=m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_ge_iff : forall n m, (n>=m)%N <-> (Z_of_N n >= Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_ge | apply Z_of_N_ge_rev].
+Qed.
+
+Lemma Z_of_N_gt : forall n m, (n>m)%N -> (Z_of_N n > Z_of_N m)%Z.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_gt_rev : forall n m, (Z_of_N n > Z_of_N m)%Z -> (n>m)%N.
+Proof.
+ intros [|n] [|m]; simpl; auto.
+Qed.
+
+Lemma Z_of_N_gt_iff : forall n m, (n>m)%N <-> (Z_of_N n > Z_of_N m)%Z.
+Proof.
+ split; [apply Z_of_N_gt | apply Z_of_N_gt_rev].
+Qed.
+
+Lemma Z_of_N_of_nat : forall n:nat, Z_of_N (N_of_nat n) = Z_of_nat n.
+Proof.
+ destruct n; simpl; auto.
+Qed.
+
+Lemma Z_of_N_pos : forall p:positive, Z_of_N (Npos p) = Zpos p.
+Proof.
+ destruct p; simpl; auto.
+Qed.
+
+Lemma Z_of_N_abs : forall z:Z, Z_of_N (Zabs_N z) = Zabs z.
+Proof.
+ destruct z; simpl; auto.
+Qed.
+
+Lemma Z_of_N_le_0 : forall n, (0 <= Z_of_N n)%Z.
+Proof.
+ destruct n; intro; discriminate.
+Qed.
+
+Lemma Z_of_N_plus : forall n m:N, Z_of_N (n+m) = (Z_of_N n + Z_of_N m)%Z.
+Proof.
+ destruct n; destruct m; auto.
+Qed.
+
+Lemma Z_of_N_mult : forall n m:N, Z_of_N (n*m) = (Z_of_N n * Z_of_N m)%Z.
+Proof.
+ destruct n; destruct m; auto.
+Qed.
+
+Lemma Z_of_N_minus : forall n m:N, Z_of_N (n-m) = Zmax 0 (Z_of_N n - Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nminus; apply inj_minus.
+Qed.
+
+Lemma Z_of_N_succ : forall n:N, Z_of_N (Nsucc n) = Zsucc (Z_of_N n).
+Proof.
+ intros; do 2 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nsucc; apply inj_S.
+Qed.
+
+Lemma Z_of_N_min : forall n m:N, Z_of_N (Nmin n m) = Zmin (Z_of_N n) (Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmin; apply inj_min.
+Qed.
+
+Lemma Z_of_N_max : forall n m:N, Z_of_N (Nmax n m) = Zmax (Z_of_N n) (Z_of_N m).
+Proof.
+ intros; do 3 rewrite <- Z_of_nat_of_N; rewrite nat_of_Nmax; apply inj_max.
+Qed.
+
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v
index 88abc700..2c007398 100644
--- a/theories/NArith/Pnat.v
+++ b/theories/NArith/Pnat.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Pnat.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Pnat.v 9883 2007-06-07 18:44:59Z letouzey $ i*)
Require Import BinPos.
@@ -14,7 +14,7 @@ Require Import BinPos.
(** Properties of the injection from binary positive numbers to Peano
natural numbers *)
-(** Original development by Pierre Crégut, CNET, Lannion, France *)
+(** Original development by Pierre Crégut, CNET, Lannion, France *)
Require Import Le.
Require Import Lt.
diff --git a/theories/Numbers/BigNumPrelude.v b/theories/Numbers/BigNumPrelude.v
new file mode 100644
index 00000000..9669eacd
--- /dev/null
+++ b/theories/Numbers/BigNumPrelude.v
@@ -0,0 +1,372 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: BigNumPrelude.v 11013 2008-05-28 18:17:30Z letouzey $ i*)
+
+(** * BigNumPrelude *)
+
+(** Auxillary functions & theorems used for arbitrary precision efficient
+ numbers. *)
+
+
+Require Import ArithRing.
+Require Export ZArith.
+Require Export Znumtheory.
+Require Export Zpow_facts.
+
+(* *** Nota Bene ***
+ All results that were general enough has been moved in ZArith.
+ Only remain here specialized lemmas and compatibility elements.
+ (P.L. 5/11/2007).
+*)
+
+
+Open Local Scope Z_scope.
+
+(* For compatibility of scripts, weaker version of some lemmas of Zdiv *)
+
+Lemma Zlt0_not_eq : forall n, 0<n -> n<>0.
+Proof.
+ auto with zarith.
+Qed.
+
+Definition Zdiv_mult_cancel_r a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H).
+Definition Zdiv_mult_cancel_l a b c H := Zdiv.Zdiv_mult_cancel_r a b c (Zlt0_not_eq _ H).
+Definition Z_div_plus_l a b c H := Zdiv.Z_div_plus_full_l a b c (Zlt0_not_eq _ H).
+
+(* Automation *)
+
+Hint Extern 2 (Zle _ _) =>
+ (match goal with
+ |- Zpos _ <= Zpos _ => exact (refl_equal _)
+| H: _ <= ?p |- _ <= ?p => apply Zle_trans with (2 := H)
+| H: _ < ?p |- _ <= ?p => apply Zlt_le_weak; apply Zle_lt_trans with (2 := H)
+ end).
+
+Hint Extern 2 (Zlt _ _) =>
+ (match goal with
+ |- Zpos _ < Zpos _ => exact (refl_equal _)
+| H: _ <= ?p |- _ <= ?p => apply Zlt_le_trans with (2 := H)
+| H: _ < ?p |- _ <= ?p => apply Zle_lt_trans with (2 := H)
+ end).
+
+
+Hint Resolve Zlt_gt Zle_ge Z_div_pos: zarith.
+
+(**************************************
+ Properties of order and product
+ **************************************)
+
+ Theorem beta_lex: forall a b c d beta,
+ a * beta + b <= c * beta + d ->
+ 0 <= b < beta -> 0 <= d < beta ->
+ a <= c.
+ Proof.
+ intros a b c d beta H1 (H3, H4) (H5, H6).
+ assert (a - c < 1); auto with zarith.
+ apply Zmult_lt_reg_r with beta; auto with zarith.
+ apply Zle_lt_trans with (d - b); auto with zarith.
+ rewrite Zmult_minus_distr_r; auto with zarith.
+ Qed.
+
+ Theorem beta_lex_inv: forall a b c d beta,
+ a < c -> 0 <= b < beta ->
+ 0 <= d < beta ->
+ a * beta + b < c * beta + d.
+ Proof.
+ intros a b c d beta H1 (H3, H4) (H5, H6).
+ case (Zle_or_lt (c * beta + d) (a * beta + b)); auto with zarith.
+ intros H7; contradict H1;apply Zle_not_lt;apply beta_lex with (1 := H7);auto.
+ Qed.
+
+ Lemma beta_mult : forall h l beta,
+ 0 <= h < beta -> 0 <= l < beta -> 0 <= h*beta+l < beta^2.
+ Proof.
+ intros h l beta H1 H2;split. auto with zarith.
+ rewrite <- (Zplus_0_r (beta^2)); rewrite Zpower_2;
+ apply beta_lex_inv;auto with zarith.
+ Qed.
+
+ Lemma Zmult_lt_b :
+ forall b x y, 0 <= x < b -> 0 <= y < b -> 0 <= x * y <= b^2 - 2*b + 1.
+ Proof.
+ intros b x y (Hx1,Hx2) (Hy1,Hy2);split;auto with zarith.
+ apply Zle_trans with ((b-1)*(b-1)).
+ apply Zmult_le_compat;auto with zarith.
+ apply Zeq_le;ring.
+ Qed.
+
+ Lemma sum_mul_carry : forall xh xl yh yl wc cc beta,
+ 1 < beta ->
+ 0 <= wc < beta ->
+ 0 <= xh < beta ->
+ 0 <= xl < beta ->
+ 0 <= yh < beta ->
+ 0 <= yl < beta ->
+ 0 <= cc < beta^2 ->
+ wc*beta^2 + cc = xh*yl + xl*yh ->
+ 0 <= wc <= 1.
+ Proof.
+ intros xh xl yh yl wc cc beta U H1 H2 H3 H4 H5 H6 H7.
+ assert (H8 := Zmult_lt_b beta xh yl H2 H5).
+ assert (H9 := Zmult_lt_b beta xl yh H3 H4).
+ split;auto with zarith.
+ apply beta_lex with (cc) (beta^2 - 2) (beta^2); auto with zarith.
+ Qed.
+
+ Theorem mult_add_ineq: forall x y cross beta,
+ 0 <= x < beta ->
+ 0 <= y < beta ->
+ 0 <= cross < beta ->
+ 0 <= x * y + cross < beta^2.
+ Proof.
+ intros x y cross beta HH HH1 HH2.
+ split; auto with zarith.
+ apply Zle_lt_trans with ((beta-1)*(beta-1)+(beta-1)); auto with zarith.
+ apply Zplus_le_compat; auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ repeat (rewrite Zmult_minus_distr_l || rewrite Zmult_minus_distr_r);
+ rewrite Zpower_2; auto with zarith.
+ Qed.
+
+ Theorem mult_add_ineq2: forall x y c cross beta,
+ 0 <= x < beta ->
+ 0 <= y < beta ->
+ 0 <= c*beta + cross <= 2*beta - 2 ->
+ 0 <= x * y + (c*beta + cross) < beta^2.
+ Proof.
+ intros x y c cross beta HH HH1 HH2.
+ split; auto with zarith.
+ apply Zle_lt_trans with ((beta-1)*(beta-1)+(2*beta-2));auto with zarith.
+ apply Zplus_le_compat; auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ repeat (rewrite Zmult_minus_distr_l || rewrite Zmult_minus_distr_r);
+ rewrite Zpower_2; auto with zarith.
+ Qed.
+
+Theorem mult_add_ineq3: forall x y c cross beta,
+ 0 <= x < beta ->
+ 0 <= y < beta ->
+ 0 <= cross <= beta - 2 ->
+ 0 <= c <= 1 ->
+ 0 <= x * y + (c*beta + cross) < beta^2.
+ Proof.
+ intros x y c cross beta HH HH1 HH2 HH3.
+ apply mult_add_ineq2;auto with zarith.
+ split;auto with zarith.
+ apply Zle_trans with (1*beta+cross);auto with zarith.
+ Qed.
+
+Hint Rewrite Zmult_1_r Zmult_0_r Zmult_1_l Zmult_0_l Zplus_0_l Zplus_0_r Zminus_0_r: rm10.
+
+
+(**************************************
+ Properties of Zdiv and Zmod
+**************************************)
+
+Theorem Zmod_le_first: forall a b, 0 <= a -> 0 < b -> 0 <= a mod b <= a.
+ Proof.
+ intros a b H H1;case (Z_mod_lt a b);auto with zarith;intros H2 H3;split;auto.
+ case (Zle_or_lt b a); intros H4; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ Qed.
+
+
+ Theorem Zmod_distr: forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (2 ^a * r + t) mod (2 ^ b) = (2 ^a * r) mod (2 ^ b) + t.
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (t < 2 ^ b).
+ apply Zlt_le_trans with (1:= H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_small with (a := t); auto with zarith.
+ apply Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert (0 <= 2 ^a * r); auto with zarith.
+ apply Zplus_le_0_compat; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ pattern (2 ^ b) at 2; replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a);
+ try ring.
+ apply Zplus_le_lt_compat; auto with zarith.
+ replace b with ((b - a) + a); try ring.
+ rewrite Zpower_exp; auto with zarith.
+ pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
+ try rewrite <- Zmult_minus_distr_r.
+ rewrite (Zmult_comm (2 ^(b - a))); rewrite Zmult_mod_distr_l;
+ auto with zarith.
+ rewrite (Zmult_comm (2 ^a)); apply Zmult_le_compat_r; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
+
+ Theorem Zmod_shift_r:
+ forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (r * 2 ^a + t) mod (2 ^ b) = (r * 2 ^a) mod (2 ^ b) + t.
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (t < 2 ^ b).
+ apply Zlt_le_trans with (1:= H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_small with (a := t); auto with zarith.
+ apply Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert (0 <= 2 ^a * r); auto with zarith.
+ apply Zplus_le_0_compat; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ pattern (2 ^ b) at 2;replace (2 ^ b) with ((2 ^ b - 2 ^a) + 2 ^ a); try ring.
+ apply Zplus_le_lt_compat; auto with zarith.
+ replace b with ((b - a) + a); try ring.
+ rewrite Zpower_exp; auto with zarith.
+ pattern (2 ^a) at 4; rewrite <- (Zmult_1_l (2 ^a));
+ try rewrite <- Zmult_minus_distr_r.
+ repeat rewrite (fun x => Zmult_comm x (2 ^ a)); rewrite Zmult_mod_distr_l;
+ auto with zarith.
+ apply Zmult_le_compat_l; auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
+
+ Theorem Zdiv_shift_r:
+ forall a b r t, 0 <= a <= b -> 0 <= r -> 0 <= t < 2 ^a ->
+ (r * 2 ^a + t) / (2 ^ b) = (r * 2 ^a) / (2 ^ b).
+ Proof.
+ intros a b r t (H1, H2) H3 (H4, H5).
+ assert (Eq: t < 2 ^ b); auto with zarith.
+ apply Zlt_le_trans with (1 := H5); auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ pattern (r * 2 ^ a) at 1; rewrite Z_div_mod_eq with (b := 2 ^ b);
+ auto with zarith.
+ rewrite <- Zplus_assoc.
+ rewrite <- Zmod_shift_r; auto with zarith.
+ rewrite (Zmult_comm (2 ^ b)); rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite (fun x y => @Zdiv_small (x mod y)); auto with zarith.
+ match goal with |- context [?X mod ?Y] => case (Z_mod_lt X Y) end;
+ auto with zarith.
+ Qed.
+
+
+ Lemma shift_unshift_mod : forall n p a,
+ 0 <= a < 2^n ->
+ 0 <= p <= n ->
+ a * 2^p = a / 2^(n - p) * 2^n + (a*2^p) mod 2^n.
+ Proof.
+ intros n p a H1 H2.
+ pattern (a*2^p) at 1;replace (a*2^p) with
+ (a*2^p/2^n * 2^n + a*2^p mod 2^n).
+ 2:symmetry;rewrite (Zmult_comm (a*2^p/2^n));apply Z_div_mod_eq.
+ replace (a * 2 ^ p / 2 ^ n) with (a / 2 ^ (n - p));trivial.
+ replace (2^n) with (2^(n-p)*2^p).
+ symmetry;apply Zdiv_mult_cancel_r.
+ destruct H1;trivial.
+ cut (0 < 2^p); auto with zarith.
+ rewrite <- Zpower_exp.
+ replace (n-p+p) with n;trivial. ring.
+ omega. omega.
+ apply Zlt_gt. apply Zpower_gt_0;auto with zarith.
+ Qed.
+
+
+ Lemma shift_unshift_mod_2 : forall n p a, (0<=p<=n)%Z ->
+ ((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) =
+ a mod 2 ^ p.
+ Proof.
+ intros.
+ rewrite Zmod_small.
+ rewrite Zmod_eq by (auto with zarith).
+ unfold Zminus at 1.
+ rewrite Z_div_plus_l by (auto with zarith).
+ assert (2^n = 2^(n-p)*2^p).
+ rewrite <- Zpower_exp by (auto with zarith).
+ replace (n-p+p) with n; auto with zarith.
+ rewrite H0.
+ rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith).
+ rewrite (Zmult_comm (2^(n-p))), Zmult_assoc.
+ rewrite Zopp_mult_distr_l.
+ rewrite Z_div_mult by (auto with zarith).
+ symmetry; apply Zmod_eq; auto with zarith.
+
+ remember (a * 2 ^ (n - p)) as b.
+ destruct (Z_mod_lt b (2^n)); auto with zarith.
+ split.
+ apply Z_div_pos; auto with zarith.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ apply Zlt_le_trans with (2^n); auto with zarith.
+ rewrite <- (Zmult_1_r (2^n)) at 1.
+ apply Zmult_le_compat; auto with zarith.
+ cut (0 < 2 ^ (n-p)); auto with zarith.
+ Qed.
+
+ Lemma div_le_0 : forall p x, 0 <= x -> 0 <= x / 2 ^ p.
+ Proof.
+ intros p x Hle;destruct (Z_le_gt_dec 0 p).
+ apply Zdiv_le_lower_bound;auto with zarith.
+ replace (2^p) with 0.
+ destruct x;compute;intro;discriminate.
+ destruct p;trivial;discriminate z.
+ Qed.
+
+ Lemma div_lt : forall p x y, 0 <= x < y -> x / 2^p < y.
+ Proof.
+ intros p x y H;destruct (Z_le_gt_dec 0 p).
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ apply Zlt_le_trans with y;auto with zarith.
+ rewrite <- (Zmult_1_r y);apply Zmult_le_compat;auto with zarith.
+ assert (0 < 2^p);auto with zarith.
+ replace (2^p) with 0.
+ destruct x;change (0<y);auto with zarith.
+ destruct p;trivial;discriminate z.
+ Qed.
+
+ Theorem Zgcd_div_pos a b:
+ (0 < b)%Z -> (0 < Zgcd a b)%Z -> (0 < b / Zgcd a b)%Z.
+ Proof.
+ intros a b Ha Hg.
+ case (Zle_lt_or_eq 0 (b/Zgcd a b)); auto.
+ apply Z_div_pos; auto with zarith.
+ intros H; generalize Ha.
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite <- H; auto with zarith.
+ assert (F := (Zgcd_is_gcd a b)); inversion F; auto.
+ Qed.
+
+Theorem Zbounded_induction :
+ (forall Q : Z -> Prop, forall b : Z,
+ Q 0 ->
+ (forall n, 0 <= n -> n < b - 1 -> Q n -> Q (n + 1)) ->
+ forall n, 0 <= n -> n < b -> Q n)%Z.
+Proof.
+intros Q b Q0 QS.
+set (Q' := fun n => (n < b /\ Q n) \/ (b <= n)).
+assert (H : forall n, 0 <= n -> Q' n).
+apply natlike_rec2; unfold Q'.
+destruct (Zle_or_lt b 0) as [H | H]. now right. left; now split.
+intros n H IH. destruct IH as [[IH1 IH2] | IH].
+destruct (Zle_or_lt (b - 1) n) as [H1 | H1].
+right; auto with zarith.
+left. split; [auto with zarith | now apply (QS n)].
+right; auto with zarith.
+unfold Q' in *; intros n H1 H2. destruct (H n H1) as [[H3 H4] | H3].
+assumption. apply Zle_not_lt in H3. false_hyp H2 H3.
+Qed.
+
+Lemma Zsquare_le : forall x, x <= x*x.
+Proof.
+intros.
+destruct (Z_lt_le_dec 0 x).
+pattern x at 1; rewrite <- (Zmult_1_l x).
+apply Zmult_le_compat; auto with zarith.
+apply Zle_trans with 0; auto with zarith.
+rewrite <- Zmult_opp_opp.
+apply Zmult_le_0_compat; auto with zarith.
+Qed.
diff --git a/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
new file mode 100644
index 00000000..528d78c3
--- /dev/null
+++ b/theories/Numbers/Cyclic/Abstract/CyclicAxioms.v
@@ -0,0 +1,375 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(* $Id: CyclicAxioms.v 11012 2008-05-28 16:34:43Z letouzey $ *)
+
+(** * Signature and specification of a bounded integer structure *)
+
+(** This file specifies how to represent [Z/nZ] when [n=2^d],
+ [d] being the number of digits of these bounded integers. *)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+
+Open Local Scope Z_scope.
+
+(** First, a description via an operator record and a spec record. *)
+
+Section Z_nZ_Op.
+
+ Variable znz : Type.
+
+ Record znz_op := mk_znz_op {
+
+ (* Conversion functions with Z *)
+ znz_digits : positive;
+ znz_zdigits: znz;
+ znz_to_Z : znz -> Z;
+ znz_of_pos : positive -> N * znz; (* Euclidean division by [2^digits] *)
+ znz_head0 : znz -> znz; (* number of digits 0 in front of the number *)
+ znz_tail0 : znz -> znz; (* number of digits 0 at the bottom of the number *)
+
+ (* Basic numbers *)
+ znz_0 : znz;
+ znz_1 : znz;
+ znz_Bm1 : znz; (* [2^digits-1], which is equivalent to [-1] *)
+
+ (* Comparison *)
+ znz_compare : znz -> znz -> comparison;
+ znz_eq0 : znz -> bool;
+
+ (* Basic arithmetic operations *)
+ znz_opp_c : znz -> carry znz;
+ znz_opp : znz -> znz;
+ znz_opp_carry : znz -> znz; (* the carry is known to be -1 *)
+
+ znz_succ_c : znz -> carry znz;
+ znz_add_c : znz -> znz -> carry znz;
+ znz_add_carry_c : znz -> znz -> carry znz;
+ znz_succ : znz -> znz;
+ znz_add : znz -> znz -> znz;
+ znz_add_carry : znz -> znz -> znz;
+
+ znz_pred_c : znz -> carry znz;
+ znz_sub_c : znz -> znz -> carry znz;
+ znz_sub_carry_c : znz -> znz -> carry znz;
+ znz_pred : znz -> znz;
+ znz_sub : znz -> znz -> znz;
+ znz_sub_carry : znz -> znz -> znz;
+
+ znz_mul_c : znz -> znz -> zn2z znz;
+ znz_mul : znz -> znz -> znz;
+ znz_square_c : znz -> zn2z znz;
+
+ (* Special divisions operations *)
+ znz_div21 : znz -> znz -> znz -> znz*znz;
+ znz_div_gt : znz -> znz -> znz * znz; (* specialized version of [znz_div] *)
+ znz_div : znz -> znz -> znz * znz;
+
+ znz_mod_gt : znz -> znz -> znz; (* specialized version of [znz_mod] *)
+ znz_mod : znz -> znz -> znz;
+
+ znz_gcd_gt : znz -> znz -> znz; (* specialized version of [znz_gcd] *)
+ znz_gcd : znz -> znz -> znz;
+ (* [znz_add_mul_div p i j] is a combination of the [(digits-p)]
+ low bits of [i] above the [p] high bits of [j]:
+ [znz_add_mul_div p i j = i*2^p+j/2^(digits-p)] *)
+ znz_add_mul_div : znz -> znz -> znz -> znz;
+ (* [znz_pos_mod p i] is [i mod 2^p] *)
+ znz_pos_mod : znz -> znz -> znz;
+
+ znz_is_even : znz -> bool;
+ (* square root *)
+ znz_sqrt2 : znz -> znz -> znz * carry znz;
+ znz_sqrt : znz -> znz }.
+
+End Z_nZ_Op.
+
+Section Z_nZ_Spec.
+ Variable w : Type.
+ Variable w_op : znz_op w.
+
+ Let w_digits := w_op.(znz_digits).
+ Let w_zdigits := w_op.(znz_zdigits).
+ Let w_to_Z := w_op.(znz_to_Z).
+ Let w_of_pos := w_op.(znz_of_pos).
+ Let w_head0 := w_op.(znz_head0).
+ Let w_tail0 := w_op.(znz_tail0).
+
+ Let w0 := w_op.(znz_0).
+ Let w1 := w_op.(znz_1).
+ Let wBm1 := w_op.(znz_Bm1).
+
+ Let w_compare := w_op.(znz_compare).
+ Let w_eq0 := w_op.(znz_eq0).
+
+ Let w_opp_c := w_op.(znz_opp_c).
+ Let w_opp := w_op.(znz_opp).
+ Let w_opp_carry := w_op.(znz_opp_carry).
+
+ Let w_succ_c := w_op.(znz_succ_c).
+ Let w_add_c := w_op.(znz_add_c).
+ Let w_add_carry_c := w_op.(znz_add_carry_c).
+ Let w_succ := w_op.(znz_succ).
+ Let w_add := w_op.(znz_add).
+ Let w_add_carry := w_op.(znz_add_carry).
+
+ Let w_pred_c := w_op.(znz_pred_c).
+ Let w_sub_c := w_op.(znz_sub_c).
+ Let w_sub_carry_c := w_op.(znz_sub_carry_c).
+ Let w_pred := w_op.(znz_pred).
+ Let w_sub := w_op.(znz_sub).
+ Let w_sub_carry := w_op.(znz_sub_carry).
+
+ Let w_mul_c := w_op.(znz_mul_c).
+ Let w_mul := w_op.(znz_mul).
+ Let w_square_c := w_op.(znz_square_c).
+
+ Let w_div21 := w_op.(znz_div21).
+ Let w_div_gt := w_op.(znz_div_gt).
+ Let w_div := w_op.(znz_div).
+
+ Let w_mod_gt := w_op.(znz_mod_gt).
+ Let w_mod := w_op.(znz_mod).
+
+ Let w_gcd_gt := w_op.(znz_gcd_gt).
+ Let w_gcd := w_op.(znz_gcd).
+
+ Let w_add_mul_div := w_op.(znz_add_mul_div).
+
+ Let w_pos_mod := w_op.(znz_pos_mod).
+
+ Let w_is_even := w_op.(znz_is_even).
+ Let w_sqrt2 := w_op.(znz_sqrt2).
+ Let w_sqrt := w_op.(znz_sqrt).
+
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+
+ Let wB := base w_digits.
+
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
+
+ Record znz_spec := mk_znz_spec {
+
+ (* Conversion functions with Z *)
+ spec_to_Z : forall x, 0 <= [| x |] < wB;
+ spec_of_pos : forall p,
+ Zpos p = (Z_of_N (fst (w_of_pos p)))*wB + [|(snd (w_of_pos p))|];
+ spec_zdigits : [| w_zdigits |] = Zpos w_digits;
+ spec_more_than_1_digit: 1 < Zpos w_digits;
+
+ (* Basic numbers *)
+ spec_0 : [|w0|] = 0;
+ spec_1 : [|w1|] = 1;
+ spec_Bm1 : [|wBm1|] = wB - 1;
+
+ (* Comparison *)
+ spec_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end;
+ spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0;
+ (* Basic arithmetic operations *)
+ spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|];
+ spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB;
+ spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1;
+
+ spec_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1;
+ spec_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|];
+ spec_add_carry_c : forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1;
+ spec_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB;
+ spec_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB;
+ spec_add_carry :
+ forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB;
+
+ spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1;
+ spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|];
+ spec_sub_carry_c : forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1;
+ spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB;
+ spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB;
+ spec_sub_carry :
+ forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB;
+
+ spec_mul_c : forall x y, [|| w_mul_c x y ||] = [|x|] * [|y|];
+ spec_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB;
+ spec_square_c : forall x, [|| w_square_c x||] = [|x|] * [|x|];
+
+ (* Special divisions operations *)
+ spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := w_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|];
+ spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ let (q,r) := w_div_gt a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|];
+ spec_div : forall a b, 0 < [|b|] ->
+ let (q,r) := w_div a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|];
+
+ spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ [|w_mod_gt a b|] = [|a|] mod [|b|];
+ spec_mod : forall a b, 0 < [|b|] ->
+ [|w_mod a b|] = [|a|] mod [|b|];
+
+ spec_gcd_gt : forall a b, [|a|] > [|b|] ->
+ Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|];
+ spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|w_gcd a b|];
+
+
+ (* shift operations *)
+ spec_head00: forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits;
+ spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB;
+ spec_tail00: forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits;
+ spec_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|w_tail0 x|]) ;
+ spec_add_mul_div : forall x y p,
+ [|p|] <= Zpos w_digits ->
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB;
+ spec_pos_mod : forall w p,
+ [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]);
+ (* sqrt *)
+ spec_is_even : forall x,
+ if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1;
+ spec_sqrt2 : forall x y,
+ wB/ 4 <= [|x|] ->
+ let (s,r) := w_sqrt2 x y in
+ [||WW x y||] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|];
+ spec_sqrt : forall x,
+ [|w_sqrt x|] ^ 2 <= [|x|] < ([|w_sqrt x|] + 1) ^ 2
+ }.
+
+End Z_nZ_Spec.
+
+(** Generic construction of double words *)
+
+Section WW.
+
+ Variable w : Type.
+ Variable w_op : znz_op w.
+ Variable op_spec : znz_spec w_op.
+
+ Let wB := base w_op.(znz_digits).
+ Let w_to_Z := w_op.(znz_to_Z).
+ Let w_eq0 := w_op.(znz_eq0).
+ Let w_0 := w_op.(znz_0).
+
+ Definition znz_W0 h :=
+ if w_eq0 h then W0 else WW h w_0.
+
+ Definition znz_0W l :=
+ if w_eq0 l then W0 else WW w_0 l.
+
+ Definition znz_WW h l :=
+ if w_eq0 h then znz_0W l else WW h l.
+
+ Lemma spec_W0 : forall h,
+ zn2z_to_Z wB w_to_Z (znz_W0 h) = (w_to_Z h)*wB.
+ Proof.
+ unfold zn2z_to_Z, znz_W0, w_to_Z; simpl; intros.
+ case_eq (w_eq0 h); intros.
+ rewrite (op_spec.(spec_eq0) _ H); auto.
+ unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
+ Qed.
+
+ Lemma spec_0W : forall l,
+ zn2z_to_Z wB w_to_Z (znz_0W l) = w_to_Z l.
+ Proof.
+ unfold zn2z_to_Z, znz_0W, w_to_Z; simpl; intros.
+ case_eq (w_eq0 l); intros.
+ rewrite (op_spec.(spec_eq0) _ H); auto.
+ unfold w_0; rewrite op_spec.(spec_0); auto with zarith.
+ Qed.
+
+ Lemma spec_WW : forall h l,
+ zn2z_to_Z wB w_to_Z (znz_WW h l) = (w_to_Z h)*wB + w_to_Z l.
+ Proof.
+ unfold znz_WW, w_to_Z; simpl; intros.
+ case_eq (w_eq0 h); intros.
+ rewrite (op_spec.(spec_eq0) _ H); auto.
+ rewrite spec_0W; auto.
+ simpl; auto.
+ Qed.
+
+End WW.
+
+(** Injecting [Z] numbers into a cyclic structure *)
+
+Section znz_of_pos.
+
+ Variable w : Type.
+ Variable w_op : znz_op w.
+ Variable op_spec : znz_spec w_op.
+
+ Notation "[| x |]" := (znz_to_Z w_op x) (at level 0, x at level 99).
+
+ Definition znz_of_Z (w:Type) (op:znz_op w) z :=
+ match z with
+ | Zpos p => snd (op.(znz_of_pos) p)
+ | _ => op.(znz_0)
+ end.
+
+ Theorem znz_of_pos_correct:
+ forall p, Zpos p < base (znz_digits w_op) -> [|(snd (znz_of_pos w_op p))|] = Zpos p.
+ intros p Hp.
+ generalize (spec_of_pos op_spec p).
+ case (znz_of_pos w_op p); intros n w1; simpl.
+ case n; simpl Npos; auto with zarith.
+ intros p1 Hp1; contradict Hp; apply Zle_not_lt.
+ rewrite Hp1; auto with zarith.
+ match goal with |- _ <= ?X + ?Y =>
+ apply Zle_trans with X; auto with zarith
+ end.
+ match goal with |- ?X <= _ =>
+ pattern X at 1; rewrite <- (Zmult_1_l);
+ apply Zmult_le_compat_r; auto with zarith
+ end.
+ case p1; simpl; intros; red; simpl; intros; discriminate.
+ unfold base; auto with zarith.
+ case (spec_to_Z op_spec w1); auto with zarith.
+ Qed.
+
+ Theorem znz_of_Z_correct:
+ forall p, 0 <= p < base (znz_digits w_op) -> [|znz_of_Z w_op p|] = p.
+ intros p; case p; simpl; try rewrite spec_0; auto.
+ intros; rewrite znz_of_pos_correct; auto with zarith.
+ intros p1 (H1, _); contradict H1; apply Zlt_not_le; red; simpl; auto.
+ Qed.
+End znz_of_pos.
+
+
+(** A modular specification grouping the earlier records. *)
+
+Module Type CyclicType.
+ Parameter w : Type.
+ Parameter w_op : znz_op w.
+ Parameter w_spec : znz_spec w_op.
+End CyclicType.
diff --git a/theories/Numbers/Cyclic/Abstract/NZCyclic.v b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
new file mode 100644
index 00000000..22f6d95b
--- /dev/null
+++ b/theories/Numbers/Cyclic/Abstract/NZCyclic.v
@@ -0,0 +1,236 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZCyclic.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NZAxioms.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import CyclicAxioms.
+
+(** * From [CyclicType] to [NZAxiomsSig] *)
+
+(** A [Z/nZ] representation given by a module type [CyclicType]
+ implements [NZAxiomsSig], e.g. the common properties between
+ N and Z with no ordering. Notice that the [n] in [Z/nZ] is
+ a power of 2.
+*)
+
+Module NZCyclicAxiomsMod (Import Cyclic : CyclicType) <: NZAxiomsSig.
+
+Open Local Scope Z_scope.
+
+Definition NZ := w.
+
+Definition NZ_to_Z : NZ -> Z := znz_to_Z w_op.
+Definition Z_to_NZ : Z -> NZ := znz_of_Z w_op.
+Notation Local wB := (base w_op.(znz_digits)).
+
+Notation Local "[| x |]" := (w_op.(znz_to_Z) x) (at level 0, x at level 99).
+
+Definition NZeq (n m : NZ) := [| n |] = [| m |].
+Definition NZ0 := w_op.(znz_0).
+Definition NZsucc := w_op.(znz_succ).
+Definition NZpred := w_op.(znz_pred).
+Definition NZadd := w_op.(znz_add).
+Definition NZsub := w_op.(znz_sub).
+Definition NZmul := w_op.(znz_mul).
+
+Theorem NZeq_equiv : equiv NZ NZeq.
+Proof.
+unfold equiv, reflexive, symmetric, transitive, NZeq; repeat split; intros; auto.
+now transitivity [| y |].
+Qed.
+
+Add Relation NZ NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Proof.
+unfold NZeq; intros n m H. do 2 rewrite w_spec.(spec_succ). now rewrite H.
+Qed.
+
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Proof.
+unfold NZeq; intros n m H. do 2 rewrite w_spec.(spec_pred). now rewrite H.
+Qed.
+
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Proof.
+unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_add).
+now rewrite H1, H2.
+Qed.
+
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Proof.
+unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_sub).
+now rewrite H1, H2.
+Qed.
+
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Proof.
+unfold NZeq; intros n1 n2 H1 m1 m2 H2. do 2 rewrite w_spec.(spec_mul).
+now rewrite H1, H2.
+Qed.
+
+Delimit Scope IntScope with Int.
+Bind Scope IntScope with NZ.
+Open Local Scope IntScope.
+Notation "x == y" := (NZeq x y) (at level 70) : IntScope.
+Notation "x ~= y" := (~ NZeq x y) (at level 70) : IntScope.
+Notation "0" := NZ0 : IntScope.
+Notation "'S'" := NZsucc : IntScope.
+Notation "'P'" := NZpred : IntScope.
+(*Notation "1" := (S 0) : IntScope.*)
+Notation "x + y" := (NZadd x y) : IntScope.
+Notation "x - y" := (NZsub x y) : IntScope.
+Notation "x * y" := (NZmul x y) : IntScope.
+
+Theorem gt_wB_1 : 1 < wB.
+Proof.
+unfold base.
+apply Zpower_gt_1; unfold Zlt; auto with zarith.
+Qed.
+
+Theorem gt_wB_0 : 0 < wB.
+Proof.
+pose proof gt_wB_1; auto with zarith.
+Qed.
+
+Lemma NZsucc_mod_wB : forall n : Z, (n + 1) mod wB = ((n mod wB) + 1) mod wB.
+Proof.
+intro n.
+pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zplus_mod.
+reflexivity.
+now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
+Qed.
+
+Lemma NZpred_mod_wB : forall n : Z, (n - 1) mod wB = ((n mod wB) - 1) mod wB.
+Proof.
+intro n.
+pattern 1 at 2. replace 1 with (1 mod wB). rewrite <- Zminus_mod.
+reflexivity.
+now rewrite Zmod_small; [ | split; [auto with zarith | apply gt_wB_1]].
+Qed.
+
+Lemma NZ_to_Z_mod : forall n : NZ, [| n |] mod wB = [| n |].
+Proof.
+intro n; rewrite Zmod_small. reflexivity. apply w_spec.(spec_to_Z).
+Qed.
+
+Theorem NZpred_succ : forall n : NZ, P (S n) == n.
+Proof.
+intro n; unfold NZsucc, NZpred, NZeq. rewrite w_spec.(spec_pred), w_spec.(spec_succ).
+rewrite <- NZpred_mod_wB.
+replace ([| n |] + 1 - 1)%Z with [| n |] by auto with zarith. apply NZ_to_Z_mod.
+Qed.
+
+Lemma Z_to_NZ_0 : Z_to_NZ 0%Z == 0%Int.
+Proof.
+unfold NZeq, NZ_to_Z, Z_to_NZ. rewrite znz_of_Z_correct.
+symmetry; apply w_spec.(spec_0).
+exact w_spec. split; [auto with zarith |apply gt_wB_0].
+Qed.
+
+Section Induction.
+
+Variable A : NZ -> Prop.
+Hypothesis A_wd : predicate_wd NZeq A.
+Hypothesis A0 : A 0.
+Hypothesis AS : forall n : NZ, A n <-> A (S n). (* Below, we use only -> direction *)
+
+Add Morphism A with signature NZeq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Let B (n : Z) := A (Z_to_NZ n).
+
+Lemma B0 : B 0.
+Proof.
+unfold B. now rewrite Z_to_NZ_0.
+Qed.
+
+Lemma BS : forall n : Z, 0 <= n -> n < wB - 1 -> B n -> B (n + 1).
+Proof.
+intros n H1 H2 H3.
+unfold B in *. apply -> AS in H3.
+setoid_replace (Z_to_NZ (n + 1)) with (S (Z_to_NZ n)) using relation NZeq. assumption.
+unfold NZeq. rewrite w_spec.(spec_succ).
+unfold NZ_to_Z, Z_to_NZ.
+do 2 (rewrite znz_of_Z_correct; [ | exact w_spec | auto with zarith]).
+symmetry; apply Zmod_small; auto with zarith.
+Qed.
+
+Lemma B_holds : forall n : Z, 0 <= n < wB -> B n.
+Proof.
+intros n [H1 H2].
+apply Zbounded_induction with wB.
+apply B0. apply BS. assumption. assumption.
+Qed.
+
+Theorem NZinduction : forall n : NZ, A n.
+Proof.
+intro n. setoid_replace n with (Z_to_NZ (NZ_to_Z n)) using relation NZeq.
+apply B_holds. apply w_spec.(spec_to_Z).
+unfold NZeq, NZ_to_Z, Z_to_NZ; rewrite znz_of_Z_correct.
+reflexivity.
+exact w_spec.
+apply w_spec.(spec_to_Z).
+Qed.
+
+End Induction.
+
+Theorem NZadd_0_l : forall n : NZ, 0 + n == n.
+Proof.
+intro n; unfold NZadd, NZ0, NZeq. rewrite w_spec.(spec_add). rewrite w_spec.(spec_0).
+rewrite Zplus_0_l. rewrite Zmod_small; [reflexivity | apply w_spec.(spec_to_Z)].
+Qed.
+
+Theorem NZadd_succ_l : forall n m : NZ, (S n) + m == S (n + m).
+Proof.
+intros n m; unfold NZadd, NZsucc, NZeq. rewrite w_spec.(spec_add).
+do 2 rewrite w_spec.(spec_succ). rewrite w_spec.(spec_add).
+rewrite NZsucc_mod_wB. repeat rewrite Zplus_mod_idemp_l; try apply gt_wB_0.
+rewrite <- (Zplus_assoc ([| n |] mod wB) 1 [| m |]). rewrite Zplus_mod_idemp_l.
+rewrite (Zplus_comm 1 [| m |]); now rewrite Zplus_assoc.
+Qed.
+
+Theorem NZsub_0_r : forall n : NZ, n - 0 == n.
+Proof.
+intro n; unfold NZsub, NZ0, NZeq. rewrite w_spec.(spec_sub).
+rewrite w_spec.(spec_0). rewrite Zminus_0_r. apply NZ_to_Z_mod.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : NZ, n - (S m) == P (n - m).
+Proof.
+intros n m; unfold NZsub, NZsucc, NZpred, NZeq.
+rewrite w_spec.(spec_pred). do 2 rewrite w_spec.(spec_sub).
+rewrite w_spec.(spec_succ). rewrite Zminus_mod_idemp_r.
+rewrite Zminus_mod_idemp_l.
+now replace ([|n|] - ([|m|] + 1))%Z with ([|n|] - [|m|] - 1)%Z by auto with zarith.
+Qed.
+
+Theorem NZmul_0_l : forall n : NZ, 0 * n == 0.
+Proof.
+intro n; unfold NZmul, NZ0, NZ, NZeq. rewrite w_spec.(spec_mul).
+rewrite w_spec.(spec_0). now rewrite Zmult_0_l.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : NZ, (S n) * m == n * m + m.
+Proof.
+intros n m; unfold NZmul, NZsucc, NZadd, NZeq. rewrite w_spec.(spec_mul).
+rewrite w_spec.(spec_add), w_spec.(spec_mul), w_spec.(spec_succ).
+rewrite Zplus_mod_idemp_l, Zmult_mod_idemp_l.
+now rewrite Zmult_plus_distr_l, Zmult_1_l.
+Qed.
+
+End NZCyclicAxiomsMod.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v
new file mode 100644
index 00000000..61d8d0fb
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v
@@ -0,0 +1,318 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleAdd.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleAdd.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable ww_1 : zn2z w.
+ Variable w_succ_c : w -> carry w.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_add_carry_c : w -> w -> carry w.
+ Variable w_succ : w -> w.
+ Variable w_add : w -> w -> w.
+ Variable w_add_carry : w -> w -> w.
+
+ Definition ww_succ_c x :=
+ match x with
+ | W0 => C0 ww_1
+ | WW xh xl =>
+ match w_succ_c xl with
+ | C0 l => C0 (WW xh l)
+ | C1 l =>
+ match w_succ_c xh with
+ | C0 h => C0 (WW h w_0)
+ | C1 h => C1 W0
+ end
+ end
+ end.
+
+ Definition ww_succ x :=
+ match x with
+ | W0 => ww_1
+ | WW xh xl =>
+ match w_succ_c xl with
+ | C0 l => WW xh l
+ | C1 l => w_W0 (w_succ xh)
+ end
+ end.
+
+ Definition ww_add_c x y :=
+ match x, y with
+ | W0, _ => C0 y
+ | _, W0 => C0 x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ end
+ end.
+
+ Variable R : Type.
+ Variable f0 f1 : zn2z w -> R.
+
+ Definition ww_add_c_cont x y :=
+ match x, y with
+ | W0, _ => f0 y
+ | _, W0 => f0 x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => f0 (WW h l)
+ | C1 h => f1 (w_WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => f0 (WW h l)
+ | C1 h => f1 (w_WW h l)
+ end
+ end
+ end.
+
+ (* ww_add et ww_add_carry conserve la forme normale s'il n'y a pas
+ de debordement *)
+ Definition ww_add x y :=
+ match x, y with
+ | W0, _ => y
+ | _, W0 => x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l => WW (w_add xh yh) l
+ | C1 l => WW (w_add_carry xh yh) l
+ end
+ end.
+
+ Definition ww_add_carry_c x y :=
+ match x, y with
+ | W0, W0 => C0 ww_1
+ | W0, WW yh yl => ww_succ_c (WW yh yl)
+ | WW xh xl, W0 => ww_succ_c (WW xh xl)
+ | WW xh xl, WW yh yl =>
+ match w_add_carry_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ end
+ end.
+
+ Definition ww_add_carry x y :=
+ match x, y with
+ | W0, W0 => ww_1
+ | W0, WW yh yl => ww_succ (WW yh yl)
+ | WW xh xl, W0 => ww_succ (WW xh xl)
+ | WW xh xl, WW yh yl =>
+ match w_add_carry_c xl yl with
+ | C0 l => WW (w_add xh yh) l
+ | C1 l => WW (w_add_carry xh yh) l
+ end
+ end.
+
+ (*Section DoubleProof.*)
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_ww_1 : [[ww_1]] = 1.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_w_add_carry_c :
+ forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1.
+ Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
+ Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
+ Variable spec_w_add_carry :
+ forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
+
+ Lemma spec_ww_succ_c : forall x, [+[ww_succ_c x]] = [[x]] + 1.
+ Proof.
+ destruct x as [ |xh xl];simpl. apply spec_ww_1.
+ generalize (spec_w_succ_c xl);destruct (w_succ_c xl) as [l|l];
+ intro H;unfold interp_carry in H. simpl;rewrite H;ring.
+ rewrite <- Zplus_assoc;rewrite <- H;rewrite Zmult_1_l.
+ assert ([|l|] = 0). generalize (spec_to_Z xl)(spec_to_Z l);omega.
+ rewrite H0;generalize (spec_w_succ_c xh);destruct (w_succ_c xh) as [h|h];
+ intro H1;unfold interp_carry in H1.
+ simpl;rewrite H1;rewrite spec_w_0;ring.
+ unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB.
+ assert ([|xh|] = wB - 1). generalize (spec_to_Z xh)(spec_to_Z h);omega.
+ rewrite H2;ring.
+ Qed.
+
+ Lemma spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ destruct y as [ |yh yl];simpl. rewrite Zplus_0_r;trivial.
+ replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ intros H;unfold interp_carry in H;rewrite <- H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *;rewrite <- H1. trivial.
+ repeat rewrite Zmult_1_l;rewrite spec_w_WW;rewrite wwB_wBwB; ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1.
+ simpl;ring.
+ repeat rewrite Zmult_1_l;rewrite wwB_wBwB;rewrite spec_w_WW;ring.
+ Qed.
+
+ Section Cont.
+ Variable P : zn2z w -> zn2z w -> R -> Prop.
+ Variable x y : zn2z w.
+ Variable spec_f0 : forall r, [[r]] = [[x]] + [[y]] -> P x y (f0 r).
+ Variable spec_f1 : forall r, wwB + [[r]] = [[x]] + [[y]] -> P x y (f1 r).
+
+ Lemma spec_ww_add_c_cont : P x y (ww_add_c_cont x y).
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ apply spec_f0;trivial.
+ destruct y as [ |yh yl];simpl.
+ apply spec_f0;simpl;rewrite Zplus_0_r;trivial.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ intros H;unfold interp_carry in H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *.
+ apply spec_f0. simpl;rewrite H;rewrite H1;ring.
+ apply spec_f1. simpl;rewrite spec_w_WW;rewrite H.
+ rewrite Zplus_assoc;rewrite wwB_wBwB. rewrite Zpower_2; rewrite <- Zmult_plus_distr_l.
+ rewrite Zmult_1_l in H1;rewrite H1;ring.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h]; intros H1;unfold interp_carry in *.
+ apply spec_f0;simpl;rewrite H1. rewrite Zmult_plus_distr_l.
+ rewrite <- Zplus_assoc;rewrite H;ring.
+ apply spec_f1. simpl;rewrite spec_w_WW;rewrite wwB_wBwB.
+ rewrite Zplus_assoc; rewrite Zpower_2; rewrite <- Zmult_plus_distr_l.
+ rewrite Zmult_1_l in H1;rewrite H1. rewrite Zmult_plus_distr_l.
+ rewrite <- Zplus_assoc;rewrite H;ring.
+ Qed.
+
+ End Cont.
+
+ Lemma spec_ww_add_carry_c :
+ forall x y, [+[ww_add_carry_c x y]] = [[x]] + [[y]] + 1.
+ Proof.
+ destruct x as [ |xh xl];intro y;simpl.
+ exact (spec_ww_succ_c y).
+ destruct y as [ |yh yl];simpl.
+ rewrite Zplus_0_r;exact (spec_ww_succ_c (WW xh xl)).
+ replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
+ generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
+ as [l|l];intros H;unfold interp_carry in H;rewrite <- H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
+ unfold interp_carry;repeat rewrite Zmult_1_l;simpl;rewrite wwB_wBwB;ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h];intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
+ unfold interp_carry;rewrite spec_w_WW;
+ repeat rewrite Zmult_1_l;simpl;rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_succ : forall x, [[ww_succ x]] = ([[x]] + 1) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];simpl.
+ rewrite spec_ww_1;rewrite Zmod_small;trivial.
+ split;[intro;discriminate|apply wwB_pos].
+ rewrite <- Zplus_assoc;generalize (spec_w_succ_c xl);
+ destruct (w_succ_c xl) as[l|l];intro H;unfold interp_carry in H;rewrite <-H.
+ rewrite Zmod_small;trivial.
+ rewrite wwB_wBwB;apply beta_mult;apply spec_to_Z.
+ assert ([|l|] = 0). clear spec_ww_1 spec_w_1 spec_w_0.
+ assert (H1:= spec_to_Z l); assert (H2:= spec_to_Z xl); omega.
+ rewrite H0;rewrite Zplus_0_r;rewrite <- Zmult_plus_distr_l;rewrite wwB_wBwB.
+ rewrite Zpower_2; rewrite Zmult_mod_distr_r;try apply lt_0_wB.
+ rewrite spec_w_W0;rewrite spec_w_succ;trivial.
+ Qed.
+
+ Lemma spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];intros y;simpl.
+ rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial.
+ destruct y as [ |yh yl].
+ change [[W0]] with 0;rewrite Zplus_0_r.
+ rewrite Zmod_small;trivial.
+ exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)).
+ simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ unfold interp_carry;intros H;simpl;rewrite <- H.
+ rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
+ Qed.
+
+ Lemma spec_ww_add_carry :
+ forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];intros y;simpl.
+ exact (spec_ww_succ y).
+ destruct y as [ |yh yl].
+ change [[W0]] with 0;rewrite Zplus_0_r. exact (spec_ww_succ (WW xh xl)).
+ simpl;replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
+ generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
+ as [l|l];unfold interp_carry;intros H;rewrite <- H;simpl ww_to_Z.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
+ Qed.
+
+(* End DoubleProof. *)
+End DoubleAdd.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
new file mode 100644
index 00000000..952516ac
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleBase.v
@@ -0,0 +1,446 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleBase.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+
+Open Local Scope Z_scope.
+
+Section DoubleBase.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_Bm1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_digits : positive.
+ Variable w_zdigits: w.
+ Variable w_add: w -> w -> zn2z w.
+ Variable w_to_Z : w -> Z.
+ Variable w_compare : w -> w -> comparison.
+
+ Definition ww_digits := xO w_digits.
+
+ Definition ww_zdigits := w_add w_zdigits w_zdigits.
+
+ Definition ww_to_Z := zn2z_to_Z (base w_digits) w_to_Z.
+
+ Definition ww_1 := WW w_0 w_1.
+
+ Definition ww_Bm1 := WW w_Bm1 w_Bm1.
+
+ Definition ww_WW xh xl : zn2z (zn2z w) :=
+ match xh, xl with
+ | W0, W0 => W0
+ | _, _ => WW xh xl
+ end.
+
+ Definition ww_W0 h : zn2z (zn2z w) :=
+ match h with
+ | W0 => W0
+ | _ => WW h W0
+ end.
+
+ Definition ww_0W l : zn2z (zn2z w) :=
+ match l with
+ | W0 => W0
+ | _ => WW W0 l
+ end.
+
+ Definition double_WW (n:nat) :=
+ match n return word w n -> word w n -> word w (S n) with
+ | O => w_WW
+ | S n =>
+ fun (h l : zn2z (word w n)) =>
+ match h, l with
+ | W0, W0 => W0
+ | _, _ => WW h l
+ end
+ end.
+
+ Fixpoint double_digits (n:nat) : positive :=
+ match n with
+ | O => w_digits
+ | S n => xO (double_digits n)
+ end.
+
+ Definition double_wB n := base (double_digits n).
+
+ Fixpoint double_to_Z (n:nat) : word w n -> Z :=
+ match n return word w n -> Z with
+ | O => w_to_Z
+ | S n => zn2z_to_Z (double_wB n) (double_to_Z n)
+ end.
+
+ Fixpoint extend_aux (n:nat) (x:zn2z w) {struct n}: word w (S n) :=
+ match n return word w (S n) with
+ | O => x
+ | S n1 => WW W0 (extend_aux n1 x)
+ end.
+
+ Definition extend (n:nat) (x:w) : word w (S n) :=
+ let r := w_0W x in
+ match r with
+ | W0 => W0
+ | _ => extend_aux n r
+ end.
+
+ Definition double_0 n : word w n :=
+ match n return word w n with
+ | O => w_0
+ | S _ => W0
+ end.
+
+ Definition double_split (n:nat) (x:zn2z (word w n)) :=
+ match x with
+ | W0 =>
+ match n return word w n * word w n with
+ | O => (w_0,w_0)
+ | S _ => (W0, W0)
+ end
+ | WW h l => (h,l)
+ end.
+
+ Definition ww_compare x y :=
+ match x, y with
+ | W0, W0 => Eq
+ | W0, WW yh yl =>
+ match w_compare w_0 yh with
+ | Eq => w_compare w_0 yl
+ | _ => Lt
+ end
+ | WW xh xl, W0 =>
+ match w_compare xh w_0 with
+ | Eq => w_compare xl w_0
+ | _ => Gt
+ end
+ | WW xh xl, WW yh yl =>
+ match w_compare xh yh with
+ | Eq => w_compare xl yl
+ | Lt => Lt
+ | Gt => Gt
+ end
+ end.
+
+
+ (* Return the low part of the composed word*)
+ Fixpoint get_low (n : nat) {struct n}:
+ word w n -> w :=
+ match n return (word w n -> w) with
+ | 0%nat => fun x => x
+ | S n1 =>
+ fun x =>
+ match x with
+ | W0 => w_0
+ | WW _ x1 => get_low n1 x1
+ end
+ end.
+
+
+ Section DoubleProof.
+ Notation wB := (base w_digits).
+ Notation wwB := (base ww_digits).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[[ x ]]" := (ww_to_Z x) (at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB ww_to_Z c) (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB ww_to_Z c) (at level 0, x at level 99).
+ Notation "[! n | x !]" := (double_to_Z n x) (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_compare : forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+
+ Lemma wwB_wBwB : wwB = wB^2.
+ Proof.
+ unfold base, ww_digits;rewrite Zpower_2; rewrite (Zpos_xO w_digits).
+ replace (2 * Zpos w_digits) with (Zpos w_digits + Zpos w_digits).
+ apply Zpower_exp; unfold Zge;simpl;intros;discriminate.
+ ring.
+ Qed.
+
+ Lemma spec_ww_1 : [[ww_1]] = 1.
+ Proof. simpl;rewrite spec_w_0;rewrite spec_w_1;ring. Qed.
+
+ Lemma spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1.
+ Proof. simpl;rewrite spec_w_Bm1;rewrite wwB_wBwB;ring. Qed.
+
+ Lemma lt_0_wB : 0 < wB.
+ Proof.
+ unfold base;apply Zpower_gt_0. unfold Zlt;reflexivity.
+ unfold Zle;intros H;discriminate H.
+ Qed.
+
+ Lemma lt_0_wwB : 0 < wwB.
+ Proof. rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_lt_0_compat;apply lt_0_wB. Qed.
+
+ Lemma wB_pos: 1 < wB.
+ Proof.
+ unfold base;apply Zlt_le_trans with (2^1). unfold Zlt;reflexivity.
+ apply Zpower_le_monotone. unfold Zlt;reflexivity.
+ split;unfold Zle;intros H. discriminate H.
+ clear spec_w_0W w_0W spec_w_Bm1 spec_to_Z spec_w_WW w_WW.
+ destruct w_digits; discriminate H.
+ Qed.
+
+ Lemma wwB_pos: 1 < wwB.
+ Proof.
+ assert (H:= wB_pos);rewrite wwB_wBwB;rewrite <-(Zmult_1_r 1).
+ rewrite Zpower_2.
+ apply Zmult_lt_compat2;(split;[unfold Zlt;reflexivity|trivial]).
+ apply Zlt_le_weak;trivial.
+ Qed.
+
+ Theorem wB_div_2: 2 * (wB / 2) = wB.
+ Proof.
+ clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
+ spec_to_Z;unfold base.
+ assert (2 ^ Zpos w_digits = 2 * (2 ^ (Zpos w_digits - 1))).
+ pattern 2 at 2; rewrite <- Zpower_1_r.
+ rewrite <- Zpower_exp; auto with zarith.
+ f_equal; auto with zarith.
+ case w_digits; compute; intros; discriminate.
+ rewrite H; f_equal; auto with zarith.
+ rewrite Zmult_comm; apply Z_div_mult; auto with zarith.
+ Qed.
+
+ Theorem wwB_div_2 : wwB / 2 = wB / 2 * wB.
+ Proof.
+ clear spec_w_0 w_0 spec_w_1 w_1 spec_w_Bm1 w_Bm1 spec_w_WW spec_w_0W
+ spec_to_Z.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ pattern wB at 1; rewrite <- wB_div_2; auto.
+ rewrite <- Zmult_assoc.
+ repeat (rewrite (Zmult_comm 2); rewrite Z_div_mult); auto with zarith.
+ Qed.
+
+ Lemma mod_wwB : forall z x,
+ (z*wB + [|x|]) mod wwB = (z mod wB)*wB + [|x|].
+ Proof.
+ intros z x.
+ rewrite Zplus_mod.
+ pattern wwB at 1;rewrite wwB_wBwB; rewrite Zpower_2.
+ rewrite Zmult_mod_distr_r;try apply lt_0_wB.
+ rewrite (Zmod_small [|x|]).
+ apply Zmod_small;rewrite wwB_wBwB;apply beta_mult;try apply spec_to_Z.
+ apply Z_mod_lt;apply Zlt_gt;apply lt_0_wB.
+ destruct (spec_to_Z x);split;trivial.
+ change [|x|] with (0*wB+[|x|]). rewrite wwB_wBwB.
+ rewrite Zpower_2;rewrite <- (Zplus_0_r (wB*wB));apply beta_lex_inv.
+ apply lt_0_wB. apply spec_to_Z. split;[apply Zle_refl | apply lt_0_wB].
+ Qed.
+
+ Lemma wB_div : forall x y, ([|x|] * wB + [|y|]) / wB = [|x|].
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros x y;unfold base;rewrite Zdiv_shift_r;auto with zarith.
+ rewrite Z_div_mult;auto with zarith.
+ destruct (spec_to_Z x);trivial.
+ Qed.
+
+ Lemma wB_div_plus : forall x y p,
+ 0 <= p ->
+ ([|x|]*wB + [|y|]) / 2^(Zpos w_digits + p) = [|x|] / 2^p.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros x y p Hp;rewrite Zpower_exp;auto with zarith.
+ rewrite <- Zdiv_Zdiv;auto with zarith.
+ rewrite wB_div;trivial.
+ Qed.
+
+ Lemma lt_wB_wwB : wB < wwB.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ unfold base;apply Zpower_lt_monotone;auto with zarith.
+ assert (0 < Zpos w_digits). compute;reflexivity.
+ unfold ww_digits;rewrite Zpos_xO;auto with zarith.
+ Qed.
+
+ Lemma w_to_Z_wwB : forall x, x < wB -> x < wwB.
+ Proof.
+ intros x H;apply Zlt_trans with wB;trivial;apply lt_wB_wwB.
+ Qed.
+
+ Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ destruct x as [ |h l];simpl.
+ split;[apply Zle_refl|apply lt_0_wwB].
+ assert (H:=spec_to_Z h);assert (L:=spec_to_Z l);split.
+ apply Zplus_le_0_compat;auto with zarith.
+ rewrite <- (Zplus_0_r wwB);rewrite wwB_wBwB; rewrite Zpower_2;
+ apply beta_lex_inv;auto with zarith.
+ Qed.
+
+ Lemma double_wB_wwB : forall n, double_wB n * double_wB n = double_wB (S n).
+ Proof.
+ intros n;unfold double_wB;simpl.
+ unfold base;rewrite (Zpos_xO (double_digits n)).
+ replace (2 * Zpos (double_digits n)) with
+ (Zpos (double_digits n) + Zpos (double_digits n)).
+ symmetry; apply Zpower_exp;intro;discriminate.
+ ring.
+ Qed.
+
+ Lemma double_wB_pos:
+ forall n, 0 <= double_wB n.
+ Proof.
+ intros n; unfold double_wB, base; auto with zarith.
+ Qed.
+
+ Lemma double_wB_more_digits:
+ forall n, wB <= double_wB n.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ intros n; elim n; clear n; auto.
+ unfold double_wB, double_digits; auto with zarith.
+ intros n H1; rewrite <- double_wB_wwB.
+ apply Zle_trans with (wB * 1).
+ rewrite Zmult_1_r; apply Zle_refl.
+ apply Zmult_le_compat; auto with zarith.
+ apply Zle_trans with wB; auto with zarith.
+ unfold base.
+ rewrite <- (Zpower_0_r 2).
+ apply Zpower_le_monotone2; auto with zarith.
+ unfold base; auto with zarith.
+ Qed.
+
+ Lemma spec_double_to_Z :
+ forall n (x:word w n), 0 <= [!n | x!] < double_wB n.
+ Proof.
+ clear spec_w_0 spec_w_1 spec_w_Bm1 w_0 w_1 w_Bm1.
+ induction n;intros. exact (spec_to_Z x).
+ unfold double_to_Z;fold double_to_Z.
+ destruct x;unfold zn2z_to_Z.
+ unfold double_wB,base;split;auto with zarith.
+ assert (U0:= IHn w0);assert (U1:= IHn w1).
+ split;auto with zarith.
+ apply Zlt_le_trans with ((double_wB n - 1) * double_wB n + double_wB n).
+ assert (double_to_Z n w0*double_wB n <= (double_wB n - 1)*double_wB n).
+ apply Zmult_le_compat_r;auto with zarith.
+ auto with zarith.
+ rewrite <- double_wB_wwB.
+ replace ((double_wB n - 1) * double_wB n + double_wB n) with (double_wB n * double_wB n);
+ [auto with zarith | ring].
+ Qed.
+
+ Lemma spec_get_low:
+ forall n x,
+ [!n | x!] < wB -> [|get_low n x|] = [!n | x!].
+ Proof.
+ clear spec_w_1 spec_w_Bm1.
+ intros n; elim n; auto; clear n.
+ intros n Hrec x; case x; clear x; auto.
+ intros xx yy H1; simpl in H1.
+ assert (F1: [!n | xx!] = 0).
+ case (Zle_lt_or_eq 0 ([!n | xx!])); auto.
+ case (spec_double_to_Z n xx); auto.
+ intros F2.
+ assert (F3 := double_wB_more_digits n).
+ assert (F4: 0 <= [!n | yy!]).
+ case (spec_double_to_Z n yy); auto.
+ assert (F5: 1 * wB <= [!n | xx!] * double_wB n);
+ auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ unfold base; auto with zarith.
+ simpl get_low; simpl double_to_Z.
+ generalize H1; clear H1.
+ rewrite F1; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ intros H1; apply Hrec; auto.
+ Qed.
+
+ Lemma spec_double_WW : forall n (h l : word w n),
+ [!S n|double_WW n h l!] = [!n|h!] * double_wB n + [!n|l!].
+ Proof.
+ induction n;simpl;intros;trivial.
+ destruct h;auto.
+ destruct l;auto.
+ Qed.
+
+ Lemma spec_extend_aux : forall n x, [!S n|extend_aux n x!] = [[x]].
+ Proof. induction n;simpl;trivial. Qed.
+
+ Lemma spec_extend : forall n x, [!S n|extend n x!] = [|x|].
+ Proof.
+ intros n x;assert (H:= spec_w_0W x);unfold extend.
+ destruct (w_0W x);simpl;trivial.
+ rewrite <- H;exact (spec_extend_aux n (WW w0 w1)).
+ Qed.
+
+ Lemma spec_double_0 : forall n, [!n|double_0 n!] = 0.
+ Proof. destruct n;trivial. Qed.
+
+ Lemma spec_double_split : forall n x,
+ let (h,l) := double_split n x in
+ [!S n|x!] = [!n|h!] * double_wB n + [!n|l!].
+ Proof.
+ destruct x;simpl;auto.
+ destruct n;simpl;trivial.
+ rewrite spec_w_0;trivial.
+ Qed.
+
+ Lemma wB_lex_inv: forall a b c d,
+ a < c ->
+ a * wB + [|b|] < c * wB + [|d|].
+ Proof.
+ intros a b c d H1; apply beta_lex_inv with (1 := H1); auto.
+ Qed.
+
+ Lemma spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Proof.
+ destruct x as [ |xh xl];destruct y as [ |yh yl];simpl;trivial.
+ generalize (spec_w_compare w_0 yh);destruct (w_compare w_0 yh);
+ intros H;rewrite spec_w_0 in H.
+ rewrite <- H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
+ change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
+ apply wB_lex_inv;trivial.
+ absurd (0 <= [|yh|]). apply Zgt_not_le;trivial.
+ destruct (spec_to_Z yh);trivial.
+ generalize (spec_w_compare xh w_0);destruct (w_compare xh w_0);
+ intros H;rewrite spec_w_0 in H.
+ rewrite H;simpl;rewrite <- spec_w_0;apply spec_w_compare.
+ absurd (0 <= [|xh|]). apply Zgt_not_le;apply Zlt_gt;trivial.
+ destruct (spec_to_Z xh);trivial.
+ apply Zlt_gt;change 0 with (0*wB+0);pattern 0 at 2;rewrite <- spec_w_0.
+ apply wB_lex_inv;apply Zgt_lt;trivial.
+
+ generalize (spec_w_compare xh yh);destruct (w_compare xh yh);intros H.
+ rewrite H;generalize (spec_w_compare xl yl);destruct (w_compare xl yl);
+ intros H1;[rewrite H1|apply Zplus_lt_compat_l|apply Zplus_gt_compat_l];
+ trivial.
+ apply wB_lex_inv;trivial.
+ apply Zlt_gt;apply wB_lex_inv;apply Zgt_lt;trivial.
+ Qed.
+
+
+ End DoubleProof.
+
+End DoubleBase.
+
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
new file mode 100644
index 00000000..cca32a59
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleCyclic.v
@@ -0,0 +1,885 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleCyclic.v 11012 2008-05-28 16:34:43Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+Require Import DoubleAdd.
+Require Import DoubleSub.
+Require Import DoubleMul.
+Require Import DoubleSqrt.
+Require Import DoubleLift.
+Require Import DoubleDivn1.
+Require Import DoubleDiv.
+Require Import CyclicAxioms.
+
+Open Local Scope Z_scope.
+
+
+Section Z_2nZ.
+
+ Variable w : Type.
+ Variable w_op : znz_op w.
+ Let w_digits := w_op.(znz_digits).
+ Let w_zdigits := w_op.(znz_zdigits).
+
+ Let w_to_Z := w_op.(znz_to_Z).
+ Let w_of_pos := w_op.(znz_of_pos).
+ Let w_head0 := w_op.(znz_head0).
+ Let w_tail0 := w_op.(znz_tail0).
+
+ Let w_0 := w_op.(znz_0).
+ Let w_1 := w_op.(znz_1).
+ Let w_Bm1 := w_op.(znz_Bm1).
+
+ Let w_compare := w_op.(znz_compare).
+ Let w_eq0 := w_op.(znz_eq0).
+
+ Let w_opp_c := w_op.(znz_opp_c).
+ Let w_opp := w_op.(znz_opp).
+ Let w_opp_carry := w_op.(znz_opp_carry).
+
+ Let w_succ_c := w_op.(znz_succ_c).
+ Let w_add_c := w_op.(znz_add_c).
+ Let w_add_carry_c := w_op.(znz_add_carry_c).
+ Let w_succ := w_op.(znz_succ).
+ Let w_add := w_op.(znz_add).
+ Let w_add_carry := w_op.(znz_add_carry).
+
+ Let w_pred_c := w_op.(znz_pred_c).
+ Let w_sub_c := w_op.(znz_sub_c).
+ Let w_sub_carry_c := w_op.(znz_sub_carry_c).
+ Let w_pred := w_op.(znz_pred).
+ Let w_sub := w_op.(znz_sub).
+ Let w_sub_carry := w_op.(znz_sub_carry).
+
+
+ Let w_mul_c := w_op.(znz_mul_c).
+ Let w_mul := w_op.(znz_mul).
+ Let w_square_c := w_op.(znz_square_c).
+
+ Let w_div21 := w_op.(znz_div21).
+ Let w_div_gt := w_op.(znz_div_gt).
+ Let w_div := w_op.(znz_div).
+
+ Let w_mod_gt := w_op.(znz_mod_gt).
+ Let w_mod := w_op.(znz_mod).
+
+ Let w_gcd_gt := w_op.(znz_gcd_gt).
+ Let w_gcd := w_op.(znz_gcd).
+
+ Let w_add_mul_div := w_op.(znz_add_mul_div).
+
+ Let w_pos_mod := w_op.(znz_pos_mod).
+
+ Let w_is_even := w_op.(znz_is_even).
+ Let w_sqrt2 := w_op.(znz_sqrt2).
+ Let w_sqrt := w_op.(znz_sqrt).
+
+ Let _zn2z := zn2z w.
+
+ Let wB := base w_digits.
+
+ Let w_Bm2 := w_pred w_Bm1.
+
+ Let ww_1 := ww_1 w_0 w_1.
+ Let ww_Bm1 := ww_Bm1 w_Bm1.
+
+ Let w_add2 a b := match w_add_c a b with C0 p => WW w_0 p | C1 p => WW w_1 p end.
+
+ Let _ww_digits := xO w_digits.
+
+ Let _ww_zdigits := w_add2 w_zdigits w_zdigits.
+
+ Let to_Z := zn2z_to_Z wB w_to_Z.
+
+ Let w_W0 := znz_W0 w_op.
+ Let w_0W := znz_0W w_op.
+ Let w_WW := znz_WW w_op.
+
+ Let ww_of_pos p :=
+ match w_of_pos p with
+ | (N0, l) => (N0, WW w_0 l)
+ | (Npos ph,l) =>
+ let (n,h) := w_of_pos ph in (n, w_WW h l)
+ end.
+
+ Let head0 :=
+ Eval lazy beta delta [ww_head0] in
+ ww_head0 w_0 w_0W w_compare w_head0 w_add2 w_zdigits _ww_zdigits.
+
+ Let tail0 :=
+ Eval lazy beta delta [ww_tail0] in
+ ww_tail0 w_0 w_0W w_compare w_tail0 w_add2 w_zdigits _ww_zdigits.
+
+ Let ww_WW := Eval lazy beta delta [ww_WW] in (@ww_WW w).
+ Let ww_0W := Eval lazy beta delta [ww_0W] in (@ww_0W w).
+ Let ww_W0 := Eval lazy beta delta [ww_W0] in (@ww_W0 w).
+
+ (* ** Comparison ** *)
+ Let compare :=
+ Eval lazy beta delta[ww_compare] in ww_compare w_0 w_compare.
+
+ Let eq0 (x:zn2z w) :=
+ match x with
+ | W0 => true
+ | _ => false
+ end.
+
+ (* ** Opposites ** *)
+ Let opp_c :=
+ Eval lazy beta delta [ww_opp_c] in ww_opp_c w_0 w_opp_c w_opp_carry.
+
+ Let opp :=
+ Eval lazy beta delta [ww_opp] in ww_opp w_0 w_opp_c w_opp_carry w_opp.
+
+ Let opp_carry :=
+ Eval lazy beta delta [ww_opp_carry] in ww_opp_carry w_WW ww_Bm1 w_opp_carry.
+
+ (* ** Additions ** *)
+
+ Let succ_c :=
+ Eval lazy beta delta [ww_succ_c] in ww_succ_c w_0 ww_1 w_succ_c.
+
+ Let add_c :=
+ Eval lazy beta delta [ww_add_c] in ww_add_c w_WW w_add_c w_add_carry_c.
+
+ Let add_carry_c :=
+ Eval lazy beta iota delta [ww_add_carry_c ww_succ_c] in
+ ww_add_carry_c w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c.
+
+ Let succ :=
+ Eval lazy beta delta [ww_succ] in ww_succ w_W0 ww_1 w_succ_c w_succ.
+
+ Let add :=
+ Eval lazy beta delta [ww_add] in ww_add w_add_c w_add w_add_carry.
+
+ Let add_carry :=
+ Eval lazy beta iota delta [ww_add_carry ww_succ] in
+ ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ w_add w_add_carry.
+
+ (* ** Subtractions ** *)
+
+ Let pred_c :=
+ Eval lazy beta delta [ww_pred_c] in ww_pred_c w_Bm1 w_WW ww_Bm1 w_pred_c.
+
+ Let sub_c :=
+ Eval lazy beta iota delta [ww_sub_c ww_opp_c] in
+ ww_sub_c w_0 w_WW w_opp_c w_opp_carry w_sub_c w_sub_carry_c.
+
+ Let sub_carry_c :=
+ Eval lazy beta iota delta [ww_sub_carry_c ww_pred_c ww_opp_carry] in
+ ww_sub_carry_c w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_c w_sub_carry_c.
+
+ Let pred :=
+ Eval lazy beta delta [ww_pred] in ww_pred w_Bm1 w_WW ww_Bm1 w_pred_c w_pred.
+
+ Let sub :=
+ Eval lazy beta iota delta [ww_sub ww_opp] in
+ ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry.
+
+ Let sub_carry :=
+ Eval lazy beta iota delta [ww_sub_carry ww_pred ww_opp_carry] in
+ ww_sub_carry w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c w_sub_carry_c w_pred
+ w_sub w_sub_carry.
+
+
+ (* ** Multiplication ** *)
+
+ Let mul_c :=
+ Eval lazy beta iota delta [ww_mul_c double_mul_c] in
+ ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry.
+
+ Let karatsuba_c :=
+ Eval lazy beta iota delta [ww_karatsuba_c double_mul_c kara_prod] in
+ ww_karatsuba_c w_0 w_1 w_WW w_W0 w_compare w_add w_sub w_mul_c
+ add_c add add_carry sub_c sub.
+
+ Let mul :=
+ Eval lazy beta delta [ww_mul] in
+ ww_mul w_W0 w_add w_mul_c w_mul add.
+
+ Let square_c :=
+ Eval lazy beta delta [ww_square_c] in
+ ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add add_carry.
+
+ (* Division operation *)
+
+ Let div32 :=
+ Eval lazy beta iota delta [w_div32] in
+ w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
+ w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c.
+
+ Let div21 :=
+ Eval lazy beta iota delta [ww_div21] in
+ ww_div21 w_0 w_0W div32 ww_1 compare sub.
+
+ Let low (p: zn2z w) := match p with WW _ p1 => p1 | _ => w_0 end.
+
+ Let add_mul_div :=
+ Eval lazy beta delta [ww_add_mul_div] in
+ ww_add_mul_div w_0 w_WW w_W0 w_0W compare w_add_mul_div sub w_zdigits low.
+
+ Let div_gt :=
+ Eval lazy beta delta [ww_div_gt] in
+ ww_div_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp
+ w_opp_carry w_sub_c w_sub w_sub_carry
+ w_div_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits.
+
+ Let div :=
+ Eval lazy beta delta [ww_div] in ww_div ww_1 compare div_gt.
+
+ Let mod_gt :=
+ Eval lazy beta delta [ww_mod_gt] in
+ ww_mod_gt w_0 w_WW w_0W w_compare w_eq0 w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry
+ w_mod_gt w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div w_zdigits.
+
+ Let mod_ :=
+ Eval lazy beta delta [ww_mod] in ww_mod compare mod_gt.
+
+ Let pos_mod :=
+ Eval lazy beta delta [ww_pos_mod] in
+ ww_pos_mod w_0 w_zdigits w_WW w_pos_mod compare w_0W low sub _ww_zdigits.
+
+ Let is_even :=
+ Eval lazy beta delta [ww_is_even] in ww_is_even w_is_even.
+
+ Let sqrt2 :=
+ Eval lazy beta delta [ww_sqrt2] in
+ ww_sqrt2 w_is_even w_compare w_0 w_1 w_Bm1 w_0W w_sub w_square_c
+ w_div21 w_add_mul_div w_zdigits w_add_c w_sqrt2 w_pred pred_c
+ pred add_c add sub_c add_mul_div.
+
+ Let sqrt :=
+ Eval lazy beta delta [ww_sqrt] in
+ ww_sqrt w_is_even w_0 w_sub w_add_mul_div w_zdigits
+ _ww_zdigits w_sqrt2 pred add_mul_div head0 compare low.
+
+ Let gcd_gt_fix :=
+ Eval cbv beta delta [ww_gcd_gt_aux ww_gcd_gt_body] in
+ ww_gcd_gt_aux w_0 w_WW w_0W w_compare w_opp_c w_opp w_opp_carry
+ w_sub_c w_sub w_sub_carry w_gcd_gt
+ w_add_mul_div w_head0 w_div21 div32 _ww_zdigits add_mul_div
+ w_zdigits.
+
+ Let gcd_cont :=
+ Eval lazy beta delta [gcd_cont] in gcd_cont ww_1 w_1 w_compare.
+
+ Let gcd_gt :=
+ Eval lazy beta delta [ww_gcd_gt] in
+ ww_gcd_gt w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
+
+ Let gcd :=
+ Eval lazy beta delta [ww_gcd] in
+ ww_gcd compare w_0 w_eq0 w_gcd_gt _ww_digits gcd_gt_fix gcd_cont.
+
+ (* ** Record of operators on 2 words *)
+
+ Definition mk_zn2z_op :=
+ mk_znz_op _ww_digits _ww_zdigits
+ to_Z ww_of_pos head0 tail0
+ W0 ww_1 ww_Bm1
+ compare eq0
+ opp_c opp opp_carry
+ succ_c add_c add_carry_c
+ succ add add_carry
+ pred_c sub_c sub_carry_c
+ pred sub sub_carry
+ mul_c mul square_c
+ div21 div_gt div
+ mod_gt mod_
+ gcd_gt gcd
+ add_mul_div
+ pos_mod
+ is_even
+ sqrt2
+ sqrt.
+
+ Definition mk_zn2z_op_karatsuba :=
+ mk_znz_op _ww_digits _ww_zdigits
+ to_Z ww_of_pos head0 tail0
+ W0 ww_1 ww_Bm1
+ compare eq0
+ opp_c opp opp_carry
+ succ_c add_c add_carry_c
+ succ add add_carry
+ pred_c sub_c sub_carry_c
+ pred sub sub_carry
+ karatsuba_c mul square_c
+ div21 div_gt div
+ mod_gt mod_
+ gcd_gt gcd
+ add_mul_div
+ pos_mod
+ is_even
+ sqrt2
+ sqrt.
+
+ (* Proof *)
+ Variable op_spec : znz_spec w_op.
+
+ Hint Resolve
+ (spec_to_Z op_spec)
+ (spec_of_pos op_spec)
+ (spec_0 op_spec)
+ (spec_1 op_spec)
+ (spec_Bm1 op_spec)
+ (spec_compare op_spec)
+ (spec_eq0 op_spec)
+ (spec_opp_c op_spec)
+ (spec_opp op_spec)
+ (spec_opp_carry op_spec)
+ (spec_succ_c op_spec)
+ (spec_add_c op_spec)
+ (spec_add_carry_c op_spec)
+ (spec_succ op_spec)
+ (spec_add op_spec)
+ (spec_add_carry op_spec)
+ (spec_pred_c op_spec)
+ (spec_sub_c op_spec)
+ (spec_sub_carry_c op_spec)
+ (spec_pred op_spec)
+ (spec_sub op_spec)
+ (spec_sub_carry op_spec)
+ (spec_mul_c op_spec)
+ (spec_mul op_spec)
+ (spec_square_c op_spec)
+ (spec_div21 op_spec)
+ (spec_div_gt op_spec)
+ (spec_div op_spec)
+ (spec_mod_gt op_spec)
+ (spec_mod op_spec)
+ (spec_gcd_gt op_spec)
+ (spec_gcd op_spec)
+ (spec_head0 op_spec)
+ (spec_tail0 op_spec)
+ (spec_add_mul_div op_spec)
+ (spec_pos_mod)
+ (spec_is_even)
+ (spec_sqrt2)
+ (spec_sqrt)
+ (spec_W0 op_spec)
+ (spec_0W op_spec)
+ (spec_WW op_spec).
+
+ Ltac wwauto := unfold ww_to_Z; auto.
+
+ Let wwB := base _ww_digits.
+
+ Notation "[| x |]" := (to_Z x) (at level 0, x at level 99).
+
+ Notation "[+| c |]" :=
+ (interp_carry 1 wwB to_Z c) (at level 0, x at level 99).
+
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wwB to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (zn2z_to_Z wwB to_Z x) (at level 0, x at level 99).
+
+ Let spec_ww_to_Z : forall x, 0 <= [| x |] < wwB.
+ Proof. refine (spec_ww_to_Z w_digits w_to_Z _);auto. Qed.
+
+ Let spec_ww_of_pos : forall p,
+ Zpos p = (Z_of_N (fst (ww_of_pos p)))*wwB + [|(snd (ww_of_pos p))|].
+ Proof.
+ unfold ww_of_pos;intros.
+ assert (H:= spec_of_pos op_spec p);unfold w_of_pos;
+ destruct (znz_of_pos w_op p). simpl in H.
+ rewrite H;clear H;destruct n;simpl to_Z.
+ simpl;unfold w_to_Z,w_0;rewrite (spec_0 op_spec);trivial.
+ unfold Z_of_N; assert (H:= spec_of_pos op_spec p0);
+ destruct (znz_of_pos w_op p0). simpl in H.
+ rewrite H;unfold fst, snd,Z_of_N, to_Z.
+ rewrite (spec_WW op_spec).
+ replace wwB with (wB*wB).
+ unfold wB,w_to_Z,w_digits;clear H;destruct n;ring.
+ symmetry. rewrite <- Zpower_2; exact (wwB_wBwB w_digits).
+ Qed.
+
+ Let spec_ww_0 : [|W0|] = 0.
+ Proof. reflexivity. Qed.
+
+ Let spec_ww_1 : [|ww_1|] = 1.
+ Proof. refine (spec_ww_1 w_0 w_1 w_digits w_to_Z _ _);auto. Qed.
+
+ Let spec_ww_Bm1 : [|ww_Bm1|] = wwB - 1.
+ Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed.
+
+ Let spec_ww_compare :
+ forall x y,
+ match compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Proof.
+ refine (spec_ww_compare w_0 w_digits w_to_Z w_compare _ _ _);auto.
+ exact (spec_compare op_spec).
+ Qed.
+
+ Let spec_ww_eq0 : forall x, eq0 x = true -> [|x|] = 0.
+ Proof. destruct x;simpl;intros;trivial;discriminate. Qed.
+
+ Let spec_ww_opp_c : forall x, [-|opp_c x|] = -[|x|].
+ Proof.
+ refine(spec_ww_opp_c w_0 w_0 W0 w_opp_c w_opp_carry w_digits w_to_Z _ _ _ _);
+ auto.
+ Qed.
+
+ Let spec_ww_opp : forall x, [|opp x|] = (-[|x|]) mod wwB.
+ Proof.
+ refine(spec_ww_opp w_0 w_0 W0 w_opp_c w_opp_carry w_opp
+ w_digits w_to_Z _ _ _ _ _);
+ auto.
+ Qed.
+
+ Let spec_ww_opp_carry : forall x, [|opp_carry x|] = wwB - [|x|] - 1.
+ Proof.
+ refine (spec_ww_opp_carry w_WW ww_Bm1 w_opp_carry w_digits w_to_Z _ _ _);
+ wwauto.
+ Qed.
+
+ Let spec_ww_succ_c : forall x, [+|succ_c x|] = [|x|] + 1.
+ Proof.
+ refine (spec_ww_succ_c w_0 w_0 ww_1 w_succ_c w_digits w_to_Z _ _ _ _);auto.
+ Qed.
+
+ Let spec_ww_add_c : forall x y, [+|add_c x y|] = [|x|] + [|y|].
+ Proof.
+ refine (spec_ww_add_c w_WW w_add_c w_add_carry_c w_digits w_to_Z _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_add_carry_c : forall x y, [+|add_carry_c x y|] = [|x|]+[|y|]+1.
+ Proof.
+ refine (spec_ww_add_carry_c w_0 w_0 w_WW ww_1 w_succ_c w_add_c w_add_carry_c
+ w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_succ : forall x, [|succ x|] = ([|x|] + 1) mod wwB.
+ Proof.
+ refine (spec_ww_succ w_W0 ww_1 w_succ_c w_succ w_digits w_to_Z _ _ _ _ _);
+ wwauto.
+ Qed.
+
+ Let spec_ww_add : forall x y, [|add x y|] = ([|x|] + [|y|]) mod wwB.
+ Proof.
+ refine (spec_ww_add w_add_c w_add w_add_carry w_digits w_to_Z _ _ _ _);auto.
+ Qed.
+
+ Let spec_ww_add_carry : forall x y, [|add_carry x y|]=([|x|]+[|y|]+1)mod wwB.
+ Proof.
+ refine (spec_ww_add_carry w_W0 ww_1 w_succ_c w_add_carry_c w_succ
+ w_add w_add_carry w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_pred_c : forall x, [-|pred_c x|] = [|x|] - 1.
+ Proof.
+ refine (spec_ww_pred_c w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_digits w_to_Z
+ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_sub_c : forall x y, [-|sub_c x y|] = [|x|] - [|y|].
+ Proof.
+ refine (spec_ww_sub_c w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c
+ w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_sub_carry_c : forall x y, [-|sub_carry_c x y|] = [|x|]-[|y|]-1.
+ Proof.
+ refine (spec_ww_sub_carry_c w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
+ w_sub_c w_sub_carry_c w_digits w_to_Z _ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_pred : forall x, [|pred x|] = ([|x|] - 1) mod wwB.
+ Proof.
+ refine (spec_ww_pred w_0 w_Bm1 w_WW ww_Bm1 w_pred_c w_pred w_digits w_to_Z
+ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_sub : forall x y, [|sub x y|] = ([|x|] - [|y|]) mod wwB.
+ Proof.
+ refine (spec_ww_sub w_0 w_0 w_WW W0 w_opp_c w_opp_carry w_sub_c w_opp
+ w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_sub_carry : forall x y, [|sub_carry x y|]=([|x|]-[|y|]-1) mod wwB.
+ Proof.
+ refine (spec_ww_sub_carry w_0 w_Bm1 w_WW ww_Bm1 w_opp_carry w_pred_c
+ w_sub_carry_c w_pred w_sub w_sub_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);
+ wwauto.
+ Qed.
+
+ Let spec_ww_mul_c : forall x y, [[mul_c x y ]] = [|x|] * [|y|].
+ Proof.
+ refine (spec_ww_mul_c w_0 w_1 w_WW w_W0 w_mul_c add_c add add_carry w_digits
+ w_to_Z _ _ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_ww_karatsuba_c : forall x y, [[karatsuba_c x y ]] = [|x|] * [|y|].
+ Proof.
+ refine (spec_ww_karatsuba_c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
+ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
+ unfold w_digits; apply spec_more_than_1_digit; auto.
+ exact (spec_compare op_spec).
+ Qed.
+
+ Let spec_ww_mul : forall x y, [|mul x y|] = ([|x|] * [|y|]) mod wwB.
+ Proof.
+ refine (spec_ww_mul w_W0 w_add w_mul_c w_mul add w_digits w_to_Z _ _ _ _ _);
+ wwauto.
+ Qed.
+
+ Let spec_ww_square_c : forall x, [[square_c x]] = [|x|] * [|x|].
+ Proof.
+ refine (spec_ww_square_c w_0 w_1 w_WW w_W0 w_mul_c w_square_c add_c add
+ add_carry w_digits w_to_Z _ _ _ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_w_div32 : forall a1 a2 a3 b1 b2,
+ wB / 2 <= (w_to_Z b1) ->
+ [|WW a1 a2|] < [|WW b1 b2|] ->
+ let (q, r) := div32 a1 a2 a3 b1 b2 in
+ (w_to_Z a1) * wwB + (w_to_Z a2) * wB + (w_to_Z a3) =
+ (w_to_Z q) * ((w_to_Z b1)*wB + (w_to_Z b2)) + [|r|] /\
+ 0 <= [|r|] < (w_to_Z b1)*wB + w_to_Z b2.
+ Proof.
+ refine (spec_w_div32 w_0 w_Bm1 w_Bm2 w_WW w_compare w_add_c w_add_carry_c
+ w_add w_add_carry w_pred w_sub w_mul_c w_div21 sub_c w_digits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ unfold w_Bm2, w_to_Z, w_pred, w_Bm1.
+ rewrite (spec_pred op_spec);rewrite (spec_Bm1 op_spec).
+ unfold w_digits;rewrite Zmod_small. ring.
+ assert (H:= wB_pos(znz_digits w_op)). omega.
+ exact (spec_compare op_spec).
+ exact (spec_div21 op_spec).
+ Qed.
+
+ Let spec_ww_div21 : forall a1 a2 b,
+ wwB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := div21 a1 a2 b in
+ [|a1|] *wwB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ refine (spec_ww_div21 w_0 w_0W div32 ww_1 compare sub w_digits w_to_Z
+ _ _ _ _ _ _ _);wwauto.
+ Qed.
+
+ Let spec_add2: forall x y,
+ [|w_add2 x y|] = w_to_Z x + w_to_Z y.
+ unfold w_add2.
+ intros xh xl; generalize (spec_add_c op_spec xh xl).
+ unfold w_add_c; case znz_add_c; unfold interp_carry; simpl ww_to_Z.
+ intros w0 Hw0; simpl; unfold w_to_Z; rewrite Hw0.
+ unfold w_0; rewrite spec_0; simpl; auto with zarith.
+ intros w0; rewrite Zmult_1_l; simpl.
+ unfold w_to_Z, w_1; rewrite spec_1; auto with zarith.
+ rewrite Zmult_1_l; auto.
+ Qed.
+
+ Let spec_low: forall x,
+ w_to_Z (low x) = [|x|] mod wB.
+ intros x; case x; simpl low.
+ unfold ww_to_Z, w_to_Z, w_0; rewrite (spec_0 op_spec); simpl.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ unfold wB, base; auto with zarith.
+ intros xh xl; simpl.
+ rewrite Zplus_comm; rewrite Z_mod_plus; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ unfold wB, base; auto with zarith.
+ Qed.
+
+ Let spec_ww_digits:
+ [|_ww_zdigits|] = Zpos (xO w_digits).
+ Proof.
+ unfold w_to_Z, _ww_zdigits.
+ rewrite spec_add2.
+ unfold w_to_Z, w_zdigits, w_digits.
+ rewrite spec_zdigits; auto.
+ rewrite Zpos_xO; auto with zarith.
+ Qed.
+
+
+ Let spec_ww_head00 : forall x, [|x|] = 0 -> [|head0 x|] = Zpos _ww_digits.
+ Proof.
+ refine (spec_ww_head00 w_0 w_0W
+ w_compare w_head0 w_add2 w_zdigits _ww_zdigits
+ w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); auto.
+ exact (spec_compare op_spec).
+ exact (spec_head00 op_spec).
+ exact (spec_zdigits op_spec).
+ Qed.
+
+ Let spec_ww_head0 : forall x, 0 < [|x|] ->
+ wwB/ 2 <= 2 ^ [|head0 x|] * [|x|] < wwB.
+ Proof.
+ refine (spec_ww_head0 w_0 w_0W w_compare w_head0
+ w_add2 w_zdigits _ww_zdigits
+ w_to_Z _ _ _ _ _ _ _);wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_zdigits op_spec).
+ Qed.
+
+ Let spec_ww_tail00 : forall x, [|x|] = 0 -> [|tail0 x|] = Zpos _ww_digits.
+ Proof.
+ refine (spec_ww_tail00 w_0 w_0W
+ w_compare w_tail0 w_add2 w_zdigits _ww_zdigits
+ w_to_Z _ _ _ (refl_equal _ww_digits) _ _ _ _); wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_tail00 op_spec).
+ exact (spec_zdigits op_spec).
+ Qed.
+
+
+ Let spec_ww_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * 2 ^ [|tail0 x|].
+ Proof.
+ refine (spec_ww_tail0 (w_digits := w_digits) w_0 w_0W w_compare w_tail0
+ w_add2 w_zdigits _ww_zdigits w_to_Z _ _ _ _ _ _ _);wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_zdigits op_spec).
+ Qed.
+
+ Lemma spec_ww_add_mul_div : forall x y p,
+ [|p|] <= Zpos _ww_digits ->
+ [| add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos _ww_digits) - [|p|]))) mod wwB.
+ Proof.
+ refine (@spec_ww_add_mul_div w w_0 w_WW w_W0 w_0W compare w_add_mul_div
+ sub w_digits w_zdigits low w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_zdigits op_spec).
+ Qed.
+
+ Let spec_ww_div_gt : forall a b,
+ [|a|] > [|b|] -> 0 < [|b|] ->
+ let (q,r) := div_gt a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
+ Proof.
+refine
+(@spec_ww_div_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
+ w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt
+ w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
+).
+ exact (spec_0 op_spec).
+ exact (spec_to_Z op_spec).
+ wwauto.
+ wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_eq0 op_spec).
+ exact (spec_opp_c op_spec).
+ exact (spec_opp op_spec).
+ exact (spec_opp_carry op_spec).
+ exact (spec_sub_c op_spec).
+ exact (spec_sub op_spec).
+ exact (spec_sub_carry op_spec).
+ exact (spec_div_gt op_spec).
+ exact (spec_add_mul_div op_spec).
+ exact (spec_head0 op_spec).
+ exact (spec_div21 op_spec).
+ exact spec_w_div32.
+ exact (spec_zdigits op_spec).
+ exact spec_ww_digits.
+ exact spec_ww_1.
+ exact spec_ww_add_mul_div.
+ Qed.
+
+ Let spec_ww_div : forall a b, 0 < [|b|] ->
+ let (q,r) := div a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ refine (spec_ww_div w_digits ww_1 compare div_gt w_to_Z _ _ _ _);auto.
+ Qed.
+
+ Let spec_ww_mod_gt : forall a b,
+ [|a|] > [|b|] -> 0 < [|b|] ->
+ [|mod_gt a b|] = [|a|] mod [|b|].
+ Proof.
+ refine (@spec_ww_mod_gt w w_digits w_0 w_WW w_0W w_compare w_eq0
+ w_opp_c w_opp w_opp_carry w_sub_c w_sub w_sub_carry w_div_gt w_mod_gt
+ w_add_mul_div w_head0 w_div21 div32 _ww_zdigits ww_1 add_mul_div
+ w_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_div_gt op_spec).
+ exact (spec_div21 op_spec).
+ exact (spec_zdigits op_spec).
+ exact spec_ww_add_mul_div.
+ Qed.
+
+ Let spec_ww_mod : forall a b, 0 < [|b|] -> [|mod_ a b|] = [|a|] mod [|b|].
+ Proof.
+ refine (spec_ww_mod w_digits W0 compare mod_gt w_to_Z _ _ _);auto.
+ Qed.
+
+ Let spec_ww_gcd_gt : forall a b, [|a|] > [|b|] ->
+ Zis_gcd [|a|] [|b|] [|gcd_gt a b|].
+ Proof.
+ refine (@spec_ww_gcd_gt w w_digits W0 w_to_Z _
+ w_0 w_0 w_eq0 w_gcd_gt _ww_digits
+ _ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
+ refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
+ w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
+ w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_div21 op_spec).
+ exact (spec_zdigits op_spec).
+ exact spec_ww_add_mul_div.
+ refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
+ _ _);auto.
+ exact (spec_compare op_spec).
+ Qed.
+
+ Let spec_ww_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd a b|].
+ Proof.
+ refine (@spec_ww_gcd w w_digits W0 compare w_to_Z _ _ w_0 w_0 w_eq0 w_gcd_gt
+ _ww_digits _ gcd_gt_fix _ _ _ _ gcd_cont _);auto.
+ refine (@spec_ww_gcd_gt_aux w w_digits w_0 w_WW w_0W w_compare w_opp_c w_opp
+ w_opp_carry w_sub_c w_sub w_sub_carry w_gcd_gt w_add_mul_div w_head0
+ w_div21 div32 _ww_zdigits ww_1 add_mul_div w_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_compare op_spec).
+ exact (spec_div21 op_spec).
+ exact (spec_zdigits op_spec).
+ exact spec_ww_add_mul_div.
+ refine (@spec_gcd_cont w w_digits ww_1 w_to_Z _ _ w_0 w_1 w_compare
+ _ _);auto.
+ exact (spec_compare op_spec).
+ Qed.
+
+ Let spec_ww_is_even : forall x,
+ match is_even x with
+ true => [|x|] mod 2 = 0
+ | false => [|x|] mod 2 = 1
+ end.
+ Proof.
+ refine (@spec_ww_is_even w w_is_even w_0 w_1 w_Bm1 w_digits _ _ _ _ _); auto.
+ exact (spec_is_even op_spec).
+ Qed.
+
+ Let spec_ww_sqrt2 : forall x y,
+ wwB/ 4 <= [|x|] ->
+ let (s,r) := sqrt2 x y in
+ [[WW x y]] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|].
+ Proof.
+ intros x y H.
+ refine (@spec_ww_sqrt2 w w_is_even w_compare w_0 w_1 w_Bm1
+ w_0W w_sub w_square_c w_div21 w_add_mul_div w_digits w_zdigits
+ _ww_zdigits
+ w_add_c w_sqrt2 w_pred pred_c pred add_c add sub_c add_mul_div
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
+ exact (spec_zdigits op_spec).
+ exact (spec_more_than_1_digit op_spec).
+ exact (spec_is_even op_spec).
+ exact (spec_compare op_spec).
+ exact (spec_div21 op_spec).
+ exact (spec_ww_add_mul_div).
+ exact (spec_sqrt2 op_spec).
+ Qed.
+
+ Let spec_ww_sqrt : forall x,
+ [|sqrt x|] ^ 2 <= [|x|] < ([|sqrt x|] + 1) ^ 2.
+ Proof.
+ refine (@spec_ww_sqrt w w_is_even w_0 w_1 w_Bm1
+ w_sub w_add_mul_div w_digits w_zdigits _ww_zdigits
+ w_sqrt2 pred add_mul_div head0 compare
+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _); wwauto.
+ exact (spec_zdigits op_spec).
+ exact (spec_more_than_1_digit op_spec).
+ exact (spec_is_even op_spec).
+ exact (spec_ww_add_mul_div).
+ exact (spec_sqrt2 op_spec).
+ Qed.
+
+ Lemma mk_znz2_spec : znz_spec mk_zn2z_op.
+ Proof.
+ apply mk_znz_spec;auto.
+ exact spec_ww_add_mul_div.
+
+ refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
+ w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_pos_mod op_spec).
+ exact (spec_zdigits op_spec).
+ unfold w_to_Z, w_zdigits.
+ rewrite (spec_zdigits op_spec).
+ rewrite <- Zpos_xO; exact spec_ww_digits.
+ Qed.
+
+ Lemma mk_znz2_karatsuba_spec : znz_spec mk_zn2z_op_karatsuba.
+ Proof.
+ apply mk_znz_spec;auto.
+ exact spec_ww_add_mul_div.
+ refine (@spec_ww_pos_mod w w_0 w_digits w_zdigits w_WW
+ w_pos_mod compare w_0W low sub _ww_zdigits w_to_Z
+ _ _ _ _ _ _ _ _ _ _ _ _);wwauto.
+ exact (spec_pos_mod op_spec).
+ exact (spec_zdigits op_spec).
+ unfold w_to_Z, w_zdigits.
+ rewrite (spec_zdigits op_spec).
+ rewrite <- Zpos_xO; exact spec_ww_digits.
+ Qed.
+
+End Z_2nZ.
+
+Section MulAdd.
+
+ Variable w: Type.
+ Variable op: znz_op w.
+ Variable sop: znz_spec op.
+
+ Definition mul_add:= w_mul_add (znz_0 op) (znz_succ op) (znz_add_c op) (znz_mul_c op).
+
+ Notation "[| x |]" := (znz_to_Z op x) (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z (base (znz_digits op)) (znz_to_Z op) x) (at level 0, x at level 99).
+
+
+ Lemma spec_mul_add: forall x y z,
+ let (zh, zl) := mul_add x y z in
+ [||WW zh zl||] = [|x|] * [|y|] + [|z|].
+ Proof.
+ intros x y z.
+ refine (spec_w_mul_add _ _ _ _ _ _ _ _ _ _ _ _ x y z); auto.
+ exact (spec_0 sop).
+ exact (spec_to_Z sop).
+ exact (spec_succ sop).
+ exact (spec_add_c sop).
+ exact (spec_mul_c sop).
+ Qed.
+
+End MulAdd.
+
+
+(** Modular versions of DoubleCyclic *)
+
+Module DoubleCyclic (C:CyclicType) <: CyclicType.
+ Definition w := zn2z C.w.
+ Definition w_op := mk_zn2z_op C.w_op.
+ Definition w_spec := mk_znz2_spec C.w_spec.
+End DoubleCyclic.
+
+Module DoubleCyclicKaratsuba (C:CyclicType) <: CyclicType.
+ Definition w := zn2z C.w.
+ Definition w_op := mk_zn2z_op_karatsuba C.w_op.
+ Definition w_spec := mk_znz2_karatsuba_spec C.w_spec.
+End DoubleCyclicKaratsuba.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v
new file mode 100644
index 00000000..075aef59
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDiv.v
@@ -0,0 +1,1540 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleDiv.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+Require Import DoubleDivn1.
+Require Import DoubleAdd.
+Require Import DoubleSub.
+
+Open Local Scope Z_scope.
+
+Ltac zarith := auto with zarith.
+
+
+Section POS_MOD.
+
+ Variable w:Type.
+ Variable w_0 : w.
+ Variable w_digits : positive.
+ Variable w_zdigits : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_pos_mod : w -> w -> w.
+ Variable w_compare : w -> w -> comparison.
+ Variable ww_compare : zn2z w -> zn2z w -> comparison.
+ Variable w_0W : w -> zn2z w.
+ Variable low: zn2z w -> w.
+ Variable ww_sub: zn2z w -> zn2z w -> zn2z w.
+ Variable ww_zdigits : zn2z w.
+
+
+ Definition ww_pos_mod p x :=
+ let zdigits := w_0W w_zdigits in
+ match x with
+ | W0 => W0
+ | WW xh xl =>
+ match ww_compare p zdigits with
+ | Eq => w_WW w_0 xl
+ | Lt => w_WW w_0 (w_pos_mod (low p) xl)
+ | Gt =>
+ match ww_compare p ww_zdigits with
+ | Lt =>
+ let n := low (ww_sub p zdigits) in
+ w_WW (w_pos_mod n xh) xl
+ | _ => x
+ end
+ end
+ end.
+
+
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+
+
+ Variable spec_w_0 : [|w_0|] = 0.
+
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+
+ Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+
+ Variable spec_pos_mod : forall w p,
+ [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Variable spec_ww_sub: forall x y,
+ [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+
+ Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits.
+ Variable spec_low: forall x, [| low x|] = [[x]] mod wB.
+ Variable spec_ww_zdigits : [[ww_zdigits]] = 2 * [|w_zdigits|].
+ Variable spec_ww_digits : ww_digits w_digits = xO w_digits.
+
+
+ Hint Rewrite spec_w_0 spec_w_WW : w_rewrite.
+
+ Lemma spec_ww_pos_mod : forall w p,
+ [[ww_pos_mod p w]] = [[w]] mod (2 ^ [[p]]).
+ assert (HHHHH:= lt_0_wB w_digits).
+ assert (F0: forall x y, x - y + y = x); auto with zarith.
+ intros w1 p; case (spec_to_w_Z p); intros HH1 HH2.
+ unfold ww_pos_mod; case w1.
+ simpl; rewrite Zmod_small; split; auto with zarith.
+ intros xh xl; generalize (spec_ww_compare p (w_0W w_zdigits));
+ case ww_compare;
+ rewrite spec_w_0W; rewrite spec_zdigits; fold wB;
+ intros H1.
+ rewrite H1; simpl ww_to_Z.
+ autorewrite with w_rewrite rm10.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Z_mod_mult; auto with zarith.
+ autorewrite with rm10.
+ rewrite Zmod_mod; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ autorewrite with w_rewrite rm10.
+ simpl ww_to_Z.
+ rewrite spec_pos_mod.
+ assert (HH0: [|low p|] = [[p]]).
+ rewrite spec_low.
+ apply Zmod_small; auto with zarith.
+ case (spec_to_w_Z p); intros HHH1 HHH2; split; auto with zarith.
+ apply Zlt_le_trans with (1 := H1).
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ rewrite HH0.
+ rewrite Zplus_mod; auto with zarith.
+ unfold base.
+ rewrite <- (F0 (Zpos w_digits) [[p]]).
+ rewrite Zpower_exp; auto with zarith.
+ rewrite Zmult_assoc.
+ rewrite Z_mod_mult; auto with zarith.
+ autorewrite with w_rewrite rm10.
+ rewrite Zmod_mod; auto with zarith.
+generalize (spec_ww_compare p ww_zdigits);
+ case ww_compare; rewrite spec_ww_zdigits;
+ rewrite spec_zdigits; intros H2.
+ replace (2^[[p]]) with wwB.
+ rewrite Zmod_small; auto with zarith.
+ unfold base; rewrite H2.
+ rewrite spec_ww_digits; auto.
+ assert (HH0: [|low (ww_sub p (w_0W w_zdigits))|] =
+ [[p]] - Zpos w_digits).
+ rewrite spec_low.
+ rewrite spec_ww_sub.
+ rewrite spec_w_0W; rewrite spec_zdigits.
+ rewrite <- Zmod_div_mod; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zlt_le_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ exists wB; unfold base; rewrite <- Zpower_exp; auto with zarith.
+ rewrite spec_ww_digits;
+ apply f_equal with (f := Zpower 2); rewrite Zpos_xO; auto with zarith.
+ simpl ww_to_Z; autorewrite with w_rewrite.
+ rewrite spec_pos_mod; rewrite HH0.
+ pattern [|xh|] at 2;
+ rewrite Z_div_mod_eq with (b := 2 ^ ([[p]] - Zpos w_digits));
+ auto with zarith.
+ rewrite (fun x => (Zmult_comm (2 ^ x))); rewrite Zmult_plus_distr_l.
+ unfold base; rewrite <- Zmult_assoc; rewrite <- Zpower_exp;
+ auto with zarith.
+ rewrite F0; auto with zarith.
+ rewrite <- Zplus_assoc; rewrite Zplus_mod; auto with zarith.
+ rewrite Z_mod_mult; auto with zarith.
+ autorewrite with rm10.
+ rewrite Zmod_mod; auto with zarith.
+ apply sym_equal; apply Zmod_small; auto with zarith.
+ case (spec_to_Z xh); intros U1 U2.
+ case (spec_to_Z xl); intros U3 U4.
+ split; auto with zarith.
+ apply Zplus_le_0_compat; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ match goal with |- 0 <= ?X mod ?Y =>
+ case (Z_mod_lt X Y); auto with zarith
+ end.
+ match goal with |- ?X mod ?Y * ?U + ?Z < ?T =>
+ apply Zle_lt_trans with ((Y - 1) * U + Z );
+ [case (Z_mod_lt X Y); auto with zarith | idtac]
+ end.
+ match goal with |- ?X * ?U + ?Y < ?Z =>
+ apply Zle_lt_trans with (X * U + (U - 1))
+ end.
+ apply Zplus_le_compat_l; auto with zarith.
+ case (spec_to_Z xl); unfold base; auto with zarith.
+ rewrite Zmult_minus_distr_r; rewrite <- Zpower_exp; auto with zarith.
+ rewrite F0; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ case (spec_to_w_Z (WW xh xl)); intros U1 U2.
+ split; auto with zarith.
+ apply Zlt_le_trans with (1:= U2).
+ unfold base; rewrite spec_ww_digits.
+ apply Zpower_le_monotone; auto with zarith.
+ split; auto with zarith.
+ rewrite Zpos_xO; auto with zarith.
+ Qed.
+
+End POS_MOD.
+
+Section DoubleDiv32.
+
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_Bm1 : w.
+ Variable w_Bm2 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_add_carry_c : w -> w -> carry w.
+ Variable w_add : w -> w -> w.
+ Variable w_add_carry : w -> w -> w.
+ Variable w_pred : w -> w.
+ Variable w_sub : w -> w -> w.
+ Variable w_mul_c : w -> w -> zn2z w.
+ Variable w_div21 : w -> w -> w -> w*w.
+ Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w).
+
+ Definition w_div32 a1 a2 a3 b1 b2 :=
+ Eval lazy beta iota delta [ww_add_c_cont ww_add] in
+ match w_compare a1 b1 with
+ | Lt =>
+ let (q,r) := w_div21 a1 a2 b1 in
+ match ww_sub_c (w_WW r a3) (w_mul_c q b2) with
+ | C0 r1 => (q,r1)
+ | C1 r1 =>
+ let q := w_pred q in
+ ww_add_c_cont w_WW w_add_c w_add_carry_c
+ (fun r2=>(w_pred q, ww_add w_add_c w_add w_add_carry r2 (WW b1 b2)))
+ (fun r2 => (q,r2))
+ r1 (WW b1 b2)
+ end
+ | Eq =>
+ ww_add_c_cont w_WW w_add_c w_add_carry_c
+ (fun r => (w_Bm2, ww_add w_add_c w_add w_add_carry r (WW b1 b2)))
+ (fun r => (w_Bm1,r))
+ (WW (w_sub a2 b2) a3) (WW b1 b2)
+ | Gt => (w_0, W0) (* cas absurde *)
+ end.
+
+ (* Proof *)
+
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
+ Variable spec_w_Bm2 : [|w_Bm2|] = wB - 2.
+
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_w_add_carry_c :
+ forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1.
+
+ Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
+ Variable spec_w_add_carry :
+ forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
+
+ Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB.
+ Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+
+ Variable spec_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|].
+ Variable spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := w_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+
+ Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
+
+ Ltac Spec_w_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_to_Z x).
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x).
+
+ Theorem wB_div2: forall x, wB/2 <= x -> wB <= 2 * x.
+ intros x H; rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith.
+ Qed.
+
+ Lemma Zmult_lt_0_reg_r_2 : forall n m : Z, 0 <= n -> 0 < m * n -> 0 < m.
+ Proof.
+ intros n m H1 H2;apply Zmult_lt_0_reg_r with n;trivial.
+ destruct (Zle_lt_or_eq _ _ H1);trivial.
+ subst;rewrite Zmult_0_r in H2;discriminate H2.
+ Qed.
+
+ Theorem spec_w_div32 : forall a1 a2 a3 b1 b2,
+ wB/2 <= [|b1|] ->
+ [[WW a1 a2]] < [[WW b1 b2]] ->
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ [|a1|] * wwB + [|a2|] * wB + [|a3|] =
+ [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\
+ 0 <= [[r]] < [|b1|] * wB + [|b2|].
+ Proof.
+ intros a1 a2 a3 b1 b2 Hle Hlt.
+ assert (U:= lt_0_wB w_digits); assert (U1:= lt_0_wwB w_digits).
+ Spec_w_to_Z a1;Spec_w_to_Z a2;Spec_w_to_Z a3;Spec_w_to_Z b1;Spec_w_to_Z b2.
+ rewrite wwB_wBwB; rewrite Zpower_2; rewrite Zmult_assoc;rewrite <- Zmult_plus_distr_l.
+ change (w_div32 a1 a2 a3 b1 b2) with
+ match w_compare a1 b1 with
+ | Lt =>
+ let (q,r) := w_div21 a1 a2 b1 in
+ match ww_sub_c (w_WW r a3) (w_mul_c q b2) with
+ | C0 r1 => (q,r1)
+ | C1 r1 =>
+ let q := w_pred q in
+ ww_add_c_cont w_WW w_add_c w_add_carry_c
+ (fun r2=>(w_pred q, ww_add w_add_c w_add w_add_carry r2 (WW b1 b2)))
+ (fun r2 => (q,r2))
+ r1 (WW b1 b2)
+ end
+ | Eq =>
+ ww_add_c_cont w_WW w_add_c w_add_carry_c
+ (fun r => (w_Bm2, ww_add w_add_c w_add w_add_carry r (WW b1 b2)))
+ (fun r => (w_Bm1,r))
+ (WW (w_sub a2 b2) a3) (WW b1 b2)
+ | Gt => (w_0, W0) (* cas absurde *)
+ end.
+ assert (Hcmp:=spec_compare a1 b1);destruct (w_compare a1 b1).
+ simpl in Hlt.
+ rewrite Hcmp in Hlt;assert ([|a2|] < [|b2|]). omega.
+ assert ([[WW (w_sub a2 b2) a3]] = ([|a2|]-[|b2|])*wB + [|a3|] + wwB).
+ simpl;rewrite spec_sub.
+ assert ([|a2|] - [|b2|] = wB*(-1) + ([|a2|] - [|b2|] + wB)). ring.
+ assert (0 <= [|a2|] - [|b2|] + wB < wB). omega.
+ rewrite <-(Zmod_unique ([|a2|]-[|b2|]) wB (-1) ([|a2|]-[|b2|]+wB) H1 H0).
+ rewrite wwB_wBwB;ring.
+ assert (U2 := wB_pos w_digits).
+ eapply spec_ww_add_c_cont with (P :=
+ fun (x y:zn2z w) (res:w*zn2z w) =>
+ let (q, r) := res in
+ ([|a1|] * wB + [|a2|]) * wB + [|a3|] =
+ [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\
+ 0 <= [[r]] < [|b1|] * wB + [|b2|]);eauto.
+ rewrite H0;intros r.
+ repeat
+ (rewrite spec_ww_add;eauto || rewrite spec_w_Bm1 || rewrite spec_w_Bm2);
+ simpl ww_to_Z;try rewrite Zmult_1_l;intros H1.
+ assert (0<= ([[r]] + ([|b1|] * wB + [|b2|])) - wwB < [|b1|] * wB + [|b2|]).
+ Spec_ww_to_Z r;split;zarith.
+ rewrite H1.
+ assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB).
+ rewrite wwB_wBwB; rewrite Zpower_2; zarith.
+ assert (-wwB < ([|a2|] - [|b2|]) * wB + [|a3|] < 0).
+ split. apply Zlt_le_trans with (([|a2|] - [|b2|]) * wB);zarith.
+ rewrite wwB_wBwB;replace (-(wB^2)) with (-wB*wB);[zarith | ring].
+ apply Zmult_lt_compat_r;zarith.
+ apply Zle_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith.
+ replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with
+ (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith | ring].
+ assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith.
+ replace 0 with (0*wB);zarith.
+ replace (([|a2|] - [|b2|]) * wB + [|a3|] + wwB + ([|b1|] * wB + [|b2|]) +
+ ([|b1|] * wB + [|b2|]) - wwB) with
+ (([|a2|] - [|b2|]) * wB + [|a3|] + 2*[|b1|] * wB + 2*[|b2|]);
+ [zarith | ring].
+ rewrite <- (Zmod_unique ([[r]] + ([|b1|] * wB + [|b2|])) wwB
+ 1 ([[r]] + ([|b1|] * wB + [|b2|]) - wwB));zarith;try (ring;fail).
+ split. rewrite H1;rewrite Hcmp;ring. trivial.
+ Spec_ww_to_Z (WW b1 b2). simpl in HH4;zarith.
+ rewrite H0;intros r;repeat
+ (rewrite spec_w_Bm1 || rewrite spec_w_Bm2);
+ simpl ww_to_Z;try rewrite Zmult_1_l;intros H1.
+ assert ([[r]]=([|a2|]-[|b2|])*wB+[|a3|]+([|b1|]*wB+[|b2|])). zarith.
+ split. rewrite H2;rewrite Hcmp;ring.
+ split. Spec_ww_to_Z r;zarith.
+ rewrite H2.
+ assert (([|a2|] - [|b2|]) * wB + [|a3|] < 0);zarith.
+ apply Zle_lt_trans with (([|a2|] - [|b2|]) * wB + (wB -1));zarith.
+ replace ( ([|a2|] - [|b2|]) * wB + (wB - 1)) with
+ (([|a2|] - [|b2|] + 1) * wB + - 1);[zarith|ring].
+ assert (([|a2|] - [|b2|] + 1) * wB <= 0);zarith.
+ replace 0 with (0*wB);zarith.
+ (* Cas Lt *)
+ assert (Hdiv21 := spec_div21 a2 Hle Hcmp);
+ destruct (w_div21 a1 a2 b1) as (q, r);destruct Hdiv21.
+ rewrite H.
+ assert (Hq := spec_to_Z q).
+ generalize
+ (spec_ww_sub_c (w_WW r a3) (w_mul_c q b2));
+ destruct (ww_sub_c (w_WW r a3) (w_mul_c q b2))
+ as [r1|r1];repeat (rewrite spec_w_WW || rewrite spec_mul_c);
+ unfold interp_carry;intros H1.
+ rewrite H1.
+ split. ring. split.
+ rewrite <- H1;destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z r1);trivial.
+ apply Zle_lt_trans with ([|r|] * wB + [|a3|]).
+ assert ( 0 <= [|q|] * [|b2|]);zarith.
+ apply beta_lex_inv;zarith.
+ assert ([[r1]] = [|r|] * wB + [|a3|] - [|q|] * [|b2|] + wwB).
+ rewrite <- H1;ring.
+ Spec_ww_to_Z r1; assert (0 <= [|r|]*wB). zarith.
+ assert (0 < [|q|] * [|b2|]). zarith.
+ assert (0 < [|q|]).
+ apply Zmult_lt_0_reg_r_2 with [|b2|];zarith.
+ eapply spec_ww_add_c_cont with (P :=
+ fun (x y:zn2z w) (res:w*zn2z w) =>
+ let (q0, r0) := res in
+ ([|q|] * [|b1|] + [|r|]) * wB + [|a3|] =
+ [|q0|] * ([|b1|] * wB + [|b2|]) + [[r0]] /\
+ 0 <= [[r0]] < [|b1|] * wB + [|b2|]);eauto.
+ intros r2;repeat (rewrite spec_pred || rewrite spec_ww_add;eauto);
+ simpl ww_to_Z;intros H7.
+ assert (0 < [|q|] - 1).
+ assert (1 <= [|q|]). zarith.
+ destruct (Zle_lt_or_eq _ _ H6);zarith.
+ rewrite <- H8 in H2;rewrite H2 in H7.
+ assert (0 < [|b1|]*wB). apply Zmult_lt_0_compat;zarith.
+ Spec_ww_to_Z r2. zarith.
+ rewrite (Zmod_small ([|q|] -1));zarith.
+ rewrite (Zmod_small ([|q|] -1 -1));zarith.
+ assert ([[r2]] + ([|b1|] * wB + [|b2|]) =
+ wwB * 1 +
+ ([|r|] * wB + [|a3|] - [|q|] * [|b2|] + 2 * ([|b1|] * wB + [|b2|]))).
+ rewrite H7;rewrite H2;ring.
+ assert
+ ([|r|]*wB + [|a3|] - [|q|]*[|b2|] + 2 * ([|b1|]*wB + [|b2|])
+ < [|b1|]*wB + [|b2|]).
+ Spec_ww_to_Z r2;omega.
+ Spec_ww_to_Z (WW b1 b2). simpl in HH5.
+ assert
+ (0 <= [|r|]*wB + [|a3|] - [|q|]*[|b2|] + 2 * ([|b1|]*wB + [|b2|])
+ < wwB). split;try omega.
+ replace (2*([|b1|]*wB+[|b2|])) with ((2*[|b1|])*wB+2*[|b2|]). 2:ring.
+ assert (H12:= wB_div2 Hle). assert (wwB <= 2 * [|b1|] * wB).
+ rewrite wwB_wBwB; rewrite Zpower_2; zarith. omega.
+ rewrite <- (Zmod_unique
+ ([[r2]] + ([|b1|] * wB + [|b2|]))
+ wwB
+ 1
+ ([|r|] * wB + [|a3|] - [|q|] * [|b2|] + 2*([|b1|] * wB + [|b2|]))
+ H10 H8).
+ split. ring. zarith.
+ intros r2;repeat (rewrite spec_pred);simpl ww_to_Z;intros H7.
+ rewrite (Zmod_small ([|q|] -1));zarith.
+ split.
+ replace [[r2]] with ([[r1]] + ([|b1|] * wB + [|b2|]) -wwB).
+ rewrite H2; ring. rewrite <- H7; ring.
+ Spec_ww_to_Z r2;Spec_ww_to_Z r1. omega.
+ simpl in Hlt.
+ assert ([|a1|] * wB + [|a2|] <= [|b1|] * wB + [|b2|]). zarith.
+ assert (H1 := beta_lex _ _ _ _ _ H HH0 HH3). rewrite spec_w_0;simpl;zarith.
+ Qed.
+
+
+End DoubleDiv32.
+
+Section DoubleDiv21.
+ Variable w : Type.
+ Variable w_0 : w.
+
+ Variable w_0W : w -> zn2z w.
+ Variable w_div32 : w -> w -> w -> w -> w -> w * zn2z w.
+
+ Variable ww_1 : zn2z w.
+ Variable ww_compare : zn2z w -> zn2z w -> comparison.
+ Variable ww_sub : zn2z w -> zn2z w -> zn2z w.
+
+
+ Definition ww_div21 a1 a2 b :=
+ match a1 with
+ | W0 =>
+ match ww_compare a2 b with
+ | Gt => (ww_1, ww_sub a2 b)
+ | Eq => (ww_1, W0)
+ | Lt => (W0, a2)
+ end
+ | WW a1h a1l =>
+ match a2 with
+ | W0 =>
+ match b with
+ | W0 => (W0,W0) (* cas absurde *)
+ | WW b1 b2 =>
+ let (q1, r) := w_div32 a1h a1l w_0 b1 b2 in
+ match r with
+ | W0 => (WW q1 w_0, W0)
+ | WW r1 r2 =>
+ let (q2, s) := w_div32 r1 r2 w_0 b1 b2 in
+ (WW q1 q2, s)
+ end
+ end
+ | WW a2h a2l =>
+ match b with
+ | W0 => (W0,W0) (* cas absurde *)
+ | WW b1 b2 =>
+ let (q1, r) := w_div32 a1h a1l a2h b1 b2 in
+ match r with
+ | W0 => (WW q1 w_0, w_0W a2l)
+ | WW r1 r2 =>
+ let (q2, s) := w_div32 r1 r2 a2l b1 b2 in
+ (WW q1 q2, s)
+ end
+ end
+ end
+ end.
+
+ (* Proof *)
+
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_w_div32 : forall a1 a2 a3 b1 b2,
+ wB/2 <= [|b1|] ->
+ [[WW a1 a2]] < [[WW b1 b2]] ->
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ [|a1|] * wwB + [|a2|] * wB + [|a3|] =
+ [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\
+ 0 <= [[r]] < [|b1|] * wB + [|b2|].
+ Variable spec_ww_1 : [[ww_1]] = 1.
+ Variable spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+
+ Theorem wwB_div: wwB = 2 * (wwB / 2).
+ Proof.
+ rewrite wwB_div_2; rewrite Zmult_assoc; rewrite wB_div_2; auto.
+ rewrite <- Zpower_2; apply wwB_wBwB.
+ Qed.
+
+ Ltac Spec_w_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_to_Z x).
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x).
+
+ Theorem spec_ww_div21 : forall a1 a2 b,
+ wwB/2 <= [[b]] ->
+ [[a1]] < [[b]] ->
+ let (q,r) := ww_div21 a1 a2 b in
+ [[a1]] *wwB+[[a2]] = [[q]] * [[b]] + [[r]] /\ 0 <= [[r]] < [[b]].
+ Proof.
+ assert (U:= lt_0_wB w_digits).
+ assert (U1:= lt_0_wwB w_digits).
+ intros a1 a2 b H Hlt; unfold ww_div21.
+ Spec_ww_to_Z b; assert (Eq: 0 < [[b]]). Spec_ww_to_Z a1;omega.
+ generalize Hlt H ;clear Hlt H;case a1.
+ intros H1 H2;simpl in H1;Spec_ww_to_Z a2;
+ match goal with |-context [ww_compare ?Y ?Z] =>
+ generalize (spec_ww_compare Y Z); case (ww_compare Y Z)
+ end; simpl;try rewrite spec_ww_1;autorewrite with rm10; intros;zarith.
+ rewrite spec_ww_sub;simpl. rewrite Zmod_small;zarith.
+ split. ring.
+ assert (wwB <= 2*[[b]]);zarith.
+ rewrite wwB_div;zarith.
+ intros a1h a1l. Spec_w_to_Z a1h;Spec_w_to_Z a1l. Spec_ww_to_Z a2.
+ destruct a2 as [ |a3 a4];
+ (destruct b as [ |b1 b2];[unfold Zle in Eq;discriminate Eq|idtac]);
+ try (Spec_w_to_Z a3; Spec_w_to_Z a4); Spec_w_to_Z b1; Spec_w_to_Z b2;
+ intros Hlt H; match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] =>
+ generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U);
+ intros q1 r H0
+ end; (assert (Eq1: wB / 2 <= [|b1|]);[
+ apply (@beta_lex (wB / 2) 0 [|b1|] [|b2|] wB); auto with zarith;
+ autorewrite with rm10;repeat rewrite (Zmult_comm wB);
+ rewrite <- wwB_div_2; trivial
+ | generalize (H0 Eq1 Hlt);clear H0;destruct r as [ |r1 r2];simpl;
+ try rewrite spec_w_0; try rewrite spec_w_0W;repeat rewrite Zplus_0_r;
+ intros (H1,H2) ]).
+ split;[rewrite wwB_wBwB; rewrite Zpower_2 | trivial].
+ rewrite Zmult_assoc;rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc;
+ rewrite <- Zpower_2; rewrite <- wwB_wBwB;rewrite H1;ring.
+ destruct H2 as (H2,H3);match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] =>
+ generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U);
+ intros q r H0;generalize (H0 Eq1 H3);clear H0;intros (H4,H5) end.
+ split;[rewrite wwB_wBwB | trivial].
+ rewrite Zpower_2.
+ rewrite Zmult_assoc;rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc;
+ rewrite <- Zpower_2.
+ rewrite <- wwB_wBwB;rewrite H1.
+ rewrite spec_w_0 in H4;rewrite Zplus_0_r in H4.
+ repeat rewrite Zmult_plus_distr_l. rewrite <- (Zmult_assoc [|r1|]).
+ rewrite <- Zpower_2; rewrite <- wwB_wBwB;rewrite H4;simpl;ring.
+ split;[rewrite wwB_wBwB | split;zarith].
+ replace (([|a1h|] * wB + [|a1l|]) * wB^2 + ([|a3|] * wB + [|a4|]))
+ with (([|a1h|] * wwB + [|a1l|] * wB + [|a3|])*wB+ [|a4|]).
+ rewrite H1;ring. rewrite wwB_wBwB;ring.
+ change [|a4|] with (0*wB+[|a4|]);apply beta_lex_inv;zarith.
+ assert (1 <= wB/2);zarith.
+ assert (H_:= wB_pos w_digits);apply Zdiv_le_lower_bound;zarith.
+ destruct H2 as (H2,H3);match goal with |-context [w_div32 ?X ?Y ?Z ?T ?U] =>
+ generalize (@spec_w_div32 X Y Z T U); case (w_div32 X Y Z T U);
+ intros q r H0;generalize (H0 Eq1 H3);clear H0;intros (H4,H5) end.
+ split;trivial.
+ replace (([|a1h|] * wB + [|a1l|]) * wwB + ([|a3|] * wB + [|a4|])) with
+ (([|a1h|] * wwB + [|a1l|] * wB + [|a3|])*wB + [|a4|]);
+ [rewrite H1 | rewrite wwB_wBwB;ring].
+ replace (([|q1|]*([|b1|]*wB+[|b2|])+([|r1|]*wB+[|r2|]))*wB+[|a4|]) with
+ (([|q1|]*([|b1|]*wB+[|b2|]))*wB+([|r1|]*wwB+[|r2|]*wB+[|a4|]));
+ [rewrite H4;simpl|rewrite wwB_wBwB];ring.
+ Qed.
+
+End DoubleDiv21.
+
+Section DoubleDivGt.
+ Variable w : Type.
+ Variable w_digits : positive.
+ Variable w_0 : w.
+
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_eq0 : w -> bool.
+ Variable w_opp_c : w -> carry w.
+ Variable w_opp w_opp_carry : w -> w.
+ Variable w_sub_c : w -> w -> carry w.
+ Variable w_sub w_sub_carry : w -> w -> w.
+
+ Variable w_div_gt : w -> w -> w*w.
+ Variable w_mod_gt : w -> w -> w.
+ Variable w_gcd_gt : w -> w -> w.
+ Variable w_add_mul_div : w -> w -> w -> w.
+ Variable w_head0 : w -> w.
+ Variable w_div21 : w -> w -> w -> w * w.
+ Variable w_div32 : w -> w -> w -> w -> w -> w * zn2z w.
+
+
+ Variable _ww_zdigits : zn2z w.
+ Variable ww_1 : zn2z w.
+ Variable ww_add_mul_div : zn2z w -> zn2z w -> zn2z w -> zn2z w.
+
+ Variable w_zdigits : w.
+
+ Definition ww_div_gt_aux ah al bh bl :=
+ Eval lazy beta iota delta [ww_sub ww_opp] in
+ let p := w_head0 bh in
+ match w_compare p w_0 with
+ | Gt =>
+ let b1 := w_add_mul_div p bh bl in
+ let b2 := w_add_mul_div p bl w_0 in
+ let a1 := w_add_mul_div p w_0 ah in
+ let a2 := w_add_mul_div p ah al in
+ let a3 := w_add_mul_div p al w_0 in
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ (WW w_0 q, ww_add_mul_div
+ (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r)
+ | _ => (ww_1, ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry (WW ah al) (WW bh bl))
+ end.
+
+ Definition ww_div_gt a b :=
+ Eval lazy beta iota delta [ww_div_gt_aux double_divn1
+ double_divn1_p double_divn1_p_aux double_divn1_0 double_divn1_0_aux
+ double_split double_0 double_WW] in
+ match a, b with
+ | W0, _ => (W0,W0)
+ | _, W0 => (W0,W0)
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then
+ let (q,r) := w_div_gt al bl in
+ (WW w_0 q, w_0W r)
+ else
+ match w_compare w_0 bh with
+ | Eq =>
+ let(q,r):=
+ double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 a bl in
+ (q, w_0W r)
+ | Lt => ww_div_gt_aux ah al bh bl
+ | Gt => (W0,W0) (* cas absurde *)
+ end
+ end.
+
+ Definition ww_mod_gt_aux ah al bh bl :=
+ Eval lazy beta iota delta [ww_sub ww_opp] in
+ let p := w_head0 bh in
+ match w_compare p w_0 with
+ | Gt =>
+ let b1 := w_add_mul_div p bh bl in
+ let b2 := w_add_mul_div p bl w_0 in
+ let a1 := w_add_mul_div p w_0 ah in
+ let a2 := w_add_mul_div p ah al in
+ let a3 := w_add_mul_div p al w_0 in
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ ww_add_mul_div (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r
+ | _ =>
+ ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry (WW ah al) (WW bh bl)
+ end.
+
+ Definition ww_mod_gt a b :=
+ Eval lazy beta iota delta [ww_mod_gt_aux double_modn1
+ double_modn1_p double_modn1_p_aux double_modn1_0 double_modn1_0_aux
+ double_split double_0 double_WW snd] in
+ match a, b with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then w_0W (w_mod_gt al bl)
+ else
+ match w_compare w_0 bh with
+ | Eq =>
+ w_0W (double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 a bl)
+ | Lt => ww_mod_gt_aux ah al bh bl
+ | Gt => W0 (* cas absurde *)
+ end
+ end.
+
+ Definition ww_gcd_gt_body (cont: w->w->w->w->zn2z w) (ah al bh bl: w) :=
+ Eval lazy beta iota delta [ww_mod_gt_aux double_modn1
+ double_modn1_p double_modn1_p_aux double_modn1_0 double_modn1_0_aux
+ double_split double_0 double_WW snd] in
+ match w_compare w_0 bh with
+ | Eq =>
+ match w_compare w_0 bl with
+ | Eq => WW ah al (* normalement n'arrive pas si forme normale *)
+ | Lt =>
+ let m := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 (WW ah al) bl in
+ WW w_0 (w_gcd_gt bl m)
+ | Gt => W0 (* absurde *)
+ end
+ | Lt =>
+ let m := ww_mod_gt_aux ah al bh bl in
+ match m with
+ | W0 => WW bh bl
+ | WW mh ml =>
+ match w_compare w_0 mh with
+ | Eq =>
+ match w_compare w_0 ml with
+ | Eq => WW bh bl
+ | _ =>
+ let r := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 (WW bh bl) ml in
+ WW w_0 (w_gcd_gt ml r)
+ end
+ | Lt =>
+ let r := ww_mod_gt_aux bh bl mh ml in
+ match r with
+ | W0 => m
+ | WW rh rl => cont mh ml rh rl
+ end
+ | Gt => W0 (* absurde *)
+ end
+ end
+ | Gt => W0 (* absurde *)
+ end.
+
+ Fixpoint ww_gcd_gt_aux
+ (p:positive) (cont: w -> w -> w -> w -> zn2z w) (ah al bh bl : w)
+ {struct p} : zn2z w :=
+ ww_gcd_gt_body
+ (fun mh ml rh rl => match p with
+ | xH => cont mh ml rh rl
+ | xO p => ww_gcd_gt_aux p (ww_gcd_gt_aux p cont) mh ml rh rl
+ | xI p => ww_gcd_gt_aux p (ww_gcd_gt_aux p cont) mh ml rh rl
+ end) ah al bh bl.
+
+
+ (* Proof *)
+
+ Variable w_to_Z : w -> Z.
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
+
+ Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|].
+ Variable spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB.
+ Variable spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1.
+
+ Variable spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|].
+ Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+ Variable spec_sub_carry :
+ forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
+
+ Variable spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ let (q,r) := w_div_gt a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Variable spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ [|w_mod_gt a b|] = [|a|] mod [|b|].
+ Variable spec_gcd_gt : forall a b, [|a|] > [|b|] ->
+ Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|].
+
+ Variable spec_add_mul_div : forall x y p,
+ [|p|] <= Zpos w_digits ->
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ ([|p|])) +
+ [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
+ Variable spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
+
+ Variable spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := w_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+
+ Variable spec_w_div32 : forall a1 a2 a3 b1 b2,
+ wB/2 <= [|b1|] ->
+ [[WW a1 a2]] < [[WW b1 b2]] ->
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ [|a1|] * wwB + [|a2|] * wB + [|a3|] =
+ [|q|] * ([|b1|] * wB + [|b2|]) + [[r]] /\
+ 0 <= [[r]] < [|b1|] * wB + [|b2|].
+
+ Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
+
+ Variable spec_ww_digits_ : [[_ww_zdigits]] = Zpos (xO w_digits).
+ Variable spec_ww_1 : [[ww_1]] = 1.
+ Variable spec_ww_add_mul_div : forall x y p,
+ [[p]] <= Zpos (xO w_digits) ->
+ [[ ww_add_mul_div p x y ]] =
+ ([[x]] * (2^[[p]]) +
+ [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
+
+ Ltac Spec_w_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_to_Z x).
+
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x).
+
+ Lemma to_Z_div_minus_p : forall x p,
+ 0 < [|p|] < Zpos w_digits ->
+ 0 <= [|x|] / 2 ^ (Zpos w_digits - [|p|]) < 2 ^ [|p|].
+ Proof.
+ intros x p H;Spec_w_to_Z x.
+ split. apply Zdiv_le_lower_bound;zarith.
+ apply Zdiv_lt_upper_bound;zarith.
+ rewrite <- Zpower_exp;zarith.
+ ring_simplify ([|p|] + (Zpos w_digits - [|p|])); unfold base in HH;zarith.
+ Qed.
+ Hint Resolve to_Z_div_minus_p : zarith.
+
+ Lemma spec_ww_div_gt_aux : forall ah al bh bl,
+ [[WW ah al]] > [[WW bh bl]] ->
+ 0 < [|bh|] ->
+ let (q,r) := ww_div_gt_aux ah al bh bl in
+ [[WW ah al]] = [[q]] * [[WW bh bl]] + [[r]] /\
+ 0 <= [[r]] < [[WW bh bl]].
+ Proof.
+ intros ah al bh bl Hgt Hpos;unfold ww_div_gt_aux.
+ change
+ (let (q, r) := let p := w_head0 bh in
+ match w_compare p w_0 with
+ | Gt =>
+ let b1 := w_add_mul_div p bh bl in
+ let b2 := w_add_mul_div p bl w_0 in
+ let a1 := w_add_mul_div p w_0 ah in
+ let a2 := w_add_mul_div p ah al in
+ let a3 := w_add_mul_div p al w_0 in
+ let (q,r) := w_div32 a1 a2 a3 b1 b2 in
+ (WW w_0 q, ww_add_mul_div
+ (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry _ww_zdigits (w_0W p)) W0 r)
+ | _ => (ww_1, ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c
+ w_opp w_sub w_sub_carry (WW ah al) (WW bh bl))
+ end in [[WW ah al]]=[[q]]*[[WW bh bl]]+[[r]] /\ 0 <=[[r]]< [[WW bh bl]]).
+ assert (Hh := spec_head0 Hpos).
+ lazy zeta.
+ generalize (spec_compare (w_head0 bh) w_0); case w_compare;
+ rewrite spec_w_0; intros HH.
+ generalize Hh; rewrite HH; simpl Zpower;
+ rewrite Zmult_1_l; intros (HH1, HH2); clear HH.
+ assert (wwB <= 2*[[WW bh bl]]).
+ apply Zle_trans with (2*[|bh|]*wB).
+ rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_le_compat_r; zarith.
+ rewrite <- wB_div_2; apply Zmult_le_compat_l; zarith.
+ simpl ww_to_Z;rewrite Zmult_plus_distr_r;rewrite Zmult_assoc.
+ Spec_w_to_Z bl;zarith.
+ Spec_ww_to_Z (WW ah al).
+ rewrite spec_ww_sub;eauto.
+ simpl;rewrite spec_ww_1;rewrite Zmult_1_l;simpl.
+ simpl ww_to_Z in Hgt, H, HH;rewrite Zmod_small;split;zarith.
+ case (spec_to_Z (w_head0 bh)); auto with zarith.
+ assert ([|w_head0 bh|] < Zpos w_digits).
+ destruct (Z_lt_ge_dec [|w_head0 bh|] (Zpos w_digits));trivial.
+ elimtype False.
+ assert (2 ^ [|w_head0 bh|] * [|bh|] >= wB);auto with zarith.
+ apply Zle_ge; replace wB with (wB * 1);try ring.
+ Spec_w_to_Z bh;apply Zmult_le_compat;zarith.
+ unfold base;apply Zpower_le_monotone;zarith.
+ assert (HHHH : 0 < [|w_head0 bh|] < Zpos w_digits); auto with zarith.
+ assert (Hb:= Zlt_le_weak _ _ H).
+ generalize (spec_add_mul_div w_0 ah Hb)
+ (spec_add_mul_div ah al Hb)
+ (spec_add_mul_div al w_0 Hb)
+ (spec_add_mul_div bh bl Hb)
+ (spec_add_mul_div bl w_0 Hb);
+ rewrite spec_w_0; repeat rewrite Zmult_0_l;repeat rewrite Zplus_0_l;
+ rewrite Zdiv_0_l;repeat rewrite Zplus_0_r.
+ Spec_w_to_Z ah;Spec_w_to_Z bh.
+ unfold base;repeat rewrite Zmod_shift_r;zarith.
+ assert (H3:=to_Z_div_minus_p ah HHHH);assert(H4:=to_Z_div_minus_p al HHHH);
+ assert (H5:=to_Z_div_minus_p bl HHHH).
+ rewrite Zmult_comm in Hh.
+ assert (2^[|w_head0 bh|] < wB). unfold base;apply Zpower_lt_monotone;zarith.
+ unfold base in H0;rewrite Zmod_small;zarith.
+ fold wB; rewrite (Zmod_small ([|bh|] * 2 ^ [|w_head0 bh|]));zarith.
+ intros U1 U2 U3 V1 V2.
+ generalize (@spec_w_div32 (w_add_mul_div (w_head0 bh) w_0 ah)
+ (w_add_mul_div (w_head0 bh) ah al)
+ (w_add_mul_div (w_head0 bh) al w_0)
+ (w_add_mul_div (w_head0 bh) bh bl)
+ (w_add_mul_div (w_head0 bh) bl w_0)).
+ destruct (w_div32 (w_add_mul_div (w_head0 bh) w_0 ah)
+ (w_add_mul_div (w_head0 bh) ah al)
+ (w_add_mul_div (w_head0 bh) al w_0)
+ (w_add_mul_div (w_head0 bh) bh bl)
+ (w_add_mul_div (w_head0 bh) bl w_0)) as (q,r).
+ rewrite V1;rewrite V2. rewrite Zmult_plus_distr_l.
+ rewrite <- (Zplus_assoc ([|bh|] * 2 ^ [|w_head0 bh|] * wB)).
+ unfold base;rewrite <- shift_unshift_mod;zarith. fold wB.
+ replace ([|bh|] * 2 ^ [|w_head0 bh|] * wB + [|bl|] * 2 ^ [|w_head0 bh|]) with
+ ([[WW bh bl]] * 2^[|w_head0 bh|]). 2:simpl;ring.
+ fold wwB. rewrite wwB_wBwB. rewrite Zpower_2. rewrite U1;rewrite U2;rewrite U3.
+ rewrite Zmult_assoc. rewrite Zmult_plus_distr_l.
+ rewrite (Zplus_assoc ([|ah|] / 2^(Zpos(w_digits) - [|w_head0 bh|])*wB * wB)).
+ rewrite <- Zmult_plus_distr_l. rewrite <- Zplus_assoc.
+ unfold base;repeat rewrite <- shift_unshift_mod;zarith. fold wB.
+ replace ([|ah|] * 2 ^ [|w_head0 bh|] * wB + [|al|] * 2 ^ [|w_head0 bh|]) with
+ ([[WW ah al]] * 2^[|w_head0 bh|]). 2:simpl;ring.
+ intros Hd;destruct Hd;zarith.
+ simpl. apply beta_lex_inv;zarith. rewrite U1;rewrite V1.
+ assert ([|ah|] / 2 ^ (Zpos (w_digits) - [|w_head0 bh|]) < wB/2);zarith.
+ apply Zdiv_lt_upper_bound;zarith.
+ unfold base.
+ replace (2^Zpos (w_digits)) with (2^(Zpos (w_digits) - 1)*2).
+ rewrite Z_div_mult;zarith. rewrite <- Zpower_exp;zarith.
+ apply Zlt_le_trans with wB;zarith.
+ unfold base;apply Zpower_le_monotone;zarith.
+ pattern 2 at 2;replace 2 with (2^1);trivial.
+ rewrite <- Zpower_exp;zarith. ring_simplify (Zpos (w_digits) - 1 + 1);trivial.
+ change [[WW w_0 q]] with ([|w_0|]*wB+[|q|]);rewrite spec_w_0;rewrite
+ Zmult_0_l;rewrite Zplus_0_l.
+ replace [[ww_add_mul_div (ww_sub w_0 w_WW w_opp_c w_opp_carry w_sub_c w_opp w_sub w_sub_carry
+ _ww_zdigits (w_0W (w_head0 bh))) W0 r]] with ([[r]]/2^[|w_head0 bh|]).
+ assert (0 < 2^[|w_head0 bh|]). apply Zpower_gt_0;zarith.
+ split.
+ rewrite <- (Z_div_mult [[WW ah al]] (2^[|w_head0 bh|]));zarith.
+ rewrite H1;rewrite Zmult_assoc;apply Z_div_plus_l;trivial.
+ split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith.
+ rewrite spec_ww_add_mul_div.
+ rewrite spec_ww_sub; auto with zarith.
+ rewrite spec_ww_digits_.
+ change (Zpos (xO (w_digits))) with (2*Zpos (w_digits));zarith.
+ simpl ww_to_Z;rewrite Zmult_0_l;rewrite Zplus_0_l.
+ rewrite spec_w_0W.
+ rewrite (fun x y => Zmod_small (x-y)); auto with zarith.
+ ring_simplify (2 * Zpos w_digits - (2 * Zpos w_digits - [|w_head0 bh|])).
+ rewrite Zmod_small;zarith.
+ split;[apply Zdiv_le_lower_bound| apply Zdiv_lt_upper_bound];zarith.
+ Spec_ww_to_Z r.
+ apply Zlt_le_trans with wwB;zarith.
+ rewrite <- (Zmult_1_r wwB);apply Zmult_le_compat;zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with (2 * Zpos w_digits); auto with zarith.
+ unfold base, ww_digits; rewrite (Zpos_xO w_digits).
+ apply Zpower2_lt_lin; auto with zarith.
+ rewrite spec_ww_sub; auto with zarith.
+ rewrite spec_ww_digits_; rewrite spec_w_0W.
+ rewrite Zmod_small;zarith.
+ rewrite Zpos_xO; split; auto with zarith.
+ apply Zle_lt_trans with (2 * Zpos w_digits); auto with zarith.
+ unfold base, ww_digits; rewrite (Zpos_xO w_digits).
+ apply Zpower2_lt_lin; auto with zarith.
+ Qed.
+
+ Lemma spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
+ let (q,r) := ww_div_gt a b in
+ [[a]] = [[q]] * [[b]] + [[r]] /\
+ 0 <= [[r]] < [[b]].
+ Proof.
+ intros a b Hgt Hpos;unfold ww_div_gt.
+ change (let (q,r) := match a, b with
+ | W0, _ => (W0,W0)
+ | _, W0 => (W0,W0)
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then
+ let (q,r) := w_div_gt al bl in
+ (WW w_0 q, w_0W r)
+ else
+ match w_compare w_0 bh with
+ | Eq =>
+ let(q,r):=
+ double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 a bl in
+ (q, w_0W r)
+ | Lt => ww_div_gt_aux ah al bh bl
+ | Gt => (W0,W0) (* cas absurde *)
+ end
+ end in [[a]] = [[q]] * [[b]] + [[r]] /\ 0 <= [[r]] < [[b]]).
+ destruct a as [ |ah al]. simpl in Hgt;omega.
+ destruct b as [ |bh bl]. simpl in Hpos;omega.
+ Spec_w_to_Z ah; Spec_w_to_Z al; Spec_w_to_Z bh; Spec_w_to_Z bl.
+ assert (H:=@spec_eq0 ah);destruct (w_eq0 ah).
+ simpl ww_to_Z;rewrite H;trivial. simpl in Hgt;rewrite H in Hgt;trivial.
+ assert ([|bh|] <= 0).
+ apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith.
+ assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;rewrite H1;simpl in Hgt.
+ simpl. simpl in Hpos;rewrite H1 in Hpos;simpl in Hpos.
+ assert (H2:=spec_div_gt Hgt Hpos);destruct (w_div_gt al bl).
+ repeat rewrite spec_w_0W;simpl;rewrite spec_w_0;simpl;trivial.
+ clear H.
+ assert (Hcmp := spec_compare w_0 bh); destruct (w_compare w_0 bh).
+ rewrite spec_w_0 in Hcmp. change [[WW bh bl]] with ([|bh|]*wB+[|bl|]).
+ rewrite <- Hcmp;rewrite Zmult_0_l;rewrite Zplus_0_l.
+ simpl in Hpos;rewrite <- Hcmp in Hpos;simpl in Hpos.
+ assert (H2:= @spec_double_divn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div
+ w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0
+ spec_add_mul_div spec_div21 spec_compare spec_sub 1 (WW ah al) bl Hpos).
+ unfold double_to_Z,double_wB,double_digits in H2.
+ destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1
+ (WW ah al) bl).
+ rewrite spec_w_0W;unfold ww_to_Z;trivial.
+ apply spec_ww_div_gt_aux;trivial. rewrite spec_w_0 in Hcmp;trivial.
+ rewrite spec_w_0 in Hcmp;elimtype False;omega.
+ Qed.
+
+ Lemma spec_ww_mod_gt_aux_eq : forall ah al bh bl,
+ ww_mod_gt_aux ah al bh bl = snd (ww_div_gt_aux ah al bh bl).
+ Proof.
+ intros ah al bh bl. unfold ww_mod_gt_aux, ww_div_gt_aux.
+ case w_compare; auto.
+ case w_div32; auto.
+ Qed.
+
+ Lemma spec_ww_mod_gt_aux : forall ah al bh bl,
+ [[WW ah al]] > [[WW bh bl]] ->
+ 0 < [|bh|] ->
+ [[ww_mod_gt_aux ah al bh bl]] = [[WW ah al]] mod [[WW bh bl]].
+ Proof.
+ intros. rewrite spec_ww_mod_gt_aux_eq;trivial.
+ assert (H3 := spec_ww_div_gt_aux ah al bl H H0).
+ destruct (ww_div_gt_aux ah al bh bl) as (q,r);simpl. simpl in H,H3.
+ destruct H3;apply Zmod_unique with [[q]];zarith.
+ rewrite H1;ring.
+ Qed.
+
+ Lemma spec_w_mod_gt_eq : forall a b, [|a|] > [|b|] -> 0 <[|b|] ->
+ [|w_mod_gt a b|] = [|snd (w_div_gt a b)|].
+ Proof.
+ intros a b Hgt Hpos.
+ rewrite spec_mod_gt;trivial.
+ assert (H:=spec_div_gt Hgt Hpos).
+ destruct (w_div_gt a b) as (q,r);simpl.
+ rewrite Zmult_comm in H;destruct H.
+ symmetry;apply Zmod_unique with [|q|];trivial.
+ Qed.
+
+ Lemma spec_ww_mod_gt_eq : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
+ [[ww_mod_gt a b]] = [[snd (ww_div_gt a b)]].
+ Proof.
+ intros a b Hgt Hpos.
+ change (ww_mod_gt a b) with
+ (match a, b with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then w_0W (w_mod_gt al bl)
+ else
+ match w_compare w_0 bh with
+ | Eq =>
+ w_0W (double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 a bl)
+ | Lt => ww_mod_gt_aux ah al bh bl
+ | Gt => W0 (* cas absurde *)
+ end end).
+ change (ww_div_gt a b) with
+ (match a, b with
+ | W0, _ => (W0,W0)
+ | _, W0 => (W0,W0)
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then
+ let (q,r) := w_div_gt al bl in
+ (WW w_0 q, w_0W r)
+ else
+ match w_compare w_0 bh with
+ | Eq =>
+ let(q,r):=
+ double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 a bl in
+ (q, w_0W r)
+ | Lt => ww_div_gt_aux ah al bh bl
+ | Gt => (W0,W0) (* cas absurde *)
+ end
+ end).
+ destruct a as [ |ah al];trivial.
+ destruct b as [ |bh bl];trivial.
+ Spec_w_to_Z ah; Spec_w_to_Z al; Spec_w_to_Z bh; Spec_w_to_Z bl.
+ assert (H:=@spec_eq0 ah);destruct (w_eq0 ah).
+ simpl in Hgt;rewrite H in Hgt;trivial.
+ assert ([|bh|] <= 0).
+ apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith.
+ assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;simpl in Hgt.
+ simpl in Hpos;rewrite H1 in Hpos;simpl in Hpos.
+ rewrite spec_w_0W;rewrite spec_w_mod_gt_eq;trivial.
+ destruct (w_div_gt al bl);simpl;rewrite spec_w_0W;trivial.
+ clear H.
+ assert (H2 := spec_compare w_0 bh);destruct (w_compare w_0 bh).
+ rewrite (@spec_double_modn1_aux w w_zdigits w_0 w_WW w_head0 w_add_mul_div
+ w_div21 w_compare w_sub w_to_Z spec_w_0 spec_compare 1 (WW ah al) bl).
+ destruct (double_divn1 w_zdigits w_0 w_WW w_head0 w_add_mul_div w_div21 w_compare w_sub 1
+ (WW ah al) bl);simpl;trivial.
+ rewrite spec_ww_mod_gt_aux_eq;trivial;symmetry;trivial.
+ trivial.
+ Qed.
+
+ Lemma spec_ww_mod_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
+ [[ww_mod_gt a b]] = [[a]] mod [[b]].
+ Proof.
+ intros a b Hgt Hpos.
+ assert (H:= spec_ww_div_gt a b Hgt Hpos).
+ rewrite (spec_ww_mod_gt_eq a b Hgt Hpos).
+ destruct (ww_div_gt a b)as(q,r);destruct H.
+ apply Zmod_unique with[[q]];simpl;trivial.
+ rewrite Zmult_comm;trivial.
+ Qed.
+
+ Lemma Zis_gcd_mod : forall a b d,
+ 0 < b -> Zis_gcd b (a mod b) d -> Zis_gcd a b d.
+ Proof.
+ intros a b d H H1; apply Zis_gcd_for_euclid with (a/b).
+ pattern a at 1;rewrite (Z_div_mod_eq a b).
+ ring_simplify (b * (a / b) + a mod b - a / b * b);trivial. zarith.
+ Qed.
+
+ Lemma spec_ww_gcd_gt_aux_body :
+ forall ah al bh bl n cont,
+ [[WW bh bl]] <= 2^n ->
+ [[WW ah al]] > [[WW bh bl]] ->
+ (forall xh xl yh yl,
+ [[WW xh xl]] > [[WW yh yl]] -> [[WW yh yl]] <= 2^(n-1) ->
+ Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) ->
+ Zis_gcd [[WW ah al]] [[WW bh bl]] [[ww_gcd_gt_body cont ah al bh bl]].
+ Proof.
+ intros ah al bh bl n cont Hlog Hgt Hcont.
+ change (ww_gcd_gt_body cont ah al bh bl) with (match w_compare w_0 bh with
+ | Eq =>
+ match w_compare w_0 bl with
+ | Eq => WW ah al (* normalement n'arrive pas si forme normale *)
+ | Lt =>
+ let m := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 (WW ah al) bl in
+ WW w_0 (w_gcd_gt bl m)
+ | Gt => W0 (* absurde *)
+ end
+ | Lt =>
+ let m := ww_mod_gt_aux ah al bh bl in
+ match m with
+ | W0 => WW bh bl
+ | WW mh ml =>
+ match w_compare w_0 mh with
+ | Eq =>
+ match w_compare w_0 ml with
+ | Eq => WW bh bl
+ | _ =>
+ let r := double_modn1 w_zdigits w_0 w_head0 w_add_mul_div w_div21
+ w_compare w_sub 1 (WW bh bl) ml in
+ WW w_0 (w_gcd_gt ml r)
+ end
+ | Lt =>
+ let r := ww_mod_gt_aux bh bl mh ml in
+ match r with
+ | W0 => m
+ | WW rh rl => cont mh ml rh rl
+ end
+ | Gt => W0 (* absurde *)
+ end
+ end
+ | Gt => W0 (* absurde *)
+ end).
+ assert (Hbh := spec_compare w_0 bh);destruct (w_compare w_0 bh).
+ simpl ww_to_Z in *. rewrite spec_w_0 in Hbh;rewrite <- Hbh;
+ rewrite Zmult_0_l;rewrite Zplus_0_l.
+ assert (Hbl := spec_compare w_0 bl); destruct (w_compare w_0 bl).
+ rewrite spec_w_0 in Hbl;rewrite <- Hbl;apply Zis_gcd_0.
+ simpl;rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
+ rewrite spec_w_0 in Hbl.
+ apply Zis_gcd_mod;zarith.
+ change ([|ah|] * wB + [|al|]) with (double_to_Z w_digits w_to_Z 1 (WW ah al)).
+ rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div
+ w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 spec_add_mul_div
+ spec_div21 spec_compare spec_sub 1 (WW ah al) bl Hbl).
+ apply spec_gcd_gt.
+ rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial.
+ apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
+ destruct (Z_mod_lt x y);zarith end.
+ rewrite spec_w_0 in Hbl;Spec_w_to_Z bl;elimtype False;omega.
+ rewrite spec_w_0 in Hbh;assert (H:= spec_ww_mod_gt_aux _ _ _ Hgt Hbh).
+ assert (H2 : 0 < [[WW bh bl]]).
+ simpl;Spec_w_to_Z bl. apply Zlt_le_trans with ([|bh|]*wB);zarith.
+ apply Zmult_lt_0_compat;zarith.
+ apply Zis_gcd_mod;trivial. rewrite <- H.
+ simpl in *;destruct (ww_mod_gt_aux ah al bh bl) as [ |mh ml].
+ simpl;apply Zis_gcd_0;zarith.
+ assert (Hmh := spec_compare w_0 mh);destruct (w_compare w_0 mh).
+ simpl;rewrite spec_w_0 in Hmh; rewrite <- Hmh;simpl.
+ assert (Hml := spec_compare w_0 ml);destruct (w_compare w_0 ml).
+ rewrite <- Hml;rewrite spec_w_0;simpl;apply Zis_gcd_0.
+ simpl;rewrite spec_w_0;simpl.
+ rewrite spec_w_0 in Hml. apply Zis_gcd_mod;zarith.
+ change ([|bh|] * wB + [|bl|]) with (double_to_Z w_digits w_to_Z 1 (WW bh bl)).
+ rewrite <- (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW w_head0 w_add_mul_div
+ w_div21 w_compare w_sub w_to_Z spec_to_Z spec_w_zdigits spec_w_0 spec_w_WW spec_head0 spec_add_mul_div
+ spec_div21 spec_compare spec_sub 1 (WW bh bl) ml Hml).
+ apply spec_gcd_gt.
+ rewrite (@spec_double_modn1 w w_digits w_zdigits w_0 w_WW); trivial.
+ apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
+ destruct (Z_mod_lt x y);zarith end.
+ rewrite spec_w_0 in Hml;Spec_w_to_Z ml;elimtype False;omega.
+ rewrite spec_w_0 in Hmh. assert ([[WW bh bl]] > [[WW mh ml]]).
+ rewrite H;simpl; apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
+ destruct (Z_mod_lt x y);zarith end.
+ assert (H1:= spec_ww_mod_gt_aux _ _ _ H0 Hmh).
+ assert (H3 : 0 < [[WW mh ml]]).
+ simpl;Spec_w_to_Z ml. apply Zlt_le_trans with ([|mh|]*wB);zarith.
+ apply Zmult_lt_0_compat;zarith.
+ apply Zis_gcd_mod;zarith. simpl in *;rewrite <- H1.
+ destruct (ww_mod_gt_aux bh bl mh ml) as [ |rh rl]. simpl; apply Zis_gcd_0.
+ simpl;apply Hcont. simpl in H1;rewrite H1.
+ apply Zlt_gt;match goal with | |- ?x mod ?y < ?y =>
+ destruct (Z_mod_lt x y);zarith end.
+ apply Zle_trans with (2^n/2).
+ apply Zdiv_le_lower_bound;zarith.
+ apply Zle_trans with ([|bh|] * wB + [|bl|]);zarith.
+ assert (H3' := Z_div_mod_eq [[WW bh bl]] [[WW mh ml]] (Zlt_gt _ _ H3)).
+ assert (H4' : 0 <= [[WW bh bl]]/[[WW mh ml]]).
+ apply Zge_le;apply Z_div_ge0;zarith. simpl in *;rewrite H1.
+ pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3'.
+ destruct (Zle_lt_or_eq _ _ H4').
+ assert (H6' : [[WW bh bl]] mod [[WW mh ml]] =
+ [[WW bh bl]] - [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])).
+ simpl;pattern ([|bh|] * wB + [|bl|]) at 2;rewrite H3';ring. simpl in H6'.
+ assert ([[WW mh ml]] <= [[WW mh ml]] * ([[WW bh bl]]/[[WW mh ml]])).
+ simpl;pattern ([|mh|]*wB+[|ml|]) at 1;rewrite <- Zmult_1_r;zarith.
+ simpl in *;assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in H8;
+ zarith.
+ assert (H8 := Z_mod_lt [[WW bh bl]] [[WW mh ml]]);simpl in *;zarith.
+ rewrite <- H4 in H3';rewrite Zmult_0_r in H3';simpl in H3';zarith.
+ pattern n at 1;replace n with (n-1+1);try ring.
+ rewrite Zpower_exp;zarith. change (2^1) with 2.
+ rewrite Z_div_mult;zarith.
+ assert (2^1 <= 2^n). change (2^1) with 2;zarith.
+ assert (H7 := @Zpower_le_monotone_inv 2 1 n);zarith.
+ rewrite spec_w_0 in Hmh;Spec_w_to_Z mh;elimtype False;zarith.
+ rewrite spec_w_0 in Hbh;Spec_w_to_Z bh;elimtype False;zarith.
+ Qed.
+
+ Lemma spec_ww_gcd_gt_aux :
+ forall p cont n,
+ (forall xh xl yh yl,
+ [[WW xh xl]] > [[WW yh yl]] ->
+ [[WW yh yl]] <= 2^n ->
+ Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) ->
+ forall ah al bh bl , [[WW ah al]] > [[WW bh bl]] ->
+ [[WW bh bl]] <= 2^(Zpos p + n) ->
+ Zis_gcd [[WW ah al]] [[WW bh bl]]
+ [[ww_gcd_gt_aux p cont ah al bh bl]].
+ Proof.
+ induction p;intros cont n Hcont ah al bh bl Hgt Hs;simpl ww_gcd_gt_aux.
+ assert (0 < Zpos p). unfold Zlt;reflexivity.
+ apply spec_ww_gcd_gt_aux_body with (n := Zpos (xI p) + n);
+ trivial;rewrite Zpos_xI.
+ intros. apply IHp with (n := Zpos p + n);zarith.
+ intros. apply IHp with (n := n );zarith.
+ apply Zle_trans with (2 ^ (2* Zpos p + 1+ n -1));zarith.
+ apply Zpower_le_monotone2;zarith.
+ assert (0 < Zpos p). unfold Zlt;reflexivity.
+ apply spec_ww_gcd_gt_aux_body with (n := Zpos (xO p) + n );trivial.
+ rewrite (Zpos_xO p).
+ intros. apply IHp with (n := Zpos p + n - 1);zarith.
+ intros. apply IHp with (n := n -1 );zarith.
+ intros;apply Hcont;zarith.
+ apply Zle_trans with (2^(n-1));zarith.
+ apply Zpower_le_monotone2;zarith.
+ apply Zle_trans with (2 ^ (Zpos p + n -1));zarith.
+ apply Zpower_le_monotone2;zarith.
+ apply Zle_trans with (2 ^ (2*Zpos p + n -1));zarith.
+ apply Zpower_le_monotone2;zarith.
+ apply spec_ww_gcd_gt_aux_body with (n := n+1);trivial.
+ rewrite Zplus_comm;trivial.
+ ring_simplify (n + 1 - 1);trivial.
+ Qed.
+
+End DoubleDivGt.
+
+Section DoubleDiv.
+
+ Variable w : Type.
+ Variable w_digits : positive.
+ Variable ww_1 : zn2z w.
+ Variable ww_compare : zn2z w -> zn2z w -> comparison.
+
+ Variable ww_div_gt : zn2z w -> zn2z w -> zn2z w * zn2z w.
+ Variable ww_mod_gt : zn2z w -> zn2z w -> zn2z w.
+
+ Definition ww_div a b :=
+ match ww_compare a b with
+ | Gt => ww_div_gt a b
+ | Eq => (ww_1, W0)
+ | Lt => (W0, a)
+ end.
+
+ Definition ww_mod a b :=
+ match ww_compare a b with
+ | Gt => ww_mod_gt a b
+ | Eq => W0
+ | Lt => a
+ end.
+
+ Variable w_to_Z : w -> Z.
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_ww_1 : [[ww_1]] = 1.
+ Variable spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Variable spec_ww_div_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
+ let (q,r) := ww_div_gt a b in
+ [[a]] = [[q]] * [[b]] + [[r]] /\
+ 0 <= [[r]] < [[b]].
+ Variable spec_ww_mod_gt : forall a b, [[a]] > [[b]] -> 0 < [[b]] ->
+ [[ww_mod_gt a b]] = [[a]] mod [[b]].
+
+ Ltac Spec_w_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_to_Z x).
+
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "HH" in
+ assert (H:= spec_ww_to_Z w_digits w_to_Z spec_to_Z x).
+
+ Lemma spec_ww_div : forall a b, 0 < [[b]] ->
+ let (q,r) := ww_div a b in
+ [[a]] = [[q]] * [[b]] + [[r]] /\
+ 0 <= [[r]] < [[b]].
+ Proof.
+ intros a b Hpos;unfold ww_div.
+ assert (H:=spec_ww_compare a b);destruct (ww_compare a b).
+ simpl;rewrite spec_ww_1;split;zarith.
+ simpl;split;[ring|Spec_ww_to_Z a;zarith].
+ apply spec_ww_div_gt;trivial.
+ Qed.
+
+ Lemma spec_ww_mod : forall a b, 0 < [[b]] ->
+ [[ww_mod a b]] = [[a]] mod [[b]].
+ Proof.
+ intros a b Hpos;unfold ww_mod.
+ assert (H := spec_ww_compare a b);destruct (ww_compare a b).
+ simpl;apply Zmod_unique with 1;try rewrite H;zarith.
+ Spec_ww_to_Z a;symmetry;apply Zmod_small;zarith.
+ apply spec_ww_mod_gt;trivial.
+ Qed.
+
+
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_eq0 : w -> bool.
+ Variable w_gcd_gt : w -> w -> w.
+ Variable _ww_digits : positive.
+ Variable spec_ww_digits_ : _ww_digits = xO w_digits.
+ Variable ww_gcd_gt_fix :
+ positive -> (w -> w -> w -> w -> zn2z w) ->
+ w -> w -> w -> w -> zn2z w.
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
+ Variable spec_gcd_gt : forall a b, [|a|] > [|b|] ->
+ Zis_gcd [|a|] [|b|] [|w_gcd_gt a b|].
+ Variable spec_gcd_gt_fix :
+ forall p cont n,
+ (forall xh xl yh yl,
+ [[WW xh xl]] > [[WW yh yl]] ->
+ [[WW yh yl]] <= 2^n ->
+ Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]]) ->
+ forall ah al bh bl , [[WW ah al]] > [[WW bh bl]] ->
+ [[WW bh bl]] <= 2^(Zpos p + n) ->
+ Zis_gcd [[WW ah al]] [[WW bh bl]]
+ [[ww_gcd_gt_fix p cont ah al bh bl]].
+
+ Definition gcd_cont (xh xl yh yl:w) :=
+ match w_compare w_1 yl with
+ | Eq => ww_1
+ | _ => WW xh xl
+ end.
+
+ Lemma spec_gcd_cont : forall xh xl yh yl,
+ [[WW xh xl]] > [[WW yh yl]] ->
+ [[WW yh yl]] <= 1 ->
+ Zis_gcd [[WW xh xl]] [[WW yh yl]] [[gcd_cont xh xl yh yl]].
+ Proof.
+ intros xh xl yh yl Hgt' Hle. simpl in Hle.
+ assert ([|yh|] = 0).
+ change 1 with (0*wB+1) in Hle.
+ assert (0 <= 1 < wB). split;zarith. apply wB_pos.
+ assert (H1:= beta_lex _ _ _ _ _ Hle (spec_to_Z yl) H).
+ Spec_w_to_Z yh;zarith.
+ unfold gcd_cont;assert (Hcmpy:=spec_compare w_1 yl);
+ rewrite spec_w_1 in Hcmpy.
+ simpl;rewrite H;simpl;destruct (w_compare w_1 yl).
+ rewrite spec_ww_1;rewrite <- Hcmpy;apply Zis_gcd_mod;zarith.
+ rewrite <- (Zmod_unique ([|xh|]*wB+[|xl|]) 1 ([|xh|]*wB+[|xl|]) 0);zarith.
+ rewrite H in Hle; elimtype False;zarith.
+ assert ([|yl|] = 0). Spec_w_to_Z yl;zarith.
+ rewrite H0;simpl;apply Zis_gcd_0;trivial.
+ Qed.
+
+
+ Variable cont : w -> w -> w -> w -> zn2z w.
+ Variable spec_cont : forall xh xl yh yl,
+ [[WW xh xl]] > [[WW yh yl]] ->
+ [[WW yh yl]] <= 1 ->
+ Zis_gcd [[WW xh xl]] [[WW yh yl]] [[cont xh xl yh yl]].
+
+ Definition ww_gcd_gt a b :=
+ match a, b with
+ | W0, _ => b
+ | _, W0 => a
+ | WW ah al, WW bh bl =>
+ if w_eq0 ah then (WW w_0 (w_gcd_gt al bl))
+ else ww_gcd_gt_fix _ww_digits cont ah al bh bl
+ end.
+
+ Definition ww_gcd a b :=
+ Eval lazy beta delta [ww_gcd_gt] in
+ match ww_compare a b with
+ | Gt => ww_gcd_gt a b
+ | Eq => a
+ | Lt => ww_gcd_gt b a
+ end.
+
+ Lemma spec_ww_gcd_gt : forall a b, [[a]] > [[b]] ->
+ Zis_gcd [[a]] [[b]] [[ww_gcd_gt a b]].
+ Proof.
+ intros a b Hgt;unfold ww_gcd_gt.
+ destruct a as [ |ah al]. simpl;apply Zis_gcd_sym;apply Zis_gcd_0.
+ destruct b as [ |bh bl]. simpl;apply Zis_gcd_0.
+ simpl in Hgt. generalize (@spec_eq0 ah);destruct (w_eq0 ah);intros.
+ simpl;rewrite H in Hgt;trivial;rewrite H;trivial;rewrite spec_w_0;simpl.
+ assert ([|bh|] <= 0).
+ apply beta_lex with (d:=[|al|])(b:=[|bl|]) (beta := wB);zarith.
+ Spec_w_to_Z bh;assert ([|bh|] = 0);zarith. rewrite H1 in Hgt;simpl in Hgt.
+ rewrite H1;simpl;auto. clear H.
+ apply spec_gcd_gt_fix with (n:= 0);trivial.
+ rewrite Zplus_0_r;rewrite spec_ww_digits_.
+ change (2 ^ Zpos (xO w_digits)) with wwB. Spec_ww_to_Z (WW bh bl);zarith.
+ Qed.
+
+ Lemma spec_ww_gcd : forall a b, Zis_gcd [[a]] [[b]] [[ww_gcd a b]].
+ Proof.
+ intros a b.
+ change (ww_gcd a b) with
+ (match ww_compare a b with
+ | Gt => ww_gcd_gt a b
+ | Eq => a
+ | Lt => ww_gcd_gt b a
+ end).
+ assert (Hcmp := spec_ww_compare a b);destruct (ww_compare a b).
+ Spec_ww_to_Z b;rewrite Hcmp.
+ apply Zis_gcd_for_euclid with 1;zarith.
+ ring_simplify ([[b]] - 1 * [[b]]). apply Zis_gcd_0;zarith.
+ apply Zis_gcd_sym;apply spec_ww_gcd_gt;zarith.
+ apply spec_ww_gcd_gt;zarith.
+ Qed.
+
+End DoubleDiv.
+
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
new file mode 100644
index 00000000..d6f6a05f
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleDivn1.v
@@ -0,0 +1,528 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleDivn1.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section GENDIVN1.
+
+ Variable w : Type.
+ Variable w_digits : positive.
+ Variable w_zdigits : w.
+ Variable w_0 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_head0 : w -> w.
+ Variable w_add_mul_div : w -> w -> w -> w.
+ Variable w_div21 : w -> w -> w -> w * w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_sub : w -> w -> w.
+
+
+
+ (* ** For proofs ** *)
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
+ (at level 0, x at level 99).
+ Notation "[[ x ]]" := (zn2z_to_Z wB w_to_Z x) (at level 0, x at level 99).
+
+ Variable spec_to_Z : forall x, 0 <= [| x |] < wB.
+ Variable spec_w_zdigits: [|w_zdigits|] = Zpos w_digits.
+ Variable spec_0 : [|w_0|] = 0.
+ Variable spec_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ [|w_head0 x|] * [|x|] < wB.
+ Variable spec_add_mul_div : forall x y p,
+ [|p|] <= Zpos w_digits ->
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
+ Variable spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := w_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Variable spec_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_sub: forall x y,
+ [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+
+
+
+ Section DIVAUX.
+ Variable b2p : w.
+ Variable b2p_le : wB/2 <= [|b2p|].
+
+ Definition double_divn1_0_aux n (divn1: w -> word w n -> word w n * w) r h :=
+ let (hh,hl) := double_split w_0 n h in
+ let (qh,rh) := divn1 r hh in
+ let (ql,rl) := divn1 rh hl in
+ (double_WW w_WW n qh ql, rl).
+
+ Fixpoint double_divn1_0 (n:nat) : w -> word w n -> word w n * w :=
+ match n return w -> word w n -> word w n * w with
+ | O => fun r x => w_div21 r x b2p
+ | S n => double_divn1_0_aux n (double_divn1_0 n)
+ end.
+
+ Lemma spec_split : forall (n : nat) (x : zn2z (word w n)),
+ let (h, l) := double_split w_0 n x in
+ [!S n | x!] = [!n | h!] * double_wB w_digits n + [!n | l!].
+ Proof (spec_double_split w_0 w_digits w_to_Z spec_0).
+
+ Lemma spec_double_divn1_0 : forall n r a,
+ [|r|] < [|b2p|] ->
+ let (q,r') := double_divn1_0 n r a in
+ [|r|] * double_wB w_digits n + [!n|a!] = [!n|q!] * [|b2p|] + [|r'|] /\
+ 0 <= [|r'|] < [|b2p|].
+ Proof.
+ induction n;intros.
+ exact (spec_div21 a b2p_le H).
+ simpl (double_divn1_0 (S n) r a); unfold double_divn1_0_aux.
+ assert (H1 := spec_split n a);destruct (double_split w_0 n a) as (hh,hl).
+ rewrite H1.
+ assert (H2 := IHn r hh H);destruct (double_divn1_0 n r hh) as (qh,rh).
+ destruct H2.
+ assert ([|rh|] < [|b2p|]). omega.
+ assert (H4 := IHn rh hl H3);destruct (double_divn1_0 n rh hl) as (ql,rl).
+ destruct H4;split;trivial.
+ rewrite spec_double_WW;trivial.
+ rewrite <- double_wB_wwB.
+ rewrite Zmult_assoc;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite H0;rewrite Zmult_plus_distr_l;rewrite <- Zplus_assoc.
+ rewrite H4;ring.
+ Qed.
+
+ Definition double_modn1_0_aux n (modn1:w -> word w n -> w) r h :=
+ let (hh,hl) := double_split w_0 n h in modn1 (modn1 r hh) hl.
+
+ Fixpoint double_modn1_0 (n:nat) : w -> word w n -> w :=
+ match n return w -> word w n -> w with
+ | O => fun r x => snd (w_div21 r x b2p)
+ | S n => double_modn1_0_aux n (double_modn1_0 n)
+ end.
+
+ Lemma spec_double_modn1_0 : forall n r x,
+ double_modn1_0 n r x = snd (double_divn1_0 n r x).
+ Proof.
+ induction n;simpl;intros;trivial.
+ unfold double_modn1_0_aux, double_divn1_0_aux.
+ destruct (double_split w_0 n x) as (hh,hl).
+ rewrite (IHn r hh).
+ destruct (double_divn1_0 n r hh) as (qh,rh);simpl.
+ rewrite IHn. destruct (double_divn1_0 n rh hl);trivial.
+ Qed.
+
+ Variable p : w.
+ Variable p_bounded : [|p|] <= Zpos w_digits.
+
+ Lemma spec_add_mul_divp : forall x y,
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
+ Proof.
+ intros;apply spec_add_mul_div;auto.
+ Qed.
+
+ Definition double_divn1_p_aux n
+ (divn1 : w -> word w n -> word w n -> word w n * w) r h l :=
+ let (hh,hl) := double_split w_0 n h in
+ let (lh,ll) := double_split w_0 n l in
+ let (qh,rh) := divn1 r hh hl in
+ let (ql,rl) := divn1 rh hl lh in
+ (double_WW w_WW n qh ql, rl).
+
+ Fixpoint double_divn1_p (n:nat) : w -> word w n -> word w n -> word w n * w :=
+ match n return w -> word w n -> word w n -> word w n * w with
+ | O => fun r h l => w_div21 r (w_add_mul_div p h l) b2p
+ | S n => double_divn1_p_aux n (double_divn1_p n)
+ end.
+
+ Lemma p_lt_double_digits : forall n, [|p|] <= Zpos (double_digits w_digits n).
+ Proof.
+(*
+ induction n;simpl. destruct p_bounded;trivial.
+ case (spec_to_Z p); rewrite Zpos_xO;auto with zarith.
+*)
+ induction n;simpl. trivial.
+ case (spec_to_Z p); rewrite Zpos_xO;auto with zarith.
+ Qed.
+
+ Lemma spec_double_divn1_p : forall n r h l,
+ [|r|] < [|b2p|] ->
+ let (q,r') := double_divn1_p n r h l in
+ [|r|] * double_wB w_digits n +
+ ([!n|h!]*2^[|p|] +
+ [!n|l!] / (2^(Zpos(double_digits w_digits n) - [|p|])))
+ mod double_wB w_digits n = [!n|q!] * [|b2p|] + [|r'|] /\
+ 0 <= [|r'|] < [|b2p|].
+ Proof.
+ case (spec_to_Z p); intros HH0 HH1.
+ induction n;intros.
+ simpl (double_divn1_p 0 r h l).
+ unfold double_to_Z, double_wB, double_digits.
+ rewrite <- spec_add_mul_divp.
+ exact (spec_div21 (w_add_mul_div p h l) b2p_le H).
+ simpl (double_divn1_p (S n) r h l).
+ unfold double_divn1_p_aux.
+ assert (H1 := spec_split n h);destruct (double_split w_0 n h) as (hh,hl).
+ rewrite H1. rewrite <- double_wB_wwB.
+ assert (H2 := spec_split n l);destruct (double_split w_0 n l) as (lh,ll).
+ rewrite H2.
+ replace ([|r|] * (double_wB w_digits n * double_wB w_digits n) +
+ (([!n|hh!] * double_wB w_digits n + [!n|hl!]) * 2 ^ [|p|] +
+ ([!n|lh!] * double_wB w_digits n + [!n|ll!]) /
+ 2^(Zpos (double_digits w_digits (S n)) - [|p|])) mod
+ (double_wB w_digits n * double_wB w_digits n)) with
+ (([|r|] * double_wB w_digits n + ([!n|hh!] * 2^[|p|] +
+ [!n|hl!] / 2^(Zpos (double_digits w_digits n) - [|p|])) mod
+ double_wB w_digits n) * double_wB w_digits n +
+ ([!n|hl!] * 2^[|p|] +
+ [!n|lh!] / 2^(Zpos (double_digits w_digits n) - [|p|])) mod
+ double_wB w_digits n).
+ generalize (IHn r hh hl H);destruct (double_divn1_p n r hh hl) as (qh,rh);
+ intros (H3,H4);rewrite H3.
+ assert ([|rh|] < [|b2p|]). omega.
+ replace (([!n|qh!] * [|b2p|] + [|rh|]) * double_wB w_digits n +
+ ([!n|hl!] * 2 ^ [|p|] +
+ [!n|lh!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])) mod
+ double_wB w_digits n) with
+ ([!n|qh!] * [|b2p|] *double_wB w_digits n + ([|rh|]*double_wB w_digits n +
+ ([!n|hl!] * 2 ^ [|p|] +
+ [!n|lh!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])) mod
+ double_wB w_digits n)). 2:ring.
+ generalize (IHn rh hl lh H0);destruct (double_divn1_p n rh hl lh) as (ql,rl);
+ intros (H5,H6);rewrite H5.
+ split;[rewrite spec_double_WW;trivial;ring|trivial].
+ assert (Uhh := spec_double_to_Z w_digits w_to_Z spec_to_Z n hh);
+ unfold double_wB,base in Uhh.
+ assert (Uhl := spec_double_to_Z w_digits w_to_Z spec_to_Z n hl);
+ unfold double_wB,base in Uhl.
+ assert (Ulh := spec_double_to_Z w_digits w_to_Z spec_to_Z n lh);
+ unfold double_wB,base in Ulh.
+ assert (Ull := spec_double_to_Z w_digits w_to_Z spec_to_Z n ll);
+ unfold double_wB,base in Ull.
+ unfold double_wB,base.
+ assert (UU:=p_lt_double_digits n).
+ rewrite Zdiv_shift_r;auto with zarith.
+ 2:change (Zpos (double_digits w_digits (S n)))
+ with (2*Zpos (double_digits w_digits n));auto with zarith.
+ replace (2 ^ (Zpos (double_digits w_digits (S n)) - [|p|])) with
+ (2^(Zpos (double_digits w_digits n) - [|p|])*2^Zpos (double_digits w_digits n)).
+ rewrite Zdiv_mult_cancel_r;auto with zarith.
+ rewrite Zmult_plus_distr_l with (p:= 2^[|p|]).
+ pattern ([!n|hl!] * 2^[|p|]) at 2;
+ rewrite (shift_unshift_mod (Zpos(double_digits w_digits n))([|p|])([!n|hl!]));
+ auto with zarith.
+ rewrite Zplus_assoc.
+ replace
+ ([!n|hh!] * 2^Zpos (double_digits w_digits n)* 2^[|p|] +
+ ([!n|hl!] / 2^(Zpos (double_digits w_digits n)-[|p|])*
+ 2^Zpos(double_digits w_digits n)))
+ with
+ (([!n|hh!] *2^[|p|] + double_to_Z w_digits w_to_Z n hl /
+ 2^(Zpos (double_digits w_digits n)-[|p|]))
+ * 2^Zpos(double_digits w_digits n));try (ring;fail).
+ rewrite <- Zplus_assoc.
+ rewrite <- (Zmod_shift_r ([|p|]));auto with zarith.
+ replace
+ (2 ^ Zpos (double_digits w_digits n) * 2 ^ Zpos (double_digits w_digits n)) with
+ (2 ^ (Zpos (double_digits w_digits n) + Zpos (double_digits w_digits n))).
+ rewrite (Zmod_shift_r (Zpos (double_digits w_digits n)));auto with zarith.
+ replace (2 ^ (Zpos (double_digits w_digits n) + Zpos (double_digits w_digits n)))
+ with (2^Zpos(double_digits w_digits n) *2^Zpos(double_digits w_digits n)).
+ rewrite (Zmult_comm (([!n|hh!] * 2 ^ [|p|] +
+ [!n|hl!] / 2 ^ (Zpos (double_digits w_digits n) - [|p|])))).
+ rewrite Zmult_mod_distr_l;auto with zarith.
+ ring.
+ rewrite Zpower_exp;auto with zarith.
+ assert (0 < Zpos (double_digits w_digits n)). unfold Zlt;reflexivity.
+ auto with zarith.
+ apply Z_mod_lt;auto with zarith.
+ rewrite Zpower_exp;auto with zarith.
+ split;auto with zarith.
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ rewrite <- Zpower_exp;auto with zarith.
+ replace ([|p|] + (Zpos (double_digits w_digits n) - [|p|])) with
+ (Zpos(double_digits w_digits n));auto with zarith.
+ rewrite <- Zpower_exp;auto with zarith.
+ replace (Zpos (double_digits w_digits (S n)) - [|p|]) with
+ (Zpos (double_digits w_digits n) - [|p|] +
+ Zpos (double_digits w_digits n));trivial.
+ change (Zpos (double_digits w_digits (S n))) with
+ (2*Zpos (double_digits w_digits n)). ring.
+ Qed.
+
+ Definition double_modn1_p_aux n (modn1 : w -> word w n -> word w n -> w) r h l:=
+ let (hh,hl) := double_split w_0 n h in
+ let (lh,ll) := double_split w_0 n l in
+ modn1 (modn1 r hh hl) hl lh.
+
+ Fixpoint double_modn1_p (n:nat) : w -> word w n -> word w n -> w :=
+ match n return w -> word w n -> word w n -> w with
+ | O => fun r h l => snd (w_div21 r (w_add_mul_div p h l) b2p)
+ | S n => double_modn1_p_aux n (double_modn1_p n)
+ end.
+
+ Lemma spec_double_modn1_p : forall n r h l ,
+ double_modn1_p n r h l = snd (double_divn1_p n r h l).
+ Proof.
+ induction n;simpl;intros;trivial.
+ unfold double_modn1_p_aux, double_divn1_p_aux.
+ destruct(double_split w_0 n h)as(hh,hl);destruct(double_split w_0 n l) as (lh,ll).
+ rewrite (IHn r hh hl);destruct (double_divn1_p n r hh hl) as (qh,rh).
+ rewrite IHn;simpl;destruct (double_divn1_p n rh hl lh);trivial.
+ Qed.
+
+ End DIVAUX.
+
+ Fixpoint high (n:nat) : word w n -> w :=
+ match n return word w n -> w with
+ | O => fun a => a
+ | S n =>
+ fun (a:zn2z (word w n)) =>
+ match a with
+ | W0 => w_0
+ | WW h l => high n h
+ end
+ end.
+
+ Lemma spec_double_digits:forall n, Zpos w_digits <= Zpos (double_digits w_digits n).
+ Proof.
+ induction n;simpl;auto with zarith.
+ change (Zpos (xO (double_digits w_digits n))) with
+ (2*Zpos (double_digits w_digits n)).
+ assert (0 < Zpos w_digits);auto with zarith.
+ exact (refl_equal Lt).
+ Qed.
+
+ Lemma spec_high : forall n (x:word w n),
+ [|high n x|] = [!n|x!] / 2^(Zpos (double_digits w_digits n) - Zpos w_digits).
+ Proof.
+ induction n;intros.
+ unfold high,double_digits,double_to_Z.
+ replace (Zpos w_digits - Zpos w_digits) with 0;try ring.
+ simpl. rewrite <- (Zdiv_unique [|x|] 1 [|x|] 0);auto with zarith.
+ assert (U2 := spec_double_digits n).
+ assert (U3 : 0 < Zpos w_digits). exact (refl_equal Lt).
+ destruct x;unfold high;fold high.
+ unfold double_to_Z,zn2z_to_Z;rewrite spec_0.
+ rewrite Zdiv_0_l;trivial.
+ assert (U0 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w0);
+ assert (U1 := spec_double_to_Z w_digits w_to_Z spec_to_Z n w1).
+ simpl [!S n|WW w0 w1!].
+ unfold double_wB,base;rewrite Zdiv_shift_r;auto with zarith.
+ replace (2 ^ (Zpos (double_digits w_digits (S n)) - Zpos w_digits)) with
+ (2^(Zpos (double_digits w_digits n) - Zpos w_digits) *
+ 2^Zpos (double_digits w_digits n)).
+ rewrite Zdiv_mult_cancel_r;auto with zarith.
+ rewrite <- Zpower_exp;auto with zarith.
+ replace (Zpos (double_digits w_digits n) - Zpos w_digits +
+ Zpos (double_digits w_digits n)) with
+ (Zpos (double_digits w_digits (S n)) - Zpos w_digits);trivial.
+ change (Zpos (double_digits w_digits (S n))) with
+ (2*Zpos (double_digits w_digits n));ring.
+ change (Zpos (double_digits w_digits (S n))) with
+ (2*Zpos (double_digits w_digits n)); auto with zarith.
+ Qed.
+
+ Definition double_divn1 (n:nat) (a:word w n) (b:w) :=
+ let p := w_head0 b in
+ match w_compare p w_0 with
+ | Gt =>
+ let b2p := w_add_mul_div p b w_0 in
+ let ha := high n a in
+ let k := w_sub w_zdigits p in
+ let lsr_n := w_add_mul_div k w_0 in
+ let r0 := w_add_mul_div p w_0 ha in
+ let (q,r) := double_divn1_p b2p p n r0 a (double_0 w_0 n) in
+ (q, lsr_n r)
+ | _ => double_divn1_0 b n w_0 a
+ end.
+
+ Lemma spec_double_divn1 : forall n a b,
+ 0 < [|b|] ->
+ let (q,r) := double_divn1 n a b in
+ [!n|a!] = [!n|q!] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ intros n a b H. unfold double_divn1.
+ case (spec_head0 H); intros H0 H1.
+ case (spec_to_Z (w_head0 b)); intros HH1 HH2.
+ generalize (spec_compare (w_head0 b) w_0); case w_compare;
+ rewrite spec_0; intros H2; auto with zarith.
+ assert (Hv1: wB/2 <= [|b|]).
+ generalize H0; rewrite H2; rewrite Zpower_0_r;
+ rewrite Zmult_1_l; auto.
+ assert (Hv2: [|w_0|] < [|b|]).
+ rewrite spec_0; auto.
+ generalize (spec_double_divn1_0 Hv1 n a Hv2).
+ rewrite spec_0;rewrite Zmult_0_l; rewrite Zplus_0_l; auto.
+ contradict H2; auto with zarith.
+ assert (HHHH : 0 < [|w_head0 b|]); auto with zarith.
+ assert ([|w_head0 b|] < Zpos w_digits).
+ case (Zle_or_lt (Zpos w_digits) [|w_head0 b|]); auto; intros HH.
+ assert (2 ^ [|w_head0 b|] < wB).
+ apply Zle_lt_trans with (2 ^ [|w_head0 b|] * [|b|]);auto with zarith.
+ replace (2 ^ [|w_head0 b|]) with (2^[|w_head0 b|] * 1);try (ring;fail).
+ apply Zmult_le_compat;auto with zarith.
+ assert (wB <= 2^[|w_head0 b|]).
+ unfold base;apply Zpower_le_monotone;auto with zarith. omega.
+ assert ([|w_add_mul_div (w_head0 b) b w_0|] =
+ 2 ^ [|w_head0 b|] * [|b|]).
+ rewrite (spec_add_mul_div b w_0); auto with zarith.
+ rewrite spec_0;rewrite Zdiv_0_l; try omega.
+ rewrite Zplus_0_r; rewrite Zmult_comm.
+ rewrite Zmod_small; auto with zarith.
+ assert (H5 := spec_to_Z (high n a)).
+ assert
+ ([|w_add_mul_div (w_head0 b) w_0 (high n a)|]
+ <[|w_add_mul_div (w_head0 b) b w_0|]).
+ rewrite H4.
+ rewrite spec_add_mul_div;auto with zarith.
+ rewrite spec_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
+ assert (([|high n a|]/2^(Zpos w_digits - [|w_head0 b|])) < wB).
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ apply Zlt_le_trans with wB;auto with zarith.
+ pattern wB at 1;replace wB with (wB*1);try ring.
+ apply Zmult_le_compat;auto with zarith.
+ assert (H6 := Zpower_gt_0 2 (Zpos w_digits - [|w_head0 b|]));
+ auto with zarith.
+ rewrite Zmod_small;auto with zarith.
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ apply Zlt_le_trans with wB;auto with zarith.
+ apply Zle_trans with (2 ^ [|w_head0 b|] * [|b|] * 2).
+ rewrite <- wB_div_2; try omega.
+ apply Zmult_le_compat;auto with zarith.
+ pattern 2 at 1;rewrite <- Zpower_1_r.
+ apply Zpower_le_monotone;split;auto with zarith.
+ rewrite <- H4 in H0.
+ assert (Hb3: [|w_head0 b|] <= Zpos w_digits); auto with zarith.
+ assert (H7:= spec_double_divn1_p H0 Hb3 n a (double_0 w_0 n) H6).
+ destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
+ (w_add_mul_div (w_head0 b) w_0 (high n a)) a
+ (double_0 w_0 n)) as (q,r).
+ assert (U:= spec_double_digits n).
+ rewrite spec_double_0 in H7;trivial;rewrite Zdiv_0_l in H7.
+ rewrite Zplus_0_r in H7.
+ rewrite spec_add_mul_div in H7;auto with zarith.
+ rewrite spec_0 in H7;rewrite Zmult_0_l in H7;rewrite Zplus_0_l in H7.
+ assert (([|high n a|] / 2 ^ (Zpos w_digits - [|w_head0 b|])) mod wB
+ = [!n|a!] / 2^(Zpos (double_digits w_digits n) - [|w_head0 b|])).
+ rewrite Zmod_small;auto with zarith.
+ rewrite spec_high. rewrite Zdiv_Zdiv;auto with zarith.
+ rewrite <- Zpower_exp;auto with zarith.
+ replace (Zpos (double_digits w_digits n) - Zpos w_digits +
+ (Zpos w_digits - [|w_head0 b|]))
+ with (Zpos (double_digits w_digits n) - [|w_head0 b|]);trivial;ring.
+ assert (H8 := Zpower_gt_0 2 (Zpos w_digits - [|w_head0 b|]));auto with zarith.
+ split;auto with zarith.
+ apply Zle_lt_trans with ([|high n a|]);auto with zarith.
+ apply Zdiv_le_upper_bound;auto with zarith.
+ pattern ([|high n a|]) at 1;rewrite <- Zmult_1_r.
+ apply Zmult_le_compat;auto with zarith.
+ rewrite H8 in H7;unfold double_wB,base in H7.
+ rewrite <- shift_unshift_mod in H7;auto with zarith.
+ rewrite H4 in H7.
+ assert ([|w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r|]
+ = [|r|]/2^[|w_head0 b|]).
+ rewrite spec_add_mul_div.
+ rewrite spec_0;rewrite Zmult_0_l;rewrite Zplus_0_l.
+ replace (Zpos w_digits - [|w_sub w_zdigits (w_head0 b)|])
+ with ([|w_head0 b|]).
+ rewrite Zmod_small;auto with zarith.
+ assert (H9 := spec_to_Z r).
+ split;auto with zarith.
+ apply Zle_lt_trans with ([|r|]);auto with zarith.
+ apply Zdiv_le_upper_bound;auto with zarith.
+ pattern ([|r|]) at 1;rewrite <- Zmult_1_r.
+ apply Zmult_le_compat;auto with zarith.
+ assert (H10 := Zpower_gt_0 2 ([|w_head0 b|]));auto with zarith.
+ rewrite spec_sub.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ case (spec_to_Z w_zdigits); auto with zarith.
+ rewrite spec_sub.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ case (spec_to_Z w_zdigits); auto with zarith.
+ case H7; intros H71 H72.
+ split.
+ rewrite <- (Z_div_mult [!n|a!] (2^[|w_head0 b|]));auto with zarith.
+ rewrite H71;rewrite H9.
+ replace ([!n|q!] * (2 ^ [|w_head0 b|] * [|b|]))
+ with ([!n|q!] *[|b|] * 2^[|w_head0 b|]);
+ try (ring;fail).
+ rewrite Z_div_plus_l;auto with zarith.
+ assert (H10 := spec_to_Z
+ (w_add_mul_div (w_sub w_zdigits (w_head0 b)) w_0 r));split;
+ auto with zarith.
+ rewrite H9.
+ apply Zdiv_lt_upper_bound;auto with zarith.
+ rewrite Zmult_comm;auto with zarith.
+ exact (spec_double_to_Z w_digits w_to_Z spec_to_Z n a).
+ Qed.
+
+
+ Definition double_modn1 (n:nat) (a:word w n) (b:w) :=
+ let p := w_head0 b in
+ match w_compare p w_0 with
+ | Gt =>
+ let b2p := w_add_mul_div p b w_0 in
+ let ha := high n a in
+ let k := w_sub w_zdigits p in
+ let lsr_n := w_add_mul_div k w_0 in
+ let r0 := w_add_mul_div p w_0 ha in
+ let r := double_modn1_p b2p p n r0 a (double_0 w_0 n) in
+ lsr_n r
+ | _ => double_modn1_0 b n w_0 a
+ end.
+
+ Lemma spec_double_modn1_aux : forall n a b,
+ double_modn1 n a b = snd (double_divn1 n a b).
+ Proof.
+ intros n a b;unfold double_divn1,double_modn1.
+ generalize (spec_compare (w_head0 b) w_0); case w_compare;
+ rewrite spec_0; intros H2; auto with zarith.
+ apply spec_double_modn1_0.
+ apply spec_double_modn1_0.
+ rewrite spec_double_modn1_p.
+ destruct (double_divn1_p (w_add_mul_div (w_head0 b) b w_0) (w_head0 b) n
+ (w_add_mul_div (w_head0 b) w_0 (high n a)) a (double_0 w_0 n));simpl;trivial.
+ Qed.
+
+ Lemma spec_double_modn1 : forall n a b, 0 < [|b|] ->
+ [|double_modn1 n a b|] = [!n|a!] mod [|b|].
+ Proof.
+ intros n a b H;assert (H1 := spec_double_divn1 n a H).
+ assert (H2 := spec_double_modn1_aux n a b).
+ rewrite H2;destruct (double_divn1 n a b) as (q,r).
+ simpl;apply Zmod_unique with (double_to_Z w_digits w_to_Z n q);auto with zarith.
+ destruct H1 as (h1,h2);rewrite h1;ring.
+ Qed.
+
+End GENDIVN1.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
new file mode 100644
index 00000000..50c72487
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleLift.v
@@ -0,0 +1,487 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleLift.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleLift.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_compare : w -> w -> comparison.
+ Variable ww_compare : zn2z w -> zn2z w -> comparison.
+ Variable w_head0 : w -> w.
+ Variable w_tail0 : w -> w.
+ Variable w_add: w -> w -> zn2z w.
+ Variable w_add_mul_div : w -> w -> w -> w.
+ Variable ww_sub: zn2z w -> zn2z w -> zn2z w.
+ Variable w_digits : positive.
+ Variable ww_Digits : positive.
+ Variable w_zdigits : w.
+ Variable ww_zdigits : zn2z w.
+ Variable low: zn2z w -> w.
+
+ Definition ww_head0 x :=
+ match x with
+ | W0 => ww_zdigits
+ | WW xh xl =>
+ match w_compare w_0 xh with
+ | Eq => w_add w_zdigits (w_head0 xl)
+ | _ => w_0W (w_head0 xh)
+ end
+ end.
+
+
+ Definition ww_tail0 x :=
+ match x with
+ | W0 => ww_zdigits
+ | WW xh xl =>
+ match w_compare w_0 xl with
+ | Eq => w_add w_zdigits (w_tail0 xh)
+ | _ => w_0W (w_tail0 xl)
+ end
+ end.
+
+
+ (* 0 < p < ww_digits *)
+ Definition ww_add_mul_div p x y :=
+ let zdigits := w_0W w_zdigits in
+ match x, y with
+ | W0, W0 => W0
+ | W0, WW yh yl =>
+ match ww_compare p zdigits with
+ | Eq => w_0W yh
+ | Lt => w_0W (w_add_mul_div (low p) w_0 yh)
+ | Gt =>
+ let n := low (ww_sub p zdigits) in
+ w_WW (w_add_mul_div n w_0 yh) (w_add_mul_div n yh yl)
+ end
+ | WW xh xl, W0 =>
+ match ww_compare p zdigits with
+ | Eq => w_W0 xl
+ | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl w_0)
+ | Gt =>
+ let n := low (ww_sub p zdigits) in
+ w_W0 (w_add_mul_div n xl w_0)
+ end
+ | WW xh xl, WW yh yl =>
+ match ww_compare p zdigits with
+ | Eq => w_WW xl yh
+ | Lt => w_WW (w_add_mul_div (low p) xh xl) (w_add_mul_div (low p) xl yh)
+ | Gt =>
+ let n := low (ww_sub p zdigits) in
+ w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
+ end
+ end.
+
+ Section DoubleProof.
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_compare : forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Variable spec_ww_digits : ww_Digits = xO w_digits.
+ Variable spec_w_head00 : forall x, [|x|] = 0 -> [|w_head0 x|] = Zpos w_digits.
+ Variable spec_w_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ ([|w_head0 x|]) * [|x|] < wB.
+ Variable spec_w_tail00 : forall x, [|x|] = 0 -> [|w_tail0 x|] = Zpos w_digits.
+ Variable spec_w_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2* y + 1) * (2 ^ [|w_tail0 x|]).
+ Variable spec_w_add_mul_div : forall x y p,
+ [|p|] <= Zpos w_digits ->
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos w_digits) - [|p|]))) mod wB.
+ Variable spec_w_add: forall x y,
+ [[w_add x y]] = [|x|] + [|y|].
+ Variable spec_ww_sub: forall x y,
+ [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+
+ Variable spec_zdigits : [| w_zdigits |] = Zpos w_digits.
+ Variable spec_low: forall x, [| low x|] = [[x]] mod wB.
+
+ Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos ww_Digits.
+
+ Hint Resolve div_le_0 div_lt w_to_Z_wwB: lift.
+ Ltac zarith := auto with zarith lift.
+
+ Lemma spec_ww_head00 : forall x, [[x]] = 0 -> [[ww_head0 x]] = Zpos ww_Digits.
+ Proof.
+ intros x; case x; unfold ww_head0.
+ intros HH; rewrite spec_ww_zdigits; auto.
+ intros xh xl; simpl; intros Hx.
+ case (spec_to_Z xh); intros Hx1 Hx2.
+ case (spec_to_Z xl); intros Hy1 Hy2.
+ assert (F1: [|xh|] = 0).
+ case (Zle_lt_or_eq _ _ Hy1); auto; intros Hy3.
+ absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
+ apply Zlt_le_trans with (1 := Hy3); auto with zarith.
+ pattern [|xl|] at 1; rewrite <- (Zplus_0_l [|xl|]).
+ apply Zplus_le_compat_r; auto with zarith.
+ case (Zle_lt_or_eq _ _ Hx1); auto; intros Hx3.
+ absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
+ rewrite <- Hy3; rewrite Zplus_0_r; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ generalize (spec_compare w_0 xh); case w_compare.
+ intros H; simpl.
+ rewrite spec_w_add; rewrite spec_w_head00.
+ rewrite spec_zdigits; rewrite spec_ww_digits.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite F1 in Hx; auto with zarith.
+ rewrite spec_w_0; auto with zarith.
+ rewrite spec_w_0; auto with zarith.
+ Qed.
+
+ Lemma spec_ww_head0 : forall x, 0 < [[x]] ->
+ wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
+ Proof.
+ clear spec_ww_zdigits.
+ rewrite wwB_div_2;rewrite Zmult_comm;rewrite wwB_wBwB.
+ assert (U:= lt_0_wB w_digits); destruct x as [ |xh xl];simpl ww_to_Z;intros H.
+ unfold Zlt in H;discriminate H.
+ assert (H0 := spec_compare w_0 xh);rewrite spec_w_0 in H0.
+ destruct (w_compare w_0 xh).
+ rewrite <- H0. simpl Zplus. rewrite <- H0 in H;simpl in H.
+ case (spec_to_Z w_zdigits);
+ case (spec_to_Z (w_head0 xl)); intros HH1 HH2 HH3 HH4.
+ rewrite spec_w_add.
+ rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
+ case (spec_w_head0 H); intros H1 H2.
+ rewrite Zpower_2; fold wB; rewrite <- Zmult_assoc; split.
+ apply Zmult_le_compat_l; auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ assert (H1 := spec_w_head0 H0).
+ rewrite spec_w_0W.
+ split.
+ rewrite Zmult_plus_distr_r;rewrite Zmult_assoc.
+ apply Zle_trans with (2 ^ [|w_head0 xh|] * [|xh|] * wB).
+ rewrite Zmult_comm; zarith.
+ assert (0 <= 2 ^ [|w_head0 xh|] * [|xl|]);zarith.
+ assert (H2:=spec_to_Z xl);apply Zmult_le_0_compat;zarith.
+ case (spec_to_Z (w_head0 xh)); intros H2 _.
+ generalize ([|w_head0 xh|]) H1 H2;clear H1 H2;
+ intros p H1 H2.
+ assert (Eq1 : 2^p < wB).
+ rewrite <- (Zmult_1_r (2^p));apply Zle_lt_trans with (2^p*[|xh|]);zarith.
+ assert (Eq2: p < Zpos w_digits).
+ destruct (Zle_or_lt (Zpos w_digits) p);trivial;contradict Eq1.
+ apply Zle_not_lt;unfold base;apply Zpower_le_monotone;zarith.
+ assert (Zpos w_digits = p + (Zpos w_digits - p)). ring.
+ rewrite Zpower_2.
+ unfold base at 2;rewrite H3;rewrite Zpower_exp;zarith.
+ rewrite <- Zmult_assoc; apply Zmult_lt_compat_l; zarith.
+ rewrite <- (Zplus_0_r (2^(Zpos w_digits - p)*wB));apply beta_lex_inv;zarith.
+ apply Zmult_lt_reg_r with (2 ^ p); zarith.
+ rewrite <- Zpower_exp;zarith.
+ rewrite Zmult_comm;ring_simplify (Zpos w_digits - p + p);fold wB;zarith.
+ assert (H1 := spec_to_Z xh);zarith.
+ Qed.
+
+ Lemma spec_ww_tail00 : forall x, [[x]] = 0 -> [[ww_tail0 x]] = Zpos ww_Digits.
+ Proof.
+ intros x; case x; unfold ww_tail0.
+ intros HH; rewrite spec_ww_zdigits; auto.
+ intros xh xl; simpl; intros Hx.
+ case (spec_to_Z xh); intros Hx1 Hx2.
+ case (spec_to_Z xl); intros Hy1 Hy2.
+ assert (F1: [|xh|] = 0).
+ case (Zle_lt_or_eq _ _ Hy1); auto; intros Hy3.
+ absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
+ apply Zlt_le_trans with (1 := Hy3); auto with zarith.
+ pattern [|xl|] at 1; rewrite <- (Zplus_0_l [|xl|]).
+ apply Zplus_le_compat_r; auto with zarith.
+ case (Zle_lt_or_eq _ _ Hx1); auto; intros Hx3.
+ absurd (0 < [|xh|] * wB + [|xl|]); auto with zarith.
+ rewrite <- Hy3; rewrite Zplus_0_r; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ assert (F2: [|xl|] = 0).
+ rewrite F1 in Hx; auto with zarith.
+ generalize (spec_compare w_0 xl); case w_compare.
+ intros H; simpl.
+ rewrite spec_w_add; rewrite spec_w_tail00; auto.
+ rewrite spec_zdigits; rewrite spec_ww_digits.
+ rewrite Zpos_xO; auto with zarith.
+ rewrite spec_w_0; auto with zarith.
+ rewrite spec_w_0; auto with zarith.
+ Qed.
+
+ Lemma spec_ww_tail0 : forall x, 0 < [[x]] ->
+ exists y, 0 <= y /\ [[x]] = (2 * y + 1) * 2 ^ [[ww_tail0 x]].
+ Proof.
+ clear spec_ww_zdigits.
+ destruct x as [ |xh xl];simpl ww_to_Z;intros H.
+ unfold Zlt in H;discriminate H.
+ assert (H0 := spec_compare w_0 xl);rewrite spec_w_0 in H0.
+ destruct (w_compare w_0 xl).
+ rewrite <- H0; rewrite Zplus_0_r.
+ case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
+ generalize H; rewrite <- H0; rewrite Zplus_0_r; clear H; intros H.
+ case (@spec_w_tail0 xh).
+ apply Zmult_lt_reg_r with wB; auto with zarith.
+ unfold base; auto with zarith.
+ intros z (Hz1, Hz2); exists z; split; auto.
+ rewrite spec_w_add; rewrite (fun x => Zplus_comm [|x|]).
+ rewrite spec_zdigits; rewrite Zpower_exp; auto with zarith.
+ rewrite Zmult_assoc; rewrite <- Hz2; auto.
+
+ case (spec_to_Z (w_tail0 xh)); intros HH1 HH2.
+ case (spec_w_tail0 H0); intros z (Hz1, Hz2).
+ assert (Hp: [|w_tail0 xl|] < Zpos w_digits).
+ case (Zle_or_lt (Zpos w_digits) [|w_tail0 xl|]); auto; intros H1.
+ absurd (2 ^ (Zpos w_digits) <= 2 ^ [|w_tail0 xl|]).
+ apply Zlt_not_le.
+ case (spec_to_Z xl); intros HH3 HH4.
+ apply Zle_lt_trans with (2 := HH4).
+ apply Zle_trans with (1 * 2 ^ [|w_tail0 xl|]); auto with zarith.
+ rewrite Hz2.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ exists ([|xh|] * (2 ^ ((Zpos w_digits - [|w_tail0 xl|]) - 1)) + z); split.
+ apply Zplus_le_0_compat; auto.
+ apply Zmult_le_0_compat; auto with zarith.
+ case (spec_to_Z xh); auto.
+ rewrite spec_w_0W.
+ rewrite (Zmult_plus_distr_r 2); rewrite <- Zplus_assoc.
+ rewrite Zmult_plus_distr_l; rewrite <- Hz2.
+ apply f_equal2 with (f := Zplus); auto.
+ rewrite (Zmult_comm 2).
+ repeat rewrite <- Zmult_assoc.
+ apply f_equal2 with (f := Zmult); auto.
+ case (spec_to_Z (w_tail0 xl)); intros HH3 HH4.
+ pattern 2 at 2; rewrite <- Zpower_1_r.
+ lazy beta; repeat rewrite <- Zpower_exp; auto with zarith.
+ unfold base; apply f_equal with (f := Zpower 2); auto with zarith.
+
+ contradict H0; case (spec_to_Z xl); auto with zarith.
+ Qed.
+
+ Hint Rewrite Zdiv_0_l Zmult_0_l Zplus_0_l Zmult_0_r Zplus_0_r
+ spec_w_W0 spec_w_0W spec_w_WW spec_w_0
+ (wB_div w_digits w_to_Z spec_to_Z)
+ (wB_div_plus w_digits w_to_Z spec_to_Z) : w_rewrite.
+ Ltac w_rewrite := autorewrite with w_rewrite;trivial.
+
+ Lemma spec_ww_add_mul_div_aux : forall xh xl yh yl p,
+ let zdigits := w_0W w_zdigits in
+ [[p]] <= Zpos (xO w_digits) ->
+ [[match ww_compare p zdigits with
+ | Eq => w_WW xl yh
+ | Lt => w_WW (w_add_mul_div (low p) xh xl)
+ (w_add_mul_div (low p) xl yh)
+ | Gt =>
+ let n := low (ww_sub p zdigits) in
+ w_WW (w_add_mul_div n xl yh) (w_add_mul_div n yh yl)
+ end]] =
+ ([[WW xh xl]] * (2^[[p]]) +
+ [[WW yh yl]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
+ Proof.
+ clear spec_ww_zdigits.
+ intros xh xl yh yl p zdigits;assert (HwwB := wwB_pos w_digits).
+ case (spec_to_w_Z p); intros Hv1 Hv2.
+ replace (Zpos (xO w_digits)) with (Zpos w_digits + Zpos w_digits).
+ 2 : rewrite Zpos_xO;ring.
+ replace (Zpos w_digits + Zpos w_digits - [[p]]) with
+ (Zpos w_digits + (Zpos w_digits - [[p]])). 2:ring.
+ intros Hp; assert (Hxh := spec_to_Z xh);assert (Hxl:=spec_to_Z xl);
+ assert (Hx := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl));
+ simpl in Hx;assert (Hyh := spec_to_Z yh);assert (Hyl:=spec_to_Z yl);
+ assert (Hy:=spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW yh yl));simpl in Hy.
+ generalize (spec_ww_compare p zdigits); case ww_compare; intros H1.
+ rewrite H1; unfold zdigits; rewrite spec_w_0W.
+ rewrite spec_zdigits; rewrite Zminus_diag; rewrite Zplus_0_r.
+ simpl ww_to_Z; w_rewrite;zarith.
+ fold wB.
+ rewrite Zmult_plus_distr_l;rewrite <- Zmult_assoc;rewrite <- Zplus_assoc.
+ rewrite <- Zpower_2.
+ rewrite <- wwB_wBwB;apply Zmod_unique with [|xh|].
+ exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xl yh)). ring.
+ simpl ww_to_Z; w_rewrite;zarith.
+ assert (HH0: [|low p|] = [[p]]).
+ rewrite spec_low.
+ apply Zmod_small.
+ case (spec_to_w_Z p); intros HH1 HH2; split; auto.
+ generalize H1; unfold zdigits; rewrite spec_w_0W;
+ rewrite spec_zdigits; intros tmp.
+ apply Zlt_le_trans with (1 := tmp).
+ unfold base.
+ apply Zpower2_le_lin; auto with zarith.
+ 2: generalize H1; unfold zdigits; rewrite spec_w_0W;
+ rewrite spec_zdigits; auto with zarith.
+ generalize H1; unfold zdigits; rewrite spec_w_0W;
+ rewrite spec_zdigits; auto; clear H1; intros H1.
+ assert (HH: [|low p|] <= Zpos w_digits).
+ rewrite HH0; auto with zarith.
+ repeat rewrite spec_w_add_mul_div with (1 := HH).
+ rewrite HH0.
+ rewrite Zmult_plus_distr_l.
+ pattern ([|xl|] * 2 ^ [[p]]) at 2;
+ rewrite shift_unshift_mod with (n:= Zpos w_digits);fold wB;zarith.
+ replace ([|xh|] * wB * 2^[[p]]) with ([|xh|] * 2^[[p]] * wB). 2:ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l. rewrite <- Zplus_assoc.
+ unfold base at 5;rewrite <- Zmod_shift_r;zarith.
+ unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
+ fold wB;fold wwB;zarith.
+ rewrite wwB_wBwB;rewrite Zpower_2; rewrite Zmult_mod_distr_r;zarith.
+ unfold ww_digits;rewrite Zpos_xO;zarith. apply Z_mod_lt;zarith.
+ split;zarith. apply Zdiv_lt_upper_bound;zarith.
+ rewrite <- Zpower_exp;zarith.
+ ring_simplify ([[p]] + (Zpos w_digits - [[p]]));fold wB;zarith.
+ assert (Hv: [[p]] > Zpos w_digits).
+ generalize H1; clear H1.
+ unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits; auto.
+ clear H1.
+ assert (HH0: [|low (ww_sub p zdigits)|] = [[p]] - Zpos w_digits).
+ rewrite spec_low.
+ rewrite spec_ww_sub.
+ unfold zdigits; rewrite spec_w_0W; rewrite spec_zdigits.
+ rewrite <- Zmod_div_mod; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_lt_lin; auto with zarith.
+ exists wB; unfold base.
+ unfold ww_digits; rewrite (Zpos_xO w_digits).
+ rewrite <- Zpower_exp; auto with zarith.
+ apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
+ assert (HH: [|low (ww_sub p zdigits)|] <= Zpos w_digits).
+ rewrite HH0; auto with zarith.
+ replace (Zpos w_digits + (Zpos w_digits - [[p]])) with
+ (Zpos w_digits - ([[p]] - Zpos w_digits)); zarith.
+ lazy zeta; simpl ww_to_Z; w_rewrite;zarith.
+ repeat rewrite spec_w_add_mul_div;zarith.
+ rewrite HH0.
+ pattern wB at 5;replace wB with
+ (2^(([[p]] - Zpos w_digits)
+ + (Zpos w_digits - ([[p]] - Zpos w_digits)))).
+ rewrite Zpower_exp;zarith. rewrite Zmult_assoc.
+ rewrite Z_div_plus_l;zarith.
+ rewrite shift_unshift_mod with (a:= [|yh|]) (p:= [[p]] - Zpos w_digits)
+ (n := Zpos w_digits);zarith. fold wB.
+ set (u := [[p]] - Zpos w_digits).
+ replace [[p]] with (u + Zpos w_digits);zarith.
+ rewrite Zpower_exp;zarith. rewrite Zmult_assoc. fold wB.
+ repeat rewrite Zplus_assoc. rewrite <- Zmult_plus_distr_l.
+ repeat rewrite <- Zplus_assoc.
+ unfold base;rewrite Zmod_shift_r with (b:= Zpos (ww_digits w_digits));
+ fold wB;fold wwB;zarith.
+ unfold base;rewrite Zmod_shift_r with (a:= Zpos w_digits)
+ (b:= Zpos w_digits);fold wB;fold wwB;zarith.
+ rewrite wwB_wBwB; rewrite Zpower_2; rewrite Zmult_mod_distr_r;zarith.
+ rewrite Zmult_plus_distr_l.
+ replace ([|xh|] * wB * 2 ^ u) with
+ ([|xh|]*2^u*wB). 2:ring.
+ repeat rewrite <- Zplus_assoc.
+ rewrite (Zplus_comm ([|xh|] * 2 ^ u * wB)).
+ rewrite Z_mod_plus;zarith. rewrite Z_mod_mult;zarith.
+ unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
+ unfold u; split;zarith.
+ split;zarith. unfold u; apply Zdiv_lt_upper_bound;zarith.
+ rewrite <- Zpower_exp;zarith.
+ fold u.
+ ring_simplify (u + (Zpos w_digits - u)); fold
+ wB;zarith. unfold ww_digits;rewrite Zpos_xO;zarith.
+ unfold base;rewrite <- Zmod_shift_r;zarith. fold base;apply Z_mod_lt;zarith.
+ unfold u; split;zarith.
+ unfold u; split;zarith.
+ apply Zdiv_lt_upper_bound;zarith.
+ rewrite <- Zpower_exp;zarith.
+ fold u.
+ ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
+ unfold u;zarith.
+ unfold u;zarith.
+ set (u := [[p]] - Zpos w_digits).
+ ring_simplify (u + (Zpos w_digits - u)); fold wB; auto with zarith.
+ Qed.
+
+ Lemma spec_ww_add_mul_div : forall x y p,
+ [[p]] <= Zpos (xO w_digits) ->
+ [[ ww_add_mul_div p x y ]] =
+ ([[x]] * (2^[[p]]) +
+ [[y]] / (2^(Zpos (xO w_digits) - [[p]]))) mod wwB.
+ Proof.
+ clear spec_ww_zdigits.
+ intros x y p H.
+ destruct x as [ |xh xl];
+ [assert (H1 := @spec_ww_add_mul_div_aux w_0 w_0)
+ |assert (H1 := @spec_ww_add_mul_div_aux xh xl)];
+ (destruct y as [ |yh yl];
+ [generalize (H1 w_0 w_0 p H) | generalize (H1 yh yl p H)];
+ clear H1;w_rewrite);simpl ww_add_mul_div.
+ replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
+ intros Heq;rewrite <- Heq;clear Heq; auto.
+ generalize (spec_ww_compare p (w_0W w_zdigits));
+ case ww_compare; intros H1; w_rewrite.
+ rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
+ generalize H1; w_rewrite; rewrite spec_zdigits; clear H1; intros H1.
+ assert (HH0: [|low p|] = [[p]]).
+ rewrite spec_low.
+ apply Zmod_small.
+ case (spec_to_w_Z p); intros HH1 HH2; split; auto.
+ apply Zlt_le_trans with (1 := H1).
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ rewrite HH0; auto with zarith.
+ replace [[WW w_0 w_0]] with 0;[w_rewrite|simpl;w_rewrite;trivial].
+ intros Heq;rewrite <- Heq;clear Heq.
+ generalize (spec_ww_compare p (w_0W w_zdigits));
+ case ww_compare; intros H1; w_rewrite.
+ rewrite (spec_w_add_mul_div w_0 w_0);w_rewrite;zarith.
+ rewrite Zpos_xO in H;zarith.
+ assert (HH: [|low (ww_sub p (w_0W w_zdigits)) |] = [[p]] - Zpos w_digits).
+ generalize H1; clear H1.
+ rewrite spec_low.
+ rewrite spec_ww_sub; w_rewrite; intros H1.
+ rewrite <- Zmod_div_mod; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_lt_lin; auto with zarith.
+ unfold base; auto with zarith.
+ unfold base; auto with zarith.
+ exists wB; unfold base.
+ unfold ww_digits; rewrite (Zpos_xO w_digits).
+ rewrite <- Zpower_exp; auto with zarith.
+ apply f_equal with (f := fun x => 2 ^ x); auto with zarith.
+ case (spec_to_Z xh); auto with zarith.
+ Qed.
+
+ End DoubleProof.
+
+End DoubleLift.
+
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
new file mode 100644
index 00000000..c7d83acc
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleMul.v
@@ -0,0 +1,628 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleMul.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleMul.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_succ : w -> w.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_add : w -> w -> w.
+ Variable w_sub: w -> w -> w.
+ Variable w_mul_c : w -> w -> zn2z w.
+ Variable w_mul : w -> w -> w.
+ Variable w_square_c : w -> zn2z w.
+ Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_add : zn2z w -> zn2z w -> zn2z w.
+ Variable ww_add_carry : zn2z w -> zn2z w -> zn2z w.
+ Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_sub : zn2z w -> zn2z w -> zn2z w.
+
+ (* ** Multiplication ** *)
+
+ (* (xh*B+xl) (yh*B + yl)
+ xh*yh = hh = |hhh|hhl|B2
+ xh*yl +xl*yh = cc = |cch|ccl|B
+ xl*yl = ll = |llh|lll
+ *)
+
+ Definition double_mul_c (cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w) x y :=
+ match x, y with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW xh xl, WW yh yl =>
+ let hh := w_mul_c xh yh in
+ let ll := w_mul_c xl yl in
+ let (wc,cc) := cross xh xl yh yl hh ll in
+ match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end
+ end.
+
+ Definition ww_mul_c :=
+ double_mul_c
+ (fun xh xl yh yl hh ll=>
+ match ww_add_c (w_mul_c xh yl) (w_mul_c xl yh) with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end).
+
+ Definition w_2 := w_add w_1 w_1.
+
+ Definition kara_prod xh xl yh yl hh ll :=
+ match ww_add_c hh ll with
+ C0 m =>
+ match w_compare xl xh with
+ Eq => (w_0, m)
+ | Lt =>
+ match w_compare yl yh with
+ Eq => (w_0, m)
+ | Lt => (w_0, ww_sub m (w_mul_c (w_sub xh xl) (w_sub yh yl)))
+ | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with
+ C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1)
+ end
+ end
+ | Gt =>
+ match w_compare yl yh with
+ Eq => (w_0, m)
+ | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with
+ C1 m1 => (w_1, m1) | C0 m1 => (w_0, m1)
+ end
+ | Gt => (w_0, ww_sub m (w_mul_c (w_sub xl xh) (w_sub yl yh)))
+ end
+ end
+ | C1 m =>
+ match w_compare xl xh with
+ Eq => (w_1, m)
+ | Lt =>
+ match w_compare yl yh with
+ Eq => (w_1, m)
+ | Lt => match ww_sub_c m (w_mul_c (w_sub xh xl) (w_sub yh yl)) with
+ C0 m1 => (w_1, m1) | C1 m1 => (w_0, m1)
+ end
+ | Gt => match ww_add_c m (w_mul_c (w_sub xh xl) (w_sub yl yh)) with
+ C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1)
+ end
+ end
+ | Gt =>
+ match w_compare yl yh with
+ Eq => (w_1, m)
+ | Lt => match ww_add_c m (w_mul_c (w_sub xl xh) (w_sub yh yl)) with
+ C1 m1 => (w_2, m1) | C0 m1 => (w_1, m1)
+ end
+ | Gt => match ww_sub_c m (w_mul_c (w_sub xl xh) (w_sub yl yh)) with
+ C1 m1 => (w_0, m1) | C0 m1 => (w_1, m1)
+ end
+ end
+ end
+ end.
+
+ Definition ww_karatsuba_c := double_mul_c kara_prod.
+
+ Definition ww_mul x y :=
+ match x, y with
+ | W0, _ => W0
+ | _, W0 => W0
+ | WW xh xl, WW yh yl =>
+ let ccl := w_add (w_mul xh yl) (w_mul xl yh) in
+ ww_add (w_W0 ccl) (w_mul_c xl yl)
+ end.
+
+ Definition ww_square_c x :=
+ match x with
+ | W0 => W0
+ | WW xh xl =>
+ let hh := w_square_c xh in
+ let ll := w_square_c xl in
+ let xhxl := w_mul_c xh xl in
+ let (wc,cc) :=
+ match ww_add_c xhxl xhxl with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end in
+ match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end
+ end.
+
+ Section DoubleMulAddn1.
+ Variable w_mul_add : w -> w -> w -> w * w.
+
+ Fixpoint double_mul_add_n1 (n:nat) : word w n -> w -> w -> w * word w n :=
+ match n return word w n -> w -> w -> w * word w n with
+ | O => w_mul_add
+ | S n1 =>
+ let mul_add := double_mul_add_n1 n1 in
+ fun x y r =>
+ match x with
+ | W0 => (w_0,extend w_0W n1 r)
+ | WW xh xl =>
+ let (rl,l) := mul_add xl y r in
+ let (rh,h) := mul_add xh y rl in
+ (rh, double_WW w_WW n1 h l)
+ end
+ end.
+
+ End DoubleMulAddn1.
+
+ Section DoubleMulAddmn1.
+ Variable wn: Type.
+ Variable extend_n : w -> wn.
+ Variable wn_0W : wn -> zn2z wn.
+ Variable wn_WW : wn -> wn -> zn2z wn.
+ Variable w_mul_add_n1 : wn -> w -> w -> w*wn.
+ Fixpoint double_mul_add_mn1 (m:nat) :
+ word wn m -> w -> w -> w*word wn m :=
+ match m return word wn m -> w -> w -> w*word wn m with
+ | O => w_mul_add_n1
+ | S m1 =>
+ let mul_add := double_mul_add_mn1 m1 in
+ fun x y r =>
+ match x with
+ | W0 => (w_0,extend wn_0W m1 (extend_n r))
+ | WW xh xl =>
+ let (rl,l) := mul_add xl y r in
+ let (rh,h) := mul_add xh y rl in
+ (rh, double_WW wn_WW m1 h l)
+ end
+ end.
+
+ End DoubleMulAddmn1.
+
+ Definition w_mul_add x y r :=
+ match w_mul_c x y with
+ | W0 => (w_0, r)
+ | WW h l =>
+ match w_add_c l r with
+ | C0 lr => (h,lr)
+ | C1 lr => (w_succ h, lr)
+ end
+ end.
+
+
+ (*Section DoubleProof. *)
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99).
+
+ Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
+ (at level 0, x at level 99).
+
+ Variable spec_more_than_1_digit: 1 < Zpos w_digits.
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_w_compare :
+ forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
+ Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+
+ Variable spec_w_mul_c : forall x y, [[ w_mul_c x y ]] = [|x|] * [|y|].
+ Variable spec_w_mul : forall x y, [|w_mul x y|] = ([|x|] * [|y|]) mod wB.
+ Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|].
+
+ Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
+ Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
+ Variable spec_ww_add_carry :
+ forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB.
+ Variable spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+ Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
+
+
+ Lemma spec_ww_to_Z : forall x, 0 <= [[x]] < wwB.
+ Proof. intros x;apply spec_ww_to_Z;auto. Qed.
+
+ Lemma spec_ww_to_Z_wBwB : forall x, 0 <= [[x]] < wB^2.
+ Proof. rewrite <- wwB_wBwB;apply spec_ww_to_Z. Qed.
+
+ Hint Resolve spec_ww_to_Z spec_ww_to_Z_wBwB : mult.
+ Ltac zarith := auto with zarith mult.
+
+ Lemma wBwB_lex: forall a b c d,
+ a * wB^2 + [[b]] <= c * wB^2 + [[d]] ->
+ a <= c.
+ Proof.
+ intros a b c d H; apply beta_lex with [[b]] [[d]] (wB^2);zarith.
+ Qed.
+
+ Lemma wBwB_lex_inv: forall a b c d,
+ a < c ->
+ a * wB^2 + [[b]] < c * wB^2 + [[d]].
+ Proof.
+ intros a b c d H; apply beta_lex_inv; zarith.
+ Qed.
+
+ Lemma sum_mul_carry : forall xh xl yh yl wc cc,
+ [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] ->
+ 0 <= [|wc|] <= 1.
+ Proof.
+ intros.
+ apply (sum_mul_carry [|xh|] [|xl|] [|yh|] [|yl|] [|wc|][[cc]] wB);zarith.
+ apply wB_pos.
+ Qed.
+
+ Theorem mult_add_ineq: forall xH yH crossH,
+ 0 <= [|xH|] * [|yH|] + [|crossH|] < wwB.
+ Proof.
+ intros;rewrite wwB_wBwB;apply mult_add_ineq;zarith.
+ Qed.
+
+ Hint Resolve mult_add_ineq : mult.
+
+ Lemma spec_mul_aux : forall xh xl yh yl wc (cc:zn2z w) hh ll,
+ [[hh]] = [|xh|] * [|yh|] ->
+ [[ll]] = [|xl|] * [|yl|] ->
+ [|wc|]*wB^2 + [[cc]] = [|xh|] * [|yl|] + [|xl|] * [|yh|] ->
+ [||match cc with
+ | W0 => WW (ww_add hh (w_W0 wc)) ll
+ | WW cch ccl =>
+ match ww_add_c (w_W0 ccl) ll with
+ | C0 l => WW (ww_add hh (w_WW wc cch)) l
+ | C1 l => WW (ww_add_carry hh (w_WW wc cch)) l
+ end
+ end||] = ([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|]).
+ Proof.
+ intros;assert (U1 := wB_pos w_digits).
+ replace (([|xh|] * wB + [|xl|]) * ([|yh|] * wB + [|yl|])) with
+ ([|xh|]*[|yh|]*wB^2 + ([|xh|]*[|yl|] + [|xl|]*[|yh|])*wB + [|xl|]*[|yl|]).
+ 2:ring. rewrite <- H1;rewrite <- H;rewrite <- H0.
+ assert (H2 := sum_mul_carry _ _ _ _ _ _ H1).
+ destruct cc as [ | cch ccl]; simpl zn2z_to_Z; simpl ww_to_Z.
+ rewrite spec_ww_add;rewrite spec_w_W0;rewrite Zmod_small;
+ rewrite wwB_wBwB. ring.
+ rewrite <- (Zplus_0_r ([|wc|]*wB));rewrite H;apply mult_add_ineq3;zarith.
+ simpl ww_to_Z in H1. assert (U:=spec_to_Z cch).
+ assert ([|wc|]*wB + [|cch|] <= 2*wB - 3).
+ destruct (Z_le_gt_dec ([|wc|]*wB + [|cch|]) (2*wB - 3));trivial.
+ assert ([|xh|] * [|yl|] + [|xl|] * [|yh|] <= (2*wB - 4)*wB + 2).
+ ring_simplify ((2*wB - 4)*wB + 2).
+ assert (H4 := Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)).
+ assert (H5 := Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)).
+ omega.
+ generalize H3;clear H3;rewrite <- H1.
+ rewrite Zplus_assoc; rewrite Zpower_2; rewrite Zmult_assoc;
+ rewrite <- Zmult_plus_distr_l.
+ assert (((2 * wB - 4) + 2)*wB <= ([|wc|] * wB + [|cch|])*wB).
+ apply Zmult_le_compat;zarith.
+ rewrite Zmult_plus_distr_l in H3.
+ intros. assert (U2 := spec_to_Z ccl);omega.
+ generalize (spec_ww_add_c (w_W0 ccl) ll);destruct (ww_add_c (w_W0 ccl) ll)
+ as [l|l];unfold interp_carry;rewrite spec_w_W0;try rewrite Zmult_1_l;
+ simpl zn2z_to_Z;
+ try rewrite spec_ww_add;try rewrite spec_ww_add_carry;rewrite spec_w_WW;
+ rewrite Zmod_small;rewrite wwB_wBwB;intros.
+ rewrite H4;ring. rewrite H;apply mult_add_ineq2;zarith.
+ rewrite Zplus_assoc;rewrite Zmult_plus_distr_l.
+ rewrite Zmult_1_l;rewrite <- Zplus_assoc;rewrite H4;ring.
+ repeat rewrite <- Zplus_assoc;rewrite H;apply mult_add_ineq2;zarith.
+ Qed.
+
+ Lemma spec_double_mul_c : forall cross:w->w->w->w->zn2z w -> zn2z w -> w*zn2z w,
+ (forall xh xl yh yl hh ll,
+ [[hh]] = [|xh|]*[|yh|] ->
+ [[ll]] = [|xl|]*[|yl|] ->
+ let (wc,cc) := cross xh xl yh yl hh ll in
+ [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|]) ->
+ forall x y, [||double_mul_c cross x y||] = [[x]] * [[y]].
+ Proof.
+ intros cross Hcross x y;destruct x as [ |xh xl];simpl;trivial.
+ destruct y as [ |yh yl];simpl. rewrite Zmult_0_r;trivial.
+ assert (H1:= spec_w_mul_c xh yh);assert (H2:= spec_w_mul_c xl yl).
+ generalize (Hcross _ _ _ _ _ _ H1 H2).
+ destruct (cross xh xl yh yl (w_mul_c xh yh) (w_mul_c xl yl)) as (wc,cc).
+ intros;apply spec_mul_aux;trivial.
+ rewrite <- wwB_wBwB;trivial.
+ Qed.
+
+ Lemma spec_ww_mul_c : forall x y, [||ww_mul_c x y||] = [[x]] * [[y]].
+ Proof.
+ intros x y;unfold ww_mul_c;apply spec_double_mul_c.
+ intros xh xl yh yl hh ll H1 H2.
+ generalize (spec_ww_add_c (w_mul_c xh yl) (w_mul_c xl yh));
+ destruct (ww_add_c (w_mul_c xh yl) (w_mul_c xl yh)) as [c|c];
+ unfold interp_carry;repeat rewrite spec_w_mul_c;intros H;
+ (rewrite spec_w_0 || rewrite spec_w_1);rewrite H;ring.
+ Qed.
+
+ Lemma spec_w_2: [|w_2|] = 2.
+ unfold w_2; rewrite spec_w_add; rewrite spec_w_1; simpl.
+ apply Zmod_small; split; auto with zarith.
+ rewrite <- (Zpower_1_r 2); unfold base; apply Zpower_lt_monotone; auto with zarith.
+ Qed.
+
+ Lemma kara_prod_aux : forall xh xl yh yl,
+ xh*yh + xl*yl - (xh-xl)*(yh-yl) = xh*yl + xl*yh.
+ Proof. intros;ring. Qed.
+
+ Lemma spec_kara_prod : forall xh xl yh yl hh ll,
+ [[hh]] = [|xh|]*[|yh|] ->
+ [[ll]] = [|xl|]*[|yl|] ->
+ let (wc,cc) := kara_prod xh xl yh yl hh ll in
+ [|wc|]*wwB + [[cc]] = [|xh|]*[|yl|] + [|xl|]*[|yh|].
+ Proof.
+ intros xh xl yh yl hh ll H H0; rewrite <- kara_prod_aux;
+ rewrite <- H; rewrite <- H0; unfold kara_prod.
+ assert (Hxh := (spec_to_Z xh)); assert (Hxl := (spec_to_Z xl));
+ assert (Hyh := (spec_to_Z yh)); assert (Hyl := (spec_to_Z yl)).
+ generalize (spec_ww_add_c hh ll); case (ww_add_c hh ll);
+ intros z Hz; rewrite <- Hz; unfold interp_carry; assert (Hz1 := (spec_ww_to_Z z)).
+ generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ try rewrite Hxlh; try rewrite spec_w_0; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite Hylh; rewrite spec_w_0; try (ring; fail).
+ rewrite spec_w_0; try (ring; fail).
+ repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ split; auto with zarith.
+ simpl in Hz; rewrite Hz; rewrite H; rewrite H0.
+ rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith.
+ apply Zle_lt_trans with ([[z]]-0); auto with zarith.
+ unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive.
+ apply Zmult_le_0_compat; auto with zarith.
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2;
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh.
+ rewrite Hylh; rewrite spec_w_0; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_0;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_1; unfold interp_carry in Hz2; rewrite Hz2;
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; try (ring; fail).
+ repeat (rewrite spec_ww_sub || rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ split.
+ match goal with |- context[(?x - ?y) * (?z - ?t)] =>
+ replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring]
+ end.
+ simpl in Hz; rewrite Hz; rewrite H; rewrite H0.
+ rewrite kara_prod_aux; apply Zplus_le_0_compat; apply Zmult_le_0_compat; auto with zarith.
+ apply Zle_lt_trans with ([[z]]-0); auto with zarith.
+ unfold Zminus; apply Zplus_le_compat_l; apply Zle_left_rev; simpl; rewrite Zopp_involutive.
+ apply Zmult_le_0_compat; auto with zarith.
+ (** there is a carry in hh + ll **)
+ rewrite Zmult_1_l.
+ generalize (spec_w_compare xl xh); case (w_compare xl xh); intros Hxlh;
+ try rewrite Hxlh; try rewrite spec_w_1; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
+ match goal with |- context[ww_sub_c ?x ?y] =>
+ generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ generalize Hz2; clear Hz2; unfold interp_carry.
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_2; unfold interp_carry in Hz2.
+ apply trans_equal with (wwB + (1 * wwB + [[z1]])).
+ ring.
+ rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ generalize (spec_w_compare yl yh); case (w_compare yl yh); intros Hylh;
+ try rewrite Hylh; try rewrite spec_w_1; try (ring; fail).
+ match goal with |- context[ww_add_c ?x ?y] =>
+ generalize (spec_ww_add_c x y); case (ww_add_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_2; unfold interp_carry in Hz2.
+ apply trans_equal with (wwB + (1 * wwB + [[z1]])).
+ ring.
+ rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ match goal with |- context[ww_sub_c ?x ?y] =>
+ generalize (spec_ww_sub_c x y); case (ww_sub_c x y); try rewrite spec_w_1;
+ intros z1 Hz2
+ end.
+ simpl in Hz2; rewrite Hz2; repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ rewrite spec_w_0; rewrite Zmult_0_l; rewrite Zplus_0_l.
+ match goal with |- context[(?x - ?y) * (?z - ?t)] =>
+ replace ((x - y) * (z - t)) with ((y - x) * (t - z)); [idtac | ring]
+ end.
+ generalize Hz2; clear Hz2; unfold interp_carry.
+ repeat (rewrite spec_w_sub || rewrite spec_w_mul_c).
+ repeat rewrite Zmod_small; auto with zarith; try (ring; fail).
+ Qed.
+
+ Lemma sub_carry : forall xh xl yh yl z,
+ 0 <= z ->
+ [|xh|]*[|yl|] + [|xl|]*[|yh|] = wwB + z ->
+ z < wwB.
+ Proof.
+ intros xh xl yh yl z Hle Heq.
+ destruct (Z_le_gt_dec wwB z);auto with zarith.
+ generalize (Zmult_lt_b _ _ _ (spec_to_Z xh) (spec_to_Z yl)).
+ generalize (Zmult_lt_b _ _ _ (spec_to_Z xl) (spec_to_Z yh)).
+ rewrite <- wwB_wBwB;intros H1 H2.
+ assert (H3 := wB_pos w_digits).
+ assert (2*wB <= wwB).
+ rewrite wwB_wBwB; rewrite Zpower_2; apply Zmult_le_compat;zarith.
+ omega.
+ Qed.
+
+ Ltac Spec_ww_to_Z x :=
+ let H:= fresh "H" in
+ assert (H:= spec_ww_to_Z x).
+
+ Ltac Zmult_lt_b x y :=
+ let H := fresh "H" in
+ assert (H := Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)).
+
+ Lemma spec_ww_karatsuba_c : forall x y, [||ww_karatsuba_c x y||]=[[x]]*[[y]].
+ Proof.
+ intros x y; unfold ww_karatsuba_c;apply spec_double_mul_c.
+ intros; apply spec_kara_prod; auto.
+ Qed.
+
+ Lemma spec_ww_mul : forall x y, [[ww_mul x y]] = [[x]]*[[y]] mod wwB.
+ Proof.
+ assert (U:= lt_0_wB w_digits).
+ assert (U1:= lt_0_wwB w_digits).
+ intros x y; case x; auto; intros xh xl.
+ case y; auto.
+ simpl; rewrite Zmult_0_r; rewrite Zmod_small; auto with zarith.
+ intros yh yl;simpl.
+ repeat (rewrite spec_ww_add || rewrite spec_w_W0 || rewrite spec_w_mul_c
+ || rewrite spec_w_add || rewrite spec_w_mul).
+ rewrite <- Zplus_mod; auto with zarith.
+ repeat (rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r).
+ rewrite <- Zmult_mod_distr_r; auto with zarith.
+ rewrite <- Zpower_2; rewrite <- wwB_wBwB; auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite Zmod_mod; auto with zarith.
+ rewrite <- Zplus_mod; auto with zarith.
+ match goal with |- ?X mod _ = _ =>
+ rewrite <- Z_mod_plus with (a := X) (b := [|xh|] * [|yh|])
+ end; auto with zarith.
+ f_equal; auto; rewrite wwB_wBwB; ring.
+ Qed.
+
+ Lemma spec_ww_square_c : forall x, [||ww_square_c x||] = [[x]]*[[x]].
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ case_eq match ww_add_c (w_mul_c xh xl) (w_mul_c xh xl) with
+ | C0 cc => (w_0, cc)
+ | C1 cc => (w_1, cc)
+ end;intros wc cc Heq.
+ apply (spec_mul_aux xh xl xh xl wc cc);trivial.
+ generalize Heq (spec_ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));clear Heq.
+ rewrite spec_w_mul_c;destruct (ww_add_c (w_mul_c xh xl) (w_mul_c xh xl));
+ unfold interp_carry;try rewrite Zmult_1_l;intros Heq Heq';inversion Heq;
+ rewrite (Zmult_comm [|xl|]);subst.
+ rewrite spec_w_0;rewrite Zmult_0_l;rewrite Zplus_0_l;trivial.
+ rewrite spec_w_1;rewrite Zmult_1_l;rewrite <- wwB_wBwB;trivial.
+ Qed.
+
+ Section DoubleMulAddn1Proof.
+
+ Variable w_mul_add : w -> w -> w -> w * w.
+ Variable spec_w_mul_add : forall x y r,
+ let (h,l):= w_mul_add x y r in
+ [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|].
+
+ Lemma spec_double_mul_add_n1 : forall n x y r,
+ let (h,l) := double_mul_add_n1 w_mul_add n x y r in
+ [|h|]*double_wB w_digits n + [!n|l!] = [!n|x!]*[|y|]+[|r|].
+ Proof.
+ induction n;intros x y r;trivial.
+ exact (spec_w_mul_add x y r).
+ unfold double_mul_add_n1;destruct x as[ |xh xl];
+ fold(double_mul_add_n1 w_mul_add).
+ rewrite spec_w_0;rewrite spec_extend;simpl;trivial.
+ assert(H:=IHn xl y r);destruct (double_mul_add_n1 w_mul_add n xl y r)as(rl,l).
+ assert(U:=IHn xh y rl);destruct(double_mul_add_n1 w_mul_add n xh y rl)as(rh,h).
+ rewrite <- double_wB_wwB. rewrite spec_double_WW;simpl;trivial.
+ rewrite Zmult_plus_distr_l;rewrite <- Zplus_assoc;rewrite <- H.
+ rewrite Zmult_assoc;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite U;ring.
+ Qed.
+
+ End DoubleMulAddn1Proof.
+
+ Lemma spec_w_mul_add : forall x y r,
+ let (h,l):= w_mul_add x y r in
+ [|h|]*wB+[|l|] = [|x|]*[|y|] + [|r|].
+ Proof.
+ intros x y r;unfold w_mul_add;assert (H:=spec_w_mul_c x y);
+ destruct (w_mul_c x y) as [ |h l];simpl;rewrite <- H.
+ rewrite spec_w_0;trivial.
+ assert (U:=spec_w_add_c l r);destruct (w_add_c l r) as [lr|lr];unfold
+ interp_carry in U;try rewrite Zmult_1_l in H;simpl.
+ rewrite U;ring. rewrite spec_w_succ. rewrite Zmod_small.
+ rewrite <- Zplus_assoc;rewrite <- U;ring.
+ simpl in H;assert (H1:= Zmult_lt_b _ _ _ (spec_to_Z x) (spec_to_Z y)).
+ rewrite <- H in H1.
+ assert (H2:=spec_to_Z h);split;zarith.
+ case H1;clear H1;intro H1;clear H1.
+ replace (wB ^ 2 - 2 * wB) with ((wB - 2)*wB). 2:ring.
+ intros H0;assert (U1:= wB_pos w_digits).
+ assert (H1 := beta_lex _ _ _ _ _ H0 (spec_to_Z l));zarith.
+ Qed.
+
+(* End DoubleProof. *)
+
+End DoubleMul.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v
new file mode 100644
index 00000000..043ff351
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSqrt.v
@@ -0,0 +1,1389 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleSqrt.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleSqrt.
+ Variable w : Type.
+ Variable w_is_even : w -> bool.
+ Variable w_compare : w -> w -> comparison.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_Bm1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable w_0W : w -> zn2z w.
+ Variable w_sub : w -> w -> w.
+ Variable w_sub_c : w -> w -> carry w.
+ Variable w_square_c : w -> zn2z w.
+ Variable w_div21 : w -> w -> w -> w * w.
+ Variable w_add_mul_div : w -> w -> w -> w.
+ Variable w_digits : positive.
+ Variable w_zdigits : w.
+ Variable ww_zdigits : zn2z w.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_sqrt2 : w -> w -> w * carry w.
+ Variable w_pred : w -> w.
+ Variable ww_pred_c : zn2z w -> carry (zn2z w).
+ Variable ww_pred : zn2z w -> zn2z w.
+ Variable ww_add_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_add : zn2z w -> zn2z w -> zn2z w.
+ Variable ww_sub_c : zn2z w -> zn2z w -> carry (zn2z w).
+ Variable ww_add_mul_div : zn2z w -> zn2z w -> zn2z w -> zn2z w.
+ Variable ww_head0 : zn2z w -> zn2z w.
+ Variable ww_compare : zn2z w -> zn2z w -> comparison.
+ Variable low : zn2z w -> w.
+
+ Let wwBm1 := ww_Bm1 w_Bm1.
+
+ Definition ww_is_even x :=
+ match x with
+ | W0 => true
+ | WW xh xl => w_is_even xl
+ end.
+
+ Let w_div21c x y z :=
+ match w_compare x z with
+ | Eq =>
+ match w_compare y z with
+ Eq => (C1 w_1, w_0)
+ | Gt => (C1 w_1, w_sub y z)
+ | Lt => (C1 w_0, y)
+ end
+ | Gt =>
+ let x1 := w_sub x z in
+ let (q, r) := w_div21 x1 y z in
+ (C1 q, r)
+ | Lt =>
+ let (q, r) := w_div21 x y z in
+ (C0 q, r)
+ end.
+
+ Let w_div2s x y s :=
+ match x with
+ C1 x1 =>
+ let x2 := w_sub x1 s in
+ let (q, r) := w_div21c x2 y s in
+ match q with
+ C0 q1 =>
+ if w_is_even q1 then
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r)
+ else
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s)
+ | C1 q1 =>
+ if w_is_even q1 then
+ (C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r)
+ else
+ (C1 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s)
+ end
+ | C0 x1 =>
+ let (q, r) := w_div21c x1 y s in
+ match q with
+ C0 q1 =>
+ if w_is_even q1 then
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), C0 r)
+ else
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_0 q1), w_add_c r s)
+ | C1 q1 =>
+ if w_is_even q1 then
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), C0 r)
+ else
+ (C0 (w_add_mul_div (w_pred w_zdigits) w_1 q1), w_add_c r s)
+ end
+ end.
+
+ Definition split x :=
+ match x with
+ | W0 => (w_0,w_0)
+ | WW h l => (h,l)
+ end.
+
+ Definition ww_sqrt2 x y :=
+ let (x1, x2) := split x in
+ let (y1, y2) := split y in
+ let ( q, r) := w_sqrt2 x1 x2 in
+ let (q1, r1) := w_div2s r y1 q in
+ match q1 with
+ C0 q1 =>
+ let q2 := w_square_c q1 in
+ let a := WW q q1 in
+ match r1 with
+ C1 r2 =>
+ match ww_sub_c (WW r2 y2) q2 with
+ C0 r3 => (a, C1 r3)
+ | C1 r3 => (a, C0 r3)
+ end
+ | C0 r2 =>
+ match ww_sub_c (WW r2 y2) q2 with
+ C0 r3 => (a, C0 r3)
+ | C1 r3 =>
+ let a2 := ww_add_mul_div (w_0W w_1) a W0 in
+ match ww_pred_c a2 with
+ C0 a3 =>
+ (ww_pred a, ww_add_c a3 r3)
+ | C1 a3 =>
+ (ww_pred a, C0 (ww_add a3 r3))
+ end
+ end
+ end
+ | C1 q1 =>
+ let a1 := WW q w_Bm1 in
+ let a2 := ww_add_mul_div (w_0W w_1) a1 wwBm1 in
+ (a1, ww_add_c a2 y)
+ end.
+
+ Definition ww_is_zero x :=
+ match ww_compare W0 x with
+ Eq => true
+ | _ => false
+ end.
+
+ Definition ww_head1 x :=
+ let p := ww_head0 x in
+ if (ww_is_even p) then p else ww_pred p.
+
+ Definition ww_sqrt x :=
+ if (ww_is_zero x) then W0
+ else
+ let p := ww_head1 x in
+ match ww_compare p W0 with
+ | Gt =>
+ match ww_add_mul_div p x W0 with
+ W0 => W0
+ | WW x1 x2 =>
+ let (r, _) := w_sqrt2 x1 x2 in
+ WW w_0 (w_add_mul_div
+ (w_sub w_zdigits
+ (low (ww_add_mul_div (ww_pred ww_zdigits)
+ W0 p))) w_0 r)
+ end
+ | _ =>
+ match x with
+ W0 => W0
+ | WW x1 x2 => WW w_0 (fst (w_sqrt2 x1 x2))
+ end
+ end.
+
+
+ Variable w_to_Z : w -> Z.
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wwB (ww_to_Z w_digits w_to_Z) x) (at level 0, x at level 99).
+
+ Notation "[! n | x !]" := (double_to_Z w_digits w_to_Z n x)
+ (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
+ Variable spec_w_zdigits : [|w_zdigits|] = Zpos w_digits.
+ Variable spec_more_than_1_digit: 1 < Zpos w_digits.
+
+ Variable spec_ww_zdigits : [[ww_zdigits]] = Zpos (xO w_digits).
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_to_w_Z : forall x, 0 <= [[x]] < wwB.
+
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_0W : forall l, [[w_0W l]] = [|l|].
+ Variable spec_w_is_even : forall x,
+ if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ Variable spec_w_compare : forall x y,
+ match w_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Variable spec_w_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+ Variable spec_w_square_c : forall x, [[ w_square_c x]] = [|x|] * [|x|].
+ Variable spec_w_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := w_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Variable spec_w_add_mul_div : forall x y p,
+ [|p|] <= Zpos w_digits ->
+ [| w_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (Zpower 2 ((Zpos w_digits) - [|p|]))) mod wB.
+ Variable spec_ww_add_mul_div : forall x y p,
+ [[p]] <= Zpos (xO w_digits) ->
+ [[ ww_add_mul_div p x y ]] =
+ ([[x]] * (2^ [[p]]) +
+ [[y]] / (2^ (Zpos (xO w_digits) - [[p]]))) mod wwB.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
+ Variable spec_w_sqrt2 : forall x y,
+ wB/ 4 <= [|x|] ->
+ let (s,r) := w_sqrt2 x y in
+ [[WW x y]] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|].
+ Variable spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
+ Variable spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1.
+ Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB.
+ Variable spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB.
+ Variable spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
+ Variable spec_ww_compare : forall x y,
+ match ww_compare x y with
+ | Eq => [[x]] = [[y]]
+ | Lt => [[x]] < [[y]]
+ | Gt => [[x]] > [[y]]
+ end.
+ Variable spec_ww_head0 : forall x, 0 < [[x]] ->
+ wwB/ 2 <= 2 ^ [[ww_head0 x]] * [[x]] < wwB.
+ Variable spec_low: forall x, [|low x|] = [[x]] mod wB.
+
+ Let spec_ww_Bm1 : [[wwBm1]] = wwB - 1.
+ Proof. refine (spec_ww_Bm1 w_Bm1 w_digits w_to_Z _);auto. Qed.
+
+
+ Hint Rewrite spec_w_0 spec_w_1 w_Bm1 spec_w_WW spec_w_sub
+ spec_w_div21 spec_w_add_mul_div spec_ww_Bm1
+ spec_w_add_c spec_w_sqrt2: w_rewrite.
+
+ Lemma spec_ww_is_even : forall x,
+ if ww_is_even x then [[x]] mod 2 = 0 else [[x]] mod 2 = 1.
+clear spec_more_than_1_digit.
+intros x; case x; simpl ww_is_even.
+ simpl.
+ rewrite Zmod_small; auto with zarith.
+ intros w1 w2; simpl.
+ unfold base.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite (fun x y => (Zdivide_mod (x * y))); auto with zarith.
+ rewrite Zplus_0_l; rewrite Zmod_mod; auto with zarith.
+ apply spec_w_is_even; auto with zarith.
+ apply Zdivide_mult_r; apply Zpower_divide; auto with zarith.
+ red; simpl; auto.
+ Qed.
+
+
+ Theorem spec_w_div21c : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ let (q,r) := w_div21c a1 a2 b in
+ [|a1|] * wB + [|a2|] = [+|q|] * [|b|] + [|r|] /\ 0 <= [|r|] < [|b|].
+ intros a1 a2 b Hb; unfold w_div21c.
+ assert (H: 0 < [|b|]); auto with zarith.
+ assert (U := wB_pos w_digits).
+ apply Zlt_le_trans with (2 := Hb); auto with zarith.
+ apply Zlt_le_trans with 1; auto with zarith.
+ apply Zdiv_le_lower_bound; auto with zarith.
+ repeat match goal with |- context[w_compare ?y ?z] =>
+ generalize (spec_w_compare y z);
+ case (w_compare y z)
+ end.
+ intros H1 H2; split.
+ unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
+ rewrite H1; rewrite H2; ring.
+ autorewrite with w_rewrite; auto with zarith.
+ intros H1 H2; split.
+ unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
+ rewrite H2; ring.
+ destruct (spec_to_Z a2);auto with zarith.
+ intros H1 H2; split.
+ unfold interp_carry; autorewrite with w_rewrite rm10; auto with zarith.
+ rewrite H2; rewrite Zmod_small; auto with zarith.
+ ring.
+ destruct (spec_to_Z a2);auto with zarith.
+ rewrite spec_w_sub; auto with zarith.
+ destruct (spec_to_Z a2) as [H3 H4];auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert ([|a2|] < 2 * [|b|]); auto with zarith.
+ apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith.
+ rewrite wB_div_2; auto.
+ intros H1.
+ match goal with |- context[w_div21 ?y ?z ?t] =>
+ generalize (@spec_w_div21 y z t Hb H1);
+ case (w_div21 y z t); simpl; autorewrite with w_rewrite;
+ auto
+ end.
+ intros H1.
+ assert (H2: [|w_sub a1 b|] < [|b|]).
+ rewrite spec_w_sub; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ assert ([|a1|] < 2 * [|b|]); auto with zarith.
+ apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith.
+ rewrite wB_div_2; auto.
+ destruct (spec_to_Z a1);auto with zarith.
+ destruct (spec_to_Z a1);auto with zarith.
+ match goal with |- context[w_div21 ?y ?z ?t] =>
+ generalize (@spec_w_div21 y z t Hb H2);
+ case (w_div21 y z t); autorewrite with w_rewrite;
+ auto
+ end.
+ intros w0 w1; replace [+|C1 w0|] with (wB + [|w0|]).
+ rewrite Zmod_small; auto with zarith.
+ intros (H3, H4); split; auto.
+ rewrite Zmult_plus_distr_l.
+ rewrite <- Zplus_assoc; rewrite <- H3; ring.
+ split; auto with zarith.
+ assert ([|a1|] < 2 * [|b|]); auto with zarith.
+ apply Zlt_le_trans with (2 * (wB / 2)); auto with zarith.
+ rewrite wB_div_2; auto.
+ destruct (spec_to_Z a1);auto with zarith.
+ destruct (spec_to_Z a1);auto with zarith.
+ simpl; case wB; auto.
+ Qed.
+
+ Theorem C0_id: forall p, [+|C0 p|] = [|p|].
+ intros p; simpl; auto.
+ Qed.
+
+ Theorem add_mult_div_2: forall w,
+ [|w_add_mul_div (w_pred w_zdigits) w_0 w|] = [|w|] / 2.
+ intros w1.
+ assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1).
+ rewrite spec_pred; rewrite spec_w_zdigits.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zlt_le_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ rewrite spec_w_add_mul_div; auto with zarith.
+ autorewrite with w_rewrite rm10.
+ match goal with |- context[?X - ?Y] =>
+ replace (X - Y) with 1
+ end.
+ rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith.
+ destruct (spec_to_Z w1) as [H1 H2];auto with zarith.
+ split; auto with zarith.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ rewrite Hp; ring.
+ Qed.
+
+ Theorem add_mult_div_2_plus_1: forall w,
+ [|w_add_mul_div (w_pred w_zdigits) w_1 w|] =
+ [|w|] / 2 + 2 ^ Zpos (w_digits - 1).
+ intros w1.
+ assert (Hp: [|w_pred w_zdigits|] = Zpos w_digits - 1).
+ rewrite spec_pred; rewrite spec_w_zdigits.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zlt_le_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ autorewrite with w_rewrite rm10; auto with zarith.
+ match goal with |- context[?X - ?Y] =>
+ replace (X - Y) with 1
+ end; rewrite Hp; try ring.
+ rewrite Zpos_minus; auto with zarith.
+ rewrite Zmax_right; auto with zarith.
+ rewrite Zpower_1_r; rewrite Zmod_small; auto with zarith.
+ destruct (spec_to_Z w1) as [H1 H2];auto with zarith.
+ split; auto with zarith.
+ unfold base.
+ match goal with |- _ < _ ^ ?X =>
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite <- (tmp X); clear tmp
+ end.
+ rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
+ assert (tmp: forall p, 1 + (p -1) - 1 = p - 1); auto with zarith;
+ rewrite tmp; clear tmp; auto with zarith.
+ match goal with |- ?X + ?Y < _ =>
+ assert (Y < X); auto with zarith
+ end.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp;
+ auto with zarith.
+ assert (tmp: forall p, (p - 1) + 1 = p); auto with zarith;
+ rewrite tmp; clear tmp; auto with zarith.
+ Qed.
+
+ Theorem add_mult_mult_2: forall w,
+ [|w_add_mul_div w_1 w w_0|] = 2 * [|w|] mod wB.
+ intros w1.
+ autorewrite with w_rewrite rm10; auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ rewrite Zmult_comm; auto.
+ Qed.
+
+ Theorem ww_add_mult_mult_2: forall w,
+ [[ww_add_mul_div (w_0W w_1) w W0]] = 2 * [[w]] mod wwB.
+ intros w1.
+ rewrite spec_ww_add_mul_div; auto with zarith.
+ autorewrite with w_rewrite rm10.
+ rewrite spec_w_0W; rewrite spec_w_1.
+ rewrite Zpower_1_r; auto with zarith.
+ rewrite Zmult_comm; auto.
+ rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
+ red; simpl; intros; discriminate.
+ Qed.
+
+ Theorem ww_add_mult_mult_2_plus_1: forall w,
+ [[ww_add_mul_div (w_0W w_1) w wwBm1]] =
+ (2 * [[w]] + 1) mod wwB.
+ intros w1.
+ rewrite spec_ww_add_mul_div; auto with zarith.
+ rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ f_equal; auto.
+ rewrite Zmult_comm; f_equal; auto.
+ autorewrite with w_rewrite rm10.
+ unfold ww_digits, base.
+ apply sym_equal; apply Zdiv_unique with (r := 2 ^ (Zpos (ww_digits w_digits) - 1) -1);
+ auto with zarith.
+ unfold ww_digits; split; auto with zarith.
+ match goal with |- 0 <= ?X - 1 =>
+ assert (0 < X); auto with zarith
+ end.
+ apply Zpower_gt_0; auto with zarith.
+ match goal with |- 0 <= ?X - 1 =>
+ assert (0 < X); auto with zarith; red; reflexivity
+ end.
+ unfold ww_digits; autorewrite with rm10.
+ assert (tmp: forall p q r, p + (q - r) = p + q - r); auto with zarith;
+ rewrite tmp; clear tmp.
+ assert (tmp: forall p, p + p = 2 * p); auto with zarith;
+ rewrite tmp; clear tmp.
+ f_equal; auto.
+ pattern 2 at 2; rewrite <- Zpower_1_r; rewrite <- Zpower_exp;
+ auto with zarith.
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite tmp; clear tmp; auto.
+ match goal with |- ?X - 1 >= 0 =>
+ assert (0 < X); auto with zarith; red; reflexivity
+ end.
+ rewrite spec_w_0W; rewrite spec_w_1; auto with zarith.
+ red; simpl; intros; discriminate.
+ Qed.
+
+ Theorem Zplus_mod_one: forall a1 b1, 0 < b1 -> (a1 + b1) mod b1 = a1 mod b1.
+ intros a1 b1 H; rewrite Zplus_mod; auto with zarith.
+ rewrite Z_mod_same; try rewrite Zplus_0_r; auto with zarith.
+ apply Zmod_mod; auto.
+ Qed.
+
+ Lemma C1_plus_wB: forall x, [+|C1 x|] = wB + [|x|].
+ unfold interp_carry; auto with zarith.
+ Qed.
+
+ Theorem spec_w_div2s : forall a1 a2 b,
+ wB/2 <= [|b|] -> [+|a1|] <= 2 * [|b|] ->
+ let (q,r) := w_div2s a1 a2 b in
+ [+|a1|] * wB + [|a2|] = [+|q|] * (2 * [|b|]) + [+|r|] /\ 0 <= [+|r|] < 2 * [|b|].
+ intros a1 a2 b H.
+ assert (HH: 0 < [|b|]); auto with zarith.
+ assert (U := wB_pos w_digits).
+ apply Zlt_le_trans with (2 := H); auto with zarith.
+ apply Zlt_le_trans with 1; auto with zarith.
+ apply Zdiv_le_lower_bound; auto with zarith.
+ unfold w_div2s; case a1; intros w0 H0.
+ match goal with |- context[w_div21c ?y ?z ?t] =>
+ generalize (@spec_w_div21c y z t H);
+ case (w_div21c y z t); autorewrite with w_rewrite;
+ auto
+ end.
+ intros c w1; case c.
+ simpl interp_carry; intros w2 (Hw1, Hw2).
+ match goal with |- context[w_is_even ?y] =>
+ generalize (spec_w_is_even y);
+ case (w_is_even y)
+ end.
+ repeat rewrite C0_id.
+ rewrite add_mult_div_2.
+ intros H1; split; auto with zarith.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; ring.
+ repeat rewrite C0_id.
+ rewrite add_mult_div_2.
+ rewrite spec_w_add_c; auto with zarith.
+ intros H1; split; auto with zarith.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; ring.
+ intros w2; rewrite C1_plus_wB.
+ intros (Hw1, Hw2).
+ match goal with |- context[w_is_even ?y] =>
+ generalize (spec_w_is_even y);
+ case (w_is_even y)
+ end.
+ repeat rewrite C0_id.
+ intros H1; split; auto with zarith.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1.
+ repeat rewrite C0_id.
+ rewrite add_mult_div_2_plus_1; unfold base.
+ match goal with |- context[_ ^ ?X] =>
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
+ try rewrite Zpower_1_r; auto with zarith
+ end.
+ rewrite Zpos_minus; auto with zarith.
+ rewrite Zmax_right; auto with zarith.
+ ring.
+ repeat rewrite C0_id.
+ rewrite spec_w_add_c; auto with zarith.
+ intros H1; split; auto with zarith.
+ rewrite add_mult_div_2_plus_1.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1.
+ unfold base.
+ match goal with |- context[_ ^ ?X] =>
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
+ try rewrite Zpower_1_r; auto with zarith
+ end.
+ rewrite Zpos_minus; auto with zarith.
+ rewrite Zmax_right; auto with zarith.
+ ring.
+ repeat rewrite C1_plus_wB in H0.
+ rewrite C1_plus_wB.
+ match goal with |- context[w_div21c ?y ?z ?t] =>
+ generalize (@spec_w_div21c y z t H);
+ case (w_div21c y z t); autorewrite with w_rewrite;
+ auto
+ end.
+ intros c w1; case c.
+ intros w2 (Hw1, Hw2); rewrite C0_id in Hw1.
+ rewrite <- Zplus_mod_one in Hw1; auto with zarith.
+ rewrite Zmod_small in Hw1; auto with zarith.
+ match goal with |- context[w_is_even ?y] =>
+ generalize (spec_w_is_even y);
+ case (w_is_even y)
+ end.
+ repeat rewrite C0_id.
+ intros H1; split; auto with zarith.
+ rewrite add_mult_div_2_plus_1.
+ replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
+ auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; unfold base.
+ match goal with |- context[_ ^ ?X] =>
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
+ try rewrite Zpower_1_r; auto with zarith
+ end.
+ rewrite Zpos_minus; auto with zarith.
+ rewrite Zmax_right; auto with zarith.
+ ring.
+ repeat rewrite C0_id.
+ rewrite add_mult_div_2_plus_1.
+ rewrite spec_w_add_c; auto with zarith.
+ intros H1; split; auto with zarith.
+ replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
+ auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; unfold base.
+ match goal with |- context[_ ^ ?X] =>
+ assert (tmp: forall p, 1 + (p - 1) = p); auto with zarith;
+ rewrite <- (tmp X); clear tmp; rewrite Zpower_exp;
+ try rewrite Zpower_1_r; auto with zarith
+ end.
+ rewrite Zpos_minus; auto with zarith.
+ rewrite Zmax_right; auto with zarith.
+ ring.
+ split; auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ destruct (spec_to_Z w0);auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ intros w2; rewrite C1_plus_wB.
+ rewrite <- Zplus_mod_one; auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ intros (Hw1, Hw2).
+ match goal with |- context[w_is_even ?y] =>
+ generalize (spec_w_is_even y);
+ case (w_is_even y)
+ end.
+ repeat (rewrite C0_id || rewrite C1_plus_wB).
+ intros H1; split; auto with zarith.
+ rewrite add_mult_div_2.
+ replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
+ auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; ring.
+ repeat (rewrite C0_id || rewrite C1_plus_wB).
+ rewrite spec_w_add_c; auto with zarith.
+ intros H1; split; auto with zarith.
+ rewrite add_mult_div_2.
+ replace (wB + [|w0|]) with ([|b|] + ([|w0|] - [|b|] + wB));
+ auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite <- Zplus_assoc.
+ rewrite Hw1.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] 2);
+ auto with zarith.
+ rewrite H1; ring.
+ split; auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ destruct (spec_to_Z w0);auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ destruct (spec_to_Z b);auto with zarith.
+ Qed.
+
+ Theorem wB_div_4: 4 * (wB / 4) = wB.
+ Proof.
+ unfold base.
+ assert (2 ^ Zpos w_digits =
+ 4 * (2 ^ (Zpos w_digits - 2))).
+ change 4 with (2 ^ 2).
+ rewrite <- Zpower_exp; auto with zarith.
+ f_equal; auto with zarith.
+ rewrite H.
+ rewrite (fun x => (Zmult_comm 4 (2 ^x))).
+ rewrite Z_div_mult; auto with zarith.
+ Qed.
+
+ Theorem Zsquare_mult: forall p, p ^ 2 = p * p.
+ intros p; change 2 with (1 + 1); rewrite Zpower_exp;
+ try rewrite Zpower_1_r; auto with zarith.
+ Qed.
+
+ Theorem Zsquare_pos: forall p, 0 <= p ^ 2.
+ intros p; case (Zle_or_lt 0 p); intros H1.
+ rewrite Zsquare_mult; apply Zmult_le_0_compat; auto with zarith.
+ rewrite Zsquare_mult; replace (p * p) with ((- p) * (- p)); try ring.
+ apply Zmult_le_0_compat; auto with zarith.
+ Qed.
+
+ Lemma spec_split: forall x,
+ [|fst (split x)|] * wB + [|snd (split x)|] = [[x]].
+ intros x; case x; simpl; autorewrite with w_rewrite;
+ auto with zarith.
+ Qed.
+
+ Theorem mult_wwB: forall x y, [|x|] * [|y|] < wwB.
+ Proof.
+ intros x y; rewrite wwB_wBwB; rewrite Zpower_2.
+ generalize (spec_to_Z x); intros U.
+ generalize (spec_to_Z y); intros U1.
+ apply Zle_lt_trans with ((wB -1 ) * (wB - 1)); auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ repeat (rewrite Zmult_minus_distr_r || rewrite Zmult_minus_distr_l);
+ auto with zarith.
+ Qed.
+ Hint Resolve mult_wwB.
+
+ Lemma spec_ww_sqrt2 : forall x y,
+ wwB/ 4 <= [[x]] ->
+ let (s,r) := ww_sqrt2 x y in
+ [||WW x y||] = [[s]] ^ 2 + [+[r]] /\
+ [+[r]] <= 2 * [[s]].
+ intros x y H; unfold ww_sqrt2.
+ repeat match goal with |- context[split ?x] =>
+ generalize (spec_split x); case (split x)
+ end; simpl fst; simpl snd.
+ intros w0 w1 Hw0 w2 w3 Hw1.
+ assert (U: wB/4 <= [|w2|]).
+ case (Zle_or_lt (wB / 4) [|w2|]); auto; intros H1.
+ contradict H; apply Zlt_not_le.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ pattern wB at 1; rewrite <- wB_div_4; rewrite <- Zmult_assoc;
+ rewrite Zmult_comm.
+ rewrite Z_div_mult; auto with zarith.
+ rewrite <- Hw1.
+ match goal with |- _ < ?X =>
+ pattern X; rewrite <- Zplus_0_r; apply beta_lex_inv;
+ auto with zarith
+ end.
+ destruct (spec_to_Z w3);auto with zarith.
+ generalize (@spec_w_sqrt2 w2 w3 U); case (w_sqrt2 w2 w3).
+ intros w4 c (H1, H2).
+ assert (U1: wB/2 <= [|w4|]).
+ case (Zle_or_lt (wB/2) [|w4|]); auto with zarith.
+ intros U1.
+ assert (U2 : [|w4|] <= wB/2 -1); auto with zarith.
+ assert (U3 : [|w4|] ^ 2 <= wB/4 * wB - wB + 1); auto with zarith.
+ match goal with |- ?X ^ 2 <= ?Y =>
+ rewrite Zsquare_mult;
+ replace Y with ((wB/2 - 1) * (wB/2 -1))
+ end.
+ apply Zmult_le_compat; auto with zarith.
+ destruct (spec_to_Z w4);auto with zarith.
+ destruct (spec_to_Z w4);auto with zarith.
+ pattern wB at 4 5; rewrite <- wB_div_2.
+ rewrite Zmult_assoc.
+ replace ((wB / 4) * 2) with (wB / 2).
+ ring.
+ pattern wB at 1; rewrite <- wB_div_4.
+ change 4 with (2 * 2).
+ rewrite <- Zmult_assoc; rewrite (Zmult_comm 2).
+ rewrite Z_div_mult; try ring; auto with zarith.
+ assert (U4 : [+|c|] <= wB -2); auto with zarith.
+ apply Zle_trans with (1 := H2).
+ match goal with |- ?X <= ?Y =>
+ replace Y with (2 * (wB/ 2 - 1)); auto with zarith
+ end.
+ pattern wB at 2; rewrite <- wB_div_2; auto with zarith.
+ match type of H1 with ?X = _ =>
+ assert (U5: X < wB / 4 * wB)
+ end.
+ rewrite H1; auto with zarith.
+ contradict U; apply Zlt_not_le.
+ apply Zmult_lt_reg_r with wB; auto with zarith.
+ destruct (spec_to_Z w4);auto with zarith.
+ apply Zle_lt_trans with (2 := U5).
+ unfold ww_to_Z, zn2z_to_Z.
+ destruct (spec_to_Z w3);auto with zarith.
+ generalize (@spec_w_div2s c w0 w4 U1 H2).
+ case (w_div2s c w0 w4).
+ intros c0; case c0; intros w5;
+ repeat (rewrite C0_id || rewrite C1_plus_wB).
+ intros c1; case c1; intros w6;
+ repeat (rewrite C0_id || rewrite C1_plus_wB).
+ intros (H3, H4).
+ match goal with |- context [ww_sub_c ?y ?z] =>
+ generalize (spec_ww_sub_c y z); case (ww_sub_c y z)
+ end.
+ intros z; change [-[C0 z]] with ([[z]]).
+ change [+[C0 z]] with ([[z]]).
+ intros H5; rewrite spec_w_square_c in H5;
+ auto.
+ split.
+ unfold zn2z_to_Z; rewrite <- Hw1.
+ unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H3.
+ rewrite H5.
+ unfold ww_to_Z, zn2z_to_Z.
+ repeat rewrite Zsquare_mult; ring.
+ rewrite H5.
+ unfold ww_to_Z, zn2z_to_Z.
+ match goal with |- ?X - ?Y * ?Y <= _ =>
+ assert (V := Zsquare_pos Y);
+ rewrite Zsquare_mult in V;
+ apply Zle_trans with X; auto with zarith;
+ clear V
+ end.
+ match goal with |- ?X * wB + ?Y <= 2 * (?Z * wB + ?T) =>
+ apply Zle_trans with ((2 * Z - 1) * wB + wB); auto with zarith
+ end.
+ destruct (spec_to_Z w1);auto with zarith.
+ match goal with |- ?X <= _ =>
+ replace X with (2 * [|w4|] * wB); auto with zarith
+ end.
+ rewrite Zmult_plus_distr_r; rewrite Zmult_assoc.
+ destruct (spec_to_Z w5); auto with zarith.
+ ring.
+ intros z; replace [-[C1 z]] with (- wwB + [[z]]).
+ 2: simpl; case wwB; auto with zarith.
+ intros H5; rewrite spec_w_square_c in H5;
+ auto.
+ match goal with |- context [ww_pred_c ?y] =>
+ generalize (spec_ww_pred_c y); case (ww_pred_c y)
+ end.
+ intros z1; change [-[C0 z1]] with ([[z1]]).
+ rewrite ww_add_mult_mult_2.
+ rewrite spec_ww_add_c.
+ rewrite spec_ww_pred.
+ rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]);
+ auto with zarith.
+ intros Hz1; rewrite Zmod_small; auto with zarith.
+ match type of H5 with -?X + ?Y = ?Z =>
+ assert (V: Y = Z + X);
+ try (rewrite <- H5; ring)
+ end.
+ split.
+ unfold zn2z_to_Z; rewrite <- Hw1.
+ unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H3.
+ rewrite V.
+ rewrite Hz1.
+ unfold ww_to_Z; simpl zn2z_to_Z.
+ repeat rewrite Zsquare_mult; ring.
+ rewrite Hz1.
+ destruct (spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
+ assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)).
+ assert (0 < [[WW w4 w5]]); auto with zarith.
+ apply Zlt_le_trans with (wB/ 2 * wB + 0); auto with zarith.
+ autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith.
+ apply Zmult_lt_reg_r with 2; auto with zarith.
+ autorewrite with rm10.
+ rewrite Zmult_comm; rewrite wB_div_2; auto with zarith.
+ case (spec_to_Z w5);auto with zarith.
+ case (spec_to_Z w5);auto with zarith.
+ simpl.
+ assert (V2 := spec_to_Z w5);auto with zarith.
+ assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith.
+ split; auto with zarith.
+ assert (wwB <= 2 * [[WW w4 w5]]); auto with zarith.
+ apply Zle_trans with (2 * ([|w4|] * wB)).
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ rewrite Zmult_assoc; apply Zmult_le_compat_r; auto with zarith.
+ rewrite <- wB_div_2; auto with zarith.
+ assert (V2 := spec_to_Z w5);auto with zarith.
+ simpl ww_to_Z; assert (V2 := spec_to_Z w5);auto with zarith.
+ assert (V1 := spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w4 w5)); auto with zarith.
+ intros z1; change [-[C1 z1]] with (-wwB + [[z1]]).
+ match goal with |- context[([+[C0 ?z]])] =>
+ change [+[C0 z]] with ([[z]])
+ end.
+ rewrite spec_ww_add; auto with zarith.
+ rewrite spec_ww_pred; auto with zarith.
+ rewrite ww_add_mult_mult_2.
+ rename V1 into VV1.
+ assert (VV2: 0 < [[WW w4 w5]]); auto with zarith.
+ apply Zlt_le_trans with (wB/ 2 * wB + 0); auto with zarith.
+ autorewrite with rm10; apply Zmult_lt_0_compat; auto with zarith.
+ apply Zmult_lt_reg_r with 2; auto with zarith.
+ autorewrite with rm10.
+ rewrite Zmult_comm; rewrite wB_div_2; auto with zarith.
+ assert (VV3 := spec_to_Z w5);auto with zarith.
+ assert (VV3 := spec_to_Z w5);auto with zarith.
+ simpl.
+ assert (VV3 := spec_to_Z w5);auto with zarith.
+ assert (VV3: wwB <= 2 * [[WW w4 w5]]); auto with zarith.
+ apply Zle_trans with (2 * ([|w4|] * wB)).
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ rewrite Zmult_assoc; apply Zmult_le_compat_r; auto with zarith.
+ rewrite <- wB_div_2; auto with zarith.
+ case (spec_to_Z w5);auto with zarith.
+ simpl ww_to_Z; assert (V4 := spec_to_Z w5);auto with zarith.
+ rewrite <- Zmod_unique with (q := 1) (r := -wwB + 2 * [[WW w4 w5]]);
+ auto with zarith.
+ intros Hz1; rewrite Zmod_small; auto with zarith.
+ match type of H5 with -?X + ?Y = ?Z =>
+ assert (V: Y = Z + X);
+ try (rewrite <- H5; ring)
+ end.
+ match type of Hz1 with -?X + ?Y = -?X + ?Z - 1 =>
+ assert (V1: Y = Z - 1);
+ [replace (Z - 1) with (X + (-X + Z -1));
+ [rewrite <- Hz1 | idtac]; ring
+ | idtac]
+ end.
+ rewrite <- Zmod_unique with (q := 1) (r := -wwB + [[z1]] + [[z]]);
+ auto with zarith.
+ unfold zn2z_to_Z; rewrite <- Hw1.
+ unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ split.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H3.
+ rewrite V.
+ rewrite Hz1.
+ unfold ww_to_Z; simpl zn2z_to_Z.
+ repeat rewrite Zsquare_mult; ring.
+ assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
+ assert (V2 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z);auto with zarith.
+ assert (V3 := spec_ww_to_Z w_digits w_to_Z spec_to_Z z1);auto with zarith.
+ split; auto with zarith.
+ rewrite (Zplus_comm (-wwB)); rewrite <- Zplus_assoc.
+ rewrite H5.
+ match goal with |- 0 <= ?X + (?Y - ?Z) =>
+ apply Zle_trans with (X - Z); auto with zarith
+ end.
+ 2: generalize (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW w6 w1)); unfold ww_to_Z; auto with zarith.
+ rewrite V1.
+ match goal with |- 0 <= ?X - 1 - ?Y =>
+ assert (Y < X); auto with zarith
+ end.
+ apply Zlt_le_trans with wwB; auto with zarith.
+ intros (H3, H4).
+ match goal with |- context [ww_sub_c ?y ?z] =>
+ generalize (spec_ww_sub_c y z); case (ww_sub_c y z)
+ end.
+ intros z; change [-[C0 z]] with ([[z]]).
+ match goal with |- context[([+[C1 ?z]])] =>
+ replace [+[C1 z]] with (wwB + [[z]])
+ end.
+ 2: simpl; case wwB; auto.
+ intros H5; rewrite spec_w_square_c in H5;
+ auto.
+ split.
+ change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
+ rewrite <- Hw1.
+ unfold ww_to_Z, zn2z_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H3.
+ rewrite H5.
+ unfold ww_to_Z; simpl zn2z_to_Z.
+ rewrite wwB_wBwB.
+ repeat rewrite Zsquare_mult; ring.
+ simpl ww_to_Z.
+ rewrite H5.
+ simpl ww_to_Z.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ match goal with |- ?X * ?Y + (?Z * ?Y + ?T - ?U) <= _ =>
+ apply Zle_trans with (X * Y + (Z * Y + T - 0));
+ auto with zarith
+ end.
+ assert (V := Zsquare_pos [|w5|]);
+ rewrite Zsquare_mult in V; auto with zarith.
+ autorewrite with rm10.
+ match goal with |- _ <= 2 * (?U * ?V + ?W) =>
+ apply Zle_trans with (2 * U * V + 0);
+ auto with zarith
+ end.
+ match goal with |- ?X * ?Y + (?Z * ?Y + ?T) <= _ =>
+ replace (X * Y + (Z * Y + T)) with ((X + Z) * Y + T);
+ try ring
+ end.
+ apply Zlt_le_weak; apply beta_lex_inv; auto with zarith.
+ destruct (spec_to_Z w1);auto with zarith.
+ destruct (spec_to_Z w5);auto with zarith.
+ rewrite Zmult_plus_distr_r; auto with zarith.
+ rewrite Zmult_assoc; auto with zarith.
+ intros z; replace [-[C1 z]] with (- wwB + [[z]]).
+ 2: simpl; case wwB; auto with zarith.
+ intros H5; rewrite spec_w_square_c in H5;
+ auto.
+ match goal with |- context[([+[C0 ?z]])] =>
+ change [+[C0 z]] with ([[z]])
+ end.
+ match type of H5 with -?X + ?Y = ?Z =>
+ assert (V: Y = Z + X);
+ try (rewrite <- H5; ring)
+ end.
+ change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
+ simpl ww_to_Z.
+ rewrite <- Hw1.
+ simpl ww_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ split.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H3.
+ rewrite V.
+ simpl ww_to_Z.
+ rewrite wwB_wBwB.
+ repeat rewrite Zsquare_mult; ring.
+ rewrite V.
+ simpl ww_to_Z.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ match goal with |- (?Z * ?Y + ?T - ?U) + ?X * ?Y <= _ =>
+ apply Zle_trans with ((Z * Y + T - 0) + X * Y);
+ auto with zarith
+ end.
+ assert (V1 := Zsquare_pos [|w5|]);
+ rewrite Zsquare_mult in V1; auto with zarith.
+ autorewrite with rm10.
+ match goal with |- _ <= 2 * (?U * ?V + ?W) =>
+ apply Zle_trans with (2 * U * V + 0);
+ auto with zarith
+ end.
+ match goal with |- (?Z * ?Y + ?T) + ?X * ?Y <= _ =>
+ replace ((Z * Y + T) + X * Y) with ((X + Z) * Y + T);
+ try ring
+ end.
+ apply Zlt_le_weak; apply beta_lex_inv; auto with zarith.
+ destruct (spec_to_Z w1);auto with zarith.
+ destruct (spec_to_Z w5);auto with zarith.
+ rewrite Zmult_plus_distr_r; auto with zarith.
+ rewrite Zmult_assoc; auto with zarith.
+ case Zle_lt_or_eq with (1 := H2); clear H2; intros H2.
+ intros c1 (H3, H4).
+ match type of H3 with ?X = ?Y =>
+ absurd (X < Y)
+ end.
+ apply Zle_not_lt; rewrite <- H3; auto with zarith.
+ rewrite Zmult_plus_distr_l.
+ apply Zlt_le_trans with ((2 * [|w4|]) * wB + 0);
+ auto with zarith.
+ apply beta_lex_inv; auto with zarith.
+ destruct (spec_to_Z w0);auto with zarith.
+ assert (V1 := spec_to_Z w5);auto with zarith.
+ rewrite (Zmult_comm wB); auto with zarith.
+ assert (0 <= [|w5|] * (2 * [|w4|])); auto with zarith.
+ intros c1 (H3, H4); rewrite H2 in H3.
+ match type of H3 with ?X + ?Y = (?Z + ?T) * ?U + ?V =>
+ assert (VV: (Y = (T * U) + V));
+ [replace Y with ((X + Y) - X);
+ [rewrite H3; ring | ring] | idtac]
+ end.
+ assert (V1 := spec_to_Z w0);auto with zarith.
+ assert (V2 := spec_to_Z w5);auto with zarith.
+ case (Zle_lt_or_eq 0 [|w5|]); auto with zarith; intros V3.
+ match type of VV with ?X = ?Y =>
+ absurd (X < Y)
+ end.
+ apply Zle_not_lt; rewrite <- VV; auto with zarith.
+ apply Zlt_le_trans with wB; auto with zarith.
+ match goal with |- _ <= ?X + _ =>
+ apply Zle_trans with X; auto with zarith
+ end.
+ match goal with |- _ <= _ * ?X =>
+ apply Zle_trans with (1 * X); auto with zarith
+ end.
+ autorewrite with rm10.
+ rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith.
+ rewrite <- V3 in VV; generalize VV; autorewrite with rm10;
+ clear VV; intros VV.
+ rewrite spec_ww_add_c; auto with zarith.
+ rewrite ww_add_mult_mult_2_plus_1.
+ match goal with |- context[?X mod wwB] =>
+ rewrite <- Zmod_unique with (q := 1) (r := -wwB + X)
+ end; auto with zarith.
+ simpl ww_to_Z.
+ rewrite spec_w_Bm1; auto with zarith.
+ split.
+ change ([||WW x y||]) with ([[x]] * wwB + [[y]]).
+ rewrite <- Hw1.
+ simpl ww_to_Z in H1; rewrite H1.
+ rewrite <- Hw0.
+ match goal with |- (?X ^2 + ?Y) * wwB + (?Z * wB + ?T) = ?U =>
+ apply trans_equal with ((X * wB) ^ 2 + (Y * wB + Z) * wB + T)
+ end.
+ repeat rewrite Zsquare_mult.
+ rewrite wwB_wBwB; ring.
+ rewrite H2.
+ rewrite wwB_wBwB.
+ repeat rewrite Zsquare_mult; ring.
+ assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith.
+ assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z y);auto with zarith.
+ simpl ww_to_Z; unfold ww_to_Z.
+ rewrite spec_w_Bm1; auto with zarith.
+ split.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ match goal with |- _ <= -?X + (2 * (?Z * ?T + ?U) + ?V) =>
+ assert (X <= 2 * Z * T); auto with zarith
+ end.
+ apply Zmult_le_compat_r; auto with zarith.
+ rewrite <- wB_div_2; apply Zmult_le_compat_l; auto with zarith.
+ rewrite Zmult_plus_distr_r; auto with zarith.
+ rewrite Zmult_assoc; auto with zarith.
+ match goal with |- _ + ?X < _ =>
+ replace X with ((2 * (([|w4|]) + 1) * wB) - 1); try ring
+ end.
+ assert (2 * ([|w4|] + 1) * wB <= 2 * wwB); auto with zarith.
+ rewrite <- Zmult_assoc; apply Zmult_le_compat_l; auto with zarith.
+ rewrite wwB_wBwB; rewrite Zpower_2.
+ apply Zmult_le_compat_r; auto with zarith.
+ case (spec_to_Z w4);auto with zarith.
+ Qed.
+
+ Lemma spec_ww_is_zero: forall x,
+ if ww_is_zero x then [[x]] = 0 else 0 < [[x]].
+ intro x; unfold ww_is_zero.
+ generalize (spec_ww_compare W0 x); case (ww_compare W0 x);
+ auto with zarith.
+ simpl ww_to_Z.
+ assert (V4 := spec_ww_to_Z w_digits w_to_Z spec_to_Z x);auto with zarith.
+ Qed.
+
+ Lemma wwB_4_2: 2 * (wwB / 4) = wwB/ 2.
+ pattern wwB at 1; rewrite wwB_wBwB; rewrite Zpower_2.
+ rewrite <- wB_div_2.
+ match goal with |- context[(2 * ?X) * (2 * ?Z)] =>
+ replace ((2 * X) * (2 * Z)) with ((X * Z) * 4); try ring
+ end.
+ rewrite Z_div_mult; auto with zarith.
+ rewrite Zmult_assoc; rewrite wB_div_2.
+ rewrite wwB_div_2; ring.
+ Qed.
+
+
+ Lemma spec_ww_head1
+ : forall x : zn2z w,
+ (ww_is_even (ww_head1 x) = true) /\
+ (0 < [[x]] -> wwB / 4 <= 2 ^ [[ww_head1 x]] * [[x]] < wwB).
+ assert (U := wB_pos w_digits).
+ intros x; unfold ww_head1.
+ generalize (spec_ww_is_even (ww_head0 x)); case_eq (ww_is_even (ww_head0 x)).
+ intros HH H1; rewrite HH; split; auto.
+ intros H2.
+ generalize (spec_ww_head0 x H2); case (ww_head0 x); autorewrite with rm10.
+ intros (H3, H4); split; auto with zarith.
+ apply Zle_trans with (2 := H3).
+ apply Zdiv_le_compat_l; auto with zarith.
+ intros xh xl (H3, H4); split; auto with zarith.
+ apply Zle_trans with (2 := H3).
+ apply Zdiv_le_compat_l; auto with zarith.
+ intros H1.
+ case (spec_to_w_Z (ww_head0 x)); intros Hv1 Hv2.
+ assert (Hp0: 0 < [[ww_head0 x]]).
+ generalize (spec_ww_is_even (ww_head0 x)); rewrite H1.
+ generalize Hv1; case [[ww_head0 x]].
+ rewrite Zmod_small; auto with zarith.
+ intros; assert (0 < Zpos p); auto with zarith.
+ red; simpl; auto.
+ intros p H2; case H2; auto.
+ assert (Hp: [[ww_pred (ww_head0 x)]] = [[ww_head0 x]] - 1).
+ rewrite spec_ww_pred.
+ rewrite Zmod_small; auto with zarith.
+ intros H2; split.
+ generalize (spec_ww_is_even (ww_pred (ww_head0 x)));
+ case ww_is_even; auto.
+ rewrite Hp.
+ rewrite Zminus_mod; auto with zarith.
+ rewrite H2; repeat rewrite Zmod_small; auto with zarith.
+ intros H3; rewrite Hp.
+ case (spec_ww_head0 x); auto; intros Hv3 Hv4.
+ assert (Hu: forall u, 0 < u -> 2 * 2 ^ (u - 1) = 2 ^u).
+ intros u Hu.
+ pattern 2 at 1; rewrite <- Zpower_1_r.
+ rewrite <- Zpower_exp; auto with zarith.
+ ring_simplify (1 + (u - 1)); auto with zarith.
+ split; auto with zarith.
+ apply Zmult_le_reg_r with 2; auto with zarith.
+ repeat rewrite (fun x => Zmult_comm x 2).
+ rewrite wwB_4_2.
+ rewrite Zmult_assoc; rewrite Hu; auto with zarith.
+ apply Zle_lt_trans with (2 * 2 ^ ([[ww_head0 x]] - 1) * [[x]]); auto with zarith;
+ rewrite Hu; auto with zarith.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ Qed.
+
+ Theorem wwB_4_wB_4: wwB / 4 = wB / 4 * wB.
+ apply sym_equal; apply Zdiv_unique with 0;
+ auto with zarith.
+ rewrite Zmult_assoc; rewrite wB_div_4; auto with zarith.
+ rewrite wwB_wBwB; ring.
+ Qed.
+
+ Lemma spec_ww_sqrt : forall x,
+ [[ww_sqrt x]] ^ 2 <= [[x]] < ([[ww_sqrt x]] + 1) ^ 2.
+ assert (U := wB_pos w_digits).
+ intro x; unfold ww_sqrt.
+ generalize (spec_ww_is_zero x); case (ww_is_zero x).
+ simpl ww_to_Z; simpl Zpower; unfold Zpower_pos; simpl;
+ auto with zarith.
+ intros H1.
+ generalize (spec_ww_compare (ww_head1 x) W0); case ww_compare;
+ simpl ww_to_Z; autorewrite with rm10.
+ generalize H1; case x.
+ intros HH; contradict HH; simpl ww_to_Z; auto with zarith.
+ intros w0 w1; simpl ww_to_Z; autorewrite with w_rewrite rm10.
+ intros H2; case (spec_ww_head1 (WW w0 w1)); intros H3 H4 H5.
+ generalize (H4 H2); clear H4; rewrite H5; clear H5; autorewrite with rm10.
+ intros (H4, H5).
+ assert (V: wB/4 <= [|w0|]).
+ apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10.
+ rewrite <- wwB_4_wB_4; auto.
+ generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith.
+ case (w_sqrt2 w0 w1); intros w2 c.
+ simpl ww_to_Z; simpl fst.
+ case c; unfold interp_carry; autorewrite with rm10.
+ intros w3 (H6, H7); rewrite H6.
+ assert (V1 := spec_to_Z w3);auto with zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith.
+ match goal with |- ?X < ?Z =>
+ replace Z with (X + 1); auto with zarith
+ end.
+ repeat rewrite Zsquare_mult; ring.
+ intros w3 (H6, H7); rewrite H6.
+ assert (V1 := spec_to_Z w3);auto with zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with ([|w2|] ^2 + 2 * [|w2|]); auto with zarith.
+ match goal with |- ?X < ?Z =>
+ replace Z with (X + 1); auto with zarith
+ end.
+ repeat rewrite Zsquare_mult; ring.
+ intros HH; case (spec_to_w_Z (ww_head1 x)); auto with zarith.
+ intros Hv1.
+ case (spec_ww_head1 x); intros Hp1 Hp2.
+ generalize (Hp2 H1); clear Hp2; intros Hp2.
+ assert (Hv2: [[ww_head1 x]] <= Zpos (xO w_digits)).
+ case (Zle_or_lt (Zpos (xO w_digits)) [[ww_head1 x]]); auto with zarith; intros HH1.
+ case Hp2; intros _ HH2; contradict HH2.
+ apply Zle_not_lt; unfold base.
+ apply Zle_trans with (2 ^ [[ww_head1 x]]).
+ apply Zpower_le_monotone; auto with zarith.
+ pattern (2 ^ [[ww_head1 x]]) at 1;
+ rewrite <- (Zmult_1_r (2 ^ [[ww_head1 x]])).
+ apply Zmult_le_compat_l; auto with zarith.
+ generalize (spec_ww_add_mul_div x W0 (ww_head1 x) Hv2);
+ case ww_add_mul_div.
+ simpl ww_to_Z; autorewrite with w_rewrite rm10.
+ rewrite Zmod_small; auto with zarith.
+ intros H2; case (Zmult_integral _ _ (sym_equal H2)); clear H2; intros H2.
+ rewrite H2; unfold Zpower, Zpower_pos; simpl; auto with zarith.
+ match type of H2 with ?X = ?Y =>
+ absurd (Y < X); try (rewrite H2; auto with zarith; fail)
+ end.
+ apply Zpower_gt_0; auto with zarith.
+ split; auto with zarith.
+ case Hp2; intros _ tmp; apply Zle_lt_trans with (2 := tmp);
+ clear tmp.
+ rewrite Zmult_comm; apply Zmult_le_compat_r; auto with zarith.
+ assert (Hv0: [[ww_head1 x]] = 2 * ([[ww_head1 x]]/2)).
+ pattern [[ww_head1 x]] at 1; rewrite (Z_div_mod_eq [[ww_head1 x]] 2);
+ auto with zarith.
+ generalize (spec_ww_is_even (ww_head1 x)); rewrite Hp1;
+ intros tmp; rewrite tmp; rewrite Zplus_0_r; auto.
+ intros w0 w1; autorewrite with w_rewrite rm10.
+ rewrite Zmod_small; auto with zarith.
+ 2: rewrite Zmult_comm; auto with zarith.
+ intros H2.
+ assert (V: wB/4 <= [|w0|]).
+ apply beta_lex with 0 [|w1|] wB; auto with zarith; autorewrite with rm10.
+ simpl ww_to_Z in H2; rewrite H2.
+ rewrite <- wwB_4_wB_4; auto with zarith.
+ rewrite Zmult_comm; auto with zarith.
+ assert (V1 := spec_to_Z w1);auto with zarith.
+ generalize (@spec_w_sqrt2 w0 w1 V);auto with zarith.
+ case (w_sqrt2 w0 w1); intros w2 c.
+ case (spec_to_Z w2); intros HH1 HH2.
+ simpl ww_to_Z; simpl fst.
+ assert (Hv3: [[ww_pred ww_zdigits]]
+ = Zpos (xO w_digits) - 1).
+ rewrite spec_ww_pred; rewrite spec_ww_zdigits.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zlt_le_trans with (Zpos (xO w_digits)); auto with zarith.
+ unfold base; apply Zpower2_le_lin; auto with zarith.
+ assert (Hv4: [[ww_head1 x]]/2 < wB).
+ apply Zle_lt_trans with (Zpos w_digits).
+ apply Zmult_le_reg_r with 2; auto with zarith.
+ repeat rewrite (fun x => Zmult_comm x 2).
+ rewrite <- Hv0; rewrite <- Zpos_xO; auto.
+ unfold base; apply Zpower2_lt_lin; auto with zarith.
+ assert (Hv5: [[(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))]]
+ = [[ww_head1 x]]/2).
+ rewrite spec_ww_add_mul_div.
+ simpl ww_to_Z; autorewrite with rm10.
+ rewrite Hv3.
+ ring_simplify (Zpos (xO w_digits) - (Zpos (xO w_digits) - 1)).
+ rewrite Zpower_1_r.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ apply Zlt_le_trans with (1 := Hv4); auto with zarith.
+ unfold base; apply Zpower_le_monotone; auto with zarith.
+ split; unfold ww_digits; try rewrite Zpos_xO; auto with zarith.
+ rewrite Hv3; auto with zarith.
+ assert (Hv6: [|low(ww_add_mul_div (ww_pred ww_zdigits) W0 (ww_head1 x))|]
+ = [[ww_head1 x]]/2).
+ rewrite spec_low.
+ rewrite Hv5; rewrite Zmod_small; auto with zarith.
+ rewrite spec_w_add_mul_div; auto with zarith.
+ rewrite spec_w_sub; auto with zarith.
+ rewrite spec_w_0.
+ simpl ww_to_Z; autorewrite with rm10.
+ rewrite Hv6; rewrite spec_w_zdigits.
+ rewrite (fun x y => Zmod_small (x - y)).
+ ring_simplify (Zpos w_digits - (Zpos w_digits - [[ww_head1 x]] / 2)).
+ rewrite Zmod_small.
+ simpl ww_to_Z in H2; rewrite H2; auto with zarith.
+ intros (H4, H5); split.
+ apply Zmult_le_reg_r with (2 ^ [[ww_head1 x]]); auto with zarith.
+ rewrite H4.
+ apply Zle_trans with ([|w2|] ^ 2); auto with zarith.
+ rewrite Zmult_comm.
+ pattern [[ww_head1 x]] at 1;
+ rewrite Hv0; auto with zarith.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult;
+ auto with zarith.
+ assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2);
+ try (intros; repeat rewrite Zsquare_mult; ring);
+ rewrite tmp; clear tmp.
+ apply Zpower_le_monotone3; auto with zarith.
+ split; auto with zarith.
+ pattern [|w2|] at 2;
+ rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]] / 2)));
+ auto with zarith.
+ match goal with |- ?X <= ?X + ?Y =>
+ assert (0 <= Y); auto with zarith
+ end.
+ case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]] / 2))); auto with zarith.
+ case c; unfold interp_carry; autorewrite with rm10;
+ intros w3; assert (V3 := spec_to_Z w3);auto with zarith.
+ apply Zmult_lt_reg_r with (2 ^ [[ww_head1 x]]); auto with zarith.
+ rewrite H4.
+ apply Zle_lt_trans with ([|w2|] ^ 2 + 2 * [|w2|]); auto with zarith.
+ apply Zlt_le_trans with (([|w2|] + 1) ^ 2); auto with zarith.
+ match goal with |- ?X < ?Y =>
+ replace Y with (X + 1); auto with zarith
+ end.
+ repeat rewrite (Zsquare_mult); ring.
+ rewrite Zmult_comm.
+ pattern [[ww_head1 x]] at 1; rewrite Hv0.
+ rewrite (Zmult_comm 2); rewrite Zpower_mult;
+ auto with zarith.
+ assert (tmp: forall p q, p ^ 2 * q ^ 2 = (p * q) ^2);
+ try (intros; repeat rewrite Zsquare_mult; ring);
+ rewrite tmp; clear tmp.
+ apply Zpower_le_monotone3; auto with zarith.
+ split; auto with zarith.
+ pattern [|w2|] at 1; rewrite (Z_div_mod_eq [|w2|] (2 ^ ([[ww_head1 x]]/2)));
+ auto with zarith.
+ rewrite <- Zplus_assoc; rewrite Zmult_plus_distr_r.
+ autorewrite with rm10; apply Zplus_le_compat_l; auto with zarith.
+ case (Z_mod_lt [|w2|] (2 ^ ([[ww_head1 x]]/2))); auto with zarith.
+ split; auto with zarith.
+ apply Zle_lt_trans with ([|w2|]); auto with zarith.
+ apply Zdiv_le_upper_bound; auto with zarith.
+ pattern [|w2|] at 1; replace [|w2|] with ([|w2|] * 2 ^0);
+ auto with zarith.
+ apply Zmult_le_compat_l; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ rewrite Zpower_0_r; autorewrite with rm10; auto.
+ split; auto with zarith.
+ rewrite Hv0 in Hv2; rewrite (Zpos_xO w_digits) in Hv2; auto with zarith.
+ apply Zle_lt_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_lt_lin; auto with zarith.
+ rewrite spec_w_sub; auto with zarith.
+ rewrite Hv6; rewrite spec_w_zdigits; auto with zarith.
+ assert (Hv7: 0 < [[ww_head1 x]]/2); auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+ split; auto with zarith.
+ assert ([[ww_head1 x]]/2 <= Zpos w_digits); auto with zarith.
+ apply Zmult_le_reg_r with 2; auto with zarith.
+ repeat rewrite (fun x => Zmult_comm x 2).
+ rewrite <- Hv0; rewrite <- Zpos_xO; auto with zarith.
+ apply Zle_lt_trans with (Zpos w_digits); auto with zarith.
+ unfold base; apply Zpower2_lt_lin; auto with zarith.
+ Qed.
+
+End DoubleSqrt.
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v
new file mode 100644
index 00000000..269d62bb
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleSub.v
@@ -0,0 +1,357 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleSub.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleSub.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_Bm1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable ww_Bm1 : zn2z w.
+ Variable w_opp_c : w -> carry w.
+ Variable w_opp_carry : w -> w.
+ Variable w_pred_c : w -> carry w.
+ Variable w_sub_c : w -> w -> carry w.
+ Variable w_sub_carry_c : w -> w -> carry w.
+ Variable w_opp : w -> w.
+ Variable w_pred : w -> w.
+ Variable w_sub : w -> w -> w.
+ Variable w_sub_carry : w -> w -> w.
+
+ (* ** Opposites ** *)
+ Definition ww_opp_c x :=
+ match x with
+ | W0 => C0 W0
+ | WW xh xl =>
+ match w_opp_c xl with
+ | C0 _ =>
+ match w_opp_c xh with
+ | C0 h => C0 W0
+ | C1 h => C1 (WW h w_0)
+ end
+ | C1 l => C1 (WW (w_opp_carry xh) l)
+ end
+ end.
+
+ Definition ww_opp x :=
+ match x with
+ | W0 => W0
+ | WW xh xl =>
+ match w_opp_c xl with
+ | C0 _ => WW (w_opp xh) w_0
+ | C1 l => WW (w_opp_carry xh) l
+ end
+ end.
+
+ Definition ww_opp_carry x :=
+ match x with
+ | W0 => ww_Bm1
+ | WW xh xl => w_WW (w_opp_carry xh) (w_opp_carry xl)
+ end.
+
+ Definition ww_pred_c x :=
+ match x with
+ | W0 => C1 ww_Bm1
+ | WW xh xl =>
+ match w_pred_c xl with
+ | C0 l => C0 (w_WW xh l)
+ | C1 _ =>
+ match w_pred_c xh with
+ | C0 h => C0 (WW h w_Bm1)
+ | C1 _ => C1 ww_Bm1
+ end
+ end
+ end.
+
+ Definition ww_pred x :=
+ match x with
+ | W0 => ww_Bm1
+ | WW xh xl =>
+ match w_pred_c xl with
+ | C0 l => w_WW xh l
+ | C1 l => WW (w_pred xh) w_Bm1
+ end
+ end.
+
+ Definition ww_sub_c x y :=
+ match y, x with
+ | W0, _ => C0 x
+ | WW yh yl, W0 => ww_opp_c (WW yh yl)
+ | WW yh yl, WW xh xl =>
+ match w_sub_c xl yl with
+ | C0 l =>
+ match w_sub_c xh yh with
+ | C0 h => C0 (w_WW h l)
+ | C1 h => C1 (WW h l)
+ end
+ | C1 l =>
+ match w_sub_carry_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (WW h l)
+ end
+ end
+ end.
+
+ Definition ww_sub x y :=
+ match y, x with
+ | W0, _ => x
+ | WW yh yl, W0 => ww_opp (WW yh yl)
+ | WW yh yl, WW xh xl =>
+ match w_sub_c xl yl with
+ | C0 l => w_WW (w_sub xh yh) l
+ | C1 l => WW (w_sub_carry xh yh) l
+ end
+ end.
+
+ Definition ww_sub_carry_c x y :=
+ match y, x with
+ | W0, W0 => C1 ww_Bm1
+ | W0, WW xh xl => ww_pred_c (WW xh xl)
+ | WW yh yl, W0 => C1 (ww_opp_carry (WW yh yl))
+ | WW yh yl, WW xh xl =>
+ match w_sub_carry_c xl yl with
+ | C0 l =>
+ match w_sub_c xh yh with
+ | C0 h => C0 (w_WW h l)
+ | C1 h => C1 (WW h l)
+ end
+ | C1 l =>
+ match w_sub_carry_c xh yh with
+ | C0 h => C0 (w_WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ end
+ end.
+
+ Definition ww_sub_carry x y :=
+ match y, x with
+ | W0, W0 => ww_Bm1
+ | W0, WW xh xl => ww_pred (WW xh xl)
+ | WW yh yl, W0 => ww_opp_carry (WW yh yl)
+ | WW yh yl, WW xh xl =>
+ match w_sub_carry_c xl yl with
+ | C0 l => w_WW (w_sub xh yh) l
+ | C1 l => w_WW (w_sub_carry xh yh) l
+ end
+ end.
+
+ (*Section DoubleProof.*)
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_Bm1 : [|w_Bm1|] = wB - 1.
+ Variable spec_ww_Bm1 : [[ww_Bm1]] = wwB - 1.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+
+ Variable spec_opp_c : forall x, [-|w_opp_c x|] = -[|x|].
+ Variable spec_opp : forall x, [|w_opp x|] = (-[|x|]) mod wB.
+ Variable spec_opp_carry : forall x, [|w_opp_carry x|] = wB - [|x|] - 1.
+
+ Variable spec_pred_c : forall x, [-|w_pred_c x|] = [|x|] - 1.
+ Variable spec_sub_c : forall x y, [-|w_sub_c x y|] = [|x|] - [|y|].
+ Variable spec_sub_carry_c :
+ forall x y, [-|w_sub_carry_c x y|] = [|x|] - [|y|] - 1.
+
+ Variable spec_pred : forall x, [|w_pred x|] = ([|x|] - 1) mod wB.
+ Variable spec_sub : forall x y, [|w_sub x y|] = ([|x|] - [|y|]) mod wB.
+ Variable spec_sub_carry :
+ forall x y, [|w_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
+
+
+ Lemma spec_ww_opp_c : forall x, [-[ww_opp_c x]] = -[[x]].
+ Proof.
+ destruct x as [ |xh xl];simpl. reflexivity.
+ rewrite Zopp_plus_distr;generalize (spec_opp_c xl);destruct (w_opp_c xl)
+ as [l|l];intros H;unfold interp_carry in H;rewrite <- H;
+ rewrite Zopp_mult_distr_l.
+ assert ([|l|] = 0).
+ assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega.
+ rewrite H0;generalize (spec_opp_c xh);destruct (w_opp_c xh)
+ as [h|h];intros H1;unfold interp_carry in *;rewrite <- H1.
+ assert ([|h|] = 0).
+ assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega.
+ rewrite H2;reflexivity.
+ simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_w_0;ring.
+ unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB;rewrite spec_opp_carry;
+ ring.
+ Qed.
+
+ Lemma spec_ww_opp : forall x, [[ww_opp x]] = (-[[x]]) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];simpl. reflexivity.
+ rewrite Zopp_plus_distr;rewrite Zopp_mult_distr_l.
+ generalize (spec_opp_c xl);destruct (w_opp_c xl)
+ as [l|l];intros H;unfold interp_carry in H;rewrite <- H;simpl ww_to_Z.
+ rewrite spec_w_0;rewrite Zplus_0_r;rewrite wwB_wBwB.
+ assert ([|l|] = 0).
+ assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega.
+ rewrite H0;rewrite Zplus_0_r; rewrite Zpower_2;
+ rewrite Zmult_mod_distr_r;try apply lt_0_wB.
+ rewrite spec_opp;trivial.
+ apply Zmod_unique with (q:= -1).
+ exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW (w_opp_carry xh) l)).
+ rewrite spec_opp_carry;rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_opp_carry : forall x, [[ww_opp_carry x]] = wwB - [[x]] - 1.
+ Proof.
+ destruct x as [ |xh xl];simpl. rewrite spec_ww_Bm1;ring.
+ rewrite spec_w_WW;simpl;repeat rewrite spec_opp_carry;rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_pred_c : forall x, [-[ww_pred_c x]] = [[x]] - 1.
+ Proof.
+ destruct x as [ |xh xl];unfold ww_pred_c.
+ unfold interp_carry;rewrite spec_ww_Bm1;simpl ww_to_Z;ring.
+ simpl ww_to_Z;replace (([|xh|]*wB+[|xl|])-1) with ([|xh|]*wB+([|xl|]-1)).
+ 2:ring. generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l];
+ intros H;unfold interp_carry in H;rewrite <- H. simpl;apply spec_w_WW.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ assert ([|l|] = wB - 1).
+ assert (H1:= spec_to_Z l);assert (H2 := spec_to_Z xl);omega.
+ rewrite H0;change ([|xh|] + -1) with ([|xh|] - 1).
+ generalize (spec_pred_c xh);destruct (w_pred_c xh) as [h|h];
+ intros H1;unfold interp_carry in H1;rewrite <- H1.
+ simpl;rewrite spec_w_Bm1;ring.
+ assert ([|h|] = wB - 1).
+ assert (H3:= spec_to_Z h);assert (H2 := spec_to_Z xh);omega.
+ rewrite H2;unfold interp_carry;rewrite spec_ww_Bm1;rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_sub_c : forall x y, [-[ww_sub_c x y]] = [[x]] - [[y]].
+ Proof.
+ destruct y as [ |yh yl];simpl. ring.
+ destruct x as [ |xh xl];simpl. exact (spec_ww_opp_c (WW yh yl)).
+ replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]))
+ with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|])). 2:ring.
+ generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl) as [l|l];intros H;
+ unfold interp_carry in H;rewrite <- H.
+ generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1;
+ unfold interp_carry in H1;rewrite <- H1;unfold interp_carry;
+ try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1).
+ generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *;rewrite <- H1;simpl ww_to_Z;
+ try rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_sub_carry_c :
+ forall x y, [-[ww_sub_carry_c x y]] = [[x]] - [[y]] - 1.
+ Proof.
+ destruct y as [ |yh yl];simpl.
+ unfold Zminus;simpl;rewrite Zplus_0_r;exact (spec_ww_pred_c x).
+ destruct x as [ |xh xl].
+ unfold interp_carry;rewrite spec_w_WW;simpl ww_to_Z;rewrite wwB_wBwB;
+ repeat rewrite spec_opp_carry;ring.
+ simpl ww_to_Z.
+ replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1)
+ with (([|xh|]-[|yh|])*wB + ([|xl|]-[|yl|]-1)). 2:ring.
+ generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl)
+ as [l|l];intros H;unfold interp_carry in H;rewrite <- H.
+ generalize (spec_sub_c xh yh);destruct (w_sub_c xh yh) as [h|h];intros H1;
+ unfold interp_carry in H1;rewrite <- H1;unfold interp_carry;
+ try rewrite spec_w_WW;simpl ww_to_Z;try rewrite wwB_wBwB;ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ change ([|xh|] - [|yh|] + -1) with ([|xh|] - [|yh|] - 1).
+ generalize (spec_sub_carry_c xh yh);destruct (w_sub_carry_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *;rewrite <- H1;try rewrite spec_w_WW;
+ simpl ww_to_Z; try rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_pred : forall x, [[ww_pred x]] = ([[x]] - 1) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];simpl.
+ apply Zmod_unique with (-1). apply spec_ww_to_Z;trivial.
+ rewrite spec_ww_Bm1;ring.
+ replace ([|xh|]*wB + [|xl|] - 1) with ([|xh|]*wB + ([|xl|] - 1)). 2:ring.
+ generalize (spec_pred_c xl);destruct (w_pred_c xl) as [l|l];intro H;
+ unfold interp_carry in H;rewrite <- H;simpl ww_to_Z.
+ rewrite Zmod_small. apply spec_w_WW.
+ exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh l)).
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ change ([|xh|] + -1) with ([|xh|] - 1).
+ assert ([|l|] = wB - 1).
+ assert (H1:= spec_to_Z l);assert (H2:= spec_to_Z xl);omega.
+ rewrite (mod_wwB w_digits w_to_Z);trivial.
+ rewrite spec_pred;rewrite spec_w_Bm1;rewrite <- H0;trivial.
+ Qed.
+
+ Lemma spec_ww_sub : forall x y, [[ww_sub x y]] = ([[x]] - [[y]]) mod wwB.
+ Proof.
+ destruct y as [ |yh yl];simpl.
+ ring_simplify ([[x]] - 0);rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial.
+ destruct x as [ |xh xl];simpl. exact (spec_ww_opp (WW yh yl)).
+ replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]))
+ with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|])). 2:ring.
+ generalize (spec_sub_c xl yl);destruct (w_sub_c xl yl)as[l|l];intros H;
+ unfold interp_carry in H;rewrite <- H.
+ rewrite spec_w_WW;rewrite (mod_wwB w_digits w_to_Z spec_to_Z).
+ rewrite spec_sub;trivial.
+ simpl ww_to_Z;rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial.
+ Qed.
+
+ Lemma spec_ww_sub_carry :
+ forall x y, [[ww_sub_carry x y]] = ([[x]] - [[y]] - 1) mod wwB.
+ Proof.
+ destruct y as [ |yh yl];simpl.
+ ring_simplify ([[x]] - 0);exact (spec_ww_pred x).
+ destruct x as [ |xh xl];simpl.
+ apply Zmod_unique with (-1).
+ apply spec_ww_to_Z;trivial.
+ fold (ww_opp_carry (WW yh yl)).
+ rewrite (spec_ww_opp_carry (WW yh yl));simpl ww_to_Z;ring.
+ replace ([|xh|] * wB + [|xl|] - ([|yh|] * wB + [|yl|]) - 1)
+ with (([|xh|] - [|yh|]) * wB + ([|xl|] - [|yl|] - 1)). 2:ring.
+ generalize (spec_sub_carry_c xl yl);destruct (w_sub_carry_c xl yl)as[l|l];
+ intros H;unfold interp_carry in H;rewrite <- H;rewrite spec_w_WW.
+ rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub;trivial.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_sub_carry;trivial.
+ Qed.
+
+(* End DoubleProof. *)
+
+End DoubleSub.
+
+
+
+
+
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v
new file mode 100644
index 00000000..28d40094
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleType.v
@@ -0,0 +1,71 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleType.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Open Local Scope Z_scope.
+
+Definition base digits := Zpower 2 (Zpos digits).
+
+Section Carry.
+
+ Variable A : Type.
+
+ Inductive carry :=
+ | C0 : A -> carry
+ | C1 : A -> carry.
+
+ Definition interp_carry (sign:Z)(B:Z)(interp:A -> Z) c :=
+ match c with
+ | C0 x => interp x
+ | C1 x => sign*B + interp x
+ end.
+
+End Carry.
+
+Section Zn2Z.
+
+ Variable znz : Type.
+
+ (** From a type [znz] representing a cyclic structure Z/nZ,
+ we produce a representation of Z/2nZ by pairs of elements of [znz]
+ (plus a special case for zero). High half of the new number comes
+ first.
+ *)
+
+ Inductive zn2z :=
+ | W0 : zn2z
+ | WW : znz -> znz -> zn2z.
+
+ Definition zn2z_to_Z (wB:Z) (w_to_Z:znz->Z) (x:zn2z) :=
+ match x with
+ | W0 => 0
+ | WW xh xl => w_to_Z xh * wB + w_to_Z xl
+ end.
+
+End Zn2Z.
+
+Implicit Arguments W0 [znz].
+
+(** From a cyclic representation [w], we iterate the [zn2z] construct
+ [n] times, gaining the type of binary trees of depth at most [n],
+ whose leafs are either W0 (if depth < n) or elements of w
+ (if depth = n).
+*)
+
+Fixpoint word (w:Type) (n:nat) : Type :=
+ match n with
+ | O => w
+ | S n => zn2z (word w n)
+ end.
+
diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v
new file mode 100644
index 00000000..4d655eac
--- /dev/null
+++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v
@@ -0,0 +1,2516 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Cyclic31.v 11034 2008-06-02 08:15:34Z thery $ i*)
+
+(** * Int31 numbers defines indeed a cyclic structure : Z/(2^31)Z *)
+
+(**
+Author: Arnaud Spiwack (+ Pierre Letouzey)
+*)
+
+Require Import List.
+Require Import Min.
+Require Export Int31.
+Require Import Znumtheory.
+Require Import Zgcd_alt.
+Require Import Zpow_facts.
+Require Import BigNumPrelude.
+Require Import CyclicAxioms.
+Require Import ROmega.
+
+Open Scope nat_scope.
+Open Scope int31_scope.
+
+Section Basics.
+
+ (** * Basic results about [iszero], [shiftl], [shiftr] *)
+
+ Lemma iszero_eq0 : forall x, iszero x = true -> x=0.
+ Proof.
+ destruct x; simpl; intros.
+ repeat
+ match goal with H:(if ?d then _ else _) = true |- _ =>
+ destruct d; try discriminate
+ end.
+ reflexivity.
+ Qed.
+
+ Lemma iszero_not_eq0 : forall x, iszero x = false -> x<>0.
+ Proof.
+ intros x H Eq; rewrite Eq in H; simpl in *; discriminate.
+ Qed.
+
+ Lemma sneakl_shiftr : forall x,
+ x = sneakl (firstr x) (shiftr x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma sneakr_shiftl : forall x,
+ x = sneakr (firstl x) (shiftl x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma twice_zero : forall x,
+ twice x = 0 <-> twice_plus_one x = 1.
+ Proof.
+ destruct x; simpl in *; split;
+ intro H; injection H; intros; subst; auto.
+ Qed.
+
+ Lemma twice_or_twice_plus_one : forall x,
+ x = twice (shiftr x) \/ x = twice_plus_one (shiftr x).
+ Proof.
+ intros; case_eq (firstr x); intros.
+ destruct x; simpl in *; rewrite H; auto.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+
+
+ (** * Iterated shift to the right *)
+
+ Definition nshiftr n x := iter_nat n _ shiftr x.
+
+ Lemma nshiftr_S :
+ forall n x, nshiftr (S n) x = shiftr (nshiftr n x).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma nshiftr_S_tail :
+ forall n x, nshiftr (S n) x = nshiftr n (shiftr x).
+ Proof.
+ induction n; simpl; auto.
+ intros; rewrite nshiftr_S, IHn, nshiftr_S; auto.
+ Qed.
+
+ Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0.
+ Proof.
+ induction n; simpl; auto.
+ rewrite nshiftr_S, IHn; auto.
+ Qed.
+
+ Lemma nshiftr_size : forall x, nshiftr size x = 0.
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma nshiftr_above_size : forall k x, size<=k ->
+ nshiftr k x = 0.
+ Proof.
+ intros.
+ replace k with ((k-size)+size)%nat by omega.
+ induction (k-size)%nat; auto.
+ rewrite nshiftr_size; auto.
+ simpl; rewrite nshiftr_S, IHn; auto.
+ Qed.
+
+ (** * Iterated shift to the left *)
+
+ Definition nshiftl n x := iter_nat n _ shiftl x.
+
+ Lemma nshiftl_S :
+ forall n x, nshiftl (S n) x = shiftl (nshiftl n x).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma nshiftl_S_tail :
+ forall n x, nshiftl (S n) x = nshiftl n (shiftl x).
+ Proof.
+ induction n; simpl; auto.
+ intros; rewrite nshiftl_S, IHn, nshiftl_S; auto.
+ Qed.
+
+ Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0.
+ Proof.
+ induction n; simpl; auto.
+ rewrite nshiftl_S, IHn; auto.
+ Qed.
+
+ Lemma nshiftl_size : forall x, nshiftl size x = 0.
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma nshiftl_above_size : forall k x, size<=k ->
+ nshiftl k x = 0.
+ Proof.
+ intros.
+ replace k with ((k-size)+size)%nat by omega.
+ induction (k-size)%nat; auto.
+ rewrite nshiftl_size; auto.
+ simpl; rewrite nshiftl_S, IHn; auto.
+ Qed.
+
+ Lemma firstr_firstl :
+ forall x, firstr x = firstl (nshiftl (pred size) x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma firstl_firstr :
+ forall x, firstl x = firstr (nshiftr (pred size) x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ (** More advanced results about [nshiftr] *)
+
+ Lemma nshiftr_predsize_0_firstl : forall x,
+ nshiftr (pred size) x = 0 -> firstl x = D0.
+ Proof.
+ destruct x; compute; intros H; injection H; intros; subst; auto.
+ Qed.
+
+ Lemma nshiftr_0_propagates : forall n p x, n <= p ->
+ nshiftr n x = 0 -> nshiftr p x = 0.
+ Proof.
+ intros.
+ replace p with ((p-n)+n)%nat by omega.
+ induction (p-n)%nat.
+ simpl; auto.
+ simpl; rewrite nshiftr_S; rewrite IHn0; auto.
+ Qed.
+
+ Lemma nshiftr_0_firstl : forall n x, n < size ->
+ nshiftr n x = 0 -> firstl x = D0.
+ Proof.
+ intros.
+ apply nshiftr_predsize_0_firstl.
+ apply nshiftr_0_propagates with n; auto; omega.
+ Qed.
+
+ (** * Some induction principles over [int31] *)
+
+ (** Not used for the moment. Are they really useful ? *)
+
+ Lemma int31_ind_sneakl : forall P : int31->Prop,
+ P 0 ->
+ (forall x d, P x -> P (sneakl d x)) ->
+ forall x, P x.
+ Proof.
+ intros.
+ assert (forall n, n<=size -> P (nshiftr (size - n) x)).
+ induction n; intros.
+ rewrite nshiftr_size; auto.
+ rewrite sneakl_shiftr.
+ apply H0.
+ change (P (nshiftr (S (size - S n)) x)).
+ replace (S (size - S n))%nat with (size - n)%nat by omega.
+ apply IHn; omega.
+ change x with (nshiftr (size-size) x); auto.
+ Qed.
+
+ Lemma int31_ind_twice : forall P : int31->Prop,
+ P 0 ->
+ (forall x, P x -> P (twice x)) ->
+ (forall x, P x -> P (twice_plus_one x)) ->
+ forall x, P x.
+ Proof.
+ induction x using int31_ind_sneakl; auto.
+ destruct d; auto.
+ Qed.
+
+
+ (** * Some generic results about [recr] *)
+
+ Section Recr.
+
+ (** [recr] satisfies the fixpoint equation used for its definition. *)
+
+ Variable (A:Type)(case0:A)(caserec:digits->int31->A->A).
+
+ Lemma recr_aux_eqn : forall n x, iszero x = false ->
+ recr_aux (S n) A case0 caserec x =
+ caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)).
+ Proof.
+ intros; simpl; rewrite H; auto.
+ Qed.
+
+ Lemma recr_aux_converges :
+ forall n p x, n <= size -> n <= p ->
+ recr_aux n A case0 caserec (nshiftr (size - n) x) =
+ recr_aux p A case0 caserec (nshiftr (size - n) x).
+ Proof.
+ induction n.
+ simpl; intros.
+ rewrite nshiftr_size; destruct p; simpl; auto.
+ intros.
+ destruct p.
+ inversion H0.
+ unfold recr_aux; fold recr_aux.
+ destruct (iszero (nshiftr (size - S n) x)); auto.
+ f_equal.
+ change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x).
+ replace (S (size - S n))%nat with (size - n)%nat by omega.
+ apply IHn; auto with arith.
+ Qed.
+
+ Lemma recr_eqn : forall x, iszero x = false ->
+ recr A case0 caserec x =
+ caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)).
+ Proof.
+ intros.
+ unfold recr.
+ change x with (nshiftr (size - size) x).
+ rewrite (recr_aux_converges size (S size)); auto with arith.
+ rewrite recr_aux_eqn; auto.
+ Qed.
+
+ (** [recr] is usually equivalent to a variant [recrbis]
+ written without [iszero] check. *)
+
+ Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
+ (i:int31) : A :=
+ match n with
+ | O => case0
+ | S next =>
+ let si := shiftr i in
+ caserec (firstr i) si (recrbis_aux next A case0 caserec si)
+ end.
+
+ Definition recrbis := recrbis_aux size.
+
+ Hypothesis case0_caserec : caserec D0 0 case0 = case0.
+
+ Lemma recrbis_aux_equiv : forall n x,
+ recrbis_aux n A case0 caserec x = recr_aux n A case0 caserec x.
+ Proof.
+ induction n; simpl; auto; intros.
+ case_eq (iszero x); intros; [ | f_equal; auto ].
+ rewrite (iszero_eq0 _ H); simpl; auto.
+ replace (recrbis_aux n A case0 caserec 0) with case0; auto.
+ clear H IHn; induction n; simpl; congruence.
+ Qed.
+
+ Lemma recrbis_equiv : forall x,
+ recrbis A case0 caserec x = recr A case0 caserec x.
+ Proof.
+ intros; apply recrbis_aux_equiv; auto.
+ Qed.
+
+ End Recr.
+
+ (** * Incrementation *)
+
+ Section Incr.
+
+ (** Variant of [incr] via [recrbis] *)
+
+ Let Incr (b : digits) (si rec : int31) :=
+ match b with
+ | D0 => sneakl D1 si
+ | D1 => sneakl D0 rec
+ end.
+
+ Definition incrbis_aux n x := recrbis_aux n _ In Incr x.
+
+ Lemma incrbis_aux_equiv : forall x, incrbis_aux size x = incr x.
+ Proof.
+ unfold incr, recr, incrbis_aux; fold Incr; intros.
+ apply recrbis_aux_equiv; auto.
+ Qed.
+
+ (** Recursive equations satisfied by [incr] *)
+
+ Lemma incr_eqn1 :
+ forall x, firstr x = D0 -> incr x = twice_plus_one (shiftr x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0); simpl; auto.
+ unfold incr; rewrite recr_eqn; fold incr; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma incr_eqn2 :
+ forall x, firstr x = D1 -> incr x = twice (incr (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
+ unfold incr; rewrite recr_eqn; fold incr; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma incr_twice : forall x, incr (twice x) = twice_plus_one x.
+ Proof.
+ intros.
+ rewrite incr_eqn1; destruct x; simpl; auto.
+ Qed.
+
+ Lemma incr_twice_plus_one_firstl :
+ forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x).
+ Proof.
+ intros.
+ rewrite incr_eqn2; [ | destruct x; simpl; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ (** The previous result is actually true even without the
+ constraint on [firstl], but this is harder to prove
+ (see later). *)
+
+ End Incr.
+
+ (** * Conversion to [Z] : the [phi] function *)
+
+ Section Phi.
+
+ (** Variant of [phi] via [recrbis] *)
+
+ Let Phi := fun b (_:int31) =>
+ match b with D0 => Zdouble | D1 => Zdouble_plus_one end.
+
+ Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x.
+
+ Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x.
+ Proof.
+ unfold phi, recr, phibis_aux; fold Phi; intros.
+ apply recrbis_aux_equiv; auto.
+ Qed.
+
+ (** Recursive equations satisfied by [phi] *)
+
+ Lemma phi_eqn1 : forall x, firstr x = D0 ->
+ phi x = Zdouble (phi (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0); simpl; auto.
+ intros; unfold phi; rewrite recr_eqn; fold phi; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma phi_eqn2 : forall x, firstr x = D1 ->
+ phi x = Zdouble_plus_one (phi (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
+ intros; unfold phi; rewrite recr_eqn; fold phi; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma phi_twice_firstl : forall x, firstl x = D0 ->
+ phi (twice x) = Zdouble (phi x).
+ Proof.
+ intros.
+ rewrite phi_eqn1; auto; [ | destruct x; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ phi (twice_plus_one x) = Zdouble_plus_one (phi x).
+ Proof.
+ intros.
+ rewrite phi_eqn2; auto; [ | destruct x; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ End Phi.
+
+ (** [phi x] is positive and lower than [2^31] *)
+
+ Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z.
+ Proof.
+ induction n.
+ simpl; unfold phibis_aux; simpl; auto with zarith.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr x)).
+ destruct (firstr x).
+ specialize IHn with (shiftr x); rewrite Zdouble_mult; omega.
+ specialize IHn with (shiftr x); rewrite Zdouble_plus_one_mult; omega.
+ Qed.
+
+ Lemma phibis_aux_bounded :
+ forall n x, n <= size ->
+ (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z_of_nat n))%Z.
+ Proof.
+ induction n.
+ simpl; unfold phibis_aux; simpl; auto with zarith.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr (nshiftr (size - S n) x))).
+ assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ replace (size - n)%nat with (S (size - (S n))) by omega.
+ simpl; auto.
+ rewrite H0.
+ assert (H1 : n <= size) by omega.
+ specialize (IHn x H1).
+ set (y:=phibis_aux n (nshiftr (size - n) x)) in *.
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ case_eq (firstr (nshiftr (size - S n) x)); intros.
+ rewrite Zdouble_mult; auto with zarith.
+ rewrite Zdouble_plus_one_mult; auto with zarith.
+ Qed.
+
+ Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z_of_nat size))%Z.
+ Proof.
+ intros.
+ rewrite <- phibis_aux_equiv.
+ split.
+ apply phibis_aux_pos.
+ change x with (nshiftr (size-size) x).
+ apply phibis_aux_bounded; auto.
+ Qed.
+
+ Lemma phibis_aux_lowerbound :
+ forall n x, firstr (nshiftr n x) = D1 ->
+ (2 ^ Z_of_nat n <= phibis_aux (S n) x)%Z.
+ Proof.
+ induction n.
+ intros.
+ unfold nshiftr in H; simpl in *.
+ unfold phibis_aux, recrbis_aux.
+ rewrite H, Zdouble_plus_one_mult; omega.
+
+ intros.
+ remember (S n) as m.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux m (shiftr x)).
+ subst m.
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ assert (2^(Z_of_nat n) <= phibis_aux (S n) (shiftr x))%Z.
+ apply IHn.
+ rewrite <- nshiftr_S_tail; auto.
+ destruct (firstr x).
+ change (Zdouble (phibis_aux (S n) (shiftr x))) with
+ (2*(phibis_aux (S n) (shiftr x)))%Z.
+ omega.
+ rewrite Zdouble_plus_one_mult; omega.
+ Qed.
+
+ Lemma phi_lowerbound :
+ forall x, firstl x = D1 -> (2^(Z_of_nat (pred size)) <= phi x)%Z.
+ Proof.
+ intros.
+ generalize (phibis_aux_lowerbound (pred size) x).
+ rewrite <- firstl_firstr.
+ change (S (pred size)) with size; auto.
+ rewrite phibis_aux_equiv; auto.
+ Qed.
+
+ (** * Equivalence modulo [2^n] *)
+
+ Section EqShiftL.
+
+ (** After killing [n] bits at the left, are the numbers equal ?*)
+
+ Definition EqShiftL n x y :=
+ nshiftl n x = nshiftl n y.
+
+ Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
+ Proof.
+ unfold EqShiftL; intros; unfold nshiftl; simpl; split; auto.
+ Qed.
+
+ Lemma EqShiftL_size : forall k x y, size<=k -> EqShiftL k x y.
+ Proof.
+ red; intros; rewrite 2 nshiftl_above_size; auto.
+ Qed.
+
+ Lemma EqShiftL_le : forall k k' x y, k <= k' ->
+ EqShiftL k x y -> EqShiftL k' x y.
+ Proof.
+ unfold EqShiftL; intros.
+ replace k' with ((k'-k)+k)%nat by omega.
+ remember (k'-k)%nat as n.
+ clear Heqn H k'.
+ induction n; simpl; auto.
+ rewrite 2 nshiftl_S; f_equal; auto.
+ Qed.
+
+ Lemma EqShiftL_firstr : forall k x y, k < size ->
+ EqShiftL k x y -> firstr x = firstr y.
+ Proof.
+ intros.
+ rewrite 2 firstr_firstl.
+ f_equal.
+ apply EqShiftL_le with k; auto.
+ unfold size.
+ auto with arith.
+ Qed.
+
+ Lemma EqShiftL_twice : forall k x y,
+ EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y.
+ Proof.
+ intros; unfold EqShiftL.
+ rewrite 2 nshiftl_S_tail; split; auto.
+ Qed.
+
+ (** * From int31 to list of digits. *)
+
+ (** Lower (=rightmost) bits comes first. *)
+
+ Definition i2l := recrbis _ nil (fun d _ rec => d::rec).
+
+ Lemma i2l_length : forall x, length (i2l x) = size.
+ Proof.
+ intros; reflexivity.
+ Qed.
+
+ Fixpoint lshiftl l x :=
+ match l with
+ | nil => x
+ | d::l => sneakl d (lshiftl l x)
+ end.
+
+ Definition l2i l := lshiftl l On.
+
+ Lemma l2i_i2l : forall x, l2i (i2l x) = x.
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_sneakr : forall x d,
+ i2l (sneakr d x) = tail (i2l x) ++ d::nil.
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_sneakl : forall x d,
+ i2l (sneakl d x) = d :: removelast (i2l x).
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_l2i : forall l, length l = size ->
+ i2l (l2i l) = l.
+ Proof.
+ repeat (destruct l as [ |? l]; [intros; discriminate | ]).
+ destruct l; [ | intros; discriminate].
+ intros _; compute; auto.
+ Qed.
+
+ Fixpoint cstlist (A:Type)(a:A) n :=
+ match n with
+ | O => nil
+ | S n => a::cstlist _ a n
+ end.
+
+ Lemma i2l_nshiftl : forall n x, n<=size ->
+ i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
+ Proof.
+ induction n.
+ intros.
+ assert (firstn (size-0) (i2l x) = i2l x).
+ rewrite <- minus_n_O, <- (i2l_length x).
+ induction (i2l x); simpl; f_equal; auto.
+ rewrite H0; clear H0.
+ reflexivity.
+
+ intros.
+ rewrite nshiftl_S.
+ unfold shiftl; rewrite i2l_sneakl.
+ simpl cstlist.
+ rewrite <- app_comm_cons; f_equal.
+ rewrite IHn; [ | omega].
+ rewrite removelast_app.
+ f_equal.
+ replace (size-n)%nat with (S (size - S n))%nat by omega.
+ rewrite removelast_firstn; auto.
+ rewrite i2l_length; omega.
+ generalize (firstn_length (size-n) (i2l x)).
+ rewrite i2l_length.
+ intros H0 H1; rewrite H1 in H0.
+ rewrite min_l in H0 by omega.
+ simpl length in H0.
+ omega.
+ Qed.
+
+ (** [i2l] can be used to define a relation equivalent to [EqShiftL] *)
+
+ Lemma EqShiftL_i2l : forall k x y,
+ EqShiftL k x y <-> firstn (size-k) (i2l x) = firstn (size-k) (i2l y).
+ Proof.
+ intros.
+ destruct (le_lt_dec size k).
+ split; intros.
+ replace (size-k)%nat with O by omega.
+ unfold firstn; auto.
+ apply EqShiftL_size; auto.
+
+ unfold EqShiftL.
+ assert (k <= size) by omega.
+ split; intros.
+ assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto).
+ rewrite 2 i2l_nshiftl in H1; auto.
+ eapply app_inv_head; eauto.
+ assert (i2l (nshiftl k x) = i2l (nshiftl k y)).
+ rewrite 2 i2l_nshiftl; auto.
+ f_equal; auto.
+ rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)).
+ f_equal; auto.
+ Qed.
+
+ (** This equivalence allows to prove easily the following delicate
+ result *)
+
+ Lemma EqShiftL_twice_plus_one : forall k x y,
+ EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y.
+ Proof.
+ intros.
+ destruct (le_lt_dec size k).
+ split; intros; apply EqShiftL_size; auto.
+
+ rewrite 2 EqShiftL_i2l.
+ unfold twice_plus_one.
+ rewrite 2 i2l_sneakl.
+ replace (size-k)%nat with (S (size - S k))%nat by omega.
+ remember (size - S k)%nat as n.
+ remember (i2l x) as lx.
+ remember (i2l y) as ly.
+ simpl.
+ rewrite 2 firstn_removelast.
+ split; intros.
+ injection H; auto.
+ f_equal; auto.
+ subst ly n; rewrite i2l_length; omega.
+ subst lx n; rewrite i2l_length; omega.
+ Qed.
+
+ Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
+ EqShiftL (S k) (shiftr x) (shiftr y).
+ Proof.
+ intros.
+ destruct (le_lt_dec size (S k)).
+ apply EqShiftL_size; auto.
+ case_eq (firstr x); intros.
+ rewrite <- EqShiftL_twice.
+ unfold twice; rewrite <- H0.
+ rewrite <- sneakl_shiftr.
+ rewrite (EqShiftL_firstr k x y); auto.
+ rewrite <- sneakl_shiftr; auto.
+ omega.
+ rewrite <- EqShiftL_twice_plus_one.
+ unfold twice_plus_one; rewrite <- H0.
+ rewrite <- sneakl_shiftr.
+ rewrite (EqShiftL_firstr k x y); auto.
+ rewrite <- sneakl_shiftr; auto.
+ omega.
+ Qed.
+
+ Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
+ (n+k=S size)%nat ->
+ EqShiftL k x y ->
+ EqShiftL k (incrbis_aux n x) (incrbis_aux n y).
+ Proof.
+ induction n; simpl; intros.
+ red; auto.
+ destruct (eq_nat_dec k size).
+ subst k; apply EqShiftL_size; auto.
+ unfold incrbis_aux; simpl;
+ fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)).
+
+ rewrite (EqShiftL_firstr k x y); auto; try omega.
+ case_eq (firstr y); intros.
+ rewrite EqShiftL_twice_plus_one.
+ apply EqShiftL_shiftr; auto.
+
+ rewrite EqShiftL_twice.
+ apply IHn; try omega.
+ apply EqShiftL_shiftr; auto.
+ Qed.
+
+ Lemma EqShiftL_incr : forall x y,
+ EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y).
+ Proof.
+ intros.
+ rewrite <- 2 incrbis_aux_equiv.
+ apply EqShiftL_incrbis; auto.
+ Qed.
+
+ End EqShiftL.
+
+ (** * More equations about [incr] *)
+
+ Lemma incr_twice_plus_one :
+ forall x, incr (twice_plus_one x) = twice (incr x).
+ Proof.
+ intros.
+ rewrite incr_eqn2; [ | destruct x; simpl; auto].
+ apply EqShiftL_incr.
+ red; destruct x; simpl; auto.
+ Qed.
+
+ Lemma incr_firstr : forall x, firstr (incr x) <> firstr x.
+ Proof.
+ intros.
+ case_eq (firstr x); intros.
+ rewrite incr_eqn1; auto.
+ destruct (shiftr x); simpl; discriminate.
+ rewrite incr_eqn2; auto.
+ destruct (incr (shiftr x)); simpl; discriminate.
+ Qed.
+
+ Lemma incr_inv : forall x y,
+ incr x = twice_plus_one y -> x = twice y.
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in *; simpl in *.
+ change (incr 0) with 1 in H.
+ symmetry; rewrite twice_zero; auto.
+ case_eq (firstr x); intros.
+ rewrite incr_eqn1 in H; auto.
+ clear H0; destruct x; destruct y; simpl in *.
+ injection H; intros; subst; auto.
+ elim (incr_firstr x).
+ rewrite H1, H; destruct y; simpl; auto.
+ Qed.
+
+ (** * Conversion from [Z] : the [phi_inv] function *)
+
+ (** First, recursive equations *)
+
+ Lemma phi_inv_double_plus_one : forall z,
+ phi_inv (Zdouble_plus_one z) = twice_plus_one (phi_inv z).
+ Proof.
+ destruct z; simpl; auto.
+ induction p; simpl.
+ rewrite 2 incr_twice; auto.
+ rewrite incr_twice, incr_twice_plus_one.
+ f_equal.
+ apply incr_inv; auto.
+ auto.
+ Qed.
+
+ Lemma phi_inv_double : forall z,
+ phi_inv (Zdouble z) = twice (phi_inv z).
+ Proof.
+ destruct z; simpl; auto.
+ rewrite incr_twice_plus_one; auto.
+ Qed.
+
+ Lemma phi_inv_incr : forall z,
+ phi_inv (Zsucc z) = incr (phi_inv z).
+ Proof.
+ destruct z.
+ simpl; auto.
+ simpl; auto.
+ induction p; simpl; auto.
+ rewrite Pplus_one_succ_r, IHp, incr_twice_plus_one; auto.
+ rewrite incr_twice; auto.
+ simpl; auto.
+ destruct p; simpl; auto.
+ rewrite incr_twice; auto.
+ f_equal.
+ rewrite incr_twice_plus_one; auto.
+ induction p; simpl; auto.
+ rewrite incr_twice; auto.
+ f_equal.
+ rewrite incr_twice_plus_one; auto.
+ Qed.
+
+ (** [phi_inv o inv], the always-exact and easy-to-prove trip :
+ from int31 to Z and then back to int31. *)
+
+ Lemma phi_inv_phi_aux :
+ forall n x, n <= size ->
+ phi_inv (phibis_aux n (nshiftr (size-n) x)) =
+ nshiftr (size-n) x.
+ Proof.
+ induction n.
+ intros; simpl.
+ rewrite nshiftr_size; auto.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr (nshiftr (size-S n) x))).
+ assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ replace (size - n)%nat with (S (size - (S n))); auto; omega.
+ rewrite H0.
+ case_eq (firstr (nshiftr (size - S n) x)); intros.
+
+ rewrite phi_inv_double.
+ rewrite IHn by omega.
+ rewrite <- H0.
+ remember (nshiftr (size - S n) x) as y.
+ destruct y; simpl in H1; rewrite H1; auto.
+
+ rewrite phi_inv_double_plus_one.
+ rewrite IHn by omega.
+ rewrite <- H0.
+ remember (nshiftr (size - S n) x) as y.
+ destruct y; simpl in H1; rewrite H1; auto.
+ Qed.
+
+ Lemma phi_inv_phi : forall x, phi_inv (phi x) = x.
+ Proof.
+ intros.
+ rewrite <- phibis_aux_equiv.
+ replace x with (nshiftr (size - size) x) by auto.
+ apply phi_inv_phi_aux; auto.
+ Qed.
+
+ (** The other composition [phi o phi_inv] is harder to prove correct.
+ In particular, an overflow can happen, so a modulo is needed.
+ For the moment, we proceed via several steps, the first one
+ being a detour to [positive_to_in31]. *)
+
+ (** * [positive_to_int31] *)
+
+ (** A variant of [p2i] with [twice] and [twice_plus_one] instead of
+ [2*i] and [2*i+1] *)
+
+ Fixpoint p2ibis n p : (N*int31)%type :=
+ match n with
+ | O => (Npos p, On)
+ | S n => match p with
+ | xO p => let (r,i) := p2ibis n p in (r, twice i)
+ | xI p => let (r,i) := p2ibis n p in (r, twice_plus_one i)
+ | xH => (N0, In)
+ end
+ end.
+
+ Lemma p2ibis_bounded : forall n p,
+ nshiftr n (snd (p2ibis n p)) = 0.
+ Proof.
+ induction n.
+ simpl; intros; auto.
+ simpl; intros.
+ destruct p; simpl.
+
+ specialize IHn with p.
+ destruct (p2ibis n p); simpl in *.
+ rewrite nshiftr_S_tail.
+ destruct (le_lt_dec size n).
+ rewrite nshiftr_above_size; auto.
+ assert (H:=nshiftr_0_firstl _ _ l IHn).
+ replace (shiftr (twice_plus_one i)) with i; auto.
+ destruct i; simpl in *; rewrite H; auto.
+
+ specialize IHn with p.
+ destruct (p2ibis n p); simpl in *.
+ rewrite nshiftr_S_tail.
+ destruct (le_lt_dec size n).
+ rewrite nshiftr_above_size; auto.
+ assert (H:=nshiftr_0_firstl _ _ l IHn).
+ replace (shiftr (twice i)) with i; auto.
+ destruct i; simpl in *; rewrite H; auto.
+
+ rewrite nshiftr_S_tail; auto.
+ replace (shiftr In) with 0; auto.
+ apply nshiftr_n_0.
+ Qed.
+
+ Lemma p2ibis_spec : forall n p, n<=size ->
+ Zpos p = ((Z_of_N (fst (p2ibis n p)))*2^(Z_of_nat n) +
+ phi (snd (p2ibis n p)))%Z.
+ Proof.
+ induction n; intros.
+ simpl; rewrite Pmult_1_r; auto.
+ replace (2^(Z_of_nat (S n)))%Z with (2*2^(Z_of_nat n))%Z by
+ (rewrite <- Zpower_Zsucc, <- Zpos_P_of_succ_nat;
+ auto with zarith).
+ rewrite (Zmult_comm 2).
+ assert (n<=size) by omega.
+ destruct p; simpl; [ | | auto];
+ specialize (IHn p H0);
+ generalize (p2ibis_bounded n p);
+ destruct (p2ibis n p) as (r,i); simpl in *; intros.
+
+ change (Zpos p~1) with (2*Zpos p + 1)%Z.
+ rewrite phi_twice_plus_one_firstl, Zdouble_plus_one_mult.
+ rewrite IHn; ring.
+ apply (nshiftr_0_firstl n); auto; try omega.
+
+ change (Zpos p~0) with (2*Zpos p)%Z.
+ rewrite phi_twice_firstl.
+ change (Zdouble (phi i)) with (2*(phi i))%Z.
+ rewrite IHn; ring.
+ apply (nshiftr_0_firstl n); auto; try omega.
+ Qed.
+
+ (** We now prove that this [p2ibis] is related to [phi_inv_positive] *)
+
+ Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
+ EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)).
+ Proof.
+ induction n.
+ intros.
+ apply EqShiftL_size; auto.
+ intros.
+ simpl p2ibis; destruct p; [ | | red; auto];
+ specialize IHn with p;
+ destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive;
+ rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
+ replace (S (size - S n))%nat with (size - n)%nat by omega;
+ apply IHn; omega.
+ Qed.
+
+ (** This gives the expected result about [phi o phi_inv], at least
+ for the positive case. *)
+
+ Lemma phi_phi_inv_positive : forall p,
+ phi (phi_inv_positive p) = (Zpos p) mod (2^(Z_of_nat size)).
+ Proof.
+ intros.
+ replace (phi_inv_positive p) with (snd (p2ibis size p)).
+ rewrite (p2ibis_spec size p) by auto.
+ rewrite Zplus_comm, Z_mod_plus.
+ symmetry; apply Zmod_small.
+ apply phi_bounded.
+ auto with zarith.
+ symmetry.
+ rewrite <- EqShiftL_zero.
+ apply (phi_inv_positive_p2ibis size p); auto.
+ Qed.
+
+ (** Moreover, [p2ibis] is also related with [p2i] and hence with
+ [positive_to_int31]. *)
+
+ Lemma double_twice_firstl : forall x, firstl x = D0 -> Twon*x = twice x.
+ Proof.
+ intros.
+ unfold mul31.
+ rewrite <- Zdouble_mult, <- phi_twice_firstl, phi_inv_phi; auto.
+ Qed.
+
+ Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ Twon*x+In = twice_plus_one x.
+ Proof.
+ intros.
+ rewrite double_twice_firstl; auto.
+ unfold add31.
+ rewrite phi_twice_firstl, <- Zdouble_plus_one_mult,
+ <- phi_twice_plus_one_firstl, phi_inv_phi; auto.
+ Qed.
+
+ Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
+ p2i n p = p2ibis n p.
+ Proof.
+ induction n; simpl; auto; intros.
+ destruct p; auto; specialize IHn with p;
+ generalize (p2ibis_bounded n p);
+ rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
+ f_equal; auto.
+ apply double_twice_plus_one_firstl.
+ apply (nshiftr_0_firstl n); auto; omega.
+ apply double_twice_firstl.
+ apply (nshiftr_0_firstl n); auto; omega.
+ Qed.
+
+ Lemma positive_to_int31_phi_inv_positive : forall p,
+ snd (positive_to_int31 p) = phi_inv_positive p.
+ Proof.
+ intros; unfold positive_to_int31.
+ rewrite p2i_p2ibis; auto.
+ symmetry.
+ rewrite <- EqShiftL_zero.
+ apply (phi_inv_positive_p2ibis size); auto.
+ Qed.
+
+ Lemma positive_to_int31_spec : forall p,
+ Zpos p = ((Z_of_N (fst (positive_to_int31 p)))*2^(Z_of_nat size) +
+ phi (snd (positive_to_int31 p)))%Z.
+ Proof.
+ unfold positive_to_int31.
+ intros; rewrite p2i_p2ibis; auto.
+ apply p2ibis_spec; auto.
+ Qed.
+
+ (** Thanks to the result about [phi o phi_inv_positive], we can
+ now establish easily the most general results about
+ [phi o twice] and so one. *)
+
+ Lemma phi_twice : forall x,
+ phi (twice x) = (Zdouble (phi x)) mod 2^(Z_of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_double.
+ assert (0 <= Zdouble (phi x))%Z.
+ rewrite Zdouble_mult; generalize (phi_bounded x); omega.
+ destruct (Zdouble (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ Lemma phi_twice_plus_one : forall x,
+ phi (twice_plus_one x) = (Zdouble_plus_one (phi x)) mod 2^(Z_of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_double_plus_one.
+ assert (0 <= Zdouble_plus_one (phi x))%Z.
+ rewrite Zdouble_plus_one_mult; generalize (phi_bounded x); omega.
+ destruct (Zdouble_plus_one (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ Lemma phi_incr : forall x,
+ phi (incr x) = (Zsucc (phi x)) mod 2^(Z_of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_incr.
+ assert (0 <= Zsucc (phi x))%Z.
+ change (Zsucc (phi x)) with ((phi x)+1)%Z;
+ generalize (phi_bounded x); omega.
+ destruct (Zsucc (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ (** With the previous results, we can deal with [phi o phi_inv] even
+ in the negative case *)
+
+ Lemma phi_phi_inv_negative :
+ forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z_of_nat size).
+ Proof.
+ induction p.
+
+ simpl complement_negative.
+ rewrite phi_incr in IHp.
+ rewrite incr_twice, phi_twice_plus_one.
+ remember (phi (complement_negative p)) as q.
+ rewrite Zdouble_plus_one_mult.
+ replace (2*q+1)%Z with (2*(Zsucc q)-1)%Z by omega.
+ rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp.
+ rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith.
+
+ simpl complement_negative.
+ rewrite incr_twice_plus_one, phi_twice.
+ remember (phi (incr (complement_negative p))) as q.
+ rewrite Zdouble_mult, IHp, Zmult_mod_idemp_r; auto with zarith.
+
+ simpl; auto.
+ Qed.
+
+ Lemma phi_phi_inv :
+ forall z, phi (phi_inv z) = z mod 2 ^ (Z_of_nat size).
+ Proof.
+ destruct z.
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ apply phi_phi_inv_negative.
+ Qed.
+
+End Basics.
+
+
+Section Int31_Op.
+
+(** Nullity test *)
+Let w_iszero i := match i ?= 0 with Eq => true | _ => false end.
+
+(** Modulo [2^p] *)
+Let w_pos_mod p i :=
+ match compare31 p 31 with
+ | Lt => addmuldiv31 p 0 (addmuldiv31 (31-p) i 0)
+ | _ => i
+ end.
+
+(** Parity test *)
+Let w_iseven i :=
+ let (_,r) := i/2 in
+ match r ?= 0 with Eq => true | _ => false end.
+
+Definition int31_op := (mk_znz_op
+ 31%positive (* number of digits *)
+ 31 (* number of digits *)
+ phi (* conversion to Z *)
+ positive_to_int31 (* positive -> N*int31 : p => N,i where p = N*2^31+phi i *)
+ head031 (* number of head 0 *)
+ tail031 (* number of tail 0 *)
+ (* Basic constructors *)
+ 0
+ 1
+ Tn (* 2^31 - 1 *)
+ (* Comparison *)
+ compare31
+ w_iszero
+ (* Basic arithmetic operations *)
+ (fun i => 0 -c i)
+ (fun i => 0 - i)
+ (fun i => 0-i-1)
+ (fun i => i +c 1)
+ add31c
+ add31carryc
+ (fun i => i + 1)
+ add31
+ (fun i j => i + j + 1)
+ (fun i => i -c 1)
+ sub31c
+ sub31carryc
+ (fun i => i - 1)
+ sub31
+ (fun i j => i - j - 1)
+ mul31c
+ mul31
+ (fun x => x *c x)
+ (* special (euclidian) division operations *)
+ div3121
+ div31 (* this is supposed to be the special case of division a/b where a > b *)
+ div31
+ (* euclidian division remainder *)
+ (* again special case for a > b *)
+ (fun i j => let (_,r) := i/j in r)
+ (fun i j => let (_,r) := i/j in r)
+ gcd31 (*gcd_gt*)
+ gcd31 (*gcd*)
+ (* shift operations *)
+ addmuldiv31 (*add_mul_div *)
+ (* modulo 2^p *)
+ w_pos_mod
+ (* is i even ? *)
+ w_iseven
+ (* square root operations *)
+ sqrt312 (* sqrt2 *)
+ sqrt31 (* sqrt *)
+).
+
+End Int31_Op.
+
+Section Int31_Spec.
+
+ Open Local Scope Z_scope.
+
+ Notation "[| x |]" := (phi x) (at level 0, x at level 99).
+
+ Notation Local wB := (2 ^ (Z_of_nat size)).
+
+ Lemma wB_pos : wB > 0.
+ Proof.
+ auto with zarith.
+ Qed.
+
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB phi c) (at level 0, x at level 99).
+
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB phi c) (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wB phi x) (at level 0, x at level 99).
+
+ Lemma spec_zdigits : [| 31 |] = 31.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_more_than_1_digit: 1 < 31.
+ Proof.
+ auto with zarith.
+ Qed.
+
+ Lemma spec_0 : [| 0 |] = 0.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_1 : [| 1 |] = 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_Bm1 : [| Tn |] = wB - 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_compare : forall x y,
+ match (x ?= y)%int31 with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Proof.
+ clear; unfold compare31; simpl; intros.
+ case_eq ([|x|] ?= [|y|]); auto.
+ intros; apply Zcompare_Eq_eq; auto.
+ Qed.
+
+ (** Addition *)
+
+ Lemma spec_add_c : forall x y, [+|add31c x y|] = [|x|] + [|y|].
+ Proof.
+ intros; unfold add31c, add31, interp_carry; rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y).
+ unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
+ destruct (Z_lt_le_dec (X+Y) wB).
+ contradict H1; auto using Zmod_small with zarith.
+ rewrite <- (Z_mod_plus_full (X+Y) (-1) wB).
+ rewrite Zmod_small; romega.
+
+ generalize (Zcompare_Eq_eq ((X+Y) mod wB) (X+Y)); intros Heq.
+ destruct Zcompare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_succ_c : forall x, [+|add31c x 1|] = [|x|] + 1.
+ Proof.
+ intros; apply spec_add_c.
+ Qed.
+
+ Lemma spec_add_carry_c : forall x y, [+|add31carryc x y|] = [|x|] + [|y|] + 1.
+ Proof.
+ intros.
+ unfold add31carryc, interp_carry; rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1).
+ unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
+ destruct (Z_lt_le_dec (X+Y+1) wB).
+ contradict H1; auto using Zmod_small with zarith.
+ rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB).
+ rewrite Zmod_small; romega.
+
+ generalize (Zcompare_Eq_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq.
+ destruct Zcompare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_add : forall x y, [|x+y|] = ([|x|] + [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_add_carry :
+ forall x y, [|x+y+1|] = ([|x|] + [|y|] + 1) mod wB.
+ Proof.
+ unfold add31; intros.
+ repeat rewrite phi_phi_inv.
+ apply Zplus_mod_idemp_l.
+ Qed.
+
+ Lemma spec_succ : forall x, [|x+1|] = ([|x|] + 1) mod wB.
+ Proof.
+ intros; rewrite <- spec_1; apply spec_add.
+ Qed.
+
+ (** Substraction *)
+
+ Lemma spec_sub_c : forall x y, [-|sub31c x y|] = [|x|] - [|y|].
+ Proof.
+ unfold sub31c, sub31, interp_carry; intros.
+ rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y).
+ unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
+ destruct (Z_lt_le_dec (X-Y) 0).
+ rewrite <- (Z_mod_plus_full (X-Y) 1 wB).
+ rewrite Zmod_small; romega.
+ contradict H1; apply Zmod_small; romega.
+
+ generalize (Zcompare_Eq_eq ((X-Y) mod wB) (X-Y)); intros Heq.
+ destruct Zcompare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_sub_carry_c : forall x y, [-|sub31carryc x y|] = [|x|] - [|y|] - 1.
+ Proof.
+ unfold sub31carryc, sub31, interp_carry; intros.
+ rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1).
+ unfold interp_carry; rewrite phi_phi_inv, Zcompare_Eq_iff_eq; intros.
+ destruct (Z_lt_le_dec (X-Y-1) 0).
+ rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB).
+ rewrite Zmod_small; romega.
+ contradict H1; apply Zmod_small; romega.
+
+ generalize (Zcompare_Eq_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq.
+ destruct Zcompare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_sub : forall x y, [|x-y|] = ([|x|] - [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_sub_carry :
+ forall x y, [|x-y-1|] = ([|x|] - [|y|] - 1) mod wB.
+ Proof.
+ unfold sub31; intros.
+ repeat rewrite phi_phi_inv.
+ apply Zminus_mod_idemp_l.
+ Qed.
+
+ Lemma spec_opp_c : forall x, [-|sub31c 0 x|] = -[|x|].
+ Proof.
+ intros; apply spec_sub_c.
+ Qed.
+
+ Lemma spec_opp : forall x, [|0 - x|] = (-[|x|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_opp_carry : forall x, [|0 - x - 1|] = wB - [|x|] - 1.
+ Proof.
+ unfold sub31; intros.
+ repeat rewrite phi_phi_inv.
+ change [|1|] with 1; change [|0|] with 0.
+ rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB).
+ rewrite Zminus_mod_idemp_l.
+ rewrite Zmod_small; generalize (phi_bounded x); romega.
+ Qed.
+
+ Lemma spec_pred_c : forall x, [-|sub31c x 1|] = [|x|] - 1.
+ Proof.
+ intros; apply spec_sub_c.
+ Qed.
+
+ Lemma spec_pred : forall x, [|x-1|] = ([|x|] - 1) mod wB.
+ Proof.
+ intros; apply spec_sub.
+ Qed.
+
+ (** Multiplication *)
+
+ Lemma phi2_phi_inv2 : forall x, [||phi_inv2 x||] = x mod (wB^2).
+ Proof.
+ assert (forall z, (z / wB) mod wB * wB + z mod wB = z mod wB ^ 2).
+ intros.
+ assert ((z/wB) mod wB = z/wB - (z/wB/wB)*wB).
+ rewrite (Z_div_mod_eq (z/wB) wB wB_pos) at 2; ring.
+ assert (z mod wB = z - (z/wB)*wB).
+ rewrite (Z_div_mod_eq z wB wB_pos) at 2; ring.
+ rewrite H.
+ rewrite H0 at 1.
+ ring_simplify.
+ rewrite Zdiv_Zdiv; auto with zarith.
+ rewrite (Z_div_mod_eq z (wB*wB)) at 2; auto with zarith.
+ change (wB*wB) with (wB^2); ring.
+
+ unfold phi_inv2.
+ destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
+ change base with wB; auto.
+ Qed.
+
+ Lemma spec_mul_c : forall x y, [|| mul31c x y ||] = [|x|] * [|y|].
+ Proof.
+ unfold mul31c; intros.
+ rewrite phi2_phi_inv2.
+ apply Zmod_small.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ change (wB^2) with (wB * wB).
+ auto using Zmult_lt_compat with zarith.
+ Qed.
+
+ Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_square_c : forall x, [|| mul31c x x ||] = [|x|] * [|x|].
+ Proof.
+ intros; apply spec_mul_c.
+ Qed.
+
+ (** Division *)
+
+ Lemma spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := div3121 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ unfold div3121; intros.
+ generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros.
+ assert ([|b|]>0) by (auto with zarith).
+ generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4).
+ unfold Zdiv; destruct (Zdiv_eucl (phi2 a1 a2) [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ unfold phi2 in *.
+ change base with wB; change base with wB in H5.
+ change (Zpower_pos 2 31) with wB; change (Zpower_pos 2 31) with wB in H.
+ rewrite H5, Zmult_comm.
+ replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
+ replace (z mod wB) with z; auto with zarith.
+ symmetry; apply Zmod_small.
+ split.
+ apply H7; change base with wB; auto with zarith.
+ apply Zmult_gt_0_lt_reg_r with [|b|].
+ omega.
+ rewrite Zmult_comm.
+ apply Zle_lt_trans with ([|b|]*z+z0).
+ omega.
+ rewrite <- H5.
+ apply Zle_lt_trans with ([|a1|]*wB+(wB-1)).
+ omega.
+ replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring.
+ assert (wB*([|a1|]+1) <= wB*[|b|]); try omega.
+ apply Zmult_le_compat; omega.
+ Qed.
+
+ Lemma spec_div : forall a b, 0 < [|b|] ->
+ let (q,r) := div31 a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ unfold div31; intros.
+ assert ([|b|]>0) by (auto with zarith).
+ generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0).
+ unfold Zdiv; destruct (Zdiv_eucl [|a|] [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ rewrite H1, Zmult_comm.
+ generalize (phi_bounded a)(phi_bounded b); intros.
+ replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
+ replace (z mod wB) with z; auto with zarith.
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ apply Zle_lt_trans with [|a|]; auto with zarith.
+ rewrite H1.
+ apply Zle_trans with ([|b|]*z); try omega.
+ rewrite <- (Zmult_1_l z) at 1.
+ apply Zmult_le_compat; auto with zarith.
+ Qed.
+
+ Lemma spec_mod : forall a b, 0 < [|b|] ->
+ [|let (_,r) := (a/b)%int31 in r|] = [|a|] mod [|b|].
+ Proof.
+ unfold div31; intros.
+ assert ([|b|]>0) by (auto with zarith).
+ unfold Zmod.
+ generalize (Z_div_mod [|a|] [|b|] H0).
+ destruct (Zdiv_eucl [|a|] [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ generalize (phi_bounded b); intros.
+ apply Zmod_small; omega.
+ Qed.
+
+ Lemma phi_gcd : forall i j,
+ [|gcd31 i j|] = Zgcdn (2*size) [|j|] [|i|].
+ Proof.
+ unfold gcd31.
+ induction (2*size)%nat; intros.
+ reflexivity.
+ simpl.
+ unfold compare31.
+ change [|On|] with 0.
+ generalize (phi_bounded j)(phi_bounded i); intros.
+ case_eq [|j|]; intros.
+ simpl; intros.
+ generalize (Zabs_spec [|i|]); omega.
+ simpl.
+ rewrite IHn, H1; f_equal.
+ rewrite spec_mod, H1; auto.
+ rewrite H1; compute; auto.
+ rewrite H1 in H; destruct H as [H _]; compute in H; elim H; auto.
+ Qed.
+
+ Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd31 a b|].
+ Proof.
+ intros.
+ rewrite phi_gcd.
+ apply Zis_gcd_sym.
+ apply Zgcdn_is_gcd.
+ unfold Zgcd_bound.
+ generalize (phi_bounded b).
+ destruct [|b|].
+ unfold size; auto with zarith.
+ intros (_,H).
+ cut (Psize p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto].
+ intros (H,_); compute in H; elim H; auto.
+ Qed.
+
+ Lemma iter_int31_iter_nat : forall A f i a,
+ iter_int31 i A f a = iter_nat (Zabs_nat [|i|]) A f a.
+ Proof.
+ intros.
+ unfold iter_int31.
+ rewrite <- recrbis_equiv; auto; unfold recrbis.
+ rewrite <- phibis_aux_equiv.
+
+ revert i a; induction size.
+ simpl; auto.
+ simpl; intros.
+ case_eq (firstr i); intros H; rewrite 2 IHn;
+ unfold phibis_aux; simpl; rewrite H; fold (phibis_aux n (shiftr i));
+ generalize (phibis_aux_pos n (shiftr i)); intros;
+ set (z := phibis_aux n (shiftr i)) in *; clearbody z;
+ rewrite <- iter_nat_plus.
+
+ f_equal.
+ rewrite Zdouble_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
+ symmetry; apply Zabs_nat_Zplus; auto with zarith.
+
+ change (iter_nat (S (Zabs_nat z + Zabs_nat z)) A f a =
+ iter_nat (Zabs_nat (Zdouble_plus_one z)) A f a); f_equal.
+ rewrite Zdouble_plus_one_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
+ rewrite Zabs_nat_Zplus; auto with zarith.
+ rewrite Zabs_nat_Zplus; auto with zarith.
+ change (Zabs_nat 1) with 1%nat; omega.
+ Qed.
+
+ Fixpoint addmuldiv31_alt n i j :=
+ match n with
+ | O => i
+ | S n => addmuldiv31_alt n (sneakl (firstl j) i) (shiftl j)
+ end.
+
+ Lemma addmuldiv31_equiv : forall p x y,
+ addmuldiv31 p x y = addmuldiv31_alt (Zabs_nat [|p|]) x y.
+ Proof.
+ intros.
+ unfold addmuldiv31.
+ rewrite iter_int31_iter_nat.
+ set (n:=Zabs_nat [|p|]); clearbody n; clear p.
+ revert x y; induction n.
+ simpl; auto.
+ intros.
+ simpl addmuldiv31_alt.
+ replace (S n) with (n+1)%nat by (rewrite plus_comm; auto).
+ rewrite iter_nat_plus; simpl; auto.
+ Qed.
+
+ Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 31 ->
+ [| addmuldiv31 p x y |] =
+ ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 31) - [|p|]))) mod wB.
+ Proof.
+ intros.
+ rewrite addmuldiv31_equiv.
+ assert ([|p|] = Z_of_nat (Zabs_nat [|p|])).
+ rewrite inj_Zabs_nat; symmetry; apply Zabs_eq.
+ destruct (phi_bounded p); auto.
+ rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs_nat_Z_of_nat.
+ set (n := Zabs_nat [|p|]) in *; clearbody n.
+ assert (n <= 31)%nat.
+ rewrite inj_le_iff; auto with zarith.
+ clear p H; revert x y.
+
+ induction n.
+ simpl; intros.
+ change (Zpower_pos 2 31) with (2^31).
+ rewrite Zmult_1_r.
+ replace ([|y|] / 2^31) with 0.
+ rewrite Zplus_0_r.
+ symmetry; apply Zmod_small; apply phi_bounded.
+ symmetry; apply Zdiv_small; apply phi_bounded.
+
+ simpl addmuldiv31_alt; intros.
+ rewrite IHn; [ | omega ].
+ case_eq (firstl y); intros.
+
+ rewrite phi_twice, Zdouble_mult.
+ rewrite phi_twice_firstl; auto.
+ change (Zdouble [|y|]) with (2*[|y|]).
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
+ f_equal.
+ apply Zplus_eq_compat.
+ ring.
+ replace (31-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring.
+ rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith.
+ rewrite Zmult_comm, Z_div_mult; auto with zarith.
+
+ rewrite phi_twice_plus_one, Zdouble_plus_one_mult.
+ rewrite phi_twice; auto.
+ change (Zdouble [|y|]) with (2*[|y|]).
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
+ rewrite Zmult_plus_distr_l, Zmult_1_l, <- Zplus_assoc.
+ f_equal.
+ apply Zplus_eq_compat.
+ ring.
+ assert ((2*[|y|]) mod wB = 2*[|y|] - wB).
+ admit.
+ rewrite H1.
+ replace wB with (2^(Z_of_nat n)*2^(31-Z_of_nat n)) by
+ (rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring).
+ unfold Zminus; rewrite Zopp_mult_distr_l.
+ rewrite Z_div_plus; auto with zarith.
+ ring_simplify.
+ replace (31+-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring.
+ rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith.
+ rewrite Zmult_comm, Z_div_mult; auto with zarith.
+ Qed.
+
+ Let w_pos_mod := int31_op.(znz_pos_mod).
+
+ Lemma spec_pos_mod : forall w p,
+ [|w_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+ Proof.
+ unfold w_pos_mod, znz_pos_mod, int31_op, compare31.
+ change [|31|] with 31%Z.
+ assert (forall w p, 31<=p -> [|w|] = [|w|] mod 2^p).
+ intros.
+ generalize (phi_bounded w).
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ apply Zlt_le_trans with wB; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ intros.
+ case_eq ([|p|] ?= 31); intros;
+ [ apply H; rewrite (Zcompare_Eq_eq _ _ H0); auto with zarith | |
+ apply H; change ([|p|]>31)%Z in H0; auto with zarith ].
+ change ([|p|]<31) in H0.
+ rewrite spec_add_mul_div by auto with zarith.
+ change [|0|] with 0%Z; rewrite Zmult_0_l, Zplus_0_l.
+ generalize (phi_bounded p)(phi_bounded w); intros.
+ assert (31-[|p|]<wB).
+ apply Zle_lt_trans with 31%Z; auto with zarith.
+ compute; auto.
+ assert ([|31-p|]=31-[|p|]).
+ unfold sub31; rewrite phi_phi_inv.
+ change [|31|] with 31%Z.
+ apply Zmod_small; auto with zarith.
+ rewrite spec_add_mul_div by (rewrite H4; auto with zarith).
+ change [|0|] with 0%Z; rewrite Zdiv_0_l, Zplus_0_r.
+ rewrite H4.
+ apply shift_unshift_mod_2; auto with zarith.
+ Qed.
+
+
+ (** Shift operations *)
+
+ Lemma spec_head00: forall x, [|x|] = 0 -> [|head031 x|] = Zpos 31.
+ Proof.
+ intros.
+ generalize (phi_inv_phi x).
+ rewrite H; simpl.
+ intros H'; rewrite <- H'.
+ simpl; auto.
+ Qed.
+
+ Fixpoint head031_alt n x :=
+ match n with
+ | O => 0%nat
+ | S n => match firstl x with
+ | D0 => S (head031_alt n (shiftl x))
+ | D1 => 0%nat
+ end
+ end.
+
+ Lemma head031_equiv :
+ forall x, [|head031 x|] = Z_of_nat (head031_alt size x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H).
+ simpl; auto.
+
+ unfold head031, recl.
+ change On with (phi_inv (Z_of_nat (31-size))).
+ replace (head031_alt size x) with
+ (head031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
+ assert (size <= 31)%nat by auto with arith.
+
+ revert x H; induction size; intros.
+ simpl; auto.
+ unfold recl_aux; fold recl_aux.
+ unfold head031_alt; fold head031_alt.
+ rewrite H.
+ assert ([|phi_inv (Z_of_nat (31-S n))|] = Z_of_nat (31 - S n)).
+ rewrite phi_phi_inv.
+ apply Zmod_small.
+ split.
+ change 0 with (Z_of_nat O); apply inj_le; omega.
+ apply Zle_lt_trans with (Z_of_nat 31).
+ apply inj_le; omega.
+ compute; auto.
+ case_eq (firstl x); intros; auto.
+ rewrite plus_Sn_m, plus_n_Sm.
+ replace (S (31 - S n)) with (31 - n)%nat by omega.
+ rewrite <- IHn; [ | omega | ].
+ f_equal; f_equal.
+ unfold add31.
+ rewrite H1.
+ f_equal.
+ change [|In|] with 1.
+ replace (31-n)%nat with (S (31 - S n))%nat by omega.
+ rewrite inj_S; ring.
+
+ clear - H H2.
+ rewrite (sneakr_shiftl x) in H.
+ rewrite H2 in H.
+ case_eq (iszero (shiftl x)); intros; auto.
+ rewrite (iszero_eq0 _ H0) in H; discriminate.
+ Qed.
+
+ Lemma phi_nz : forall x, 0 < [|x|] <-> x <> 0%int31.
+ Proof.
+ split; intros.
+ red; intro; subst x; discriminate.
+ assert ([|x|]<>0%Z).
+ contradict H.
+ rewrite <- (phi_inv_phi x); rewrite H; auto.
+ generalize (phi_bounded x); auto with zarith.
+ Qed.
+
+ Lemma spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ ([|head031 x|]) * [|x|] < wB.
+ Proof.
+ intros.
+ rewrite head031_equiv.
+ assert (nshiftl size x = 0%int31).
+ apply nshiftl_size.
+ revert x H H0.
+ unfold size at 2 5.
+ induction size.
+ simpl Z_of_nat.
+ intros.
+ compute in H0; rewrite H0 in H; discriminate.
+
+ intros.
+ simpl head031_alt.
+ case_eq (firstl x); intros.
+ rewrite (inj_S (head031_alt n (shiftl x))), Zpower_Zsucc; auto with zarith.
+ rewrite <- Zmult_assoc, Zmult_comm, <- Zmult_assoc, <-(Zmult_comm 2).
+ rewrite <- Zdouble_mult, <- (phi_twice_firstl _ H1).
+ apply IHn.
+
+ rewrite phi_nz; rewrite phi_nz in H; contradict H.
+ change twice with shiftl in H.
+ rewrite (sneakr_shiftl x), H1, H; auto.
+
+ rewrite <- nshiftl_S_tail; auto.
+
+ change (2^(Z_of_nat 0)) with 1; rewrite Zmult_1_l.
+ generalize (phi_bounded x); unfold size; split; auto with zarith.
+ change (2^(Z_of_nat 31)/2) with (2^(Z_of_nat (pred size))).
+ apply phi_lowerbound; auto.
+ Qed.
+
+ Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail031 x|] = Zpos 31.
+ Proof.
+ intros.
+ generalize (phi_inv_phi x).
+ rewrite H; simpl.
+ intros H'; rewrite <- H'.
+ simpl; auto.
+ Qed.
+
+ Fixpoint tail031_alt n x :=
+ match n with
+ | O => 0%nat
+ | S n => match firstr x with
+ | D0 => S (tail031_alt n (shiftr x))
+ | D1 => 0%nat
+ end
+ end.
+
+ Lemma tail031_equiv :
+ forall x, [|tail031 x|] = Z_of_nat (tail031_alt size x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H).
+ simpl; auto.
+
+ unfold tail031, recr.
+ change On with (phi_inv (Z_of_nat (31-size))).
+ replace (tail031_alt size x) with
+ (tail031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
+ assert (size <= 31)%nat by auto with arith.
+
+ revert x H; induction size; intros.
+ simpl; auto.
+ unfold recr_aux; fold recr_aux.
+ unfold tail031_alt; fold tail031_alt.
+ rewrite H.
+ assert ([|phi_inv (Z_of_nat (31-S n))|] = Z_of_nat (31 - S n)).
+ rewrite phi_phi_inv.
+ apply Zmod_small.
+ split.
+ change 0 with (Z_of_nat O); apply inj_le; omega.
+ apply Zle_lt_trans with (Z_of_nat 31).
+ apply inj_le; omega.
+ compute; auto.
+ case_eq (firstr x); intros; auto.
+ rewrite plus_Sn_m, plus_n_Sm.
+ replace (S (31 - S n)) with (31 - n)%nat by omega.
+ rewrite <- IHn; [ | omega | ].
+ f_equal; f_equal.
+ unfold add31.
+ rewrite H1.
+ f_equal.
+ change [|In|] with 1.
+ replace (31-n)%nat with (S (31 - S n))%nat by omega.
+ rewrite inj_S; ring.
+
+ clear - H H2.
+ rewrite (sneakl_shiftr x) in H.
+ rewrite H2 in H.
+ case_eq (iszero (shiftr x)); intros; auto.
+ rewrite (iszero_eq0 _ H0) in H; discriminate.
+ Qed.
+
+ Lemma spec_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail031 x|]).
+ Proof.
+ intros.
+ rewrite tail031_equiv.
+ assert (nshiftr size x = 0%int31).
+ apply nshiftr_size.
+ revert x H H0.
+ induction size.
+ simpl Z_of_nat.
+ intros.
+ compute in H0; rewrite H0 in H; discriminate.
+
+ intros.
+ simpl tail031_alt.
+ case_eq (firstr x); intros.
+ rewrite (inj_S (tail031_alt n (shiftr x))), Zpower_Zsucc; auto with zarith.
+ destruct (IHn (shiftr x)) as (y & Hy1 & Hy2).
+
+ rewrite phi_nz; rewrite phi_nz in H; contradict H.
+ rewrite (sneakl_shiftr x), H1, H; auto.
+
+ rewrite <- nshiftr_S_tail; auto.
+
+ exists y; split; auto.
+ rewrite phi_eqn1; auto.
+ rewrite Zdouble_mult, Hy2; ring.
+
+ exists [|shiftr x|].
+ split.
+ generalize (phi_bounded (shiftr x)); auto with zarith.
+ rewrite phi_eqn2; auto.
+ rewrite Zdouble_plus_one_mult; simpl; ring.
+ Qed.
+
+ (* Sqrt *)
+
+ (* Direct transcription of an old proof
+ of a fortran program in boyer-moore *)
+
+ Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
+ Proof.
+ intros a; case (Z_mod_lt a 2); auto with zarith.
+ intros H1; rewrite Zmod_eq_full; auto with zarith.
+ Qed.
+
+ Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
+ (j * k) + j <= ((j + k)/2 + 1) ^ 2.
+ Proof.
+ intros j k Hj; generalize Hj k; pattern j; apply natlike_ind;
+ auto; clear k j Hj.
+ intros _ k Hk; repeat rewrite Zplus_0_l.
+ apply Zmult_le_0_compat; generalize (Z_div_pos k 2); auto with zarith.
+ intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
+ rewrite Zmult_0_r, Zplus_0_r, Zplus_0_l.
+ generalize (sqr_pos (Zsucc j / 2)) (quotient_by_2 (Zsucc j));
+ unfold Zsucc.
+ rewrite Zpower_2, Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
+ auto with zarith.
+ intros k Hk _.
+ replace ((Zsucc j + Zsucc k) / 2) with ((j + k)/2 + 1).
+ generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
+ unfold Zsucc; repeat rewrite Zpower_2;
+ repeat rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
+ repeat rewrite Zmult_1_l; repeat rewrite Zmult_1_r.
+ auto with zarith.
+ rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith.
+ apply f_equal2 with (f := Zdiv); auto with zarith.
+ Qed.
+
+ Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
+ Proof.
+ intros i j Hi Hj.
+ assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
+ apply Zlt_le_trans with (2 := sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij).
+ pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith.
+ Qed.
+
+ Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
+ Proof.
+ intros i Hi.
+ assert (H1: 0 <= i - 2) by auto with zarith.
+ assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
+ replace i with (1* 2 + (i - 2)); auto with zarith.
+ rewrite Zpower_2, Z_div_plus_full_l; auto with zarith.
+ generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2).
+ rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
+ auto with zarith.
+ generalize (quotient_by_2 i).
+ rewrite Zpower_2 in H2 |- *;
+ repeat (rewrite Zmult_plus_distr_l ||
+ rewrite Zmult_plus_distr_r ||
+ rewrite Zmult_1_l || rewrite Zmult_1_r).
+ auto with zarith.
+ Qed.
+
+ Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
+ Proof.
+ intros i j Hi Hj Hd; rewrite Zpower_2.
+ apply Zle_trans with (j * (i/j)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ Qed.
+
+ Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
+ Proof.
+ intros i j Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto.
+ intros H1; contradict H; apply Zle_not_lt.
+ assert (2 * j <= j + (i/j)); auto with zarith.
+ apply Zle_trans with (2 * ((j + (i/j))/2)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ Qed.
+
+ (* George's trick *)
+ Inductive ZcompareSpec (i j: Z): comparison -> Prop :=
+ ZcompareSpecEq: i = j -> ZcompareSpec i j Eq
+ | ZcompareSpecLt: i < j -> ZcompareSpec i j Lt
+ | ZcompareSpecGt: j < i -> ZcompareSpec i j Gt.
+
+ Lemma Zcompare_spec i j: ZcompareSpec i j (i ?= j).
+ Proof.
+ intros i j; case_eq (Zcompare i j); intros H.
+ apply ZcompareSpecEq; apply Zcompare_Eq_eq; auto.
+ apply ZcompareSpecLt; auto.
+ apply ZcompareSpecGt; apply Zgt_lt; auto.
+ Qed.
+
+ Lemma sqrt31_step_def rec i j:
+ sqrt31_step rec i j =
+ match (fst (i/j) ?= j)%int31 with
+ Lt => rec i (fst ((j + fst(i/j))/2))%int31
+ | _ => j
+ end.
+ Proof.
+ intros rec i j; unfold sqrt31_step; case div31; intros.
+ simpl; case compare31; auto.
+ Qed.
+
+ Lemma div31_phi i j: 0 < [|j|] -> [|fst (i/j)%int31|] = [|i|]/[|j|].
+ intros i j Hj; generalize (spec_div i j Hj).
+ case div31; intros q r; simpl fst.
+ intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith.
+ rewrite H1; ring.
+ Qed.
+
+ Lemma sqrt31_step_correct rec i j:
+ 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
+ 2 * [|j|] < wB ->
+ (forall j1 : int31,
+ 0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 ->
+ [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
+ [|sqrt31_step rec i j|] ^ 2 <= [|i|] < ([|sqrt31_step rec i j|] + 1) ^ 2.
+ Proof.
+ assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt).
+ intros rec i j Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
+ generalize (spec_compare (fst (i/j)%int31) j); case compare31;
+ rewrite div31_phi; auto; intros Hc;
+ try (split; auto; apply sqrt_test_true; auto with zarith; fail).
+ apply Hrec; repeat rewrite div31_phi; auto with zarith.
+ replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]).
+ split.
+ case (Zle_lt_or_eq 1 [|j|]); auto with zarith; intros Hj1.
+ replace ([|j|] + [|i|]/[|j|]) with
+ (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith).
+ assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith.
+ rewrite <- Hj1, Zdiv_1_r.
+ replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith).
+ change ([|2|]) with 2%Z; auto with zarith.
+ apply sqrt_test_false; auto with zarith.
+ rewrite spec_add, div31_phi; auto.
+ apply sym_equal; apply Zmod_small.
+ split; auto with zarith.
+ replace [|j + fst (i / j)%int31|] with ([|j|] + [|i|] / [|j|]).
+ apply sqrt_main; auto with zarith.
+ rewrite spec_add, div31_phi; auto.
+ apply sym_equal; apply Zmod_small.
+ split; auto with zarith.
+ Qed.
+
+ Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] ->
+ [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z_of_nat size) ->
+ (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
+ [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z_of_nat size) ->
+ [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
+ [|iter31_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter31_sqrt n rec i j|] + 1) ^ 2.
+ Proof.
+ intros n; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n.
+ intros rec i j Hi Hj Hij H31 Hrec; apply sqrt31_step_correct; auto with zarith.
+ intros; apply Hrec; auto with zarith.
+ rewrite Zpower_0_r; auto with zarith.
+ intros n Hrec rec i j Hi Hj Hij H31 HHrec.
+ apply sqrt31_step_correct; auto.
+ intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
+ intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith.
+ intros j3 Hj3 Hpj3.
+ apply HHrec; auto.
+ rewrite inj_S, Zpower_Zsucc.
+ apply Zle_trans with (2 ^Z_of_nat n + [|j2|]); auto with zarith.
+ apply Zle_0_nat.
+ Qed.
+
+ Lemma spec_sqrt : forall x,
+ [|sqrt31 x|] ^ 2 <= [|x|] < ([|sqrt31 x|] + 1) ^ 2.
+ Proof.
+ intros i; unfold sqrt31.
+ generalize (spec_compare 1 i); case compare31; change [|1|] with 1;
+ intros Hi; auto with zarith.
+ repeat rewrite Zpower_2; auto with zarith.
+ apply iter31_sqrt_correct; auto with zarith.
+ rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
+ replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring.
+ assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith).
+ rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
+ apply sqrt_init; auto.
+ rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
+ apply Zle_lt_trans with ([|i|]).
+ apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded i); auto.
+ intros j2 H1 H2; contradict H2; apply Zlt_not_le.
+ rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
+ apply Zle_lt_trans with ([|i|]); auto with zarith.
+ assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith).
+ apply Zle_trans with (2 * ([|i|]/2)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded i); unfold size; auto with zarith.
+ change [|0|] with 0; auto with zarith.
+ case (phi_bounded i); repeat rewrite Zpower_2; auto with zarith.
+ Qed.
+
+ Lemma sqrt312_step_def rec ih il j:
+ sqrt312_step rec ih il j =
+ match (ih ?= j)%int31 with
+ Eq => j
+ | Gt => j
+ | _ =>
+ match (fst (div3121 ih il j) ?= j)%int31 with
+ Lt => let m := match j +c fst (div3121 ih il j) with
+ C0 m1 => fst (m1/2)%int31
+ | C1 m1 => (fst (m1/2) + v30)%int31
+ end in rec ih il m
+ | _ => j
+ end
+ end.
+ Proof.
+ intros rec ih il j; unfold sqrt312_step; case div3121; intros.
+ simpl; case compare31; auto.
+ Qed.
+
+ Lemma sqrt312_lower_bound ih il j:
+ phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|].
+ Proof.
+ intros ih il j H1.
+ case (phi_bounded j); intros Hbj _.
+ case (phi_bounded il); intros Hbil _.
+ case (phi_bounded ih); intros Hbih Hbih1.
+ assert (([|ih|] < [|j|] + 1)%Z); auto with zarith.
+ apply Zlt_square_simpl; auto with zarith.
+ repeat rewrite <-Zpower_2; apply Zle_lt_trans with (2 := H1).
+ apply Zle_trans with ([|ih|] * base)%Z; unfold phi2, base;
+ try rewrite Zpower_2; auto with zarith.
+ Qed.
+
+ Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] ->
+ [|fst (div3121 ih il j)|] = phi2 ih il/[|j|])%Z.
+ Proof.
+ intros ih il j Hj Hj1.
+ generalize (spec_div21 ih il j Hj Hj1).
+ case div3121; intros q r (Hq, Hr).
+ apply Zdiv_unique with (phi r); auto with zarith.
+ simpl fst; apply trans_equal with (1 := Hq); ring.
+ Qed.
+
+ Lemma sqrt312_step_correct rec ih il j:
+ 2 ^ 29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ (forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 ->
+ [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
+ [|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il
+ < ([|sqrt312_step rec ih il j|] + 1) ^ 2.
+ Proof.
+ assert (Hp2: (0 < [|2|])%Z) by exact (refl_equal Lt).
+ intros rec ih il j Hih Hj Hij Hrec; rewrite sqrt312_step_def.
+ assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt312_lower_bound with il; auto).
+ case (phi_bounded ih); intros Hih1 _.
+ case (phi_bounded il); intros Hil1 _.
+ case (phi_bounded j); intros _ Hj1.
+ assert (Hp3: (0 < phi2 ih il)).
+ unfold phi2; apply Zlt_le_trans with ([|ih|] * base)%Z; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ apply Zlt_le_trans with (2:= Hih); auto with zarith.
+ generalize (spec_compare ih j); case compare31; intros Hc1.
+ split; auto.
+ apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ unfold phi2; rewrite Hc1.
+ assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith).
+ rewrite Zmult_comm, Z_div_plus_full_l; unfold base; auto with zarith.
+ unfold Zpower, Zpower_pos in Hj1; simpl in Hj1; auto with zarith.
+ case (Zle_or_lt (2 ^ 30) [|j|]); intros Hjj.
+ generalize (spec_compare (fst (div3121 ih il j)) j); case compare31;
+ rewrite div312_phi; auto; intros Hc;
+ try (split; auto; apply sqrt_test_true; auto with zarith; fail).
+ apply Hrec.
+ assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith).
+ case (Zle_lt_or_eq 1 ([|j|])); auto with zarith; intros Hf2.
+ 2: contradict Hc; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; auto with zarith.
+ assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2).
+ replace ([|j|] + phi2 ih il/ [|j|])%Z with
+ (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith.
+ assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]).
+ apply sqrt_test_false; auto with zarith.
+ generalize (spec_add_c j (fst (div3121 ih il j))).
+ unfold interp_carry; case add31c; intros r;
+ rewrite div312_phi; auto with zarith.
+ rewrite div31_phi; change [|2|] with 2%Z; auto with zarith.
+ intros HH; rewrite HH; clear HH; auto with zarith.
+ rewrite spec_add, div31_phi; change [|2|] with 2%Z; auto.
+ rewrite Zmult_1_l; intros HH.
+ rewrite Zplus_comm, <- Z_div_plus_full_l; auto with zarith.
+ change (phi v30 * 2) with (2 ^ Z_of_nat size).
+ rewrite HH, Zmod_small; auto with zarith.
+ replace (phi
+ match j +c fst (div3121 ih il j) with
+ | C0 m1 => fst (m1 / 2)%int31
+ | C1 m1 => fst (m1 / 2)%int31 + v30
+ end) with ((([|j|] + (phi2 ih il)/([|j|]))/2)).
+ apply sqrt_main; auto with zarith.
+ generalize (spec_add_c j (fst (div3121 ih il j))).
+ unfold interp_carry; case add31c; intros r;
+ rewrite div312_phi; auto with zarith.
+ rewrite div31_phi; auto with zarith.
+ intros HH; rewrite HH; auto with zarith.
+ intros HH; rewrite <- HH.
+ change (1 * 2 ^ Z_of_nat size) with (phi (v30) * 2).
+ rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite Zplus_comm.
+ rewrite spec_add, Zmod_small.
+ rewrite div31_phi; auto.
+ split; auto with zarith.
+ case (phi_bounded (fst (r/2)%int31));
+ case (phi_bounded v30); auto with zarith.
+ rewrite div31_phi; change (phi 2) with 2%Z; auto.
+ change (2 ^Z_of_nat size) with (base/2 + phi v30).
+ assert (phi r / 2 < base/2); auto with zarith.
+ apply Zmult_gt_0_lt_reg_r with 2; auto with zarith.
+ change (base/2 * 2) with base.
+ apply Zle_lt_trans with (phi r).
+ rewrite Zmult_comm; apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded r); auto with zarith.
+ contradict Hij; apply Zle_not_lt.
+ assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith.
+ apply Zle_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith.
+ assert (0 <= 1 + [|j|]); auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base).
+ apply Zle_trans with ([|ih|] * base); auto with zarith.
+ unfold phi2, base; auto with zarith.
+ split; auto.
+ apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ apply Zle_ge; apply Zle_trans with (([|j|] * base)/[|j|]).
+ rewrite Zmult_comm, Z_div_mult; auto with zarith.
+ apply Zge_le; apply Z_div_ge; auto with zarith.
+ Qed.
+
+ Lemma iter312_sqrt_correct n rec ih il j:
+ 2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
+ phi2 ih il < ([|j1|] + 1) ^ 2 ->
+ [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
+ [|iter312_sqrt n rec ih il j|] ^ 2 <= phi2 ih il
+ < ([|iter312_sqrt n rec ih il j|] + 1) ^ 2.
+ Proof.
+ intros n; elim n; unfold iter312_sqrt; fold iter312_sqrt; clear n.
+ intros rec ih il j Hi Hj Hij Hrec; apply sqrt312_step_correct; auto with zarith.
+ intros; apply Hrec; auto with zarith.
+ rewrite Zpower_0_r; auto with zarith.
+ intros n Hrec rec ih il j Hi Hj Hij HHrec.
+ apply sqrt312_step_correct; auto.
+ intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
+ intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith.
+ intros j3 Hj3 Hpj3.
+ apply HHrec; auto.
+ rewrite inj_S, Zpower_Zsucc.
+ apply Zle_trans with (2 ^Z_of_nat n + [|j2|])%Z; auto with zarith.
+ apply Zle_0_nat.
+ Qed.
+
+ Lemma spec_sqrt2 : forall x y,
+ wB/ 4 <= [|x|] ->
+ let (s,r) := sqrt312 x y in
+ [||WW x y||] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|].
+ Proof.
+ intros ih il Hih; unfold sqrt312.
+ change [||WW ih il||] with (phi2 ih il).
+ assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by
+ (intros s; ring).
+ assert (Hb: 0 <= base) by (red; intros HH; discriminate).
+ assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2).
+ change ((phi Tn + 1) ^ 2) with (2^62).
+ apply Zle_lt_trans with ((2^31 -1) * base + (2^31 - 1)); auto with zarith.
+ 2: simpl; unfold Zpower_pos; simpl; auto with zarith.
+ case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4.
+ unfold base, Zpower, Zpower_pos in H2,H4; simpl in H2,H4.
+ unfold phi2,Zpower, Zpower_pos; simpl iter_pos; auto with zarith.
+ case (iter312_sqrt_correct 31 (fun _ _ j => j) ih il Tn); auto with zarith.
+ change [|Tn|] with 2147483647; auto with zarith.
+ intros j1 _ HH; contradict HH.
+ apply Zlt_not_le.
+ change [|Tn|] with 2147483647; auto with zarith.
+ change (2 ^ Z_of_nat 31) with 2147483648; auto with zarith.
+ case (phi_bounded j1); auto with zarith.
+ set (s := iter312_sqrt 31 (fun _ _ j : int31 => j) ih il Tn).
+ intros Hs1 Hs2.
+ generalize (spec_mul_c s s); case mul31c.
+ simpl zn2z_to_Z; intros HH.
+ assert ([|s|] = 0).
+ case (Zmult_integral _ _ (sym_equal HH)); auto.
+ contradict Hs2; apply Zle_not_lt; rewrite H.
+ change ((0 + 1) ^ 2) with 1.
+ apply Zle_trans with (2 ^ Z_of_nat size / 4 * base).
+ simpl; auto with zarith.
+ apply Zle_trans with ([|ih|] * base); auto with zarith.
+ unfold phi2; case (phi_bounded il); auto with zarith.
+ intros ih1 il1.
+ change [||WW ih1 il1||] with (phi2 ih1 il1).
+ intros Hihl1.
+ generalize (spec_sub_c il il1).
+ case sub31c; intros il2 Hil2.
+ simpl interp_carry in Hil2.
+ generalize (spec_compare ih ih1); case compare31.
+ unfold interp_carry.
+ intros H1; split.
+ rewrite Zpower_2, <- Hihl1.
+ unfold phi2; ring[Hil2 H1].
+ replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2; rewrite H1, Hil2; ring.
+ unfold interp_carry.
+ intros H1; contradict Hs1.
+ apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
+ unfold phi2.
+ case (phi_bounded il); intros _ H2.
+ apply Zlt_le_trans with (([|ih|] + 1) * base + 0).
+ rewrite Zmult_plus_distr_l, Zplus_0_r; auto with zarith.
+ case (phi_bounded il1); intros H3 _.
+ apply Zplus_le_compat; auto with zarith.
+ unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base.
+ rewrite Zpower_2, <- Hihl1, Hil2.
+ intros H1.
+ case (Zle_lt_or_eq ([|ih1|] + 1) ([|ih|])); auto with zarith.
+ intros H2; contradict Hs2; apply Zle_not_lt.
+ replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
+ unfold phi2.
+ case (phi_bounded il); intros Hpil _.
+ assert (Hl1l: [|il1|] <= [|il|]).
+ case (phi_bounded il2); rewrite Hil2; auto with zarith.
+ assert ([|ih1|] * base + 2 * [|s|] + 1 <= [|ih|] * base); auto with zarith.
+ case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps.
+ case (phi_bounded ih1); intros Hpih1 _; auto with zarith.
+ apply Zle_trans with (([|ih1|] + 2) * base); auto with zarith.
+ rewrite Zmult_plus_distr_l.
+ assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
+ rewrite Hihl1, Hbin; auto.
+ intros H2; split.
+ unfold phi2; rewrite <- H2; ring.
+ replace (base + ([|il|] - [|il1|])) with (phi2 ih il - ([|s|] * [|s|])).
+ rewrite <-Hbin in Hs2; auto with zarith.
+ rewrite <- Hihl1; unfold phi2; rewrite <- H2; ring.
+ unfold interp_carry in Hil2 |- *.
+ unfold interp_carry; change (1 * 2 ^ Z_of_nat size) with base.
+ assert (Hsih: [|ih - 1|] = [|ih|] - 1).
+ rewrite spec_sub, Zmod_small; auto; change [|1|] with 1.
+ case (phi_bounded ih); intros H1 H2.
+ generalize Hih; change (2 ^ Z_of_nat size / 4) with 536870912.
+ split; auto with zarith.
+ generalize (spec_compare (ih - 1) ih1); case compare31.
+ rewrite Hsih.
+ intros H1; split.
+ rewrite Zpower_2, <- Hihl1.
+ unfold phi2; rewrite <-H1.
+ apply trans_equal with ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])).
+ ring.
+ rewrite <-Hil2.
+ change (2 ^ Z_of_nat size) with base; ring.
+ replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2.
+ rewrite <-H1.
+ ring_simplify.
+ apply trans_equal with (base + ([|il|] - [|il1|])).
+ ring.
+ rewrite <-Hil2.
+ change (2 ^ Z_of_nat size) with base; ring.
+ rewrite Hsih; intros H1.
+ assert (He: [|ih|] = [|ih1|]).
+ apply Zle_antisym; auto with zarith.
+ case (Zle_or_lt [|ih1|] [|ih|]); auto; intros H2.
+ contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
+ unfold phi2.
+ case (phi_bounded il); change (2 ^ Z_of_nat size) with base;
+ intros _ Hpil1.
+ apply Zlt_le_trans with (([|ih|] + 1) * base).
+ rewrite Zmult_plus_distr_l, Zmult_1_l; auto with zarith.
+ case (phi_bounded il1); intros Hpil2 _.
+ apply Zle_trans with (([|ih1|]) * base); auto with zarith.
+ rewrite Zpower_2, <-Hihl1; unfold phi2; rewrite <-He.
+ contradict Hs1; apply Zlt_not_le; rewrite Zpower_2, <-Hihl1.
+ unfold phi2; rewrite He.
+ assert (phi il - phi il1 < 0); auto with zarith.
+ rewrite <-Hil2.
+ case (phi_bounded il2); auto with zarith.
+ intros H1.
+ rewrite Zpower_2, <-Hihl1.
+ case (Zle_lt_or_eq ([|ih1|] + 2) [|ih|]); auto with zarith.
+ intros H2; contradict Hs2; apply Zle_not_lt.
+ replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
+ unfold phi2.
+ assert ([|ih1|] * base + 2 * phi s + 1 <= [|ih|] * base + ([|il|] - [|il1|]));
+ auto with zarith.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z_of_nat size) with (-base).
+ case (phi_bounded il2); intros Hpil2 _.
+ apply Zle_trans with ([|ih|] * base + - base); auto with zarith.
+ case (phi_bounded s); change (2 ^ Z_of_nat size) with base; intros _ Hps.
+ assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
+ apply Zle_trans with ([|ih1|] * base + 2 * base); auto with zarith.
+ assert (Hi: ([|ih1|] + 3) * base <= [|ih|] * base); auto with zarith.
+ rewrite Zmult_plus_distr_l in Hi; auto with zarith.
+ rewrite Hihl1, Hbin; auto.
+ intros H2; unfold phi2; rewrite <-H2.
+ split.
+ replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z_of_nat size) with (-base); ring.
+ replace (base + [|il2|]) with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2; rewrite <-H2.
+ replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z_of_nat size) with (-base); ring.
+ Qed.
+
+ (** [iszero] *)
+
+ Let w_eq0 := int31_op.(znz_eq0).
+
+ Lemma spec_eq0 : forall x, w_eq0 x = true -> [|x|] = 0.
+ Proof.
+ clear; unfold w_eq0, znz_eq0; simpl.
+ unfold compare31; simpl; intros.
+ change [|0|] with 0 in H.
+ apply Zcompare_Eq_eq.
+ now destruct ([|x|] ?= 0).
+ Qed.
+
+ (* Even *)
+
+ Let w_is_even := int31_op.(znz_is_even).
+
+ Lemma spec_is_even : forall x,
+ if w_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ Proof.
+ unfold w_is_even; simpl; intros.
+ generalize (spec_div x 2).
+ destruct (x/2)%int31 as (q,r); intros.
+ unfold compare31.
+ change [|2|] with 2 in H.
+ change [|0|] with 0.
+ destruct H; auto with zarith.
+ replace ([|x|] mod 2) with [|r|].
+ destruct H; auto with zarith.
+ case_eq ([|r|] ?= 0)%Z; intros.
+ apply Zcompare_Eq_eq; auto.
+ change ([|r|] < 0)%Z in H; auto with zarith.
+ change ([|r|] > 0)%Z in H; auto with zarith.
+ apply Zmod_unique with [|q|]; auto with zarith.
+ Qed.
+
+ Definition int31_spec : znz_spec int31_op.
+ split.
+ exact phi_bounded.
+ exact positive_to_int31_spec.
+ exact spec_zdigits.
+ exact spec_more_than_1_digit.
+
+ exact spec_0.
+ exact spec_1.
+ exact spec_Bm1.
+
+ exact spec_compare.
+ exact spec_eq0.
+
+ exact spec_opp_c.
+ exact spec_opp.
+ exact spec_opp_carry.
+
+ exact spec_succ_c.
+ exact spec_add_c.
+ exact spec_add_carry_c.
+ exact spec_succ.
+ exact spec_add.
+ exact spec_add_carry.
+
+ exact spec_pred_c.
+ exact spec_sub_c.
+ exact spec_sub_carry_c.
+ exact spec_pred.
+ exact spec_sub.
+ exact spec_sub_carry.
+
+ exact spec_mul_c.
+ exact spec_mul.
+ exact spec_square_c.
+
+ exact spec_div21.
+ intros; apply spec_div; auto.
+ exact spec_div.
+
+ intros; unfold int31_op; simpl; apply spec_mod; auto.
+ exact spec_mod.
+
+ intros; apply spec_gcd; auto.
+ exact spec_gcd.
+
+ exact spec_head00.
+ exact spec_head0.
+ exact spec_tail00.
+ exact spec_tail0.
+
+ exact spec_add_mul_div.
+ exact spec_pos_mod.
+
+ exact spec_is_even.
+ exact spec_sqrt2.
+ exact spec_sqrt.
+ Qed.
+
+End Int31_Spec.
+
+
+Module Int31Cyclic <: CyclicType.
+ Definition w := int31.
+ Definition w_op := int31_op.
+ Definition w_spec := int31_spec.
+End Int31Cyclic.
diff --git a/theories/Numbers/Cyclic/Int31/Int31.v b/theories/Numbers/Cyclic/Int31/Int31.v
new file mode 100644
index 00000000..154b436b
--- /dev/null
+++ b/theories/Numbers/Cyclic/Int31/Int31.v
@@ -0,0 +1,469 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: Int31.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
+
+Require Import NaryFunctions.
+Require Import Wf_nat.
+Require Export ZArith.
+Require Export DoubleType.
+
+Unset Boxed Definitions.
+
+(** * 31-bit integers *)
+
+(** This file contains basic definitions of a 31-bit integer
+ arithmetic. In fact it is more general than that. The only reason
+ for this use of 31 is the underlying mecanism for hardware-efficient
+ computations by A. Spiwack. Apart from this, a switch to, say,
+ 63-bit integers is now just a matter of replacing every occurences
+ of 31 by 63. This is actually made possible by the use of
+ dependently-typed n-ary constructions for the inductive type
+ [int31], its constructor [I31] and any pattern matching on it.
+ If you modify this file, please preserve this genericity. *)
+
+Definition size := 31%nat.
+
+(** Digits *)
+
+Inductive digits : Type := D0 | D1.
+
+(** The type of 31-bit integers *)
+
+(** The type [int31] has a unique constructor [I31] that expects
+ 31 arguments of type [digits]. *)
+
+Inductive int31 : Type := I31 : nfun digits size int31.
+
+(* spiwack: Registration of the type of integers, so that the matchs in
+ the functions below perform dynamic decompilation (otherwise some segfault
+ occur when they are applied to one non-closed term and one closed term). *)
+Register digits as int31 bits in "coq_int31" by True.
+Register int31 as int31 type in "coq_int31" by True.
+
+Delimit Scope int31_scope with int31.
+Bind Scope int31_scope with int31.
+Open Scope int31_scope.
+
+(** * Constants *)
+
+(** Zero is [I31 D0 ... D0] *)
+Definition On : int31 := Eval compute in napply_cst _ _ D0 size I31.
+
+(** One is [I31 D0 ... D0 D1] *)
+Definition In : int31 := Eval compute in (napply_cst _ _ D0 (size-1) I31) D1.
+
+(** The biggest integer is [I31 D1 ... D1], corresponding to [(2^size)-1] *)
+Definition Tn : int31 := Eval compute in napply_cst _ _ D1 size I31.
+
+(** Two is [I31 D0 ... D0 D1 D0] *)
+Definition Twon : int31 := Eval compute in (napply_cst _ _ D0 (size-2) I31) D1 D0.
+
+(** * Bits manipulation *)
+
+
+(** [sneakr b x] shifts [x] to the right by one bit.
+ Rightmost digit is lost while leftmost digit becomes [b].
+ Pseudo-code is
+ [ match x with (I31 d0 ... dN) => I31 b d0 ... d(N-1) end ]
+*)
+
+Definition sneakr : digits -> int31 -> int31 := Eval compute in
+ fun b => int31_rect _ (napply_except_last _ _ (size-1) (I31 b)).
+
+(** [sneakl b x] shifts [x] to the left by one bit.
+ Leftmost digit is lost while rightmost digit becomes [b].
+ Pseudo-code is
+ [ match x with (I31 d0 ... dN) => I31 d1 ... dN b end ]
+*)
+
+Definition sneakl : digits -> int31 -> int31 := Eval compute in
+ fun b => int31_rect _ (fun _ => napply_then_last _ _ b (size-1) I31).
+
+
+(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct
+ consequences of [sneakl] and [sneakr]. *)
+
+Definition shiftl := sneakl D0.
+Definition shiftr := sneakr D0.
+Definition twice := sneakl D0.
+Definition twice_plus_one := sneakl D1.
+
+(** [firstl x] returns the leftmost digit of number [x].
+ Pseudo-code is [ match x with (I31 d0 ... dN) => d0 end ] *)
+
+Definition firstl : int31 -> digits := Eval compute in
+ int31_rect _ (fun d => napply_discard _ _ d (size-1)).
+
+(** [firstr x] returns the rightmost digit of number [x].
+ Pseudo-code is [ match x with (I31 d0 ... dN) => dN end ] *)
+
+Definition firstr : int31 -> digits := Eval compute in
+ int31_rect _ (napply_discard _ _ (fun d=>d) (size-1)).
+
+(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is
+ [ match x with (I31 D0 ... D0) => true | _ => false end ] *)
+
+Definition iszero : int31 -> bool := Eval compute in
+ let f d b := match d with D0 => b | D1 => false end
+ in int31_rect _ (nfold_bis _ _ f true size).
+
+(* NB: DO NOT transform the above match in a nicer (if then else).
+ It seems to work, but later "unfold iszero" takes forever. *)
+
+
+(** [base] is [2^31], obtained via iterations of [Zdouble].
+ It can also be seen as the smallest b > 0 s.t. phi_inv b = 0
+ (see below) *)
+
+Definition base := Eval compute in
+ iter_nat size Z Zdouble 1%Z.
+
+(** * Recursors *)
+
+Fixpoint recl_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
+ (i:int31) : A :=
+ match n with
+ | O => case0
+ | S next =>
+ if iszero i then
+ case0
+ else
+ let si := shiftl i in
+ caserec (firstl i) si (recl_aux next A case0 caserec si)
+ end.
+
+Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
+ (i:int31) : A :=
+ match n with
+ | O => case0
+ | S next =>
+ if iszero i then
+ case0
+ else
+ let si := shiftr i in
+ caserec (firstr i) si (recr_aux next A case0 caserec si)
+ end.
+
+Definition recl := recl_aux size.
+Definition recr := recr_aux size.
+
+(** * Conversions *)
+
+(** From int31 to Z, we simply iterates [Zdouble] or [Zdouble_plus_one]. *)
+
+Definition phi : int31 -> Z :=
+ recr Z (0%Z)
+ (fun b _ => match b with D0 => Zdouble | D1 => Zdouble_plus_one end).
+
+(** From positive to int31. An abstract definition could be :
+ [ phi_inv (2n) = 2*(phi_inv n) /\
+ phi_inv 2n+1 = 2*(phi_inv n) + 1 ] *)
+
+Fixpoint phi_inv_positive p :=
+ match p with
+ | xI q => twice_plus_one (phi_inv_positive q)
+ | xO q => twice (phi_inv_positive q)
+ | xH => In
+ end.
+
+(** The negative part : 2-complement *)
+
+Fixpoint complement_negative p :=
+ match p with
+ | xI q => twice (complement_negative q)
+ | xO q => twice_plus_one (complement_negative q)
+ | xH => twice Tn
+ end.
+
+(** A simple incrementation function *)
+
+Definition incr : int31 -> int31 :=
+ recr int31 In
+ (fun b si rec => match b with
+ | D0 => sneakl D1 si
+ | D1 => sneakl D0 rec end).
+
+(** We can now define the conversion from Z to int31. *)
+
+Definition phi_inv : Z -> int31 := fun n =>
+ match n with
+ | Z0 => On
+ | Zpos p => phi_inv_positive p
+ | Zneg p => incr (complement_negative p)
+ end.
+
+(** [phi_inv2] is similar to [phi_inv] but returns a double word
+ [zn2z int31] *)
+
+Definition phi_inv2 n :=
+ match n with
+ | Z0 => W0
+ | _ => WW (phi_inv (n/base)%Z) (phi_inv n)
+ end.
+
+(** [phi2] is similar to [phi] but takes a double word (two args) *)
+
+Definition phi2 nh nl :=
+ ((phi nh)*base+(phi nl))%Z.
+
+(** * Addition *)
+
+(** Addition modulo [2^31] *)
+
+Definition add31 (n m : int31) := phi_inv ((phi n)+(phi m)).
+Notation "n + m" := (add31 n m) : int31_scope.
+
+(** Addition with carry (the result is thus exact) *)
+
+(* spiwack : when executed in non-compiled*)
+(* mode, (phi n)+(phi m) is computed twice*)
+(* it may be considered to optimize it *)
+
+Definition add31c (n m : int31) :=
+ let npm := n+m in
+ match (phi npm ?= (phi n)+(phi m))%Z with
+ | Eq => C0 npm
+ | _ => C1 npm
+ end.
+Notation "n '+c' m" := (add31c n m) (at level 50, no associativity) : int31_scope.
+
+(** Addition plus one with carry (the result is thus exact) *)
+
+Definition add31carryc (n m : int31) :=
+ let npmpone_exact := ((phi n)+(phi m)+1)%Z in
+ let npmpone := phi_inv npmpone_exact in
+ match (phi npmpone ?= npmpone_exact)%Z with
+ | Eq => C0 npmpone
+ | _ => C1 npmpone
+ end.
+
+(** * Substraction *)
+
+(** Subtraction modulo [2^31] *)
+
+Definition sub31 (n m : int31) := phi_inv ((phi n)-(phi m)).
+Notation "n - m" := (sub31 n m) : int31_scope.
+
+(** Subtraction with carry (thus exact) *)
+
+Definition sub31c (n m : int31) :=
+ let nmm := n-m in
+ match (phi nmm ?= (phi n)-(phi m))%Z with
+ | Eq => C0 nmm
+ | _ => C1 nmm
+ end.
+Notation "n '-c' m" := (sub31c n m) (at level 50, no associativity) : int31_scope.
+
+(** subtraction minus one with carry (thus exact) *)
+
+Definition sub31carryc (n m : int31) :=
+ let nmmmone_exact := ((phi n)-(phi m)-1)%Z in
+ let nmmmone := phi_inv nmmmone_exact in
+ match (phi nmmmone ?= nmmmone_exact)%Z with
+ | Eq => C0 nmmmone
+ | _ => C1 nmmmone
+ end.
+
+
+(** Multiplication *)
+
+(** multiplication modulo [2^31] *)
+
+Definition mul31 (n m : int31) := phi_inv ((phi n)*(phi m)).
+Notation "n * m" := (mul31 n m) : int31_scope.
+
+(** multiplication with double word result (thus exact) *)
+
+Definition mul31c (n m : int31) := phi_inv2 ((phi n)*(phi m)).
+Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scope.
+
+
+(** * Division *)
+
+(** Division of a double size word modulo [2^31] *)
+
+Definition div3121 (nh nl m : int31) :=
+ let (q,r) := Zdiv_eucl (phi2 nh nl) (phi m) in
+ (phi_inv q, phi_inv r).
+
+(** Division modulo [2^31] *)
+
+Definition div31 (n m : int31) :=
+ let (q,r) := Zdiv_eucl (phi n) (phi m) in
+ (phi_inv q, phi_inv r).
+Notation "n / m" := (div31 n m) : int31_scope.
+
+
+(** * Unsigned comparison *)
+
+Definition compare31 (n m : int31) := ((phi n)?=(phi m))%Z.
+Notation "n ?= m" := (compare31 n m) (at level 70, no associativity) : int31_scope.
+
+
+(** Computing the [i]-th iterate of a function:
+ [iter_int31 i A f = f^i] *)
+
+Definition iter_int31 i A f :=
+ recr (A->A) (fun x => x)
+ (fun b si rec => match b with
+ | D0 => fun x => rec (rec x)
+ | D1 => fun x => f (rec (rec x))
+ end)
+ i.
+
+(** Combining the [(31-p)] low bits of [i] above the [p] high bits of [j]:
+ [addmuldiv31 p i j = i*2^p+j/2^(31-p)] (modulo [2^31]) *)
+
+Definition addmuldiv31 p i j :=
+ let (res, _ ) :=
+ iter_int31 p (int31*int31)
+ (fun ij => let (i,j) := ij in (sneakl (firstl j) i, shiftl j))
+ (i,j)
+ in
+ res.
+
+
+Register add31 as int31 plus in "coq_int31" by True.
+Register add31c as int31 plusc in "coq_int31" by True.
+Register add31carryc as int31 pluscarryc in "coq_int31" by True.
+Register sub31 as int31 minus in "coq_int31" by True.
+Register sub31c as int31 minusc in "coq_int31" by True.
+Register sub31carryc as int31 minuscarryc in "coq_int31" by True.
+Register mul31 as int31 times in "coq_int31" by True.
+Register mul31c as int31 timesc in "coq_int31" by True.
+Register div3121 as int31 div21 in "coq_int31" by True.
+Register div31 as int31 div in "coq_int31" by True.
+Register compare31 as int31 compare in "coq_int31" by True.
+Register addmuldiv31 as int31 addmuldiv in "coq_int31" by True.
+
+Definition gcd31 (i j:int31) :=
+ (fix euler (guard:nat) (i j:int31) {struct guard} :=
+ match guard with
+ | O => In
+ | S p => match j ?= On with
+ | Eq => i
+ | _ => euler p j (let (_, r ) := i/j in r)
+ end
+ end)
+ (2*size)%nat i j.
+
+(** Square root functions using newton iteration
+ we use a very naive upper-bound on the iteration
+ 2^31 instead of the usual 31.
+**)
+
+
+
+Definition sqrt31_step (rec: int31 -> int31 -> int31) (i j: int31) :=
+Eval lazy delta [Twon] in
+ let (quo,_) := i/j in
+ match quo ?= j with
+ Lt => rec i (fst ((j + quo)/Twon))
+ | _ => j
+ end.
+
+Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31)
+ (i j: int31) {struct n} : int31 :=
+ sqrt31_step
+ (match n with
+ O => rec
+ | S n => (iter31_sqrt n (iter31_sqrt n rec))
+ end) i j.
+
+Definition sqrt31 i :=
+Eval lazy delta [On In Twon] in
+ match compare31 In i with
+ Gt => On
+ | Eq => In
+ | Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon))
+ end.
+
+Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z_of_nat size - 1)) In On).
+
+Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31)
+ (ih il j: int31) :=
+Eval lazy delta [Twon v30] in
+ match ih ?= j with Eq => j | Gt => j | _ =>
+ let (quo,_) := div3121 ih il j in
+ match quo ?= j with
+ Lt => let m := match j +c quo with
+ C0 m1 => fst (m1/Twon)
+ | C1 m1 => fst (m1/Twon) + v30
+ end in rec ih il m
+ | _ => j
+ end end.
+
+Fixpoint iter312_sqrt (n: nat)
+ (rec: int31 -> int31 -> int31 -> int31)
+ (ih il j: int31) {struct n} : int31 :=
+ sqrt312_step
+ (match n with
+ O => rec
+ | S n => (iter312_sqrt n (iter312_sqrt n rec))
+ end) ih il j.
+
+Definition sqrt312 ih il :=
+Eval lazy delta [On In] in
+ let s := iter312_sqrt 31 (fun ih il j => j) ih il Tn in
+ match s *c s with
+ W0 => (On, C0 On) (* impossible *)
+ | WW ih1 il1 =>
+ match il -c il1 with
+ C0 il2 =>
+ match ih ?= ih1 with
+ Gt => (s, C1 il2)
+ | _ => (s, C0 il2)
+ end
+ | C1 il2 =>
+ match (ih - In) ?= ih1 with (* we could parametrize ih - 1 *)
+ Gt => (s, C1 il2)
+ | _ => (s, C0 il2)
+ end
+ end
+ end.
+
+
+Fixpoint p2i n p : (N*int31)%type :=
+ match n with
+ | O => (Npos p, On)
+ | S n => match p with
+ | xO p => let (r,i) := p2i n p in (r, Twon*i)
+ | xI p => let (r,i) := p2i n p in (r, Twon*i+In)
+ | xH => (N0, In)
+ end
+ end.
+
+Definition positive_to_int31 (p:positive) := p2i size p.
+
+(** Constant 31 converted into type int31.
+ It is used as default answer for numbers of zeros
+ in [head0] and [tail0] *)
+
+Definition T31 : int31 := Eval compute in phi_inv (Z_of_nat size).
+
+Definition head031 (i:int31) :=
+ recl _ (fun _ => T31)
+ (fun b si rec n => match b with
+ | D0 => rec (add31 n In)
+ | D1 => n
+ end)
+ i On.
+
+Definition tail031 (i:int31) :=
+ recr _ (fun _ => T31)
+ (fun b si rec n => match b with
+ | D0 => rec (add31 n In)
+ | D1 => n
+ end)
+ i On.
+
+Register head031 as int31 head0 in "coq_int31" by True.
+Register tail031 as int31 tail0 in "coq_int31" by True.
diff --git a/theories/Numbers/Cyclic/ZModulo/ZModulo.v b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
new file mode 100644
index 00000000..7c770e97
--- /dev/null
+++ b/theories/Numbers/Cyclic/ZModulo/ZModulo.v
@@ -0,0 +1,946 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: ZModulo.v 11033 2008-06-01 22:56:50Z letouzey $ *)
+
+(** * Type [Z] viewed modulo a particular constant corresponds to [Z/nZ]
+ as defined abstractly in CyclicAxioms. *)
+
+(** Even if the construction provided here is not reused for building
+ the efficient arbitrary precision numbers, it provides a simple
+ implementation of CyclicAxioms, hence ensuring its coherence. *)
+
+Set Implicit Arguments.
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import CyclicAxioms.
+
+Open Local Scope Z_scope.
+
+Section ZModulo.
+
+ Variable digits : positive.
+ Hypothesis digits_ne_1 : digits <> 1%positive.
+
+ Definition wB := base digits.
+
+ Definition znz := Z.
+ Definition znz_digits := digits.
+ Definition znz_zdigits := Zpos digits.
+ Definition znz_to_Z x := x mod wB.
+
+ Notation "[| x |]" := (znz_to_Z x) (at level 0, x at level 99).
+
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB znz_to_Z c) (at level 0, x at level 99).
+
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB znz_to_Z c) (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wB znz_to_Z x) (at level 0, x at level 99).
+
+ Lemma spec_more_than_1_digit: 1 < Zpos digits.
+ Proof.
+ unfold znz_digits.
+ generalize digits_ne_1; destruct digits; auto.
+ destruct 1; auto.
+ Qed.
+ Let digits_gt_1 := spec_more_than_1_digit.
+
+ Lemma wB_pos : wB > 0.
+ Proof.
+ unfold wB, base; auto with zarith.
+ Qed.
+ Hint Resolve wB_pos.
+
+ Lemma spec_to_Z_1 : forall x, 0 <= [|x|].
+ Proof.
+ unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
+ Qed.
+
+ Lemma spec_to_Z_2 : forall x, [|x|] < wB.
+ Proof.
+ unfold znz_to_Z; intros; destruct (Z_mod_lt x wB wB_pos); auto.
+ Qed.
+ Hint Resolve spec_to_Z_1 spec_to_Z_2.
+
+ Lemma spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Proof.
+ auto.
+ Qed.
+
+ Definition znz_of_pos x :=
+ let (q,r) := Zdiv_eucl_POS x wB in (N_of_Z q, r).
+
+ Lemma spec_of_pos : forall p,
+ Zpos p = (Z_of_N (fst (znz_of_pos p)))*wB + [|(snd (znz_of_pos p))|].
+ Proof.
+ intros; unfold znz_of_pos; simpl.
+ generalize (Z_div_mod_POS wB wB_pos p).
+ destruct (Zdiv_eucl_POS p wB); simpl; destruct 1.
+ unfold znz_to_Z; rewrite Zmod_small; auto.
+ assert (0 <= z).
+ replace z with (Zpos p / wB) by
+ (symmetry; apply Zdiv_unique with z0; auto).
+ apply Z_div_pos; auto with zarith.
+ replace (Z_of_N (N_of_Z z)) with z by
+ (destruct z; simpl; auto; elim H1; auto).
+ rewrite Zmult_comm; auto.
+ Qed.
+
+ Lemma spec_zdigits : [|znz_zdigits|] = Zpos znz_digits.
+ Proof.
+ unfold znz_to_Z, znz_zdigits, znz_digits.
+ apply Zmod_small.
+ unfold wB, base.
+ split; auto with zarith.
+ apply Zpower2_lt_lin; auto with zarith.
+ Qed.
+
+ Definition znz_0 := 0.
+ Definition znz_1 := 1.
+ Definition znz_Bm1 := wB - 1.
+
+ Lemma spec_0 : [|znz_0|] = 0.
+ Proof.
+ unfold znz_to_Z, znz_0.
+ apply Zmod_small; generalize wB_pos; auto with zarith.
+ Qed.
+
+ Lemma spec_1 : [|znz_1|] = 1.
+ Proof.
+ unfold znz_to_Z, znz_1.
+ apply Zmod_small; split; auto with zarith.
+ unfold wB, base.
+ apply Zlt_trans with (Zpos digits); auto.
+ apply Zpower2_lt_lin; auto with zarith.
+ Qed.
+
+ Lemma spec_Bm1 : [|znz_Bm1|] = wB - 1.
+ Proof.
+ unfold znz_to_Z, znz_Bm1.
+ apply Zmod_small; split; auto with zarith.
+ unfold wB, base.
+ cut (1 <= 2 ^ Zpos digits); auto with zarith.
+ apply Zle_trans with (Zpos digits); auto with zarith.
+ apply Zpower2_le_lin; auto with zarith.
+ Qed.
+
+ Definition znz_compare x y := Zcompare [|x|] [|y|].
+
+ Lemma spec_compare : forall x y,
+ match znz_compare x y with
+ | Eq => [|x|] = [|y|]
+ | Lt => [|x|] < [|y|]
+ | Gt => [|x|] > [|y|]
+ end.
+ Proof.
+ intros; unfold znz_compare, Zlt, Zgt.
+ case_eq (Zcompare [|x|] [|y|]); auto.
+ intros; apply Zcompare_Eq_eq; auto.
+ Qed.
+
+ Definition znz_eq0 x :=
+ match [|x|] with Z0 => true | _ => false end.
+
+ Lemma spec_eq0 : forall x, znz_eq0 x = true -> [|x|] = 0.
+ Proof.
+ unfold znz_eq0; intros; now destruct [|x|].
+ Qed.
+
+ Definition znz_opp_c x :=
+ if znz_eq0 x then C0 0 else C1 (- x).
+ Definition znz_opp x := - x.
+ Definition znz_opp_carry x := - x - 1.
+
+ Lemma spec_opp_c : forall x, [-|znz_opp_c x|] = -[|x|].
+ Proof.
+ intros; unfold znz_opp_c, znz_to_Z; auto.
+ case_eq (znz_eq0 x); intros; unfold interp_carry.
+ fold [|x|]; rewrite (spec_eq0 x H); auto.
+ assert (x mod wB <> 0).
+ unfold znz_eq0, znz_to_Z in H.
+ intro H0; rewrite H0 in H; discriminate.
+ rewrite Z_mod_nz_opp_full; auto with zarith.
+ Qed.
+
+ Lemma spec_opp : forall x, [|znz_opp x|] = (-[|x|]) mod wB.
+ Proof.
+ intros; unfold znz_opp, znz_to_Z; auto.
+ change ((- x) mod wB = (0 - (x mod wB)) mod wB).
+ rewrite Zminus_mod_idemp_r; simpl; auto.
+ Qed.
+
+ Lemma spec_opp_carry : forall x, [|znz_opp_carry x|] = wB - [|x|] - 1.
+ Proof.
+ intros; unfold znz_opp_carry, znz_to_Z; auto.
+ replace (- x - 1) with (- 1 - x) by omega.
+ rewrite <- Zminus_mod_idemp_r.
+ replace ( -1 - x mod wB) with (0 + ( -1 - x mod wB)) by omega.
+ rewrite <- (Z_mod_same_full wB).
+ rewrite Zplus_mod_idemp_l.
+ replace (wB + (-1 - x mod wB)) with (wB - x mod wB -1) by omega.
+ apply Zmod_small.
+ generalize (Z_mod_lt x wB wB_pos); omega.
+ Qed.
+
+ Definition znz_succ_c x :=
+ let y := Zsucc x in
+ if znz_eq0 y then C1 0 else C0 y.
+
+ Definition znz_add_c x y :=
+ let z := [|x|] + [|y|] in
+ if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
+
+ Definition znz_add_carry_c x y :=
+ let z := [|x|]+[|y|]+1 in
+ if Z_lt_le_dec z wB then C0 z else C1 (z-wB).
+
+ Definition znz_succ := Zsucc.
+ Definition znz_add := Zplus.
+ Definition znz_add_carry x y := x + y + 1.
+
+ Lemma Zmod_equal :
+ forall x y z, z>0 -> (x-y) mod z = 0 -> x mod z = y mod z.
+ Proof.
+ intros.
+ generalize (Z_div_mod_eq (x-y) z H); rewrite H0, Zplus_0_r.
+ remember ((x-y)/z) as k.
+ intros H1; symmetry in H1; rewrite <- Zeq_plus_swap in H1.
+ subst x.
+ rewrite Zplus_comm, Zmult_comm, Z_mod_plus; auto.
+ Qed.
+
+ Lemma spec_succ_c : forall x, [+|znz_succ_c x|] = [|x|] + 1.
+ Proof.
+ intros; unfold znz_succ_c, znz_to_Z, Zsucc.
+ case_eq (znz_eq0 (x+1)); intros; unfold interp_carry.
+
+ rewrite Zmult_1_l.
+ replace (wB + 0 mod wB) with wB by auto with zarith.
+ symmetry; rewrite Zeq_plus_swap.
+ assert ((x+1) mod wB = 0) by (apply spec_eq0; auto).
+ replace (wB-1) with ((wB-1) mod wB) by
+ (apply Zmod_small; generalize wB_pos; omega).
+ rewrite <- Zminus_mod_idemp_l; rewrite Z_mod_same; simpl; auto.
+ apply Zmod_equal; auto.
+
+ assert ((x+1) mod wB <> 0).
+ unfold znz_eq0, znz_to_Z in *; now destruct ((x+1) mod wB).
+ assert (x mod wB + 1 <> wB).
+ contradict H0.
+ rewrite Zeq_plus_swap in H0; simpl in H0.
+ rewrite <- Zplus_mod_idemp_l; rewrite H0.
+ replace (wB-1+1) with wB; auto with zarith; apply Z_mod_same; auto.
+ rewrite <- Zplus_mod_idemp_l.
+ apply Zmod_small.
+ generalize (Z_mod_lt x wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_add_c : forall x y, [+|znz_add_c x y|] = [|x|] + [|y|].
+ Proof.
+ intros; unfold znz_add_c, znz_to_Z, interp_carry.
+ destruct Z_lt_le_dec.
+ apply Zmod_small;
+ generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap.
+ apply Zmod_small;
+ generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_add_carry_c : forall x y, [+|znz_add_carry_c x y|] = [|x|] + [|y|] + 1.
+ Proof.
+ intros; unfold znz_add_carry_c, znz_to_Z, interp_carry.
+ destruct Z_lt_le_dec.
+ apply Zmod_small;
+ generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ rewrite Zmult_1_l, Zplus_comm, Zeq_plus_swap.
+ apply Zmod_small;
+ generalize (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_succ : forall x, [|znz_succ x|] = ([|x|] + 1) mod wB.
+ Proof.
+ intros; unfold znz_succ, znz_to_Z, Zsucc.
+ symmetry; apply Zplus_mod_idemp_l.
+ Qed.
+
+ Lemma spec_add : forall x y, [|znz_add x y|] = ([|x|] + [|y|]) mod wB.
+ Proof.
+ intros; unfold znz_add, znz_to_Z; apply Zplus_mod.
+ Qed.
+
+ Lemma spec_add_carry :
+ forall x y, [|znz_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
+ Proof.
+ intros; unfold znz_add_carry, znz_to_Z.
+ rewrite <- Zplus_mod_idemp_l.
+ rewrite (Zplus_mod x y).
+ rewrite Zplus_mod_idemp_l; auto.
+ Qed.
+
+ Definition znz_pred_c x :=
+ if znz_eq0 x then C1 (wB-1) else C0 (x-1).
+
+ Definition znz_sub_c x y :=
+ let z := [|x|]-[|y|] in
+ if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
+
+ Definition znz_sub_carry_c x y :=
+ let z := [|x|]-[|y|]-1 in
+ if Z_lt_le_dec z 0 then C1 (wB+z) else C0 z.
+
+ Definition znz_pred := Zpred.
+ Definition znz_sub := Zminus.
+ Definition znz_sub_carry x y := x - y - 1.
+
+ Lemma spec_pred_c : forall x, [-|znz_pred_c x|] = [|x|] - 1.
+ Proof.
+ intros; unfold znz_pred_c, znz_to_Z, interp_carry.
+ case_eq (znz_eq0 x); intros.
+ fold [|x|]; rewrite spec_eq0; auto.
+ replace ((wB-1) mod wB) with (wB-1); auto with zarith.
+ symmetry; apply Zmod_small; generalize wB_pos; omega.
+
+ assert (x mod wB <> 0).
+ unfold znz_eq0, znz_to_Z in *; now destruct (x mod wB).
+ rewrite <- Zminus_mod_idemp_l.
+ apply Zmod_small.
+ generalize (Z_mod_lt x wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_sub_c : forall x y, [-|znz_sub_c x y|] = [|x|] - [|y|].
+ Proof.
+ intros; unfold znz_sub_c, znz_to_Z, interp_carry.
+ destruct Z_lt_le_dec.
+ replace ((wB + (x mod wB - y mod wB)) mod wB) with
+ (wB + (x mod wB - y mod wB)).
+ omega.
+ symmetry; apply Zmod_small.
+ generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+
+ apply Zmod_small.
+ generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_sub_carry_c : forall x y, [-|znz_sub_carry_c x y|] = [|x|] - [|y|] - 1.
+ Proof.
+ intros; unfold znz_sub_carry_c, znz_to_Z, interp_carry.
+ destruct Z_lt_le_dec.
+ replace ((wB + (x mod wB - y mod wB - 1)) mod wB) with
+ (wB + (x mod wB - y mod wB -1)).
+ omega.
+ symmetry; apply Zmod_small.
+ generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+
+ apply Zmod_small.
+ generalize wB_pos (Z_mod_lt x wB wB_pos) (Z_mod_lt y wB wB_pos); omega.
+ Qed.
+
+ Lemma spec_pred : forall x, [|znz_pred x|] = ([|x|] - 1) mod wB.
+ Proof.
+ intros; unfold znz_pred, znz_to_Z, Zpred.
+ rewrite <- Zplus_mod_idemp_l; auto.
+ Qed.
+
+ Lemma spec_sub : forall x y, [|znz_sub x y|] = ([|x|] - [|y|]) mod wB.
+ Proof.
+ intros; unfold znz_sub, znz_to_Z; apply Zminus_mod.
+ Qed.
+
+ Lemma spec_sub_carry :
+ forall x y, [|znz_sub_carry x y|] = ([|x|] - [|y|] - 1) mod wB.
+ Proof.
+ intros; unfold znz_sub_carry, znz_to_Z.
+ rewrite <- Zminus_mod_idemp_l.
+ rewrite (Zminus_mod x y).
+ rewrite Zminus_mod_idemp_l.
+ auto.
+ Qed.
+
+ Definition znz_mul_c x y :=
+ let (h,l) := Zdiv_eucl ([|x|]*[|y|]) wB in
+ if znz_eq0 h then if znz_eq0 l then W0 else WW h l else WW h l.
+
+ Definition znz_mul := Zmult.
+
+ Definition znz_square_c x := znz_mul_c x x.
+
+ Lemma spec_mul_c : forall x y, [|| znz_mul_c x y ||] = [|x|] * [|y|].
+ Proof.
+ intros; unfold znz_mul_c, zn2z_to_Z.
+ assert (Zdiv_eucl ([|x|]*[|y|]) wB = (([|x|]*[|y|])/wB,([|x|]*[|y|]) mod wB)).
+ unfold Zmod, Zdiv; destruct Zdiv_eucl; auto.
+ generalize (Z_div_mod ([|x|]*[|y|]) wB wB_pos); destruct Zdiv_eucl as (h,l).
+ destruct 1; injection H; clear H; intros.
+ rewrite H0.
+ assert ([|l|] = l).
+ apply Zmod_small; auto.
+ assert ([|h|] = h).
+ apply Zmod_small.
+ subst h.
+ split.
+ apply Z_div_pos; auto with zarith.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ apply Zmult_lt_compat; auto with zarith.
+ clear H H0 H1 H2.
+ case_eq (znz_eq0 h); simpl; intros.
+ case_eq (znz_eq0 l); simpl; intros.
+ rewrite <- H3, <- H4, (spec_eq0 h), (spec_eq0 l); auto with zarith.
+ rewrite H3, H4; auto with zarith.
+ rewrite H3, H4; auto with zarith.
+ Qed.
+
+ Lemma spec_mul : forall x y, [|znz_mul x y|] = ([|x|] * [|y|]) mod wB.
+ Proof.
+ intros; unfold znz_mul, znz_to_Z; apply Zmult_mod.
+ Qed.
+
+ Lemma spec_square_c : forall x, [|| znz_square_c x||] = [|x|] * [|x|].
+ Proof.
+ intros x; exact (spec_mul_c x x).
+ Qed.
+
+ Definition znz_div x y := Zdiv_eucl [|x|] [|y|].
+
+ Lemma spec_div : forall a b, 0 < [|b|] ->
+ let (q,r) := znz_div a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ intros; unfold znz_div.
+ assert ([|b|]>0) by auto with zarith.
+ assert (Zdiv_eucl [|a|] [|b|] = ([|a|]/[|b|], [|a|] mod [|b|])).
+ unfold Zmod, Zdiv; destruct Zdiv_eucl; auto.
+ generalize (Z_div_mod [|a|] [|b|] H0).
+ destruct Zdiv_eucl as (q,r); destruct 1; intros.
+ injection H1; clear H1; intros.
+ assert ([|r|]=r).
+ apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|];
+ auto with zarith.
+ assert ([|q|]=q).
+ apply Zmod_small.
+ subst q.
+ split.
+ apply Z_div_pos; auto with zarith.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ apply Zlt_le_trans with (wB*1).
+ rewrite Zmult_1_r; auto with zarith.
+ apply Zmult_le_compat; generalize wB_pos; auto with zarith.
+ rewrite H5, H6; rewrite Zmult_comm; auto with zarith.
+ Qed.
+
+ Definition znz_div_gt := znz_div.
+
+ Lemma spec_div_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ let (q,r) := znz_div_gt a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ intros.
+ apply spec_div; auto.
+ Qed.
+
+ Definition znz_mod x y := [|x|] mod [|y|].
+ Definition znz_mod_gt x y := [|x|] mod [|y|].
+
+ Lemma spec_mod : forall a b, 0 < [|b|] ->
+ [|znz_mod a b|] = [|a|] mod [|b|].
+ Proof.
+ intros; unfold znz_mod.
+ apply Zmod_small.
+ assert ([|b|]>0) by auto with zarith.
+ generalize (Z_mod_lt [|a|] [|b|] H0) (Z_mod_lt b wB wB_pos).
+ fold [|b|]; omega.
+ Qed.
+
+ Lemma spec_mod_gt : forall a b, [|a|] > [|b|] -> 0 < [|b|] ->
+ [|znz_mod_gt a b|] = [|a|] mod [|b|].
+ Proof.
+ intros; apply spec_mod; auto.
+ Qed.
+
+ Definition znz_gcd x y := Zgcd [|x|] [|y|].
+ Definition znz_gcd_gt x y := Zgcd [|x|] [|y|].
+
+ Lemma Zgcd_bound : forall a b, 0<=a -> 0<=b -> Zgcd a b <= Zmax a b.
+ Proof.
+ intros.
+ generalize (Zgcd_is_gcd a b); inversion_clear 1.
+ destruct H2; destruct H3; clear H4.
+ assert (H3:=Zgcd_is_pos a b).
+ destruct (Z_eq_dec (Zgcd a b) 0).
+ rewrite e; generalize (Zmax_spec a b); omega.
+ assert (0 <= q).
+ apply Zmult_le_reg_r with (Zgcd a b); auto with zarith.
+ destruct (Z_eq_dec q 0).
+
+ subst q; simpl in *; subst a; simpl; auto.
+ generalize (Zmax_spec 0 b) (Zabs_spec b); omega.
+
+ apply Zle_trans with a.
+ rewrite H1 at 2.
+ rewrite <- (Zmult_1_l (Zgcd a b)) at 1.
+ apply Zmult_le_compat; auto with zarith.
+ generalize (Zmax_spec a b); omega.
+ Qed.
+
+ Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|znz_gcd a b|].
+ Proof.
+ intros; unfold znz_gcd.
+ generalize (Z_mod_lt a wB wB_pos)(Z_mod_lt b wB wB_pos); intros.
+ fold [|a|] in *; fold [|b|] in *.
+ replace ([|Zgcd [|a|] [|b|]|]) with (Zgcd [|a|] [|b|]).
+ apply Zgcd_is_gcd.
+ symmetry; apply Zmod_small.
+ split.
+ apply Zgcd_is_pos.
+ apply Zle_lt_trans with (Zmax [|a|] [|b|]).
+ apply Zgcd_bound; auto with zarith.
+ generalize (Zmax_spec [|a|] [|b|]); omega.
+ Qed.
+
+ Lemma spec_gcd_gt : forall a b, [|a|] > [|b|] ->
+ Zis_gcd [|a|] [|b|] [|znz_gcd_gt a b|].
+ Proof.
+ intros. apply spec_gcd; auto.
+ Qed.
+
+ Definition znz_div21 a1 a2 b :=
+ Zdiv_eucl ([|a1|]*wB+[|a2|]) [|b|].
+
+ Lemma spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := znz_div21 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ intros; unfold znz_div21.
+ generalize (Z_mod_lt a1 wB wB_pos); fold [|a1|]; intros.
+ generalize (Z_mod_lt a2 wB wB_pos); fold [|a2|]; intros.
+ assert ([|b|]>0) by auto with zarith.
+ remember ([|a1|]*wB+[|a2|]) as a.
+ assert (Zdiv_eucl a [|b|] = (a/[|b|], a mod [|b|])).
+ unfold Zmod, Zdiv; destruct Zdiv_eucl; auto.
+ generalize (Z_div_mod a [|b|] H3).
+ destruct Zdiv_eucl as (q,r); destruct 1; intros.
+ injection H4; clear H4; intros.
+ assert ([|r|]=r).
+ apply Zmod_small; generalize (Z_mod_lt b wB wB_pos); fold [|b|];
+ auto with zarith.
+ assert ([|q|]=q).
+ apply Zmod_small.
+ subst q.
+ split.
+ apply Z_div_pos; auto with zarith.
+ subst a; auto with zarith.
+ apply Zdiv_lt_upper_bound; auto with zarith.
+ subst a; auto with zarith.
+ subst a.
+ replace (wB*[|b|]) with (([|b|]-1)*wB + wB) by ring.
+ apply Zlt_le_trans with ([|a1|]*wB+wB); auto with zarith.
+ rewrite H8, H9; rewrite Zmult_comm; auto with zarith.
+ Qed.
+
+ Definition znz_add_mul_div p x y :=
+ ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))).
+ Lemma spec_add_mul_div : forall x y p,
+ [|p|] <= Zpos znz_digits ->
+ [| znz_add_mul_div p x y |] =
+ ([|x|] * (2 ^ [|p|]) +
+ [|y|] / (2 ^ ((Zpos znz_digits) - [|p|]))) mod wB.
+ Proof.
+ intros; unfold znz_add_mul_div; auto.
+ Qed.
+
+ Definition znz_pos_mod p w := [|w|] mod (2 ^ [|p|]).
+ Lemma spec_pos_mod : forall w p,
+ [|znz_pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+ Proof.
+ intros; unfold znz_pos_mod.
+ apply Zmod_small.
+ generalize (Z_mod_lt [|w|] (2 ^ [|p|])); intros.
+ split.
+ destruct H; auto with zarith.
+ apply Zle_lt_trans with [|w|]; auto with zarith.
+ apply Zmod_le; auto with zarith.
+ Qed.
+
+ Definition znz_is_even x :=
+ if Z_eq_dec ([|x|] mod 2) 0 then true else false.
+
+ Lemma spec_is_even : forall x,
+ if znz_is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ Proof.
+ intros; unfold znz_is_even; destruct Z_eq_dec; auto.
+ generalize (Z_mod_lt [|x|] 2); omega.
+ Qed.
+
+ Definition znz_sqrt x := Zsqrt_plain [|x|].
+ Lemma spec_sqrt : forall x,
+ [|znz_sqrt x|] ^ 2 <= [|x|] < ([|znz_sqrt x|] + 1) ^ 2.
+ Proof.
+ intros.
+ unfold znz_sqrt.
+ repeat rewrite Zpower_2.
+ replace [|Zsqrt_plain [|x|]|] with (Zsqrt_plain [|x|]).
+ apply Zsqrt_interval; auto with zarith.
+ symmetry; apply Zmod_small.
+ split.
+ apply Zsqrt_plain_is_pos; auto with zarith.
+
+ cut (Zsqrt_plain [|x|] <= (wB-1)); try omega.
+ rewrite <- (Zsqrt_square_id (wB-1)).
+ apply Zsqrt_le.
+ split; auto.
+ apply Zle_trans with (wB-1); auto with zarith.
+ generalize (spec_to_Z x); auto with zarith.
+ apply Zsquare_le.
+ generalize wB_pos; auto with zarith.
+ Qed.
+
+ Definition znz_sqrt2 x y :=
+ let z := [|x|]*wB+[|y|] in
+ match z with
+ | Z0 => (0, C0 0)
+ | Zpos p =>
+ let (s,r,_,_) := sqrtrempos p in
+ (s, if Z_lt_le_dec r wB then C0 r else C1 (r-wB))
+ | Zneg _ => (0, C0 0)
+ end.
+
+ Lemma spec_sqrt2 : forall x y,
+ wB/ 4 <= [|x|] ->
+ let (s,r) := znz_sqrt2 x y in
+ [||WW x y||] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|].
+ Proof.
+ intros; unfold znz_sqrt2.
+ simpl zn2z_to_Z.
+ remember ([|x|]*wB+[|y|]) as z.
+ destruct z.
+ auto with zarith.
+ destruct sqrtrempos; intros.
+ assert (s < wB).
+ destruct (Z_lt_le_dec s wB); auto.
+ assert (wB * wB <= Zpos p).
+ rewrite e.
+ apply Zle_trans with (s*s); try omega.
+ apply Zmult_le_compat; generalize wB_pos; auto with zarith.
+ assert (Zpos p < wB*wB).
+ rewrite Heqz.
+ replace (wB*wB) with ((wB-1)*wB+wB) by ring.
+ apply Zplus_le_lt_compat; auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ generalize (spec_to_Z x); auto with zarith.
+ generalize wB_pos; auto with zarith.
+ omega.
+ replace [|s|] with s by (symmetry; apply Zmod_small; auto with zarith).
+ destruct Z_lt_le_dec; unfold interp_carry.
+ replace [|r|] with r by (symmetry; apply Zmod_small; auto with zarith).
+ rewrite Zpower_2; auto with zarith.
+ replace [|r-wB|] with (r-wB) by (symmetry; apply Zmod_small; auto with zarith).
+ rewrite Zpower_2; omega.
+
+ assert (0<=Zneg p).
+ rewrite Heqz; generalize wB_pos; auto with zarith.
+ compute in H0; elim H0; auto.
+ Qed.
+
+ Lemma two_p_power2 : forall x, x>=0 -> two_p x = 2 ^ x.
+ Proof.
+ intros.
+ unfold two_p.
+ destruct x; simpl; auto.
+ apply two_power_pos_correct.
+ Qed.
+
+ Definition znz_head0 x := match [|x|] with
+ | Z0 => znz_zdigits
+ | Zpos p => znz_zdigits - log_inf p - 1
+ | _ => 0
+ end.
+
+ Lemma spec_head00: forall x, [|x|] = 0 -> [|znz_head0 x|] = Zpos znz_digits.
+ Proof.
+ unfold znz_head0; intros.
+ rewrite H; simpl.
+ apply spec_zdigits.
+ Qed.
+
+ Lemma log_inf_bounded : forall x p, Zpos x < 2^p -> log_inf x < p.
+ Proof.
+ induction x; simpl; intros.
+
+ assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
+ cut (log_inf x < p - 1); [omega| ].
+ apply IHx.
+ change (Zpos x~1) with (2*(Zpos x)+1) in H.
+ replace p with (Zsucc (p-1)) in H; auto with zarith.
+ rewrite Zpower_Zsucc in H; auto with zarith.
+
+ assert (0 < p) by (destruct p; compute; auto with zarith; discriminate).
+ cut (log_inf x < p - 1); [omega| ].
+ apply IHx.
+ change (Zpos x~0) with (2*(Zpos x)) in H.
+ replace p with (Zsucc (p-1)) in H; auto with zarith.
+ rewrite Zpower_Zsucc in H; auto with zarith.
+
+ simpl; intros; destruct p; compute; auto with zarith.
+ Qed.
+
+
+ Lemma spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ ([|znz_head0 x|]) * [|x|] < wB.
+ Proof.
+ intros; unfold znz_head0.
+ generalize (spec_to_Z x).
+ destruct [|x|]; try discriminate.
+ intros.
+ destruct (log_inf_correct p).
+ rewrite 2 two_p_power2 in H2; auto with zarith.
+ assert (0 <= znz_zdigits - log_inf p - 1 < wB).
+ split.
+ cut (log_inf p < znz_zdigits); try omega.
+ unfold znz_zdigits.
+ unfold wB, base in *.
+ apply log_inf_bounded; auto with zarith.
+ apply Zlt_trans with znz_zdigits.
+ omega.
+ unfold znz_zdigits, wB, base; apply Zpower2_lt_lin; auto with zarith.
+
+ unfold znz_to_Z; rewrite (Zmod_small _ _ H3).
+ destruct H2.
+ split.
+ apply Zle_trans with (2^(znz_zdigits - log_inf p - 1)*(2^log_inf p)).
+ apply Zdiv_le_upper_bound; auto with zarith.
+ rewrite <- Zpower_exp; auto with zarith.
+ rewrite Zmult_comm; rewrite <- Zpower_Zsucc; auto with zarith.
+ replace (Zsucc (znz_zdigits - log_inf p -1 +log_inf p)) with znz_zdigits
+ by ring.
+ unfold wB, base, znz_zdigits; auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+
+ apply Zlt_le_trans
+ with (2^(znz_zdigits - log_inf p - 1)*(2^(Zsucc (log_inf p)))).
+ apply Zmult_lt_compat_l; auto with zarith.
+ rewrite <- Zpower_exp; auto with zarith.
+ replace (znz_zdigits - log_inf p -1 +Zsucc (log_inf p)) with znz_zdigits
+ by ring.
+ unfold wB, base, znz_zdigits; auto with zarith.
+ Qed.
+
+ Fixpoint Ptail p := match p with
+ | xO p => (Ptail p)+1
+ | _ => 0
+ end.
+
+ Lemma Ptail_pos : forall p, 0 <= Ptail p.
+ Proof.
+ induction p; simpl; auto with zarith.
+ Qed.
+ Hint Resolve Ptail_pos.
+
+ Lemma Ptail_bounded : forall p d, Zpos p < 2^(Zpos d) -> Ptail p < Zpos d.
+ Proof.
+ induction p; try (compute; auto; fail).
+ intros; simpl.
+ assert (d <> xH).
+ intro; subst.
+ compute in H; destruct p; discriminate.
+ assert (Zsucc (Zpos (Ppred d)) = Zpos d).
+ simpl; f_equal.
+ rewrite <- Pplus_one_succ_r.
+ destruct (Psucc_pred d); auto.
+ rewrite H1 in H0; elim H0; auto.
+ assert (Ptail p < Zpos (Ppred d)).
+ apply IHp.
+ apply Zmult_lt_reg_r with 2; auto with zarith.
+ rewrite (Zmult_comm (Zpos p)).
+ change (2 * Zpos p) with (Zpos p~0).
+ rewrite Zmult_comm.
+ rewrite <- Zpower_Zsucc; auto with zarith.
+ rewrite H1; auto.
+ rewrite <- H1; omega.
+ Qed.
+
+ Definition znz_tail0 x :=
+ match [|x|] with
+ | Z0 => znz_zdigits
+ | Zpos p => Ptail p
+ | Zneg _ => 0
+ end.
+
+ Lemma spec_tail00: forall x, [|x|] = 0 -> [|znz_tail0 x|] = Zpos znz_digits.
+ Proof.
+ unfold znz_tail0; intros.
+ rewrite H; simpl.
+ apply spec_zdigits.
+ Qed.
+
+ Lemma spec_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|znz_tail0 x|]).
+ Proof.
+ intros; unfold znz_tail0.
+ generalize (spec_to_Z x).
+ destruct [|x|]; try discriminate; intros.
+ assert ([|Ptail p|] = Ptail p).
+ apply Zmod_small.
+ split; auto.
+ unfold wB, base in *.
+ apply Zlt_trans with (Zpos digits).
+ apply Ptail_bounded; auto with zarith.
+ apply Zpower2_lt_lin; auto with zarith.
+ rewrite H1.
+
+ clear; induction p.
+ exists (Zpos p); simpl; rewrite Pmult_1_r; auto with zarith.
+ destruct IHp as (y & Yp & Ye).
+ exists y.
+ split; auto.
+ change (Zpos p~0) with (2*Zpos p).
+ rewrite Ye.
+ change (Ptail p~0) with (Zsucc (Ptail p)).
+ rewrite Zpower_Zsucc; auto; ring.
+
+ exists 0; simpl; auto with zarith.
+ Qed.
+
+ (** Let's now group everything in two records *)
+
+ Definition zmod_op := mk_znz_op
+ (znz_digits : positive)
+ (znz_zdigits: znz)
+ (znz_to_Z : znz -> Z)
+ (znz_of_pos : positive -> N * znz)
+ (znz_head0 : znz -> znz)
+ (znz_tail0 : znz -> znz)
+
+ (znz_0 : znz)
+ (znz_1 : znz)
+ (znz_Bm1 : znz)
+
+ (znz_compare : znz -> znz -> comparison)
+ (znz_eq0 : znz -> bool)
+
+ (znz_opp_c : znz -> carry znz)
+ (znz_opp : znz -> znz)
+ (znz_opp_carry : znz -> znz)
+
+ (znz_succ_c : znz -> carry znz)
+ (znz_add_c : znz -> znz -> carry znz)
+ (znz_add_carry_c : znz -> znz -> carry znz)
+ (znz_succ : znz -> znz)
+ (znz_add : znz -> znz -> znz)
+ (znz_add_carry : znz -> znz -> znz)
+
+ (znz_pred_c : znz -> carry znz)
+ (znz_sub_c : znz -> znz -> carry znz)
+ (znz_sub_carry_c : znz -> znz -> carry znz)
+ (znz_pred : znz -> znz)
+ (znz_sub : znz -> znz -> znz)
+ (znz_sub_carry : znz -> znz -> znz)
+
+ (znz_mul_c : znz -> znz -> zn2z znz)
+ (znz_mul : znz -> znz -> znz)
+ (znz_square_c : znz -> zn2z znz)
+
+ (znz_div21 : znz -> znz -> znz -> znz*znz)
+ (znz_div_gt : znz -> znz -> znz * znz)
+ (znz_div : znz -> znz -> znz * znz)
+
+ (znz_mod_gt : znz -> znz -> znz)
+ (znz_mod : znz -> znz -> znz)
+
+ (znz_gcd_gt : znz -> znz -> znz)
+ (znz_gcd : znz -> znz -> znz)
+ (znz_add_mul_div : znz -> znz -> znz -> znz)
+ (znz_pos_mod : znz -> znz -> znz)
+
+ (znz_is_even : znz -> bool)
+ (znz_sqrt2 : znz -> znz -> znz * carry znz)
+ (znz_sqrt : znz -> znz).
+
+ Definition zmod_spec := mk_znz_spec zmod_op
+ spec_to_Z
+ spec_of_pos
+ spec_zdigits
+ spec_more_than_1_digit
+
+ spec_0
+ spec_1
+ spec_Bm1
+
+ spec_compare
+ spec_eq0
+
+ spec_opp_c
+ spec_opp
+ spec_opp_carry
+
+ spec_succ_c
+ spec_add_c
+ spec_add_carry_c
+ spec_succ
+ spec_add
+ spec_add_carry
+
+ spec_pred_c
+ spec_sub_c
+ spec_sub_carry_c
+ spec_pred
+ spec_sub
+ spec_sub_carry
+
+ spec_mul_c
+ spec_mul
+ spec_square_c
+
+ spec_div21
+ spec_div_gt
+ spec_div
+
+ spec_mod_gt
+ spec_mod
+
+ spec_gcd_gt
+ spec_gcd
+
+ spec_head00
+ spec_head0
+ spec_tail00
+ spec_tail0
+
+ spec_add_mul_div
+ spec_pos_mod
+
+ spec_is_even
+ spec_sqrt2
+ spec_sqrt.
+
+End ZModulo.
+
+(** A modular version of the previous construction. *)
+
+Module Type PositiveNotOne.
+ Parameter p : positive.
+ Axiom not_one : p<> 1%positive.
+End PositiveNotOne.
+
+Module ZModuloCyclicType (P:PositiveNotOne) <: CyclicType.
+ Definition w := Z.
+ Definition w_op := zmod_op P.p.
+ Definition w_spec := zmod_spec P.not_one.
+End ZModuloCyclicType.
+
diff --git a/theories/Numbers/Integer/Abstract/ZAdd.v b/theories/Numbers/Integer/Abstract/ZAdd.v
new file mode 100644
index 00000000..df941d90
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZAdd.v
@@ -0,0 +1,345 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export ZBase.
+
+Module ZAddPropFunct (Import ZAxiomsMod : ZAxiomsSig).
+Module Export ZBasePropMod := ZBasePropFunct ZAxiomsMod.
+Open Local Scope IntScope.
+
+Theorem Zadd_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 + m1 == n2 + m2.
+Proof NZadd_wd.
+
+Theorem Zadd_0_l : forall n : Z, 0 + n == n.
+Proof NZadd_0_l.
+
+Theorem Zadd_succ_l : forall n m : Z, (S n) + m == S (n + m).
+Proof NZadd_succ_l.
+
+Theorem Zsub_0_r : forall n : Z, n - 0 == n.
+Proof NZsub_0_r.
+
+Theorem Zsub_succ_r : forall n m : Z, n - (S m) == P (n - m).
+Proof NZsub_succ_r.
+
+Theorem Zopp_0 : - 0 == 0.
+Proof Zopp_0.
+
+Theorem Zopp_succ : forall n : Z, - (S n) == P (- n).
+Proof Zopp_succ.
+
+(* Theorems that are valid for both natural numbers and integers *)
+
+Theorem Zadd_0_r : forall n : Z, n + 0 == n.
+Proof NZadd_0_r.
+
+Theorem Zadd_succ_r : forall n m : Z, n + S m == S (n + m).
+Proof NZadd_succ_r.
+
+Theorem Zadd_comm : forall n m : Z, n + m == m + n.
+Proof NZadd_comm.
+
+Theorem Zadd_assoc : forall n m p : Z, n + (m + p) == (n + m) + p.
+Proof NZadd_assoc.
+
+Theorem Zadd_shuffle1 : forall n m p q : Z, (n + m) + (p + q) == (n + p) + (m + q).
+Proof NZadd_shuffle1.
+
+Theorem Zadd_shuffle2 : forall n m p q : Z, (n + m) + (p + q) == (n + q) + (m + p).
+Proof NZadd_shuffle2.
+
+Theorem Zadd_1_l : forall n : Z, 1 + n == S n.
+Proof NZadd_1_l.
+
+Theorem Zadd_1_r : forall n : Z, n + 1 == S n.
+Proof NZadd_1_r.
+
+Theorem Zadd_cancel_l : forall n m p : Z, p + n == p + m <-> n == m.
+Proof NZadd_cancel_l.
+
+Theorem Zadd_cancel_r : forall n m p : Z, n + p == m + p <-> n == m.
+Proof NZadd_cancel_r.
+
+(* Theorems that are either not valid on N or have different proofs on N and Z *)
+
+Theorem Zadd_pred_l : forall n m : Z, P n + m == P (n + m).
+Proof.
+intros n m.
+rewrite <- (Zsucc_pred n) at 2.
+rewrite Zadd_succ_l. now rewrite Zpred_succ.
+Qed.
+
+Theorem Zadd_pred_r : forall n m : Z, n + P m == P (n + m).
+Proof.
+intros n m; rewrite (Zadd_comm n (P m)), (Zadd_comm n m);
+apply Zadd_pred_l.
+Qed.
+
+Theorem Zadd_opp_r : forall n m : Z, n + (- m) == n - m.
+Proof.
+NZinduct m.
+rewrite Zopp_0; rewrite Zsub_0_r; now rewrite Zadd_0_r.
+intro m. rewrite Zopp_succ, Zsub_succ_r, Zadd_pred_r; now rewrite Zpred_inj_wd.
+Qed.
+
+Theorem Zsub_0_l : forall n : Z, 0 - n == - n.
+Proof.
+intro n; rewrite <- Zadd_opp_r; now rewrite Zadd_0_l.
+Qed.
+
+Theorem Zsub_succ_l : forall n m : Z, S n - m == S (n - m).
+Proof.
+intros n m; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_succ_l.
+Qed.
+
+Theorem Zsub_pred_l : forall n m : Z, P n - m == P (n - m).
+Proof.
+intros n m. rewrite <- (Zsucc_pred n) at 2.
+rewrite Zsub_succ_l; now rewrite Zpred_succ.
+Qed.
+
+Theorem Zsub_pred_r : forall n m : Z, n - (P m) == S (n - m).
+Proof.
+intros n m. rewrite <- (Zsucc_pred m) at 2.
+rewrite Zsub_succ_r; now rewrite Zsucc_pred.
+Qed.
+
+Theorem Zopp_pred : forall n : Z, - (P n) == S (- n).
+Proof.
+intro n. rewrite <- (Zsucc_pred n) at 2.
+rewrite Zopp_succ. now rewrite Zsucc_pred.
+Qed.
+
+Theorem Zsub_diag : forall n : Z, n - n == 0.
+Proof.
+NZinduct n.
+now rewrite Zsub_0_r.
+intro n. rewrite Zsub_succ_r, Zsub_succ_l; now rewrite Zpred_succ.
+Qed.
+
+Theorem Zadd_opp_diag_l : forall n : Z, - n + n == 0.
+Proof.
+intro n; now rewrite Zadd_comm, Zadd_opp_r, Zsub_diag.
+Qed.
+
+Theorem Zadd_opp_diag_r : forall n : Z, n + (- n) == 0.
+Proof.
+intro n; rewrite Zadd_comm; apply Zadd_opp_diag_l.
+Qed.
+
+Theorem Zadd_opp_l : forall n m : Z, - m + n == n - m.
+Proof.
+intros n m; rewrite <- Zadd_opp_r; now rewrite Zadd_comm.
+Qed.
+
+Theorem Zadd_sub_assoc : forall n m p : Z, n + (m - p) == (n + m) - p.
+Proof.
+intros n m p; do 2 rewrite <- Zadd_opp_r; now rewrite Zadd_assoc.
+Qed.
+
+Theorem Zopp_involutive : forall n : Z, - (- n) == n.
+Proof.
+NZinduct n.
+now do 2 rewrite Zopp_0.
+intro n. rewrite Zopp_succ, Zopp_pred; now rewrite Zsucc_inj_wd.
+Qed.
+
+Theorem Zopp_add_distr : forall n m : Z, - (n + m) == - n + (- m).
+Proof.
+intros n m; NZinduct n.
+rewrite Zopp_0; now do 2 rewrite Zadd_0_l.
+intro n. rewrite Zadd_succ_l; do 2 rewrite Zopp_succ; rewrite Zadd_pred_l.
+now rewrite Zpred_inj_wd.
+Qed.
+
+Theorem Zopp_sub_distr : forall n m : Z, - (n - m) == - n + m.
+Proof.
+intros n m; rewrite <- Zadd_opp_r, Zopp_add_distr.
+now rewrite Zopp_involutive.
+Qed.
+
+Theorem Zopp_inj : forall n m : Z, - n == - m -> n == m.
+Proof.
+intros n m H. apply Zopp_wd in H. now do 2 rewrite Zopp_involutive in H.
+Qed.
+
+Theorem Zopp_inj_wd : forall n m : Z, - n == - m <-> n == m.
+Proof.
+intros n m; split; [apply Zopp_inj | apply Zopp_wd].
+Qed.
+
+Theorem Zeq_opp_l : forall n m : Z, - n == m <-> n == - m.
+Proof.
+intros n m. now rewrite <- (Zopp_inj_wd (- n) m), Zopp_involutive.
+Qed.
+
+Theorem Zeq_opp_r : forall n m : Z, n == - m <-> - n == m.
+Proof.
+symmetry; apply Zeq_opp_l.
+Qed.
+
+Theorem Zsub_add_distr : forall n m p : Z, n - (m + p) == (n - m) - p.
+Proof.
+intros n m p; rewrite <- Zadd_opp_r, Zopp_add_distr, Zadd_assoc.
+now do 2 rewrite Zadd_opp_r.
+Qed.
+
+Theorem Zsub_sub_distr : forall n m p : Z, n - (m - p) == (n - m) + p.
+Proof.
+intros n m p; rewrite <- Zadd_opp_r, Zopp_sub_distr, Zadd_assoc.
+now rewrite Zadd_opp_r.
+Qed.
+
+Theorem sub_opp_l : forall n m : Z, - n - m == - m - n.
+Proof.
+intros n m. do 2 rewrite <- Zadd_opp_r. now rewrite Zadd_comm.
+Qed.
+
+Theorem Zsub_opp_r : forall n m : Z, n - (- m) == n + m.
+Proof.
+intros n m; rewrite <- Zadd_opp_r; now rewrite Zopp_involutive.
+Qed.
+
+Theorem Zadd_sub_swap : forall n m p : Z, n + m - p == n - p + m.
+Proof.
+intros n m p. rewrite <- Zadd_sub_assoc, <- (Zadd_opp_r n p), <- Zadd_assoc.
+now rewrite Zadd_opp_l.
+Qed.
+
+Theorem Zsub_cancel_l : forall n m p : Z, n - m == n - p <-> m == p.
+Proof.
+intros n m p. rewrite <- (Zadd_cancel_l (n - m) (n - p) (- n)).
+do 2 rewrite Zadd_sub_assoc. rewrite Zadd_opp_diag_l; do 2 rewrite Zsub_0_l.
+apply Zopp_inj_wd.
+Qed.
+
+Theorem Zsub_cancel_r : forall n m p : Z, n - p == m - p <-> n == m.
+Proof.
+intros n m p.
+stepl (n - p + p == m - p + p) by apply Zadd_cancel_r.
+now do 2 rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r.
+Qed.
+
+(* The next several theorems are devoted to moving terms from one side of
+an equation to the other. The name contains the operation in the original
+equation (add or sub) and the indication whether the left or right term
+is moved. *)
+
+Theorem Zadd_move_l : forall n m p : Z, n + m == p <-> m == p - n.
+Proof.
+intros n m p.
+stepl (n + m - n == p - n) by apply Zsub_cancel_r.
+now rewrite Zadd_comm, <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r.
+Qed.
+
+Theorem Zadd_move_r : forall n m p : Z, n + m == p <-> n == p - m.
+Proof.
+intros n m p; rewrite Zadd_comm; now apply Zadd_move_l.
+Qed.
+
+(* The two theorems above do not allow rewriting subformulas of the form
+n - m == p to n == p + m since subtraction is in the right-hand side of
+the equation. Hence the following two theorems. *)
+
+Theorem Zsub_move_l : forall n m p : Z, n - m == p <-> - m == p - n.
+Proof.
+intros n m p; rewrite <- (Zadd_opp_r n m); apply Zadd_move_l.
+Qed.
+
+Theorem Zsub_move_r : forall n m p : Z, n - m == p <-> n == p + m.
+Proof.
+intros n m p; rewrite <- (Zadd_opp_r n m). now rewrite Zadd_move_r, Zsub_opp_r.
+Qed.
+
+Theorem Zadd_move_0_l : forall n m : Z, n + m == 0 <-> m == - n.
+Proof.
+intros n m; now rewrite Zadd_move_l, Zsub_0_l.
+Qed.
+
+Theorem Zadd_move_0_r : forall n m : Z, n + m == 0 <-> n == - m.
+Proof.
+intros n m; now rewrite Zadd_move_r, Zsub_0_l.
+Qed.
+
+Theorem Zsub_move_0_l : forall n m : Z, n - m == 0 <-> - m == - n.
+Proof.
+intros n m. now rewrite Zsub_move_l, Zsub_0_l.
+Qed.
+
+Theorem Zsub_move_0_r : forall n m : Z, n - m == 0 <-> n == m.
+Proof.
+intros n m. now rewrite Zsub_move_r, Zadd_0_l.
+Qed.
+
+(* The following section is devoted to cancellation of like terms. The name
+includes the first operator and the position of the term being canceled. *)
+
+Theorem Zadd_simpl_l : forall n m : Z, n + m - n == m.
+Proof.
+intros; now rewrite Zadd_sub_swap, Zsub_diag, Zadd_0_l.
+Qed.
+
+Theorem Zadd_simpl_r : forall n m : Z, n + m - m == n.
+Proof.
+intros; now rewrite <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r.
+Qed.
+
+Theorem Zsub_simpl_l : forall n m : Z, - n - m + n == - m.
+Proof.
+intros; now rewrite <- Zadd_sub_swap, Zadd_opp_diag_l, Zsub_0_l.
+Qed.
+
+Theorem Zsub_simpl_r : forall n m : Z, n - m + m == n.
+Proof.
+intros; now rewrite <- Zsub_sub_distr, Zsub_diag, Zsub_0_r.
+Qed.
+
+(* Now we have two sums or differences; the name includes the two operators
+and the position of the terms being canceled *)
+
+Theorem Zadd_add_simpl_l_l : forall n m p : Z, (n + m) - (n + p) == m - p.
+Proof.
+intros n m p. now rewrite (Zadd_comm n m), <- Zadd_sub_assoc,
+Zsub_add_distr, Zsub_diag, Zsub_0_l, Zadd_opp_r.
+Qed.
+
+Theorem Zadd_add_simpl_l_r : forall n m p : Z, (n + m) - (p + n) == m - p.
+Proof.
+intros n m p. rewrite (Zadd_comm p n); apply Zadd_add_simpl_l_l.
+Qed.
+
+Theorem Zadd_add_simpl_r_l : forall n m p : Z, (n + m) - (m + p) == n - p.
+Proof.
+intros n m p. rewrite (Zadd_comm n m); apply Zadd_add_simpl_l_l.
+Qed.
+
+Theorem Zadd_add_simpl_r_r : forall n m p : Z, (n + m) - (p + m) == n - p.
+Proof.
+intros n m p. rewrite (Zadd_comm p m); apply Zadd_add_simpl_r_l.
+Qed.
+
+Theorem Zsub_add_simpl_r_l : forall n m p : Z, (n - m) + (m + p) == n + p.
+Proof.
+intros n m p. now rewrite <- Zsub_sub_distr, Zsub_add_distr, Zsub_diag,
+Zsub_0_l, Zsub_opp_r.
+Qed.
+
+Theorem Zsub_add_simpl_r_r : forall n m p : Z, (n - m) + (p + m) == n + p.
+Proof.
+intros n m p. rewrite (Zadd_comm p m); apply Zsub_add_simpl_r_l.
+Qed.
+
+(* Of course, there are many other variants *)
+
+End ZAddPropFunct.
+
diff --git a/theories/Numbers/Integer/Abstract/ZAddOrder.v b/theories/Numbers/Integer/Abstract/ZAddOrder.v
new file mode 100644
index 00000000..101ea634
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZAddOrder.v
@@ -0,0 +1,373 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export ZLt.
+
+Module ZAddOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
+Module Export ZOrderPropMod := ZOrderPropFunct ZAxiomsMod.
+Open Local Scope IntScope.
+
+(* Theorems that are true on both natural numbers and integers *)
+
+Theorem Zadd_lt_mono_l : forall n m p : Z, n < m <-> p + n < p + m.
+Proof NZadd_lt_mono_l.
+
+Theorem Zadd_lt_mono_r : forall n m p : Z, n < m <-> n + p < m + p.
+Proof NZadd_lt_mono_r.
+
+Theorem Zadd_lt_mono : forall n m p q : Z, n < m -> p < q -> n + p < m + q.
+Proof NZadd_lt_mono.
+
+Theorem Zadd_le_mono_l : forall n m p : Z, n <= m <-> p + n <= p + m.
+Proof NZadd_le_mono_l.
+
+Theorem Zadd_le_mono_r : forall n m p : Z, n <= m <-> n + p <= m + p.
+Proof NZadd_le_mono_r.
+
+Theorem Zadd_le_mono : forall n m p q : Z, n <= m -> p <= q -> n + p <= m + q.
+Proof NZadd_le_mono.
+
+Theorem Zadd_lt_le_mono : forall n m p q : Z, n < m -> p <= q -> n + p < m + q.
+Proof NZadd_lt_le_mono.
+
+Theorem Zadd_le_lt_mono : forall n m p q : Z, n <= m -> p < q -> n + p < m + q.
+Proof NZadd_le_lt_mono.
+
+Theorem Zadd_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n + m.
+Proof NZadd_pos_pos.
+
+Theorem Zadd_pos_nonneg : forall n m : Z, 0 < n -> 0 <= m -> 0 < n + m.
+Proof NZadd_pos_nonneg.
+
+Theorem Zadd_nonneg_pos : forall n m : Z, 0 <= n -> 0 < m -> 0 < n + m.
+Proof NZadd_nonneg_pos.
+
+Theorem Zadd_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n + m.
+Proof NZadd_nonneg_nonneg.
+
+Theorem Zlt_add_pos_l : forall n m : Z, 0 < n -> m < n + m.
+Proof NZlt_add_pos_l.
+
+Theorem Zlt_add_pos_r : forall n m : Z, 0 < n -> m < m + n.
+Proof NZlt_add_pos_r.
+
+Theorem Zle_lt_add_lt : forall n m p q : Z, n <= m -> p + m < q + n -> p < q.
+Proof NZle_lt_add_lt.
+
+Theorem Zlt_le_add_lt : forall n m p q : Z, n < m -> p + m <= q + n -> p < q.
+Proof NZlt_le_add_lt.
+
+Theorem Zle_le_add_le : forall n m p q : Z, n <= m -> p + m <= q + n -> p <= q.
+Proof NZle_le_add_le.
+
+Theorem Zadd_lt_cases : forall n m p q : Z, n + m < p + q -> n < p \/ m < q.
+Proof NZadd_lt_cases.
+
+Theorem Zadd_le_cases : forall n m p q : Z, n + m <= p + q -> n <= p \/ m <= q.
+Proof NZadd_le_cases.
+
+Theorem Zadd_neg_cases : forall n m : Z, n + m < 0 -> n < 0 \/ m < 0.
+Proof NZadd_neg_cases.
+
+Theorem Zadd_pos_cases : forall n m : Z, 0 < n + m -> 0 < n \/ 0 < m.
+Proof NZadd_pos_cases.
+
+Theorem Zadd_nonpos_cases : forall n m : Z, n + m <= 0 -> n <= 0 \/ m <= 0.
+Proof NZadd_nonpos_cases.
+
+Theorem Zadd_nonneg_cases : forall n m : Z, 0 <= n + m -> 0 <= n \/ 0 <= m.
+Proof NZadd_nonneg_cases.
+
+(* Theorems that are either not valid on N or have different proofs on N and Z *)
+
+Theorem Zadd_neg_neg : forall n m : Z, n < 0 -> m < 0 -> n + m < 0.
+Proof.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_mono.
+Qed.
+
+Theorem Zadd_neg_nonpos : forall n m : Z, n < 0 -> m <= 0 -> n + m < 0.
+Proof.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_lt_le_mono.
+Qed.
+
+Theorem Zadd_nonpos_neg : forall n m : Z, n <= 0 -> m < 0 -> n + m < 0.
+Proof.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_lt_mono.
+Qed.
+
+Theorem Zadd_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> n + m <= 0.
+Proof.
+intros n m H1 H2. rewrite <- (Zadd_0_l 0). now apply Zadd_le_mono.
+Qed.
+
+(** Sub and order *)
+
+Theorem Zlt_0_sub : forall n m : Z, 0 < m - n <-> n < m.
+Proof.
+intros n m. stepl (0 + n < m - n + n) by symmetry; apply Zadd_lt_mono_r.
+rewrite Zadd_0_l; now rewrite Zsub_simpl_r.
+Qed.
+
+Notation Zsub_pos := Zlt_0_sub (only parsing).
+
+Theorem Zle_0_sub : forall n m : Z, 0 <= m - n <-> n <= m.
+Proof.
+intros n m; stepl (0 + n <= m - n + n) by symmetry; apply Zadd_le_mono_r.
+rewrite Zadd_0_l; now rewrite Zsub_simpl_r.
+Qed.
+
+Notation Zsub_nonneg := Zle_0_sub (only parsing).
+
+Theorem Zlt_sub_0 : forall n m : Z, n - m < 0 <-> n < m.
+Proof.
+intros n m. stepl (n - m + m < 0 + m) by symmetry; apply Zadd_lt_mono_r.
+rewrite Zadd_0_l; now rewrite Zsub_simpl_r.
+Qed.
+
+Notation Zsub_neg := Zlt_sub_0 (only parsing).
+
+Theorem Zle_sub_0 : forall n m : Z, n - m <= 0 <-> n <= m.
+Proof.
+intros n m. stepl (n - m + m <= 0 + m) by symmetry; apply Zadd_le_mono_r.
+rewrite Zadd_0_l; now rewrite Zsub_simpl_r.
+Qed.
+
+Notation Zsub_nonpos := Zle_sub_0 (only parsing).
+
+Theorem Zopp_lt_mono : forall n m : Z, n < m <-> - m < - n.
+Proof.
+intros n m. stepr (m + - m < m + - n) by symmetry; apply Zadd_lt_mono_l.
+do 2 rewrite Zadd_opp_r. rewrite Zsub_diag. symmetry; apply Zlt_0_sub.
+Qed.
+
+Theorem Zopp_le_mono : forall n m : Z, n <= m <-> - m <= - n.
+Proof.
+intros n m. stepr (m + - m <= m + - n) by symmetry; apply Zadd_le_mono_l.
+do 2 rewrite Zadd_opp_r. rewrite Zsub_diag. symmetry; apply Zle_0_sub.
+Qed.
+
+Theorem Zopp_pos_neg : forall n : Z, 0 < - n <-> n < 0.
+Proof.
+intro n; rewrite (Zopp_lt_mono n 0); now rewrite Zopp_0.
+Qed.
+
+Theorem Zopp_neg_pos : forall n : Z, - n < 0 <-> 0 < n.
+Proof.
+intro n. rewrite (Zopp_lt_mono 0 n). now rewrite Zopp_0.
+Qed.
+
+Theorem Zopp_nonneg_nonpos : forall n : Z, 0 <= - n <-> n <= 0.
+Proof.
+intro n; rewrite (Zopp_le_mono n 0); now rewrite Zopp_0.
+Qed.
+
+Theorem Zopp_nonpos_nonneg : forall n : Z, - n <= 0 <-> 0 <= n.
+Proof.
+intro n. rewrite (Zopp_le_mono 0 n). now rewrite Zopp_0.
+Qed.
+
+Theorem Zsub_lt_mono_l : forall n m p : Z, n < m <-> p - m < p - n.
+Proof.
+intros n m p. do 2 rewrite <- Zadd_opp_r. rewrite <- Zadd_lt_mono_l.
+apply Zopp_lt_mono.
+Qed.
+
+Theorem Zsub_lt_mono_r : forall n m p : Z, n < m <-> n - p < m - p.
+Proof.
+intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_lt_mono_r.
+Qed.
+
+Theorem Zsub_lt_mono : forall n m p q : Z, n < m -> q < p -> n - p < m - q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_trans with (m - p);
+[now apply -> Zsub_lt_mono_r | now apply -> Zsub_lt_mono_l].
+Qed.
+
+Theorem Zsub_le_mono_l : forall n m p : Z, n <= m <-> p - m <= p - n.
+Proof.
+intros n m p; do 2 rewrite <- Zadd_opp_r; rewrite <- Zadd_le_mono_l;
+apply Zopp_le_mono.
+Qed.
+
+Theorem Zsub_le_mono_r : forall n m p : Z, n <= m <-> n - p <= m - p.
+Proof.
+intros n m p; do 2 rewrite <- Zadd_opp_r; apply Zadd_le_mono_r.
+Qed.
+
+Theorem Zsub_le_mono : forall n m p q : Z, n <= m -> q <= p -> n - p <= m - q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_trans with (m - p);
+[now apply -> Zsub_le_mono_r | now apply -> Zsub_le_mono_l].
+Qed.
+
+Theorem Zsub_lt_le_mono : forall n m p q : Z, n < m -> q <= p -> n - p < m - q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_le_trans with (m - p);
+[now apply -> Zsub_lt_mono_r | now apply -> Zsub_le_mono_l].
+Qed.
+
+Theorem Zsub_le_lt_mono : forall n m p q : Z, n <= m -> q < p -> n - p < m - q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_lt_trans with (m - p);
+[now apply -> Zsub_le_mono_r | now apply -> Zsub_lt_mono_l].
+Qed.
+
+Theorem Zle_lt_sub_lt : forall n m p q : Z, n <= m -> p - n < q - m -> p < q.
+Proof.
+intros n m p q H1 H2. apply (Zle_lt_add_lt (- m) (- n));
+[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r].
+Qed.
+
+Theorem Zlt_le_sub_lt : forall n m p q : Z, n < m -> p - n <= q - m -> p < q.
+Proof.
+intros n m p q H1 H2. apply (Zlt_le_add_lt (- m) (- n));
+[now apply -> Zopp_lt_mono | now do 2 rewrite Zadd_opp_r].
+Qed.
+
+Theorem Zle_le_sub_lt : forall n m p q : Z, n <= m -> p - n <= q - m -> p <= q.
+Proof.
+intros n m p q H1 H2. apply (Zle_le_add_le (- m) (- n));
+[now apply -> Zopp_le_mono | now do 2 rewrite Zadd_opp_r].
+Qed.
+
+Theorem Zlt_add_lt_sub_r : forall n m p : Z, n + p < m <-> n < m - p.
+Proof.
+intros n m p. stepl (n + p - p < m - p) by symmetry; apply Zsub_lt_mono_r.
+now rewrite Zadd_simpl_r.
+Qed.
+
+Theorem Zle_add_le_sub_r : forall n m p : Z, n + p <= m <-> n <= m - p.
+Proof.
+intros n m p. stepl (n + p - p <= m - p) by symmetry; apply Zsub_le_mono_r.
+now rewrite Zadd_simpl_r.
+Qed.
+
+Theorem Zlt_add_lt_sub_l : forall n m p : Z, n + p < m <-> p < m - n.
+Proof.
+intros n m p. rewrite Zadd_comm; apply Zlt_add_lt_sub_r.
+Qed.
+
+Theorem Zle_add_le_sub_l : forall n m p : Z, n + p <= m <-> p <= m - n.
+Proof.
+intros n m p. rewrite Zadd_comm; apply Zle_add_le_sub_r.
+Qed.
+
+Theorem Zlt_sub_lt_add_r : forall n m p : Z, n - p < m <-> n < m + p.
+Proof.
+intros n m p. stepl (n - p + p < m + p) by symmetry; apply Zadd_lt_mono_r.
+now rewrite Zsub_simpl_r.
+Qed.
+
+Theorem Zle_sub_le_add_r : forall n m p : Z, n - p <= m <-> n <= m + p.
+Proof.
+intros n m p. stepl (n - p + p <= m + p) by symmetry; apply Zadd_le_mono_r.
+now rewrite Zsub_simpl_r.
+Qed.
+
+Theorem Zlt_sub_lt_add_l : forall n m p : Z, n - m < p <-> n < m + p.
+Proof.
+intros n m p. rewrite Zadd_comm; apply Zlt_sub_lt_add_r.
+Qed.
+
+Theorem Zle_sub_le_add_l : forall n m p : Z, n - m <= p <-> n <= m + p.
+Proof.
+intros n m p. rewrite Zadd_comm; apply Zle_sub_le_add_r.
+Qed.
+
+Theorem Zlt_sub_lt_add : forall n m p q : Z, n - m < p - q <-> n + q < m + p.
+Proof.
+intros n m p q. rewrite Zlt_sub_lt_add_l. rewrite Zadd_sub_assoc.
+now rewrite <- Zlt_add_lt_sub_r.
+Qed.
+
+Theorem Zle_sub_le_add : forall n m p q : Z, n - m <= p - q <-> n + q <= m + p.
+Proof.
+intros n m p q. rewrite Zle_sub_le_add_l. rewrite Zadd_sub_assoc.
+now rewrite <- Zle_add_le_sub_r.
+Qed.
+
+Theorem Zlt_sub_pos : forall n m : Z, 0 < m <-> n - m < n.
+Proof.
+intros n m. stepr (n - m < n - 0) by now rewrite Zsub_0_r. apply Zsub_lt_mono_l.
+Qed.
+
+Theorem Zle_sub_nonneg : forall n m : Z, 0 <= m <-> n - m <= n.
+Proof.
+intros n m. stepr (n - m <= n - 0) by now rewrite Zsub_0_r. apply Zsub_le_mono_l.
+Qed.
+
+Theorem Zsub_lt_cases : forall n m p q : Z, n - m < p - q -> n < m \/ q < p.
+Proof.
+intros n m p q H. rewrite Zlt_sub_lt_add in H. now apply Zadd_lt_cases.
+Qed.
+
+Theorem Zsub_le_cases : forall n m p q : Z, n - m <= p - q -> n <= m \/ q <= p.
+Proof.
+intros n m p q H. rewrite Zle_sub_le_add in H. now apply Zadd_le_cases.
+Qed.
+
+Theorem Zsub_neg_cases : forall n m : Z, n - m < 0 -> n < 0 \/ 0 < m.
+Proof.
+intros n m H; rewrite <- Zadd_opp_r in H.
+setoid_replace (0 < m) with (- m < 0) using relation iff by (symmetry; apply Zopp_neg_pos).
+now apply Zadd_neg_cases.
+Qed.
+
+Theorem Zsub_pos_cases : forall n m : Z, 0 < n - m -> 0 < n \/ m < 0.
+Proof.
+intros n m H; rewrite <- Zadd_opp_r in H.
+setoid_replace (m < 0) with (0 < - m) using relation iff by (symmetry; apply Zopp_pos_neg).
+now apply Zadd_pos_cases.
+Qed.
+
+Theorem Zsub_nonpos_cases : forall n m : Z, n - m <= 0 -> n <= 0 \/ 0 <= m.
+Proof.
+intros n m H; rewrite <- Zadd_opp_r in H.
+setoid_replace (0 <= m) with (- m <= 0) using relation iff by (symmetry; apply Zopp_nonpos_nonneg).
+now apply Zadd_nonpos_cases.
+Qed.
+
+Theorem Zsub_nonneg_cases : forall n m : Z, 0 <= n - m -> 0 <= n \/ m <= 0.
+Proof.
+intros n m H; rewrite <- Zadd_opp_r in H.
+setoid_replace (m <= 0) with (0 <= - m) using relation iff by (symmetry; apply Zopp_nonneg_nonpos).
+now apply Zadd_nonneg_cases.
+Qed.
+
+Section PosNeg.
+
+Variable P : Z -> Prop.
+Hypothesis P_wd : predicate_wd Zeq P.
+
+Add Morphism P with signature Zeq ==> iff as P_morph. Proof. exact P_wd. Qed.
+
+Theorem Z0_pos_neg :
+ P 0 -> (forall n : Z, 0 < n -> P n /\ P (- n)) -> forall n : Z, P n.
+Proof.
+intros H1 H2 n. destruct (Zlt_trichotomy n 0) as [H3 | [H3 | H3]].
+apply <- Zopp_pos_neg in H3. apply H2 in H3. destruct H3 as [_ H3].
+now rewrite Zopp_involutive in H3.
+now rewrite H3.
+apply H2 in H3; now destruct H3.
+Qed.
+
+End PosNeg.
+
+Ltac Z0_pos_neg n := induction_maker n ltac:(apply Z0_pos_neg).
+
+End ZAddOrderPropFunct.
+
+
diff --git a/theories/Numbers/Integer/Abstract/ZAxioms.v b/theories/Numbers/Integer/Abstract/ZAxioms.v
new file mode 100644
index 00000000..c4a4b6b8
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZAxioms.v
@@ -0,0 +1,65 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NZAxioms.
+
+Set Implicit Arguments.
+
+Module Type ZAxiomsSig.
+Declare Module Export NZOrdAxiomsMod : NZOrdAxiomsSig.
+
+Delimit Scope IntScope with Int.
+Notation Z := NZ.
+Notation Zeq := NZeq.
+Notation Z0 := NZ0.
+Notation Z1 := (NZsucc NZ0).
+Notation S := NZsucc.
+Notation P := NZpred.
+Notation Zadd := NZadd.
+Notation Zmul := NZmul.
+Notation Zsub := NZsub.
+Notation Zlt := NZlt.
+Notation Zle := NZle.
+Notation Zmin := NZmin.
+Notation Zmax := NZmax.
+Notation "x == y" := (NZeq x y) (at level 70) : IntScope.
+Notation "x ~= y" := (~ NZeq x y) (at level 70) : IntScope.
+Notation "0" := NZ0 : IntScope.
+Notation "1" := (NZsucc NZ0) : IntScope.
+Notation "x + y" := (NZadd x y) : IntScope.
+Notation "x - y" := (NZsub x y) : IntScope.
+Notation "x * y" := (NZmul x y) : IntScope.
+Notation "x < y" := (NZlt x y) : IntScope.
+Notation "x <= y" := (NZle x y) : IntScope.
+Notation "x > y" := (NZlt y x) (only parsing) : IntScope.
+Notation "x >= y" := (NZle y x) (only parsing) : IntScope.
+
+Parameter Zopp : Z -> Z.
+
+(*Notation "- 1" := (Zopp 1) : IntScope.
+Check (-1).*)
+
+Add Morphism Zopp with signature Zeq ==> Zeq as Zopp_wd.
+
+Notation "- x" := (Zopp x) (at level 35, right associativity) : IntScope.
+Notation "- 1" := (Zopp (NZsucc NZ0)) : IntScope.
+
+Open Local Scope IntScope.
+
+(* Integers are obtained by postulating that every number has a predecessor *)
+Axiom Zsucc_pred : forall n : Z, S (P n) == n.
+
+Axiom Zopp_0 : - 0 == 0.
+Axiom Zopp_succ : forall n : Z, - (S n) == P (- n).
+
+End ZAxiomsSig.
+
diff --git a/theories/Numbers/Integer/Abstract/ZBase.v b/theories/Numbers/Integer/Abstract/ZBase.v
new file mode 100644
index 00000000..29e18548
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZBase.v
@@ -0,0 +1,86 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZBase.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export Decidable.
+Require Export ZAxioms.
+Require Import NZMulOrder.
+
+Module ZBasePropFunct (Import ZAxiomsMod : ZAxiomsSig).
+
+(* Note: writing "Export" instead of "Import" on the previous line leads to
+some warnings about hiding repeated declarations and results in the loss of
+notations in Zadd and later *)
+
+Open Local Scope IntScope.
+
+Module Export NZMulOrderMod := NZMulOrderPropFunct NZOrdAxiomsMod.
+
+Theorem Zsucc_wd : forall n1 n2 : Z, n1 == n2 -> S n1 == S n2.
+Proof NZsucc_wd.
+
+Theorem Zpred_wd : forall n1 n2 : Z, n1 == n2 -> P n1 == P n2.
+Proof NZpred_wd.
+
+Theorem Zpred_succ : forall n : Z, P (S n) == n.
+Proof NZpred_succ.
+
+Theorem Zeq_refl : forall n : Z, n == n.
+Proof (proj1 NZeq_equiv).
+
+Theorem Zeq_symm : forall n m : Z, n == m -> m == n.
+Proof (proj2 (proj2 NZeq_equiv)).
+
+Theorem Zeq_trans : forall n m p : Z, n == m -> m == p -> n == p.
+Proof (proj1 (proj2 NZeq_equiv)).
+
+Theorem Zneq_symm : forall n m : Z, n ~= m -> m ~= n.
+Proof NZneq_symm.
+
+Theorem Zsucc_inj : forall n1 n2 : Z, S n1 == S n2 -> n1 == n2.
+Proof NZsucc_inj.
+
+Theorem Zsucc_inj_wd : forall n1 n2 : Z, S n1 == S n2 <-> n1 == n2.
+Proof NZsucc_inj_wd.
+
+Theorem Zsucc_inj_wd_neg : forall n m : Z, S n ~= S m <-> n ~= m.
+Proof NZsucc_inj_wd_neg.
+
+(* Decidability and stability of equality was proved only in NZOrder, but
+since it does not mention order, we'll put it here *)
+
+Theorem Zeq_dec : forall n m : Z, decidable (n == m).
+Proof NZeq_dec.
+
+Theorem Zeq_dne : forall n m : Z, ~ ~ n == m <-> n == m.
+Proof NZeq_dne.
+
+Theorem Zcentral_induction :
+forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z, A z ->
+ (forall n : Z, A n <-> A (S n)) ->
+ forall n : Z, A n.
+Proof NZcentral_induction.
+
+(* Theorems that are true for integers but not for natural numbers *)
+
+Theorem Zpred_inj : forall n m : Z, P n == P m -> n == m.
+Proof.
+intros n m H. apply NZsucc_wd in H. now do 2 rewrite Zsucc_pred in H.
+Qed.
+
+Theorem Zpred_inj_wd : forall n1 n2 : Z, P n1 == P n2 <-> n1 == n2.
+Proof.
+intros n1 n2; split; [apply Zpred_inj | apply NZpred_wd].
+Qed.
+
+End ZBasePropFunct.
+
diff --git a/theories/Numbers/Integer/Abstract/ZDomain.v b/theories/Numbers/Integer/Abstract/ZDomain.v
new file mode 100644
index 00000000..15beb2b9
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZDomain.v
@@ -0,0 +1,69 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZDomain.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+
+Require Export NumPrelude.
+
+Module Type ZDomainSignature.
+
+Parameter Inline Z : Set.
+Parameter Inline Zeq : Z -> Z -> Prop.
+Parameter Inline e : Z -> Z -> bool.
+
+Axiom eq_equiv_e : forall x y : Z, Zeq x y <-> e x y.
+Axiom eq_equiv : equiv Z Zeq.
+
+Add Relation Z Zeq
+ reflexivity proved by (proj1 eq_equiv)
+ symmetry proved by (proj2 (proj2 eq_equiv))
+ transitivity proved by (proj1 (proj2 eq_equiv))
+as eq_rel.
+
+Delimit Scope IntScope with Int.
+Bind Scope IntScope with Z.
+Notation "x == y" := (Zeq x y) (at level 70) : IntScope.
+Notation "x # y" := (~ Zeq x y) (at level 70) : IntScope.
+
+End ZDomainSignature.
+
+Module ZDomainProperties (Import ZDomainModule : ZDomainSignature).
+Open Local Scope IntScope.
+
+Add Morphism e with signature Zeq ==> Zeq ==> eq_bool as e_wd.
+Proof.
+intros x x' Exx' y y' Eyy'.
+case_eq (e x y); case_eq (e x' y'); intros H1 H2; trivial.
+assert (x == y); [apply <- eq_equiv_e; now rewrite H2 |
+assert (x' == y'); [rewrite <- Exx'; now rewrite <- Eyy' |
+rewrite <- H1; assert (H3 : e x' y'); [now apply -> eq_equiv_e | now inversion H3]]].
+assert (x' == y'); [apply <- eq_equiv_e; now rewrite H1 |
+assert (x == y); [rewrite Exx'; now rewrite Eyy' |
+rewrite <- H2; assert (H3 : e x y); [now apply -> eq_equiv_e | now inversion H3]]].
+Qed.
+
+Theorem neq_symm : forall n m, n # m -> m # n.
+Proof.
+intros n m H1 H2; symmetry in H2; false_hyp H2 H1.
+Qed.
+
+Theorem ZE_stepl : forall x y z : Z, x == y -> x == z -> z == y.
+Proof.
+intros x y z H1 H2; now rewrite <- H1.
+Qed.
+
+Declare Left Step ZE_stepl.
+
+(* The right step lemma is just transitivity of Zeq *)
+Declare Right Step (proj1 (proj2 eq_equiv)).
+
+End ZDomainProperties.
+
+
diff --git a/theories/Numbers/Integer/Abstract/ZLt.v b/theories/Numbers/Integer/Abstract/ZLt.v
new file mode 100644
index 00000000..2a88a535
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZLt.v
@@ -0,0 +1,432 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZLt.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export ZMul.
+
+Module ZOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
+Module Export ZMulPropMod := ZMulPropFunct ZAxiomsMod.
+Open Local Scope IntScope.
+
+(* Axioms *)
+
+Theorem Zlt_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> (n1 < m1 <-> n2 < m2).
+Proof NZlt_wd.
+
+Theorem Zle_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> (n1 <= m1 <-> n2 <= m2).
+Proof NZle_wd.
+
+Theorem Zmin_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmin n1 m1 == Zmin n2 m2.
+Proof NZmin_wd.
+
+Theorem Zmax_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmax n1 m1 == Zmax n2 m2.
+Proof NZmax_wd.
+
+Theorem Zlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n == m.
+Proof NZlt_eq_cases.
+
+Theorem Zlt_irrefl : forall n : Z, ~ n < n.
+Proof NZlt_irrefl.
+
+Theorem Zlt_succ_r : forall n m : Z, n < S m <-> n <= m.
+Proof NZlt_succ_r.
+
+Theorem Zmin_l : forall n m : Z, n <= m -> Zmin n m == n.
+Proof NZmin_l.
+
+Theorem Zmin_r : forall n m : Z, m <= n -> Zmin n m == m.
+Proof NZmin_r.
+
+Theorem Zmax_l : forall n m : Z, m <= n -> Zmax n m == n.
+Proof NZmax_l.
+
+Theorem Zmax_r : forall n m : Z, n <= m -> Zmax n m == m.
+Proof NZmax_r.
+
+(* Renaming theorems from NZOrder.v *)
+
+Theorem Zlt_le_incl : forall n m : Z, n < m -> n <= m.
+Proof NZlt_le_incl.
+
+Theorem Zlt_neq : forall n m : Z, n < m -> n ~= m.
+Proof NZlt_neq.
+
+Theorem Zle_neq : forall n m : Z, n < m <-> n <= m /\ n ~= m.
+Proof NZle_neq.
+
+Theorem Zle_refl : forall n : Z, n <= n.
+Proof NZle_refl.
+
+Theorem Zlt_succ_diag_r : forall n : Z, n < S n.
+Proof NZlt_succ_diag_r.
+
+Theorem Zle_succ_diag_r : forall n : Z, n <= S n.
+Proof NZle_succ_diag_r.
+
+Theorem Zlt_0_1 : 0 < 1.
+Proof NZlt_0_1.
+
+Theorem Zle_0_1 : 0 <= 1.
+Proof NZle_0_1.
+
+Theorem Zlt_lt_succ_r : forall n m : Z, n < m -> n < S m.
+Proof NZlt_lt_succ_r.
+
+Theorem Zle_le_succ_r : forall n m : Z, n <= m -> n <= S m.
+Proof NZle_le_succ_r.
+
+Theorem Zle_succ_r : forall n m : Z, n <= S m <-> n <= m \/ n == S m.
+Proof NZle_succ_r.
+
+Theorem Zneq_succ_diag_l : forall n : Z, S n ~= n.
+Proof NZneq_succ_diag_l.
+
+Theorem Zneq_succ_diag_r : forall n : Z, n ~= S n.
+Proof NZneq_succ_diag_r.
+
+Theorem Znlt_succ_diag_l : forall n : Z, ~ S n < n.
+Proof NZnlt_succ_diag_l.
+
+Theorem Znle_succ_diag_l : forall n : Z, ~ S n <= n.
+Proof NZnle_succ_diag_l.
+
+Theorem Zle_succ_l : forall n m : Z, S n <= m <-> n < m.
+Proof NZle_succ_l.
+
+Theorem Zlt_succ_l : forall n m : Z, S n < m -> n < m.
+Proof NZlt_succ_l.
+
+Theorem Zsucc_lt_mono : forall n m : Z, n < m <-> S n < S m.
+Proof NZsucc_lt_mono.
+
+Theorem Zsucc_le_mono : forall n m : Z, n <= m <-> S n <= S m.
+Proof NZsucc_le_mono.
+
+Theorem Zlt_asymm : forall n m, n < m -> ~ m < n.
+Proof NZlt_asymm.
+
+Notation Zlt_ngt := Zlt_asymm (only parsing).
+
+Theorem Zlt_trans : forall n m p : Z, n < m -> m < p -> n < p.
+Proof NZlt_trans.
+
+Theorem Zle_trans : forall n m p : Z, n <= m -> m <= p -> n <= p.
+Proof NZle_trans.
+
+Theorem Zle_lt_trans : forall n m p : Z, n <= m -> m < p -> n < p.
+Proof NZle_lt_trans.
+
+Theorem Zlt_le_trans : forall n m p : Z, n < m -> m <= p -> n < p.
+Proof NZlt_le_trans.
+
+Theorem Zle_antisymm : forall n m : Z, n <= m -> m <= n -> n == m.
+Proof NZle_antisymm.
+
+Theorem Zlt_1_l : forall n m : Z, 0 < n -> n < m -> 1 < m.
+Proof NZlt_1_l.
+
+(** Trichotomy, decidability, and double negation elimination *)
+
+Theorem Zlt_trichotomy : forall n m : Z, n < m \/ n == m \/ m < n.
+Proof NZlt_trichotomy.
+
+Notation Zlt_eq_gt_cases := Zlt_trichotomy (only parsing).
+
+Theorem Zlt_gt_cases : forall n m : Z, n ~= m <-> n < m \/ n > m.
+Proof NZlt_gt_cases.
+
+Theorem Zle_gt_cases : forall n m : Z, n <= m \/ n > m.
+Proof NZle_gt_cases.
+
+Theorem Zlt_ge_cases : forall n m : Z, n < m \/ n >= m.
+Proof NZlt_ge_cases.
+
+Theorem Zle_ge_cases : forall n m : Z, n <= m \/ n >= m.
+Proof NZle_ge_cases.
+
+(** Instances of the previous theorems for m == 0 *)
+
+Theorem Zneg_pos_cases : forall n : Z, n ~= 0 <-> n < 0 \/ n > 0.
+Proof.
+intro; apply Zlt_gt_cases.
+Qed.
+
+Theorem Znonpos_pos_cases : forall n : Z, n <= 0 \/ n > 0.
+Proof.
+intro; apply Zle_gt_cases.
+Qed.
+
+Theorem Zneg_nonneg_cases : forall n : Z, n < 0 \/ n >= 0.
+Proof.
+intro; apply Zlt_ge_cases.
+Qed.
+
+Theorem Znonpos_nonneg_cases : forall n : Z, n <= 0 \/ n >= 0.
+Proof.
+intro; apply Zle_ge_cases.
+Qed.
+
+Theorem Zle_ngt : forall n m : Z, n <= m <-> ~ n > m.
+Proof NZle_ngt.
+
+Theorem Znlt_ge : forall n m : Z, ~ n < m <-> n >= m.
+Proof NZnlt_ge.
+
+Theorem Zlt_dec : forall n m : Z, decidable (n < m).
+Proof NZlt_dec.
+
+Theorem Zlt_dne : forall n m, ~ ~ n < m <-> n < m.
+Proof NZlt_dne.
+
+Theorem Znle_gt : forall n m : Z, ~ n <= m <-> n > m.
+Proof NZnle_gt.
+
+Theorem Zlt_nge : forall n m : Z, n < m <-> ~ n >= m.
+Proof NZlt_nge.
+
+Theorem Zle_dec : forall n m : Z, decidable (n <= m).
+Proof NZle_dec.
+
+Theorem Zle_dne : forall n m : Z, ~ ~ n <= m <-> n <= m.
+Proof NZle_dne.
+
+Theorem Znlt_succ_r : forall n m : Z, ~ m < S n <-> n < m.
+Proof NZnlt_succ_r.
+
+Theorem Zlt_exists_pred :
+ forall z n : Z, z < n -> exists k : Z, n == S k /\ z <= k.
+Proof NZlt_exists_pred.
+
+Theorem Zlt_succ_iter_r :
+ forall (n : nat) (m : Z), m < NZsucc_iter (Datatypes.S n) m.
+Proof NZlt_succ_iter_r.
+
+Theorem Zneq_succ_iter_l :
+ forall (n : nat) (m : Z), NZsucc_iter (Datatypes.S n) m ~= m.
+Proof NZneq_succ_iter_l.
+
+(** Stronger variant of induction with assumptions n >= 0 (n < 0)
+in the induction step *)
+
+Theorem Zright_induction :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z, A z ->
+ (forall n : Z, z <= n -> A n -> A (S n)) ->
+ forall n : Z, z <= n -> A n.
+Proof NZright_induction.
+
+Theorem Zleft_induction :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z, A z ->
+ (forall n : Z, n < z -> A (S n) -> A n) ->
+ forall n : Z, n <= z -> A n.
+Proof NZleft_induction.
+
+Theorem Zright_induction' :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, n <= z -> A n) ->
+ (forall n : Z, z <= n -> A n -> A (S n)) ->
+ forall n : Z, A n.
+Proof NZright_induction'.
+
+Theorem Zleft_induction' :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, z <= n -> A n) ->
+ (forall n : Z, n < z -> A (S n) -> A n) ->
+ forall n : Z, A n.
+Proof NZleft_induction'.
+
+Theorem Zstrong_right_induction :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) ->
+ forall n : Z, z <= n -> A n.
+Proof NZstrong_right_induction.
+
+Theorem Zstrong_left_induction :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) ->
+ forall n : Z, n <= z -> A n.
+Proof NZstrong_left_induction.
+
+Theorem Zstrong_right_induction' :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, n <= z -> A n) ->
+ (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) ->
+ forall n : Z, A n.
+Proof NZstrong_right_induction'.
+
+Theorem Zstrong_left_induction' :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z,
+ (forall n : Z, z <= n -> A n) ->
+ (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) ->
+ forall n : Z, A n.
+Proof NZstrong_left_induction'.
+
+Theorem Zorder_induction :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z, A z ->
+ (forall n : Z, z <= n -> A n -> A (S n)) ->
+ (forall n : Z, n < z -> A (S n) -> A n) ->
+ forall n : Z, A n.
+Proof NZorder_induction.
+
+Theorem Zorder_induction' :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall z : Z, A z ->
+ (forall n : Z, z <= n -> A n -> A (S n)) ->
+ (forall n : Z, n <= z -> A n -> A (P n)) ->
+ forall n : Z, A n.
+Proof NZorder_induction'.
+
+Theorem Zorder_induction_0 :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ A 0 ->
+ (forall n : Z, 0 <= n -> A n -> A (S n)) ->
+ (forall n : Z, n < 0 -> A (S n) -> A n) ->
+ forall n : Z, A n.
+Proof NZorder_induction_0.
+
+Theorem Zorder_induction'_0 :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ A 0 ->
+ (forall n : Z, 0 <= n -> A n -> A (S n)) ->
+ (forall n : Z, n <= 0 -> A n -> A (P n)) ->
+ forall n : Z, A n.
+Proof NZorder_induction'_0.
+
+Ltac Zinduct n := induction_maker n ltac:(apply Zorder_induction_0).
+
+(** Elimintation principle for < *)
+
+Theorem Zlt_ind :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall n : Z, A (S n) ->
+ (forall m : Z, n < m -> A m -> A (S m)) -> forall m : Z, n < m -> A m.
+Proof NZlt_ind.
+
+(** Elimintation principle for <= *)
+
+Theorem Zle_ind :
+ forall A : Z -> Prop, predicate_wd Zeq A ->
+ forall n : Z, A n ->
+ (forall m : Z, n <= m -> A m -> A (S m)) -> forall m : Z, n <= m -> A m.
+Proof NZle_ind.
+
+(** Well-founded relations *)
+
+Theorem Zlt_wf : forall z : Z, well_founded (fun n m : Z => z <= n /\ n < m).
+Proof NZlt_wf.
+
+Theorem Zgt_wf : forall z : Z, well_founded (fun n m : Z => m < n /\ n <= z).
+Proof NZgt_wf.
+
+(* Theorems that are either not valid on N or have different proofs on N and Z *)
+
+Theorem Zlt_pred_l : forall n : Z, P n < n.
+Proof.
+intro n; rewrite <- (Zsucc_pred n) at 2; apply Zlt_succ_diag_r.
+Qed.
+
+Theorem Zle_pred_l : forall n : Z, P n <= n.
+Proof.
+intro; apply Zlt_le_incl; apply Zlt_pred_l.
+Qed.
+
+Theorem Zlt_le_pred : forall n m : Z, n < m <-> n <= P m.
+Proof.
+intros n m; rewrite <- (Zsucc_pred m); rewrite Zpred_succ. apply Zlt_succ_r.
+Qed.
+
+Theorem Znle_pred_r : forall n : Z, ~ n <= P n.
+Proof.
+intro; rewrite <- Zlt_le_pred; apply Zlt_irrefl.
+Qed.
+
+Theorem Zlt_pred_le : forall n m : Z, P n < m <-> n <= m.
+Proof.
+intros n m; rewrite <- (Zsucc_pred n) at 2.
+symmetry; apply Zle_succ_l.
+Qed.
+
+Theorem Zlt_lt_pred : forall n m : Z, n < m -> P n < m.
+Proof.
+intros; apply <- Zlt_pred_le; now apply Zlt_le_incl.
+Qed.
+
+Theorem Zle_le_pred : forall n m : Z, n <= m -> P n <= m.
+Proof.
+intros; apply Zlt_le_incl; now apply <- Zlt_pred_le.
+Qed.
+
+Theorem Zlt_pred_lt : forall n m : Z, n < P m -> n < m.
+Proof.
+intros n m H; apply Zlt_trans with (P m); [assumption | apply Zlt_pred_l].
+Qed.
+
+Theorem Zle_pred_lt : forall n m : Z, n <= P m -> n <= m.
+Proof.
+intros; apply Zlt_le_incl; now apply <- Zlt_le_pred.
+Qed.
+
+Theorem Zpred_lt_mono : forall n m : Z, n < m <-> P n < P m.
+Proof.
+intros; rewrite Zlt_le_pred; symmetry; apply Zlt_pred_le.
+Qed.
+
+Theorem Zpred_le_mono : forall n m : Z, n <= m <-> P n <= P m.
+Proof.
+intros; rewrite <- Zlt_pred_le; now rewrite Zlt_le_pred.
+Qed.
+
+Theorem Zlt_succ_lt_pred : forall n m : Z, S n < m <-> n < P m.
+Proof.
+intros n m; now rewrite (Zpred_lt_mono (S n) m), Zpred_succ.
+Qed.
+
+Theorem Zle_succ_le_pred : forall n m : Z, S n <= m <-> n <= P m.
+Proof.
+intros n m; now rewrite (Zpred_le_mono (S n) m), Zpred_succ.
+Qed.
+
+Theorem Zlt_pred_lt_succ : forall n m : Z, P n < m <-> n < S m.
+Proof.
+intros; rewrite Zlt_pred_le; symmetry; apply Zlt_succ_r.
+Qed.
+
+Theorem Zle_pred_lt_succ : forall n m : Z, P n <= m <-> n <= S m.
+Proof.
+intros n m; now rewrite (Zpred_le_mono n (S m)), Zpred_succ.
+Qed.
+
+Theorem Zneq_pred_l : forall n : Z, P n ~= n.
+Proof.
+intro; apply Zlt_neq; apply Zlt_pred_l.
+Qed.
+
+Theorem Zlt_n1_r : forall n m : Z, n < m -> m < 0 -> n < -1.
+Proof.
+intros n m H1 H2. apply -> Zlt_le_pred in H2.
+setoid_replace (P 0) with (-1) in H2. now apply NZlt_le_trans with m.
+apply <- Zeq_opp_r. now rewrite Zopp_pred, Zopp_0.
+Qed.
+
+End ZOrderPropFunct.
+
diff --git a/theories/Numbers/Integer/Abstract/ZMul.v b/theories/Numbers/Integer/Abstract/ZMul.v
new file mode 100644
index 00000000..c48d1b4c
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZMul.v
@@ -0,0 +1,115 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZMul.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export ZAdd.
+
+Module ZMulPropFunct (Import ZAxiomsMod : ZAxiomsSig).
+Module Export ZAddPropMod := ZAddPropFunct ZAxiomsMod.
+Open Local Scope IntScope.
+
+Theorem Zmul_wd :
+ forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> n1 * m1 == n2 * m2.
+Proof NZmul_wd.
+
+Theorem Zmul_0_l : forall n : Z, 0 * n == 0.
+Proof NZmul_0_l.
+
+Theorem Zmul_succ_l : forall n m : Z, (S n) * m == n * m + m.
+Proof NZmul_succ_l.
+
+(* Theorems that are valid for both natural numbers and integers *)
+
+Theorem Zmul_0_r : forall n : Z, n * 0 == 0.
+Proof NZmul_0_r.
+
+Theorem Zmul_succ_r : forall n m : Z, n * (S m) == n * m + n.
+Proof NZmul_succ_r.
+
+Theorem Zmul_comm : forall n m : Z, n * m == m * n.
+Proof NZmul_comm.
+
+Theorem Zmul_add_distr_r : forall n m p : Z, (n + m) * p == n * p + m * p.
+Proof NZmul_add_distr_r.
+
+Theorem Zmul_add_distr_l : forall n m p : Z, n * (m + p) == n * m + n * p.
+Proof NZmul_add_distr_l.
+
+(* A note on naming: right (correspondingly, left) distributivity happens
+when the sum is multiplied by a number on the right (left), not when the
+sum itself is the right (left) factor in the product (see planetmath.org
+and mathworld.wolfram.com). In the old library BinInt, distributivity over
+subtraction was named correctly, but distributivity over addition was named
+incorrectly. The names in Isabelle/HOL library are also incorrect. *)
+
+Theorem Zmul_assoc : forall n m p : Z, n * (m * p) == (n * m) * p.
+Proof NZmul_assoc.
+
+Theorem Zmul_1_l : forall n : Z, 1 * n == n.
+Proof NZmul_1_l.
+
+Theorem Zmul_1_r : forall n : Z, n * 1 == n.
+Proof NZmul_1_r.
+
+(* The following two theorems are true in an ordered ring,
+but since they don't mention order, we'll put them here *)
+
+Theorem Zeq_mul_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
+
+Theorem Zneq_mul_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
+
+(* Theorems that are either not valid on N or have different proofs on N and Z *)
+
+Theorem Zmul_pred_r : forall n m : Z, n * (P m) == n * m - n.
+Proof.
+intros n m.
+rewrite <- (Zsucc_pred m) at 2.
+now rewrite Zmul_succ_r, <- Zadd_sub_assoc, Zsub_diag, Zadd_0_r.
+Qed.
+
+Theorem Zmul_pred_l : forall n m : Z, (P n) * m == n * m - m.
+Proof.
+intros n m; rewrite (Zmul_comm (P n) m), (Zmul_comm n m). apply Zmul_pred_r.
+Qed.
+
+Theorem Zmul_opp_l : forall n m : Z, (- n) * m == - (n * m).
+Proof.
+intros n m. apply -> Zadd_move_0_r.
+now rewrite <- Zmul_add_distr_r, Zadd_opp_diag_l, Zmul_0_l.
+Qed.
+
+Theorem Zmul_opp_r : forall n m : Z, n * (- m) == - (n * m).
+Proof.
+intros n m; rewrite (Zmul_comm n (- m)), (Zmul_comm n m); apply Zmul_opp_l.
+Qed.
+
+Theorem Zmul_opp_opp : forall n m : Z, (- n) * (- m) == n * m.
+Proof.
+intros n m; now rewrite Zmul_opp_l, Zmul_opp_r, Zopp_involutive.
+Qed.
+
+Theorem Zmul_sub_distr_l : forall n m p : Z, n * (m - p) == n * m - n * p.
+Proof.
+intros n m p. do 2 rewrite <- Zadd_opp_r. rewrite Zmul_add_distr_l.
+now rewrite Zmul_opp_r.
+Qed.
+
+Theorem Zmul_sub_distr_r : forall n m p : Z, (n - m) * p == n * p - m * p.
+Proof.
+intros n m p; rewrite (Zmul_comm (n - m) p), (Zmul_comm n p), (Zmul_comm m p);
+now apply Zmul_sub_distr_l.
+Qed.
+
+End ZMulPropFunct.
+
+
diff --git a/theories/Numbers/Integer/Abstract/ZMulOrder.v b/theories/Numbers/Integer/Abstract/ZMulOrder.v
new file mode 100644
index 00000000..e3f1d9aa
--- /dev/null
+++ b/theories/Numbers/Integer/Abstract/ZMulOrder.v
@@ -0,0 +1,343 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export ZAddOrder.
+
+Module ZMulOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
+Module Export ZAddOrderPropMod := ZAddOrderPropFunct ZAxiomsMod.
+Open Local Scope IntScope.
+
+Theorem Zmul_lt_pred :
+ forall p q n m : Z, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
+Proof NZmul_lt_pred.
+
+Theorem Zmul_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m).
+Proof NZmul_lt_mono_pos_l.
+
+Theorem Zmul_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p).
+Proof NZmul_lt_mono_pos_r.
+
+Theorem Zmul_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n).
+Proof NZmul_lt_mono_neg_l.
+
+Theorem Zmul_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p).
+Proof NZmul_lt_mono_neg_r.
+
+Theorem Zmul_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m.
+Proof NZmul_le_mono_nonneg_l.
+
+Theorem Zmul_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n.
+Proof NZmul_le_mono_nonpos_l.
+
+Theorem Zmul_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p.
+Proof NZmul_le_mono_nonneg_r.
+
+Theorem Zmul_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p.
+Proof NZmul_le_mono_nonpos_r.
+
+Theorem Zmul_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof NZmul_cancel_l.
+
+Theorem Zmul_cancel_r : forall n m p : Z, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof NZmul_cancel_r.
+
+Theorem Zmul_id_l : forall n m : Z, m ~= 0 -> (n * m == m <-> n == 1).
+Proof NZmul_id_l.
+
+Theorem Zmul_id_r : forall n m : Z, n ~= 0 -> (n * m == n <-> m == 1).
+Proof NZmul_id_r.
+
+Theorem Zmul_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof NZmul_le_mono_pos_l.
+
+Theorem Zmul_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof NZmul_le_mono_pos_r.
+
+Theorem Zmul_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n).
+Proof NZmul_le_mono_neg_l.
+
+Theorem Zmul_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p).
+Proof NZmul_le_mono_neg_r.
+
+Theorem Zmul_lt_mono_nonneg :
+ forall n m p q : Z, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
+Proof NZmul_lt_mono_nonneg.
+
+Theorem Zmul_lt_mono_nonpos :
+ forall n m p q : Z, m <= 0 -> n < m -> q <= 0 -> p < q -> m * q < n * p.
+Proof.
+intros n m p q H1 H2 H3 H4.
+apply Zle_lt_trans with (m * p).
+apply Zmul_le_mono_nonpos_l; [assumption | now apply Zlt_le_incl].
+apply -> Zmul_lt_mono_neg_r; [assumption | now apply Zlt_le_trans with q].
+Qed.
+
+Theorem Zmul_le_mono_nonneg :
+ forall n m p q : Z, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
+Proof NZmul_le_mono_nonneg.
+
+Theorem Zmul_le_mono_nonpos :
+ forall n m p q : Z, m <= 0 -> n <= m -> q <= 0 -> p <= q -> m * q <= n * p.
+Proof.
+intros n m p q H1 H2 H3 H4.
+apply Zle_trans with (m * p).
+now apply Zmul_le_mono_nonpos_l.
+apply Zmul_le_mono_nonpos_r; [now apply Zle_trans with q | assumption].
+Qed.
+
+Theorem Zmul_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m.
+Proof NZmul_pos_pos.
+
+Theorem Zmul_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m.
+Proof NZmul_neg_neg.
+
+Theorem Zmul_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0.
+Proof NZmul_pos_neg.
+
+Theorem Zmul_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0.
+Proof NZmul_neg_pos.
+
+Theorem Zmul_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonneg_r.
+Qed.
+
+Theorem Zmul_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
+Qed.
+
+Theorem Zmul_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0.
+Proof.
+intros n m H1 H2.
+rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
+Qed.
+
+Theorem Zmul_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0.
+Proof.
+intros; rewrite Zmul_comm; now apply Zmul_nonneg_nonpos.
+Qed.
+
+Theorem Zlt_1_mul_pos : forall n m : Z, 1 < n -> 0 < m -> 1 < n * m.
+Proof NZlt_1_mul_pos.
+
+Theorem Zeq_mul_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
+
+Theorem Zneq_mul_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
+
+Theorem Zeq_square_0 : forall n : Z, n * n == 0 <-> n == 0.
+Proof NZeq_square_0.
+
+Theorem Zeq_mul_0_l : forall n m : Z, n * m == 0 -> m ~= 0 -> n == 0.
+Proof NZeq_mul_0_l.
+
+Theorem Zeq_mul_0_r : forall n m : Z, n * m == 0 -> n ~= 0 -> m == 0.
+Proof NZeq_mul_0_r.
+
+Theorem Zlt_0_mul : forall n m : Z, 0 < n * m <-> 0 < n /\ 0 < m \/ m < 0 /\ n < 0.
+Proof NZlt_0_mul.
+
+Notation Zmul_pos := Zlt_0_mul (only parsing).
+
+Theorem Zlt_mul_0 :
+ forall n m : Z, n * m < 0 <-> n < 0 /\ m > 0 \/ n > 0 /\ m < 0.
+Proof.
+intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
+destruct (Zlt_trichotomy n 0) as [H1 | [H1 | H1]];
+[| rewrite H1 in H; rewrite Zmul_0_l in H; false_hyp H Zlt_irrefl |];
+(destruct (Zlt_trichotomy m 0) as [H2 | [H2 | H2]];
+[| rewrite H2 in H; rewrite Zmul_0_r in H; false_hyp H Zlt_irrefl |]);
+try (left; now split); try (right; now split).
+assert (H3 : n * m > 0) by now apply Zmul_neg_neg.
+elimtype False; now apply (Zlt_asymm (n * m) 0).
+assert (H3 : n * m > 0) by now apply Zmul_pos_pos.
+elimtype False; now apply (Zlt_asymm (n * m) 0).
+now apply Zmul_neg_pos. now apply Zmul_pos_neg.
+Qed.
+
+Notation Zmul_neg := Zlt_mul_0 (only parsing).
+
+Theorem Zle_0_mul :
+ forall n m : Z, 0 <= n * m -> 0 <= n /\ 0 <= m \/ n <= 0 /\ m <= 0.
+Proof.
+assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_symm).
+intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
+rewrite Zlt_0_mul, Zeq_mul_0.
+pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
+Qed.
+
+Notation Zmul_nonneg := Zle_0_mul (only parsing).
+
+Theorem Zle_mul_0 :
+ forall n m : Z, n * m <= 0 -> 0 <= n /\ m <= 0 \/ n <= 0 /\ 0 <= m.
+Proof.
+assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_symm).
+intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
+rewrite Zlt_mul_0, Zeq_mul_0.
+pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
+Qed.
+
+Notation Zmul_nonpos := Zle_mul_0 (only parsing).
+
+Theorem Zle_0_square : forall n : Z, 0 <= n * n.
+Proof.
+intro n; destruct (Zneg_nonneg_cases n).
+apply Zlt_le_incl; now apply Zmul_neg_neg.
+now apply Zmul_nonneg_nonneg.
+Qed.
+
+Notation Zsquare_nonneg := Zle_0_square (only parsing).
+
+Theorem Znlt_square_0 : forall n : Z, ~ n * n < 0.
+Proof.
+intros n H. apply -> Zlt_nge in H. apply H. apply Zsquare_nonneg.
+Qed.
+
+Theorem Zsquare_lt_mono_nonneg : forall n m : Z, 0 <= n -> n < m -> n * n < m * m.
+Proof NZsquare_lt_mono_nonneg.
+
+Theorem Zsquare_lt_mono_nonpos : forall n m : Z, n <= 0 -> m < n -> n * n < m * m.
+Proof.
+intros n m H1 H2. now apply Zmul_lt_mono_nonpos.
+Qed.
+
+Theorem Zsquare_le_mono_nonneg : forall n m : Z, 0 <= n -> n <= m -> n * n <= m * m.
+Proof NZsquare_le_mono_nonneg.
+
+Theorem Zsquare_le_mono_nonpos : forall n m : Z, n <= 0 -> m <= n -> n * n <= m * m.
+Proof.
+intros n m H1 H2. now apply Zmul_le_mono_nonpos.
+Qed.
+
+Theorem Zsquare_lt_simpl_nonneg : forall n m : Z, 0 <= m -> n * n < m * m -> n < m.
+Proof NZsquare_lt_simpl_nonneg.
+
+Theorem Zsquare_le_simpl_nonneg : forall n m : Z, 0 <= m -> n * n <= m * m -> n <= m.
+Proof NZsquare_le_simpl_nonneg.
+
+Theorem Zsquare_lt_simpl_nonpos : forall n m : Z, m <= 0 -> n * n < m * m -> m < n.
+Proof.
+intros n m H1 H2. destruct (Zle_gt_cases n 0).
+destruct (NZlt_ge_cases m n).
+assumption. assert (F : m * m <= n * n) by now apply Zsquare_le_mono_nonpos.
+apply -> NZle_ngt in F. false_hyp H2 F.
+now apply Zle_lt_trans with 0.
+Qed.
+
+Theorem Zsquare_le_simpl_nonpos : forall n m : NZ, m <= 0 -> n * n <= m * m -> m <= n.
+Proof.
+intros n m H1 H2. destruct (NZle_gt_cases n 0).
+destruct (NZle_gt_cases m n).
+assumption. assert (F : m * m < n * n) by now apply Zsquare_lt_mono_nonpos.
+apply -> NZlt_nge in F. false_hyp H2 F.
+apply Zlt_le_incl; now apply NZle_lt_trans with 0.
+Qed.
+
+Theorem Zmul_2_mono_l : forall n m : Z, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof NZmul_2_mono_l.
+
+Theorem Zlt_1_mul_neg : forall n m : Z, n < -1 -> m < 0 -> 1 < n * m.
+Proof.
+intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
+apply <- Zopp_pos_neg in H2. rewrite Zmul_opp_l, Zmul_1_l in H1.
+now apply Zlt_1_l with (- m).
+assumption.
+Qed.
+
+Theorem Zlt_mul_n1_neg : forall n m : Z, 1 < n -> m < 0 -> n * m < -1.
+Proof.
+intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
+rewrite Zmul_1_l in H1. now apply Zlt_n1_r with m.
+assumption.
+Qed.
+
+Theorem Zlt_mul_n1_pos : forall n m : Z, n < -1 -> 0 < m -> n * m < -1.
+Proof.
+intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
+rewrite Zmul_opp_l, Zmul_1_l in H1.
+apply <- Zopp_neg_pos in H2. now apply Zlt_n1_r with (- m).
+assumption.
+Qed.
+
+Theorem Zlt_1_mul_l : forall n m : Z, 1 < n -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Proof.
+intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
+left. now apply Zlt_mul_n1_neg.
+right; left; now rewrite H1, Zmul_0_r.
+right; right; now apply Zlt_1_mul_pos.
+Qed.
+
+Theorem Zlt_n1_mul_r : forall n m : Z, n < -1 -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Proof.
+intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
+right; right. now apply Zlt_1_mul_neg.
+right; left; now rewrite H1, Zmul_0_r.
+left. now apply Zlt_mul_n1_pos.
+Qed.
+
+Theorem Zeq_mul_1 : forall n m : Z, n * m == 1 -> n == 1 \/ n == -1.
+Proof.
+assert (F : ~ 1 < -1).
+intro H.
+assert (H1 : -1 < 0). apply <- Zopp_neg_pos. apply Zlt_succ_diag_r.
+assert (H2 : 1 < 0) by now apply Zlt_trans with (-1). false_hyp H2 Znlt_succ_diag_l.
+Z0_pos_neg n.
+intros m H; rewrite Zmul_0_l in H; false_hyp H Zneq_succ_diag_r.
+intros n H; split; apply <- Zle_succ_l in H; le_elim H.
+intros m H1; apply (Zlt_1_mul_l n m) in H.
+rewrite H1 in H; destruct H as [H | [H | H]].
+false_hyp H F. false_hyp H Zneq_succ_diag_l. false_hyp H Zlt_irrefl.
+intros; now left.
+intros m H1; apply (Zlt_1_mul_l n m) in H. rewrite Zmul_opp_l in H1;
+apply -> Zeq_opp_l in H1. rewrite H1 in H; destruct H as [H | [H | H]].
+false_hyp H Zlt_irrefl. apply -> Zeq_opp_l in H. rewrite Zopp_0 in H.
+false_hyp H Zneq_succ_diag_l. false_hyp H F.
+intros; right; symmetry; now apply Zopp_wd.
+Qed.
+
+Theorem Zlt_mul_diag_l : forall n m : Z, n < 0 -> (1 < m <-> n * m < n).
+Proof.
+intros n m H. stepr (n * m < n * 1) by now rewrite Zmul_1_r.
+now apply Zmul_lt_mono_neg_l.
+Qed.
+
+Theorem Zlt_mul_diag_r : forall n m : Z, 0 < n -> (1 < m <-> n < n * m).
+Proof.
+intros n m H. stepr (n * 1 < n * m) by now rewrite Zmul_1_r.
+now apply Zmul_lt_mono_pos_l.
+Qed.
+
+Theorem Zle_mul_diag_l : forall n m : Z, n < 0 -> (1 <= m <-> n * m <= n).
+Proof.
+intros n m H. stepr (n * m <= n * 1) by now rewrite Zmul_1_r.
+now apply Zmul_le_mono_neg_l.
+Qed.
+
+Theorem Zle_mul_diag_r : forall n m : Z, 0 < n -> (1 <= m <-> n <= n * m).
+Proof.
+intros n m H. stepr (n * 1 <= n * m) by now rewrite Zmul_1_r.
+now apply Zmul_le_mono_pos_l.
+Qed.
+
+Theorem Zlt_mul_r : forall n m p : Z, 0 < n -> 1 < p -> n < m -> n < m * p.
+Proof.
+intros. stepl (n * 1) by now rewrite Zmul_1_r.
+apply Zmul_lt_mono_nonneg.
+now apply Zlt_le_incl. assumption. apply Zle_0_1. assumption.
+Qed.
+
+End ZMulOrderPropFunct.
+
diff --git a/theories/Numbers/Integer/BigZ/BigZ.v b/theories/Numbers/Integer/BigZ/BigZ.v
new file mode 100644
index 00000000..09abf424
--- /dev/null
+++ b/theories/Numbers/Integer/BigZ/BigZ.v
@@ -0,0 +1,109 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: BigZ.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export BigN.
+Require Import ZMulOrder.
+Require Import ZSig.
+Require Import ZSigZAxioms.
+Require Import ZMake.
+
+Module BigZ <: ZType := ZMake.Make BigN.
+
+(** Module [BigZ] implements [ZAxiomsSig] *)
+
+Module Export BigZAxiomsMod := ZSig_ZAxioms BigZ.
+Module Export BigZMulOrderPropMod := ZMulOrderPropFunct BigZAxiomsMod.
+
+(** Notations about [BigZ] *)
+
+Notation bigZ := BigZ.t.
+
+Delimit Scope bigZ_scope with bigZ.
+Bind Scope bigZ_scope with bigZ.
+Bind Scope bigZ_scope with BigZ.t.
+Bind Scope bigZ_scope with BigZ.t_.
+
+Notation Local "0" := BigZ.zero : bigZ_scope.
+Infix "+" := BigZ.add : bigZ_scope.
+Infix "-" := BigZ.sub : bigZ_scope.
+Notation "- x" := (BigZ.opp x) : bigZ_scope.
+Infix "*" := BigZ.mul : bigZ_scope.
+Infix "/" := BigZ.div : bigZ_scope.
+Infix "?=" := BigZ.compare : bigZ_scope.
+Infix "==" := BigZ.eq (at level 70, no associativity) : bigZ_scope.
+Infix "<" := BigZ.lt : bigZ_scope.
+Infix "<=" := BigZ.le : bigZ_scope.
+Notation "[ i ]" := (BigZ.to_Z i) : bigZ_scope.
+
+Open Scope bigZ_scope.
+
+(** Some additional results about [BigZ] *)
+
+Theorem spec_to_Z: forall n:bigZ,
+ BigN.to_Z (BigZ.to_N n) = ((Zsgn [n]) * [n])%Z.
+Proof.
+intros n; case n; simpl; intros p;
+ generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
+intros p1 H1; case H1; auto.
+intros p1 H1; case H1; auto.
+Qed.
+
+Theorem spec_to_N n:
+ ([n] = Zsgn [n] * (BigN.to_Z (BigZ.to_N n)))%Z.
+Proof.
+intros n; case n; simpl; intros p;
+ generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
+intros p1 H1; case H1; auto.
+intros p1 H1; case H1; auto.
+Qed.
+
+Theorem spec_to_Z_pos: forall n, (0 <= [n])%Z ->
+ BigN.to_Z (BigZ.to_N n) = [n].
+Proof.
+intros n; case n; simpl; intros p;
+ generalize (BigN.spec_pos p); case (BigN.to_Z p); auto.
+intros p1 _ H1; case H1; auto.
+intros p1 H1; case H1; auto.
+Qed.
+
+Lemma sub_opp : forall x y : bigZ, x - y == x + (- y).
+Proof.
+red; intros; zsimpl; auto.
+Qed.
+
+Lemma add_opp : forall x : bigZ, x + (- x) == 0.
+Proof.
+red; intros; zsimpl; auto with zarith.
+Qed.
+
+(** [BigZ] is a ring *)
+
+Lemma BigZring :
+ ring_theory BigZ.zero BigZ.one BigZ.add BigZ.mul BigZ.sub BigZ.opp BigZ.eq.
+Proof.
+constructor.
+exact Zadd_0_l.
+exact Zadd_comm.
+exact Zadd_assoc.
+exact Zmul_1_l.
+exact Zmul_comm.
+exact Zmul_assoc.
+exact Zmul_add_distr_r.
+exact sub_opp.
+exact add_opp.
+Qed.
+
+Add Ring BigZr : BigZring.
+
+(** Todo: tactic translating from [BigZ] to [Z] + omega *)
+
+(** Todo: micromega *)
diff --git a/theories/Numbers/Integer/BigZ/ZMake.v b/theories/Numbers/Integer/BigZ/ZMake.v
new file mode 100644
index 00000000..1f2b12bb
--- /dev/null
+++ b/theories/Numbers/Integer/BigZ/ZMake.v
@@ -0,0 +1,491 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import NSig.
+Require Import ZSig.
+
+Open Scope Z_scope.
+
+(** * ZMake
+
+ A generic transformation from a structure of natural numbers
+ [NSig.NType] to a structure of integers [ZSig.ZType].
+*)
+
+Module Make (N:NType) <: ZType.
+
+ Inductive t_ :=
+ | Pos : N.t -> t_
+ | Neg : N.t -> t_.
+
+ Definition t := t_.
+
+ Definition zero := Pos N.zero.
+ Definition one := Pos N.one.
+ Definition minus_one := Neg N.one.
+
+ Definition of_Z x :=
+ match x with
+ | Zpos x => Pos (N.of_N (Npos x))
+ | Z0 => zero
+ | Zneg x => Neg (N.of_N (Npos x))
+ end.
+
+ Definition to_Z x :=
+ match x with
+ | Pos nx => N.to_Z nx
+ | Neg nx => Zopp (N.to_Z nx)
+ end.
+
+ Theorem spec_of_Z: forall x, to_Z (of_Z x) = x.
+ intros x; case x; unfold to_Z, of_Z, zero.
+ exact N.spec_0.
+ intros; rewrite N.spec_of_N; auto.
+ intros; rewrite N.spec_of_N; auto.
+ Qed.
+
+ Definition eq x y := (to_Z x = to_Z y).
+
+ Theorem spec_0: to_Z zero = 0.
+ exact N.spec_0.
+ Qed.
+
+ Theorem spec_1: to_Z one = 1.
+ exact N.spec_1.
+ Qed.
+
+ Theorem spec_m1: to_Z minus_one = -1.
+ simpl; rewrite N.spec_1; auto.
+ Qed.
+
+ Definition compare x y :=
+ match x, y with
+ | Pos nx, Pos ny => N.compare nx ny
+ | Pos nx, Neg ny =>
+ match N.compare nx N.zero with
+ | Gt => Gt
+ | _ => N.compare ny N.zero
+ end
+ | Neg nx, Pos ny =>
+ match N.compare N.zero nx with
+ | Lt => Lt
+ | _ => N.compare N.zero ny
+ end
+ | Neg nx, Neg ny => N.compare ny nx
+ end.
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Theorem spec_compare: forall x y,
+ match compare x y with
+ Eq => to_Z x = to_Z y
+ | Lt => to_Z x < to_Z y
+ | Gt => to_Z x > to_Z y
+ end.
+ unfold compare, to_Z; intros x y; case x; case y; clear x y;
+ intros x y; auto; generalize (N.spec_pos x) (N.spec_pos y).
+ generalize (N.spec_compare y x); case N.compare; auto with zarith.
+ generalize (N.spec_compare y N.zero); case N.compare;
+ try rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare x N.zero); case N.compare;
+ rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare x N.zero); case N.compare;
+ rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare N.zero y); case N.compare;
+ try rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare N.zero x); case N.compare;
+ rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare N.zero x); case N.compare;
+ rewrite N.spec_0; auto with zarith.
+ generalize (N.spec_compare x y); case N.compare; auto with zarith.
+ Qed.
+
+ Definition eq_bool x y :=
+ match compare x y with
+ | Eq => true
+ | _ => false
+ end.
+
+ Theorem spec_eq_bool: forall x y,
+ if eq_bool x y then to_Z x = to_Z y else to_Z x <> to_Z y.
+ intros x y; unfold eq_bool;
+ generalize (spec_compare x y); case compare; auto with zarith.
+ Qed.
+
+ Definition cmp_sign x y :=
+ match x, y with
+ | Pos nx, Neg ny =>
+ if N.eq_bool ny N.zero then Eq else Gt
+ | Neg nx, Pos ny =>
+ if N.eq_bool nx N.zero then Eq else Lt
+ | _, _ => Eq
+ end.
+
+ Theorem spec_cmp_sign: forall x y,
+ match cmp_sign x y with
+ | Gt => 0 <= to_Z x /\ to_Z y < 0
+ | Lt => to_Z x < 0 /\ 0 <= to_Z y
+ | Eq => True
+ end.
+ Proof.
+ intros [x | x] [y | y]; unfold cmp_sign; auto.
+ generalize (N.spec_eq_bool y N.zero); case N.eq_bool; auto.
+ rewrite N.spec_0; unfold to_Z.
+ generalize (N.spec_pos x) (N.spec_pos y); auto with zarith.
+ generalize (N.spec_eq_bool x N.zero); case N.eq_bool; auto.
+ rewrite N.spec_0; unfold to_Z.
+ generalize (N.spec_pos x) (N.spec_pos y); auto with zarith.
+ Qed.
+
+ Definition to_N x :=
+ match x with
+ | Pos nx => nx
+ | Neg nx => nx
+ end.
+
+ Definition abs x := Pos (to_N x).
+
+ Theorem spec_abs: forall x, to_Z (abs x) = Zabs (to_Z x).
+ intros x; case x; clear x; intros x; assert (F:=N.spec_pos x).
+ simpl; rewrite Zabs_eq; auto.
+ simpl; rewrite Zabs_non_eq; simpl; auto with zarith.
+ Qed.
+
+ Definition opp x :=
+ match x with
+ | Pos nx => Neg nx
+ | Neg nx => Pos nx
+ end.
+
+ Theorem spec_opp: forall x, to_Z (opp x) = - to_Z x.
+ intros x; case x; simpl; auto with zarith.
+ Qed.
+
+ Definition succ x :=
+ match x with
+ | Pos n => Pos (N.succ n)
+ | Neg n =>
+ match N.compare N.zero n with
+ | Lt => Neg (N.pred n)
+ | _ => one
+ end
+ end.
+
+ Theorem spec_succ: forall n, to_Z (succ n) = to_Z n + 1.
+ intros x; case x; clear x; intros x.
+ exact (N.spec_succ x).
+ simpl; generalize (N.spec_compare N.zero x); case N.compare;
+ rewrite N.spec_0; simpl.
+ intros HH; rewrite <- HH; rewrite N.spec_1; ring.
+ intros HH; rewrite N.spec_pred; auto with zarith.
+ generalize (N.spec_pos x); auto with zarith.
+ Qed.
+
+ Definition add x y :=
+ match x, y with
+ | Pos nx, Pos ny => Pos (N.add nx ny)
+ | Pos nx, Neg ny =>
+ match N.compare nx ny with
+ | Gt => Pos (N.sub nx ny)
+ | Eq => zero
+ | Lt => Neg (N.sub ny nx)
+ end
+ | Neg nx, Pos ny =>
+ match N.compare nx ny with
+ | Gt => Neg (N.sub nx ny)
+ | Eq => zero
+ | Lt => Pos (N.sub ny nx)
+ end
+ | Neg nx, Neg ny => Neg (N.add nx ny)
+ end.
+
+ Theorem spec_add: forall x y, to_Z (add x y) = to_Z x + to_Z y.
+ unfold add, to_Z; intros [x | x] [y | y].
+ exact (N.spec_add x y).
+ unfold zero; generalize (N.spec_compare x y); case N.compare.
+ rewrite N.spec_0; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ unfold zero; generalize (N.spec_compare x y); case N.compare.
+ rewrite N.spec_0; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ intros; rewrite N.spec_add; try ring; auto with zarith.
+ Qed.
+
+ Definition pred x :=
+ match x with
+ | Pos nx =>
+ match N.compare N.zero nx with
+ | Lt => Pos (N.pred nx)
+ | _ => minus_one
+ end
+ | Neg nx => Neg (N.succ nx)
+ end.
+
+ Theorem spec_pred: forall x, to_Z (pred x) = to_Z x - 1.
+ unfold pred, to_Z, minus_one; intros [x | x].
+ generalize (N.spec_compare N.zero x); case N.compare;
+ rewrite N.spec_0; try rewrite N.spec_1; auto with zarith.
+ intros H; exact (N.spec_pred _ H).
+ generalize (N.spec_pos x); auto with zarith.
+ rewrite N.spec_succ; ring.
+ Qed.
+
+ Definition sub x y :=
+ match x, y with
+ | Pos nx, Pos ny =>
+ match N.compare nx ny with
+ | Gt => Pos (N.sub nx ny)
+ | Eq => zero
+ | Lt => Neg (N.sub ny nx)
+ end
+ | Pos nx, Neg ny => Pos (N.add nx ny)
+ | Neg nx, Pos ny => Neg (N.add nx ny)
+ | Neg nx, Neg ny =>
+ match N.compare nx ny with
+ | Gt => Neg (N.sub nx ny)
+ | Eq => zero
+ | Lt => Pos (N.sub ny nx)
+ end
+ end.
+
+ Theorem spec_sub: forall x y, to_Z (sub x y) = to_Z x - to_Z y.
+ unfold sub, to_Z; intros [x | x] [y | y].
+ unfold zero; generalize (N.spec_compare x y); case N.compare.
+ rewrite N.spec_0; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ rewrite N.spec_add; ring.
+ rewrite N.spec_add; ring.
+ unfold zero; generalize (N.spec_compare x y); case N.compare.
+ rewrite N.spec_0; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ intros; rewrite N.spec_sub; try ring; auto with zarith.
+ Qed.
+
+ Definition mul x y :=
+ match x, y with
+ | Pos nx, Pos ny => Pos (N.mul nx ny)
+ | Pos nx, Neg ny => Neg (N.mul nx ny)
+ | Neg nx, Pos ny => Neg (N.mul nx ny)
+ | Neg nx, Neg ny => Pos (N.mul nx ny)
+ end.
+
+
+ Theorem spec_mul: forall x y, to_Z (mul x y) = to_Z x * to_Z y.
+ unfold mul, to_Z; intros [x | x] [y | y]; rewrite N.spec_mul; ring.
+ Qed.
+
+ Definition square x :=
+ match x with
+ | Pos nx => Pos (N.square nx)
+ | Neg nx => Pos (N.square nx)
+ end.
+
+ Theorem spec_square: forall x, to_Z (square x) = to_Z x * to_Z x.
+ unfold square, to_Z; intros [x | x]; rewrite N.spec_square; ring.
+ Qed.
+
+ Definition power_pos x p :=
+ match x with
+ | Pos nx => Pos (N.power_pos nx p)
+ | Neg nx =>
+ match p with
+ | xH => x
+ | xO _ => Pos (N.power_pos nx p)
+ | xI _ => Neg (N.power_pos nx p)
+ end
+ end.
+
+ Theorem spec_power_pos: forall x n, to_Z (power_pos x n) = to_Z x ^ Zpos n.
+ assert (F0: forall x, (-x)^2 = x^2).
+ intros x; rewrite Zpower_2; ring.
+ unfold power_pos, to_Z; intros [x | x] [p | p |];
+ try rewrite N.spec_power_pos; try ring.
+ assert (F: 0 <= 2 * Zpos p).
+ assert (0 <= Zpos p); auto with zarith.
+ rewrite Zpos_xI; repeat rewrite Zpower_exp; auto with zarith.
+ repeat rewrite Zpower_mult; auto with zarith.
+ rewrite F0; ring.
+ assert (F: 0 <= 2 * Zpos p).
+ assert (0 <= Zpos p); auto with zarith.
+ rewrite Zpos_xO; repeat rewrite Zpower_exp; auto with zarith.
+ repeat rewrite Zpower_mult; auto with zarith.
+ rewrite F0; ring.
+ Qed.
+
+ Definition sqrt x :=
+ match x with
+ | Pos nx => Pos (N.sqrt nx)
+ | Neg nx => Neg N.zero
+ end.
+
+
+ Theorem spec_sqrt: forall x, 0 <= to_Z x ->
+ to_Z (sqrt x) ^ 2 <= to_Z x < (to_Z (sqrt x) + 1) ^ 2.
+ unfold to_Z, sqrt; intros [x | x] H.
+ exact (N.spec_sqrt x).
+ replace (N.to_Z x) with 0.
+ rewrite N.spec_0; simpl Zpower; unfold Zpower_pos, iter_pos;
+ auto with zarith.
+ generalize (N.spec_pos x); auto with zarith.
+ Qed.
+
+ Definition div_eucl x y :=
+ match x, y with
+ | Pos nx, Pos ny =>
+ let (q, r) := N.div_eucl nx ny in
+ (Pos q, Pos r)
+ | Pos nx, Neg ny =>
+ let (q, r) := N.div_eucl nx ny in
+ match N.compare N.zero r with
+ | Eq => (Neg q, zero)
+ | _ => (Neg (N.succ q), Neg (N.sub ny r))
+ end
+ | Neg nx, Pos ny =>
+ let (q, r) := N.div_eucl nx ny in
+ match N.compare N.zero r with
+ | Eq => (Neg q, zero)
+ | _ => (Neg (N.succ q), Pos (N.sub ny r))
+ end
+ | Neg nx, Neg ny =>
+ let (q, r) := N.div_eucl nx ny in
+ (Pos q, Neg r)
+ end.
+
+
+ Theorem spec_div_eucl: forall x y,
+ to_Z y <> 0 ->
+ let (q,r) := div_eucl x y in
+ (to_Z q, to_Z r) = Zdiv_eucl (to_Z x) (to_Z y).
+ unfold div_eucl, to_Z; intros [x | x] [y | y] H.
+ assert (H1: 0 < N.to_Z y).
+ generalize (N.spec_pos y); auto with zarith.
+ generalize (N.spec_div_eucl x y H1); case N.div_eucl; auto.
+ assert (HH: 0 < N.to_Z y).
+ generalize (N.spec_pos y); auto with zarith.
+ generalize (N.spec_div_eucl x y HH); case N.div_eucl; auto.
+ intros q r; generalize (N.spec_pos x) HH; unfold Zdiv_eucl;
+ case_eq (N.to_Z x); case_eq (N.to_Z y);
+ try (intros; apply False_ind; auto with zarith; fail).
+ intros p He1 He2 _ _ H1; injection H1; intros H2 H3.
+ generalize (N.spec_compare N.zero r); case N.compare;
+ unfold zero; rewrite N.spec_0; try rewrite H3; auto.
+ rewrite H2; intros; apply False_ind; auto with zarith.
+ rewrite H2; intros; apply False_ind; auto with zarith.
+ intros p _ _ _ H1; discriminate H1.
+ intros p He p1 He1 H1 _.
+ generalize (N.spec_compare N.zero r); case N.compare.
+ change (- Zpos p) with (Zneg p).
+ unfold zero; lazy zeta.
+ rewrite N.spec_0; intros H2; rewrite <- H2.
+ intros H3; rewrite <- H3; auto.
+ rewrite N.spec_0; intros H2.
+ change (- Zpos p) with (Zneg p); lazy iota beta.
+ intros H3; rewrite <- H3; auto.
+ rewrite N.spec_succ; rewrite N.spec_sub.
+ generalize H2; case (N.to_Z r).
+ intros; apply False_ind; auto with zarith.
+ intros p2 _; rewrite He; auto with zarith.
+ change (Zneg p) with (- (Zpos p)); apply f_equal2 with (f := @pair Z Z); ring.
+ intros p2 H4; discriminate H4.
+ assert (N.to_Z r = (Zpos p1 mod (Zpos p))).
+ unfold Zmod, Zdiv_eucl; rewrite <- H3; auto.
+ case (Z_mod_lt (Zpos p1) (Zpos p)); auto with zarith.
+ rewrite N.spec_0; intros H2; generalize (N.spec_pos r);
+ intros; apply False_ind; auto with zarith.
+ assert (HH: 0 < N.to_Z y).
+ generalize (N.spec_pos y); auto with zarith.
+ generalize (N.spec_div_eucl x y HH); case N.div_eucl; auto.
+ intros q r; generalize (N.spec_pos x) HH; unfold Zdiv_eucl;
+ case_eq (N.to_Z x); case_eq (N.to_Z y);
+ try (intros; apply False_ind; auto with zarith; fail).
+ intros p He1 He2 _ _ H1; injection H1; intros H2 H3.
+ generalize (N.spec_compare N.zero r); case N.compare;
+ unfold zero; rewrite N.spec_0; try rewrite H3; auto.
+ rewrite H2; intros; apply False_ind; auto with zarith.
+ rewrite H2; intros; apply False_ind; auto with zarith.
+ intros p _ _ _ H1; discriminate H1.
+ intros p He p1 He1 H1 _.
+ generalize (N.spec_compare N.zero r); case N.compare.
+ change (- Zpos p1) with (Zneg p1).
+ unfold zero; lazy zeta.
+ rewrite N.spec_0; intros H2; rewrite <- H2.
+ intros H3; rewrite <- H3; auto.
+ rewrite N.spec_0; intros H2.
+ change (- Zpos p1) with (Zneg p1); lazy iota beta.
+ intros H3; rewrite <- H3; auto.
+ rewrite N.spec_succ; rewrite N.spec_sub.
+ generalize H2; case (N.to_Z r).
+ intros; apply False_ind; auto with zarith.
+ intros p2 _; rewrite He; auto with zarith.
+ intros p2 H4; discriminate H4.
+ assert (N.to_Z r = (Zpos p1 mod (Zpos p))).
+ unfold Zmod, Zdiv_eucl; rewrite <- H3; auto.
+ case (Z_mod_lt (Zpos p1) (Zpos p)); auto with zarith.
+ rewrite N.spec_0; generalize (N.spec_pos r); intros; apply False_ind; auto with zarith.
+ assert (H1: 0 < N.to_Z y).
+ generalize (N.spec_pos y); auto with zarith.
+ generalize (N.spec_div_eucl x y H1); case N.div_eucl; auto.
+ intros q r; generalize (N.spec_pos x) H1; unfold Zdiv_eucl;
+ case_eq (N.to_Z x); case_eq (N.to_Z y);
+ try (intros; apply False_ind; auto with zarith; fail).
+ change (-0) with 0; lazy iota beta; auto.
+ intros p _ _ _ _ H2; injection H2.
+ intros H3 H4; rewrite H3; rewrite H4; auto.
+ intros p _ _ _ H2; discriminate H2.
+ intros p He p1 He1 _ _ H2.
+ change (- Zpos p1) with (Zneg p1); lazy iota beta.
+ change (- Zpos p) with (Zneg p); lazy iota beta.
+ rewrite <- H2; auto.
+ Qed.
+
+ Definition div x y := fst (div_eucl x y).
+
+ Definition spec_div: forall x y,
+ to_Z y <> 0 -> to_Z (div x y) = to_Z x / to_Z y.
+ intros x y H1; generalize (spec_div_eucl x y H1); unfold div, Zdiv.
+ case div_eucl; case Zdiv_eucl; simpl; auto.
+ intros q r q11 r1 H; injection H; auto.
+ Qed.
+
+ Definition modulo x y := snd (div_eucl x y).
+
+ Theorem spec_modulo:
+ forall x y, to_Z y <> 0 -> to_Z (modulo x y) = to_Z x mod to_Z y.
+ intros x y H1; generalize (spec_div_eucl x y H1); unfold modulo, Zmod.
+ case div_eucl; case Zdiv_eucl; simpl; auto.
+ intros q r q11 r1 H; injection H; auto.
+ Qed.
+
+ Definition gcd x y :=
+ match x, y with
+ | Pos nx, Pos ny => Pos (N.gcd nx ny)
+ | Pos nx, Neg ny => Pos (N.gcd nx ny)
+ | Neg nx, Pos ny => Pos (N.gcd nx ny)
+ | Neg nx, Neg ny => Pos (N.gcd nx ny)
+ end.
+
+ Theorem spec_gcd: forall a b, to_Z (gcd a b) = Zgcd (to_Z a) (to_Z b).
+ unfold gcd, Zgcd, to_Z; intros [x | x] [y | y]; rewrite N.spec_gcd; unfold Zgcd;
+ auto; case N.to_Z; simpl; auto with zarith;
+ try rewrite Zabs_Zopp; auto;
+ case N.to_Z; simpl; auto with zarith.
+ Qed.
+
+End Make.
diff --git a/theories/Numbers/Integer/Binary/ZBinary.v b/theories/Numbers/Integer/Binary/ZBinary.v
new file mode 100644
index 00000000..66d2a96a
--- /dev/null
+++ b/theories/Numbers/Integer/Binary/ZBinary.v
@@ -0,0 +1,249 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZBinary.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import ZMulOrder.
+Require Import ZArith.
+
+Open Local Scope Z_scope.
+
+Module ZBinAxiomsMod <: ZAxiomsSig.
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := Z.
+Definition NZeq := (@eq Z).
+Definition NZ0 := 0.
+Definition NZsucc := Zsucc'.
+Definition NZpred := Zpred'.
+Definition NZadd := Zplus.
+Definition NZsub := Zminus.
+Definition NZmul := Zmult.
+
+Theorem NZeq_equiv : equiv Z NZeq.
+Proof.
+exact (@eq_equiv Z).
+Qed.
+
+Add Relation Z NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZpred_succ : forall n : Z, NZpred (NZsucc n) = n.
+Proof.
+exact Zpred'_succ'.
+Qed.
+
+Theorem NZinduction :
+ forall A : Z -> Prop, predicate_wd NZeq A ->
+ A 0 -> (forall n : Z, A n <-> A (NZsucc n)) -> forall n : Z, A n.
+Proof.
+intros A A_wd A0 AS n; apply Zind; clear n.
+assumption.
+intros; now apply -> AS.
+intros n H. rewrite <- (Zsucc'_pred' n) in H. now apply <- AS.
+Qed.
+
+Theorem NZadd_0_l : forall n : Z, 0 + n = n.
+Proof.
+exact Zplus_0_l.
+Qed.
+
+Theorem NZadd_succ_l : forall n m : Z, (NZsucc n) + m = NZsucc (n + m).
+Proof.
+intros; do 2 rewrite <- Zsucc_succ'; apply Zplus_succ_l.
+Qed.
+
+Theorem NZsub_0_r : forall n : Z, n - 0 = n.
+Proof.
+exact Zminus_0_r.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : Z, n - (NZsucc m) = NZpred (n - m).
+Proof.
+intros; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred';
+apply Zminus_succ_r.
+Qed.
+
+Theorem NZmul_0_l : forall n : Z, 0 * n = 0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : Z, (NZsucc n) * m = n * m + m.
+Proof.
+intros; rewrite <- Zsucc_succ'; apply Zmult_succ_l.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := Zlt.
+Definition NZle := Zle.
+Definition NZmin := Zmin.
+Definition NZmax := Zmax.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Proof.
+unfold NZeq. intros n1 n2 H1 m1 m2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Proof.
+unfold NZeq. intros n1 n2 H1 m1 m2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n = m.
+Proof.
+intros n m; split. apply Zle_lt_or_eq.
+intro H; destruct H as [H | H]. now apply Zlt_le_weak. rewrite H; apply Zle_refl.
+Qed.
+
+Theorem NZlt_irrefl : forall n : Z, ~ n < n.
+Proof.
+exact Zlt_irrefl.
+Qed.
+
+Theorem NZlt_succ_r : forall n m : Z, n < (NZsucc m) <-> n <= m.
+Proof.
+intros; unfold NZsucc; rewrite <- Zsucc_succ'; split;
+[apply Zlt_succ_le | apply Zle_lt_succ].
+Qed.
+
+Theorem NZmin_l : forall n m : NZ, n <= m -> NZmin n m = n.
+Proof.
+unfold NZmin, Zmin, Zle; intros n m H.
+destruct (n ?= m); try reflexivity. now elim H.
+Qed.
+
+Theorem NZmin_r : forall n m : NZ, m <= n -> NZmin n m = m.
+Proof.
+unfold NZmin, Zmin, Zle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+now apply Zcompare_Eq_eq.
+apply <- Zcompare_Gt_Lt_antisym in H1. now elim H.
+Qed.
+
+Theorem NZmax_l : forall n m : NZ, m <= n -> NZmax n m = n.
+Proof.
+unfold NZmax, Zmax, Zle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+apply <- Zcompare_Gt_Lt_antisym in H1. now elim H.
+Qed.
+
+Theorem NZmax_r : forall n m : NZ, n <= m -> NZmax n m = m.
+Proof.
+unfold NZmax, Zmax, Zle; intros n m H.
+case_eq (n ?= m); intro H1.
+now apply Zcompare_Eq_eq. reflexivity. now elim H.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition Zopp (x : Z) :=
+match x with
+| Z0 => Z0
+| Zpos x => Zneg x
+| Zneg x => Zpos x
+end.
+
+Add Morphism Zopp with signature NZeq ==> NZeq as Zopp_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem Zsucc_pred : forall n : Z, NZsucc (NZpred n) = n.
+Proof.
+exact Zsucc'_pred'.
+Qed.
+
+Theorem Zopp_0 : - 0 = 0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem Zopp_succ : forall n : Z, - (NZsucc n) = NZpred (- n).
+Proof.
+intro; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred'. apply Zopp_succ.
+Qed.
+
+End ZBinAxiomsMod.
+
+Module Export ZBinMulOrderPropMod := ZMulOrderPropFunct ZBinAxiomsMod.
+
+(** Z forms a ring *)
+
+(*Lemma Zring : ring_theory 0 1 NZadd NZmul NZsub Zopp NZeq.
+Proof.
+constructor.
+exact Zadd_0_l.
+exact Zadd_comm.
+exact Zadd_assoc.
+exact Zmul_1_l.
+exact Zmul_comm.
+exact Zmul_assoc.
+exact Zmul_add_distr_r.
+intros; now rewrite Zadd_opp_minus.
+exact Zadd_opp_r.
+Qed.
+
+Add Ring ZR : Zring.*)
+
+
+
+(*
+Theorem eq_equiv_e : forall x y : Z, E x y <-> e x y.
+Proof.
+intros x y; unfold E, e, Zeq_bool; split; intro H.
+rewrite H; now rewrite Zcompare_refl.
+rewrite eq_true_unfold_pos in H.
+assert (H1 : (x ?= y) = Eq).
+case_eq (x ?= y); intro H1; rewrite H1 in H; simpl in H;
+[reflexivity | discriminate H | discriminate H].
+now apply Zcompare_Eq_eq.
+Qed.
+*)
diff --git a/theories/Numbers/Integer/NatPairs/ZNatPairs.v b/theories/Numbers/Integer/NatPairs/ZNatPairs.v
new file mode 100644
index 00000000..8b3d815d
--- /dev/null
+++ b/theories/Numbers/Integer/NatPairs/ZNatPairs.v
@@ -0,0 +1,422 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZNatPairs.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NSub. (* The most complete file for natural numbers *)
+Require Export ZMulOrder. (* The most complete file for integers *)
+Require Export Ring.
+
+Module ZPairsAxiomsMod (Import NAxiomsMod : NAxiomsSig) <: ZAxiomsSig.
+Module Import NPropMod := NSubPropFunct NAxiomsMod. (* Get all properties of natural numbers *)
+
+(* We do not declare ring in Natural/Abstract for two reasons. First, some
+of the properties proved in NAdd and NMul are used in the new BinNat,
+and it is in turn used in Ring. Using ring in Natural/Abstract would be
+circular. It is possible, however, not to make BinNat dependent on
+Numbers/Natural and prove the properties necessary for ring from scratch
+(this is, of course, how it used to be). In addition, if we define semiring
+structures in the implementation subdirectories of Natural, we are able to
+specify binary natural numbers as the type of coefficients. For these
+reasons we define an abstract semiring here. *)
+
+Open Local Scope NatScope.
+
+Lemma Nsemi_ring : semi_ring_theory 0 1 add mul Neq.
+Proof.
+constructor.
+exact add_0_l.
+exact add_comm.
+exact add_assoc.
+exact mul_1_l.
+exact mul_0_l.
+exact mul_comm.
+exact mul_assoc.
+exact mul_add_distr_r.
+Qed.
+
+Add Ring NSR : Nsemi_ring.
+
+(* The definitios of functions (NZadd, NZmul, etc.) will be unfolded by
+the properties functor. Since we don't want Zadd_comm to refer to unfolded
+definitions of equality: fun p1 p2 : NZ => (fst p1 + snd p2) = (fst p2 + snd p1),
+we will provide an extra layer of definitions. *)
+
+Definition Z := (N * N)%type.
+Definition Z0 : Z := (0, 0).
+Definition Zeq (p1 p2 : Z) := ((fst p1) + (snd p2) == (fst p2) + (snd p1)).
+Definition Zsucc (n : Z) : Z := (S (fst n), snd n).
+Definition Zpred (n : Z) : Z := (fst n, S (snd n)).
+
+(* We do not have Zpred (Zsucc n) = n but only Zpred (Zsucc n) == n. It
+could be possible to consider as canonical only pairs where one of the
+elements is 0, and make all operations convert canonical values into other
+canonical values. In that case, we could get rid of setoids and arrive at
+integers as signed natural numbers. *)
+
+Definition Zadd (n m : Z) : Z := ((fst n) + (fst m), (snd n) + (snd m)).
+Definition Zsub (n m : Z) : Z := ((fst n) + (snd m), (snd n) + (fst m)).
+
+(* Unfortunately, the elements of the pair keep increasing, even during
+subtraction *)
+
+Definition Zmul (n m : Z) : Z :=
+ ((fst n) * (fst m) + (snd n) * (snd m), (fst n) * (snd m) + (snd n) * (fst m)).
+Definition Zlt (n m : Z) := (fst n) + (snd m) < (fst m) + (snd n).
+Definition Zle (n m : Z) := (fst n) + (snd m) <= (fst m) + (snd n).
+Definition Zmin (n m : Z) := (min ((fst n) + (snd m)) ((fst m) + (snd n)), (snd n) + (snd m)).
+Definition Zmax (n m : Z) := (max ((fst n) + (snd m)) ((fst m) + (snd n)), (snd n) + (snd m)).
+
+Delimit Scope IntScope with Int.
+Bind Scope IntScope with Z.
+Notation "x == y" := (Zeq x y) (at level 70) : IntScope.
+Notation "x ~= y" := (~ Zeq x y) (at level 70) : IntScope.
+Notation "0" := Z0 : IntScope.
+Notation "1" := (Zsucc Z0) : IntScope.
+Notation "x + y" := (Zadd x y) : IntScope.
+Notation "x - y" := (Zsub x y) : IntScope.
+Notation "x * y" := (Zmul x y) : IntScope.
+Notation "x < y" := (Zlt x y) : IntScope.
+Notation "x <= y" := (Zle x y) : IntScope.
+Notation "x > y" := (Zlt y x) (only parsing) : IntScope.
+Notation "x >= y" := (Zle y x) (only parsing) : IntScope.
+
+Notation Local N := NZ.
+(* To remember N without having to use a long qualifying name. since NZ will be redefined *)
+Notation Local NE := NZeq (only parsing).
+Notation Local add_wd := NZadd_wd (only parsing).
+
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ : Type := Z.
+Definition NZeq := Zeq.
+Definition NZ0 := Z0.
+Definition NZsucc := Zsucc.
+Definition NZpred := Zpred.
+Definition NZadd := Zadd.
+Definition NZsub := Zsub.
+Definition NZmul := Zmul.
+
+Theorem ZE_refl : reflexive Z Zeq.
+Proof.
+unfold reflexive, Zeq. reflexivity.
+Qed.
+
+Theorem ZE_symm : symmetric Z Zeq.
+Proof.
+unfold symmetric, Zeq; now symmetry.
+Qed.
+
+Theorem ZE_trans : transitive Z Zeq.
+Proof.
+unfold transitive, Zeq. intros n m p H1 H2.
+assert (H3 : (fst n + snd m) + (fst m + snd p) == (fst m + snd n) + (fst p + snd m))
+by now apply add_wd.
+stepl ((fst n + snd p) + (fst m + snd m)) in H3 by ring.
+stepr ((fst p + snd n) + (fst m + snd m)) in H3 by ring.
+now apply -> add_cancel_r in H3.
+Qed.
+
+Theorem NZeq_equiv : equiv Z Zeq.
+Proof.
+unfold equiv; repeat split; [apply ZE_refl | apply ZE_trans | apply ZE_symm].
+Qed.
+
+Add Relation Z Zeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism (@pair N N) with signature NE ==> NE ==> Zeq as Zpair_wd.
+Proof.
+intros n1 n2 H1 m1 m2 H2; unfold Zeq; simpl; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZsucc with signature Zeq ==> Zeq as NZsucc_wd.
+Proof.
+unfold NZsucc, Zeq; intros n m H; simpl.
+do 2 rewrite add_succ_l; now rewrite H.
+Qed.
+
+Add Morphism NZpred with signature Zeq ==> Zeq as NZpred_wd.
+Proof.
+unfold NZpred, Zeq; intros n m H; simpl.
+do 2 rewrite add_succ_r; now rewrite H.
+Qed.
+
+Add Morphism NZadd with signature Zeq ==> Zeq ==> Zeq as NZadd_wd.
+Proof.
+unfold Zeq, NZadd; intros n1 m1 H1 n2 m2 H2; simpl.
+assert (H3 : (fst n1 + snd m1) + (fst n2 + snd m2) == (fst m1 + snd n1) + (fst m2 + snd n2))
+by now apply add_wd.
+stepl (fst n1 + snd m1 + (fst n2 + snd m2)) by ring.
+now stepr (fst m1 + snd n1 + (fst m2 + snd n2)) by ring.
+Qed.
+
+Add Morphism NZsub with signature Zeq ==> Zeq ==> Zeq as NZsub_wd.
+Proof.
+unfold Zeq, NZsub; intros n1 m1 H1 n2 m2 H2; simpl.
+symmetry in H2.
+assert (H3 : (fst n1 + snd m1) + (fst m2 + snd n2) == (fst m1 + snd n1) + (fst n2 + snd m2))
+by now apply add_wd.
+stepl (fst n1 + snd m1 + (fst m2 + snd n2)) by ring.
+now stepr (fst m1 + snd n1 + (fst n2 + snd m2)) by ring.
+Qed.
+
+Add Morphism NZmul with signature Zeq ==> Zeq ==> Zeq as NZmul_wd.
+Proof.
+unfold NZmul, Zeq; intros n1 m1 H1 n2 m2 H2; simpl.
+stepl (fst n1 * fst n2 + (snd n1 * snd n2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring.
+stepr (fst n1 * snd n2 + (fst m1 * fst m2 + snd m1 * snd m2 + snd n1 * fst n2)) by ring.
+apply add_mul_repl_pair with (n := fst m2) (m := snd m2); [| now idtac].
+stepl (snd n1 * snd n2 + (fst n1 * fst m2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring.
+stepr (snd n1 * fst n2 + (fst n1 * snd m2 + fst m1 * fst m2 + snd m1 * snd m2)) by ring.
+apply add_mul_repl_pair with (n := snd m2) (m := fst m2);
+[| (stepl (fst n2 + snd m2) by ring); now stepr (fst m2 + snd n2) by ring].
+stepl (snd m2 * snd n1 + (fst n1 * fst m2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring.
+stepr (snd m2 * fst n1 + (snd n1 * fst m2 + fst m1 * fst m2 + snd m1 * snd m2)) by ring.
+apply add_mul_repl_pair with (n := snd m1) (m := fst m1);
+[ | (stepl (fst n1 + snd m1) by ring); now stepr (fst m1 + snd n1) by ring].
+stepl (fst m2 * fst n1 + (snd m2 * snd m1 + fst m1 * snd m2 + snd m1 * fst m2)) by ring.
+stepr (fst m2 * snd n1 + (snd m2 * fst m1 + fst m1 * fst m2 + snd m1 * snd m2)) by ring.
+apply add_mul_repl_pair with (n := fst m1) (m := snd m1); [| now idtac].
+ring.
+Qed.
+
+Section Induction.
+Open Scope NatScope. (* automatically closes at the end of the section *)
+Variable A : Z -> Prop.
+Hypothesis A_wd : predicate_wd Zeq A.
+
+Add Morphism A with signature Zeq ==> iff as A_morph.
+Proof.
+exact A_wd.
+Qed.
+
+Theorem NZinduction :
+ A 0 -> (forall n : Z, A n <-> A (Zsucc n)) -> forall n : Z, A n. (* 0 is interpreted as in Z due to "Bind" directive *)
+Proof.
+intros A0 AS n; unfold NZ0, Zsucc, predicate_wd, fun_wd, Zeq in *.
+destruct n as [n m].
+cut (forall p : N, A (p, 0)); [intro H1 |].
+cut (forall p : N, A (0, p)); [intro H2 |].
+destruct (add_dichotomy n m) as [[p H] | [p H]].
+rewrite (A_wd (n, m) (0, p)) by (rewrite add_0_l; now rewrite add_comm).
+apply H2.
+rewrite (A_wd (n, m) (p, 0)) by now rewrite add_0_r. apply H1.
+induct p. assumption. intros p IH.
+apply -> (A_wd (0, p) (1, S p)) in IH; [| now rewrite add_0_l, add_1_l].
+now apply <- AS.
+induct p. assumption. intros p IH.
+replace 0 with (snd (p, 0)); [| reflexivity].
+replace (S p) with (S (fst (p, 0))); [| reflexivity]. now apply -> AS.
+Qed.
+
+End Induction.
+
+(* Time to prove theorems in the language of Z *)
+
+Open Local Scope IntScope.
+
+Theorem NZpred_succ : forall n : Z, Zpred (Zsucc n) == n.
+Proof.
+unfold NZpred, NZsucc, Zeq; intro n; simpl.
+rewrite add_succ_l; now rewrite add_succ_r.
+Qed.
+
+Theorem NZadd_0_l : forall n : Z, 0 + n == n.
+Proof.
+intro n; unfold NZadd, Zeq; simpl. now do 2 rewrite add_0_l.
+Qed.
+
+Theorem NZadd_succ_l : forall n m : Z, (Zsucc n) + m == Zsucc (n + m).
+Proof.
+intros n m; unfold NZadd, Zeq; simpl. now do 2 rewrite add_succ_l.
+Qed.
+
+Theorem NZsub_0_r : forall n : Z, n - 0 == n.
+Proof.
+intro n; unfold NZsub, Zeq; simpl. now do 2 rewrite add_0_r.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : Z, n - (Zsucc m) == Zpred (n - m).
+Proof.
+intros n m; unfold NZsub, Zeq; simpl. symmetry; now rewrite add_succ_r.
+Qed.
+
+Theorem NZmul_0_l : forall n : Z, 0 * n == 0.
+Proof.
+intro n; unfold NZmul, Zeq; simpl.
+repeat rewrite mul_0_l. now rewrite add_assoc.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : Z, (Zsucc n) * m == n * m + m.
+Proof.
+intros n m; unfold NZmul, NZsucc, Zeq; simpl.
+do 2 rewrite mul_succ_l. ring.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := Zlt.
+Definition NZle := Zle.
+Definition NZmin := Zmin.
+Definition NZmax := Zmax.
+
+Add Morphism NZlt with signature Zeq ==> Zeq ==> iff as NZlt_wd.
+Proof.
+unfold NZlt, Zlt, Zeq; intros n1 m1 H1 n2 m2 H2; simpl. split; intro H.
+stepr (snd m1 + fst m2) by apply add_comm.
+apply (add_lt_repl_pair (fst n1) (snd n1)); [| assumption].
+stepl (snd m2 + fst n1) by apply add_comm.
+stepr (fst m2 + snd n1) by apply add_comm.
+apply (add_lt_repl_pair (snd n2) (fst n2)).
+now stepl (fst n1 + snd n2) by apply add_comm.
+stepl (fst m2 + snd n2) by apply add_comm. now stepr (fst n2 + snd m2) by apply add_comm.
+stepr (snd n1 + fst n2) by apply add_comm.
+apply (add_lt_repl_pair (fst m1) (snd m1)); [| now symmetry].
+stepl (snd n2 + fst m1) by apply add_comm.
+stepr (fst n2 + snd m1) by apply add_comm.
+apply (add_lt_repl_pair (snd m2) (fst m2)).
+now stepl (fst m1 + snd m2) by apply add_comm.
+stepl (fst n2 + snd m2) by apply add_comm. now stepr (fst m2 + snd n2) by apply add_comm.
+Qed.
+
+Add Morphism NZle with signature Zeq ==> Zeq ==> iff as NZle_wd.
+Proof.
+unfold NZle, Zle, Zeq; intros n1 m1 H1 n2 m2 H2; simpl.
+do 2 rewrite lt_eq_cases. rewrite (NZlt_wd n1 m1 H1 n2 m2 H2). fold (m1 < m2)%Int.
+fold (n1 == n2)%Int (m1 == m2)%Int; fold (n1 == m1)%Int in H1; fold (n2 == m2)%Int in H2.
+now rewrite H1, H2.
+Qed.
+
+Add Morphism NZmin with signature Zeq ==> Zeq ==> Zeq as NZmin_wd.
+Proof.
+intros n1 m1 H1 n2 m2 H2; unfold NZmin, Zeq; simpl.
+destruct (le_ge_cases (fst n1 + snd n2) (fst n2 + snd n1)) as [H | H].
+rewrite (min_l (fst n1 + snd n2) (fst n2 + snd n1)) by assumption.
+rewrite (min_l (fst m1 + snd m2) (fst m2 + snd m1)) by
+now apply -> (NZle_wd n1 m1 H1 n2 m2 H2).
+stepl ((fst n1 + snd m1) + (snd n2 + snd m2)) by ring.
+unfold Zeq in H1. rewrite H1. ring.
+rewrite (min_r (fst n1 + snd n2) (fst n2 + snd n1)) by assumption.
+rewrite (min_r (fst m1 + snd m2) (fst m2 + snd m1)) by
+now apply -> (NZle_wd n2 m2 H2 n1 m1 H1).
+stepl ((fst n2 + snd m2) + (snd n1 + snd m1)) by ring.
+unfold Zeq in H2. rewrite H2. ring.
+Qed.
+
+Add Morphism NZmax with signature Zeq ==> Zeq ==> Zeq as NZmax_wd.
+Proof.
+intros n1 m1 H1 n2 m2 H2; unfold NZmax, Zeq; simpl.
+destruct (le_ge_cases (fst n1 + snd n2) (fst n2 + snd n1)) as [H | H].
+rewrite (max_r (fst n1 + snd n2) (fst n2 + snd n1)) by assumption.
+rewrite (max_r (fst m1 + snd m2) (fst m2 + snd m1)) by
+now apply -> (NZle_wd n1 m1 H1 n2 m2 H2).
+stepl ((fst n2 + snd m2) + (snd n1 + snd m1)) by ring.
+unfold Zeq in H2. rewrite H2. ring.
+rewrite (max_l (fst n1 + snd n2) (fst n2 + snd n1)) by assumption.
+rewrite (max_l (fst m1 + snd m2) (fst m2 + snd m1)) by
+now apply -> (NZle_wd n2 m2 H2 n1 m1 H1).
+stepl ((fst n1 + snd m1) + (snd n2 + snd m2)) by ring.
+unfold Zeq in H1. rewrite H1. ring.
+Qed.
+
+Open Local Scope IntScope.
+
+Theorem NZlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n == m.
+Proof.
+intros n m; unfold Zlt, Zle, Zeq; simpl. apply lt_eq_cases.
+Qed.
+
+Theorem NZlt_irrefl : forall n : Z, ~ (n < n).
+Proof.
+intros n; unfold Zlt, Zeq; simpl. apply lt_irrefl.
+Qed.
+
+Theorem NZlt_succ_r : forall n m : Z, n < (Zsucc m) <-> n <= m.
+Proof.
+intros n m; unfold Zlt, Zle, Zeq; simpl. rewrite add_succ_l; apply lt_succ_r.
+Qed.
+
+Theorem NZmin_l : forall n m : Z, n <= m -> Zmin n m == n.
+Proof.
+unfold Zmin, Zle, Zeq; simpl; intros n m H.
+rewrite min_l by assumption. ring.
+Qed.
+
+Theorem NZmin_r : forall n m : Z, m <= n -> Zmin n m == m.
+Proof.
+unfold Zmin, Zle, Zeq; simpl; intros n m H.
+rewrite min_r by assumption. ring.
+Qed.
+
+Theorem NZmax_l : forall n m : Z, m <= n -> Zmax n m == n.
+Proof.
+unfold Zmax, Zle, Zeq; simpl; intros n m H.
+rewrite max_l by assumption. ring.
+Qed.
+
+Theorem NZmax_r : forall n m : Z, n <= m -> Zmax n m == m.
+Proof.
+unfold Zmax, Zle, Zeq; simpl; intros n m H.
+rewrite max_r by assumption. ring.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition Zopp (n : Z) : Z := (snd n, fst n).
+
+Notation "- x" := (Zopp x) : IntScope.
+
+Add Morphism Zopp with signature Zeq ==> Zeq as Zopp_wd.
+Proof.
+unfold Zeq; intros n m H; simpl. symmetry.
+stepl (fst n + snd m) by apply add_comm.
+now stepr (fst m + snd n) by apply add_comm.
+Qed.
+
+Open Local Scope IntScope.
+
+Theorem Zsucc_pred : forall n : Z, Zsucc (Zpred n) == n.
+Proof.
+intro n; unfold Zsucc, Zpred, Zeq; simpl.
+rewrite add_succ_l; now rewrite add_succ_r.
+Qed.
+
+Theorem Zopp_0 : - 0 == 0.
+Proof.
+unfold Zopp, Zeq; simpl. now rewrite add_0_l.
+Qed.
+
+Theorem Zopp_succ : forall n, - (Zsucc n) == Zpred (- n).
+Proof.
+reflexivity.
+Qed.
+
+End ZPairsAxiomsMod.
+
+(* For example, let's build integers out of pairs of Peano natural numbers
+and get their properties *)
+
+(* The following lines increase the compilation time at least twice *)
+(*
+Require Import NPeano.
+
+Module Export ZPairsPeanoAxiomsMod := ZPairsAxiomsMod NPeanoAxiomsMod.
+Module Export ZPairsMulOrderPropMod := ZMulOrderPropFunct ZPairsPeanoAxiomsMod.
+
+Open Local Scope IntScope.
+
+Eval compute in (3, 5) * (4, 6).
+*)
+
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSig.v b/theories/Numbers/Integer/SpecViaZ/ZSig.v
new file mode 100644
index 00000000..0af98c74
--- /dev/null
+++ b/theories/Numbers/Integer/SpecViaZ/ZSig.v
@@ -0,0 +1,117 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: ZSig.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import ZArith Znumtheory.
+
+Open Scope Z_scope.
+
+(** * ZSig *)
+
+(** Interface of a rich structure about integers.
+ Specifications are written via translation to Z.
+*)
+
+Module Type ZType.
+
+ Parameter t : Type.
+
+ Parameter to_Z : t -> Z.
+ Notation "[ x ]" := (to_Z x).
+
+ Definition eq x y := ([x] = [y]).
+
+ Parameter of_Z : Z -> t.
+ Parameter spec_of_Z: forall x, to_Z (of_Z x) = x.
+
+ Parameter zero : t.
+ Parameter one : t.
+ Parameter minus_one : t.
+
+ Parameter spec_0: [zero] = 0.
+ Parameter spec_1: [one] = 1.
+ Parameter spec_m1: [minus_one] = -1.
+
+ Parameter compare : t -> t -> comparison.
+
+ Parameter spec_compare: forall x y,
+ match compare x y with
+ | Eq => [x] = [y]
+ | Lt => [x] < [y]
+ | Gt => [x] > [y]
+ end.
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Parameter eq_bool : t -> t -> bool.
+
+ Parameter spec_eq_bool: forall x y,
+ if eq_bool x y then [x] = [y] else [x] <> [y].
+
+ Parameter succ : t -> t.
+
+ Parameter spec_succ: forall n, [succ n] = [n] + 1.
+
+ Parameter add : t -> t -> t.
+
+ Parameter spec_add: forall x y, [add x y] = [x] + [y].
+
+ Parameter pred : t -> t.
+
+ Parameter spec_pred: forall x, [pred x] = [x] - 1.
+
+ Parameter sub : t -> t -> t.
+
+ Parameter spec_sub: forall x y, [sub x y] = [x] - [y].
+
+ Parameter opp : t -> t.
+
+ Parameter spec_opp: forall x, [opp x] = - [x].
+
+ Parameter mul : t -> t -> t.
+
+ Parameter spec_mul: forall x y, [mul x y] = [x] * [y].
+
+ Parameter square : t -> t.
+
+ Parameter spec_square: forall x, [square x] = [x] * [x].
+
+ Parameter power_pos : t -> positive -> t.
+
+ Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
+
+ Parameter sqrt : t -> t.
+
+ Parameter spec_sqrt: forall x, 0 <= [x] ->
+ [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
+
+ Parameter div_eucl : t -> t -> t * t.
+
+ Parameter spec_div_eucl: forall x y, [y] <> 0 ->
+ let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y].
+
+ Parameter div : t -> t -> t.
+
+ Parameter spec_div: forall x y, [y] <> 0 -> [div x y] = [x] / [y].
+
+ Parameter modulo : t -> t -> t.
+
+ Parameter spec_modulo: forall x y, [y] <> 0 ->
+ [modulo x y] = [x] mod [y].
+
+ Parameter gcd : t -> t -> t.
+
+ Parameter spec_gcd: forall a b, [gcd a b] = Zgcd (to_Z a) (to_Z b).
+
+End ZType.
diff --git a/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
new file mode 100644
index 00000000..d7c56267
--- /dev/null
+++ b/theories/Numbers/Integer/SpecViaZ/ZSigZAxioms.v
@@ -0,0 +1,306 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ZSigZAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import ZArith.
+Require Import ZAxioms.
+Require Import ZSig.
+
+(** * The interface [ZSig.ZType] implies the interface [ZAxiomsSig] *)
+
+Module ZSig_ZAxioms (Z:ZType) <: ZAxiomsSig.
+
+Delimit Scope IntScope with Int.
+Bind Scope IntScope with Z.t.
+Open Local Scope IntScope.
+Notation "[ x ]" := (Z.to_Z x) : IntScope.
+Infix "==" := Z.eq (at level 70) : IntScope.
+Notation "0" := Z.zero : IntScope.
+Infix "+" := Z.add : IntScope.
+Infix "-" := Z.sub : IntScope.
+Infix "*" := Z.mul : IntScope.
+Notation "- x" := (Z.opp x) : IntScope.
+
+Hint Rewrite
+ Z.spec_0 Z.spec_1 Z.spec_add Z.spec_sub Z.spec_pred Z.spec_succ
+ Z.spec_mul Z.spec_opp Z.spec_of_Z : Zspec.
+
+Ltac zsimpl := unfold Z.eq in *; autorewrite with Zspec.
+
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := Z.t.
+Definition NZeq := Z.eq.
+Definition NZ0 := Z.zero.
+Definition NZsucc := Z.succ.
+Definition NZpred := Z.pred.
+Definition NZadd := Z.add.
+Definition NZsub := Z.sub.
+Definition NZmul := Z.mul.
+
+Theorem NZeq_equiv : equiv Z.t Z.eq.
+Proof.
+repeat split; repeat red; intros; auto; congruence.
+Qed.
+
+Add Relation Z.t Z.eq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+ as NZeq_rel.
+
+Add Morphism NZsucc with signature Z.eq ==> Z.eq as NZsucc_wd.
+Proof.
+intros; zsimpl; f_equal; assumption.
+Qed.
+
+Add Morphism NZpred with signature Z.eq ==> Z.eq as NZpred_wd.
+Proof.
+intros; zsimpl; f_equal; assumption.
+Qed.
+
+Add Morphism NZadd with signature Z.eq ==> Z.eq ==> Z.eq as NZadd_wd.
+Proof.
+intros; zsimpl; f_equal; assumption.
+Qed.
+
+Add Morphism NZsub with signature Z.eq ==> Z.eq ==> Z.eq as NZsub_wd.
+Proof.
+intros; zsimpl; f_equal; assumption.
+Qed.
+
+Add Morphism NZmul with signature Z.eq ==> Z.eq ==> Z.eq as NZmul_wd.
+Proof.
+intros; zsimpl; f_equal; assumption.
+Qed.
+
+Theorem NZpred_succ : forall n, Z.pred (Z.succ n) == n.
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Section Induction.
+
+Variable A : Z.t -> Prop.
+Hypothesis A_wd : predicate_wd Z.eq A.
+Hypothesis A0 : A 0.
+Hypothesis AS : forall n, A n <-> A (Z.succ n).
+
+Add Morphism A with signature Z.eq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Let B (z : Z) := A (Z.of_Z z).
+
+Lemma B0 : B 0.
+Proof.
+unfold B; simpl.
+rewrite <- (A_wd 0); auto.
+zsimpl; auto.
+Qed.
+
+Lemma BS : forall z : Z, B z -> B (z + 1).
+Proof.
+intros z H.
+unfold B in *. apply -> AS in H.
+setoid_replace (Z.of_Z (z + 1)) with (Z.succ (Z.of_Z z)); auto.
+zsimpl; auto.
+Qed.
+
+Lemma BP : forall z : Z, B z -> B (z - 1).
+Proof.
+intros z H.
+unfold B in *. rewrite AS.
+setoid_replace (Z.succ (Z.of_Z (z - 1))) with (Z.of_Z z); auto.
+zsimpl; auto with zarith.
+Qed.
+
+Lemma B_holds : forall z : Z, B z.
+Proof.
+intros; destruct (Z_lt_le_dec 0 z).
+apply natlike_ind; auto with zarith.
+apply B0.
+intros; apply BS; auto.
+replace z with (-(-z))%Z in * by (auto with zarith).
+remember (-z)%Z as z'.
+pattern z'; apply natlike_ind.
+apply B0.
+intros; rewrite Zopp_succ; unfold Zpred; apply BP; auto.
+subst z'; auto with zarith.
+Qed.
+
+Theorem NZinduction : forall n, A n.
+Proof.
+intro n. setoid_replace n with (Z.of_Z (Z.to_Z n)).
+apply B_holds.
+zsimpl; auto.
+Qed.
+
+End Induction.
+
+Theorem NZadd_0_l : forall n, 0 + n == n.
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem NZadd_succ_l : forall n m, (Z.succ n) + m == Z.succ (n + m).
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem NZsub_0_r : forall n, n - 0 == n.
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem NZsub_succ_r : forall n m, n - (Z.succ m) == Z.pred (n - m).
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem NZmul_0_l : forall n, 0 * n == 0.
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem NZmul_succ_l : forall n m, (Z.succ n) * m == n * m + m.
+Proof.
+intros; zsimpl; ring.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := Z.lt.
+Definition NZle := Z.le.
+Definition NZmin := Z.min.
+Definition NZmax := Z.max.
+
+Infix "<=" := Z.le : IntScope.
+Infix "<" := Z.lt : IntScope.
+
+Lemma spec_compare_alt : forall x y, Z.compare x y = ([x] ?= [y])%Z.
+Proof.
+ intros; generalize (Z.spec_compare x y).
+ destruct (Z.compare x y); auto.
+ intros H; rewrite H; symmetry; apply Zcompare_refl.
+Qed.
+
+Lemma spec_lt : forall x y, (x<y) <-> ([x]<[y])%Z.
+Proof.
+ intros; unfold Z.lt, Zlt; rewrite spec_compare_alt; intuition.
+Qed.
+
+Lemma spec_le : forall x y, (x<=y) <-> ([x]<=[y])%Z.
+Proof.
+ intros; unfold Z.le, Zle; rewrite spec_compare_alt; intuition.
+Qed.
+
+Lemma spec_min : forall x y, [Z.min x y] = Zmin [x] [y].
+Proof.
+ intros; unfold Z.min, Zmin.
+ rewrite spec_compare_alt; destruct Zcompare; auto.
+Qed.
+
+Lemma spec_max : forall x y, [Z.max x y] = Zmax [x] [y].
+Proof.
+ intros; unfold Z.max, Zmax.
+ rewrite spec_compare_alt; destruct Zcompare; auto.
+Qed.
+
+Add Morphism Z.compare with signature Z.eq ==> Z.eq ==> (@eq comparison) as compare_wd.
+Proof.
+intros x x' Hx y y' Hy.
+rewrite 2 spec_compare_alt; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism Z.lt with signature Z.eq ==> Z.eq ==> iff as NZlt_wd.
+Proof.
+intros x x' Hx y y' Hy; unfold Z.lt; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism Z.le with signature Z.eq ==> Z.eq ==> iff as NZle_wd.
+Proof.
+intros x x' Hx y y' Hy; unfold Z.le; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism Z.min with signature Z.eq ==> Z.eq ==> Z.eq as NZmin_wd.
+Proof.
+intros; red; rewrite 2 spec_min; congruence.
+Qed.
+
+Add Morphism Z.max with signature Z.eq ==> Z.eq ==> Z.eq as NZmax_wd.
+Proof.
+intros; red; rewrite 2 spec_max; congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
+Proof.
+intros.
+unfold Z.eq; rewrite spec_lt, spec_le; omega.
+Qed.
+
+Theorem NZlt_irrefl : forall n, ~ n < n.
+Proof.
+intros; rewrite spec_lt; auto with zarith.
+Qed.
+
+Theorem NZlt_succ_r : forall n m, n < (Z.succ m) <-> n <= m.
+Proof.
+intros; rewrite spec_lt, spec_le, Z.spec_succ; omega.
+Qed.
+
+Theorem NZmin_l : forall n m, n <= m -> Z.min n m == n.
+Proof.
+intros n m; unfold Z.eq; rewrite spec_le, spec_min.
+generalize (Zmin_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmin_r : forall n m, m <= n -> Z.min n m == m.
+Proof.
+intros n m; unfold Z.eq; rewrite spec_le, spec_min.
+generalize (Zmin_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmax_l : forall n m, m <= n -> Z.max n m == n.
+Proof.
+intros n m; unfold Z.eq; rewrite spec_le, spec_max.
+generalize (Zmax_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmax_r : forall n m, n <= m -> Z.max n m == m.
+Proof.
+intros n m; unfold Z.eq; rewrite spec_le, spec_max.
+generalize (Zmax_spec [n] [m]); omega.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition Zopp := Z.opp.
+
+Add Morphism Z.opp with signature Z.eq ==> Z.eq as Zopp_wd.
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem Zsucc_pred : forall n, Z.succ (Z.pred n) == n.
+Proof.
+red; intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem Zopp_0 : - 0 == 0.
+Proof.
+red; intros; zsimpl; auto with zarith.
+Qed.
+
+Theorem Zopp_succ : forall n, - (Z.succ n) == Z.pred (- n).
+Proof.
+intros; zsimpl; auto with zarith.
+Qed.
+
+End ZSig_ZAxioms.
diff --git a/theories/Numbers/NaryFunctions.v b/theories/Numbers/NaryFunctions.v
new file mode 100644
index 00000000..04a48d51
--- /dev/null
+++ b/theories/Numbers/NaryFunctions.v
@@ -0,0 +1,142 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Pierre Letouzey, Jerome Vouillon, PPS, Paris 7, 2008 *)
+(************************************************************************)
+
+(*i $Id: NaryFunctions.v 10967 2008-05-22 12:59:38Z letouzey $ i*)
+
+Open Local Scope type_scope.
+
+Require Import List.
+
+(** * Generic dependently-typed operators about [n]-ary functions *)
+
+(** The type of [n]-ary function: [nfun A n B] is
+ [A -> ... -> A -> B] with [n] occurences of [A] in this type. *)
+
+Fixpoint nfun A n B :=
+ match n with
+ | O => B
+ | S n => A -> (nfun A n B)
+ end.
+
+Notation " A ^^ n --> B " := (nfun A n B)
+ (at level 50, n at next level) : type_scope.
+
+(** [napply_cst _ _ a n f] iterates [n] times the application of a
+ particular constant [a] to the [n]-ary function [f]. *)
+
+Fixpoint napply_cst (A B:Type)(a:A) n : (A^^n-->B) -> B :=
+ match n return (A^^n-->B) -> B with
+ | O => fun x => x
+ | S n => fun x => napply_cst _ _ a n (x a)
+ end.
+
+
+(** A generic transformation from an n-ary function to another one.*)
+
+Fixpoint nfun_to_nfun (A B C:Type)(f:B -> C) n :
+ (A^^n-->B) -> (A^^n-->C) :=
+ match n return (A^^n-->B) -> (A^^n-->C) with
+ | O => f
+ | S n => fun g a => nfun_to_nfun _ _ _ f n (g a)
+ end.
+
+(** [napply_except_last _ _ n f] expects [n] arguments of type [A],
+ applies [n-1] of them to [f] and discard the last one. *)
+
+Definition napply_except_last (A B:Type) :=
+ nfun_to_nfun A B (A->B) (fun b a => b).
+
+(** [napply_then_last _ _ a n f] expects [n] arguments of type [A],
+ applies them to [f] and then apply [a] to the result. *)
+
+Definition napply_then_last (A B:Type)(a:A) :=
+ nfun_to_nfun A (A->B) B (fun fab => fab a).
+
+(** [napply_discard _ b n] expects [n] arguments, discards then,
+ and returns [b]. *)
+
+Fixpoint napply_discard (A B:Type)(b:B) n : A^^n-->B :=
+ match n return A^^n-->B with
+ | O => b
+ | S n => fun _ => napply_discard _ _ b n
+ end.
+
+(** A fold function *)
+
+Fixpoint nfold A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
+ match n return (A^^n-->B) with
+ | O => b
+ | S n => fun a => (nfold _ _ f (f a b) n)
+ end.
+
+
+(** [n]-ary products : [nprod A n] is [A*...*A*unit],
+ with [n] occurrences of [A] in this type. *)
+
+Fixpoint nprod A n : Type := match n with
+ | O => unit
+ | S n => (A * nprod A n)%type
+end.
+
+Notation "A ^ n" := (nprod A n) : type_scope.
+
+(** [n]-ary curryfication / uncurryfication *)
+
+Fixpoint ncurry (A B:Type) n : (A^n -> B) -> (A^^n-->B) :=
+ match n return (A^n -> B) -> (A^^n-->B) with
+ | O => fun x => x tt
+ | S n => fun f a => ncurry _ _ n (fun p => f (a,p))
+ end.
+
+Fixpoint nuncurry (A B:Type) n : (A^^n-->B) -> (A^n -> B) :=
+ match n return (A^^n-->B) -> (A^n -> B) with
+ | O => fun x _ => x
+ | S n => fun f p => let (x,p) := p in nuncurry _ _ n (f x) p
+ end.
+
+(** Earlier functions can also be defined via [ncurry/nuncurry].
+ For instance : *)
+
+Definition nfun_to_nfun_bis A B C (f:B->C) n :
+ (A^^n-->B) -> (A^^n-->C) :=
+ fun anb => ncurry _ _ n (fun an => f ((nuncurry _ _ n anb) an)).
+
+(** We can also us it to obtain another [fold] function,
+ equivalent to the previous one, but with a nicer expansion
+ (see for instance Int31.iszero). *)
+
+Fixpoint nfold_bis A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
+ match n return (A^^n-->B) with
+ | O => b
+ | S n => fun a =>
+ nfun_to_nfun_bis _ _ _ (f a) n (nfold_bis _ _ f b n)
+ end.
+
+(** From [nprod] to [list] *)
+
+Fixpoint nprod_to_list (A:Type) n : A^n -> list A :=
+ match n with
+ | O => fun _ => nil
+ | S n => fun p => let (x,p) := p in x::(nprod_to_list _ n p)
+ end.
+
+(** From [list] to [nprod] *)
+
+Fixpoint nprod_of_list (A:Type)(l:list A) : A^(length l) :=
+ match l return A^(length l) with
+ | nil => tt
+ | x::l => (x, nprod_of_list _ l)
+ end.
+
+(** This gives an additional way to write the fold *)
+
+Definition nfold_list (A B:Type)(f:A->B->B)(b:B) n : (A^^n-->B) :=
+ ncurry _ _ n (fun p => fold_right f b (nprod_to_list _ _ p)).
+
diff --git a/theories/Numbers/NatInt/NZAdd.v b/theories/Numbers/NatInt/NZAdd.v
new file mode 100644
index 00000000..c9bb5c95
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAdd.v
@@ -0,0 +1,91 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZBase.
+
+Module NZAddPropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Module Export NZBasePropMod := NZBasePropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZadd_0_r : forall n : NZ, n + 0 == n.
+Proof.
+NZinduct n. now rewrite NZadd_0_l.
+intro. rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_succ_r : forall n m : NZ, n + S m == S (n + m).
+Proof.
+intros n m; NZinduct n.
+now do 2 rewrite NZadd_0_l.
+intro. repeat rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_comm : forall n m : NZ, n + m == m + n.
+Proof.
+intros n m; NZinduct n.
+rewrite NZadd_0_l; now rewrite NZadd_0_r.
+intros n. rewrite NZadd_succ_l; rewrite NZadd_succ_r. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_1_l : forall n : NZ, 1 + n == S n.
+Proof.
+intro n; rewrite NZadd_succ_l; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_1_r : forall n : NZ, n + 1 == S n.
+Proof.
+intro n; rewrite NZadd_comm; apply NZadd_1_l.
+Qed.
+
+Theorem NZadd_assoc : forall n m p : NZ, n + (m + p) == (n + m) + p.
+Proof.
+intros n m p; NZinduct n.
+now do 2 rewrite NZadd_0_l.
+intro. do 3 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_shuffle1 : forall n m p q : NZ, (n + m) + (p + q) == (n + p) + (m + q).
+Proof.
+intros n m p q.
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_comm m (p + q)).
+rewrite <- (NZadd_assoc p q m). rewrite (NZadd_assoc n p (q + m)).
+now rewrite (NZadd_comm q m).
+Qed.
+
+Theorem NZadd_shuffle2 : forall n m p q : NZ, (n + m) + (p + q) == (n + q) + (m + p).
+Proof.
+intros n m p q.
+rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_assoc m p q).
+rewrite (NZadd_comm (m + p) q). now rewrite <- (NZadd_assoc n q (m + p)).
+Qed.
+
+Theorem NZadd_cancel_l : forall n m p : NZ, p + n == p + m <-> n == m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZadd_cancel_r : forall n m p : NZ, n + p == m + p <-> n == m.
+Proof.
+intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p).
+apply NZadd_cancel_l.
+Qed.
+
+Theorem NZsub_1_r : forall n : NZ, n - 1 == P n.
+Proof.
+intro n; rewrite NZsub_succ_r; now rewrite NZsub_0_r.
+Qed.
+
+End NZAddPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZAddOrder.v b/theories/Numbers/NatInt/NZAddOrder.v
new file mode 100644
index 00000000..50d1c42f
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAddOrder.v
@@ -0,0 +1,166 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZOrder.
+
+Module NZAddOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZOrderPropMod := NZOrderPropFunct NZOrdAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZadd_lt_mono_l : forall n m p : NZ, n < m <-> p + n < p + m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_lt_mono.
+Qed.
+
+Theorem NZadd_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p.
+Proof.
+intros n m p.
+rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_lt_mono_l.
+Qed.
+
+Theorem NZadd_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_trans with (m + p);
+[now apply -> NZadd_lt_mono_r | now apply -> NZadd_lt_mono_l].
+Qed.
+
+Theorem NZadd_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m.
+Proof.
+intros n m p; NZinduct p.
+now do 2 rewrite NZadd_0_l.
+intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_le_mono.
+Qed.
+
+Theorem NZadd_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p.
+Proof.
+intros n m p.
+rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_le_mono_l.
+Qed.
+
+Theorem NZadd_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_trans with (m + p);
+[now apply -> NZadd_le_mono_r | now apply -> NZadd_le_mono_l].
+Qed.
+
+Theorem NZadd_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZlt_le_trans with (m + p);
+[now apply -> NZadd_lt_mono_r | now apply -> NZadd_le_mono_l].
+Qed.
+
+Theorem NZadd_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q.
+Proof.
+intros n m p q H1 H2.
+apply NZle_lt_trans with (m + p);
+[now apply -> NZadd_le_mono_r | now apply -> NZadd_lt_mono_l].
+Qed.
+
+Theorem NZadd_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_mono.
+Qed.
+
+Theorem NZadd_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_le_mono.
+Qed.
+
+Theorem NZadd_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_lt_mono.
+Qed.
+
+Theorem NZadd_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m.
+Proof.
+intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_mono.
+Qed.
+
+Theorem NZlt_add_pos_l : forall n m : NZ, 0 < n -> m < n + m.
+Proof.
+intros n m H. apply -> (NZadd_lt_mono_r 0 n m) in H.
+now rewrite NZadd_0_l in H.
+Qed.
+
+Theorem NZlt_add_pos_r : forall n m : NZ, 0 < n -> m < m + n.
+Proof.
+intros; rewrite NZadd_comm; now apply NZlt_add_pos_l.
+Qed.
+
+Theorem NZle_lt_add_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
+pose proof (NZadd_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2.
+false_hyp H3 H2.
+Qed.
+
+Theorem NZlt_le_add_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
+pose proof (NZadd_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
+false_hyp H2 H3.
+Qed.
+
+Theorem NZle_le_add_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q.
+Proof.
+intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |].
+pose proof (NZadd_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
+false_hyp H2 H3.
+Qed.
+
+Theorem NZadd_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q.
+Proof.
+intros n m p q H;
+destruct (NZle_gt_cases p n) as [H1 | H1].
+destruct (NZle_gt_cases q m) as [H2 | H2].
+pose proof (NZadd_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3.
+false_hyp H H3.
+now right. now left.
+Qed.
+
+Theorem NZadd_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q.
+Proof.
+intros n m p q H.
+destruct (NZle_gt_cases n p) as [H1 | H1]. now left.
+destruct (NZle_gt_cases m q) as [H2 | H2]. now right.
+assert (H3 : p + q < n + m) by now apply NZadd_lt_mono.
+apply -> NZle_ngt in H. false_hyp H3 H.
+Qed.
+
+Theorem NZadd_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0.
+Proof.
+intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m.
+Proof.
+intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0.
+Proof.
+intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZadd_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m.
+Proof.
+intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+Qed.
+
+End NZAddOrderPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZAxioms.v b/theories/Numbers/NatInt/NZAxioms.v
new file mode 100644
index 00000000..26933646
--- /dev/null
+++ b/theories/Numbers/NatInt/NZAxioms.v
@@ -0,0 +1,99 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NumPrelude.
+
+Module Type NZAxiomsSig.
+
+Parameter Inline NZ : Type.
+Parameter Inline NZeq : NZ -> NZ -> Prop.
+Parameter Inline NZ0 : NZ.
+Parameter Inline NZsucc : NZ -> NZ.
+Parameter Inline NZpred : NZ -> NZ.
+Parameter Inline NZadd : NZ -> NZ -> NZ.
+Parameter Inline NZsub : NZ -> NZ -> NZ.
+Parameter Inline NZmul : NZ -> NZ -> NZ.
+
+(* Unary subtraction (opp) is not defined on natural numbers, so we have
+ it for integers only *)
+
+Axiom NZeq_equiv : equiv NZ NZeq.
+Add Relation NZ NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+
+Delimit Scope NatIntScope with NatInt.
+Open Local Scope NatIntScope.
+Notation "x == y" := (NZeq x y) (at level 70) : NatIntScope.
+Notation "x ~= y" := (~ NZeq x y) (at level 70) : NatIntScope.
+Notation "0" := NZ0 : NatIntScope.
+Notation S := NZsucc.
+Notation P := NZpred.
+Notation "1" := (S 0) : NatIntScope.
+Notation "x + y" := (NZadd x y) : NatIntScope.
+Notation "x - y" := (NZsub x y) : NatIntScope.
+Notation "x * y" := (NZmul x y) : NatIntScope.
+
+Axiom NZpred_succ : forall n : NZ, P (S n) == n.
+
+Axiom NZinduction :
+ forall A : NZ -> Prop, predicate_wd NZeq A ->
+ A 0 -> (forall n : NZ, A n <-> A (S n)) -> forall n : NZ, A n.
+
+Axiom NZadd_0_l : forall n : NZ, 0 + n == n.
+Axiom NZadd_succ_l : forall n m : NZ, (S n) + m == S (n + m).
+
+Axiom NZsub_0_r : forall n : NZ, n - 0 == n.
+Axiom NZsub_succ_r : forall n m : NZ, n - (S m) == P (n - m).
+
+Axiom NZmul_0_l : forall n : NZ, 0 * n == 0.
+Axiom NZmul_succ_l : forall n m : NZ, S n * m == n * m + m.
+
+End NZAxiomsSig.
+
+Module Type NZOrdAxiomsSig.
+Declare Module Export NZAxiomsMod : NZAxiomsSig.
+Open Local Scope NatIntScope.
+
+Parameter Inline NZlt : NZ -> NZ -> Prop.
+Parameter Inline NZle : NZ -> NZ -> Prop.
+Parameter Inline NZmin : NZ -> NZ -> NZ.
+Parameter Inline NZmax : NZ -> NZ -> NZ.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+
+Notation "x < y" := (NZlt x y) : NatIntScope.
+Notation "x <= y" := (NZle x y) : NatIntScope.
+Notation "x > y" := (NZlt y x) (only parsing) : NatIntScope.
+Notation "x >= y" := (NZle y x) (only parsing) : NatIntScope.
+
+Axiom NZlt_eq_cases : forall n m : NZ, n <= m <-> n < m \/ n == m.
+Axiom NZlt_irrefl : forall n : NZ, ~ (n < n).
+Axiom NZlt_succ_r : forall n m : NZ, n < S m <-> n <= m.
+
+Axiom NZmin_l : forall n m : NZ, n <= m -> NZmin n m == n.
+Axiom NZmin_r : forall n m : NZ, m <= n -> NZmin n m == m.
+Axiom NZmax_l : forall n m : NZ, m <= n -> NZmax n m == n.
+Axiom NZmax_r : forall n m : NZ, n <= m -> NZmax n m == m.
+
+End NZOrdAxiomsSig.
diff --git a/theories/Numbers/NatInt/NZBase.v b/theories/Numbers/NatInt/NZBase.v
new file mode 100644
index 00000000..8b01e353
--- /dev/null
+++ b/theories/Numbers/NatInt/NZBase.v
@@ -0,0 +1,84 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZBase.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+
+Require Import NZAxioms.
+
+Module NZBasePropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Open Local Scope NatIntScope.
+
+Theorem NZneq_symm : forall n m : NZ, n ~= m -> m ~= n.
+Proof.
+intros n m H1 H2; symmetry in H2; false_hyp H2 H1.
+Qed.
+
+Theorem NZE_stepl : forall x y z : NZ, x == y -> x == z -> z == y.
+Proof.
+intros x y z H1 H2; now rewrite <- H1.
+Qed.
+
+Declare Left Step NZE_stepl.
+(* The right step lemma is just the transitivity of NZeq *)
+Declare Right Step (proj1 (proj2 NZeq_equiv)).
+
+Theorem NZsucc_inj : forall n1 n2 : NZ, S n1 == S n2 -> n1 == n2.
+Proof.
+intros n1 n2 H.
+apply NZpred_wd in H. now do 2 rewrite NZpred_succ in H.
+Qed.
+
+(* The following theorem is useful as an equivalence for proving
+bidirectional induction steps *)
+Theorem NZsucc_inj_wd : forall n1 n2 : NZ, S n1 == S n2 <-> n1 == n2.
+Proof.
+intros; split.
+apply NZsucc_inj.
+apply NZsucc_wd.
+Qed.
+
+Theorem NZsucc_inj_wd_neg : forall n m : NZ, S n ~= S m <-> n ~= m.
+Proof.
+intros; now rewrite NZsucc_inj_wd.
+Qed.
+
+(* We cannot prove that the predecessor is injective, nor that it is
+left-inverse to the successor at this point *)
+
+Section CentralInduction.
+
+Variable A : predicate NZ.
+
+Hypothesis A_wd : predicate_wd NZeq A.
+
+Add Morphism A with signature NZeq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Theorem NZcentral_induction :
+ forall z : NZ, A z ->
+ (forall n : NZ, A n <-> A (S n)) ->
+ forall n : NZ, A n.
+Proof.
+intros z Base Step; revert Base; pattern z; apply NZinduction.
+solve_predicate_wd.
+intro; now apply NZinduction.
+intro; pose proof (Step n); tauto.
+Qed.
+
+End CentralInduction.
+
+Tactic Notation "NZinduct" ident(n) :=
+ induction_maker n ltac:(apply NZinduction).
+
+Tactic Notation "NZinduct" ident(n) constr(u) :=
+ induction_maker n ltac:(apply NZcentral_induction with (z := u)).
+
+End NZBasePropFunct.
+
diff --git a/theories/Numbers/NatInt/NZMul.v b/theories/Numbers/NatInt/NZMul.v
new file mode 100644
index 00000000..fda8b7a3
--- /dev/null
+++ b/theories/Numbers/NatInt/NZMul.v
@@ -0,0 +1,80 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZMul.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZAdd.
+
+Module NZMulPropFunct (Import NZAxiomsMod : NZAxiomsSig).
+Module Export NZAddPropMod := NZAddPropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZmul_0_r : forall n : NZ, n * 0 == 0.
+Proof.
+NZinduct n.
+now rewrite NZmul_0_l.
+intro. rewrite NZmul_succ_l. now rewrite NZadd_0_r.
+Qed.
+
+Theorem NZmul_succ_r : forall n m : NZ, n * (S m) == n * m + n.
+Proof.
+intros n m; NZinduct n.
+do 2 rewrite NZmul_0_l; now rewrite NZadd_0_l.
+intro n. do 2 rewrite NZmul_succ_l. do 2 rewrite NZadd_succ_r.
+rewrite NZsucc_inj_wd. rewrite <- (NZadd_assoc (n * m) m n).
+rewrite (NZadd_comm m n). rewrite NZadd_assoc.
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_comm : forall n m : NZ, n * m == m * n.
+Proof.
+intros n m; NZinduct n.
+rewrite NZmul_0_l; now rewrite NZmul_0_r.
+intro. rewrite NZmul_succ_l; rewrite NZmul_succ_r. now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_add_distr_r : forall n m p : NZ, (n + m) * p == n * p + m * p.
+Proof.
+intros n m p; NZinduct n.
+rewrite NZmul_0_l. now do 2 rewrite NZadd_0_l.
+intro n. rewrite NZadd_succ_l. do 2 rewrite NZmul_succ_l.
+rewrite <- (NZadd_assoc (n * p) p (m * p)).
+rewrite (NZadd_comm p (m * p)). rewrite (NZadd_assoc (n * p) (m * p) p).
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_add_distr_l : forall n m p : NZ, n * (m + p) == n * m + n * p.
+Proof.
+intros n m p.
+rewrite (NZmul_comm n (m + p)). rewrite (NZmul_comm n m).
+rewrite (NZmul_comm n p). apply NZmul_add_distr_r.
+Qed.
+
+Theorem NZmul_assoc : forall n m p : NZ, n * (m * p) == (n * m) * p.
+Proof.
+intros n m p; NZinduct n.
+now do 3 rewrite NZmul_0_l.
+intro n. do 2 rewrite NZmul_succ_l. rewrite NZmul_add_distr_r.
+now rewrite NZadd_cancel_r.
+Qed.
+
+Theorem NZmul_1_l : forall n : NZ, 1 * n == n.
+Proof.
+intro n. rewrite NZmul_succ_l; rewrite NZmul_0_l. now rewrite NZadd_0_l.
+Qed.
+
+Theorem NZmul_1_r : forall n : NZ, n * 1 == n.
+Proof.
+intro n; rewrite NZmul_comm; apply NZmul_1_l.
+Qed.
+
+End NZMulPropFunct.
+
diff --git a/theories/Numbers/NatInt/NZMulOrder.v b/theories/Numbers/NatInt/NZMulOrder.v
new file mode 100644
index 00000000..c707bf73
--- /dev/null
+++ b/theories/Numbers/NatInt/NZMulOrder.v
@@ -0,0 +1,310 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZAddOrder.
+
+Module NZMulOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZAddOrderPropMod := NZAddOrderPropFunct NZOrdAxiomsMod.
+Open Local Scope NatIntScope.
+
+Theorem NZmul_lt_pred :
+ forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
+Proof.
+intros p q n m H. rewrite <- H. do 2 rewrite NZmul_succ_l.
+rewrite <- (NZadd_assoc (p * n) n m).
+rewrite <- (NZadd_assoc (p * m) m n).
+rewrite (NZadd_comm n m). now rewrite <- NZadd_lt_mono_r.
+Qed.
+
+Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).
+Proof.
+NZord_induct p.
+intros n m H; false_hyp H NZlt_irrefl.
+intros p H IH n m H1. do 2 rewrite NZmul_succ_l.
+le_elim H. assert (LR : forall n m : NZ, n < m -> p * n + n < p * m + m).
+intros n1 m1 H2. apply NZadd_lt_mono; [now apply -> IH | assumption].
+split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
+apply <- NZle_ngt in H3. le_elim H3.
+apply NZlt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
+rewrite <- H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
+intros p H1 _ n m H2. apply NZlt_asymm in H1. false_hyp H2 H1.
+Qed.
+
+Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).
+Proof.
+intros p n m.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_pos_l.
+Qed.
+
+Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).
+Proof.
+NZord_induct p.
+intros n m H; false_hyp H NZlt_irrefl.
+intros p H1 _ n m H2. apply NZlt_succ_l in H2. apply <- NZnle_gt in H2. false_hyp H1 H2.
+intros p H IH n m H1. apply <- NZle_succ_l in H.
+le_elim H. assert (LR : forall n m : NZ, n < m -> p * m < p * n).
+intros n1 m1 H2. apply (NZle_lt_add_lt n1 m1).
+now apply NZlt_le_incl. do 2 rewrite <- NZmul_succ_l. now apply -> IH.
+split; [apply LR |]. intro H2. apply -> NZlt_dne; intro H3.
+apply <- NZle_ngt in H3. le_elim H3.
+apply NZlt_asymm in H2. apply H2. now apply LR.
+rewrite H3 in H2; false_hyp H2 NZlt_irrefl.
+rewrite (NZmul_lt_pred p (S p)) by reflexivity.
+rewrite H; do 2 rewrite NZmul_0_l; now do 2 rewrite NZadd_0_l.
+Qed.
+
+Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).
+Proof.
+intros p n m.
+rewrite (NZmul_comm n p); rewrite (NZmul_comm m p). now apply NZmul_lt_mono_neg_l.
+Qed.
+
+Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.
+Proof.
+intros n m p H1 H2. le_elim H1.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_pos_l.
+apply NZeq_le_incl; now rewrite H2.
+apply NZeq_le_incl; rewrite <- H1; now do 2 rewrite NZmul_0_l.
+Qed.
+
+Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.
+Proof.
+intros n m p H1 H2. le_elim H1.
+le_elim H2. apply NZlt_le_incl. now apply -> NZmul_lt_mono_neg_l.
+apply NZeq_le_incl; now rewrite H2.
+apply NZeq_le_incl; rewrite H1; now do 2 rewrite NZmul_0_l.
+Qed.
+
+Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.
+Proof.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonneg_l.
+Qed.
+
+Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.
+Proof.
+intros n m p H1 H2; rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+now apply NZmul_le_mono_nonpos_l.
+Qed.
+
+Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof.
+intros n m p H; split; intro H1.
+destruct (NZlt_trichotomy p 0) as [H2 | [H2 | H2]].
+apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * m < p * n); [now apply -> NZmul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+assert (H4 : p * n < p * m); [now apply -> NZmul_lt_mono_neg_l |].
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+false_hyp H2 H.
+apply -> NZeq_dne; intro H3. apply -> NZlt_gt_cases in H3. destruct H3 as [H3 | H3].
+assert (H4 : p * n < p * m) by (now apply -> NZmul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+assert (H4 : p * m < p * n) by (now apply -> NZmul_lt_mono_pos_l).
+rewrite H1 in H4; false_hyp H4 NZlt_irrefl.
+now rewrite H1.
+Qed.
+
+Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof.
+intros n m p. rewrite (NZmul_comm n p), (NZmul_comm m p); apply NZmul_cancel_l.
+Qed.
+
+Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).
+Proof.
+intros n m H.
+stepl (n * m == 1 * m) by now rewrite NZmul_1_l. now apply NZmul_cancel_r.
+Qed.
+
+Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).
+Proof.
+intros n m; rewrite NZmul_comm; apply NZmul_id_l.
+Qed.
+
+Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof.
+intros n m p H; do 2 rewrite NZlt_eq_cases.
+rewrite (NZmul_lt_mono_pos_l p n m) by assumption.
+now rewrite -> (NZmul_cancel_l n m p) by
+(intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+Qed.
+
+Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_pos_l.
+Qed.
+
+Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).
+Proof.
+intros n m p H; do 2 rewrite NZlt_eq_cases.
+rewrite (NZmul_lt_mono_neg_l p n m); [| assumption].
+rewrite -> (NZmul_cancel_l m n p) by (intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl).
+now setoid_replace (n == m) with (m == n) using relation iff by (split; now intro).
+Qed.
+
+Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).
+Proof.
+intros n m p. rewrite (NZmul_comm n p); rewrite (NZmul_comm m p);
+apply NZmul_le_mono_neg_l.
+Qed.
+
+Theorem NZmul_lt_mono_nonneg :
+ forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
+Proof.
+intros n m p q H1 H2 H3 H4.
+apply NZle_lt_trans with (m * p).
+apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+apply -> NZmul_lt_mono_pos_l; [assumption | now apply NZle_lt_trans with n].
+Qed.
+
+(* There are still many variants of the theorem above. One can assume 0 < n
+or 0 < p or n <= m or p <= q. *)
+
+Theorem NZmul_le_mono_nonneg :
+ forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
+Proof.
+intros n m p q H1 H2 H3 H4.
+le_elim H2; le_elim H4.
+apply NZlt_le_incl; now apply NZmul_lt_mono_nonneg.
+rewrite <- H4; apply NZmul_le_mono_nonneg_r; [assumption | now apply NZlt_le_incl].
+rewrite <- H2; apply NZmul_le_mono_nonneg_l; [assumption | now apply NZlt_le_incl].
+rewrite H2; rewrite H4; now apply NZeq_le_incl.
+Qed.
+
+Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_pos_r.
+Qed.
+
+Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+Qed.
+
+Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.
+Proof.
+intros n m H1 H2.
+rewrite <- (NZmul_0_l m). now apply -> NZmul_lt_mono_neg_r.
+Qed.
+
+Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.
+Proof.
+intros; rewrite NZmul_comm; now apply NZmul_pos_neg.
+Qed.
+
+Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.
+Proof.
+intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
+rewrite NZmul_1_l in H1. now apply NZlt_1_l with m.
+assumption.
+Qed.
+
+Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.
+Proof.
+intros n m; split.
+intro H; destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
+destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
+try (now right); try (now left).
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_neg_neg |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_neg_pos |].
+elimtype False; now apply (NZlt_neq (n * m) 0); [apply NZmul_pos_neg |].
+elimtype False; now apply (NZlt_neq 0 (n * m)); [apply NZmul_pos_pos |].
+intros [H | H]. now rewrite H, NZmul_0_l. now rewrite H, NZmul_0_r.
+Qed.
+
+Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof.
+intros n m; split; intro H.
+intro H1; apply -> NZeq_mul_0 in H1. tauto.
+split; intro H1; rewrite H1 in H;
+(rewrite NZmul_0_l in H || rewrite NZmul_0_r in H); now apply H.
+Qed.
+
+Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.
+Proof.
+intro n; rewrite NZeq_mul_0; tauto.
+Qed.
+
+Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.
+Proof.
+intros n m H1 H2. apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+assumption. false_hyp H1 H2.
+Qed.
+
+Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.
+Proof.
+intros n m H1 H2; apply -> NZeq_mul_0 in H1. destruct H1 as [H1 | H1].
+false_hyp H1 H2. assumption.
+Qed.
+
+Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).
+Proof.
+intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
+destruct (NZlt_trichotomy n 0) as [H1 | [H1 | H1]];
+[| rewrite H1 in H; rewrite NZmul_0_l in H; false_hyp H NZlt_irrefl |];
+(destruct (NZlt_trichotomy m 0) as [H2 | [H2 | H2]];
+[| rewrite H2 in H; rewrite NZmul_0_r in H; false_hyp H NZlt_irrefl |]);
+try (left; now split); try (right; now split).
+assert (H3 : n * m < 0) by now apply NZmul_neg_pos.
+elimtype False; now apply (NZlt_asymm (n * m) 0).
+assert (H3 : n * m < 0) by now apply NZmul_pos_neg.
+elimtype False; now apply (NZlt_asymm (n * m) 0).
+now apply NZmul_pos_pos. now apply NZmul_neg_neg.
+Qed.
+
+Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.
+Proof.
+intros n m H1 H2. now apply NZmul_lt_mono_nonneg.
+Qed.
+
+Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.
+Proof.
+intros n m H1 H2. now apply NZmul_le_mono_nonneg.
+Qed.
+
+(* The converse theorems require nonnegativity (or nonpositivity) of the
+other variable *)
+
+Theorem NZsquare_lt_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n < m * m -> n < m.
+Proof.
+intros n m H1 H2. destruct (NZlt_ge_cases n 0).
+now apply NZlt_le_trans with 0.
+destruct (NZlt_ge_cases n m).
+assumption. assert (F : m * m <= n * n) by now apply NZsquare_le_mono_nonneg.
+apply -> NZle_ngt in F. false_hyp H2 F.
+Qed.
+
+Theorem NZsquare_le_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n <= m * m -> n <= m.
+Proof.
+intros n m H1 H2. destruct (NZlt_ge_cases n 0).
+apply NZlt_le_incl; now apply NZlt_le_trans with 0.
+destruct (NZle_gt_cases n m).
+assumption. assert (F : m * m < n * n) by now apply NZsquare_lt_mono_nonneg.
+apply -> NZlt_nge in F. false_hyp H2 F.
+Qed.
+
+Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof.
+intros n m H. apply <- NZle_succ_l in H.
+apply -> (NZmul_le_mono_pos_l (S n) m (1 + 1)) in H.
+repeat rewrite NZmul_add_distr_r in *; repeat rewrite NZmul_1_l in *.
+repeat rewrite NZadd_succ_r in *. repeat rewrite NZadd_succ_l in *. rewrite NZadd_0_l.
+now apply -> NZle_succ_l.
+apply NZadd_pos_pos; now apply NZlt_succ_diag_r.
+Qed.
+
+End NZMulOrderPropFunct.
diff --git a/theories/Numbers/NatInt/NZOrder.v b/theories/Numbers/NatInt/NZOrder.v
new file mode 100644
index 00000000..15004824
--- /dev/null
+++ b/theories/Numbers/NatInt/NZOrder.v
@@ -0,0 +1,666 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NZOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import NZAxioms.
+Require Import NZMul.
+Require Import Decidable.
+
+Module NZOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
+Module Export NZMulPropMod := NZMulPropFunct NZAxiomsMod.
+Open Local Scope NatIntScope.
+
+Ltac le_elim H := rewrite NZlt_eq_cases in H; destruct H as [H | H].
+
+Theorem NZlt_le_incl : forall n m : NZ, n < m -> n <= m.
+Proof.
+intros; apply <- NZlt_eq_cases; now left.
+Qed.
+
+Theorem NZeq_le_incl : forall n m : NZ, n == m -> n <= m.
+Proof.
+intros; apply <- NZlt_eq_cases; now right.
+Qed.
+
+Lemma NZlt_stepl : forall x y z : NZ, x < y -> x == z -> z < y.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZlt_stepr : forall x y z : NZ, x < y -> y == z -> x < z.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZle_stepl : forall x y z : NZ, x <= y -> x == z -> z <= y.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Lemma NZle_stepr : forall x y z : NZ, x <= y -> y == z -> x <= z.
+Proof.
+intros x y z H1 H2; now rewrite <- H2.
+Qed.
+
+Declare Left Step NZlt_stepl.
+Declare Right Step NZlt_stepr.
+Declare Left Step NZle_stepl.
+Declare Right Step NZle_stepr.
+
+Theorem NZlt_neq : forall n m : NZ, n < m -> n ~= m.
+Proof.
+intros n m H1 H2; rewrite H2 in H1; false_hyp H1 NZlt_irrefl.
+Qed.
+
+Theorem NZle_neq : forall n m : NZ, n < m <-> n <= m /\ n ~= m.
+Proof.
+intros n m; split; [intro H | intros [H1 H2]].
+split. now apply NZlt_le_incl. now apply NZlt_neq.
+le_elim H1. assumption. false_hyp H1 H2.
+Qed.
+
+Theorem NZle_refl : forall n : NZ, n <= n.
+Proof.
+intro; now apply NZeq_le_incl.
+Qed.
+
+Theorem NZlt_succ_diag_r : forall n : NZ, n < S n.
+Proof.
+intro n. rewrite NZlt_succ_r. now apply NZeq_le_incl.
+Qed.
+
+Theorem NZle_succ_diag_r : forall n : NZ, n <= S n.
+Proof.
+intro; apply NZlt_le_incl; apply NZlt_succ_diag_r.
+Qed.
+
+Theorem NZlt_0_1 : 0 < 1.
+Proof.
+apply NZlt_succ_diag_r.
+Qed.
+
+Theorem NZle_0_1 : 0 <= 1.
+Proof.
+apply NZle_succ_diag_r.
+Qed.
+
+Theorem NZlt_lt_succ_r : forall n m : NZ, n < m -> n < S m.
+Proof.
+intros. rewrite NZlt_succ_r. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_le_succ_r : forall n m : NZ, n <= m -> n <= S m.
+Proof.
+intros n m H. rewrite <- NZlt_succ_r in H. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_succ_r : forall n m : NZ, n <= S m <-> n <= m \/ n == S m.
+Proof.
+intros n m; rewrite NZlt_eq_cases. now rewrite NZlt_succ_r.
+Qed.
+
+(* The following theorem is a special case of neq_succ_iter_l below,
+but we prove it separately *)
+
+Theorem NZneq_succ_diag_l : forall n : NZ, S n ~= n.
+Proof.
+intros n H. pose proof (NZlt_succ_diag_r n) as H1. rewrite H in H1.
+false_hyp H1 NZlt_irrefl.
+Qed.
+
+Theorem NZneq_succ_diag_r : forall n : NZ, n ~= S n.
+Proof.
+intro n; apply NZneq_symm; apply NZneq_succ_diag_l.
+Qed.
+
+Theorem NZnlt_succ_diag_l : forall n : NZ, ~ S n < n.
+Proof.
+intros n H; apply NZlt_lt_succ_r in H. false_hyp H NZlt_irrefl.
+Qed.
+
+Theorem NZnle_succ_diag_l : forall n : NZ, ~ S n <= n.
+Proof.
+intros n H; le_elim H.
+false_hyp H NZnlt_succ_diag_l. false_hyp H NZneq_succ_diag_l.
+Qed.
+
+Theorem NZle_succ_l : forall n m : NZ, S n <= m <-> n < m.
+Proof.
+intro n; NZinduct m n.
+setoid_replace (n < n) with False using relation iff by
+ (apply -> neg_false; apply NZlt_irrefl).
+now setoid_replace (S n <= n) with False using relation iff by
+ (apply -> neg_false; apply NZnle_succ_diag_l).
+intro m. rewrite NZlt_succ_r. rewrite NZle_succ_r.
+rewrite NZsucc_inj_wd.
+rewrite (NZlt_eq_cases n m).
+rewrite or_cancel_r.
+reflexivity.
+intros H1 H2; rewrite H2 in H1; false_hyp H1 NZnle_succ_diag_l.
+apply NZlt_neq.
+Qed.
+
+Theorem NZlt_succ_l : forall n m : NZ, S n < m -> n < m.
+Proof.
+intros n m H; apply -> NZle_succ_l; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZsucc_lt_mono : forall n m : NZ, n < m <-> S n < S m.
+Proof.
+intros n m. rewrite <- NZle_succ_l. symmetry. apply NZlt_succ_r.
+Qed.
+
+Theorem NZsucc_le_mono : forall n m : NZ, n <= m <-> S n <= S m.
+Proof.
+intros n m. do 2 rewrite NZlt_eq_cases.
+rewrite <- NZsucc_lt_mono; now rewrite NZsucc_inj_wd.
+Qed.
+
+Theorem NZlt_asymm : forall n m, n < m -> ~ m < n.
+Proof.
+intros n m; NZinduct n m.
+intros H _; false_hyp H NZlt_irrefl.
+intro n; split; intros H H1 H2.
+apply NZlt_succ_l in H1. apply -> NZlt_succ_r in H2. le_elim H2.
+now apply H. rewrite H2 in H1; false_hyp H1 NZlt_irrefl.
+apply NZlt_lt_succ_r in H2. apply <- NZle_succ_l in H1. le_elim H1.
+now apply H. rewrite H1 in H2; false_hyp H2 NZlt_irrefl.
+Qed.
+
+Theorem NZlt_trans : forall n m p : NZ, n < m -> m < p -> n < p.
+Proof.
+intros n m p; NZinduct p m.
+intros _ H; false_hyp H NZlt_irrefl.
+intro p. do 2 rewrite NZlt_succ_r.
+split; intros H H1 H2.
+apply NZlt_le_incl; le_elim H2; [now apply H | now rewrite H2 in H1].
+assert (n <= p) as H3. apply H. assumption. now apply NZlt_le_incl.
+le_elim H3. assumption. rewrite <- H3 in H2.
+elimtype False; now apply (NZlt_asymm n m).
+Qed.
+
+Theorem NZle_trans : forall n m p : NZ, n <= m -> m <= p -> n <= p.
+Proof.
+intros n m p H1 H2; le_elim H1.
+le_elim H2. apply NZlt_le_incl; now apply NZlt_trans with (m := m).
+apply NZlt_le_incl; now rewrite <- H2. now rewrite H1.
+Qed.
+
+Theorem NZle_lt_trans : forall n m p : NZ, n <= m -> m < p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H1.
+now apply NZlt_trans with (m := m). now rewrite H1.
+Qed.
+
+Theorem NZlt_le_trans : forall n m p : NZ, n < m -> m <= p -> n < p.
+Proof.
+intros n m p H1 H2; le_elim H2.
+now apply NZlt_trans with (m := m). now rewrite <- H2.
+Qed.
+
+Theorem NZle_antisymm : forall n m : NZ, n <= m -> m <= n -> n == m.
+Proof.
+intros n m H1 H2; now (le_elim H1; le_elim H2);
+[elimtype False; apply (NZlt_asymm n m) | | |].
+Qed.
+
+Theorem NZlt_1_l : forall n m : NZ, 0 < n -> n < m -> 1 < m.
+Proof.
+intros n m H1 H2. apply <- NZle_succ_l in H1. now apply NZle_lt_trans with n.
+Qed.
+
+(** Trichotomy, decidability, and double negation elimination *)
+
+Theorem NZlt_trichotomy : forall n m : NZ, n < m \/ n == m \/ m < n.
+Proof.
+intros n m; NZinduct n m.
+right; now left.
+intro n; rewrite NZlt_succ_r. stepr ((S n < m \/ S n == m) \/ m <= n) by tauto.
+rewrite <- (NZlt_eq_cases (S n) m).
+setoid_replace (n == m) with (m == n) using relation iff by now split.
+stepl (n < m \/ m < n \/ m == n) by tauto. rewrite <- NZlt_eq_cases.
+apply or_iff_compat_r. symmetry; apply NZle_succ_l.
+Qed.
+
+(* Decidability of equality, even though true in each finite ring, does not
+have a uniform proof. Otherwise, the proof for two fixed numbers would
+reduce to a normal form that will say if the numbers are equal or not,
+which cannot be true in all finite rings. Therefore, we prove decidability
+in the presence of order. *)
+
+Theorem NZeq_dec : forall n m : NZ, decidable (n == m).
+Proof.
+intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]].
+right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl.
+now left.
+right; intro H1; rewrite H1 in H; false_hyp H NZlt_irrefl.
+Qed.
+
+(* DNE stands for double-negation elimination *)
+
+Theorem NZeq_dne : forall n m, ~ ~ n == m <-> n == m.
+Proof.
+intros n m; split; intro H.
+destruct (NZeq_dec n m) as [H1 | H1].
+assumption. false_hyp H1 H.
+intro H1; now apply H1.
+Qed.
+
+Theorem NZlt_gt_cases : forall n m : NZ, n ~= m <-> n < m \/ n > m.
+Proof.
+intros n m; split.
+pose proof (NZlt_trichotomy n m); tauto.
+intros H H1; destruct H as [H | H]; rewrite H1 in H; false_hyp H NZlt_irrefl.
+Qed.
+
+Theorem NZle_gt_cases : forall n m : NZ, n <= m \/ n > m.
+Proof.
+intros n m; destruct (NZlt_trichotomy n m) as [H | [H | H]].
+left; now apply NZlt_le_incl. left; now apply NZeq_le_incl. now right.
+Qed.
+
+(* The following theorem is cleary redundant, but helps not to
+remember whether one has to say le_gt_cases or lt_ge_cases *)
+
+Theorem NZlt_ge_cases : forall n m : NZ, n < m \/ n >= m.
+Proof.
+intros n m; destruct (NZle_gt_cases m n); try (now left); try (now right).
+Qed.
+
+Theorem NZle_ge_cases : forall n m : NZ, n <= m \/ n >= m.
+Proof.
+intros n m; destruct (NZle_gt_cases n m) as [H | H].
+now left. right; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZle_ngt : forall n m : NZ, n <= m <-> ~ n > m.
+Proof.
+intros n m. split; intro H; [intro H1 |].
+eapply NZle_lt_trans in H; [| eassumption ..]. false_hyp H NZlt_irrefl.
+destruct (NZle_gt_cases n m) as [H1 | H1].
+assumption. false_hyp H1 H.
+Qed.
+
+(* Redundant but useful *)
+
+Theorem NZnlt_ge : forall n m : NZ, ~ n < m <-> n >= m.
+Proof.
+intros n m; symmetry; apply NZle_ngt.
+Qed.
+
+Theorem NZlt_dec : forall n m : NZ, decidable (n < m).
+Proof.
+intros n m; destruct (NZle_gt_cases m n);
+[right; now apply -> NZle_ngt | now left].
+Qed.
+
+Theorem NZlt_dne : forall n m, ~ ~ n < m <-> n < m.
+Proof.
+intros n m; split; intro H;
+[destruct (NZlt_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] |
+intro H1; false_hyp H H1].
+Qed.
+
+Theorem NZnle_gt : forall n m : NZ, ~ n <= m <-> n > m.
+Proof.
+intros n m. rewrite NZle_ngt. apply NZlt_dne.
+Qed.
+
+(* Redundant but useful *)
+
+Theorem NZlt_nge : forall n m : NZ, n < m <-> ~ n >= m.
+Proof.
+intros n m; symmetry; apply NZnle_gt.
+Qed.
+
+Theorem NZle_dec : forall n m : NZ, decidable (n <= m).
+Proof.
+intros n m; destruct (NZle_gt_cases n m);
+[now left | right; now apply <- NZnle_gt].
+Qed.
+
+Theorem NZle_dne : forall n m : NZ, ~ ~ n <= m <-> n <= m.
+Proof.
+intros n m; split; intro H;
+[destruct (NZle_dec n m) as [H1 | H1]; [assumption | false_hyp H1 H] |
+intro H1; false_hyp H H1].
+Qed.
+
+Theorem NZnlt_succ_r : forall n m : NZ, ~ m < S n <-> n < m.
+Proof.
+intros n m; rewrite NZlt_succ_r; apply NZnle_gt.
+Qed.
+
+(* The difference between integers and natural numbers is that for
+every integer there is a predecessor, which is not true for natural
+numbers. However, for both classes, every number that is bigger than
+some other number has a predecessor. The proof of this fact by regular
+induction does not go through, so we need to use strong
+(course-of-value) induction. *)
+
+Lemma NZlt_exists_pred_strong :
+ forall z n m : NZ, z < m -> m <= n -> exists k : NZ, m == S k /\ z <= k.
+Proof.
+intro z; NZinduct n z.
+intros m H1 H2; apply <- NZnle_gt in H1; false_hyp H2 H1.
+intro n; split; intros IH m H1 H2.
+apply -> NZle_succ_r in H2; destruct H2 as [H2 | H2].
+now apply IH. exists n. now split; [| rewrite <- NZlt_succ_r; rewrite <- H2].
+apply IH. assumption. now apply NZle_le_succ_r.
+Qed.
+
+Theorem NZlt_exists_pred :
+ forall z n : NZ, z < n -> exists k : NZ, n == S k /\ z <= k.
+Proof.
+intros z n H; apply NZlt_exists_pred_strong with (z := z) (n := n).
+assumption. apply NZle_refl.
+Qed.
+
+(** A corollary of having an order is that NZ is infinite *)
+
+(* This section about infinity of NZ relies on the type nat and can be
+safely removed *)
+
+Definition NZsucc_iter (n : nat) (m : NZ) :=
+ nat_rect (fun _ => NZ) m (fun _ l => S l) n.
+
+Theorem NZlt_succ_iter_r :
+ forall (n : nat) (m : NZ), m < NZsucc_iter (Datatypes.S n) m.
+Proof.
+intros n m; induction n as [| n IH]; simpl in *.
+apply NZlt_succ_diag_r. now apply NZlt_lt_succ_r.
+Qed.
+
+Theorem NZneq_succ_iter_l :
+ forall (n : nat) (m : NZ), NZsucc_iter (Datatypes.S n) m ~= m.
+Proof.
+intros n m H. pose proof (NZlt_succ_iter_r n m) as H1. rewrite H in H1.
+false_hyp H1 NZlt_irrefl.
+Qed.
+
+(* End of the section about the infinity of NZ *)
+
+(** Stronger variant of induction with assumptions n >= 0 (n < 0)
+in the induction step *)
+
+Section Induction.
+
+Variable A : NZ -> Prop.
+Hypothesis A_wd : predicate_wd NZeq A.
+
+Add Morphism A with signature NZeq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Section Center.
+
+Variable z : NZ. (* A z is the basis of induction *)
+
+Section RightInduction.
+
+Let A' (n : NZ) := forall m : NZ, z <= m -> m < n -> A m.
+Let right_step := forall n : NZ, z <= n -> A n -> A (S n).
+Let right_step' := forall n : NZ, z <= n -> A' n -> A n.
+Let right_step'' := forall n : NZ, A' n <-> A' (S n).
+
+Lemma NZrs_rs' : A z -> right_step -> right_step'.
+Proof.
+intros Az RS n H1 H2.
+le_elim H1. apply NZlt_exists_pred in H1. destruct H1 as [k [H3 H4]].
+rewrite H3. apply RS; [assumption | apply H2; [assumption | rewrite H3; apply NZlt_succ_diag_r]].
+rewrite <- H1; apply Az.
+Qed.
+
+Lemma NZrs'_rs'' : right_step' -> right_step''.
+Proof.
+intros RS' n; split; intros H1 m H2 H3.
+apply -> NZlt_succ_r in H3; le_elim H3;
+[now apply H1 | rewrite H3 in *; now apply RS'].
+apply H1; [assumption | now apply NZlt_lt_succ_r].
+Qed.
+
+Lemma NZrbase : A' z.
+Proof.
+intros m H1 H2. apply -> NZle_ngt in H1. false_hyp H2 H1.
+Qed.
+
+Lemma NZA'A_right : (forall n : NZ, A' n) -> forall n : NZ, z <= n -> A n.
+Proof.
+intros H1 n H2. apply H1 with (n := S n); [assumption | apply NZlt_succ_diag_r].
+Qed.
+
+Theorem NZstrong_right_induction: right_step' -> forall n : NZ, z <= n -> A n.
+Proof.
+intro RS'; apply NZA'A_right; unfold A'; NZinduct n z;
+[apply NZrbase | apply NZrs'_rs''; apply RS'].
+Qed.
+
+Theorem NZright_induction : A z -> right_step -> forall n : NZ, z <= n -> A n.
+Proof.
+intros Az RS; apply NZstrong_right_induction; now apply NZrs_rs'.
+Qed.
+
+Theorem NZright_induction' :
+ (forall n : NZ, n <= z -> A n) -> right_step -> forall n : NZ, A n.
+Proof.
+intros L R n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply L; now apply NZlt_le_incl.
+apply L; now apply NZeq_le_incl.
+apply NZright_induction. apply L; now apply NZeq_le_incl. assumption. now apply NZlt_le_incl.
+Qed.
+
+Theorem NZstrong_right_induction' :
+ (forall n : NZ, n <= z -> A n) -> right_step' -> forall n : NZ, A n.
+Proof.
+intros L R n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply L; now apply NZlt_le_incl.
+apply L; now apply NZeq_le_incl.
+apply NZstrong_right_induction. assumption. now apply NZlt_le_incl.
+Qed.
+
+End RightInduction.
+
+Section LeftInduction.
+
+Let A' (n : NZ) := forall m : NZ, m <= z -> n <= m -> A m.
+Let left_step := forall n : NZ, n < z -> A (S n) -> A n.
+Let left_step' := forall n : NZ, n <= z -> A' (S n) -> A n.
+Let left_step'' := forall n : NZ, A' n <-> A' (S n).
+
+Lemma NZls_ls' : A z -> left_step -> left_step'.
+Proof.
+intros Az LS n H1 H2. le_elim H1.
+apply LS; [assumption | apply H2; [now apply <- NZle_succ_l | now apply NZeq_le_incl]].
+rewrite H1; apply Az.
+Qed.
+
+Lemma NZls'_ls'' : left_step' -> left_step''.
+Proof.
+intros LS' n; split; intros H1 m H2 H3.
+apply -> NZle_succ_l in H3. apply NZlt_le_incl in H3. now apply H1.
+le_elim H3.
+apply <- NZle_succ_l in H3. now apply H1.
+rewrite <- H3 in *; now apply LS'.
+Qed.
+
+Lemma NZlbase : A' (S z).
+Proof.
+intros m H1 H2. apply -> NZle_succ_l in H2.
+apply -> NZle_ngt in H1. false_hyp H2 H1.
+Qed.
+
+Lemma NZA'A_left : (forall n : NZ, A' n) -> forall n : NZ, n <= z -> A n.
+Proof.
+intros H1 n H2. apply H1 with (n := n); [assumption | now apply NZeq_le_incl].
+Qed.
+
+Theorem NZstrong_left_induction: left_step' -> forall n : NZ, n <= z -> A n.
+Proof.
+intro LS'; apply NZA'A_left; unfold A'; NZinduct n (S z);
+[apply NZlbase | apply NZls'_ls''; apply LS'].
+Qed.
+
+Theorem NZleft_induction : A z -> left_step -> forall n : NZ, n <= z -> A n.
+Proof.
+intros Az LS; apply NZstrong_left_induction; now apply NZls_ls'.
+Qed.
+
+Theorem NZleft_induction' :
+ (forall n : NZ, z <= n -> A n) -> left_step -> forall n : NZ, A n.
+Proof.
+intros R L n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply NZleft_induction. apply R. now apply NZeq_le_incl. assumption. now apply NZlt_le_incl.
+rewrite H; apply R; now apply NZeq_le_incl.
+apply R; now apply NZlt_le_incl.
+Qed.
+
+Theorem NZstrong_left_induction' :
+ (forall n : NZ, z <= n -> A n) -> left_step' -> forall n : NZ, A n.
+Proof.
+intros R L n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+apply NZstrong_left_induction; auto. now apply NZlt_le_incl.
+rewrite H; apply R; now apply NZeq_le_incl.
+apply R; now apply NZlt_le_incl.
+Qed.
+
+End LeftInduction.
+
+Theorem NZorder_induction :
+ A z ->
+ (forall n : NZ, z <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n < z -> A (S n) -> A n) ->
+ forall n : NZ, A n.
+Proof.
+intros Az RS LS n.
+destruct (NZlt_trichotomy n z) as [H | [H | H]].
+now apply NZleft_induction; [| | apply NZlt_le_incl].
+now rewrite H.
+now apply NZright_induction; [| | apply NZlt_le_incl].
+Qed.
+
+Theorem NZorder_induction' :
+ A z ->
+ (forall n : NZ, z <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n <= z -> A n -> A (P n)) ->
+ forall n : NZ, A n.
+Proof.
+intros Az AS AP n; apply NZorder_induction; try assumption.
+intros m H1 H2. apply AP in H2; [| now apply <- NZle_succ_l].
+unfold predicate_wd, fun_wd in A_wd; apply -> (A_wd (P (S m)) m);
+[assumption | apply NZpred_succ].
+Qed.
+
+End Center.
+
+Theorem NZorder_induction_0 :
+ A 0 ->
+ (forall n : NZ, 0 <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n < 0 -> A (S n) -> A n) ->
+ forall n : NZ, A n.
+Proof (NZorder_induction 0).
+
+Theorem NZorder_induction'_0 :
+ A 0 ->
+ (forall n : NZ, 0 <= n -> A n -> A (S n)) ->
+ (forall n : NZ, n <= 0 -> A n -> A (P n)) ->
+ forall n : NZ, A n.
+Proof (NZorder_induction' 0).
+
+(** Elimintation principle for < *)
+
+Theorem NZlt_ind : forall (n : NZ),
+ A (S n) ->
+ (forall m : NZ, n < m -> A m -> A (S m)) ->
+ forall m : NZ, n < m -> A m.
+Proof.
+intros n H1 H2 m H3.
+apply NZright_induction with (S n); [assumption | | now apply <- NZle_succ_l].
+intros; apply H2; try assumption. now apply -> NZle_succ_l.
+Qed.
+
+(** Elimintation principle for <= *)
+
+Theorem NZle_ind : forall (n : NZ),
+ A n ->
+ (forall m : NZ, n <= m -> A m -> A (S m)) ->
+ forall m : NZ, n <= m -> A m.
+Proof.
+intros n H1 H2 m H3.
+now apply NZright_induction with n.
+Qed.
+
+End Induction.
+
+Tactic Notation "NZord_induct" ident(n) :=
+ induction_maker n ltac:(apply NZorder_induction_0).
+
+Tactic Notation "NZord_induct" ident(n) constr(z) :=
+ induction_maker n ltac:(apply NZorder_induction with z).
+
+Section WF.
+
+Variable z : NZ.
+
+Let Rlt (n m : NZ) := z <= n /\ n < m.
+Let Rgt (n m : NZ) := m < n /\ n <= z.
+
+Add Morphism Rlt with signature NZeq ==> NZeq ==> iff as Rlt_wd.
+Proof.
+intros x1 x2 H1 x3 x4 H2; unfold Rlt; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism Rgt with signature NZeq ==> NZeq ==> iff as Rgt_wd.
+Proof.
+intros x1 x2 H1 x3 x4 H2; unfold Rgt; rewrite H1; now rewrite H2.
+Qed.
+
+Lemma NZAcc_lt_wd : predicate_wd NZeq (Acc Rlt).
+Proof.
+unfold predicate_wd, fun_wd.
+intros x1 x2 H; split; intro H1; destruct H1 as [H2];
+constructor; intros; apply H2; now (rewrite H || rewrite <- H).
+Qed.
+
+Lemma NZAcc_gt_wd : predicate_wd NZeq (Acc Rgt).
+Proof.
+unfold predicate_wd, fun_wd.
+intros x1 x2 H; split; intro H1; destruct H1 as [H2];
+constructor; intros; apply H2; now (rewrite H || rewrite <- H).
+Qed.
+
+Theorem NZlt_wf : well_founded Rlt.
+Proof.
+unfold well_founded.
+apply NZstrong_right_induction' with (z := z).
+apply NZAcc_lt_wd.
+intros n H; constructor; intros y [H1 H2].
+apply <- NZnle_gt in H2. elim H2. now apply NZle_trans with z.
+intros n H1 H2; constructor; intros m [H3 H4]. now apply H2.
+Qed.
+
+Theorem NZgt_wf : well_founded Rgt.
+Proof.
+unfold well_founded.
+apply NZstrong_left_induction' with (z := z).
+apply NZAcc_gt_wd.
+intros n H; constructor; intros y [H1 H2].
+apply <- NZnle_gt in H2. elim H2. now apply NZle_lt_trans with n.
+intros n H1 H2; constructor; intros m [H3 H4].
+apply H2. assumption. now apply <- NZle_succ_l.
+Qed.
+
+End WF.
+
+End NZOrderPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NAdd.v b/theories/Numbers/Natural/Abstract/NAdd.v
new file mode 100644
index 00000000..f58b87d8
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NAdd.v
@@ -0,0 +1,156 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NBase.
+
+Module NAddPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NBasePropMod := NBasePropFunct NAxiomsMod.
+
+Open Local Scope NatScope.
+
+Theorem add_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> n1 + m1 == n2 + m2.
+Proof NZadd_wd.
+
+Theorem add_0_l : forall n : N, 0 + n == n.
+Proof NZadd_0_l.
+
+Theorem add_succ_l : forall n m : N, (S n) + m == S (n + m).
+Proof NZadd_succ_l.
+
+(** Theorems that are valid for both natural numbers and integers *)
+
+Theorem add_0_r : forall n : N, n + 0 == n.
+Proof NZadd_0_r.
+
+Theorem add_succ_r : forall n m : N, n + S m == S (n + m).
+Proof NZadd_succ_r.
+
+Theorem add_comm : forall n m : N, n + m == m + n.
+Proof NZadd_comm.
+
+Theorem add_assoc : forall n m p : N, n + (m + p) == (n + m) + p.
+Proof NZadd_assoc.
+
+Theorem add_shuffle1 : forall n m p q : N, (n + m) + (p + q) == (n + p) + (m + q).
+Proof NZadd_shuffle1.
+
+Theorem add_shuffle2 : forall n m p q : N, (n + m) + (p + q) == (n + q) + (m + p).
+Proof NZadd_shuffle2.
+
+Theorem add_1_l : forall n : N, 1 + n == S n.
+Proof NZadd_1_l.
+
+Theorem add_1_r : forall n : N, n + 1 == S n.
+Proof NZadd_1_r.
+
+Theorem add_cancel_l : forall n m p : N, p + n == p + m <-> n == m.
+Proof NZadd_cancel_l.
+
+Theorem add_cancel_r : forall n m p : N, n + p == m + p <-> n == m.
+Proof NZadd_cancel_r.
+
+(* Theorems that are valid for natural numbers but cannot be proved for Z *)
+
+Theorem eq_add_0 : forall n m : N, n + m == 0 <-> n == 0 /\ m == 0.
+Proof.
+intros n m; induct n.
+(* The next command does not work with the axiom add_0_l from NAddSig *)
+rewrite add_0_l. intuition reflexivity.
+intros n IH. rewrite add_succ_l.
+setoid_replace (S (n + m) == 0) with False using relation iff by
+ (apply -> neg_false; apply neq_succ_0).
+setoid_replace (S n == 0) with False using relation iff by
+ (apply -> neg_false; apply neq_succ_0). tauto.
+Qed.
+
+Theorem eq_add_succ :
+ forall n m : N, (exists p : N, n + m == S p) <->
+ (exists n' : N, n == S n') \/ (exists m' : N, m == S m').
+Proof.
+intros n m; cases n.
+split; intro H.
+destruct H as [p H]. rewrite add_0_l in H; right; now exists p.
+destruct H as [[n' H] | [m' H]].
+symmetry in H; false_hyp H neq_succ_0.
+exists m'; now rewrite add_0_l.
+intro n; split; intro H.
+left; now exists n.
+exists (n + m); now rewrite add_succ_l.
+Qed.
+
+Theorem eq_add_1 : forall n m : N,
+ n + m == 1 -> n == 1 /\ m == 0 \/ n == 0 /\ m == 1.
+Proof.
+intros n m H.
+assert (H1 : exists p : N, n + m == S p) by now exists 0.
+apply -> eq_add_succ in H1. destruct H1 as [[n' H1] | [m' H1]].
+left. rewrite H1 in H; rewrite add_succ_l in H; apply succ_inj in H.
+apply -> eq_add_0 in H. destruct H as [H2 H3]; rewrite H2 in H1; now split.
+right. rewrite H1 in H; rewrite add_succ_r in H; apply succ_inj in H.
+apply -> eq_add_0 in H. destruct H as [H2 H3]; rewrite H3 in H1; now split.
+Qed.
+
+Theorem succ_add_discr : forall n m : N, m ~= S (n + m).
+Proof.
+intro n; induct m.
+apply neq_symm. apply neq_succ_0.
+intros m IH H. apply succ_inj in H. rewrite add_succ_r in H.
+unfold not in IH; now apply IH.
+Qed.
+
+Theorem add_pred_l : forall n m : N, n ~= 0 -> P n + m == P (n + m).
+Proof.
+intros n m; cases n.
+intro H; now elim H.
+intros n IH; rewrite add_succ_l; now do 2 rewrite pred_succ.
+Qed.
+
+Theorem add_pred_r : forall n m : N, m ~= 0 -> n + P m == P (n + m).
+Proof.
+intros n m H; rewrite (add_comm n (P m));
+rewrite (add_comm n m); now apply add_pred_l.
+Qed.
+
+(* One could define n <= m as exists p : N, p + n == m. Then we have
+dichotomy:
+
+forall n m : N, n <= m \/ m <= n,
+
+i.e.,
+
+forall n m : N, (exists p : N, p + n == m) \/ (exists p : N, p + m == n) (1)
+
+We will need (1) in the proof of induction principle for integers
+constructed as pairs of natural numbers. The formula (1) can be proved
+using properties of order and truncated subtraction. Thus, p would be
+m - n or n - m and (1) would hold by theorem sub_add from Sub.v
+depending on whether n <= m or m <= n. However, in proving induction
+for integers constructed from natural numbers we do not need to
+require implementations of order and sub; it is enough to prove (1)
+here. *)
+
+Theorem add_dichotomy :
+ forall n m : N, (exists p : N, p + n == m) \/ (exists p : N, p + m == n).
+Proof.
+intros n m; induct n.
+left; exists m; apply add_0_r.
+intros n IH.
+destruct IH as [[p H] | [p H]].
+destruct (zero_or_succ p) as [H1 | [p' H1]]; rewrite H1 in H.
+rewrite add_0_l in H. right; exists (S 0); rewrite H; rewrite add_succ_l; now rewrite add_0_l.
+left; exists p'; rewrite add_succ_r; now rewrite add_succ_l in H.
+right; exists (S p). rewrite add_succ_l; now rewrite H.
+Qed.
+
+End NAddPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NAddOrder.v b/theories/Numbers/Natural/Abstract/NAddOrder.v
new file mode 100644
index 00000000..7024fd00
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NAddOrder.v
@@ -0,0 +1,114 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NOrder.
+
+Module NAddOrderPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NOrderPropMod := NOrderPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+Theorem add_lt_mono_l : forall n m p : N, n < m <-> p + n < p + m.
+Proof NZadd_lt_mono_l.
+
+Theorem add_lt_mono_r : forall n m p : N, n < m <-> n + p < m + p.
+Proof NZadd_lt_mono_r.
+
+Theorem add_lt_mono : forall n m p q : N, n < m -> p < q -> n + p < m + q.
+Proof NZadd_lt_mono.
+
+Theorem add_le_mono_l : forall n m p : N, n <= m <-> p + n <= p + m.
+Proof NZadd_le_mono_l.
+
+Theorem add_le_mono_r : forall n m p : N, n <= m <-> n + p <= m + p.
+Proof NZadd_le_mono_r.
+
+Theorem add_le_mono : forall n m p q : N, n <= m -> p <= q -> n + p <= m + q.
+Proof NZadd_le_mono.
+
+Theorem add_lt_le_mono : forall n m p q : N, n < m -> p <= q -> n + p < m + q.
+Proof NZadd_lt_le_mono.
+
+Theorem add_le_lt_mono : forall n m p q : N, n <= m -> p < q -> n + p < m + q.
+Proof NZadd_le_lt_mono.
+
+Theorem add_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n + m.
+Proof NZadd_pos_pos.
+
+Theorem lt_add_pos_l : forall n m : N, 0 < n -> m < n + m.
+Proof NZlt_add_pos_l.
+
+Theorem lt_add_pos_r : forall n m : N, 0 < n -> m < m + n.
+Proof NZlt_add_pos_r.
+
+Theorem le_lt_add_lt : forall n m p q : N, n <= m -> p + m < q + n -> p < q.
+Proof NZle_lt_add_lt.
+
+Theorem lt_le_add_lt : forall n m p q : N, n < m -> p + m <= q + n -> p < q.
+Proof NZlt_le_add_lt.
+
+Theorem le_le_add_le : forall n m p q : N, n <= m -> p + m <= q + n -> p <= q.
+Proof NZle_le_add_le.
+
+Theorem add_lt_cases : forall n m p q : N, n + m < p + q -> n < p \/ m < q.
+Proof NZadd_lt_cases.
+
+Theorem add_le_cases : forall n m p q : N, n + m <= p + q -> n <= p \/ m <= q.
+Proof NZadd_le_cases.
+
+Theorem add_pos_cases : forall n m : N, 0 < n + m -> 0 < n \/ 0 < m.
+Proof NZadd_pos_cases.
+
+(* Theorems true for natural numbers *)
+
+Theorem le_add_r : forall n m : N, n <= n + m.
+Proof.
+intro n; induct m.
+rewrite add_0_r; now apply eq_le_incl.
+intros m IH. rewrite add_succ_r; now apply le_le_succ_r.
+Qed.
+
+Theorem lt_lt_add_r : forall n m p : N, n < m -> n < m + p.
+Proof.
+intros n m p H; rewrite <- (add_0_r n).
+apply add_lt_le_mono; [assumption | apply le_0_l].
+Qed.
+
+Theorem lt_lt_add_l : forall n m p : N, n < m -> n < p + m.
+Proof.
+intros n m p; rewrite add_comm; apply lt_lt_add_r.
+Qed.
+
+Theorem add_pos_l : forall n m : N, 0 < n -> 0 < n + m.
+Proof.
+intros; apply NZadd_pos_nonneg. assumption. apply le_0_l.
+Qed.
+
+Theorem add_pos_r : forall n m : N, 0 < m -> 0 < n + m.
+Proof.
+intros; apply NZadd_nonneg_pos. apply le_0_l. assumption.
+Qed.
+
+(* The following property is used to prove the correctness of the
+definition of order on integers constructed from pairs of natural numbers *)
+
+Theorem add_lt_repl_pair : forall n m n' m' u v : N,
+ n + u < m + v -> n + m' == n' + m -> n' + u < m' + v.
+Proof.
+intros n m n' m' u v H1 H2.
+symmetry in H2. assert (H3 : n' + m <= n + m') by now apply eq_le_incl.
+pose proof (add_lt_le_mono _ _ _ _ H1 H3) as H4.
+rewrite (add_shuffle2 n u), (add_shuffle1 m v), (add_comm m n) in H4.
+do 2 rewrite <- add_assoc in H4. do 2 apply <- add_lt_mono_l in H4.
+now rewrite (add_comm n' u), (add_comm m' v).
+Qed.
+
+End NAddOrderPropFunct.
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v
new file mode 100644
index 00000000..750cc977
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NAxioms.v
@@ -0,0 +1,71 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NZAxioms.
+
+Set Implicit Arguments.
+
+Module Type NAxiomsSig.
+Declare Module Export NZOrdAxiomsMod : NZOrdAxiomsSig.
+
+Delimit Scope NatScope with Nat.
+Notation N := NZ.
+Notation Neq := NZeq.
+Notation N0 := NZ0.
+Notation N1 := (NZsucc NZ0).
+Notation S := NZsucc.
+Notation P := NZpred.
+Notation add := NZadd.
+Notation mul := NZmul.
+Notation sub := NZsub.
+Notation lt := NZlt.
+Notation le := NZle.
+Notation min := NZmin.
+Notation max := NZmax.
+Notation "x == y" := (Neq x y) (at level 70) : NatScope.
+Notation "x ~= y" := (~ Neq x y) (at level 70) : NatScope.
+Notation "0" := NZ0 : NatScope.
+Notation "1" := (NZsucc NZ0) : NatScope.
+Notation "x + y" := (NZadd x y) : NatScope.
+Notation "x - y" := (NZsub x y) : NatScope.
+Notation "x * y" := (NZmul x y) : NatScope.
+Notation "x < y" := (NZlt x y) : NatScope.
+Notation "x <= y" := (NZle x y) : NatScope.
+Notation "x > y" := (NZlt y x) (only parsing) : NatScope.
+Notation "x >= y" := (NZle y x) (only parsing) : NatScope.
+
+Open Local Scope NatScope.
+
+Parameter Inline recursion : forall A : Type, A -> (N -> A -> A) -> N -> A.
+Implicit Arguments recursion [A].
+
+Axiom pred_0 : P 0 == 0.
+
+Axiom recursion_wd : forall (A : Type) (Aeq : relation A),
+ forall a a' : A, Aeq a a' ->
+ forall f f' : N -> A -> A, fun2_eq Neq Aeq Aeq f f' ->
+ forall x x' : N, x == x' ->
+ Aeq (recursion a f x) (recursion a' f' x').
+
+Axiom recursion_0 :
+ forall (A : Type) (a : A) (f : N -> A -> A), recursion a f 0 = a.
+
+Axiom recursion_succ :
+ forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
+ Aeq a a -> fun2_wd Neq Aeq Aeq f ->
+ forall n : N, Aeq (recursion a f (S n)) (f n (recursion a f n)).
+
+(*Axiom dep_rec :
+ forall A : N -> Type, A 0 -> (forall n : N, A n -> A (S n)) -> forall n : N, A n.*)
+
+End NAxiomsSig.
+
diff --git a/theories/Numbers/Natural/Abstract/NBase.v b/theories/Numbers/Natural/Abstract/NBase.v
new file mode 100644
index 00000000..3e4032b5
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NBase.v
@@ -0,0 +1,288 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NBase.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export Decidable.
+Require Export NAxioms.
+Require Import NZMulOrder. (* The last property functor on NZ, which subsumes all others *)
+
+Module NBasePropFunct (Import NAxiomsMod : NAxiomsSig).
+
+Open Local Scope NatScope.
+
+(* We call the last property functor on NZ, which includes all the previous
+ones, to get all properties of NZ at once. This way we will include them
+only one time. *)
+
+Module Export NZMulOrderMod := NZMulOrderPropFunct NZOrdAxiomsMod.
+
+(* Here we probably need to re-prove all axioms declared in NAxioms.v to
+make sure that the definitions like N, S and add are unfolded in them,
+since unfolding is done only inside a functor. In fact, we'll do it in the
+files that prove the corresponding properties. In those files, we will also
+rename properties proved in NZ files by removing NZ from their names. In
+this way, one only has to consult, for example, NAdd.v to see all
+available properties for add, i.e., one does not have to go to NAxioms.v
+for axioms and NZAdd.v for theorems. *)
+
+Theorem succ_wd : forall n1 n2 : N, n1 == n2 -> S n1 == S n2.
+Proof NZsucc_wd.
+
+Theorem pred_wd : forall n1 n2 : N, n1 == n2 -> P n1 == P n2.
+Proof NZpred_wd.
+
+Theorem pred_succ : forall n : N, P (S n) == n.
+Proof NZpred_succ.
+
+Theorem pred_0 : P 0 == 0.
+Proof pred_0.
+
+Theorem Neq_refl : forall n : N, n == n.
+Proof (proj1 NZeq_equiv).
+
+Theorem Neq_symm : forall n m : N, n == m -> m == n.
+Proof (proj2 (proj2 NZeq_equiv)).
+
+Theorem Neq_trans : forall n m p : N, n == m -> m == p -> n == p.
+Proof (proj1 (proj2 NZeq_equiv)).
+
+Theorem neq_symm : forall n m : N, n ~= m -> m ~= n.
+Proof NZneq_symm.
+
+Theorem succ_inj : forall n1 n2 : N, S n1 == S n2 -> n1 == n2.
+Proof NZsucc_inj.
+
+Theorem succ_inj_wd : forall n1 n2 : N, S n1 == S n2 <-> n1 == n2.
+Proof NZsucc_inj_wd.
+
+Theorem succ_inj_wd_neg : forall n m : N, S n ~= S m <-> n ~= m.
+Proof NZsucc_inj_wd_neg.
+
+(* Decidability and stability of equality was proved only in NZOrder, but
+since it does not mention order, we'll put it here *)
+
+Theorem eq_dec : forall n m : N, decidable (n == m).
+Proof NZeq_dec.
+
+Theorem eq_dne : forall n m : N, ~ ~ n == m <-> n == m.
+Proof NZeq_dne.
+
+(* Now we prove that the successor of a number is not zero by defining a
+function (by recursion) that maps 0 to false and the successor to true *)
+
+Definition if_zero (A : Set) (a b : A) (n : N) : A :=
+ recursion a (fun _ _ => b) n.
+
+Add Parametric Morphism (A : Set) : (if_zero A) with signature (@eq _ ==> @eq _ ==> Neq ==> @eq _) as if_zero_wd.
+Proof.
+intros; unfold if_zero. apply recursion_wd with (Aeq := (@eq A)).
+reflexivity. unfold fun2_eq; now intros. assumption.
+Qed.
+
+Theorem if_zero_0 : forall (A : Set) (a b : A), if_zero A a b 0 = a.
+Proof.
+unfold if_zero; intros; now rewrite recursion_0.
+Qed.
+
+Theorem if_zero_succ : forall (A : Set) (a b : A) (n : N), if_zero A a b (S n) = b.
+Proof.
+intros; unfold if_zero.
+now rewrite (@recursion_succ A (@eq A)); [| | unfold fun2_wd; now intros].
+Qed.
+
+Implicit Arguments if_zero [A].
+
+Theorem neq_succ_0 : forall n : N, S n ~= 0.
+Proof.
+intros n H.
+assert (true = false); [| discriminate].
+replace true with (if_zero false true (S n)) by apply if_zero_succ.
+pattern false at 2; replace false with (if_zero false true 0) by apply if_zero_0.
+now rewrite H.
+Qed.
+
+Theorem neq_0_succ : forall n : N, 0 ~= S n.
+Proof.
+intro n; apply neq_symm; apply neq_succ_0.
+Qed.
+
+(* Next, we show that all numbers are nonnegative and recover regular induction
+from the bidirectional induction on NZ *)
+
+Theorem le_0_l : forall n : N, 0 <= n.
+Proof.
+NZinduct n.
+now apply NZeq_le_incl.
+intro n; split.
+apply NZle_le_succ_r.
+intro H; apply -> NZle_succ_r in H; destruct H as [H | H].
+assumption.
+symmetry in H; false_hyp H neq_succ_0.
+Qed.
+
+Theorem induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ A 0 -> (forall n : N, A n -> A (S n)) -> forall n : N, A n.
+Proof.
+intros A A_wd A0 AS n; apply NZright_induction with 0; try assumption.
+intros; auto; apply le_0_l. apply le_0_l.
+Qed.
+
+(* The theorems NZinduction, NZcentral_induction and the tactic NZinduct
+refer to bidirectional induction, which is not useful on natural
+numbers. Therefore, we define a new induction tactic for natural numbers.
+We do not have to call "Declare Left Step" and "Declare Right Step"
+commands again, since the data for stepl and stepr tactics is inherited
+from NZ. *)
+
+Ltac induct n := induction_maker n ltac:(apply induction).
+
+Theorem case_analysis :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ A 0 -> (forall n : N, A (S n)) -> forall n : N, A n.
+Proof.
+intros; apply induction; auto.
+Qed.
+
+Ltac cases n := induction_maker n ltac:(apply case_analysis).
+
+Theorem neq_0 : ~ forall n, n == 0.
+Proof.
+intro H; apply (neq_succ_0 0). apply H.
+Qed.
+
+Theorem neq_0_r : forall n, n ~= 0 <-> exists m, n == S m.
+Proof.
+cases n. split; intro H;
+[now elim H | destruct H as [m H]; symmetry in H; false_hyp H neq_succ_0].
+intro n; split; intro H; [now exists n | apply neq_succ_0].
+Qed.
+
+Theorem zero_or_succ : forall n, n == 0 \/ exists m, n == S m.
+Proof.
+cases n.
+now left.
+intro n; right; now exists n.
+Qed.
+
+Theorem eq_pred_0 : forall n : N, P n == 0 <-> n == 0 \/ n == 1.
+Proof.
+cases n.
+rewrite pred_0. setoid_replace (0 == 1) with False using relation iff. tauto.
+split; intro H; [symmetry in H; false_hyp H neq_succ_0 | elim H].
+intro n. rewrite pred_succ.
+setoid_replace (S n == 0) with False using relation iff by
+ (apply -> neg_false; apply neq_succ_0).
+rewrite succ_inj_wd. tauto.
+Qed.
+
+Theorem succ_pred : forall n : N, n ~= 0 -> S (P n) == n.
+Proof.
+cases n.
+intro H; elimtype False; now apply H.
+intros; now rewrite pred_succ.
+Qed.
+
+Theorem pred_inj : forall n m : N, n ~= 0 -> m ~= 0 -> P n == P m -> n == m.
+Proof.
+intros n m; cases n.
+intros H; elimtype False; now apply H.
+intros n _; cases m.
+intros H; elimtype False; now apply H.
+intros m H2 H3. do 2 rewrite pred_succ in H3. now rewrite H3.
+Qed.
+
+(* The following induction principle is useful for reasoning about, e.g.,
+Fibonacci numbers *)
+
+Section PairInduction.
+
+Variable A : N -> Prop.
+Hypothesis A_wd : predicate_wd Neq A.
+
+Add Morphism A with signature Neq ==> iff as A_morph.
+Proof.
+exact A_wd.
+Qed.
+
+Theorem pair_induction :
+ A 0 -> A 1 ->
+ (forall n, A n -> A (S n) -> A (S (S n))) -> forall n, A n.
+Proof.
+intros until 3.
+assert (D : forall n, A n /\ A (S n)); [ |intro n; exact (proj1 (D n))].
+induct n; [ | intros n [IH1 IH2]]; auto.
+Qed.
+
+End PairInduction.
+
+(*Ltac pair_induct n := induction_maker n ltac:(apply pair_induction).*)
+
+(* The following is useful for reasoning about, e.g., Ackermann function *)
+Section TwoDimensionalInduction.
+
+Variable R : N -> N -> Prop.
+Hypothesis R_wd : relation_wd Neq Neq R.
+
+Add Morphism R with signature Neq ==> Neq ==> iff as R_morph.
+Proof.
+exact R_wd.
+Qed.
+
+Theorem two_dim_induction :
+ R 0 0 ->
+ (forall n m, R n m -> R n (S m)) ->
+ (forall n, (forall m, R n m) -> R (S n) 0) -> forall n m, R n m.
+Proof.
+intros H1 H2 H3. induct n.
+induct m.
+exact H1. exact (H2 0).
+intros n IH. induct m.
+now apply H3. exact (H2 (S n)).
+Qed.
+
+End TwoDimensionalInduction.
+
+(*Ltac two_dim_induct n m :=
+ try intros until n;
+ try intros until m;
+ pattern n, m; apply two_dim_induction; clear n m;
+ [solve_relation_wd | | | ].*)
+
+Section DoubleInduction.
+
+Variable R : N -> N -> Prop.
+Hypothesis R_wd : relation_wd Neq Neq R.
+
+Add Morphism R with signature Neq ==> Neq ==> iff as R_morph1.
+Proof.
+exact R_wd.
+Qed.
+
+Theorem double_induction :
+ (forall m : N, R 0 m) ->
+ (forall n : N, R (S n) 0) ->
+ (forall n m : N, R n m -> R (S n) (S m)) -> forall n m : N, R n m.
+Proof.
+intros H1 H2 H3; induct n; auto.
+intros n H; cases m; auto.
+Qed.
+
+End DoubleInduction.
+
+Ltac double_induct n m :=
+ try intros until n;
+ try intros until m;
+ pattern n, m; apply double_induction; clear n m;
+ [solve_relation_wd | | | ].
+
+End NBasePropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NDefOps.v b/theories/Numbers/Natural/Abstract/NDefOps.v
new file mode 100644
index 00000000..e15e4672
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NDefOps.v
@@ -0,0 +1,298 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NDefOps.v 11039 2008-06-02 23:26:13Z letouzey $ i*)
+
+Require Import Bool. (* To get the orb and negb function *)
+Require Export NStrongRec.
+
+Module NdefOpsPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NStrongRecPropMod := NStrongRecPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+(*****************************************************)
+(** Addition *)
+
+Definition def_add (x y : N) := recursion y (fun _ p => S p) x.
+
+Infix Local "++" := def_add (at level 50, left associativity).
+
+Add Morphism def_add with signature Neq ==> Neq ==> Neq as def_add_wd.
+Proof.
+unfold def_add.
+intros x x' Exx' y y' Eyy'.
+apply recursion_wd with (Aeq := Neq).
+assumption.
+unfold fun2_eq; intros _ _ _ p p' Epp'; now rewrite Epp'.
+assumption.
+Qed.
+
+Theorem def_add_0_l : forall y : N, 0 ++ y == y.
+Proof.
+intro y. unfold def_add. now rewrite recursion_0.
+Qed.
+
+Theorem def_add_succ_l : forall x y : N, S x ++ y == S (x ++ y).
+Proof.
+intros x y; unfold def_add.
+rewrite (@recursion_succ N Neq); try reflexivity.
+unfold fun2_wd. intros _ _ _ m1 m2 H2. now rewrite H2.
+Qed.
+
+Theorem def_add_add : forall n m : N, n ++ m == n + m.
+Proof.
+intros n m; induct n.
+now rewrite def_add_0_l, add_0_l.
+intros n H. now rewrite def_add_succ_l, add_succ_l, H.
+Qed.
+
+(*****************************************************)
+(** Multiplication *)
+
+Definition def_mul (x y : N) := recursion 0 (fun _ p => p ++ x) y.
+
+Infix Local "**" := def_mul (at level 40, left associativity).
+
+Lemma def_mul_step_wd : forall x : N, fun2_wd Neq Neq Neq (fun _ p => def_add p x).
+Proof.
+unfold fun2_wd. intros. now apply def_add_wd.
+Qed.
+
+Lemma def_mul_step_equal :
+ forall x x' : N, x == x' ->
+ fun2_eq Neq Neq Neq (fun _ p => def_add p x) (fun x p => def_add p x').
+Proof.
+unfold fun2_eq; intros; apply def_add_wd; assumption.
+Qed.
+
+Add Morphism def_mul with signature Neq ==> Neq ==> Neq as def_mul_wd.
+Proof.
+unfold def_mul.
+intros x x' Exx' y y' Eyy'.
+apply recursion_wd with (Aeq := Neq).
+reflexivity. apply def_mul_step_equal. assumption. assumption.
+Qed.
+
+Theorem def_mul_0_r : forall x : N, x ** 0 == 0.
+Proof.
+intro. unfold def_mul. now rewrite recursion_0.
+Qed.
+
+Theorem def_mul_succ_r : forall x y : N, x ** S y == x ** y ++ x.
+Proof.
+intros x y; unfold def_mul.
+now rewrite (@recursion_succ N Neq); [| apply def_mul_step_wd |].
+Qed.
+
+Theorem def_mul_mul : forall n m : N, n ** m == n * m.
+Proof.
+intros n m; induct m.
+now rewrite def_mul_0_r, mul_0_r.
+intros m IH; now rewrite def_mul_succ_r, mul_succ_r, def_add_add, IH.
+Qed.
+
+(*****************************************************)
+(** Order *)
+
+Definition def_ltb (m : N) : N -> bool :=
+recursion
+ (if_zero false true)
+ (fun _ f => fun n => recursion false (fun n' _ => f n') n)
+ m.
+
+Infix Local "<<" := def_ltb (at level 70, no associativity).
+
+Lemma lt_base_wd : fun_wd Neq (@eq bool) (if_zero false true).
+unfold fun_wd; intros; now apply if_zero_wd.
+Qed.
+
+Lemma lt_step_wd :
+fun2_wd Neq (fun_eq Neq (@eq bool)) (fun_eq Neq (@eq bool))
+ (fun _ f => fun n => recursion false (fun n' _ => f n') n).
+Proof.
+unfold fun2_wd, fun_eq.
+intros x x' Exx' f f' Eff' y y' Eyy'.
+apply recursion_wd with (Aeq := @eq bool).
+reflexivity.
+unfold fun2_eq; intros; now apply Eff'.
+assumption.
+Qed.
+
+Lemma lt_curry_wd :
+ forall m m' : N, m == m' -> fun_eq Neq (@eq bool) (def_ltb m) (def_ltb m').
+Proof.
+unfold def_ltb.
+intros m m' Emm'.
+apply recursion_wd with (Aeq := fun_eq Neq (@eq bool)).
+apply lt_base_wd.
+apply lt_step_wd.
+assumption.
+Qed.
+
+Add Morphism def_ltb with signature Neq ==> Neq ==> (@eq bool) as def_ltb_wd.
+Proof.
+intros; now apply lt_curry_wd.
+Qed.
+
+Theorem def_ltb_base : forall n : N, 0 << n = if_zero false true n.
+Proof.
+intro n; unfold def_ltb; now rewrite recursion_0.
+Qed.
+
+Theorem def_ltb_step :
+ forall m n : N, S m << n = recursion false (fun n' _ => m << n') n.
+Proof.
+intros m n; unfold def_ltb.
+pose proof
+ (@recursion_succ
+ (N -> bool)
+ (fun_eq Neq (@eq bool))
+ (if_zero false true)
+ (fun _ f => fun n => recursion false (fun n' _ => f n') n)
+ lt_base_wd
+ lt_step_wd
+ m n n) as H.
+now rewrite H.
+Qed.
+
+(* Above, we rewrite applications of function. Is it possible to rewrite
+functions themselves, i.e., rewrite (recursion lt_base lt_step (S n)) to
+lt_step n (recursion lt_base lt_step n)? *)
+
+Theorem def_ltb_0 : forall n : N, n << 0 = false.
+Proof.
+cases n.
+rewrite def_ltb_base; now rewrite if_zero_0.
+intro n; rewrite def_ltb_step. now rewrite recursion_0.
+Qed.
+
+Theorem def_ltb_0_succ : forall n : N, 0 << S n = true.
+Proof.
+intro n; rewrite def_ltb_base; now rewrite if_zero_succ.
+Qed.
+
+Theorem succ_def_ltb_mono : forall n m : N, (S n << S m) = (n << m).
+Proof.
+intros n m.
+rewrite def_ltb_step. rewrite (@recursion_succ bool (@eq bool)); try reflexivity.
+unfold fun2_wd; intros; now apply def_ltb_wd.
+Qed.
+
+Theorem def_ltb_lt : forall n m : N, n << m = true <-> n < m.
+Proof.
+double_induct n m.
+cases m.
+rewrite def_ltb_0. split; intro H; [discriminate H | false_hyp H nlt_0_r].
+intro n. rewrite def_ltb_0_succ. split; intro; [apply lt_0_succ | reflexivity].
+intro n. rewrite def_ltb_0. split; intro H; [discriminate | false_hyp H nlt_0_r].
+intros n m. rewrite succ_def_ltb_mono. now rewrite <- succ_lt_mono.
+Qed.
+
+(*
+(*****************************************************)
+(** Even *)
+
+Definition even (x : N) := recursion true (fun _ p => negb p) x.
+
+Lemma even_step_wd : fun2_wd Neq (@eq bool) (@eq bool) (fun x p => if p then false else true).
+Proof.
+unfold fun2_wd.
+intros x x' Exx' b b' Ebb'.
+unfold eq_bool; destruct b; destruct b'; now simpl.
+Qed.
+
+Add Morphism even with signature Neq ==> (@eq bool) as even_wd.
+Proof.
+unfold even; intros.
+apply recursion_wd with (A := bool) (Aeq := (@eq bool)).
+now unfold eq_bool.
+unfold fun2_eq. intros _ _ _ b b' Ebb'. unfold eq_bool; destruct b; destruct b'; now simpl.
+assumption.
+Qed.
+
+Theorem even_0 : even 0 = true.
+Proof.
+unfold even.
+now rewrite recursion_0.
+Qed.
+
+Theorem even_succ : forall x : N, even (S x) = negb (even x).
+Proof.
+unfold even.
+intro x; rewrite (recursion_succ (@eq bool)); try reflexivity.
+unfold fun2_wd.
+intros _ _ _ b b' Ebb'. destruct b; destruct b'; now simpl.
+Qed.
+
+(*****************************************************)
+(** Division by 2 *)
+
+Definition half_aux (x : N) : N * N :=
+ recursion (0, 0) (fun _ p => let (x1, x2) := p in ((S x2, x1))) x.
+
+Definition half (x : N) := snd (half_aux x).
+
+Definition E2 := prod_rel Neq Neq.
+
+Add Relation (prod N N) E2
+reflexivity proved by (prod_rel_refl N N Neq Neq E_equiv E_equiv)
+symmetry proved by (prod_rel_symm N N Neq Neq E_equiv E_equiv)
+transitivity proved by (prod_rel_trans N N Neq Neq E_equiv E_equiv)
+as E2_rel.
+
+Lemma half_step_wd: fun2_wd Neq E2 E2 (fun _ p => let (x1, x2) := p in ((S x2, x1))).
+Proof.
+unfold fun2_wd, E2, prod_rel.
+intros _ _ _ p1 p2 [H1 H2].
+destruct p1; destruct p2; simpl in *.
+now split; [rewrite H2 |].
+Qed.
+
+Add Morphism half with signature Neq ==> Neq as half_wd.
+Proof.
+unfold half.
+assert (H: forall x y, x == y -> E2 (half_aux x) (half_aux y)).
+intros x y Exy; unfold half_aux; apply recursion_wd with (Aeq := E2); unfold E2.
+unfold E2.
+unfold prod_rel; simpl; now split.
+unfold fun2_eq, prod_rel; simpl.
+intros _ _ _ p1 p2; destruct p1; destruct p2; simpl.
+intros [H1 H2]; split; [rewrite H2 | assumption]. reflexivity. assumption.
+unfold E2, prod_rel in H. intros x y Exy; apply H in Exy.
+exact (proj2 Exy).
+Qed.
+
+(*****************************************************)
+(** Logarithm for the base 2 *)
+
+Definition log (x : N) : N :=
+strong_rec 0
+ (fun x g =>
+ if (e x 0) then 0
+ else if (e x 1) then 0
+ else S (g (half x)))
+ x.
+
+Add Morphism log with signature Neq ==> Neq as log_wd.
+Proof.
+intros x x' Exx'. unfold log.
+apply strong_rec_wd with (Aeq := Neq); try (reflexivity || assumption).
+unfold fun2_eq. intros y y' Eyy' g g' Egg'.
+assert (H : e y 0 = e y' 0); [now apply e_wd|].
+rewrite <- H; clear H.
+assert (H : e y 1 = e y' 1); [now apply e_wd|].
+rewrite <- H; clear H.
+assert (H : S (g (half y)) == S (g' (half y')));
+[apply succ_wd; apply Egg'; now apply half_wd|].
+now destruct (e y 0); destruct (e y 1).
+Qed.
+*)
+End NdefOpsPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NIso.v b/theories/Numbers/Natural/Abstract/NIso.v
new file mode 100644
index 00000000..f6ccf3db
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NIso.v
@@ -0,0 +1,122 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NIso.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+
+Require Import NBase.
+
+Module Homomorphism (NAxiomsMod1 NAxiomsMod2 : NAxiomsSig).
+
+Module NBasePropMod2 := NBasePropFunct NAxiomsMod2.
+
+Notation Local N1 := NAxiomsMod1.N.
+Notation Local N2 := NAxiomsMod2.N.
+Notation Local Eq1 := NAxiomsMod1.Neq.
+Notation Local Eq2 := NAxiomsMod2.Neq.
+Notation Local O1 := NAxiomsMod1.N0.
+Notation Local O2 := NAxiomsMod2.N0.
+Notation Local S1 := NAxiomsMod1.S.
+Notation Local S2 := NAxiomsMod2.S.
+Notation Local "n == m" := (Eq2 n m) (at level 70, no associativity).
+
+Definition homomorphism (f : N1 -> N2) : Prop :=
+ f O1 == O2 /\ forall n : N1, f (S1 n) == S2 (f n).
+
+Definition natural_isomorphism : N1 -> N2 :=
+ NAxiomsMod1.recursion O2 (fun (n : N1) (p : N2) => S2 p).
+
+Add Morphism natural_isomorphism with signature Eq1 ==> Eq2 as natural_isomorphism_wd.
+Proof.
+unfold natural_isomorphism.
+intros n m Eqxy.
+apply NAxiomsMod1.recursion_wd with (Aeq := Eq2).
+reflexivity.
+unfold fun2_eq. intros _ _ _ y' y'' H. now apply NBasePropMod2.succ_wd.
+assumption.
+Qed.
+
+Theorem natural_isomorphism_0 : natural_isomorphism O1 == O2.
+Proof.
+unfold natural_isomorphism; now rewrite NAxiomsMod1.recursion_0.
+Qed.
+
+Theorem natural_isomorphism_succ :
+ forall n : N1, natural_isomorphism (S1 n) == S2 (natural_isomorphism n).
+Proof.
+unfold natural_isomorphism.
+intro n. now rewrite (@NAxiomsMod1.recursion_succ N2 NAxiomsMod2.Neq) ;
+[ | | unfold fun2_wd; intros; apply NBasePropMod2.succ_wd].
+Qed.
+
+Theorem hom_nat_iso : homomorphism natural_isomorphism.
+Proof.
+unfold homomorphism, natural_isomorphism; split;
+[exact natural_isomorphism_0 | exact natural_isomorphism_succ].
+Qed.
+
+End Homomorphism.
+
+Module Inverse (NAxiomsMod1 NAxiomsMod2 : NAxiomsSig).
+
+Module Import NBasePropMod1 := NBasePropFunct NAxiomsMod1.
+(* This makes the tactic induct available. Since it is taken from
+(NBasePropFunct NAxiomsMod1), it refers to induction on N1. *)
+
+Module Hom12 := Homomorphism NAxiomsMod1 NAxiomsMod2.
+Module Hom21 := Homomorphism NAxiomsMod2 NAxiomsMod1.
+
+Notation Local N1 := NAxiomsMod1.N.
+Notation Local N2 := NAxiomsMod2.N.
+Notation Local h12 := Hom12.natural_isomorphism.
+Notation Local h21 := Hom21.natural_isomorphism.
+
+Notation Local "n == m" := (NAxiomsMod1.Neq n m) (at level 70, no associativity).
+
+Lemma inverse_nat_iso : forall n : N1, h21 (h12 n) == n.
+Proof.
+induct n.
+now rewrite Hom12.natural_isomorphism_0, Hom21.natural_isomorphism_0.
+intros n IH.
+now rewrite Hom12.natural_isomorphism_succ, Hom21.natural_isomorphism_succ, IH.
+Qed.
+
+End Inverse.
+
+Module Isomorphism (NAxiomsMod1 NAxiomsMod2 : NAxiomsSig).
+
+Module Hom12 := Homomorphism NAxiomsMod1 NAxiomsMod2.
+Module Hom21 := Homomorphism NAxiomsMod2 NAxiomsMod1.
+
+Module Inverse12 := Inverse NAxiomsMod1 NAxiomsMod2.
+Module Inverse21 := Inverse NAxiomsMod2 NAxiomsMod1.
+
+Notation Local N1 := NAxiomsMod1.N.
+Notation Local N2 := NAxiomsMod2.N.
+Notation Local Eq1 := NAxiomsMod1.Neq.
+Notation Local Eq2 := NAxiomsMod2.Neq.
+Notation Local h12 := Hom12.natural_isomorphism.
+Notation Local h21 := Hom21.natural_isomorphism.
+
+Definition isomorphism (f1 : N1 -> N2) (f2 : N2 -> N1) : Prop :=
+ Hom12.homomorphism f1 /\ Hom21.homomorphism f2 /\
+ forall n : N1, Eq1 (f2 (f1 n)) n /\
+ forall n : N2, Eq2 (f1 (f2 n)) n.
+
+Theorem iso_nat_iso : isomorphism h12 h21.
+Proof.
+unfold isomorphism.
+split. apply Hom12.hom_nat_iso.
+split. apply Hom21.hom_nat_iso.
+split. apply Inverse12.inverse_nat_iso.
+apply Inverse21.inverse_nat_iso.
+Qed.
+
+End Isomorphism.
+
diff --git a/theories/Numbers/Natural/Abstract/NMul.v b/theories/Numbers/Natural/Abstract/NMul.v
new file mode 100644
index 00000000..0b00f689
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NMul.v
@@ -0,0 +1,87 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NMul.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NAdd.
+
+Module NMulPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NAddPropMod := NAddPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+Theorem mul_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> n1 * m1 == n2 * m2.
+Proof NZmul_wd.
+
+Theorem mul_0_l : forall n : N, 0 * n == 0.
+Proof NZmul_0_l.
+
+Theorem mul_succ_l : forall n m : N, (S n) * m == n * m + m.
+Proof NZmul_succ_l.
+
+(** Theorems that are valid for both natural numbers and integers *)
+
+Theorem mul_0_r : forall n, n * 0 == 0.
+Proof NZmul_0_r.
+
+Theorem mul_succ_r : forall n m, n * (S m) == n * m + n.
+Proof NZmul_succ_r.
+
+Theorem mul_comm : forall n m : N, n * m == m * n.
+Proof NZmul_comm.
+
+Theorem mul_add_distr_r : forall n m p : N, (n + m) * p == n * p + m * p.
+Proof NZmul_add_distr_r.
+
+Theorem mul_add_distr_l : forall n m p : N, n * (m + p) == n * m + n * p.
+Proof NZmul_add_distr_l.
+
+Theorem mul_assoc : forall n m p : N, n * (m * p) == (n * m) * p.
+Proof NZmul_assoc.
+
+Theorem mul_1_l : forall n : N, 1 * n == n.
+Proof NZmul_1_l.
+
+Theorem mul_1_r : forall n : N, n * 1 == n.
+Proof NZmul_1_r.
+
+(* Theorems that cannot be proved in NZMul *)
+
+(* In proving the correctness of the definition of multiplication on
+integers constructed from pairs of natural numbers, we'll need the
+following fact about natural numbers:
+
+a * n + u == a * m + v -> n + m' == n' + m -> a * n' + u = a * m' + v
+
+Here n + m' == n' + m expresses equality of integers (n, m) and (n', m'),
+since a pair (a, b) of natural numbers represents the integer a - b. On
+integers, the formula above could be proved by moving a * m to the left,
+factoring out a and replacing n - m by n' - m'. However, the formula is
+required in the process of constructing integers, so it has to be proved
+for natural numbers, where terms cannot be moved from one side of an
+equation to the other. The proof uses the cancellation laws add_cancel_l
+and add_cancel_r. *)
+
+Theorem add_mul_repl_pair : forall a n m n' m' u v : N,
+ a * n + u == a * m + v -> n + m' == n' + m -> a * n' + u == a * m' + v.
+Proof.
+intros a n m n' m' u v H1 H2.
+apply (@NZmul_wd a a) in H2; [| reflexivity].
+do 2 rewrite mul_add_distr_l in H2. symmetry in H2.
+pose proof (NZadd_wd _ _ H1 _ _ H2) as H3.
+rewrite (add_shuffle1 (a * m)), (add_comm (a * m) (a * n)) in H3.
+do 2 rewrite <- add_assoc in H3. apply -> add_cancel_l in H3.
+rewrite (add_assoc u), (add_comm (a * m)) in H3.
+apply -> add_cancel_r in H3.
+now rewrite (add_comm (a * n') u), (add_comm (a * m') v).
+Qed.
+
+End NMulPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NMulOrder.v b/theories/Numbers/Natural/Abstract/NMulOrder.v
new file mode 100644
index 00000000..aa21fb50
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NMulOrder.v
@@ -0,0 +1,131 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NMulOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NAddOrder.
+
+Module NMulOrderPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NAddOrderPropMod := NAddOrderPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+Theorem mul_lt_pred :
+ forall p q n m : N, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
+Proof NZmul_lt_pred.
+
+Theorem mul_lt_mono_pos_l : forall p n m : N, 0 < p -> (n < m <-> p * n < p * m).
+Proof NZmul_lt_mono_pos_l.
+
+Theorem mul_lt_mono_pos_r : forall p n m : N, 0 < p -> (n < m <-> n * p < m * p).
+Proof NZmul_lt_mono_pos_r.
+
+Theorem mul_cancel_l : forall n m p : N, p ~= 0 -> (p * n == p * m <-> n == m).
+Proof NZmul_cancel_l.
+
+Theorem mul_cancel_r : forall n m p : N, p ~= 0 -> (n * p == m * p <-> n == m).
+Proof NZmul_cancel_r.
+
+Theorem mul_id_l : forall n m : N, m ~= 0 -> (n * m == m <-> n == 1).
+Proof NZmul_id_l.
+
+Theorem mul_id_r : forall n m : N, n ~= 0 -> (n * m == n <-> m == 1).
+Proof NZmul_id_r.
+
+Theorem mul_le_mono_pos_l : forall n m p : N, 0 < p -> (n <= m <-> p * n <= p * m).
+Proof NZmul_le_mono_pos_l.
+
+Theorem mul_le_mono_pos_r : forall n m p : N, 0 < p -> (n <= m <-> n * p <= m * p).
+Proof NZmul_le_mono_pos_r.
+
+Theorem mul_pos_pos : forall n m : N, 0 < n -> 0 < m -> 0 < n * m.
+Proof NZmul_pos_pos.
+
+Theorem lt_1_mul_pos : forall n m : N, 1 < n -> 0 < m -> 1 < n * m.
+Proof NZlt_1_mul_pos.
+
+Theorem eq_mul_0 : forall n m : N, n * m == 0 <-> n == 0 \/ m == 0.
+Proof NZeq_mul_0.
+
+Theorem neq_mul_0 : forall n m : N, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
+Proof NZneq_mul_0.
+
+Theorem eq_square_0 : forall n : N, n * n == 0 <-> n == 0.
+Proof NZeq_square_0.
+
+Theorem eq_mul_0_l : forall n m : N, n * m == 0 -> m ~= 0 -> n == 0.
+Proof NZeq_mul_0_l.
+
+Theorem eq_mul_0_r : forall n m : N, n * m == 0 -> n ~= 0 -> m == 0.
+Proof NZeq_mul_0_r.
+
+Theorem square_lt_mono : forall n m : N, n < m <-> n * n < m * m.
+Proof.
+intros n m; split; intro;
+[apply NZsquare_lt_mono_nonneg | apply NZsquare_lt_simpl_nonneg];
+try assumption; apply le_0_l.
+Qed.
+
+Theorem square_le_mono : forall n m : N, n <= m <-> n * n <= m * m.
+Proof.
+intros n m; split; intro;
+[apply NZsquare_le_mono_nonneg | apply NZsquare_le_simpl_nonneg];
+try assumption; apply le_0_l.
+Qed.
+
+Theorem mul_2_mono_l : forall n m : N, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
+Proof NZmul_2_mono_l.
+
+(* Theorems that are either not valid on Z or have different proofs on N and Z *)
+
+Theorem mul_le_mono_l : forall n m p : N, n <= m -> p * n <= p * m.
+Proof.
+intros; apply NZmul_le_mono_nonneg_l. apply le_0_l. assumption.
+Qed.
+
+Theorem mul_le_mono_r : forall n m p : N, n <= m -> n * p <= m * p.
+Proof.
+intros; apply NZmul_le_mono_nonneg_r. apply le_0_l. assumption.
+Qed.
+
+Theorem mul_lt_mono : forall n m p q : N, n < m -> p < q -> n * p < m * q.
+Proof.
+intros; apply NZmul_lt_mono_nonneg; try assumption; apply le_0_l.
+Qed.
+
+Theorem mul_le_mono : forall n m p q : N, n <= m -> p <= q -> n * p <= m * q.
+Proof.
+intros; apply NZmul_le_mono_nonneg; try assumption; apply le_0_l.
+Qed.
+
+Theorem lt_0_mul : forall n m : N, n * m > 0 <-> n > 0 /\ m > 0.
+Proof.
+intros n m; split; [intro H | intros [H1 H2]].
+apply -> NZlt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split. false_hyp H1 nlt_0_r.
+now apply NZmul_pos_pos.
+Qed.
+
+Notation mul_pos := lt_0_mul (only parsing).
+
+Theorem eq_mul_1 : forall n m : N, n * m == 1 <-> n == 1 /\ m == 1.
+Proof.
+intros n m.
+split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l].
+intro H; destruct (NZlt_trichotomy n 1) as [H1 | [H1 | H1]].
+apply -> lt_1_r in H1. rewrite H1, mul_0_l in H. false_hyp H neq_0_succ.
+rewrite H1, mul_1_l in H; now split.
+destruct (eq_0_gt_0_cases m) as [H2 | H2].
+rewrite H2, mul_0_r in H; false_hyp H neq_0_succ.
+apply -> (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1.
+assert (H3 : 1 < n * m) by now apply (lt_1_l 0 m).
+rewrite H in H3; false_hyp H3 lt_irrefl.
+Qed.
+
+End NMulOrderPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v
new file mode 100644
index 00000000..826ffa2c
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NOrder.v
@@ -0,0 +1,539 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NMul.
+
+Module NOrderPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NMulPropMod := NMulPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+(* The tactics le_less, le_equal and le_elim are inherited from NZOrder.v *)
+
+(* Axioms *)
+
+Theorem lt_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 < m1 <-> n2 < m2).
+Proof NZlt_wd.
+
+Theorem le_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 <= m1 <-> n2 <= m2).
+Proof NZle_wd.
+
+Theorem min_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> min n1 m1 == min n2 m2.
+Proof NZmin_wd.
+
+Theorem max_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> max n1 m1 == max n2 m2.
+Proof NZmax_wd.
+
+Theorem lt_eq_cases : forall n m : N, n <= m <-> n < m \/ n == m.
+Proof NZlt_eq_cases.
+
+Theorem lt_irrefl : forall n : N, ~ n < n.
+Proof NZlt_irrefl.
+
+Theorem lt_succ_r : forall n m : N, n < S m <-> n <= m.
+Proof NZlt_succ_r.
+
+Theorem min_l : forall n m : N, n <= m -> min n m == n.
+Proof NZmin_l.
+
+Theorem min_r : forall n m : N, m <= n -> min n m == m.
+Proof NZmin_r.
+
+Theorem max_l : forall n m : N, m <= n -> max n m == n.
+Proof NZmax_l.
+
+Theorem max_r : forall n m : N, n <= m -> max n m == m.
+Proof NZmax_r.
+
+(* Renaming theorems from NZOrder.v *)
+
+Theorem lt_le_incl : forall n m : N, n < m -> n <= m.
+Proof NZlt_le_incl.
+
+Theorem eq_le_incl : forall n m : N, n == m -> n <= m.
+Proof NZeq_le_incl.
+
+Theorem lt_neq : forall n m : N, n < m -> n ~= m.
+Proof NZlt_neq.
+
+Theorem le_neq : forall n m : N, n < m <-> n <= m /\ n ~= m.
+Proof NZle_neq.
+
+Theorem le_refl : forall n : N, n <= n.
+Proof NZle_refl.
+
+Theorem lt_succ_diag_r : forall n : N, n < S n.
+Proof NZlt_succ_diag_r.
+
+Theorem le_succ_diag_r : forall n : N, n <= S n.
+Proof NZle_succ_diag_r.
+
+Theorem lt_0_1 : 0 < 1.
+Proof NZlt_0_1.
+
+Theorem le_0_1 : 0 <= 1.
+Proof NZle_0_1.
+
+Theorem lt_lt_succ_r : forall n m : N, n < m -> n < S m.
+Proof NZlt_lt_succ_r.
+
+Theorem le_le_succ_r : forall n m : N, n <= m -> n <= S m.
+Proof NZle_le_succ_r.
+
+Theorem le_succ_r : forall n m : N, n <= S m <-> n <= m \/ n == S m.
+Proof NZle_succ_r.
+
+Theorem neq_succ_diag_l : forall n : N, S n ~= n.
+Proof NZneq_succ_diag_l.
+
+Theorem neq_succ_diag_r : forall n : N, n ~= S n.
+Proof NZneq_succ_diag_r.
+
+Theorem nlt_succ_diag_l : forall n : N, ~ S n < n.
+Proof NZnlt_succ_diag_l.
+
+Theorem nle_succ_diag_l : forall n : N, ~ S n <= n.
+Proof NZnle_succ_diag_l.
+
+Theorem le_succ_l : forall n m : N, S n <= m <-> n < m.
+Proof NZle_succ_l.
+
+Theorem lt_succ_l : forall n m : N, S n < m -> n < m.
+Proof NZlt_succ_l.
+
+Theorem succ_lt_mono : forall n m : N, n < m <-> S n < S m.
+Proof NZsucc_lt_mono.
+
+Theorem succ_le_mono : forall n m : N, n <= m <-> S n <= S m.
+Proof NZsucc_le_mono.
+
+Theorem lt_asymm : forall n m : N, n < m -> ~ m < n.
+Proof NZlt_asymm.
+
+Notation lt_ngt := lt_asymm (only parsing).
+
+Theorem lt_trans : forall n m p : N, n < m -> m < p -> n < p.
+Proof NZlt_trans.
+
+Theorem le_trans : forall n m p : N, n <= m -> m <= p -> n <= p.
+Proof NZle_trans.
+
+Theorem le_lt_trans : forall n m p : N, n <= m -> m < p -> n < p.
+Proof NZle_lt_trans.
+
+Theorem lt_le_trans : forall n m p : N, n < m -> m <= p -> n < p.
+Proof NZlt_le_trans.
+
+Theorem le_antisymm : forall n m : N, n <= m -> m <= n -> n == m.
+Proof NZle_antisymm.
+
+(** Trichotomy, decidability, and double negation elimination *)
+
+Theorem lt_trichotomy : forall n m : N, n < m \/ n == m \/ m < n.
+Proof NZlt_trichotomy.
+
+Notation lt_eq_gt_cases := lt_trichotomy (only parsing).
+
+Theorem lt_gt_cases : forall n m : N, n ~= m <-> n < m \/ n > m.
+Proof NZlt_gt_cases.
+
+Theorem le_gt_cases : forall n m : N, n <= m \/ n > m.
+Proof NZle_gt_cases.
+
+Theorem lt_ge_cases : forall n m : N, n < m \/ n >= m.
+Proof NZlt_ge_cases.
+
+Theorem le_ge_cases : forall n m : N, n <= m \/ n >= m.
+Proof NZle_ge_cases.
+
+Theorem le_ngt : forall n m : N, n <= m <-> ~ n > m.
+Proof NZle_ngt.
+
+Theorem nlt_ge : forall n m : N, ~ n < m <-> n >= m.
+Proof NZnlt_ge.
+
+Theorem lt_dec : forall n m : N, decidable (n < m).
+Proof NZlt_dec.
+
+Theorem lt_dne : forall n m : N, ~ ~ n < m <-> n < m.
+Proof NZlt_dne.
+
+Theorem nle_gt : forall n m : N, ~ n <= m <-> n > m.
+Proof NZnle_gt.
+
+Theorem lt_nge : forall n m : N, n < m <-> ~ n >= m.
+Proof NZlt_nge.
+
+Theorem le_dec : forall n m : N, decidable (n <= m).
+Proof NZle_dec.
+
+Theorem le_dne : forall n m : N, ~ ~ n <= m <-> n <= m.
+Proof NZle_dne.
+
+Theorem nlt_succ_r : forall n m : N, ~ m < S n <-> n < m.
+Proof NZnlt_succ_r.
+
+Theorem lt_exists_pred :
+ forall z n : N, z < n -> exists k : N, n == S k /\ z <= k.
+Proof NZlt_exists_pred.
+
+Theorem lt_succ_iter_r :
+ forall (n : nat) (m : N), m < NZsucc_iter (Datatypes.S n) m.
+Proof NZlt_succ_iter_r.
+
+Theorem neq_succ_iter_l :
+ forall (n : nat) (m : N), NZsucc_iter (Datatypes.S n) m ~= m.
+Proof NZneq_succ_iter_l.
+
+(** Stronger variant of induction with assumptions n >= 0 (n < 0)
+in the induction step *)
+
+Theorem right_induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N, A z ->
+ (forall n : N, z <= n -> A n -> A (S n)) ->
+ forall n : N, z <= n -> A n.
+Proof NZright_induction.
+
+Theorem left_induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N, A z ->
+ (forall n : N, n < z -> A (S n) -> A n) ->
+ forall n : N, n <= z -> A n.
+Proof NZleft_induction.
+
+Theorem right_induction' :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, n <= z -> A n) ->
+ (forall n : N, z <= n -> A n -> A (S n)) ->
+ forall n : N, A n.
+Proof NZright_induction'.
+
+Theorem left_induction' :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, z <= n -> A n) ->
+ (forall n : N, n < z -> A (S n) -> A n) ->
+ forall n : N, A n.
+Proof NZleft_induction'.
+
+Theorem strong_right_induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) ->
+ forall n : N, z <= n -> A n.
+Proof NZstrong_right_induction.
+
+Theorem strong_left_induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) ->
+ forall n : N, n <= z -> A n.
+Proof NZstrong_left_induction.
+
+Theorem strong_right_induction' :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, n <= z -> A n) ->
+ (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) ->
+ forall n : N, A n.
+Proof NZstrong_right_induction'.
+
+Theorem strong_left_induction' :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N,
+ (forall n : N, z <= n -> A n) ->
+ (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) ->
+ forall n : N, A n.
+Proof NZstrong_left_induction'.
+
+Theorem order_induction :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N, A z ->
+ (forall n : N, z <= n -> A n -> A (S n)) ->
+ (forall n : N, n < z -> A (S n) -> A n) ->
+ forall n : N, A n.
+Proof NZorder_induction.
+
+Theorem order_induction' :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall z : N, A z ->
+ (forall n : N, z <= n -> A n -> A (S n)) ->
+ (forall n : N, n <= z -> A n -> A (P n)) ->
+ forall n : N, A n.
+Proof NZorder_induction'.
+
+(* We don't need order_induction_0 and order_induction'_0 (see NZOrder and
+ZOrder) since they boil down to regular induction *)
+
+(** Elimintation principle for < *)
+
+Theorem lt_ind :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall n : N,
+ A (S n) ->
+ (forall m : N, n < m -> A m -> A (S m)) ->
+ forall m : N, n < m -> A m.
+Proof NZlt_ind.
+
+(** Elimintation principle for <= *)
+
+Theorem le_ind :
+ forall A : N -> Prop, predicate_wd Neq A ->
+ forall n : N,
+ A n ->
+ (forall m : N, n <= m -> A m -> A (S m)) ->
+ forall m : N, n <= m -> A m.
+Proof NZle_ind.
+
+(** Well-founded relations *)
+
+Theorem lt_wf : forall z : N, well_founded (fun n m : N => z <= n /\ n < m).
+Proof NZlt_wf.
+
+Theorem gt_wf : forall z : N, well_founded (fun n m : N => m < n /\ n <= z).
+Proof NZgt_wf.
+
+Theorem lt_wf_0 : well_founded lt.
+Proof.
+assert (H : relations_eq lt (fun n m : N => 0 <= n /\ n < m)).
+intros x y; split.
+intro H; split; [apply le_0_l | assumption]. now intros [_ H].
+rewrite H; apply lt_wf.
+(* does not work:
+setoid_replace lt with (fun n m : N => 0 <= n /\ n < m) using relation relations_eq.*)
+Qed.
+
+(* Theorems that are true for natural numbers but not for integers *)
+
+(* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *)
+
+Theorem nlt_0_r : forall n : N, ~ n < 0.
+Proof.
+intro n; apply -> le_ngt. apply le_0_l.
+Qed.
+
+Theorem nle_succ_0 : forall n : N, ~ (S n <= 0).
+Proof.
+intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r.
+Qed.
+
+Theorem le_0_r : forall n : N, n <= 0 <-> n == 0.
+Proof.
+intros n; split; intro H.
+le_elim H; [false_hyp H nlt_0_r | assumption].
+now apply eq_le_incl.
+Qed.
+
+Theorem lt_0_succ : forall n : N, 0 < S n.
+Proof.
+induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r].
+Qed.
+
+Theorem neq_0_lt_0 : forall n : N, n ~= 0 <-> 0 < n.
+Proof.
+cases n.
+split; intro H; [now elim H | intro; now apply lt_irrefl with 0].
+intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0].
+Qed.
+
+Theorem eq_0_gt_0_cases : forall n : N, n == 0 \/ 0 < n.
+Proof.
+cases n.
+now left.
+intro; right; apply lt_0_succ.
+Qed.
+
+Theorem zero_one : forall n : N, n == 0 \/ n == 1 \/ 1 < n.
+Proof.
+induct n. now left.
+cases n. intros; right; now left.
+intros n IH. destruct IH as [H | [H | H]].
+false_hyp H neq_succ_0.
+right; right. rewrite H. apply lt_succ_diag_r.
+right; right. now apply lt_lt_succ_r.
+Qed.
+
+Theorem lt_1_r : forall n : N, n < 1 <-> n == 0.
+Proof.
+cases n.
+split; intro; [reflexivity | apply lt_succ_diag_r].
+intros n. rewrite <- succ_lt_mono.
+split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0].
+Qed.
+
+Theorem le_1_r : forall n : N, n <= 1 <-> n == 0 \/ n == 1.
+Proof.
+cases n.
+split; intro; [now left | apply le_succ_diag_r].
+intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd.
+split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]].
+Qed.
+
+Theorem lt_lt_0 : forall n m : N, n < m -> 0 < m.
+Proof.
+intros n m; induct n.
+trivial.
+intros n IH H. apply IH; now apply lt_succ_l.
+Qed.
+
+Theorem lt_1_l : forall n m p : N, n < m -> m < p -> 1 < p.
+Proof.
+intros n m p H1 H2.
+apply le_lt_trans with m. apply <- le_succ_l. apply le_lt_trans with n.
+apply le_0_l. assumption. assumption.
+Qed.
+
+(** Elimination principlies for < and <= for relations *)
+
+Section RelElim.
+
+(* FIXME: Variable R : relation N. -- does not work *)
+
+Variable R : N -> N -> Prop.
+Hypothesis R_wd : relation_wd Neq Neq R.
+
+Add Morphism R with signature Neq ==> Neq ==> iff as R_morph2.
+Proof. apply R_wd. Qed.
+
+Theorem le_ind_rel :
+ (forall m : N, R 0 m) ->
+ (forall n m : N, n <= m -> R n m -> R (S n) (S m)) ->
+ forall n m : N, n <= m -> R n m.
+Proof.
+intros Base Step; induct n.
+intros; apply Base.
+intros n IH m H. elim H using le_ind.
+solve_predicate_wd.
+apply Step; [| apply IH]; now apply eq_le_incl.
+intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto.
+Qed.
+
+Theorem lt_ind_rel :
+ (forall m : N, R 0 (S m)) ->
+ (forall n m : N, n < m -> R n m -> R (S n) (S m)) ->
+ forall n m : N, n < m -> R n m.
+Proof.
+intros Base Step; induct n.
+intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]].
+rewrite H; apply Base.
+intros n IH m H. elim H using lt_ind.
+solve_predicate_wd.
+apply Step; [| apply IH]; now apply lt_succ_diag_r.
+intros k H1 H2. apply lt_succ_l in H1. auto.
+Qed.
+
+End RelElim.
+
+(** Predecessor and order *)
+
+Theorem succ_pred_pos : forall n : N, 0 < n -> S (P n) == n.
+Proof.
+intros n H; apply succ_pred; intro H1; rewrite H1 in H.
+false_hyp H lt_irrefl.
+Qed.
+
+Theorem le_pred_l : forall n : N, P n <= n.
+Proof.
+cases n.
+rewrite pred_0; now apply eq_le_incl.
+intros; rewrite pred_succ; apply le_succ_diag_r.
+Qed.
+
+Theorem lt_pred_l : forall n : N, n ~= 0 -> P n < n.
+Proof.
+cases n.
+intro H; elimtype False; now apply H.
+intros; rewrite pred_succ; apply lt_succ_diag_r.
+Qed.
+
+Theorem le_le_pred : forall n m : N, n <= m -> P n <= m.
+Proof.
+intros n m H; apply le_trans with n. apply le_pred_l. assumption.
+Qed.
+
+Theorem lt_lt_pred : forall n m : N, n < m -> P n < m.
+Proof.
+intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption.
+Qed.
+
+Theorem lt_le_pred : forall n m : N, n < m -> n <= P m. (* Converse is false for n == m == 0 *)
+Proof.
+intro n; cases m.
+intro H; false_hyp H nlt_0_r.
+intros m IH. rewrite pred_succ; now apply -> lt_succ_r.
+Qed.
+
+Theorem lt_pred_le : forall n m : N, P n < m -> n <= m. (* Converse is false for n == m == 0 *)
+Proof.
+intros n m; cases n.
+rewrite pred_0; intro H; now apply lt_le_incl.
+intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l.
+Qed.
+
+Theorem lt_pred_lt : forall n m : N, n < P m -> n < m.
+Proof.
+intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l].
+Qed.
+
+Theorem le_pred_le : forall n m : N, n <= P m -> n <= m.
+Proof.
+intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l].
+Qed.
+
+Theorem pred_le_mono : forall n m : N, n <= m -> P n <= P m. (* Converse is false for n == 1, m == 0 *)
+Proof.
+intros n m H; elim H using le_ind_rel.
+solve_relation_wd.
+intro; rewrite pred_0; apply le_0_l.
+intros p q H1 _; now do 2 rewrite pred_succ.
+Qed.
+
+Theorem pred_lt_mono : forall n m : N, n ~= 0 -> (n < m <-> P n < P m).
+Proof.
+intros n m H1; split; intro H2.
+assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n.
+now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ;
+[apply <- succ_lt_mono | | |].
+assert (m ~= 0). apply <- neq_0_lt_0. apply lt_lt_0 with (P n).
+apply lt_le_trans with (P m). assumption. apply le_pred_l.
+apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
+Qed.
+
+Theorem lt_succ_lt_pred : forall n m : N, S n < m <-> n < P m.
+Proof.
+intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ.
+Qed.
+
+Theorem le_succ_le_pred : forall n m : N, S n <= m -> n <= P m. (* Converse is false for n == m == 0 *)
+Proof.
+intros n m H. apply lt_le_pred. now apply -> le_succ_l.
+Qed.
+
+Theorem lt_pred_lt_succ : forall n m : N, P n < m -> n < S m. (* Converse is false for n == m == 0 *)
+Proof.
+intros n m H. apply <- lt_succ_r. now apply lt_pred_le.
+Qed.
+
+Theorem le_pred_le_succ : forall n m : N, P n <= m <-> n <= S m.
+Proof.
+intros n m; cases n.
+rewrite pred_0. split; intro H; apply le_0_l.
+intro n. rewrite pred_succ. apply succ_le_mono.
+Qed.
+
+End NOrderPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NStrongRec.v b/theories/Numbers/Natural/Abstract/NStrongRec.v
new file mode 100644
index 00000000..031dbdea
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NStrongRec.v
@@ -0,0 +1,133 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NStrongRec.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+(** This file defined the strong (course-of-value, well-founded) recursion
+and proves its properties *)
+
+Require Export NSub.
+
+Module NStrongRecPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NSubPropMod := NSubPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+Section StrongRecursion.
+
+Variable A : Set.
+Variable Aeq : relation A.
+
+Notation Local "x ==A y" := (Aeq x y) (at level 70, no associativity).
+
+Hypothesis Aeq_equiv : equiv A Aeq.
+
+Add Relation A Aeq
+ reflexivity proved by (proj1 Aeq_equiv)
+ symmetry proved by (proj2 (proj2 Aeq_equiv))
+ transitivity proved by (proj1 (proj2 Aeq_equiv))
+as Aeq_rel.
+
+Definition strong_rec (a : A) (f : N -> (N -> A) -> A) (n : N) : A :=
+recursion
+ (fun _ : N => a)
+ (fun (m : N) (p : N -> A) (k : N) => f k p)
+ (S n)
+ n.
+
+Theorem strong_rec_wd :
+forall a a' : A, a ==A a' ->
+ forall f f', fun2_eq Neq (fun_eq Neq Aeq) Aeq f f' ->
+ forall n n', n == n' ->
+ strong_rec a f n ==A strong_rec a' f' n'.
+Proof.
+intros a a' Eaa' f f' Eff' n n' Enn'.
+(* First we prove that recursion (which is on type N -> A) returns
+extensionally equal functions, and then we use the fact that n == n' *)
+assert (H : fun_eq Neq Aeq
+ (recursion
+ (fun _ : N => a)
+ (fun (m : N) (p : N -> A) (k : N) => f k p)
+ (S n))
+ (recursion
+ (fun _ : N => a')
+ (fun (m : N) (p : N -> A) (k : N) => f' k p)
+ (S n'))).
+apply recursion_wd with (Aeq := fun_eq Neq Aeq).
+unfold fun_eq; now intros.
+unfold fun2_eq. intros y y' Eyy' p p' Epp'. unfold fun_eq. auto.
+now rewrite Enn'.
+unfold strong_rec.
+now apply H.
+Qed.
+
+(*Section FixPoint.
+
+Variable a : A.
+Variable f : N -> (N -> A) -> A.
+
+Hypothesis f_wd : fun2_wd Neq (fun_eq Neq Aeq) Aeq f.
+
+Let g (n : N) : A := strong_rec a f n.
+
+Add Morphism g with signature Neq ==> Aeq as g_wd.
+Proof.
+intros n1 n2 H. unfold g. now apply strong_rec_wd.
+Qed.
+
+Theorem NtoA_eq_symm : symmetric (N -> A) (fun_eq Neq Aeq).
+Proof.
+apply fun_eq_symm.
+exact (proj2 (proj2 NZeq_equiv)).
+exact (proj2 (proj2 Aeq_equiv)).
+Qed.
+
+Theorem NtoA_eq_trans : transitive (N -> A) (fun_eq Neq Aeq).
+Proof.
+apply fun_eq_trans.
+exact (proj1 NZeq_equiv).
+exact (proj1 (proj2 NZeq_equiv)).
+exact (proj1 (proj2 Aeq_equiv)).
+Qed.
+
+Add Relation (N -> A) (fun_eq Neq Aeq)
+ symmetry proved by NtoA_eq_symm
+ transitivity proved by NtoA_eq_trans
+as NtoA_eq_rel.
+
+Add Morphism f with signature Neq ==> (fun_eq Neq Aeq) ==> Aeq as f_morph.
+Proof.
+apply f_wd.
+Qed.
+
+(* We need an assumption saying that for every n, the step function (f n h)
+calls h only on the segment [0 ... n - 1]. This means that if h1 and h2
+coincide on values < n, then (f n h1) coincides with (f n h2) *)
+
+Hypothesis step_good :
+ forall (n : N) (h1 h2 : N -> A),
+ (forall m : N, m < n -> Aeq (h1 m) (h2 m)) -> Aeq (f n h1) (f n h2).
+
+(* Todo:
+Theorem strong_rec_fixpoint : forall n : N, Aeq (g n) (f n g).
+Proof.
+apply induction.
+unfold predicate_wd, fun_wd.
+intros x y H. rewrite H. unfold fun_eq; apply g_wd.
+reflexivity.
+unfold g, strong_rec.
+*)
+
+End FixPoint.*)
+End StrongRecursion.
+
+Implicit Arguments strong_rec [A].
+
+End NStrongRecPropFunct.
+
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v
new file mode 100644
index 00000000..f67689dd
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NSub.v
@@ -0,0 +1,180 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NSub.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Export NMulOrder.
+
+Module NSubPropFunct (Import NAxiomsMod : NAxiomsSig).
+Module Export NMulOrderPropMod := NMulOrderPropFunct NAxiomsMod.
+Open Local Scope NatScope.
+
+Theorem sub_wd :
+ forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> n1 - m1 == n2 - m2.
+Proof NZsub_wd.
+
+Theorem sub_0_r : forall n : N, n - 0 == n.
+Proof NZsub_0_r.
+
+Theorem sub_succ_r : forall n m : N, n - (S m) == P (n - m).
+Proof NZsub_succ_r.
+
+Theorem sub_1_r : forall n : N, n - 1 == P n.
+Proof.
+intro n; rewrite sub_succ_r; now rewrite sub_0_r.
+Qed.
+
+Theorem sub_0_l : forall n : N, 0 - n == 0.
+Proof.
+induct n.
+apply sub_0_r.
+intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0.
+Qed.
+
+Theorem sub_succ : forall n m : N, S n - S m == n - m.
+Proof.
+intro n; induct m.
+rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ.
+intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r.
+Qed.
+
+Theorem sub_diag : forall n : N, n - n == 0.
+Proof.
+induct n. apply sub_0_r. intros n IH; rewrite sub_succ; now rewrite IH.
+Qed.
+
+Theorem sub_gt : forall n m : N, n > m -> n - m ~= 0.
+Proof.
+intros n m H; elim H using lt_ind_rel; clear n m H.
+solve_relation_wd.
+intro; rewrite sub_0_r; apply neq_succ_0.
+intros; now rewrite sub_succ.
+Qed.
+
+Theorem add_sub_assoc : forall n m p : N, p <= m -> n + (m - p) == (n + m) - p.
+Proof.
+intros n m p; induct p.
+intro; now do 2 rewrite sub_0_r.
+intros p IH H. do 2 rewrite sub_succ_r.
+rewrite <- IH by (apply lt_le_incl; now apply -> le_succ_l).
+rewrite add_pred_r by (apply sub_gt; now apply -> le_succ_l).
+reflexivity.
+Qed.
+
+Theorem sub_succ_l : forall n m : N, n <= m -> S m - n == S (m - n).
+Proof.
+intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)).
+symmetry; now apply add_sub_assoc.
+Qed.
+
+Theorem add_sub : forall n m : N, (n + m) - m == n.
+Proof.
+intros n m. rewrite <- add_sub_assoc by (apply le_refl).
+rewrite sub_diag; now rewrite add_0_r.
+Qed.
+
+Theorem sub_add : forall n m : N, n <= m -> (m - n) + n == m.
+Proof.
+intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption.
+rewrite add_comm. apply add_sub.
+Qed.
+
+Theorem add_sub_eq_l : forall n m p : N, m + p == n -> n - m == p.
+Proof.
+intros n m p H. symmetry.
+assert (H1 : m + p - m == n - m) by now rewrite H.
+rewrite add_comm in H1. now rewrite add_sub in H1.
+Qed.
+
+Theorem add_sub_eq_r : forall n m p : N, m + p == n -> n - p == m.
+Proof.
+intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l.
+Qed.
+
+(* This could be proved by adding m to both sides. Then the proof would
+use add_sub_assoc and sub_0_le, which is proven below. *)
+
+Theorem add_sub_eq_nz : forall n m p : N, p ~= 0 -> n - m == p -> m + p == n.
+Proof.
+intros n m p H; double_induct n m.
+intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H.
+intro n; rewrite sub_0_r; now rewrite add_0_l.
+intros n m IH H1. rewrite sub_succ in H1. apply IH in H1.
+rewrite add_succ_l; now rewrite H1.
+Qed.
+
+Theorem sub_add_distr : forall n m p : N, n - (m + p) == (n - m) - p.
+Proof.
+intros n m; induct p.
+rewrite add_0_r; now rewrite sub_0_r.
+intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH.
+Qed.
+
+Theorem add_sub_swap : forall n m p : N, p <= n -> n + m - p == n - p + m.
+Proof.
+intros n m p H.
+rewrite (add_comm n m).
+rewrite <- add_sub_assoc by assumption.
+now rewrite (add_comm m (n - p)).
+Qed.
+
+(** Sub and order *)
+
+Theorem le_sub_l : forall n m : N, n - m <= n.
+Proof.
+intro n; induct m.
+rewrite sub_0_r; now apply eq_le_incl.
+intros m IH. rewrite sub_succ_r.
+apply le_trans with (n - m); [apply le_pred_l | assumption].
+Qed.
+
+Theorem sub_0_le : forall n m : N, n - m == 0 <-> n <= m.
+Proof.
+double_induct n m.
+intro m; split; intro; [apply le_0_l | apply sub_0_l].
+intro m; rewrite sub_0_r; split; intro H;
+[false_hyp H neq_succ_0 | false_hyp H nle_succ_0].
+intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ.
+Qed.
+
+(** Sub and mul *)
+
+Theorem mul_pred_r : forall n m : N, n * (P m) == n * m - n.
+Proof.
+intros n m; cases m.
+now rewrite pred_0, mul_0_r, sub_0_l.
+intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc.
+now rewrite sub_diag, add_0_r.
+now apply eq_le_incl.
+Qed.
+
+Theorem mul_sub_distr_r : forall n m p : N, (n - m) * p == n * p - m * p.
+Proof.
+intros n m p; induct n.
+now rewrite sub_0_l, mul_0_l, sub_0_l.
+intros n IH. destruct (le_gt_cases m n) as [H | H].
+rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l.
+rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p).
+rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r.
+now apply <- add_cancel_l.
+assert (H1 : S n <= m); [now apply <- le_succ_l |].
+setoid_replace (S n - m) with 0 by now apply <- sub_0_le.
+setoid_replace ((S n * p) - m * p) with 0 by (apply <- sub_0_le; now apply mul_le_mono_r).
+apply mul_0_l.
+Qed.
+
+Theorem mul_sub_distr_l : forall n m p : N, p * (n - m) == p * n - p * m.
+Proof.
+intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m).
+apply mul_sub_distr_r.
+Qed.
+
+End NSubPropFunct.
+
diff --git a/theories/Numbers/Natural/BigN/BigN.v b/theories/Numbers/Natural/BigN/BigN.v
new file mode 100644
index 00000000..0574c09f
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/BigN.v
@@ -0,0 +1,83 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: BigN.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+(** * Natural numbers in base 2^31 *)
+
+(**
+Author: Arnaud Spiwack
+*)
+
+Require Export Int31.
+Require Import CyclicAxioms.
+Require Import Cyclic31.
+Require Import NSig.
+Require Import NSigNAxioms.
+Require Import NMake.
+Require Import NSub.
+
+Module BigN <: NType := NMake.Make Int31Cyclic.
+
+(** Module [BigN] implements [NAxiomsSig] *)
+
+Module Export BigNAxiomsMod := NSig_NAxioms BigN.
+Module Export BigNSubPropMod := NSubPropFunct BigNAxiomsMod.
+
+(** Notations about [BigN] *)
+
+Notation bigN := BigN.t.
+
+Delimit Scope bigN_scope with bigN.
+Bind Scope bigN_scope with bigN.
+Bind Scope bigN_scope with BigN.t.
+Bind Scope bigN_scope with BigN.t_.
+
+Notation Local "0" := BigN.zero : bigN_scope. (* temporary notation *)
+Infix "+" := BigN.add : bigN_scope.
+Infix "-" := BigN.sub : bigN_scope.
+Infix "*" := BigN.mul : bigN_scope.
+Infix "/" := BigN.div : bigN_scope.
+Infix "?=" := BigN.compare : bigN_scope.
+Infix "==" := BigN.eq (at level 70, no associativity) : bigN_scope.
+Infix "<" := BigN.lt : bigN_scope.
+Infix "<=" := BigN.le : bigN_scope.
+Notation "[ i ]" := (BigN.to_Z i) : bigN_scope.
+
+Open Scope bigN_scope.
+
+(** Example of reasoning about [BigN] *)
+
+Theorem succ_pred: forall q:bigN,
+ 0 < q -> BigN.succ (BigN.pred q) == q.
+Proof.
+intros; apply succ_pred.
+intro H'; rewrite H' in H; discriminate.
+Qed.
+
+(** [BigN] is a semi-ring *)
+
+Lemma BigNring :
+ semi_ring_theory BigN.zero BigN.one BigN.add BigN.mul BigN.eq.
+Proof.
+constructor.
+exact add_0_l.
+exact add_comm.
+exact add_assoc.
+exact mul_1_l.
+exact mul_0_l.
+exact mul_comm.
+exact mul_assoc.
+exact mul_add_distr_r.
+Qed.
+
+Add Ring BigNr : BigNring.
+
+(** Todo: tactic translating from [BigN] to [Z] + omega *)
+
+(** Todo: micromega *)
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
new file mode 100644
index 00000000..bd0fb5b1
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -0,0 +1,3166 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NMake_gen.ml 11136 2008-06-18 10:41:34Z herbelin $ i*)
+
+(*S NMake_gen.ml : this file generates NMake.v *)
+
+
+(*s The two parameters that control the generation: *)
+
+let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ
+ process before relying on a generic construct *)
+let gen_proof = true (* should we generate proofs ? *)
+
+
+(*s Some utilities *)
+
+let t = "t"
+let c = "N"
+let pz n = if n == 0 then "w_0" else "W0"
+let rec gen2 n = if n == 0 then "1" else if n == 1 then "2"
+ else "2 * " ^ (gen2 (n - 1))
+let rec genxO n s =
+ if n == 0 then s else " (xO" ^ (genxO (n - 1) s) ^ ")"
+
+(* NB: in ocaml >= 3.10, we could use Printf.ifprintf for printing to
+ /dev/null, but for being compatible with earlier ocaml and not
+ relying on system-dependent stuff like open_out "/dev/null",
+ let's use instead a magical hack *)
+
+(* Standard printer, with a final newline *)
+let pr s = Printf.printf (s^^"\n")
+(* Printing to /dev/null *)
+let pn = (fun s -> Obj.magic (fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ -> ())
+ : ('a, out_channel, unit) format -> 'a)
+(* Proof printer : prints iff gen_proof is true *)
+let pp = if gen_proof then pr else pn
+(* Printer for admitted parts : prints iff gen_proof is false *)
+let pa = if not gen_proof then pr else pn
+(* Same as before, but without the final newline *)
+let pr0 = Printf.printf
+let pp0 = if gen_proof then pr0 else pn
+
+
+(*s The actual printing *)
+
+let _ =
+
+ pr "(************************************************************************)";
+ pr "(* v * The Coq Proof Assistant / The Coq Development Team *)";
+ pr "(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)";
+ pr "(* \\VV/ **************************************************************)";
+ pr "(* // * This file is distributed under the terms of the *)";
+ pr "(* * GNU Lesser General Public License Version 2.1 *)";
+ pr "(************************************************************************)";
+ pr "(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)";
+ pr "(************************************************************************)";
+ pr "";
+ pr "(** * NMake *)";
+ pr "";
+ pr "(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)";
+ pr "";
+ pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)";
+ pr "";
+ pr "Require Import BigNumPrelude.";
+ pr "Require Import ZArith.";
+ pr "Require Import CyclicAxioms.";
+ pr "Require Import DoubleType.";
+ pr "Require Import DoubleMul.";
+ pr "Require Import DoubleDivn1.";
+ pr "Require Import DoubleCyclic.";
+ pr "Require Import Nbasic.";
+ pr "Require Import Wf_nat.";
+ pr "Require Import StreamMemo.";
+ pr "Require Import NSig.";
+ pr "";
+ pr "Module Make (Import W0:CyclicType) <: NType.";
+ pr "";
+
+ pr " Definition w0 := W0.w.";
+ for i = 1 to size do
+ pr " Definition w%i := zn2z w%i." i (i-1)
+ done;
+ pr "";
+
+ pr " Definition w0_op := W0.w_op.";
+ for i = 1 to 3 do
+ pr " Definition w%i_op := mk_zn2z_op w%i_op." i (i-1)
+ done;
+ for i = 4 to size + 3 do
+ pr " Definition w%i_op := mk_zn2z_op_karatsuba w%i_op." i (i-1)
+ done;
+ pr "";
+
+ pr " Section Make_op.";
+ pr " Variable mk : forall w', znz_op w' -> znz_op (zn2z w').";
+ pr "";
+ pr " Fixpoint make_op_aux (n:nat) : znz_op (word w%i (S n)):=" size;
+ pr " match n return znz_op (word w%i (S n)) with" size;
+ pr " | O => w%i_op" (size+1);
+ pr " | S n1 =>";
+ pr " match n1 return znz_op (word w%i (S (S n1))) with" size;
+ pr " | O => w%i_op" (size+2);
+ pr " | S n2 =>";
+ pr " match n2 return znz_op (word w%i (S (S (S n2)))) with" size;
+ pr " | O => w%i_op" (size+3);
+ pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
+ pr " end";
+ pr " end";
+ pr " end.";
+ pr "";
+ pr " End Make_op.";
+ pr "";
+ pr " Definition omake_op := make_op_aux mk_zn2z_op_karatsuba.";
+ pr "";
+ pr "";
+ pr " Definition make_op_list := dmemo_list _ omake_op.";
+ pr "";
+ pr " Definition make_op n := dmemo_get _ omake_op n make_op_list.";
+ pr "";
+ pr " Lemma make_op_omake: forall n, make_op n = omake_op n.";
+ pr " intros n; unfold make_op, make_op_list.";
+ pr " refine (dmemo_get_correct _ _ _).";
+ pr " Qed.";
+ pr "";
+
+ pr " Inductive %s_ :=" t;
+ for i = 0 to size do
+ pr " | %s%i : w%i -> %s_" c i i t
+ done;
+ pr " | %sn : forall n, word w%i (S n) -> %s_." c size t;
+ pr "";
+ pr " Definition %s := %s_." t t;
+ pr "";
+
+ pr " Definition w_0 := w0_op.(znz_0).";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition one%i := w%i_op.(znz_1)." i i
+ done;
+ pr "";
+
+
+ pr " Definition zero := %s0 w_0." c;
+ pr " Definition one := %s0 one0." c;
+ pr "";
+
+ pr " Definition to_Z x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => w%i_op.(znz_to_Z) wx" c i i
+ done;
+ pr " | %sn n wx => (make_op n).(znz_to_Z) wx" c;
+ pr " end.";
+ pr "";
+
+ pr " Open Scope Z_scope.";
+ pr " Notation \"[ x ]\" := (to_Z x).";
+ pr "";
+
+ pr " Definition to_N x := Zabs_N (to_Z x).";
+ pr "";
+
+ pr " Definition eq x y := (to_Z x = to_Z y).";
+ pr "";
+
+ pp " (* Regular make op (no karatsuba) *)";
+ pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) : ";
+ pp " znz_op (word ww n) :=";
+ pp " match n return znz_op (word ww n) with ";
+ pp " O => ww_op";
+ pp " | S n1 => mk_zn2z_op (nmake_op ww ww_op n1) ";
+ pp " end.";
+ pp "";
+ pp " (* Simplification by rewriting for nmake_op *)";
+ pp " Theorem nmake_op_S: forall ww (w_op: znz_op ww) x, ";
+ pp " nmake_op _ w_op (S x) = mk_zn2z_op (nmake_op _ w_op x).";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " (* Eval and extend functions for each level *)";
+ for i = 0 to size do
+ pp " Let nmake_op%i := nmake_op _ w%i_op." i i;
+ pp " Let eval%in n := znz_to_Z (nmake_op%i n)." i i;
+ if i == 0 then
+ pr " Let extend%i := DoubleBase.extend (WW w_0)." i
+ else
+ pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
+ done;
+ pr "";
+
+
+ pp " Theorem digits_doubled:forall n ww (w_op: znz_op ww), ";
+ pp " znz_digits (nmake_op _ w_op n) = ";
+ pp " DoubleBase.double_digits (znz_digits w_op) n.";
+ pp " Proof.";
+ pp " intros n; elim n; auto; clear n.";
+ pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits.";
+ pp " rewrite <- Hrec; auto.";
+ pp " Qed.";
+ pp "";
+ pp " Theorem nmake_double: forall n ww (w_op: znz_op ww), ";
+ pp " znz_to_Z (nmake_op _ w_op n) =";
+ pp " @DoubleBase.double_to_Z _ (znz_digits w_op) (znz_to_Z w_op) n.";
+ pp " Proof.";
+ pp " intros n; elim n; auto; clear n.";
+ pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.";
+ pp " rewrite <- Hrec; auto.";
+ pp " unfold DoubleBase.double_wB; rewrite <- digits_doubled; auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pp " Theorem digits_nmake:forall n ww (w_op: znz_op ww), ";
+ pp " znz_digits (nmake_op _ w_op (S n)) = ";
+ pp " xO (znz_digits (nmake_op _ w_op n)).";
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,";
+ pp " znz_to_Z (nmake_op ww ww_op (S n)) (WW xh xl) =";
+ pp " znz_to_Z (nmake_op ww ww_op n) xh *";
+ pp " base (znz_digits (nmake_op ww ww_op n)) +";
+ pp " znz_to_Z (nmake_op ww ww_op n) xl.";
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Theorem make_op_S: forall n,";
+ pp " make_op (S n) = mk_zn2z_op_karatsuba (make_op n).";
+ pp " intro n.";
+ pp " do 2 rewrite make_op_omake.";
+ pp " pattern n; apply lt_wf_ind; clear n.";
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 2);
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 3);
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2);
+ pp " intros n Hrec.";
+ pp " change (omake_op (S (S (S (S n))))) with";
+ pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op (S n))))).";
+ pp " change (omake_op (S (S (S n)))) with";
+ pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op n)))).";
+ pp " rewrite Hrec; auto with arith.";
+ pp " Qed.";
+ pp " ";
+
+
+ for i = 1 to size + 2 do
+ pp " Let znz_to_Z_%i: forall x y," i;
+ pp " znz_to_Z w%i_op (WW x y) = " i;
+ pp " znz_to_Z w%i_op x * base (znz_digits w%i_op) + znz_to_Z w%i_op y." (i-1) (i-1) (i-1);
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed. ";
+ pp "";
+ done;
+
+ pp " Let znz_to_Z_n: forall n x y,";
+ pp " znz_to_Z (make_op (S n)) (WW x y) = ";
+ pp " znz_to_Z (make_op n) x * base (znz_digits (make_op n)) + znz_to_Z (make_op n) y.";
+ pp " Proof.";
+ pp " intros n x y; rewrite make_op_S; auto.";
+ pp " Qed. ";
+ pp "";
+
+ pp " Let w0_spec: znz_spec w0_op := W0.w_spec.";
+ for i = 1 to 3 do
+ pp " Let w%i_spec: znz_spec w%i_op := mk_znz2_spec w%i_spec." i i (i-1)
+ done;
+ for i = 4 to size + 3 do
+ pp " Let w%i_spec : znz_spec w%i_op := mk_znz2_karatsuba_spec w%i_spec." i i (i-1)
+ done;
+ pp "";
+
+ pp " Let wn_spec: forall n, znz_spec (make_op n).";
+ pp " intros n; elim n; clear n.";
+ pp " exact w%i_spec." (size + 1);
+ pp " intros n Hrec; rewrite make_op_S.";
+ pp " exact (mk_znz2_karatsuba_spec Hrec).";
+ pp " Qed.";
+ pp "";
+
+ for i = 0 to size do
+ pr " Definition w%i_eq0 := w%i_op.(znz_eq0)." i i;
+ pr " Let spec_w%i_eq0: forall x, if w%i_eq0 x then [%s%i x] = 0 else True." i i c i;
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; unfold w%i_eq0, to_Z; generalize (spec_eq0 w%i_spec x);" i i;
+ pp " case znz_eq0; auto.";
+ pp " Qed.";
+ pr "";
+ done;
+ pr "";
+
+
+ for i = 0 to size do
+ pp " Theorem digits_w%i: znz_digits w%i_op = znz_digits (nmake_op _ w0_op %i)." i i i;
+ if i == 0 then
+ pp " auto."
+ else
+ pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1);
+ pp " Qed.";
+ pp "";
+ pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (znz_digits w%i_op) (znz_to_Z w%i_op) n." i i i i;
+ pp " Proof.";
+ pp " intros n; exact (nmake_double n w%i w%i_op)." i i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ for i = 0 to size do
+ for j = 0 to (size - i) do
+ pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
+ pp " Proof.";
+ if j == 0 then
+ if i == 0 then
+ pp " auto."
+ else
+ begin
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " auto.";
+ pp " unfold nmake_op; auto.";
+ end
+ else
+ begin
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " auto.";
+ pp " rewrite digits_nmake.";
+ pp " rewrite digits_w%in%i." i (j - 1);
+ pp " auto.";
+ end;
+ pp " Qed.";
+ pp "";
+ pp " Let spec_eval%in%i: forall x, [%s%i x] = eval%in %i x." i j c (i + j) i j;
+ pp " Proof.";
+ if j == 0 then
+ pp " intros x; rewrite spec_double_eval%in; unfold DoubleBase.double_to_Z, to_Z; auto." i
+ else
+ begin
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (i + j);
+ pp " rewrite digits_w%in%i." i (j - 1);
+ pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (j - 1);
+ end;
+ pp " Qed.";
+ if i + j <> size then
+ begin
+ pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j;
+ if j == 0 then
+ begin
+ pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." i (i + j);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
+ pp " rewrite (spec_0 w%i_spec); auto." (i + j);
+ end
+ else
+ begin
+ pp " intros x; change (extend%i %i x) with (WW (znz_0 w%i_op) (extend%i %i x))." i j (i + j) i (j - 1);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
+ pp " rewrite (spec_0 w%i_spec)." (i + j);
+ pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j);
+ pp " intros HH; rewrite <- HH; auto.";
+ end;
+ pp " Qed.";
+ pp "";
+ end;
+ done;
+
+ pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
+ pp " Proof.";
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." size;
+ pp " auto.";
+ pp " rewrite digits_nmake.";
+ pp " rewrite digits_w%in%i." i (size - i);
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in%i: forall x, [%sn 0 x] = eval%in %i x." i (size - i + 1) c i (size - i + 1);
+ pp " Proof.";
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 1);
+ pp " rewrite digits_w%in%i." i (size - i);
+ pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size - i);
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in%i: forall x, [%sn 1 x] = eval%in %i x." i (size - i + 2) c i (size - i + 2);
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 2);
+ pp " rewrite digits_w%in%i." i (size + 1 - i);
+ pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size + 1 - i);
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let digits_w%in: forall n," size;
+ pp " znz_digits (make_op n) = znz_digits (nmake_op _ w%i_op (S n))." size;
+ pp " intros n; elim n; clear n.";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite nmake_op_S; apply sym_equal; auto.";
+ pp " intros n Hrec.";
+ pp " replace (znz_digits (make_op (S n))) with (xO (znz_digits (make_op n))).";
+ pp " rewrite Hrec.";
+ pp " rewrite nmake_op_S; apply sym_equal; auto.";
+ pp " rewrite make_op_S; apply sym_equal; auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in: forall n x, [%sn n x] = eval%in (S n) x." size c size;
+ pp " intros n; elim n; clear n.";
+ pp " exact spec_eval%in1." size;
+ pp " intros n Hrec x; case x; clear x.";
+ pp " unfold to_Z, eval%in, nmake_op%i." size size;
+ pp " rewrite make_op_S; rewrite nmake_op_S; auto.";
+ pp " intros xh xl.";
+ pp " unfold to_Z in Hrec |- *.";
+ pp " rewrite znz_to_Z_n.";
+ pp " rewrite digits_w%in." size;
+ pp " repeat rewrite Hrec.";
+ pp " unfold eval%in, nmake_op%i." size size;
+ pp " apply sym_equal; rewrite nmake_op_S; auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ;
+ pp " intros n; elim n; clear n.";
+ pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." size size;
+ pp " unfold to_Z.";
+ pp " change (make_op 0) with w%i_op." (size + 1);
+ pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto." (size + 1) size;
+ pp " intros n Hrec x.";
+ pp " change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size;
+ pp " unfold to_Z in Hrec |- *; rewrite znz_to_Z_n; auto.";
+ pp " rewrite <- Hrec.";
+ pp " replace (znz_to_Z (make_op n) W0) with 0; auto.";
+ pp " case n; auto; intros; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp "";
+
+ pr " Theorem spec_pos: forall x, 0 <= [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; case (spec_to_Z w%i_spec x); auto." i;
+ done;
+ pp " intros n x; case (spec_to_Z (wn_spec n) x); auto.";
+ pp " Qed.";
+ pr "";
+
+ pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c;
+ pp " intros n; elim n; auto.";
+ pp " intros n1 Hrec wx; simpl extend; rewrite <- Hrec; auto.";
+ pp " unfold to_Z.";
+ pp " case n1; auto; intros n2; repeat rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extendn_0: extr.";
+ pp "";
+ pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c;
+ pp " Proof.";
+ pp " intros n x; unfold to_Z.";
+ pp " rewrite znz_to_Z_n.";
+ pp " rewrite <- (Zplus_0_l (znz_to_Z (make_op n) x)).";
+ pp " apply (f_equal2 Zplus); auto.";
+ pp " case n; auto.";
+ pp " intros n1; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extendn_0: extr.";
+ pp "";
+ pp " Let spec_extend_tr: forall m n (w: word _ (S n)),";
+ pp " [%sn (m + n) (extend_tr w m)] = [%sn n w]." c c;
+ pp " Proof.";
+ pp " induction m; auto.";
+ pp " intros n x; simpl extend_tr.";
+ pp " simpl plus; rewrite spec_extendn0_0; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extend_tr: extr.";
+ pp "";
+ pp " Let spec_cast_l: forall n m x1,";
+ pp " [%sn (Max.max n m)" c;
+ pp " (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))] =";
+ pp " [%sn n x1]." c;
+ pp " Proof.";
+ pp " intros n m x1; case (diff_r n m); simpl castm.";
+ pp " rewrite spec_extend_tr; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_cast_l: extr.";
+ pp "";
+ pp " Let spec_cast_r: forall n m x1,";
+ pp " [%sn (Max.max n m)" c;
+ pp " (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))] =";
+ pp " [%sn m x1]." c;
+ pp " Proof.";
+ pp " intros n m x1; case (diff_l n m); simpl castm.";
+ pp " rewrite spec_extend_tr; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_cast_r: extr.";
+ pp "";
+
+
+ pr " Section LevelAndIter.";
+ pr "";
+ pr " Variable res: Type.";
+ pr " Variable xxx: res.";
+ pr " Variable P: Z -> Z -> res -> Prop.";
+ pr " (* Abstraction function for each level *)";
+ for i = 0 to size do
+ pr " Variable f%i: w%i -> w%i -> res." i i i;
+ pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
+ pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
+ pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
+ if i == size then
+ begin
+ pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
+ pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
+ end
+ else
+ begin
+ pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
+ pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
+ end;
+ pr "";
+ done;
+ pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
+ pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
+ pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
+ pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
+ pr "";
+ pr " (* Special zero functions *)";
+ pr " Variable f0t: t_ -> res.";
+ pp " Variable Pf0t: forall x, P 0 [x] (f0t x).";
+ pr " Variable ft0: t_ -> res.";
+ pp " Variable Pft0: forall x, P [x] 0 (ft0 x).";
+ pr "";
+
+
+ pr " (* We level the two arguments before applying *)";
+ pr " (* the functions at each leval *)";
+ pr " Definition same_level (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x, y with";
+ for i = 0 to size do
+ for j = 0 to i - 1 do
+ pr " | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1);
+ done;
+ pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %s%i wx, %sn m wy => fnn m (extend%i m wx) wy" c size c size
+ else
+ pr " | %s%i wx, %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
+ done;
+ for i = 0 to size do
+ if i == size then
+ pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n wy)" c c size size
+ else
+ pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
+ done;
+ pr " | %sn n wx, Nn m wy =>" c;
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " fnn mn";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_same_level: forall x y, P [x] [y] (same_level x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." j i i;
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
+ done;
+ if i == size then
+ pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ if i == size then
+ pp " intros y; rewrite (spec_extend%in n); apply Pfnn." size
+ else
+ pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ done;
+ pp " intros m y; rewrite <- (spec_cast_l n m x); ";
+ pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
+ pp " Qed.";
+ pp "";
+
+ pr " (* We level the two arguments before applying *)";
+ pr " (* the functions at each level (special zero case) *)";
+ pr " Definition same_level0 (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wx then f0t y else";
+ pr " match y with";
+ for j = 0 to i - 1 do
+ pr " | %s%i wy =>" c j;
+ if j == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ pr " f%i wx (extend%i %i wy)" i j (i - j -1);
+ done;
+ pr " | %s%i wy => f%i wx wy" c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wy => f%i (extend%i %i wx) wy" c j j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %sn m wy => fnn m (extend%i m wx) wy" c size
+ else
+ pr " | %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c size i (size - i - 1);
+ pr" end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " match y with";
+ for i = 0 to size do
+ pr " | %s%i wy =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ if i == size then
+ pr " fnn n wx (extend%i n wy)" size
+ else
+ pr " fnn n wx (extend%i n (extend%i %i wy))" size i (size - i - 1);
+ done;
+ pr " | %sn m wy =>" c;
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " fnn mn";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_same_level0: forall x y, P [x] [y] (same_level0 x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold same_level0.";
+ for i = 0 to size do
+ pp " intros x.";
+ if i == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
+ pp " intros y; rewrite H; apply Pf0t.";
+ pp " clear H.";
+ end;
+ pp " intros y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y.";
+ if j == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ pp " rewrite spec_extend%in%i; apply Pf%i." j i i;
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
+ done;
+ if i == size then
+ pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ pp " intros y.";
+ if i = 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ if i == size then
+ pp " rewrite (spec_extend%in n); apply Pfnn." size
+ else
+ pp " rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ done;
+ pp " intros m y; rewrite <- (spec_cast_l n m x); ";
+ pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
+ pp " Qed.";
+ pp "";
+
+ pr " (* We iter the smaller argument with the bigger *)";
+ pr " Definition iter (x y: t_): res := ";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x, y with";
+ for i = 0 to size do
+ for j = 0 to i - 1 do
+ pr " | %s%i wx, %s%i wy => fn%i %i wx wy" c i c j j (i - j - 1);
+ done;
+ pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wx, %s%i wy => f%in %i wx wy" c i c j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %s%i wx, %sn m wy => f%in m wx wy" c size c size
+ else
+ pr " | %s%i wx, %sn m wy => f%in m (extend%i %i wx) wy" c i c size i (size - i - 1);
+ done;
+ for i = 0 to size do
+ if i == size then
+ pr " | %sn n wx, %s%i wy => fn%i n wx wy" c c size size
+ else
+ pr " | %sn n wx, %s%i wy => fn%i n wx (extend%i %i wy)" c c i size i (size - i - 1);
+ done;
+ pr " | %sn n wx, %sn m wy => fnm n m wx wy" c c;
+ pr " end.";
+ pr "";
+
+ pp " Ltac zg_tac := try";
+ pp " (red; simpl Zcompare; auto;";
+ pp " let t := fresh \"H\" in (intros t; discriminate t)).";
+ pp " Lemma spec_iter: forall x y, P [x] [y] (iter x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold iter.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
+ done;
+ if i == size then
+ pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ if i == size then
+ pp " intros y; rewrite spec_eval%in; apply Pfn%i." size size
+ else
+ pp " intros y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
+ done;
+ pp " intros m y; apply Pfnm.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " (* We iter the smaller argument with the bigger (zero case) *)";
+ pr " Definition iter0 (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wx then f0t y else";
+ pr " match y with";
+ for j = 0 to i - 1 do
+ pr " | %s%i wy =>" c j;
+ if j == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ pr " fn%i %i wx wy" j (i - j - 1);
+ done;
+ pr " | %s%i wy => f%i wx wy" c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wy => f%in %i wx wy" c j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %sn m wy => f%in m wx wy" c size
+ else
+ pr " | %sn m wy => f%in m (extend%i %i wx) wy" c size i (size - i - 1);
+ pr " end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " match y with";
+ for i = 0 to size do
+ pr " | %s%i wy =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ if i == size then
+ pr " fn%i n wx wy" size
+ else
+ pr " fn%i n wx (extend%i %i wy)" size i (size - i - 1);
+ done;
+ pr " | %sn m wy => fnm n m wx wy" c;
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_iter0: forall x y, P [x] [y] (iter0 x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold iter0.";
+ for i = 0 to size do
+ pp " intros x.";
+ if i == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
+ pp " intros y; rewrite H; apply Pf0t.";
+ pp " clear H.";
+ end;
+ pp " intros y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y.";
+ if j == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ pp " rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
+ done;
+ if i == size then
+ pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ pp " intros y.";
+ if i = 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ if i == size then
+ pp " rewrite spec_eval%in; apply Pfn%i." size size
+ else
+ pp " rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
+ done;
+ pp " intros m y; apply Pfnm.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " End LevelAndIter.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Reduction *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition reduce_0 (x:w) := %s0 x." c;
+ pr " Definition reduce_1 :=";
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w0_eq0 %s0 %s1." c c;
+ for i = 2 to size do
+ pr " Definition reduce_%i :=" i;
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i %s%i."
+ (i-1) (i-1) c i
+ done;
+ pr " Definition reduce_%i :=" (size+1);
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i (%sn 0)."
+ size size c;
+
+ pr " Definition reduce_n n := ";
+ pr " Eval lazy beta iota delta[reduce_n] in";
+ pr " reduce_n _ _ zero reduce_%i %sn n." (size + 1) c;
+ pr "";
+
+ pp " Let spec_reduce_0: forall x, [reduce_0 x] = [%s0 x]." c;
+ pp " Proof.";
+ pp " intros x; unfold to_Z, reduce_0.";
+ pp " auto.";
+ pp " Qed.";
+ pp " ";
+
+ for i = 1 to size + 1 do
+ if i == size + 1 then
+ pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%sn 0 x]." i i c
+ else
+ pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i;
+ pp " Proof.";
+ pp " intros x; case x; unfold reduce_%i." i;
+ pp " exact (spec_0 w0_spec).";
+ pp " intros x1 y1.";
+ pp " generalize (spec_w%i_eq0 x1); " (i - 1);
+ pp " case w%i_eq0; intros H1; auto." (i - 1);
+ if i <> 1 then
+ pp " rewrite spec_reduce_%i." (i - 1);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." i;
+ pp " unfold to_Z in H1; rewrite H1; auto.";
+ pp " Qed.";
+ pp " ";
+ done;
+
+ pp " Let spec_reduce_n: forall n x, [reduce_n n x] = [%sn n x]." c;
+ pp " Proof.";
+ pp " intros n; elim n; simpl reduce_n.";
+ pp " intros x; rewrite <- spec_reduce_%i; auto." (size + 1);
+ pp " intros n1 Hrec x; case x.";
+ pp " unfold to_Z; rewrite make_op_S; auto.";
+ pp " exact (spec_0 w0_spec).";
+ pp " intros x1 y1; case x1; auto.";
+ pp " rewrite Hrec.";
+ pp " rewrite spec_extendn0_0; auto.";
+ pp " Qed.";
+ pp " ";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Successor *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_succ_c := w%i_op.(znz_succ_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_succ := w%i_op.(znz_succ)." i i
+ done;
+ pr "";
+
+ pr " Definition succ x :=";
+ pr " match x with";
+ for i = 0 to size-1 do
+ pr " | %s%i wx =>" c i;
+ pr " match w%i_succ_c wx with" i;
+ pr " | C0 r => %s%i r" c i;
+ pr " | C1 r => %s%i (WW one%i r)" c (i+1) i;
+ pr " end";
+ done;
+ pr " | %s%i wx =>" c size;
+ pr " match w%i_succ_c wx with" size;
+ pr " | C0 r => %s%i r" c size;
+ pr " | C1 r => %sn 0 (WW one%i r)" c size ;
+ pr " end";
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " match op.(znz_succ_c) wx with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => %sn (S n) (WW op.(znz_1) r)" c;
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_succ: forall n, [succ n] = [n] + 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n; case n; unfold succ, to_Z.";
+ for i = 0 to size do
+ pp " intros n1; generalize (spec_succ_c w%i_spec n1);" i;
+ pp " unfold succ, to_Z, w%i_succ_c; case znz_succ_c; auto." i;
+ pp " intros ww H; rewrite <- H.";
+ pp " (rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 w%i_spec))." i;
+ done;
+ pp " intros k n1; generalize (spec_succ_c (wn_spec k) n1).";
+ pp " unfold succ, to_Z; case znz_succ_c; auto.";
+ pp " intros ww H; rewrite <- H.";
+ pp " (rewrite (znz_to_Z_n k); unfold interp_carry;";
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 (wn_spec k))).";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Adddition *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_add_c := znz_add_c w%i_op." i i;
+ pr " Definition w%i_add x y :=" i;
+ pr " match w%i_add_c x y with" i;
+ pr " | C0 r => %s%i r" c i;
+ if i == size then
+ pr " | C1 r => %sn 0 (WW one%i r)" c size
+ else
+ pr " | C1 r => %s%i (WW one%i r)" c (i + 1) i;
+ pr " end.";
+ pr "";
+ done ;
+ pr " Definition addn n (x y : word w%i (S n)) :=" size;
+ pr " let op := make_op n in";
+ pr " match op.(znz_add_c) x y with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => %sn (S n) (WW op.(znz_1) r) end." c;
+ pr "";
+
+
+ for i = 0 to size do
+ pp " Let spec_w%i_add: forall x y, [w%i_add x y] = [%s%i x] + [%s%i y]." i i c i c i;
+ pp " Proof.";
+ pp " intros n m; unfold to_Z, w%i_add, w%i_add_c." i i;
+ pp " generalize (spec_add_c w%i_spec n m); case znz_add_c; auto." i;
+ pp " intros ww H; rewrite <- H.";
+ pp " rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 w%i_spec)." i;
+ pp " Qed.";
+ pp " Hint Rewrite spec_w%i_add: addr." i;
+ pp "";
+ done;
+ pp " Let spec_wn_add: forall n x y, [addn n x y] = [%sn n x] + [%sn n y]." c c;
+ pp " Proof.";
+ pp " intros k n m; unfold to_Z, addn.";
+ pp " generalize (spec_add_c (wn_spec k) n m); case znz_add_c; auto.";
+ pp " intros ww H; rewrite <- H.";
+ pp " rewrite (znz_to_Z_n k); unfold interp_carry;";
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 (wn_spec k)).";
+ pp " Qed.";
+ pp " Hint Rewrite spec_wn_add: addr.";
+
+ pr " Definition add := Eval lazy beta delta [same_level] in";
+ pr0 " (same_level t_ ";
+ for i = 0 to size do
+ pr0 "w%i_add " i;
+ done;
+ pr "addn).";
+ pr "";
+
+ pr " Theorem spec_add: forall x y, [add x y] = [x] + [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold add.";
+ pp " generalize (spec_same_level t_ (fun x y res => [res] = x + y)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_add." i;
+ done;
+ pp " exact spec_wn_add.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Predecessor *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_pred_c := w%i_op.(znz_pred_c)." i i
+ done;
+ pr "";
+
+ pr " Definition pred x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ pr " match w%i_pred_c wx with" i;
+ pr " | C0 r => reduce_%i r" i;
+ pr " | C1 r => zero";
+ pr " end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " match op.(znz_pred_c) wx with";
+ pr " | C0 r => reduce_n n r";
+ pr " | C1 r => zero";
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_pred: forall x, 0 < [x] -> [pred x] = [x] - 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold pred.";
+ for i = 0 to size do
+ pp " intros x1 H1; unfold w%i_pred_c; " i;
+ pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
+ pp " rewrite spec_reduce_%i; auto." i;
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " case (spec_to_Z w%i_spec x1); intros HH1 HH2." i;
+ pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4 HH5." i;
+ pp " assert (znz_to_Z w%i_op x1 - 1 < 0); auto with zarith." i;
+ pp " unfold to_Z in H1; auto with zarith.";
+ done;
+ pp " intros n x1 H1; ";
+ pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
+ pp " rewrite spec_reduce_n; auto.";
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " case (spec_to_Z (wn_spec n) x1); intros HH1 HH2.";
+ pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4 HH5.";
+ pp " assert (znz_to_Z (make_op n) x1 - 1 < 0); auto with zarith.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " Qed.";
+ pp " ";
+
+ pp " Let spec_pred0: forall x, [x] = 0 -> [pred x] = 0.";
+ pp " Proof.";
+ pp " intros x; case x; unfold pred.";
+ for i = 0 to size do
+ pp " intros x1 H1; unfold w%i_pred_c; " i;
+ pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4; auto with zarith." i;
+ pp " intros; exact (spec_0 w0_spec).";
+ done;
+ pp " intros n x1 H1; ";
+ pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4; auto with zarith.";
+ pp " intros; exact (spec_0 w0_spec).";
+ pp " Qed.";
+ pr " ";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Subtraction *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sub_c := w%i_op.(znz_sub_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sub x y :=" i;
+ pr " match w%i_sub_c x y with" i;
+ pr " | C0 r => reduce_%i r" i;
+ pr " | C1 r => zero";
+ pr " end."
+ done;
+ pr "";
+
+ pr " Definition subn n (x y : word w%i (S n)) :=" size;
+ pr " let op := make_op n in";
+ pr " match op.(znz_sub_c) x y with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => N0 w_0";
+ pr " end.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_w%i_sub: forall x y, [%s%i y] <= [%s%i x] -> [w%i_sub x y] = [%s%i x] - [%s%i y]." i c i c i i c i c i;
+ pp " Proof.";
+ pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
+ pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i;
+ if i == 0 then
+ pp " intros x; auto."
+ else
+ pp " intros x; try rewrite spec_reduce_%i; auto." i;
+ pp " unfold interp_carry; unfold zero, w_0, to_Z.";
+ pp " rewrite (spec_0 w0_spec).";
+ pp " case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_wn_sub: forall n x y, [%sn n y] <= [%sn n x] -> [subn n x y] = [%sn n x] - [%sn n y]." c c c c;
+ pp " Proof.";
+ pp " intros k n m; unfold subn.";
+ pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; ";
+ pp " intros x; auto.";
+ pp " unfold interp_carry, to_Z.";
+ pp " case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+ pr " Definition sub := Eval lazy beta delta [same_level] in";
+ pr0 " (same_level t_ ";
+ for i = 0 to size do
+ pr0 "w%i_sub " i;
+ done;
+ pr "subn).";
+ pr "";
+
+ pr " Theorem spec_sub: forall x y, [y] <= [x] -> [sub x y] = [x] - [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold sub.";
+ pp " generalize (spec_same_level t_ (fun x y res => y <= x -> [res] = x - y)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_sub." i;
+ done;
+ pp " exact spec_wn_sub.";
+ pp " Qed.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_w%i_sub0: forall x y, [%s%i x] < [%s%i y] -> [w%i_sub x y] = 0." i c i c i i;
+ pp " Proof.";
+ pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
+ pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i;
+ pp " intros x; unfold interp_carry.";
+ pp " unfold to_Z; case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
+ pp " intros; unfold to_Z, zero, w_0; rewrite (spec_0 w0_spec); auto.";
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_wn_sub0: forall n x y, [%sn n x] < [%sn n y] -> [subn n x y] = 0." c c;
+ pp " Proof.";
+ pp " intros k n m; unfold subn.";
+ pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; ";
+ pp " intros x; unfold interp_carry.";
+ pp " unfold to_Z; case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
+ pp " intros; unfold to_Z, w_0; rewrite (spec_0 (w0_spec)); auto.";
+ pp " Qed.";
+ pp "";
+
+ pr " Theorem spec_sub0: forall x y, [x] < [y] -> [sub x y] = 0.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold sub.";
+ pp " generalize (spec_same_level t_ (fun x y res => x < y -> [res] = 0)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_sub0." i;
+ done;
+ pp " exact spec_wn_sub0.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Comparison *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition compare_%i := w%i_op.(znz_compare)." i i;
+ pr " Definition comparen_%i :=" i;
+ pr " compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i
+ done;
+ pr "";
+
+ pr " Definition comparenm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " op.(znz_compare)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d))).";
+ pr "";
+
+ pr " Definition compare := Eval lazy beta delta [iter] in ";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " compare_%i" i;
+ pr " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
+ pr " (fun n => comparen_%i (S n))" i;
+ done;
+ pr " comparenm).";
+ pr "";
+
+ pr " Definition lt n m := compare n m = Lt.";
+ pr " Definition le n m := compare n m <> Gt.";
+ pr " Definition min n m := match compare n m with Gt => m | _ => n end.";
+ pr " Definition max n m := match compare n m with Lt => m | _ => n end.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_compare_%i: forall x y," i;
+ pp " match compare_%i x y with " i;
+ pp " Eq => [%s%i x] = [%s%i y]" c i c i;
+ pp " | Lt => [%s%i x] < [%s%i y]" c i c i;
+ pp " | Gt => [%s%i x] > [%s%i y]" c i c i;
+ pp " end.";
+ pp " Proof.";
+ pp " unfold compare_%i, to_Z; exact (spec_compare w%i_spec)." i i;
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_comparen_%i:" i;
+ pp " forall (n : nat) (x : word w%i n) (y : w%i)," i i;
+ pp " match comparen_%i n x y with" i;
+ pp " | Eq => eval%in n x = [%s%i y]" i c i;
+ pp " | Lt => eval%in n x < [%s%i y]" i c i;
+ pp " | Gt => eval%in n x > [%s%i y]" i c i;
+ pp " end.";
+ pp " intros n x y.";
+ pp " unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i;
+ pp " apply spec_compare_mn_1.";
+ pp " exact (spec_0 w%i_spec)." i;
+ pp " intros x1; exact (spec_compare w%i_spec %s x1)." i (pz i);
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " exact (spec_compare w%i_spec)." i;
+ pp " exact (spec_compare w%i_spec)." i;
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_opp_compare: forall c (u v: Z),";
+ pp " match c with Eq => u = v | Lt => u < v | Gt => u > v end ->";
+ pp " match opp_compare c with Eq => v = u | Lt => v < u | Gt => v > u end.";
+ pp " Proof.";
+ pp " intros c u v; case c; unfold opp_compare; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " Theorem spec_compare: forall x y,";
+ pr " match compare x y with ";
+ pr " Eq => [x] = [y]";
+ pr " | Lt => [x] < [y]";
+ pr " | Gt => [x] > [y]";
+ pr " end.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " refine (spec_iter _ (fun x y res => ";
+ pp " match res with ";
+ pp " Eq => x = y";
+ pp " | Lt => x < y";
+ pp " | Gt => x > y";
+ pp " end)";
+ for i = 0 to size do
+ pp " compare_%i" i;
+ pp " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
+ pp " (fun n => comparen_%i (S n)) _ _ _" i;
+ done;
+ pp " comparenm _).";
+
+ for i = 0 to size - 1 do
+ pp " exact spec_compare_%i." i;
+ pp " intros n x y H;apply spec_opp_compare; apply spec_comparen_%i." i;
+ pp " intros n x y H; exact (spec_comparen_%i (S n) x y)." i;
+ done;
+ pp " exact spec_compare_%i." size;
+ pp " intros n x y;apply spec_opp_compare; apply spec_comparen_%i." size;
+ pp " intros n; exact (spec_comparen_%i (S n))." size;
+ pp " intros n m x y; unfold comparenm.";
+ pp " rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply (spec_compare (wn_spec (Max.max n m))).";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition eq_bool x y :=";
+ pr " match compare x y with";
+ pr " | Eq => true";
+ pr " | _ => false";
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_eq_bool: forall x y,";
+ pr " if eq_bool x y then [x] = [y] else [x] <> [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x y; unfold eq_bool.";
+ pp " generalize (spec_compare x y); case compare; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Multiplication *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_c := w%i_op.(znz_mul_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_add :=" i;
+ pr " Eval lazy beta delta [w_mul_add] in";
+ pr " @w_mul_add w%i %s w%i_succ w%i_add_c w%i_mul_c." i (pz i) i i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_0W := znz_0W w%i_op." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_WW := znz_WW w%i_op." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_add_n1 :=" i;
+ pr " @double_mul_add_n1 w%i %s w%i_WW w%i_0W w%i_mul_add." i (pz i) i i i
+ done;
+ pr "";
+
+ for i = 0 to size - 1 do
+ pr " Let to_Z%i n :=" i;
+ pr " match n return word w%i (S n) -> t_ with" i;
+ for j = 0 to size - i do
+ if (i + j) == size then
+ begin
+ pr " | %i%s => fun x => %sn 0 x" j "%nat" c;
+ pr " | %i%s => fun x => %sn 1 x" (j + 1) "%nat" c
+ end
+ else
+ pr " | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1)
+ done;
+ pr " | _ => fun _ => N0 w_0";
+ pr " end.";
+ pr "";
+ done;
+
+
+ for i = 0 to size - 1 do
+ pp "Theorem to_Z%i_spec:" i;
+ pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = znz_to_Z (nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
+ for j = 1 to size + 2 - i do
+ pp " intros n; case n; clear n.";
+ pp " unfold to_Z%i." i;
+ pp " intros x H; rewrite spec_eval%in%i; auto." i j;
+ done;
+ pp " intros n x.";
+ pp " repeat rewrite inj_S; unfold Zsucc; auto with zarith.";
+ pp " Qed.";
+ pp "";
+ done;
+
+
+ for i = 0 to size do
+ pr " Definition w%i_mul n x y :=" i;
+ pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i);
+ if i == size then
+ begin
+ pr " if w%i_eq0 w then %sn n r" i c;
+ pr " else %sn (S n) (WW (extend%i n w) r)." c i;
+ end
+ else
+ begin
+ pr " if w%i_eq0 w then to_Z%i n r" i i;
+ pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i;
+ end;
+ pr "";
+ done;
+
+ pr " Definition mulnm n m x y :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " reduce_n (S mn) (op.(znz_mul_c)";
+ pr " (castm (diff_r n m) (extend_tr x (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr y (fst d)))).";
+ pr "";
+
+ pr " Definition mul := Eval lazy beta delta [iter0] in ";
+ pr " (iter0 t_ ";
+ for i = 0 to size do
+ pr " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i;
+ pr " (fun n x y => w%i_mul n y x)" i;
+ pr " w%i_mul" i;
+ done;
+ pr " mulnm";
+ pr " (fun _ => N0 w_0)";
+ pr " (fun _ => N0 w_0)";
+ pr " ).";
+ pr "";
+ for i = 0 to size do
+ pp " Let spec_w%i_mul_add: forall x y z," i;
+ pp " let (q,r) := w%i_mul_add x y z in" i;
+ pp " znz_to_Z w%i_op q * (base (znz_digits w%i_op)) + znz_to_Z w%i_op r =" i i i;
+ pp " znz_to_Z w%i_op x * znz_to_Z w%i_op y + znz_to_Z w%i_op z :=" i i i ;
+ pp " (spec_mul_add w%i_spec)." i;
+ pp "";
+ done;
+
+ for i = 0 to size do
+ pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i;
+ pp " let (q,r) := w%i_mul_add_n1 n x y z in" i;
+ pp " znz_to_Z w%i_op q * (base (znz_digits (nmake_op _ w%i_op n))) +" i i;
+ pp " znz_to_Z (nmake_op _ w%i_op n) r =" i;
+ pp " znz_to_Z (nmake_op _ w%i_op n) x * znz_to_Z w%i_op y +" i i;
+ pp " znz_to_Z w%i_op z." i;
+ pp " Proof.";
+ pp " intros n x y z; unfold w%i_mul_add_n1." i;
+ pp " rewrite nmake_double.";
+ pp " rewrite digits_doubled.";
+ pp " change (base (DoubleBase.double_digits (znz_digits w%i_op) n)) with" i;
+ pp " (DoubleBase.double_wB (znz_digits w%i_op) n)." i;
+ pp " apply spec_double_mul_add_n1; auto.";
+ if i == 0 then pp " exact (spec_0 w%i_spec)." i;
+ pp " exact (spec_WW w%i_spec)." i;
+ pp " exact (spec_0W w%i_spec)." i;
+ pp " exact (spec_mul_add w%i_spec)." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Lemma nmake_op_WW: forall ww ww1 n x y,";
+ pp " znz_to_Z (nmake_op ww ww1 (S n)) (WW x y) =";
+ pp " znz_to_Z (nmake_op ww ww1 n) x * base (znz_digits (nmake_op ww ww1 n)) +";
+ pp " znz_to_Z (nmake_op ww ww1 n) y.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ for i = 0 to size do
+ pp " Lemma extend%in_spec: forall n x1," i;
+ pp " znz_to_Z (nmake_op _ w%i_op (S n)) (extend%i n x1) = " i i;
+ pp " znz_to_Z w%i_op x1." i;
+ pp " Proof.";
+ pp " intros n1 x2; rewrite nmake_double.";
+ pp " unfold extend%i." i;
+ pp " rewrite DoubleBase.spec_extend; auto.";
+ if i == 0 then
+ pp " intros l; simpl; unfold w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Lemma spec_muln:";
+ pp " forall n (x: word _ (S n)) y,";
+ pp " [%sn (S n) (znz_mul_c (make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
+ pp " Proof.";
+ pp " intros n x y; unfold to_Z.";
+ pp " rewrite <- (spec_mul_c (wn_spec n)).";
+ pp " rewrite make_op_S.";
+ pp " case znz_mul_c; auto.";
+ pp " Qed.";
+
+ pr " Theorem spec_mul: forall x y, [mul x y] = [x] * [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ for i = 0 to size do
+ pp " assert(F%i: " i;
+ pp " forall n x y,";
+ if i <> size then
+ pp0 " Z_of_nat n <= %i -> " (size - i);
+ pp " [w%i_mul n x y] = eval%in (S n) x * [%s%i y])." i i c i;
+ if i == size then
+ pp " intros n x y; unfold w%i_mul." i
+ else
+ pp " intros n x y H; unfold w%i_mul." i;
+ pp " generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i);
+ pp " case w%i_mul_add_n1; intros x1 y1." i;
+ pp " change (znz_to_Z (nmake_op _ w%i_op (S n)) x) with (eval%in (S n) x)." i i;
+ pp " change (znz_to_Z w%i_op y) with ([%s%i y])." i c i;
+ if i == 0 then
+ pp " unfold w_0; rewrite (spec_0 w0_spec); rewrite Zplus_0_r."
+ else
+ pp " change (znz_to_Z w%i_op W0) with 0; rewrite Zplus_0_r." i;
+ pp " intros H1; rewrite <- H1; clear H1.";
+ pp " generalize (spec_w%i_eq0 x1); case w%i_eq0; intros HH." i i;
+ pp " unfold to_Z in HH; rewrite HH.";
+ if i == size then
+ begin
+ pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i;
+ pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i." i i i
+ end
+ else
+ begin
+ pp " rewrite to_Z%i_spec; auto with zarith." i;
+ pp " rewrite to_Z%i_spec; try (rewrite inj_S; auto with zarith)." i
+ end;
+ pp " rewrite nmake_op_WW; rewrite extend%in_spec; auto." i;
+ done;
+ pp " refine (spec_iter0 t_ (fun x y res => [res] = x * y)";
+ for i = 0 to size do
+ pp " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i;
+ pp " (fun n x y => w%i_mul n y x)" i;
+ pp " w%i_mul _ _ _" i;
+ done;
+ pp " mulnm _";
+ pp " (fun _ => N0 w_0) _";
+ pp " (fun _ => N0 w_0) _";
+ pp " ).";
+ for i = 0 to size do
+ pp " intros x y; rewrite spec_reduce_%i." (i + 1);
+ pp " unfold w%i_mul_c, to_Z." i;
+ pp " generalize (spec_mul_c w%i_spec x y)." i;
+ pp " intros HH; rewrite <- HH; clear HH; auto.";
+ if i == size then
+ begin
+ pp " intros n x y; rewrite F%i; auto with zarith." i;
+ pp " intros n x y; rewrite F%i; auto with zarith. " i;
+ end
+ else
+ begin
+ pp " intros n x y H; rewrite F%i; auto with zarith." i;
+ pp " intros n x y H; rewrite F%i; auto with zarith. " i;
+ end;
+ done;
+ pp " intros n m x y; unfold mulnm.";
+ pp " rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto.";
+ pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Square *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_square_c := w%i_op.(znz_square_c)." i i
+ done;
+ pr "";
+
+ pr " Definition square x :=";
+ pr " match x with";
+ pr " | %s0 wx => reduce_1 (w0_square_c wx)" c;
+ for i = 1 to size - 1 do
+ pr " | %s%i wx => %s%i (w%i_square_c wx)" c i c (i+1) i
+ done;
+ pr " | %s%i wx => %sn 0 (w%i_square_c wx)" c size c size;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " %sn (S n) (op.(znz_square_c) wx)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_square: forall x, [square x] = [x] * [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold square; clear x.";
+ pp " intros x; rewrite spec_reduce_1; unfold to_Z.";
+ pp " exact (spec_square_c w%i_spec x)." 0;
+ for i = 1 to size do
+ pp " intros x; unfold to_Z.";
+ pp " exact (spec_square_c w%i_spec x)." i;
+ done;
+ pp " intros n x; unfold to_Z.";
+ pp " rewrite make_op_S.";
+ pp " exact (spec_square_c (wn_spec n) x).";
+ pp "Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Power *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Fixpoint power_pos (x:%s) (p:positive) {struct p} : %s :=" t t;
+ pr " match p with";
+ pr " | xH => x";
+ pr " | xO p => square (power_pos x p)";
+ pr " | xI p => mul (square (power_pos x p)) x";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x n; generalize x; elim n; clear n x; simpl power_pos.";
+ pp " intros; rewrite spec_mul; rewrite spec_square; rewrite H.";
+ pp " rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2; rewrite Zpower_1_r; auto.";
+ pp " intros; rewrite spec_square; rewrite H.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2; auto.";
+ pp " intros; rewrite Zpower_1_r; auto.";
+ pp " Qed.";
+ pp "";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Square root *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sqrt := w%i_op.(znz_sqrt)." i i
+ done;
+ pr "";
+
+ pr " Definition sqrt x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => reduce_%i (w%i_sqrt wx)" c i i i;
+ done;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " reduce_n n (op.(znz_sqrt) wx)";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; unfold sqrt; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_sqrt w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_sqrt (wn_spec n) x).";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Division *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_div_gt := w%i_op.(znz_div_gt)." i i
+ done;
+ pr "";
+
+ pp " Let spec_divn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := ";
+ pp " (spec_double_divn1 ";
+ pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
+ pp " (znz_WW ww_op) ww_op.(znz_head0)";
+ pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
+ pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
+ pp " (spec_to_Z ww_spec) ";
+ pp " (spec_zdigits ww_spec)";
+ pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
+ pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) ";
+ pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pp "";
+
+ for i = 0 to size do
+ pr " Definition w%i_divn1 n x y :=" i;
+ pr " let (u, v) :=";
+ pr " double_divn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
+ pr " (znz_WW w%i_op) w%i_op.(znz_head0)" i i;
+ pr " w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i;
+ pr " w%i_op.(znz_compare) w%i_op.(znz_sub) (S n) x y in" i i;
+ if i == size then
+ pr " (%sn _ u, %s%i v)." c c i
+ else
+ pr " (to_Z%i _ u, %s%i v)." i c i;
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pp " Lemma spec_get_end%i: forall n x y," i;
+ pp " eval%in n x <= [%s%i y] -> " i c i;
+ pp " [%s%i (DoubleBase.get_low %s n x)] = eval%in n x." c i (pz i) i;
+ pp " Proof.";
+ pp " intros n x y H.";
+ pp " rewrite spec_double_eval%in; unfold to_Z." i;
+ pp " apply DoubleBase.spec_get_low.";
+ pp " exact (spec_0 w%i_spec)." i;
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " apply Zle_lt_trans with [%s%i y]; auto." c i;
+ pp " rewrite <- spec_double_eval%in; auto." i;
+ pp " unfold to_Z; case (spec_to_Z w%i_spec y); auto." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ for i = 0 to size do
+ pr " Let div_gt%i x y := let (u,v) := (w%i_div_gt x y) in (reduce_%i u, reduce_%i v)." i i i i;
+ done;
+ pr "";
+
+
+ pr " Let div_gtnm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " let (q, r):= op.(znz_div_gt)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d))) in";
+ pr " (reduce_n mn q, reduce_n mn r).";
+ pr "";
+
+ pr " Definition div_gt := Eval lazy beta delta [iter] in";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " div_gt%i" i;
+ pr " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
+ pr " w%i_divn1" i;
+ done;
+ pr " div_gtnm).";
+ pr "";
+
+ pr " Theorem spec_div_gt: forall x y,";
+ pr " [x] > [y] -> 0 < [y] ->";
+ pr " let (q,r) := div_gt x y in";
+ pr " [q] = [x] / [y] /\\ [r] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (FO:";
+ pp " forall x y, [x] > [y] -> 0 < [y] ->";
+ pp " let (q,r) := div_gt x y in";
+ pp " [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y]).";
+ pp " refine (spec_iter (t_*t_) (fun x y res => x > y -> 0 < y ->";
+ pp " let (q,r) := res in";
+ pp " x = [q] * y + [r] /\\ 0 <= [r] < y)";
+ for i = 0 to size do
+ pp " div_gt%i" i;
+ pp " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
+ pp " w%i_divn1 _ _ _" i;
+ done;
+ pp " div_gtnm _).";
+ for i = 0 to size do
+ pp " intros x y H1 H2; unfold div_gt%i, w%i_div_gt." i i;
+ pp " generalize (spec_div_gt w%i_spec x y H1 H2); case znz_div_gt." i;
+ pp " intros xx yy; repeat rewrite spec_reduce_%i; auto." i;
+ if i == size then
+ pp " intros n x y H2 H3; unfold div_gt%i, w%i_div_gt." i i
+ else
+ pp " intros n x y H1 H2 H3; unfold div_gt%i, w%i_div_gt." i i;
+ pp " generalize (spec_div_gt w%i_spec x " i;
+ pp " (DoubleBase.get_low %s (S n) y))." (pz i);
+ pp0 " ";
+ for j = 0 to i do
+ pp0 "unfold w%i; " (i-j);
+ done;
+ pp "case znz_div_gt.";
+ pp " intros xx yy H4; repeat rewrite spec_reduce_%i." i;
+ pp " generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i;
+ pp " unfold to_Z in H2; rewrite H5 in H4; auto with zarith.";
+ if i == size then
+ pp " intros n x y H2 H3."
+ else
+ pp " intros n x y H1 H2 H3.";
+ pp " generalize";
+ pp " (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i;
+ pp0 " unfold w%i_divn1; " i;
+ for j = 0 to i do
+ pp0 "unfold w%i; " (i-j);
+ done;
+ pp "case double_divn1.";
+ pp " intros xx yy H4.";
+ if i == size then
+ begin
+ pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
+ pp " rewrite spec_eval%in; auto." i;
+ end
+ else
+ begin
+ pp " rewrite to_Z%i_spec; auto with zarith." i;
+ pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
+ end;
+ done;
+ pp " intros n m x y H1 H2; unfold div_gtnm.";
+ pp " generalize (spec_div_gt (wn_spec (Max.max n m))";
+ pp " (castm (diff_r n m)";
+ pp " (extend_tr x (snd (diff n m))))";
+ pp " (castm (diff_l n m)";
+ pp " (extend_tr y (fst (diff n m))))).";
+ pp " case znz_div_gt.";
+ pp " intros xx yy HH.";
+ pp " repeat rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply HH.";
+ pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
+ pp " intros x y H1 H2; generalize (FO x y H1 H2); case div_gt.";
+ pp " intros q r (H3, H4); split.";
+ pp " apply (Zdiv_unique [x] [y] [q] [r]); auto.";
+ pp " rewrite Zmult_comm; auto.";
+ pp " apply (Zmod_unique [x] [y] [q] [r]); auto.";
+ pp " rewrite Zmult_comm; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition div_eucl x y :=";
+ pr " match compare x y with";
+ pr " | Eq => (one, zero)";
+ pr " | Lt => (zero, x)";
+ pr " | Gt => div_gt x y";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_div_eucl: forall x y,";
+ pr " 0 < [y] ->";
+ pr " let (q,r) := div_eucl x y in";
+ pr " ([q], [r]) = Zdiv_eucl [x] [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: [zero] = 0).";
+ pp " exact (spec_0 w0_spec).";
+ pp " assert (F1: [one] = 1).";
+ pp " exact (spec_1 w0_spec).";
+ pp " intros x y H; generalize (spec_compare x y);";
+ pp " unfold div_eucl; case compare; try rewrite F0;";
+ pp " try rewrite F1; intros; auto with zarith.";
+ pp " rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))";
+ pp " (Z_mod_same [y] (Zlt_gt _ _ H));";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
+ pp " assert (F2: 0 <= [x] < [y]).";
+ pp " generalize (spec_pos x); auto.";
+ pp " generalize (Zdiv_small _ _ F2)";
+ pp " (Zmod_small _ _ F2);";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
+ pp " generalize (spec_div_gt _ _ H0 H); auto.";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.";
+ pp " intros a b c d (H1, H2); subst; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition div x y := fst (div_eucl x y).";
+ pr "";
+
+ pr " Theorem spec_div:";
+ pr " forall x y, 0 < [y] -> [div x y] = [x] / [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x y H1; unfold div; generalize (spec_div_eucl x y H1);";
+ pp " case div_eucl; simpl fst.";
+ pp " intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H; ";
+ pp " injection H; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Modulo *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mod_gt := w%i_op.(znz_mod_gt)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_modn1 :=" i;
+ pr " double_modn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
+ pr " w%i_op.(znz_head0) w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i i;
+ pr " w%i_op.(znz_compare) w%i_op.(znz_sub)." i i;
+ done;
+ pr "";
+
+ pr " Let mod_gtnm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " reduce_n mn (op.(znz_mod_gt)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))).";
+ pr "";
+
+ pr " Definition mod_gt := Eval lazy beta delta[iter] in";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
+ pr " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
+ pr " (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i;
+ done;
+ pr " mod_gtnm).";
+ pr "";
+
+ pp " Let spec_modn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := ";
+ pp " (spec_double_modn1 ";
+ pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
+ pp " (znz_WW ww_op) ww_op.(znz_head0)";
+ pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
+ pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
+ pp " (spec_to_Z ww_spec) ";
+ pp " (spec_zdigits ww_spec)";
+ pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
+ pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) ";
+ pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pp "";
+
+ pr " Theorem spec_mod_gt:";
+ pr " forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " refine (spec_iter _ (fun x y res => x > y -> 0 < y ->";
+ pp " [res] = x mod y)";
+ for i = 0 to size do
+ pp " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
+ pp " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
+ pp " (fun n x y => reduce_%i (w%i_modn1 (S n) x y)) _ _ _" i i;
+ done;
+ pp " mod_gtnm _).";
+ for i = 0 to size do
+ pp " intros x y H1 H2; rewrite spec_reduce_%i." i;
+ pp " exact (spec_mod_gt w%i_spec x y H1 H2)." i;
+ if i == size then
+ pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
+ else
+ pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
+ pp " unfold w%i_mod_gt." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i;
+ pp " unfold to_Z; apply (spec_mod_gt w%i_spec); auto." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i;
+ if i == size then
+ pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
+ else
+ pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
+ pp " unfold w%i_modn1, to_Z; rewrite spec_double_eval%in." i i;
+ pp " apply (spec_modn1 _ _ w%i_spec); auto." i;
+ done;
+ pp " intros n m x y H1 H2; unfold mod_gtnm.";
+ pp " repeat rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply (spec_mod_gt (wn_spec (Max.max n m))).";
+ pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition modulo x y := ";
+ pr " match compare x y with";
+ pr " | Eq => zero";
+ pr " | Lt => x";
+ pr " | Gt => mod_gt x y";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_modulo:";
+ pr " forall x y, 0 < [y] -> [modulo x y] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: [zero] = 0).";
+ pp " exact (spec_0 w0_spec).";
+ pp " assert (F1: [one] = 1).";
+ pp " exact (spec_1 w0_spec).";
+ pp " intros x y H; generalize (spec_compare x y);";
+ pp " unfold modulo; case compare; try rewrite F0;";
+ pp " try rewrite F1; intros; try split; auto with zarith.";
+ pp " rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.";
+ pp " apply sym_equal; apply Zmod_small; auto with zarith.";
+ pp " generalize (spec_pos x); auto with zarith.";
+ pp " apply spec_mod_gt; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Gcd *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition digits x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i _ => w%i_op.(znz_digits)" c i i;
+ done;
+ pr " | %sn n _ => (make_op n).(znz_digits)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; unfold to_Z, digits;";
+ pp " generalize (spec_to_Z w%i_spec x); unfold base; intros H; exact H." i;
+ done;
+ pp " intros n x; unfold to_Z, digits;";
+ pp " generalize (spec_to_Z (wn_spec n) x); unfold base; intros H; exact H.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition gcd_gt_body a b cont :=";
+ pr " match compare b zero with";
+ pr " | Gt =>";
+ pr " let r := mod_gt a b in";
+ pr " match compare r zero with";
+ pr " | Gt => cont r (mod_gt b r)";
+ pr " | _ => b";
+ pr " end";
+ pr " | _ => a";
+ pr " end.";
+ pr "";
+
+ pp " Theorem Zspec_gcd_gt_body: forall a b cont p,";
+ pp " [a] > [b] -> [a] < 2 ^ p ->";
+ pp " (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->";
+ pp " Zis_gcd [a1] [b1] [cont a1 b1]) -> ";
+ pp " Zis_gcd [a] [b] [gcd_gt_body a b cont].";
+ pp " Proof.";
+ pp " assert (F1: [zero] = 0).";
+ pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
+ pp " intros a b cont p H2 H3 H4; unfold gcd_gt_body.";
+ pp " generalize (spec_compare b zero); case compare; try rewrite F1.";
+ pp " intros HH; rewrite HH; apply Zis_gcd_0.";
+ pp " intros HH; absurd (0 <= [b]); auto with zarith.";
+ pp " case (spec_digits b); auto with zarith.";
+ pp " intros H5; generalize (spec_compare (mod_gt a b) zero); ";
+ pp " case compare; try rewrite F1.";
+ pp " intros H6; rewrite <- (Zmult_1_r [b]).";
+ pp " rewrite (Z_div_mod_eq [a] [b]); auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " rewrite H6; rewrite Zplus_0_r.";
+ pp " apply Zis_gcd_mult; apply Zis_gcd_1.";
+ pp " intros; apply False_ind.";
+ pp " case (spec_digits (mod_gt a b)); auto with zarith.";
+ pp " intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
+ pp " apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " assert (F2: [b] > [mod_gt a b]).";
+ pp " case (Z_mod_lt [a] [b]); auto with zarith.";
+ pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
+ pp " assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]).";
+ pp " case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
+ pp " apply H4; auto with zarith.";
+ pp " apply Zmult_lt_reg_r with 2; auto with zarith.";
+ pp " apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith.";
+ pp " apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.";
+ pp " apply Zplus_le_compat_r.";
+ pp " pattern [b] at 1; rewrite <- (Zmult_1_l [b]).";
+ pp " apply Zmult_le_compat_r; auto with zarith.";
+ pp " case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith.";
+ pp " intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;";
+ pp " try rewrite <- HH in H2; auto with zarith.";
+ pp " case (Z_mod_lt [a] [b]); auto with zarith.";
+ pp " rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith.";
+ pp " rewrite <- Z_div_mod_eq; auto with zarith.";
+ pp " pattern 2 at 2; rewrite <- (Zpower_1_r 2).";
+ pp " rewrite <- Zpower_exp; auto with zarith.";
+ pp " ring_simplify (p - 1 + 1); auto.";
+ pp " case (Zle_lt_or_eq 0 p); auto with zarith.";
+ pp " generalize H3; case p; simpl Zpower; auto with zarith.";
+ pp " intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+ pr " Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=";
+ pr " gcd_gt_body a b";
+ pr " (fun a b =>";
+ pr " match p with";
+ pr " | xH => cont a b";
+ pr " | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
+ pr " | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
+ pr " end).";
+ pr "";
+
+ pp " Theorem Zspec_gcd_gt_aux: forall p n a b cont,";
+ pp " [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->";
+ pp " (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->";
+ pp " Zis_gcd [a1] [b1] [cont a1 b1]) ->";
+ pp " Zis_gcd [a] [b] [gcd_gt_aux p cont a b].";
+ pp " intros p; elim p; clear p.";
+ pp " intros p Hrec n a b cont H2 H3 H4.";
+ pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.";
+ pp " intros a1 b1 H6 H7.";
+ pp " apply Hrec with (Zpos p + n); auto.";
+ pp " replace (Zpos p + (Zpos p + n)) with";
+ pp " (Zpos (xI p) + n - 1); auto.";
+ pp " rewrite Zpos_xI; ring.";
+ pp " intros a2 b2 H9 H10.";
+ pp " apply Hrec with n; auto.";
+ pp " intros p Hrec n a b cont H2 H3 H4.";
+ pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.";
+ pp " intros a1 b1 H6 H7.";
+ pp " apply Hrec with (Zpos p + n - 1); auto.";
+ pp " replace (Zpos p + (Zpos p + n - 1)) with";
+ pp " (Zpos (xO p) + n - 1); auto.";
+ pp " rewrite Zpos_xO; ring.";
+ pp " intros a2 b2 H9 H10.";
+ pp " apply Hrec with (n - 1); auto.";
+ pp " replace (Zpos p + (n - 1)) with";
+ pp " (Zpos p + n - 1); auto with zarith.";
+ pp " intros a3 b3 H12 H13; apply H4; auto with zarith.";
+ pp " apply Zlt_le_trans with (1 := H12).";
+ pp " case (Zle_or_lt 1 n); intros HH.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " apply Zle_trans with 0; auto with zarith.";
+ pp " assert (HH1: n - 1 < 0); auto with zarith.";
+ pp " generalize HH1; case (n - 1); auto with zarith.";
+ pp " intros p1 HH2; discriminate.";
+ pp " intros n a b cont H H2 H3.";
+ pp " simpl gcd_gt_aux.";
+ pp " apply Zspec_gcd_gt_body with (n + 1); auto with zarith.";
+ pp " rewrite Zplus_comm; auto.";
+ pp " intros a1 b1 H5 H6; apply H3; auto.";
+ pp " replace n with (n + 1 - 1); auto; try ring.";
+ pp " Qed.";
+ pp "";
+
+ pr " Definition gcd_cont a b :=";
+ pr " match compare one b with";
+ pr " | Eq => one";
+ pr " | _ => a";
+ pr " end.";
+ pr "";
+
+ pr " Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.";
+ pr "";
+
+ pr " Theorem spec_gcd_gt: forall a b,";
+ pr " [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros a b H2.";
+ pp " case (spec_digits (gcd_gt a b)); intros H3 H4.";
+ pp " case (spec_digits a); intros H5 H6.";
+ pp " apply sym_equal; apply Zis_gcd_gcd; auto with zarith.";
+ pp " unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.";
+ pp " intros a1 a2; rewrite Zpower_0_r.";
+ pp " case (spec_digits a2); intros H7 H8;";
+ pp " intros; apply False_ind; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition gcd a b :=";
+ pr " match compare a b with";
+ pr " | Eq => a";
+ pr " | Lt => gcd_gt b a";
+ pr " | Gt => gcd_gt a b";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros a b.";
+ pp " case (spec_digits a); intros H1 H2.";
+ pp " case (spec_digits b); intros H3 H4.";
+ pp " unfold gcd; generalize (spec_compare a b); case compare.";
+ pp " intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.";
+ pp " apply Zis_gcd_refl.";
+ pp " intros; apply trans_equal with (Zgcd [b] [a]).";
+ pp " apply spec_gcd_gt; auto with zarith.";
+ pp " apply Zis_gcd_gcd; auto with zarith.";
+ pp " apply Zgcd_is_pos.";
+ pp " apply Zis_gcd_sym; apply Zgcd_is_gcd.";
+ pp " intros; apply spec_gcd_gt; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Conversion *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition pheight p := ";
+ pr " Peano.pred (nat_of_P (get_height w0_op.(znz_digits) (plength p))).";
+ pr "";
+
+ pr " Theorem pheight_correct: forall p, ";
+ pr " Zpos p < 2 ^ (Zpos (znz_digits w0_op) * 2 ^ (Z_of_nat (pheight p))).";
+ pr " Proof.";
+ pr " intros p; unfold pheight.";
+ pr " assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).";
+ pr " intros x.";
+ pr " assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.";
+ pr " rewrite <- inj_S.";
+ pr " rewrite <- (fun x => S_pred x 0); auto with zarith.";
+ pr " rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.";
+ pr " apply lt_le_trans with 1%snat; auto with zarith." "%";
+ pr " exact (le_Pmult_nat x 1).";
+ pr " rewrite F1; clear F1.";
+ pr " assert (F2:= (get_height_correct (znz_digits w0_op) (plength p))).";
+ pr " apply Zlt_le_trans with (Zpos (Psucc p)).";
+ pr " rewrite Zpos_succ_morphism; auto with zarith.";
+ pr " apply Zle_trans with (1 := plength_pred_correct (Psucc p)).";
+ pr " rewrite Ppred_succ.";
+ pr " apply Zpower_le_monotone; auto with zarith.";
+ pr " Qed.";
+ pr "";
+
+ pr " Definition of_pos x :=";
+ pr " let h := pheight x in";
+ pr " match h with";
+ for i = 0 to size do
+ pr " | %i%snat => reduce_%i (snd (w%i_op.(znz_of_pos) x))" i "%" i i;
+ done;
+ pr " | _ =>";
+ pr " let n := minus h %i in" (size + 1);
+ pr " reduce_n n (snd ((make_op n).(znz_of_pos) x))";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_of_pos: forall x,";
+ pr " [of_pos x] = Zpos x.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F := spec_more_than_1_digit w0_spec).";
+ pp " intros x; unfold of_pos; case_eq (pheight x).";
+ for i = 0 to size do
+ if i <> 0 then
+ pp " intros n; case n; clear n.";
+ pp " intros H1; rewrite spec_reduce_%i; unfold to_Z." i;
+ pp " apply (znz_of_pos_correct w%i_spec)." i;
+ pp " apply Zlt_le_trans with (1 := pheight_correct x).";
+ pp " rewrite H1; simpl Z_of_nat; change (2^%i) with (%s)." i (gen2 i);
+ pp " unfold base.";
+ pp " apply Zpower_le_monotone; split; auto with zarith.";
+ if i <> 0 then
+ begin
+ pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
+ pp " repeat rewrite <- Zpos_xO.";
+ pp " refine (Zle_refl _).";
+ end;
+ done;
+ pp " intros n.";
+ pp " intros H1; rewrite spec_reduce_n; unfold to_Z.";
+ pp " simpl minus; rewrite <- minus_n_O.";
+ pp " apply (znz_of_pos_correct (wn_spec n)).";
+ pp " apply Zlt_le_trans with (1 := pheight_correct x).";
+ pp " unfold base.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite H1.";
+ pp " elim n; clear n H1.";
+ pp " simpl Z_of_nat; change (2^%i) with (%s)." (size + 1) (gen2 (size + 1));
+ pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
+ pp " repeat rewrite <- Zpos_xO.";
+ pp " refine (Zle_refl _).";
+ pp " intros n Hrec.";
+ pp " rewrite make_op_S.";
+ pp " change (@znz_digits (word _ (S (S n))) (mk_zn2z_op_karatsuba (make_op n))) with";
+ pp " (xO (znz_digits (make_op n))).";
+ pp " rewrite (fun x y => (Zpos_xO (@znz_digits x y))).";
+ pp " rewrite inj_S; unfold Zsucc.";
+ pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r.";
+ pp " assert (tmp: forall x y z, x * (y * z) = y * (x * z));";
+ pp " [intros; ring | rewrite tmp; clear tmp].";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition of_N x :=";
+ pr " match x with";
+ pr " | BinNat.N0 => zero";
+ pr " | Npos p => of_pos p";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_of_N: forall x,";
+ pr " [of_N x] = Z_of_N x.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x.";
+ pp " simpl of_N.";
+ pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
+ pp " intros p; exact (spec_of_pos p).";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Shift *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ (* Head0 *)
+ pr " Definition head0 w := match w with";
+ for i = 0 to size do
+ pr " | %s%i w=> reduce_%i (w%i_op.(znz_head0) w)" c i i i;
+ done;
+ pr " | %sn n w=> reduce_n n ((make_op n).(znz_head0) w)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_head00: forall x, [x] = 0 ->[head0 x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold head0; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_head00 w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_head00 (wn_spec n) x).";
+ pp " Qed.";
+ pr " ";
+
+ pr " Theorem spec_head0: forall x, 0 < [x] ->";
+ pr " 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x, (x - 1) + 1 = x).";
+ pp " intros; ring. ";
+ pp " intros x; case x; unfold digits, head0; clear x.";
+ for i = 0 to size do
+ pp " intros x Hx; rewrite spec_reduce_%i." i;
+ pp " assert (F1:= spec_more_than_1_digit w%i_spec)." i;
+ pp " generalize (spec_head0 w%i_spec x Hx)." i;
+ pp " unfold base.";
+ pp " pattern (Zpos (znz_digits w%i_op)) at 1; " i;
+ pp " rewrite <- (fun x => (F0 (Zpos x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
+ done;
+ pp " intros n x Hx; rewrite spec_reduce_n.";
+ pp " assert (F1:= spec_more_than_1_digit (wn_spec n)).";
+ pp " generalize (spec_head0 (wn_spec n) x Hx).";
+ pp " unfold base.";
+ pp " pattern (Zpos (znz_digits (make_op n))) at 1; ";
+ pp " rewrite <- (fun x => (F0 (Zpos x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ (* Tail0 *)
+ pr " Definition tail0 w := match w with";
+ for i = 0 to size do
+ pr " | %s%i w=> reduce_%i (w%i_op.(znz_tail0) w)" c i i i;
+ done;
+ pr " | %sn n w=> reduce_n n ((make_op n).(znz_tail0) w)" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_tail00: forall x, [x] = 0 ->[tail0 x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold tail0; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_tail00 w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_tail00 (wn_spec n) x).";
+ pp " Qed.";
+ pr " ";
+
+
+ pr " Theorem spec_tail0: forall x,";
+ pr " 0 < [x] -> exists y, 0 <= y /\\ [x] = (2 * y + 1) * 2 ^ [tail0 x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold tail0.";
+ for i = 0 to size do
+ pp " intros x Hx; rewrite spec_reduce_%i; exact (spec_tail0 w%i_spec x Hx)." i i;
+ done;
+ pp " intros n x Hx; rewrite spec_reduce_n; exact (spec_tail0 (wn_spec n) x Hx).";
+ pp " Qed.";
+ pr "";
+
+
+ (* Number of digits *)
+ pr " Definition %sdigits x :=" c;
+ pr " match x with";
+ pr " | %s0 _ => %s0 w0_op.(znz_zdigits)" c c;
+ for i = 1 to size do
+ pr " | %s%i _ => reduce_%i w%i_op.(znz_zdigits)" c i i i;
+ done;
+ pr " | %sn n _ => reduce_n n (make_op n).(znz_zdigits)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold Ndigits, digits.";
+ for i = 0 to size do
+ pp " intros _; try rewrite spec_reduce_%i; exact (spec_zdigits w%i_spec)." i i;
+ done;
+ pp " intros n _; try rewrite spec_reduce_n; exact (spec_zdigits (wn_spec n)).";
+ pp " Qed.";
+ pr "";
+
+
+ (* Shiftr *)
+ for i = 0 to size do
+ pr " Definition shiftr%i n x := w%i_op.(znz_add_mul_div) (w%i_op.(znz_sub) w%i_op.(znz_zdigits) n) w%i_op.(znz_0) x." i i i i i;
+ done;
+ pr " Definition shiftrn n p x := (make_op n).(znz_add_mul_div) ((make_op n).(znz_sub) (make_op n).(znz_zdigits) p) (make_op n).(znz_0) x.";
+ pr "";
+
+ pr " Definition shiftr := Eval lazy beta delta [same_level] in ";
+ pr " same_level _ (fun n x => %s0 (shiftr0 n x))" c;
+ for i = 1 to size do
+ pr " (fun n x => reduce_%i (shiftr%i n x))" i i;
+ done;
+ pr " (fun n p x => reduce_n n (shiftrn n p x)).";
+ pr "";
+
+
+ pr " Theorem spec_shiftr: forall n x,";
+ pr " [n] <= [Ndigits x] -> [shiftr n x] = [x] / 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x y, x - (x - y) = y).";
+ pp " intros; ring.";
+ pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
+ pp " intros x y z HH HH1 HH2.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
+ pp " apply Zdiv_le_upper_bound; auto with zarith.";
+ pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
+ pp " apply Zmult_le_compat_l; auto.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite Zpower_0_r; ring.";
+ pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
+ pp " intros xx y HH HH1.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with xx; auto with zarith.";
+ pp " apply Zpower2_lt_lin; auto with zarith.";
+ pp " assert (F4: forall ww ww1 ww2 ";
+ pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
+ pp " xx yy xx1 yy1,";
+ pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_zdigits ww1_op) ->";
+ pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
+ pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
+ pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
+ pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
+ pp " znz_to_Z ww_op";
+ pp " (znz_add_mul_div ww_op (znz_sub ww_op (znz_zdigits ww_op) yy1)";
+ pp " (znz_0 ww_op) xx1) = znz_to_Z ww1_op xx / 2 ^ znz_to_Z ww2_op yy).";
+ pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
+ pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
+ pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
+ pp " rewrite <- Hx.";
+ pp " rewrite <- Hy.";
+ pp " generalize (spec_add_mul_div Hw";
+ pp " (znz_0 ww_op) xx1";
+ pp " (znz_sub ww_op (znz_zdigits ww_op) ";
+ pp " yy1)";
+ pp " ).";
+ pp " rewrite (spec_0 Hw).";
+ pp " rewrite Zmult_0_l; rewrite Zplus_0_l.";
+ pp " rewrite (CyclicAxioms.spec_sub Hw).";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " rewrite (spec_zdigits Hw).";
+ pp " rewrite F0.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " unfold base; rewrite (spec_zdigits Hw) in Hl1 |- *;";
+ pp " auto with zarith.";
+ pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
+ pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
+ pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
+ pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
+ pp " rewrite make_op_S.";
+ pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
+ pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
+ pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
+ pp " apply F5; auto with arith.";
+ pp " intros x; case x; clear x; unfold shiftr, same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; unfold shiftr%i, Ndigits." i;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits w%i_spec)." j;
+ pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
+ pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
+
+ done;
+ pp " intros y; unfold shiftr%i, Ndigits." i;
+ pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
+ for j = i + 1 to size do
+ pp " intros y; unfold shiftr%i, Ndigits." j;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
+ pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
+ done;
+ if i == size then
+ begin
+ pp " intros m y; unfold shiftrn, Ndigits.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
+ pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
+ end
+ else
+ begin
+ pp " intros m y; unfold shiftrn, Ndigits.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
+ pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
+ end
+ done;
+ pp " intros n x y; case y; clear y;";
+ pp " intros y; unfold shiftrn, Ndigits; try rewrite spec_reduce_n.";
+ for i = 0 to size do
+ pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits (wn_spec n)).";
+ pp " apply Zle_trans with (2 := F6 n).";
+ pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
+ if i == size then
+ pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
+ else
+ pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in n); auto." size;
+ if i <> size then
+ pp " try (rewrite <- spec_extend%in%i; auto)." i size;
+ done;
+ pp " generalize y; clear y; intros m y.";
+ pp " rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
+ pp " rewrite (spec_zdigits (wn_spec m)).";
+ pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
+ pp " apply F5; auto with arith.";
+ pp " exact (spec_cast_r n m y).";
+ pp " exact (spec_cast_l n m x).";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition safe_shiftr n x := ";
+ pr " match compare n (Ndigits x) with";
+ pr " | Lt => shiftr n x ";
+ pr " | _ => %s0 w_0" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_safe_shiftr: forall n x,";
+ pr " [safe_shiftr n x] = [x] / 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n x; unfold safe_shiftr;";
+ pp " generalize (spec_compare n (Ndigits x)); case compare; intros H.";
+ pp " apply trans_equal with (1 := spec_0 w0_spec).";
+ pp " apply sym_equal; apply Zdiv_small; rewrite H.";
+ pp " rewrite spec_Ndigits; exact (spec_digits x).";
+ pp " rewrite <- spec_shiftr; auto with zarith.";
+ pp " apply trans_equal with (1 := spec_0 w0_spec).";
+ pp " apply sym_equal; apply Zdiv_small.";
+ pp " rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.";
+ pp " split; auto.";
+ pp " apply Zlt_le_trans with (1 := H2).";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr "";
+
+ (* Shiftl *)
+ for i = 0 to size do
+ pr " Definition shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i
+ done;
+ pr " Definition shiftln n p x := (make_op n).(znz_add_mul_div) p x (make_op n).(znz_0).";
+ pr " Definition shiftl := Eval lazy beta delta [same_level] in";
+ pr " same_level _ (fun n x => %s0 (shiftl0 n x))" c;
+ for i = 1 to size do
+ pr " (fun n x => reduce_%i (shiftl%i n x))" i i;
+ done;
+ pr " (fun n p x => reduce_n n (shiftln n p x)).";
+ pr "";
+ pr "";
+
+
+ pr " Theorem spec_shiftl: forall n x,";
+ pr " [n] <= [head0 x] -> [shiftl n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x y, x - (x - y) = y).";
+ pp " intros; ring.";
+ pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
+ pp " intros x y z HH HH1 HH2.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
+ pp " apply Zdiv_le_upper_bound; auto with zarith.";
+ pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
+ pp " apply Zmult_le_compat_l; auto.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite Zpower_0_r; ring.";
+ pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
+ pp " intros xx y HH HH1.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with xx; auto with zarith.";
+ pp " apply Zpower2_lt_lin; auto with zarith.";
+ pp " assert (F4: forall ww ww1 ww2 ";
+ pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
+ pp " xx yy xx1 yy1,";
+ pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_head0 ww1_op xx) ->";
+ pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
+ pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
+ pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
+ pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
+ pp " znz_to_Z ww_op";
+ pp " (znz_add_mul_div ww_op yy1";
+ pp " xx1 (znz_0 ww_op)) = znz_to_Z ww1_op xx * 2 ^ znz_to_Z ww2_op yy).";
+ pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
+ pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
+ pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
+ pp " rewrite <- Hx.";
+ pp " rewrite <- Hy.";
+ pp " generalize (spec_add_mul_div Hw xx1 (znz_0 ww_op) yy1).";
+ pp " rewrite (spec_0 Hw).";
+ pp " assert (F1: znz_to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (znz_digits ww1_op)).";
+ pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
+ pp " apply Zlt_le_weak.";
+ pp " case (CyclicAxioms.spec_head0 Hw1 xx).";
+ pp " rewrite <- Hx; auto.";
+ pp " intros _ Hu; unfold base in Hu.";
+ pp " case (Zle_or_lt (Zpos (znz_digits ww1_op))";
+ pp " (znz_to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1.";
+ pp " absurd (2 ^ (Zpos (znz_digits ww1_op)) <= 2 ^ (znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " apply Zlt_not_le.";
+ pp " case (spec_to_Z Hw1 xx); intros HHx3 HHx4.";
+ pp " rewrite <- (Zmult_1_r (2 ^ znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " apply Zle_lt_trans with (2 := Hu).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
+ pp " rewrite Zdiv_0_l; auto with zarith.";
+ pp " rewrite Zplus_0_r.";
+ pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " intros HH; apply HH.";
+ pp " rewrite Hy; apply Zle_trans with (1:= Hl).";
+ pp " rewrite <- (spec_zdigits Hw). ";
+ pp " apply Zle_trans with (2 := Hl1); auto.";
+ pp " rewrite (spec_zdigits Hw1); auto with zarith.";
+ pp " split; auto with zarith .";
+ pp " apply Zlt_le_trans with (base (znz_digits ww1_op)).";
+ pp " rewrite Hx.";
+ pp " case (CyclicAxioms.spec_head0 Hw1 xx); auto.";
+ pp " rewrite <- Hx; auto.";
+ pp " intros _ Hu; rewrite Zmult_comm in Hu.";
+ pp " apply Zle_lt_trans with (2 := Hu).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " unfold base; apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
+ pp " rewrite <- HH5.";
+ pp " rewrite Zmult_0_l.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " intros HH; apply HH.";
+ pp " rewrite Hy; apply Zle_trans with (1 := Hl).";
+ pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
+ pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
+ pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
+ pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
+ pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
+ pp " rewrite make_op_S.";
+ pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
+ pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
+ pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
+ pp " apply F5; auto with arith.";
+ pp " intros x; case x; clear x; unfold shiftl, same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; unfold shiftl%i, head0." i;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits w%i_spec)." j;
+ pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
+ pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
+ done;
+ pp " intros y; unfold shiftl%i, head0." i;
+ pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
+ for j = i + 1 to size do
+ pp " intros y; unfold shiftl%i, head0." j;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
+ pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
+ done;
+ if i == size then
+ begin
+ pp " intros m y; unfold shiftln, head0.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
+ pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
+ end
+ else
+ begin
+ pp " intros m y; unfold shiftln, head0.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
+ pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
+ end
+ done;
+ pp " intros n x y; case y; clear y;";
+ pp " intros y; unfold shiftln, head0; try rewrite spec_reduce_n.";
+ for i = 0 to size do
+ pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits (wn_spec n)).";
+ pp " apply Zle_trans with (2 := F6 n).";
+ pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
+ if i == size then
+ pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
+ else
+ pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in n); auto." size;
+ if i <> size then
+ pp " try (rewrite <- spec_extend%in%i; auto)." i size;
+ done;
+ pp " generalize y; clear y; intros m y.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
+ pp " rewrite (spec_zdigits (wn_spec m)).";
+ pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
+ pp " apply F5; auto with arith.";
+ pp " exact (spec_cast_r n m y).";
+ pp " exact (spec_cast_l n m x).";
+ pp " Qed.";
+ pr "";
+
+ (* Double size *)
+ pr " Definition double_size w := match w with";
+ for i = 0 to size-1 do
+ pr " | %s%i x => %s%i (WW (znz_0 w%i_op) x)" c i c (i + 1) i;
+ done;
+ pr " | %s%i x => %sn 0 (WW (znz_0 w%i_op) x)" c size c size;
+ pr " | %sn n x => %sn (S n) (WW (znz_0 (make_op n)) x)" c c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_double_size_digits: ";
+ pr " forall x, digits (double_size x) = xO (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold double_size, digits; clear x; auto.";
+ pp " intros n x; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Theorem spec_double_size: forall x, [double_size x] = [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold double_size; clear x.";
+ for i = 0 to size do
+ pp " intros x; unfold to_Z, make_op; ";
+ pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto with zarith." (i + 1) i;
+ done;
+ pp " intros n x; unfold to_Z;";
+ pp " generalize (znz_to_Z_n n); simpl word.";
+ pp " intros HH; rewrite HH; clear HH.";
+ pp " generalize (spec_0 (wn_spec n)); simpl word.";
+ pp " intros HH; rewrite HH; clear HH; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Theorem spec_double_size_head0: ";
+ pr " forall x, 2 * [head0 x] <= [head0 (double_size x)].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x.";
+ pp " assert (F1:= spec_pos (head0 x)).";
+ pp " assert (F2: 0 < Zpos (digits x)).";
+ pp " red; auto.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.";
+ pp " generalize HH; rewrite <- (spec_double_size x); intros HH1.";
+ pp " case (spec_head0 x HH); intros _ HH2.";
+ pp " case (spec_head0 _ HH1).";
+ pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
+ pp " intros HH3 _.";
+ pp " case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.";
+ pp " absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.";
+ pp " apply Zle_not_lt.";
+ pp " apply Zmult_le_compat_r; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto; auto with zarith.";
+ pp " generalize (spec_pos (head0 (double_size x))); auto with zarith.";
+ pp " assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).";
+ pp " case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.";
+ pp " apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.";
+ pp " rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.";
+ pp " assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].";
+ pp " apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " rewrite Zpower_1_r; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith. ";
+ pp " case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.";
+ pp " absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.";
+ pp " rewrite <- HH5; rewrite Zmult_1_r.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite (Zmult_comm 2).";
+ pp " rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2.";
+ pp " apply Zlt_le_trans with (2 := HH3).";
+ pp " rewrite <- Zmult_assoc.";
+ pp " replace (Zpos (xO (digits x)) - 1) with";
+ pp " ((Zpos (digits x) - 1) + (Zpos (digits x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " apply Zmult_lt_compat2; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " apply Zmult_lt_0_compat; auto with zarith.";
+ pp " rewrite Zpos_xO; ring.";
+ pp " apply Zlt_le_weak; auto.";
+ pp " repeat rewrite spec_head00; auto.";
+ pp " rewrite spec_double_size_digits.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " rewrite spec_double_size; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_double_size_head0_pos: ";
+ pr " forall x, 0 < [head0 (double_size x)].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x.";
+ pp " assert (F: 0 < Zpos (digits x)).";
+ pp " red; auto.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.";
+ pp " apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.";
+ pp " generalize F3; rewrite <- (spec_double_size x); intros F4.";
+ pp " absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).";
+ pp " apply Zle_not_lt.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " case (spec_head0 x F3).";
+ pp " rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.";
+ pp " apply Zle_lt_trans with (2 := HH).";
+ pp " case (spec_head0 _ F4).";
+ pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
+ pp " rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.";
+ pp " generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ (* Safe shiftl *)
+
+ pr " Definition safe_shiftl_aux_body cont n x :=";
+ pr " match compare n (head0 x) with";
+ pr " Gt => cont n (double_size x)";
+ pr " | _ => shiftl n x";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_safe_shift_aux_body: forall n p x cont,";
+ pr " 2^ Zpos p <= [head0 x] ->";
+ pr " (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->";
+ pr " [cont n x] = [x] * 2 ^ [n]) ->";
+ pr " [safe_shiftl_aux_body cont n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n p x cont H1 H2; unfold safe_shiftl_aux_body.";
+ pp " generalize (spec_compare n (head0 x)); case compare; intros H.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite H2.";
+ pp " rewrite spec_double_size; auto.";
+ pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
+ pp " apply Zle_trans with (2 := spec_double_size_head0 x).";
+ pp " rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Fixpoint safe_shiftl_aux p cont n x {struct p} :=";
+ pr " safe_shiftl_aux_body ";
+ pr " (fun n x => match p with";
+ pr " | xH => cont n x";
+ pr " | xO p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
+ pr " | xI p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
+ pr " end) n x.";
+ pr "";
+
+ pr " Theorem spec_safe_shift_aux: forall p q n x cont,";
+ pr " 2 ^ (Zpos q) <= [head0 x] ->";
+ pr " (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->";
+ pr " [cont n x] = [x] * 2 ^ [n]) -> ";
+ pr " [safe_shiftl_aux p cont n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros p; elim p; unfold safe_shiftl_aux; fold safe_shiftl_aux; clear p.";
+ pp " intros p Hrec q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " intros x1 H3; apply Hrec with (q + 1)%spositive; auto." "%";
+ pp " intros x2 H4; apply Hrec with (p + q + 1)%spositive; auto." "%";
+ pp " rewrite <- Pplus_assoc.";
+ pp " rewrite Zpos_plus_distr; auto.";
+ pp " intros x3 H5; apply H2.";
+ pp " rewrite Zpos_xI.";
+ pp " replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));";
+ pp " auto.";
+ pp " repeat rewrite Zpos_plus_distr; ring.";
+ pp " intros p Hrec q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " intros x1 H3; apply Hrec with (q); auto.";
+ pp " apply Zle_trans with (2 := H3); auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " intros x2 H4; apply Hrec with (p + q)%spositive; auto." "%";
+ pp " intros x3 H5; apply H2.";
+ pp " rewrite (Zpos_xO p).";
+ pp " replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));";
+ pp " auto.";
+ pp " repeat rewrite Zpos_plus_distr; ring.";
+ pp " intros q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " rewrite Zplus_comm; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Definition safe_shiftl n x :=";
+ pr " safe_shiftl_aux_body";
+ pr " (safe_shiftl_aux_body";
+ pr " (safe_shiftl_aux (digits n) shiftl)) n x.";
+ pr "";
+
+ pr " Theorem spec_safe_shift: forall n x,";
+ pr " [safe_shiftl n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n x; unfold safe_shiftl, safe_shiftl_aux_body.";
+ pp " generalize (spec_compare n (head0 x)); case compare; intros H.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite <- (spec_double_size x).";
+ pp " generalize (spec_compare n (head0 (double_size x))); case compare; intros H1.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite <- (spec_double_size (double_size x)).";
+ pp " apply spec_safe_shift_aux with 1%spositive." "%";
+ pp " apply Zle_trans with (2 := spec_double_size_head0 (double_size x)).";
+ pp " replace (2 ^ 1) with (2 * 1).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " generalize (spec_double_size_head0_pos x); auto with zarith.";
+ pp " rewrite Zpower_1_r; ring.";
+ pp " intros x1 H2; apply spec_shiftl.";
+ pp " apply Zle_trans with (2 := H2).";
+ pp " apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.";
+ pp " case (spec_digits n); auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ (* even *)
+ pr " Definition is_even x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => w%i_op.(znz_is_even) wx" c i i
+ done;
+ pr " | %sn n wx => (make_op n).(znz_is_even) wx" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_is_even: forall x,";
+ pr " if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold is_even, to_Z; clear x.";
+ for i = 0 to size do
+ pp " intros x; exact (spec_is_even w%i_spec x)." i;
+ done;
+ pp " intros n x; exact (spec_is_even (wn_spec n) x).";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_0: [zero] = 0.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " exact (spec_0 w0_spec).";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_1: [one] = 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " exact (spec_1 w0_spec).";
+ pp " Qed.";
+ pr "";
+
+ pr "End Make.";
+ pr "";
+
diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v
new file mode 100644
index 00000000..ae2cfd30
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/Nbasic.v
@@ -0,0 +1,514 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: Nbasic.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import Max.
+Require Import DoubleType.
+Require Import DoubleBase.
+Require Import CyclicAxioms.
+Require Import DoubleCyclic.
+
+(* To compute the necessary height *)
+
+Fixpoint plength (p: positive) : positive :=
+ match p with
+ xH => xH
+ | xO p1 => Psucc (plength p1)
+ | xI p1 => Psucc (plength p1)
+ end.
+
+Theorem plength_correct: forall p, (Zpos p < 2 ^ Zpos (plength p))%Z.
+assert (F: (forall p, 2 ^ (Zpos (Psucc p)) = 2 * 2 ^ Zpos p)%Z).
+intros p; replace (Zpos (Psucc p)) with (1 + Zpos p)%Z.
+rewrite Zpower_exp; auto with zarith.
+rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
+intros p; elim p; simpl plength; auto.
+intros p1 Hp1; rewrite F; repeat rewrite Zpos_xI.
+assert (tmp: (forall p, 2 * p = p + p)%Z);
+ try repeat rewrite tmp; auto with zarith.
+intros p1 Hp1; rewrite F; rewrite (Zpos_xO p1).
+assert (tmp: (forall p, 2 * p = p + p)%Z);
+ try repeat rewrite tmp; auto with zarith.
+rewrite Zpower_1_r; auto with zarith.
+Qed.
+
+Theorem plength_pred_correct: forall p, (Zpos p <= 2 ^ Zpos (plength (Ppred p)))%Z.
+intros p; case (Psucc_pred p); intros H1.
+subst; simpl plength.
+rewrite Zpower_1_r; auto with zarith.
+pattern p at 1; rewrite <- H1.
+rewrite Zpos_succ_morphism; unfold Zsucc; auto with zarith.
+generalize (plength_correct (Ppred p)); auto with zarith.
+Qed.
+
+Definition Pdiv p q :=
+ match Zdiv (Zpos p) (Zpos q) with
+ Zpos q1 => match (Zpos p) - (Zpos q) * (Zpos q1) with
+ Z0 => q1
+ | _ => (Psucc q1)
+ end
+ | _ => xH
+ end.
+
+Theorem Pdiv_le: forall p q,
+ Zpos p <= Zpos q * Zpos (Pdiv p q).
+intros p q.
+unfold Pdiv.
+assert (H1: Zpos q > 0); auto with zarith.
+assert (H1b: Zpos p >= 0); auto with zarith.
+generalize (Z_div_ge0 (Zpos p) (Zpos q) H1 H1b).
+generalize (Z_div_mod_eq (Zpos p) (Zpos q) H1); case Zdiv.
+ intros HH _; rewrite HH; rewrite Zmult_0_r; rewrite Zmult_1_r; simpl.
+case (Z_mod_lt (Zpos p) (Zpos q) H1); auto with zarith.
+intros q1 H2.
+replace (Zpos p - Zpos q * Zpos q1) with (Zpos p mod Zpos q).
+ 2: pattern (Zpos p) at 2; rewrite H2; auto with zarith.
+generalize H2 (Z_mod_lt (Zpos p) (Zpos q) H1); clear H2;
+ case Zmod.
+ intros HH _; rewrite HH; auto with zarith.
+ intros r1 HH (_,HH1); rewrite HH; rewrite Zpos_succ_morphism.
+ unfold Zsucc; rewrite Zmult_plus_distr_r; auto with zarith.
+ intros r1 _ (HH,_); case HH; auto.
+intros q1 HH; rewrite HH.
+unfold Zge; simpl Zcompare; intros HH1; case HH1; auto.
+Qed.
+
+Definition is_one p := match p with xH => true | _ => false end.
+
+Theorem is_one_one: forall p, is_one p = true -> p = xH.
+intros p; case p; auto; intros p1 H1; discriminate H1.
+Qed.
+
+Definition get_height digits p :=
+ let r := Pdiv p digits in
+ if is_one r then xH else Psucc (plength (Ppred r)).
+
+Theorem get_height_correct:
+ forall digits N,
+ Zpos N <= Zpos digits * (2 ^ (Zpos (get_height digits N) -1)).
+intros digits N.
+unfold get_height.
+assert (H1 := Pdiv_le N digits).
+case_eq (is_one (Pdiv N digits)); intros H2.
+rewrite (is_one_one _ H2) in H1.
+rewrite Zmult_1_r in H1.
+change (2^(1-1))%Z with 1; rewrite Zmult_1_r; auto.
+clear H2.
+apply Zle_trans with (1 := H1).
+apply Zmult_le_compat_l; auto with zarith.
+rewrite Zpos_succ_morphism; unfold Zsucc.
+rewrite Zplus_comm; rewrite Zminus_plus.
+apply plength_pred_correct.
+Qed.
+
+Definition zn2z_word_comm : forall w n, zn2z (word w n) = word (zn2z w) n.
+ fix zn2z_word_comm 2.
+ intros w n; case n.
+ reflexivity.
+ intros n0;simpl.
+ case (zn2z_word_comm w n0).
+ reflexivity.
+Defined.
+
+Fixpoint extend (n:nat) {struct n} : forall w:Type, zn2z w -> word w (S n) :=
+ match n return forall w:Type, zn2z w -> word w (S n) with
+ | O => fun w x => x
+ | S m =>
+ let aux := extend m in
+ fun w x => WW W0 (aux w x)
+ end.
+
+Section ExtendMax.
+
+Open Scope nat_scope.
+
+Fixpoint plusnS (n m: nat) {struct n} : (n + S m = S (n + m))%nat :=
+ match n return (n + S m = S (n + m))%nat with
+ | 0 => refl_equal (S m)
+ | S n1 =>
+ let v := S (S n1 + m) in
+ eq_ind_r (fun n => S n = v) (refl_equal v) (plusnS n1 m)
+ end.
+
+Fixpoint plusn0 n : n + 0 = n :=
+ match n return (n + 0 = n) with
+ | 0 => refl_equal 0
+ | S n1 =>
+ let v := S n1 in
+ eq_ind_r (fun n : nat => S n = v) (refl_equal v) (plusn0 n1)
+ end.
+
+ Fixpoint diff (m n: nat) {struct m}: nat * nat :=
+ match m, n with
+ O, n => (O, n)
+ | m, O => (m, O)
+ | S m1, S n1 => diff m1 n1
+ end.
+
+Fixpoint diff_l (m n : nat) {struct m} : fst (diff m n) + n = max m n :=
+ match m return fst (diff m n) + n = max m n with
+ | 0 =>
+ match n return (n = max 0 n) with
+ | 0 => refl_equal _
+ | S n0 => refl_equal _
+ end
+ | S m1 =>
+ match n return (fst (diff (S m1) n) + n = max (S m1) n)
+ with
+ | 0 => plusn0 _
+ | S n1 =>
+ let v := fst (diff m1 n1) + n1 in
+ let v1 := fst (diff m1 n1) + S n1 in
+ eq_ind v (fun n => v1 = S n)
+ (eq_ind v1 (fun n => v1 = n) (refl_equal v1) (S v) (plusnS _ _))
+ _ (diff_l _ _)
+ end
+ end.
+
+Fixpoint diff_r (m n: nat) {struct m}: snd (diff m n) + m = max m n :=
+ match m return (snd (diff m n) + m = max m n) with
+ | 0 =>
+ match n return (snd (diff 0 n) + 0 = max 0 n) with
+ | 0 => refl_equal _
+ | S _ => plusn0 _
+ end
+ | S m =>
+ match n return (snd (diff (S m) n) + S m = max (S m) n) with
+ | 0 => refl_equal (snd (diff (S m) 0) + S m)
+ | S n1 =>
+ let v := S (max m n1) in
+ eq_ind_r (fun n => n = v)
+ (eq_ind_r (fun n => S n = v)
+ (refl_equal v) (diff_r _ _)) (plusnS _ _)
+ end
+ end.
+
+ Variable w: Type.
+
+ Definition castm (m n: nat) (H: m = n) (x: word w (S m)):
+ (word w (S n)) :=
+ match H in (_ = y) return (word w (S y)) with
+ | refl_equal => x
+ end.
+
+Variable m: nat.
+Variable v: (word w (S m)).
+
+Fixpoint extend_tr (n : nat) {struct n}: (word w (S (n + m))) :=
+ match n return (word w (S (n + m))) with
+ | O => v
+ | S n1 => WW W0 (extend_tr n1)
+ end.
+
+End ExtendMax.
+
+Implicit Arguments extend_tr[w m].
+Implicit Arguments castm[w m n].
+
+
+
+Section Reduce.
+
+ Variable w : Type.
+ Variable nT : Type.
+ Variable N0 : nT.
+ Variable eq0 : w -> bool.
+ Variable reduce_n : w -> nT.
+ Variable zn2z_to_Nt : zn2z w -> nT.
+
+ Definition reduce_n1 (x:zn2z w) :=
+ match x with
+ | W0 => N0
+ | WW xh xl =>
+ if eq0 xh then reduce_n xl
+ else zn2z_to_Nt x
+ end.
+
+End Reduce.
+
+Section ReduceRec.
+
+ Variable w : Type.
+ Variable nT : Type.
+ Variable N0 : nT.
+ Variable reduce_1n : zn2z w -> nT.
+ Variable c : forall n, word w (S n) -> nT.
+
+ Fixpoint reduce_n (n:nat) : word w (S n) -> nT :=
+ match n return word w (S n) -> nT with
+ | O => reduce_1n
+ | S m => fun x =>
+ match x with
+ | W0 => N0
+ | WW xh xl =>
+ match xh with
+ | W0 => @reduce_n m xl
+ | _ => @c (S m) x
+ end
+ end
+ end.
+
+End ReduceRec.
+
+Definition opp_compare cmp :=
+ match cmp with
+ | Lt => Gt
+ | Eq => Eq
+ | Gt => Lt
+ end.
+
+Section CompareRec.
+
+ Variable wm w : Type.
+ Variable w_0 : w.
+ Variable compare : w -> w -> comparison.
+ Variable compare0_m : wm -> comparison.
+ Variable compare_m : wm -> w -> comparison.
+
+ Fixpoint compare0_mn (n:nat) : word wm n -> comparison :=
+ match n return word wm n -> comparison with
+ | O => compare0_m
+ | S m => fun x =>
+ match x with
+ | W0 => Eq
+ | WW xh xl =>
+ match compare0_mn m xh with
+ | Eq => compare0_mn m xl
+ | r => Lt
+ end
+ end
+ end.
+
+ Variable wm_base: positive.
+ Variable wm_to_Z: wm -> Z.
+ Variable w_to_Z: w -> Z.
+ Variable w_to_Z_0: w_to_Z w_0 = 0.
+ Variable spec_compare0_m: forall x,
+ match compare0_m x with
+ Eq => w_to_Z w_0 = wm_to_Z x
+ | Lt => w_to_Z w_0 < wm_to_Z x
+ | Gt => w_to_Z w_0 > wm_to_Z x
+ end.
+ Variable wm_to_Z_pos: forall x, 0 <= wm_to_Z x < base wm_base.
+
+ Let double_to_Z := double_to_Z wm_base wm_to_Z.
+ Let double_wB := double_wB wm_base.
+
+ Lemma base_xO: forall n, base (xO n) = (base n)^2.
+ Proof.
+ intros n1; unfold base.
+ rewrite (Zpos_xO n1); rewrite Zmult_comm; rewrite Zpower_mult; auto with zarith.
+ Qed.
+
+ Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
+ (spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).
+
+
+ Lemma spec_compare0_mn: forall n x,
+ match compare0_mn n x with
+ Eq => 0 = double_to_Z n x
+ | Lt => 0 < double_to_Z n x
+ | Gt => 0 > double_to_Z n x
+ end.
+ Proof.
+ intros n; elim n; clear n; auto.
+ intros x; generalize (spec_compare0_m x); rewrite w_to_Z_0; auto.
+ intros n Hrec x; case x; unfold compare0_mn; fold compare0_mn; auto.
+ intros xh xl.
+ generalize (Hrec xh); case compare0_mn; auto.
+ generalize (Hrec xl); case compare0_mn; auto.
+ simpl double_to_Z; intros H1 H2; rewrite H1; rewrite <- H2; auto.
+ simpl double_to_Z; intros H1 H2; rewrite <- H2; auto.
+ case (double_to_Z_pos n xl); auto with zarith.
+ intros H1; simpl double_to_Z.
+ set (u := DoubleBase.double_wB wm_base n).
+ case (double_to_Z_pos n xl); intros H2 H3.
+ assert (0 < u); auto with zarith.
+ unfold u, DoubleBase.double_wB, base; auto with zarith.
+ change 0 with (0 + 0); apply Zplus_lt_le_compat; auto with zarith.
+ apply Zmult_lt_0_compat; auto with zarith.
+ case (double_to_Z_pos n xh); auto with zarith.
+ Qed.
+
+ Fixpoint compare_mn_1 (n:nat) : word wm n -> w -> comparison :=
+ match n return word wm n -> w -> comparison with
+ | O => compare_m
+ | S m => fun x y =>
+ match x with
+ | W0 => compare w_0 y
+ | WW xh xl =>
+ match compare0_mn m xh with
+ | Eq => compare_mn_1 m xl y
+ | r => Gt
+ end
+ end
+ end.
+
+ Variable spec_compare: forall x y,
+ match compare x y with
+ Eq => w_to_Z x = w_to_Z y
+ | Lt => w_to_Z x < w_to_Z y
+ | Gt => w_to_Z x > w_to_Z y
+ end.
+ Variable spec_compare_m: forall x y,
+ match compare_m x y with
+ Eq => wm_to_Z x = w_to_Z y
+ | Lt => wm_to_Z x < w_to_Z y
+ | Gt => wm_to_Z x > w_to_Z y
+ end.
+ Variable wm_base_lt: forall x,
+ 0 <= w_to_Z x < base (wm_base).
+
+ Let double_wB_lt: forall n x,
+ 0 <= w_to_Z x < (double_wB n).
+ Proof.
+ intros n x; elim n; simpl; auto; clear n.
+ intros n (H0, H); split; auto.
+ apply Zlt_le_trans with (1:= H).
+ unfold double_wB, DoubleBase.double_wB; simpl.
+ rewrite base_xO.
+ set (u := base (double_digits wm_base n)).
+ assert (0 < u).
+ unfold u, base; auto with zarith.
+ replace (u^2) with (u * u); simpl; auto with zarith.
+ apply Zle_trans with (1 * u); auto with zarith.
+ unfold Zpower_pos; simpl; ring.
+ Qed.
+
+
+ Lemma spec_compare_mn_1: forall n x y,
+ match compare_mn_1 n x y with
+ Eq => double_to_Z n x = w_to_Z y
+ | Lt => double_to_Z n x < w_to_Z y
+ | Gt => double_to_Z n x > w_to_Z y
+ end.
+ Proof.
+ intros n; elim n; simpl; auto; clear n.
+ intros n Hrec x; case x; clear x; auto.
+ intros y; generalize (spec_compare w_0 y); rewrite w_to_Z_0; case compare; auto.
+ intros xh xl y; simpl; generalize (spec_compare0_mn n xh); case compare0_mn; intros H1b.
+ rewrite <- H1b; rewrite Zmult_0_l; rewrite Zplus_0_l; auto.
+ apply Hrec.
+ apply Zlt_gt.
+ case (double_wB_lt n y); intros _ H0.
+ apply Zlt_le_trans with (1:= H0).
+ fold double_wB.
+ case (double_to_Z_pos n xl); intros H1 H2.
+ apply Zle_trans with (double_to_Z n xh * double_wB n); auto with zarith.
+ apply Zle_trans with (1 * double_wB n); auto with zarith.
+ case (double_to_Z_pos n xh); auto with zarith.
+ Qed.
+
+End CompareRec.
+
+
+Section AddS.
+
+ Variable w wm : Type.
+ Variable incr : wm -> carry wm.
+ Variable addr : w -> wm -> carry wm.
+ Variable injr : w -> zn2z wm.
+
+ Variable w_0 u: w.
+ Fixpoint injs (n:nat): word w (S n) :=
+ match n return (word w (S n)) with
+ O => WW w_0 u
+ | S n1 => (WW W0 (injs n1))
+ end.
+
+ Definition adds x y :=
+ match y with
+ W0 => C0 (injr x)
+ | WW hy ly => match addr x ly with
+ C0 z => C0 (WW hy z)
+ | C1 z => match incr hy with
+ C0 z1 => C0 (WW z1 z)
+ | C1 z1 => C1 (WW z1 z)
+ end
+ end
+ end.
+
+End AddS.
+
+
+ Lemma spec_opp: forall u x y,
+ match u with
+ | Eq => y = x
+ | Lt => y < x
+ | Gt => y > x
+ end ->
+ match opp_compare u with
+ | Eq => x = y
+ | Lt => x < y
+ | Gt => x > y
+ end.
+ Proof.
+ intros u x y; case u; simpl; auto with zarith.
+ Qed.
+
+ Fixpoint length_pos x :=
+ match x with xH => O | xO x1 => S (length_pos x1) | xI x1 => S (length_pos x1) end.
+
+ Theorem length_pos_lt: forall x y,
+ (length_pos x < length_pos y)%nat -> Zpos x < Zpos y.
+ Proof.
+ intros x; elim x; clear x; [intros x1 Hrec | intros x1 Hrec | idtac];
+ intros y; case y; clear y; intros y1 H || intros H; simpl length_pos;
+ try (rewrite (Zpos_xI x1) || rewrite (Zpos_xO x1));
+ try (rewrite (Zpos_xI y1) || rewrite (Zpos_xO y1));
+ try (inversion H; fail);
+ try (assert (Zpos x1 < Zpos y1); [apply Hrec; apply lt_S_n | idtac]; auto with zarith);
+ assert (0 < Zpos y1); auto with zarith; red; auto.
+ Qed.
+
+ Theorem cancel_app: forall A B (f g: A -> B) x, f = g -> f x = g x.
+ Proof.
+ intros A B f g x H; rewrite H; auto.
+ Qed.
+
+
+ Section SimplOp.
+
+ Variable w: Type.
+
+ Theorem digits_zop: forall w (x: znz_op w),
+ znz_digits (mk_zn2z_op x) = xO (znz_digits x).
+ intros ww x; auto.
+ Qed.
+
+ Theorem digits_kzop: forall w (x: znz_op w),
+ znz_digits (mk_zn2z_op_karatsuba x) = xO (znz_digits x).
+ intros ww x; auto.
+ Qed.
+
+ Theorem make_zop: forall w (x: znz_op w),
+ znz_to_Z (mk_zn2z_op x) =
+ fun z => match z with
+ W0 => 0
+ | WW xh xl => znz_to_Z x xh * base (znz_digits x)
+ + znz_to_Z x xl
+ end.
+ intros ww x; auto.
+ Qed.
+
+ Theorem make_kzop: forall w (x: znz_op w),
+ znz_to_Z (mk_zn2z_op_karatsuba x) =
+ fun z => match z with
+ W0 => 0
+ | WW xh xl => znz_to_Z x xh * base (znz_digits x)
+ + znz_to_Z x xl
+ end.
+ intros ww x; auto.
+ Qed.
+
+ End SimplOp.
diff --git a/theories/Numbers/Natural/Binary/NBinDefs.v b/theories/Numbers/Natural/Binary/NBinDefs.v
new file mode 100644
index 00000000..fc2bd2df
--- /dev/null
+++ b/theories/Numbers/Natural/Binary/NBinDefs.v
@@ -0,0 +1,267 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NBinDefs.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import BinPos.
+Require Export BinNat.
+Require Import NSub.
+
+Open Local Scope N_scope.
+
+(** Implementation of [NAxiomsSig] module type via [BinNat.N] *)
+
+Module NBinaryAxiomsMod <: NAxiomsSig.
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := N.
+Definition NZeq := @eq N.
+Definition NZ0 := N0.
+Definition NZsucc := Nsucc.
+Definition NZpred := Npred.
+Definition NZadd := Nplus.
+Definition NZsub := Nminus.
+Definition NZmul := Nmult.
+
+Theorem NZeq_equiv : equiv N NZeq.
+Proof (eq_equiv N).
+
+Add Relation N NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZinduction :
+ forall A : NZ -> Prop, predicate_wd NZeq A ->
+ A N0 -> (forall n, A n <-> A (NZsucc n)) -> forall n : NZ, A n.
+Proof.
+intros A A_wd A0 AS. apply Nrect. assumption. intros; now apply -> AS.
+Qed.
+
+Theorem NZpred_succ : forall n : NZ, NZpred (NZsucc n) = n.
+Proof.
+destruct n as [| p]; simpl. reflexivity.
+case_eq (Psucc p); try (intros q H; rewrite <- H; now rewrite Ppred_succ).
+intro H; false_hyp H Psucc_not_one.
+Qed.
+
+Theorem NZadd_0_l : forall n : NZ, N0 + n = n.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZadd_succ_l : forall n m : NZ, (NZsucc n) + m = NZsucc (n + m).
+Proof.
+destruct n; destruct m.
+simpl in |- *; reflexivity.
+unfold NZsucc, NZadd, Nsucc, Nplus. rewrite <- Pplus_one_succ_l; reflexivity.
+simpl in |- *; reflexivity.
+simpl in |- *; rewrite Pplus_succ_permute_l; reflexivity.
+Qed.
+
+Theorem NZsub_0_r : forall n : NZ, n - N0 = n.
+Proof.
+now destruct n.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : NZ, n - (NZsucc m) = NZpred (n - m).
+Proof.
+destruct n as [| p]; destruct m as [| q]; try reflexivity.
+now destruct p.
+simpl. rewrite Pminus_mask_succ_r, Pminus_mask_carry_spec.
+now destruct (Pminus_mask p q) as [| r |]; [| destruct r |].
+Qed.
+
+Theorem NZmul_0_l : forall n : NZ, N0 * n = N0.
+Proof.
+destruct n; reflexivity.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : NZ, (NZsucc n) * m = n * m + m.
+Proof.
+destruct n as [| n]; destruct m as [| m]; simpl; try reflexivity.
+now rewrite Pmult_Sn_m, Pplus_comm.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := Nlt.
+Definition NZle := Nle.
+Definition NZmin := Nmin.
+Definition NZmax := Nmax.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m : N, n <= m <-> n < m \/ n = m.
+Proof.
+intros n m. unfold Nle, Nlt. rewrite <- Ncompare_eq_correct.
+destruct (n ?= m); split; intro H1; (try discriminate); try (now left); try now right.
+now elim H1. destruct H1; discriminate.
+Qed.
+
+Theorem NZlt_irrefl : forall n : NZ, ~ n < n.
+Proof.
+intro n; unfold Nlt; now rewrite Ncompare_refl.
+Qed.
+
+Theorem NZlt_succ_r : forall n m : NZ, n < (NZsucc m) <-> n <= m.
+Proof.
+intros n m; unfold Nlt, Nle; destruct n as [| p]; destruct m as [| q]; simpl;
+split; intro H; try reflexivity; try discriminate.
+destruct p; simpl; intros; discriminate. elimtype False; now apply H.
+apply -> Pcompare_p_Sq in H. destruct H as [H | H].
+now rewrite H. now rewrite H, Pcompare_refl.
+apply <- Pcompare_p_Sq. case_eq ((p ?= q)%positive Eq); intro H1.
+right; now apply Pcompare_Eq_eq. now left. elimtype False; now apply H.
+Qed.
+
+Theorem NZmin_l : forall n m : N, n <= m -> NZmin n m = n.
+Proof.
+unfold NZmin, Nmin, Nle; intros n m H.
+destruct (n ?= m); try reflexivity. now elim H.
+Qed.
+
+Theorem NZmin_r : forall n m : N, m <= n -> NZmin n m = m.
+Proof.
+unfold NZmin, Nmin, Nle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+now apply -> Ncompare_eq_correct.
+rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
+Qed.
+
+Theorem NZmax_l : forall n m : N, m <= n -> NZmax n m = n.
+Proof.
+unfold NZmax, Nmax, Nle; intros n m H.
+case_eq (n ?= m); intro H1; try reflexivity.
+symmetry; now apply -> Ncompare_eq_correct.
+rewrite <- Ncompare_antisym, H1 in H; elim H; auto.
+Qed.
+
+Theorem NZmax_r : forall n m : N, n <= m -> NZmax n m = m.
+Proof.
+unfold NZmax, Nmax, Nle; intros n m H.
+destruct (n ?= m); try reflexivity. now elim H.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition recursion (A : Type) (a : A) (f : N -> A -> A) (n : N) :=
+ Nrect (fun _ => A) a f n.
+Implicit Arguments recursion [A].
+
+Theorem pred_0 : Npred N0 = N0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem recursion_wd :
+forall (A : Type) (Aeq : relation A),
+ forall a a' : A, Aeq a a' ->
+ forall f f' : N -> A -> A, fun2_eq NZeq Aeq Aeq f f' ->
+ forall x x' : N, x = x' ->
+ Aeq (recursion a f x) (recursion a' f' x').
+Proof.
+unfold fun2_wd, NZeq, fun2_eq.
+intros A Aeq a a' Eaa' f f' Eff'.
+intro x; pattern x; apply Nrect.
+intros x' H; now rewrite <- H.
+clear x.
+intros x IH x' H; rewrite <- H.
+unfold recursion in *. do 2 rewrite Nrect_step.
+now apply Eff'; [| apply IH].
+Qed.
+
+Theorem recursion_0 :
+ forall (A : Type) (a : A) (f : N -> A -> A), recursion a f N0 = a.
+Proof.
+intros A a f; unfold recursion; now rewrite Nrect_base.
+Qed.
+
+Theorem recursion_succ :
+ forall (A : Type) (Aeq : relation A) (a : A) (f : N -> A -> A),
+ Aeq a a -> fun2_wd NZeq Aeq Aeq f ->
+ forall n : N, Aeq (recursion a f (Nsucc n)) (f n (recursion a f n)).
+Proof.
+unfold NZeq, recursion, fun2_wd; intros A Aeq a f EAaa f_wd n; pattern n; apply Nrect.
+rewrite Nrect_step; rewrite Nrect_base; now apply f_wd.
+clear n; intro n; do 2 rewrite Nrect_step; intro IH. apply f_wd; [reflexivity|].
+now rewrite Nrect_step.
+Qed.
+
+End NBinaryAxiomsMod.
+
+Module Export NBinarySubPropMod := NSubPropFunct NBinaryAxiomsMod.
+
+(* Some fun comparing the efficiency of the generic log defined
+by strong (course-of-value) recursion and the log defined by recursion
+on notation *)
+(* Time Eval compute in (log 100000). *) (* 98 sec *)
+
+(*
+Fixpoint binposlog (p : positive) : N :=
+match p with
+| xH => 0
+| xO p' => Nsucc (binposlog p')
+| xI p' => Nsucc (binposlog p')
+end.
+
+Definition binlog (n : N) : N :=
+match n with
+| 0 => 0
+| Npos p => binposlog p
+end.
+*)
+(* Eval compute in (binlog 1000000000000000000). *) (* Works very fast *)
+
diff --git a/theories/IntMap/Allmaps.v b/theories/Numbers/Natural/Binary/NBinary.v
index d5af8f80..2c99128d 100644
--- a/theories/IntMap/Allmaps.v
+++ b/theories/Numbers/Natural/Binary/NBinary.v
@@ -5,17 +5,11 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Allmaps.v 8733 2006-04-25 22:52:18Z letouzey $ i*)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NBinary.v 10934 2008-05-15 21:58:20Z letouzey $ i*)
+
+Require Export NBinDefs.
+Require Export NArithRing.
-Require Export Map.
-Require Export Fset.
-Require Export Mapaxioms.
-Require Export Mapiter.
-Require Export Mapsubset.
-Require Export Lsort.
-Require Export Mapfold.
-Require Export Mapcard.
-Require Export Mapcanon.
-Require Export Mapc.
-Require Export Maplists.
-Require Export Adalloc. \ No newline at end of file
diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v
new file mode 100644
index 00000000..1c83da45
--- /dev/null
+++ b/theories/Numbers/Natural/Peano/NPeano.v
@@ -0,0 +1,220 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NPeano.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import Arith.
+Require Import Min.
+Require Import Max.
+Require Import NSub.
+
+Module NPeanoAxiomsMod <: NAxiomsSig.
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := nat.
+Definition NZeq := (@eq nat).
+Definition NZ0 := 0.
+Definition NZsucc := S.
+Definition NZpred := pred.
+Definition NZadd := plus.
+Definition NZsub := minus.
+Definition NZmul := mult.
+
+Theorem NZeq_equiv : equiv nat NZeq.
+Proof (eq_equiv nat).
+
+Add Relation nat NZeq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+as NZeq_rel.
+
+(* If we say "Add Relation nat (@eq nat)" instead of "Add Relation nat NZeq"
+then the theorem generated for succ_wd below is forall x, succ x = succ x,
+which does not match the axioms in NAxiomsSig *)
+
+Add Morphism NZsucc with signature NZeq ==> NZeq as NZsucc_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZpred with signature NZeq ==> NZeq as NZpred_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZadd with signature NZeq ==> NZeq ==> NZeq as NZadd_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZsub with signature NZeq ==> NZeq ==> NZeq as NZsub_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmul with signature NZeq ==> NZeq ==> NZeq as NZmul_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZinduction :
+ forall A : nat -> Prop, predicate_wd (@eq nat) A ->
+ A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
+Proof.
+intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
+Qed.
+
+Theorem NZpred_succ : forall n : nat, pred (S n) = n.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZadd_0_l : forall n : nat, 0 + n = n.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZadd_succ_l : forall n m : nat, (S n) + m = S (n + m).
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZsub_0_r : forall n : nat, n - 0 = n.
+Proof.
+intro n; now destruct n.
+Qed.
+
+Theorem NZsub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
+Proof.
+intros n m; induction n m using nat_double_ind; simpl; auto. apply NZsub_0_r.
+Qed.
+
+Theorem NZmul_0_l : forall n : nat, 0 * n = 0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem NZmul_succ_l : forall n m : nat, S n * m = n * m + m.
+Proof.
+intros n m; now rewrite plus_comm.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := lt.
+Definition NZle := le.
+Definition NZmin := min.
+Definition NZmax := max.
+
+Add Morphism NZlt with signature NZeq ==> NZeq ==> iff as NZlt_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZle with signature NZeq ==> NZeq ==> iff as NZle_wd.
+Proof.
+unfold NZeq; intros x1 x2 H1 y1 y2 H2; rewrite H1; now rewrite H2.
+Qed.
+
+Add Morphism NZmin with signature NZeq ==> NZeq ==> NZeq as NZmin_wd.
+Proof.
+congruence.
+Qed.
+
+Add Morphism NZmax with signature NZeq ==> NZeq ==> NZeq as NZmax_wd.
+Proof.
+congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
+Proof.
+intros n m; split.
+apply le_lt_or_eq.
+intro H; destruct H as [H | H].
+now apply lt_le_weak. rewrite H; apply le_refl.
+Qed.
+
+Theorem NZlt_irrefl : forall n : nat, ~ (n < n).
+Proof.
+exact lt_irrefl.
+Qed.
+
+Theorem NZlt_succ_r : forall n m : nat, n < S m <-> n <= m.
+Proof.
+intros n m; split; [apply lt_n_Sm_le | apply le_lt_n_Sm].
+Qed.
+
+Theorem NZmin_l : forall n m : nat, n <= m -> NZmin n m = n.
+Proof.
+exact min_l.
+Qed.
+
+Theorem NZmin_r : forall n m : nat, m <= n -> NZmin n m = m.
+Proof.
+exact min_r.
+Qed.
+
+Theorem NZmax_l : forall n m : nat, m <= n -> NZmax n m = n.
+Proof.
+exact max_l.
+Qed.
+
+Theorem NZmax_r : forall n m : nat, n <= m -> NZmax n m = m.
+Proof.
+exact max_r.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Definition recursion : forall A : Type, A -> (nat -> A -> A) -> nat -> A :=
+ fun A : Type => nat_rect (fun _ => A).
+Implicit Arguments recursion [A].
+
+Theorem succ_neq_0 : forall n : nat, S n <> 0.
+Proof.
+intros; discriminate.
+Qed.
+
+Theorem pred_0 : pred 0 = 0.
+Proof.
+reflexivity.
+Qed.
+
+Theorem recursion_wd : forall (A : Type) (Aeq : relation A),
+ forall a a' : A, Aeq a a' ->
+ forall f f' : nat -> A -> A, fun2_eq (@eq nat) Aeq Aeq f f' ->
+ forall n n' : nat, n = n' ->
+ Aeq (recursion a f n) (recursion a' f' n').
+Proof.
+unfold fun2_eq; induction n; intros n' Enn'; rewrite <- Enn' in *; simpl; auto.
+Qed.
+
+Theorem recursion_0 :
+ forall (A : Type) (a : A) (f : nat -> A -> A), recursion a f 0 = a.
+Proof.
+reflexivity.
+Qed.
+
+Theorem recursion_succ :
+ forall (A : Type) (Aeq : relation A) (a : A) (f : nat -> A -> A),
+ Aeq a a -> fun2_wd (@eq nat) Aeq Aeq f ->
+ forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
+Proof.
+induction n; simpl; auto.
+Qed.
+
+End NPeanoAxiomsMod.
+
+(* Now we apply the largest property functor *)
+
+Module Export NPeanoSubPropMod := NSubPropFunct NPeanoAxiomsMod.
+
diff --git a/theories/Numbers/Natural/SpecViaZ/NSig.v b/theories/Numbers/Natural/SpecViaZ/NSig.v
new file mode 100644
index 00000000..0275d1e1
--- /dev/null
+++ b/theories/Numbers/Natural/SpecViaZ/NSig.v
@@ -0,0 +1,115 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NSig.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import ZArith Znumtheory.
+
+Open Scope Z_scope.
+
+(** * NSig *)
+
+(** Interface of a rich structure about natural numbers.
+ Specifications are written via translation to Z.
+*)
+
+Module Type NType.
+
+ Parameter t : Type.
+
+ Parameter to_Z : t -> Z.
+ Notation "[ x ]" := (to_Z x).
+ Parameter spec_pos: forall x, 0 <= [x].
+
+ Parameter of_N : N -> t.
+ Parameter spec_of_N: forall x, to_Z (of_N x) = Z_of_N x.
+ Definition to_N n := Zabs_N (to_Z n).
+
+ Definition eq n m := ([n] = [m]).
+
+ Parameter zero : t.
+ Parameter one : t.
+
+ Parameter spec_0: [zero] = 0.
+ Parameter spec_1: [one] = 1.
+
+ Parameter compare : t -> t -> comparison.
+
+ Parameter spec_compare: forall x y,
+ match compare x y with
+ | Eq => [x] = [y]
+ | Lt => [x] < [y]
+ | Gt => [x] > [y]
+ end.
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Parameter eq_bool : t -> t -> bool.
+
+ Parameter spec_eq_bool: forall x y,
+ if eq_bool x y then [x] = [y] else [x] <> [y].
+
+ Parameter succ : t -> t.
+
+ Parameter spec_succ: forall n, [succ n] = [n] + 1.
+
+ Parameter add : t -> t -> t.
+
+ Parameter spec_add: forall x y, [add x y] = [x] + [y].
+
+ Parameter pred : t -> t.
+
+ Parameter spec_pred: forall x, 0 < [x] -> [pred x] = [x] - 1.
+ Parameter spec_pred0: forall x, [x] = 0 -> [pred x] = 0.
+
+ Parameter sub : t -> t -> t.
+
+ Parameter spec_sub: forall x y, [y] <= [x] -> [sub x y] = [x] - [y].
+ Parameter spec_sub0: forall x y, [x] < [y]-> [sub x y] = 0.
+
+ Parameter mul : t -> t -> t.
+
+ Parameter spec_mul: forall x y, [mul x y] = [x] * [y].
+
+ Parameter square : t -> t.
+
+ Parameter spec_square: forall x, [square x] = [x] * [x].
+
+ Parameter power_pos : t -> positive -> t.
+
+ Parameter spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.
+
+ Parameter sqrt : t -> t.
+
+ Parameter spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.
+
+ Parameter div_eucl : t -> t -> t * t.
+
+ Parameter spec_div_eucl: forall x y,
+ 0 < [y] ->
+ let (q,r) := div_eucl x y in ([q], [r]) = Zdiv_eucl [x] [y].
+
+ Parameter div : t -> t -> t.
+
+ Parameter spec_div: forall x y, 0 < [y] -> [div x y] = [x] / [y].
+
+ Parameter modulo : t -> t -> t.
+
+ Parameter spec_modulo:
+ forall x y, 0 < [y] -> [modulo x y] = [x] mod [y].
+
+ Parameter gcd : t -> t -> t.
+
+ Parameter spec_gcd: forall a b, [gcd a b] = Zgcd (to_Z a) (to_Z b).
+
+End NType.
diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
new file mode 100644
index 00000000..fe068437
--- /dev/null
+++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
@@ -0,0 +1,356 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: NSigNAxioms.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+
+Require Import ZArith.
+Require Import Nnat.
+Require Import NAxioms.
+Require Import NSig.
+
+(** * The interface [NSig.NType] implies the interface [NAxiomsSig] *)
+
+Module NSig_NAxioms (N:NType) <: NAxiomsSig.
+
+Delimit Scope IntScope with Int.
+Bind Scope IntScope with N.t.
+Open Local Scope IntScope.
+Notation "[ x ]" := (N.to_Z x) : IntScope.
+Infix "==" := N.eq (at level 70) : IntScope.
+Notation "0" := N.zero : IntScope.
+Infix "+" := N.add : IntScope.
+Infix "-" := N.sub : IntScope.
+Infix "*" := N.mul : IntScope.
+
+Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig.
+Module Export NZAxiomsMod <: NZAxiomsSig.
+
+Definition NZ := N.t.
+Definition NZeq := N.eq.
+Definition NZ0 := N.zero.
+Definition NZsucc := N.succ.
+Definition NZpred := N.pred.
+Definition NZadd := N.add.
+Definition NZsub := N.sub.
+Definition NZmul := N.mul.
+
+Theorem NZeq_equiv : equiv N.t N.eq.
+Proof.
+repeat split; repeat red; intros; auto; congruence.
+Qed.
+
+Add Relation N.t N.eq
+ reflexivity proved by (proj1 NZeq_equiv)
+ symmetry proved by (proj2 (proj2 NZeq_equiv))
+ transitivity proved by (proj1 (proj2 NZeq_equiv))
+ as NZeq_rel.
+
+Add Morphism NZsucc with signature N.eq ==> N.eq as NZsucc_wd.
+Proof.
+unfold N.eq; intros; rewrite 2 N.spec_succ; f_equal; auto.
+Qed.
+
+Add Morphism NZpred with signature N.eq ==> N.eq as NZpred_wd.
+Proof.
+unfold N.eq; intros.
+generalize (N.spec_pos y) (N.spec_pos x) (N.spec_eq_bool x 0).
+destruct N.eq_bool; rewrite N.spec_0; intros.
+rewrite 2 N.spec_pred0; congruence.
+rewrite 2 N.spec_pred; f_equal; auto; try omega.
+Qed.
+
+Add Morphism NZadd with signature N.eq ==> N.eq ==> N.eq as NZadd_wd.
+Proof.
+unfold N.eq; intros; rewrite 2 N.spec_add; f_equal; auto.
+Qed.
+
+Add Morphism NZsub with signature N.eq ==> N.eq ==> N.eq as NZsub_wd.
+Proof.
+unfold N.eq; intros x x' Hx y y' Hy.
+destruct (Z_lt_le_dec [x] [y]).
+rewrite 2 N.spec_sub0; f_equal; congruence.
+rewrite 2 N.spec_sub; f_equal; congruence.
+Qed.
+
+Add Morphism NZmul with signature N.eq ==> N.eq ==> N.eq as NZmul_wd.
+Proof.
+unfold N.eq; intros; rewrite 2 N.spec_mul; f_equal; auto.
+Qed.
+
+Theorem NZpred_succ : forall n, N.pred (N.succ n) == n.
+Proof.
+unfold N.eq; intros.
+rewrite N.spec_pred; rewrite N.spec_succ.
+omega.
+generalize (N.spec_pos n); omega.
+Qed.
+
+Definition N_of_Z z := N.of_N (Zabs_N z).
+
+Section Induction.
+
+Variable A : N.t -> Prop.
+Hypothesis A_wd : predicate_wd N.eq A.
+Hypothesis A0 : A 0.
+Hypothesis AS : forall n, A n <-> A (N.succ n).
+
+Add Morphism A with signature N.eq ==> iff as A_morph.
+Proof. apply A_wd. Qed.
+
+Let B (z : Z) := A (N_of_Z z).
+
+Lemma B0 : B 0.
+Proof.
+unfold B, N_of_Z; simpl.
+rewrite <- (A_wd 0); auto.
+red; rewrite N.spec_0, N.spec_of_N; auto.
+Qed.
+
+Lemma BS : forall z : Z, (0 <= z)%Z -> B z -> B (z + 1).
+Proof.
+intros z H1 H2.
+unfold B in *. apply -> AS in H2.
+setoid_replace (N_of_Z (z + 1)) with (N.succ (N_of_Z z)); auto.
+unfold N.eq. rewrite N.spec_succ.
+unfold N_of_Z.
+rewrite 2 N.spec_of_N, 2 Z_of_N_abs, 2 Zabs_eq; auto with zarith.
+Qed.
+
+Lemma B_holds : forall z : Z, (0 <= z)%Z -> B z.
+Proof.
+exact (natlike_ind B B0 BS).
+Qed.
+
+Theorem NZinduction : forall n, A n.
+Proof.
+intro n. setoid_replace n with (N_of_Z (N.to_Z n)).
+apply B_holds. apply N.spec_pos.
+red; unfold N_of_Z.
+rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto.
+apply N.spec_pos.
+Qed.
+
+End Induction.
+
+Theorem NZadd_0_l : forall n, 0 + n == n.
+Proof.
+intros; red; rewrite N.spec_add, N.spec_0; auto with zarith.
+Qed.
+
+Theorem NZadd_succ_l : forall n m, (N.succ n) + m == N.succ (n + m).
+Proof.
+intros; red; rewrite N.spec_add, 2 N.spec_succ, N.spec_add; auto with zarith.
+Qed.
+
+Theorem NZsub_0_r : forall n, n - 0 == n.
+Proof.
+intros; red; rewrite N.spec_sub; rewrite N.spec_0; auto with zarith.
+apply N.spec_pos.
+Qed.
+
+Theorem NZsub_succ_r : forall n m, n - (N.succ m) == N.pred (n - m).
+Proof.
+intros; red.
+destruct (Z_lt_le_dec [n] [N.succ m]) as [H|H].
+rewrite N.spec_sub0; auto.
+rewrite N.spec_succ in H.
+rewrite N.spec_pred0; auto.
+destruct (Z_eq_dec [n] [m]).
+rewrite N.spec_sub; auto with zarith.
+rewrite N.spec_sub0; auto with zarith.
+
+rewrite N.spec_sub, N.spec_succ in *; auto.
+rewrite N.spec_pred, N.spec_sub; auto with zarith.
+rewrite N.spec_sub; auto with zarith.
+Qed.
+
+Theorem NZmul_0_l : forall n, 0 * n == 0.
+Proof.
+intros; red.
+rewrite N.spec_mul, N.spec_0; auto with zarith.
+Qed.
+
+Theorem NZmul_succ_l : forall n m, (N.succ n) * m == n * m + m.
+Proof.
+intros; red.
+rewrite N.spec_add, 2 N.spec_mul, N.spec_succ; ring.
+Qed.
+
+End NZAxiomsMod.
+
+Definition NZlt := N.lt.
+Definition NZle := N.le.
+Definition NZmin := N.min.
+Definition NZmax := N.max.
+
+Infix "<=" := N.le : IntScope.
+Infix "<" := N.lt : IntScope.
+
+Lemma spec_compare_alt : forall x y, N.compare x y = ([x] ?= [y])%Z.
+Proof.
+ intros; generalize (N.spec_compare x y).
+ destruct (N.compare x y); auto.
+ intros H; rewrite H; symmetry; apply Zcompare_refl.
+Qed.
+
+Lemma spec_lt : forall x y, (x<y) <-> ([x]<[y])%Z.
+Proof.
+ intros; unfold N.lt, Zlt; rewrite spec_compare_alt; intuition.
+Qed.
+
+Lemma spec_le : forall x y, (x<=y) <-> ([x]<=[y])%Z.
+Proof.
+ intros; unfold N.le, Zle; rewrite spec_compare_alt; intuition.
+Qed.
+
+Lemma spec_min : forall x y, [N.min x y] = Zmin [x] [y].
+Proof.
+ intros; unfold N.min, Zmin.
+ rewrite spec_compare_alt; destruct Zcompare; auto.
+Qed.
+
+Lemma spec_max : forall x y, [N.max x y] = Zmax [x] [y].
+Proof.
+ intros; unfold N.max, Zmax.
+ rewrite spec_compare_alt; destruct Zcompare; auto.
+Qed.
+
+Add Morphism N.compare with signature N.eq ==> N.eq ==> (@eq comparison) as compare_wd.
+Proof.
+intros x x' Hx y y' Hy.
+rewrite 2 spec_compare_alt; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism N.lt with signature N.eq ==> N.eq ==> iff as NZlt_wd.
+Proof.
+intros x x' Hx y y' Hy; unfold N.lt; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism N.le with signature N.eq ==> N.eq ==> iff as NZle_wd.
+Proof.
+intros x x' Hx y y' Hy; unfold N.le; rewrite Hx, Hy; intuition.
+Qed.
+
+Add Morphism N.min with signature N.eq ==> N.eq ==> N.eq as NZmin_wd.
+Proof.
+intros; red; rewrite 2 spec_min; congruence.
+Qed.
+
+Add Morphism N.max with signature N.eq ==> N.eq ==> N.eq as NZmax_wd.
+Proof.
+intros; red; rewrite 2 spec_max; congruence.
+Qed.
+
+Theorem NZlt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
+Proof.
+intros.
+unfold N.eq; rewrite spec_lt, spec_le; omega.
+Qed.
+
+Theorem NZlt_irrefl : forall n, ~ n < n.
+Proof.
+intros; rewrite spec_lt; auto with zarith.
+Qed.
+
+Theorem NZlt_succ_r : forall n m, n < (N.succ m) <-> n <= m.
+Proof.
+intros; rewrite spec_lt, spec_le, N.spec_succ; omega.
+Qed.
+
+Theorem NZmin_l : forall n m, n <= m -> N.min n m == n.
+Proof.
+intros n m; unfold N.eq; rewrite spec_le, spec_min.
+generalize (Zmin_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmin_r : forall n m, m <= n -> N.min n m == m.
+Proof.
+intros n m; unfold N.eq; rewrite spec_le, spec_min.
+generalize (Zmin_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmax_l : forall n m, m <= n -> N.max n m == n.
+Proof.
+intros n m; unfold N.eq; rewrite spec_le, spec_max.
+generalize (Zmax_spec [n] [m]); omega.
+Qed.
+
+Theorem NZmax_r : forall n m, n <= m -> N.max n m == m.
+Proof.
+intros n m; unfold N.eq; rewrite spec_le, spec_max.
+generalize (Zmax_spec [n] [m]); omega.
+Qed.
+
+End NZOrdAxiomsMod.
+
+Theorem pred_0 : N.pred 0 == 0.
+Proof.
+red; rewrite N.spec_pred0; rewrite N.spec_0; auto.
+Qed.
+
+Definition recursion (A : Type) (a : A) (f : N.t -> A -> A) (n : N.t) :=
+ Nrect (fun _ => A) a (fun n a => f (N.of_N n) a) (N.to_N n).
+Implicit Arguments recursion [A].
+
+Theorem recursion_wd :
+forall (A : Type) (Aeq : relation A),
+ forall a a' : A, Aeq a a' ->
+ forall f f' : N.t -> A -> A, fun2_eq N.eq Aeq Aeq f f' ->
+ forall x x' : N.t, x == x' ->
+ Aeq (recursion a f x) (recursion a' f' x').
+Proof.
+unfold fun2_wd, N.eq, fun2_eq.
+intros A Aeq a a' Eaa' f f' Eff' x x' Exx'.
+unfold recursion.
+unfold N.to_N.
+rewrite <- Exx'; clear x' Exx'.
+replace (Zabs_N [x]) with (N_of_nat (Zabs_nat [x])).
+induction (Zabs_nat [x]).
+simpl; auto.
+rewrite N_of_S, 2 Nrect_step; auto.
+destruct [x]; simpl; auto.
+change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
+change (nat_of_P p) with (nat_of_N (Npos p)); apply N_of_nat_of_N.
+Qed.
+
+Theorem recursion_0 :
+ forall (A : Type) (a : A) (f : N.t -> A -> A), recursion a f 0 = a.
+Proof.
+intros A a f; unfold recursion, N.to_N; rewrite N.spec_0; simpl; auto.
+Qed.
+
+Theorem recursion_succ :
+ forall (A : Type) (Aeq : relation A) (a : A) (f : N.t -> A -> A),
+ Aeq a a -> fun2_wd N.eq Aeq Aeq f ->
+ forall n, Aeq (recursion a f (N.succ n)) (f n (recursion a f n)).
+Proof.
+unfold N.eq, recursion, fun2_wd; intros A Aeq a f EAaa f_wd n.
+replace (N.to_N (N.succ n)) with (Nsucc (N.to_N n)).
+rewrite Nrect_step.
+apply f_wd; auto.
+unfold N.to_N.
+rewrite N.spec_of_N, Z_of_N_abs, Zabs_eq; auto.
+ apply N.spec_pos.
+
+fold (recursion a f n).
+apply recursion_wd; auto.
+red; auto.
+red; auto.
+unfold N.to_N.
+
+rewrite N.spec_succ.
+change ([n]+1)%Z with (Zsucc [n]).
+apply Z_of_N_eq_rev.
+rewrite Z_of_N_succ.
+rewrite 2 Z_of_N_abs.
+rewrite 2 Zabs_eq; auto.
+generalize (N.spec_pos n); auto with zarith.
+apply N.spec_pos; auto.
+Qed.
+
+End NSig_NAxioms.
diff --git a/theories/Numbers/NumPrelude.v b/theories/Numbers/NumPrelude.v
new file mode 100644
index 00000000..fdccf214
--- /dev/null
+++ b/theories/Numbers/NumPrelude.v
@@ -0,0 +1,267 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Evgeny Makarov, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NumPrelude.v 10943 2008-05-19 08:45:13Z letouzey $ i*)
+
+Require Export Setoid.
+
+Set Implicit Arguments.
+(*
+Contents:
+- Coercion from bool to Prop
+- Extension of the tactics stepl and stepr
+- Extentional properties of predicates, relations and functions
+ (well-definedness and equality)
+- Relations on cartesian product
+- Miscellaneous
+*)
+
+(** Coercion from bool to Prop *)
+
+(*Definition eq_bool := (@eq bool).*)
+
+(*Inductive eq_true : bool -> Prop := is_eq_true : eq_true true.*)
+(* This has been added to theories/Datatypes.v *)
+(*Coercion eq_true : bool >-> Sortclass.*)
+
+(*Theorem eq_true_unfold_pos : forall b : bool, b <-> b = true.
+Proof.
+intro b; split; intro H. now inversion H. now rewrite H.
+Qed.
+
+Theorem eq_true_unfold_neg : forall b : bool, ~ b <-> b = false.
+Proof.
+intros b; destruct b; simpl; rewrite eq_true_unfold_pos.
+split; intro H; [elim (H (refl_equal true)) | discriminate H].
+split; intro H; [reflexivity | discriminate].
+Qed.
+
+Theorem eq_true_or : forall b1 b2 : bool, b1 || b2 <-> b1 \/ b2.
+Proof.
+destruct b1; destruct b2; simpl; tauto.
+Qed.
+
+Theorem eq_true_and : forall b1 b2 : bool, b1 && b2 <-> b1 /\ b2.
+Proof.
+destruct b1; destruct b2; simpl; tauto.
+Qed.
+
+Theorem eq_true_neg : forall b : bool, negb b <-> ~ b.
+Proof.
+destruct b; simpl; rewrite eq_true_unfold_pos; rewrite eq_true_unfold_neg;
+split; now intro.
+Qed.
+
+Theorem eq_true_iff : forall b1 b2 : bool, b1 = b2 <-> (b1 <-> b2).
+Proof.
+intros b1 b2; split; intro H.
+now rewrite H.
+destruct b1; destruct b2; simpl; try reflexivity.
+apply -> eq_true_unfold_neg. rewrite H. now intro.
+symmetry; apply -> eq_true_unfold_neg. rewrite <- H; now intro.
+Qed.*)
+
+(** Extension of the tactics stepl and stepr to make them
+applicable to hypotheses *)
+
+Tactic Notation "stepl" constr(t1') "in" hyp(H) :=
+match (type of H) with
+| ?R ?t1 ?t2 =>
+ let H1 := fresh in
+ cut (R t1' t2); [clear H; intro H | stepl t1; [assumption |]]
+| _ => fail 1 ": the hypothesis" H "does not have the form (R t1 t2)"
+end.
+
+Tactic Notation "stepl" constr(t1') "in" hyp(H) "by" tactic(r) := stepl t1' in H; [| r].
+
+Tactic Notation "stepr" constr(t2') "in" hyp(H) :=
+match (type of H) with
+| ?R ?t1 ?t2 =>
+ let H1 := fresh in
+ cut (R t1 t2'); [clear H; intro H | stepr t2; [assumption |]]
+| _ => fail 1 ": the hypothesis" H "does not have the form (R t1 t2)"
+end.
+
+Tactic Notation "stepr" constr(t2') "in" hyp(H) "by" tactic(r) := stepr t2' in H; [| r].
+
+(** Extentional properties of predicates, relations and functions *)
+
+Definition predicate (A : Type) := A -> Prop.
+
+Section ExtensionalProperties.
+
+Variables A B C : Type.
+Variable Aeq : relation A.
+Variable Beq : relation B.
+Variable Ceq : relation C.
+
+(* "wd" stands for "well-defined" *)
+
+Definition fun_wd (f : A -> B) := forall x y : A, Aeq x y -> Beq (f x) (f y).
+
+Definition fun2_wd (f : A -> B -> C) :=
+ forall x x' : A, Aeq x x' -> forall y y' : B, Beq y y' -> Ceq (f x y) (f x' y').
+
+Definition fun_eq : relation (A -> B) :=
+ fun f f' => forall x x' : A, Aeq x x' -> Beq (f x) (f' x').
+
+(* Note that reflexivity of fun_eq means that every function
+is well-defined w.r.t. Aeq and Beq, i.e.,
+forall x x' : A, Aeq x x' -> Beq (f x) (f x') *)
+
+Definition fun2_eq (f f' : A -> B -> C) :=
+ forall x x' : A, Aeq x x' -> forall y y' : B, Beq y y' -> Ceq (f x y) (f' x' y').
+
+End ExtensionalProperties.
+
+(* The following definitions instantiate Beq or Ceq to iff; therefore, they
+have to be outside the ExtensionalProperties section *)
+
+Definition predicate_wd (A : Type) (Aeq : relation A) := fun_wd Aeq iff.
+
+Definition relation_wd (A B : Type) (Aeq : relation A) (Beq : relation B) :=
+ fun2_wd Aeq Beq iff.
+
+Definition relations_eq (A B : Type) (R1 R2 : A -> B -> Prop) :=
+ forall (x : A) (y : B), R1 x y <-> R2 x y.
+
+Theorem relations_eq_equiv :
+ forall (A B : Type), equiv (A -> B -> Prop) (@relations_eq A B).
+Proof.
+intros A B; unfold equiv. split; [| split];
+unfold reflexive, symmetric, transitive, relations_eq.
+reflexivity.
+intros R1 R2 R3 H1 H2 x y; rewrite H1; apply H2.
+now symmetry.
+Qed.
+
+Add Parametric Relation (A B : Type) : (A -> B -> Prop) (@relations_eq A B)
+ reflexivity proved by (proj1 (relations_eq_equiv A B))
+ symmetry proved by (proj2 (proj2 (relations_eq_equiv A B)))
+ transitivity proved by (proj1 (proj2 (relations_eq_equiv A B)))
+as relations_eq_rel.
+
+Add Parametric Morphism (A : Type) : (@well_founded A) with signature (@relations_eq A A) ==> iff as well_founded_wd.
+Proof.
+unfold relations_eq, well_founded; intros R1 R2 H;
+split; intros H1 a; induction (H1 a) as [x H2 H3]; constructor;
+intros y H4; apply H3; [now apply <- H | now apply -> H].
+Qed.
+
+(* solve_predicate_wd solves the goal [predicate_wd P] for P consisting of
+morhisms and quatifiers *)
+
+Ltac solve_predicate_wd :=
+unfold predicate_wd;
+let x := fresh "x" in
+let y := fresh "y" in
+let H := fresh "H" in
+ intros x y H; setoid_rewrite H; reflexivity.
+
+(* solve_relation_wd solves the goal [relation_wd R] for R consisting of
+morhisms and quatifiers *)
+
+Ltac solve_relation_wd :=
+unfold relation_wd, fun2_wd;
+let x1 := fresh "x" in
+let y1 := fresh "y" in
+let H1 := fresh "H" in
+let x2 := fresh "x" in
+let y2 := fresh "y" in
+let H2 := fresh "H" in
+ intros x1 y1 H1 x2 y2 H2;
+ rewrite H1; setoid_rewrite H2; reflexivity.
+
+(* The following tactic uses solve_predicate_wd to solve the goals
+relating to well-defidedness that are produced by applying induction.
+We declare it to take the tactic that applies the induction theorem
+and not the induction theorem itself because the tactic may, for
+example, supply additional arguments, as does NZinduct_center in
+NZBase.v *)
+
+Ltac induction_maker n t :=
+ try intros until n;
+ pattern n; t; clear n;
+ [solve_predicate_wd | ..].
+
+(** Relations on cartesian product. Used in MiscFunct for defining
+functions whose domain is a product of sets by primitive recursion *)
+
+Section RelationOnProduct.
+
+Variables A B : Set.
+Variable Aeq : relation A.
+Variable Beq : relation B.
+
+Hypothesis EA_equiv : equiv A Aeq.
+Hypothesis EB_equiv : equiv B Beq.
+
+Definition prod_rel : relation (A * B) :=
+ fun p1 p2 => Aeq (fst p1) (fst p2) /\ Beq (snd p1) (snd p2).
+
+Lemma prod_rel_refl : reflexive (A * B) prod_rel.
+Proof.
+unfold reflexive, prod_rel.
+destruct x; split; [apply (proj1 EA_equiv) | apply (proj1 EB_equiv)]; simpl.
+Qed.
+
+Lemma prod_rel_symm : symmetric (A * B) prod_rel.
+Proof.
+unfold symmetric, prod_rel.
+destruct x; destruct y;
+split; [apply (proj2 (proj2 EA_equiv)) | apply (proj2 (proj2 EB_equiv))]; simpl in *; tauto.
+Qed.
+
+Lemma prod_rel_trans : transitive (A * B) prod_rel.
+Proof.
+unfold transitive, prod_rel.
+destruct x; destruct y; destruct z; simpl.
+intros; split; [apply (proj1 (proj2 EA_equiv)) with (y := a0) |
+apply (proj1 (proj2 EB_equiv)) with (y := b0)]; tauto.
+Qed.
+
+Theorem prod_rel_equiv : equiv (A * B) prod_rel.
+Proof.
+unfold equiv; split; [exact prod_rel_refl | split; [exact prod_rel_trans | exact prod_rel_symm]].
+Qed.
+
+End RelationOnProduct.
+
+Implicit Arguments prod_rel [A B].
+Implicit Arguments prod_rel_equiv [A B].
+
+(** Miscellaneous *)
+
+(*Definition comp_bool (x y : comparison) : bool :=
+match x, y with
+| Lt, Lt => true
+| Eq, Eq => true
+| Gt, Gt => true
+| _, _ => false
+end.
+
+Theorem comp_bool_correct : forall x y : comparison,
+ comp_bool x y <-> x = y.
+Proof.
+destruct x; destruct y; simpl; split; now intro.
+Qed.*)
+
+Lemma eq_equiv : forall A : Set, equiv A (@eq A).
+Proof.
+intro A; unfold equiv, reflexive, symmetric, transitive.
+repeat split; [exact (@trans_eq A) | exact (@sym_eq A)].
+(* It is interesting how the tactic split proves reflexivity *)
+Qed.
+
+(*Add Relation (fun A : Set => A) LE_Set
+ reflexivity proved by (fun A : Set => (proj1 (eq_equiv A)))
+ symmetry proved by (fun A : Set => (proj2 (proj2 (eq_equiv A))))
+ transitivity proved by (fun A : Set => (proj1 (proj2 (eq_equiv A))))
+as EA_rel.*)
diff --git a/theories/Numbers/Rational/BigQ/BigQ.v b/theories/Numbers/Rational/BigQ/BigQ.v
new file mode 100644
index 00000000..39e120f7
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/BigQ.v
@@ -0,0 +1,35 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: BigQ.v 11028 2008-06-01 17:34:19Z letouzey $ i*)
+
+Require Export QMake_base.
+Require Import QpMake.
+Require Import QvMake.
+Require Import Q0Make.
+Require Import QifMake.
+Require Import QbiMake.
+
+(* We choose for Q the implemention with
+ multiple representation of 0: 0, 1/0, 2/0 etc *)
+
+Module BigQ <: QSig.QType := Q0.
+
+Notation bigQ := BigQ.t.
+
+Delimit Scope bigQ_scope with bigQ.
+Bind Scope bigQ_scope with bigQ.
+Bind Scope bigQ_scope with BigQ.t.
+
+Notation " i + j " := (BigQ.add i j) : bigQ_scope.
+Notation " i - j " := (BigQ.sub i j) : bigQ_scope.
+Notation " i * j " := (BigQ.mul i j) : bigQ_scope.
+Notation " i / j " := (BigQ.div i j) : bigQ_scope.
+Notation " i ?= j " := (BigQ.compare i j) : bigQ_scope.
diff --git a/theories/Numbers/Rational/BigQ/Q0Make.v b/theories/Numbers/Rational/BigQ/Q0Make.v
new file mode 100644
index 00000000..93f52c03
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/Q0Make.v
@@ -0,0 +1,1412 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: Q0Make.v 11028 2008-06-01 17:34:19Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QSig.
+Require Import QMake_base.
+
+Module Q0 <: QType.
+
+ Import BinInt Zorder.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a natural
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ (** Specification with respect to [QArith] *)
+
+ Open Local Scope Q_scope.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q.
+ Proof.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_of_Q: forall q: Q, [of_Q q] == q.
+ Proof.
+ intros; rewrite strong_spec_of_Q; red; auto.
+ Qed.
+
+ Definition eq x y := [x] == [y].
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Lemma spec_0: [zero] == 0.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_1: [one] == 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_m1: [minus_one] == -(1).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem strong_spec_opp: forall q, [opp q] = -[q].
+ Proof.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_opp : forall q, [opp q] == -[q].
+ Proof.
+ intros; rewrite strong_spec_opp; red; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2, (compare q1 q2) = ([q1] ?= [q2]).
+ Proof.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end.
+
+ Theorem spec_norm: forall n q, [norm n q] == [Qq n q].
+ Proof.
+ intros p q; unfold norm.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+ Theorem spec_add : forall x y, [add x y] == [x] + [y].
+ Proof.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm : forall x y, [add_norm x y] == [x] + [y].
+ Proof.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem spec_sub : forall x y, [sub x y] == [x] - [y].
+ Proof.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm : forall x y, [sub_norm x y] == [x] - [y].
+ Proof.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul : forall x y, [mul x y] == [x] * [y].
+ Proof.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zx) dy in
+ match BigN.compare gcd BigN.one with
+ Gt =>
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div dy gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) d
+ | _ => Qq (BigZ.mul zx ny) dy
+ end
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zy) dx in
+ match BigN.compare gcd BigN.one with
+ Gt =>
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div dx gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) d
+ | _ => Qq (BigZ.mul zy nx) dx
+ end
+ | Qq nx dx, Qq ny dy =>
+ let (nx, dy) :=
+ let gcd := BigN.gcd (BigZ.to_N nx) dy in
+ match BigN.compare gcd BigN.one with
+ Gt => (BigZ.div nx (BigZ.Pos gcd), BigN.div dy gcd)
+ | _ => (nx, dy)
+ end in
+ let (ny, dx) :=
+ let gcd := BigN.gcd (BigZ.to_N ny) dx in
+ match BigN.compare gcd BigN.one with
+ Gt => (BigZ.div ny (BigZ.Pos gcd), BigN.div dx gcd)
+ | _ => (ny, dx)
+ end in
+ let d := (BigN.mul dx dy) in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul ny nx)
+ else Qq (BigZ.mul ny nx) d
+ end.
+
+ Theorem spec_mul_norm : forall x y, [mul_norm x y] == [x] * [y].
+ Proof.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ set (a := BigN.to_Z (BigZ.to_N p2)).
+ set (b := BigN.to_Z n).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ case BigN.eq_bool; try apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite H.
+ red; simpl; ring.
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith;
+ fold a b; intros H2.
+ assert (F1: b = Zgcd a b).
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b);
+ auto with zarith.
+ rewrite H2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ assert (F2: (0 < b)%Z).
+ rewrite F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H3.
+ rewrite H3 in F2; discriminate F2.
+ rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigZ.spec_mul.
+ red; simpl; rewrite Z2P_correct; auto.
+ rewrite Zmult_1_r; rewrite spec_to_N; fold a b.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; fold a b; auto; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ apply Qeq_refl.
+ case H4; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H3; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto.
+ rewrite BigZ.spec_mul; rewrite BigZ.spec_div; simpl;
+ rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos n)); fold b; auto with zarith.
+ red; simpl.
+ rewrite BigZ.spec_mul.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ ring.
+ apply Zgcd_div_pos; auto.
+ intros p1 p2 n.
+ set (a := BigN.to_Z (BigZ.to_N p1)).
+ set (b := BigN.to_Z n).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ case BigN.eq_bool; try apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite H.
+ red; simpl; ring.
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ repeat rewrite BigZ.spec_mul; rewrite Zmult_comm.
+ apply Qeq_refl.
+ repeat rewrite BigZ.spec_mul; rewrite Zmult_comm.
+ apply Qeq_refl.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith;
+ fold a b; intros H2.
+ assert (F1: b = Zgcd a b).
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b);
+ auto with zarith.
+ rewrite H2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ assert (F2: (0 < b)%Z).
+ rewrite F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H3.
+ rewrite H3 in F2; discriminate F2.
+ rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigZ.spec_mul.
+ red; simpl; rewrite Z2P_correct; auto.
+ rewrite Zmult_1_r; rewrite spec_to_N; fold a b.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; fold a b; auto; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ apply Qeq_refl.
+ case H4; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H3; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto.
+ rewrite BigZ.spec_mul; rewrite BigZ.spec_div; simpl;
+ rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos n)); fold b; auto with zarith.
+ red; simpl.
+ rewrite BigZ.spec_mul.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ ring.
+ apply Zgcd_div_pos; auto.
+ set (f := fun p t =>
+ match (BigN.gcd (BigZ.to_N p) t ?= BigN.one)%bigN with
+ | Eq => (p, t)
+ | Lt => (p, t)
+ | Gt =>
+ ((p / BigZ.Pos (BigN.gcd (BigZ.to_N p) t))%bigZ,
+ (t / BigN.gcd (BigZ.to_N p) t)%bigN)
+ end).
+ assert (F: forall p t,
+ let (n, d) := f p t in [Qq p t] == [Qq n d]).
+ intros p t1; unfold f.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ set (a := BigN.to_Z (BigZ.to_N p)).
+ set (b := BigN.to_Z t1).
+ fold a b in H1.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros HH2.
+ simpl; ring.
+ case HH2.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b; auto.
+ rewrite HH1; rewrite Zdiv_0_l; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0;
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b; auto;
+ intros HH2.
+ case HH1.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite HH2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos t1)); fold b; auto with zarith.
+ intros HH; case HH1; auto.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto.
+ apply Zgcd_div_pos; auto.
+ intros HH; rewrite HH in F0; discriminate F0.
+ intros p1 n1 p2 n2.
+ change ([let (nx , dy) := f p2 n1 in
+ let (ny, dx) := f p1 n2 in
+ if BigN.eq_bool (dx * dy)%bigN BigN.one
+ then Qz (ny * nx)
+ else Qq (ny * nx) (dx * dy)] == [Qq (p2 * p1) (n2 * n1)]).
+ generalize (F p2 n1) (F p1 n2).
+ case f; case f.
+ intros u1 u2 v1 v2 Hu1 Hv1.
+ apply Qeq_trans with [mul (Qq p2 n1) (Qq p1 n2)].
+ rewrite spec_mul; rewrite Hu1; rewrite Hv1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_mul; intros HH1.
+ assert (F1: BigN.to_Z u2 = 1%Z).
+ case (Zmult_1_inversion_l _ _ HH1); auto.
+ generalize (BigN.spec_pos u2); auto with zarith.
+ assert (F2: BigN.to_Z v2 = 1%Z).
+ rewrite Zmult_comm in HH1.
+ case (Zmult_1_inversion_l _ _ HH1); auto.
+ generalize (BigN.spec_pos v2); auto with zarith.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1 in F2; discriminate F2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2.
+ rewrite H2 in F1; discriminate F1.
+ simpl; rewrite BigZ.spec_mul.
+ rewrite F1; rewrite F2; simpl; ring.
+ rewrite Qmult_comm; rewrite <- spec_mul.
+ apply Qeq_refl.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ rewrite Zmult_comm; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul; intros H2; auto.
+ case H2; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul; intros H2; auto.
+ case H1; auto.
+ Qed.
+
+
+Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv : forall x, [inv x] == /[x].
+ Proof.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.one n
+ | _ => x
+ end
+ | Qz (BigZ.Neg n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.minus_one n
+ | _ => x
+ end
+ | Qq (BigZ.Pos n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Pos d) n
+ | Eq => Qz (BigZ.Pos d)
+ | Lt => Qz (BigZ.zero)
+ end
+ | Qq (BigZ.Neg n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Neg d) n
+ | Eq => Qz (BigZ.Neg d)
+ | Lt => Qz (BigZ.zero)
+ end
+ end.
+
+ Theorem spec_inv_norm : forall x, [inv_norm x] == /[x].
+ Proof.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, Qinv.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ Qed.
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: [div x y] == [x] / [y].
+ Proof.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: [div_norm x y] == [x] / [y].
+ Proof.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem spec_square : forall x, [square x] == [x] ^ 2.
+ Proof.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_power_pos; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ elim p; simpl.
+ intros; red; simpl; auto.
+ intros p1 Hp1; rewrite <- Hp1; red; simpl; auto.
+ apply Qeq_refl.
+ case H2; generalize H1.
+ elim p; simpl.
+ intros p1 Hrec.
+ change (xI p1) with (1 + (xO p1))%positive.
+ rewrite Zpower_pos_is_exp; rewrite Zpower_pos_1_r.
+ intros HH; case (Zmult_integral _ _ HH); auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ intros p1 Hrec.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ rewrite Zpower_pos_1_r; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ case H1; rewrite H2; auto.
+ simpl; rewrite Zpower_pos_0_l; auto.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ (** Interaction with [Qcanon.Qc] *)
+
+ Open Scope Qc_scope.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Theorem spec_of_Qc: forall q, [[of_Qc q]] = q.
+ Proof.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros.
+ rewrite <- H0 at 2; apply Qred_complete.
+ apply spec_of_Q.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ Proof.
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_correct; red; auto.
+ Qed.
+
+ Theorem spec_comparec: forall q1 q2,
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ Proof.
+ unfold Qccompare, to_Qc.
+ intros q1 q2; rewrite spec_compare; simpl; auto.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ Proof.
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ Proof.
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ Proof.
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_power_posc x p:
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ Proof.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ unfold Qpower_positive.
+ assert (tmp: forall p, pow_pos Qmult 0%Q p = 0%Q).
+ intros p1; elim p1; simpl; auto; clear p1.
+ intros p1 Hp1; rewrite Hp1; auto.
+ intros p1 Hp1; rewrite Hp1; auto.
+ repeat rewrite tmp; intros; red; simpl; auto.
+ intros H1.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Q0.
diff --git a/theories/Numbers/Rational/BigQ/QMake_base.v b/theories/Numbers/Rational/BigQ/QMake_base.v
new file mode 100644
index 00000000..547e74b7
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QMake_base.v
@@ -0,0 +1,34 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(* $Id: QMake_base.v 10964 2008-05-22 11:08:13Z letouzey $ *)
+
+(** * An implementation of rational numbers based on big integers *)
+
+Require Export BigN.
+Require Export BigZ.
+
+(* Basic type for Q: a Z or a pair of a Z and an N *)
+
+Inductive q_type :=
+ | Qz : BigZ.t -> q_type
+ | Qq : BigZ.t -> BigN.t -> q_type.
+
+Definition print_type x :=
+ match x with
+ | Qz _ => Z
+ | _ => (Z*Z)%type
+ end.
+
+Definition print x :=
+ match x return print_type x with
+ | Qz zx => BigZ.to_Z zx
+ | Qq nx dx => (BigZ.to_Z nx, BigN.to_Z dx)
+ end.
diff --git a/theories/Numbers/Rational/BigQ/QbiMake.v b/theories/Numbers/Rational/BigQ/QbiMake.v
new file mode 100644
index 00000000..699f383e
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QbiMake.v
@@ -0,0 +1,1066 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QbiMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qbi.
+
+ Import BinInt Zorder.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0%Q
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else
+ match BigZ.cmp_sign zx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ end
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else
+ match BigZ.cmp_sign nx zy with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ end
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false =>
+ match BigZ.cmp_sign nx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z1); set (b := BigZ.to_Z x2);
+ set (c := BigN.to_Z y2); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign z1 x2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare (z1 * BigZ.Pos y2)%bigZ x2);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (a * c < b)%Z.
+ apply Zlt_le_trans with (2 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (a * c > b)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (1 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z2); set (b := BigZ.to_Z x1);
+ set (c := BigN.to_Z y1); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Zmult_1_r; rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign x1 z2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (b < a * c)%Z.
+ apply Zlt_le_trans with (1 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (b > a * c)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (2 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z x1); set (b := BigZ.to_Z x2);
+ set (c1 := BigN.to_Z y1); set (c2 := BigN.to_Z y2).
+ fold c1 in HH; fold c2 in HH1.
+ assert (F1: (0 < c1)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c1; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ assert (F2: (0 < c2)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c2; auto.
+ intros H1; case HH1; rewrite <- H1; auto.
+ repeat rewrite Z2P_correct; auto.
+ generalize (BigZ.spec_cmp_sign x1 x2); case BigZ.cmp_sign.
+ intros _; generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)%bigZ
+ (x2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c1 c2; auto.
+ rewrite BigZ.spec_mul; simpl; fold a b c1; intros HH2; rewrite HH2;
+ rewrite Zcompare_refl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 < b * c1)%Z.
+ apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c2)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 > b * c1)%Z.
+ apply Zlt_gt; apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c1)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ Qed.
+
+
+ Definition do_norm_n n :=
+ match n with
+ | BigN.N0 _ => false
+ | BigN.N1 _ => false
+ | BigN.N2 _ => false
+ | BigN.N3 _ => false
+ | BigN.N4 _ => false
+ | BigN.N5 _ => false
+ | BigN.N6 _ => false
+ | _ => true
+ end.
+
+ Definition do_norm_z z :=
+ match z with
+ | BigZ.Pos n => do_norm_n n
+ | BigZ.Neg n => do_norm_n n
+ end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ if andb (do_norm_z n) (do_norm_n d) then
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end
+ else Qq n d.
+
+ Theorem spec_norm: forall n q,
+ ([norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm.
+ case do_norm_z; simpl andb.
+ 2: apply Qeq_refl.
+ case do_norm_n.
+ 2: apply Qeq_refl.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ Qq n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+
+
+ Theorem spec_add x y:
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ generalize (BigN.spec_eq_bool dx dy);
+ case BigN.eq_bool; intros HH3.
+ rewrite <- HH3.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ red; simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH4.
+ case HH; auto.
+ simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ ring.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros H3; simpl.
+ absurd (0 < 0)%Z; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ norm n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm x y:
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; intros HH3;
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem spec_sub x y:
+ ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y:
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => mul (Qz ny) (norm zx dy)
+ | Qq nx dx, Qz zy => mul (Qz nx) (norm zy dx)
+ | Qq nx dx, Qq ny dy => mul (norm nx dy) (norm ny dx)
+ end.
+
+ Theorem spec_mul_norm x y:
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; ring.
+ intros p1 p2 n.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Pmult_1_r; auto.
+ intros p1 n1 p2 n2.
+ repeat rewrite spec_mul.
+ repeat match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; try ring.
+ repeat rewrite Zpos_mult_morphism; ring.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+
+ Theorem spec_inv x:
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros x; rewrite <- spec_inv; generalize x; clear x.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, inv;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; try apply Qeq_refl;
+ red; simpl;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; auto;
+ case H2; auto.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_power_pos; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ elim p; simpl.
+ intros; red; simpl; auto.
+ intros p1 Hp1; rewrite <- Hp1; red; simpl; auto.
+ apply Qeq_refl.
+ case H2; generalize H1.
+ elim p; simpl.
+ intros p1 Hrec.
+ change (xI p1) with (1 + (xO p1))%positive.
+ rewrite Zpower_pos_is_exp; rewrite Zpower_pos_1_r.
+ intros HH; case (Zmult_integral _ _ HH); auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ intros p1 Hrec.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ rewrite Zpower_pos_1_r; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ case H1; rewrite H2; auto.
+ simpl; rewrite Zpower_pos_0_l; auto.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ Theorem spec_power_posc x p:
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ unfold Qpower_positive.
+ assert (tmp: forall p, pow_pos Qmult 0%Q p = 0%Q).
+ intros p1; elim p1; simpl; auto; clear p1.
+ intros p1 Hp1; rewrite Hp1; auto.
+ intros p1 Hp1; rewrite Hp1; auto.
+ repeat rewrite tmp; intros; red; simpl; auto.
+ intros H1.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qbi.
diff --git a/theories/Numbers/Rational/BigQ/QifMake.v b/theories/Numbers/Rational/BigQ/QifMake.v
new file mode 100644
index 00000000..1d8ecc94
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QifMake.v
@@ -0,0 +1,979 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QifMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qif.
+
+ Import BinInt.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0%Q
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Definition do_norm_n n :=
+ match n with
+ | BigN.N0 _ => false
+ | BigN.N1 _ => false
+ | BigN.N2 _ => false
+ | BigN.N3 _ => false
+ | BigN.N4 _ => false
+ | BigN.N5 _ => false
+ | BigN.N6 _ => false
+ | _ => true
+ end.
+
+ Definition do_norm_z z :=
+ match z with
+ | BigZ.Pos n => do_norm_n n
+ | BigZ.Neg n => do_norm_n n
+ end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ if andb (do_norm_z n) (do_norm_n d) then
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end
+ else Qq n d.
+
+ Theorem spec_norm: forall n q,
+ ([norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm.
+ case do_norm_z; simpl andb.
+ 2: apply Qeq_refl.
+ case do_norm_n.
+ 2: apply Qeq_refl.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+
+ Theorem spec_add x y:
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm x y:
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+
+ Theorem spec_sub x y:
+ ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y:
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => norm (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => norm (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul_norm x y:
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ intros p1 p2 n.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ intros p1 n1 p2 n2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv x:
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.one n
+ | _ => x
+ end
+ | Qz (BigZ.Neg n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.minus_one n
+ | _ => x
+ end
+ | Qq (BigZ.Pos n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Pos d) n
+ | Eq => Qz (BigZ.Pos d)
+ | Lt => Qz (BigZ.zero)
+ end
+ | Qq (BigZ.Neg n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Neg d) n
+ | Eq => Qz (BigZ.Neg d)
+ | Lt => Qz (BigZ.zero)
+ end
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, Qinv.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qif.
diff --git a/theories/Numbers/Rational/BigQ/QpMake.v b/theories/Numbers/Rational/BigQ/QpMake.v
new file mode 100644
index 00000000..ac3ca47a
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QpMake.v
@@ -0,0 +1,901 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QpMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Notation Nspec_lt := BigNAxiomsMod.NZOrdAxiomsMod.spec_lt.
+Notation Nspec_le := BigNAxiomsMod.NZOrdAxiomsMod.spec_le.
+
+Module Qp.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/(y+1). *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition d_to_Z d := BigZ.Pos (BigN.succ d).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.pred (BigN.of_N (Npos y)))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z (BigN.succ y))
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ rewrite BigZ.spec_of_Z; auto.
+ rewrite BigN.spec_succ; simpl. simpl.
+ rewrite BigN.spec_pred; rewrite (BigN.spec_of_pos).
+ replace (Zpos y - 1 + 1)%Z with (Zpos y); auto; ring.
+ red; auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (d_to_Z dy)) ny
+ | Qq nx dy, Qz zy => BigZ.compare nx (BigZ.mul zy (d_to_Z dy))
+ | Qq nx dx, Qq ny dy =>
+ BigZ.compare (BigZ.mul nx (d_to_Z dy)) (BigZ.mul ny (d_to_Z dx))
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2]; unfold Qcompare; simpl.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ rewrite BigN.spec_succ.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * d_to_Z y2) x2)%bigZ; case BigZ.compare;
+ intros H; rewrite <- H.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ.
+ rewrite Zcompare_refl; auto.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ rewrite Zmult_1_r.
+ rewrite BigN.spec_succ.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ generalize (BigZ.spec_compare x1 (z2 * d_to_Z y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
+ rewrite BigN.spec_succ; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ repeat rewrite BigN.spec_succ; auto.
+ repeat rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * d_to_Z y2)
+ (x2 * d_to_Z y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
+ repeat rewrite BigN.spec_succ; intros H; auto.
+ rewrite H; auto.
+ rewrite Zcompare_refl; auto.
+ Qed.
+
+
+ Theorem spec_comparec: forall q1 q2,
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ unfold Qccompare, to_Qc.
+ intros q1 q2; rewrite spec_compare; simpl.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+(* Inv d > 0, Pour la forme normal unique on veut d > 1 *)
+ Definition norm n d: t :=
+ if BigZ.eq_bool n BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ if BigN.eq_bool gcd BigN.one then Qq n (BigN.pred d)
+ else
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz n
+ else Qq n (BigN.pred d).
+
+ Theorem spec_norm: forall n q,
+ ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n (BigN.pred q)])%Q.
+ intros p q; unfold norm; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ red; simpl; rewrite H1; ring.
+ case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
+ case (Zle_lt_or_eq _ _
+ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
+ 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
+ 2: red; simpl; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1; intros H2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Zmult_1_r.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
+ rewrite H; ring.
+ intros H3.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
+ rewrite BigN.spec_div; auto with zarith.
+ rewrite BigN.spec_gcd.
+ apply Zgcd_div_pos; auto.
+ rewrite BigN.spec_gcd; auto.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; auto.
+ rewrite Z2P_correct; auto.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite spec_to_N; apply Zgcd_div_swap; auto.
+ case H1; rewrite spec_to_N; rewrite <- Hp; ring.
+ Qed.
+
+ Theorem spec_normc: forall n q,
+ (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n (BigN.pred q)]].
+ intros n q H; unfold to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_norm; auto.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (d_to_Z dy)) ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (d_to_Z dx))) dx
+ | Qq nx dx, Qq ny dy =>
+ let dx' := BigN.succ dx in
+ let dy' := BigN.succ dy in
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
+ let d := BigN.pred (BigN.mul dx' dy') in
+ Qq n d
+ end.
+
+ Theorem spec_d_to_Z: forall dy,
+ (BigZ.to_Z (d_to_Z dy) = BigN.to_Z dy + 1)%Z.
+ intros dy; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ Qed.
+
+ Theorem spec_succ_pos: forall p,
+ (0 < BigN.to_Z (BigN.succ p))%Z.
+ intros p; rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos p); auto with zarith.
+ Qed.
+
+ Theorem spec_add x y: ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r.
+ simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ rewrite spec_d_to_Z; apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx).
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ rewrite spec_d_to_Z; apply Qeq_refl.
+ repeat rewrite BigN.spec_succ.
+ assert (Fx: (0 < BigN.to_Z dx + 1)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy + 1)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ repeat rewrite BigN.spec_pred.
+ rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul;
+ repeat rewrite BigN.spec_succ.
+ assert (tmp: forall x, (x-1+1 = x)%Z); [intros; ring | rewrite tmp; clear tmp].
+ repeat rewrite Z2P_correct; auto.
+ repeat rewrite BigZ.spec_mul; simpl.
+ repeat rewrite BigN.spec_succ.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto; apply Qeq_refl.
+ rewrite BigN.spec_mul; repeat rewrite BigN.spec_succ; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y: [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy =>
+ let d := BigN.succ dy in
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos d)) ny) d
+ | Qq nx dx, Qz zy =>
+ let d := BigN.succ dx in
+ norm (BigZ.add (BigZ.mul zy (BigZ.Pos d)) nx) d
+ | Qq nx dx, Qq ny dy =>
+ let dx' := BigN.succ dx in
+ let dy' := BigN.succ dy in
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
+ let d := BigN.mul dx' dy' in
+ norm n d
+ end.
+
+ Theorem spec_add_norm x y: ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add.
+ unfold add_norm, add; case x; case y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end.
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end.
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos p2); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite BinInt.Zplus_comm.
+ rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
+ intros p1 q1 p2 q2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat; apply spec_succ_pos.
+ Qed.
+
+ Theorem spec_add_normc x y: [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub (x y: t): t := add x (opp y).
+
+ Theorem spec_sub x y: ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y: ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y: [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc.
+ rewrite spec_oppc; ring.
+ Qed.
+
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy =>
+ Qq (BigZ.mul nx ny) (BigN.pred (BigN.mul (BigN.succ dx) (BigN.succ dy)))
+ end.
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ apply Qeq_refl; auto.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r; auto.
+ apply Qeq_refl; auto.
+ assert (F1:= spec_succ_pos dx).
+ assert (F2:= spec_succ_pos dy).
+ rewrite BigN.succ_pred.
+ rewrite BigN.spec_mul; rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto; apply Qeq_refl.
+ rewrite Nspec_lt, BigN.spec_0, BigN.spec_mul; auto.
+ apply Zmult_lt_0_compat; apply spec_succ_pos.
+ Qed.
+
+ Theorem spec_mulc x y: [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let d := BigN.succ dy in
+ let gcd := BigN.gcd (BigZ.to_N zx) d in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
+ else
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) (BigN.pred d)
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let d := BigN.succ dx in
+ let gcd := BigN.gcd (BigZ.to_N zy) d in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
+ else
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) (BigN.pred d)
+ | Qq nx dx, Qq ny dy =>
+ norm (BigZ.mul nx ny) (BigN.mul (BigN.succ dx) (BigN.succ dy))
+ end.
+
+ Theorem spec_mul_norm x y: ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul.
+ unfold mul_norm, mul; case x; case y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; auto.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p2))
+ (BigN.to_Z (BigN.succ n)))); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ intros; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p2).
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.succ n /
+ BigN.gcd (BigZ.to_N p2)
+ (BigN.succ n)))%bigN); intros F3.
+ rewrite BigN.succ_pred; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ rewrite Nspec_lt, BigN.spec_0; auto.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq
+ (Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))
+ (BigN.to_Z (BigN.succ n))); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p2))
+ (BigN.to_Z (BigN.succ n))); inversion FF; auto.
+ intros p1 p2 n.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p1))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p1))
+ (BigN.to_Z (BigN.succ n)))); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p1).
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.succ n /
+ BigN.gcd (BigZ.to_N p1)
+ (BigN.succ n)))%bigN); intros F3.
+ rewrite BigN.succ_pred; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ rewrite Nspec_lt, BigN.spec_0; auto.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq
+ (Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))
+ (BigN.to_Z (BigN.succ n))); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p1))
+ (BigN.to_Z (BigN.succ n))); inversion FF; auto.
+ intros p1 n1 p2 n2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat; rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ Qed.
+
+ Theorem spec_mul_normc x y: [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one (BigN.pred n)
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one (BigN.pred n)
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos (BigN.succ d)) (BigN.pred n)
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg (BigN.succ d)) (BigN.pred n)
+ end.
+
+ Theorem spec_inv x: ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ unfold to_Q; rewrite BigZ.spec_1.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ generalize F; case BigN.to_Z; simpl; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ simpl; intros.
+ match goal with |- (?X = Zneg ?Y)%Z =>
+ replace (Zneg Y) with (-(Zpos Y))%Z;
+ try rewrite Z2P_correct; auto with zarith
+ end.
+ rewrite Zpos_mult_morphism;
+ rewrite Z2P_correct; auto with zarith; try ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_invc x: [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+Definition inv_norm x :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then x else Qq BigZ.one (BigN.pred n)
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then x else Qq BigZ.minus_one (BigN.pred n)
+ | Qq (BigZ.Pos n) d => let d := BigN.succ d in
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then Qz (BigZ.Pos d)
+ else Qq (BigZ.Pos d) (BigN.pred n)
+ | Qq (BigZ.Neg n) d => let d := BigN.succ d in
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then Qz (BigZ.Neg d)
+ else Qq (BigZ.Neg d) (BigN.pred n)
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros x; rewrite <- spec_inv.
+ (case x; clear x); [intros [x | x] | intros nx dx];
+ unfold inv_norm, inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; try rewrite H1; auto with zarith.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; try rewrite H1; auto with zarith.
+ apply Qeq_refl.
+ case nx; clear nx; intros nx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
+ rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
+ rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
+ apply Qeq_refl.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.pred (BigN.square (BigN.succ dx)))
+ end.
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ assert (F: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ;
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ assert (F1 : (0 < BigN.to_Z (BigN.square (BigN.succ dx)))%Z).
+ rewrite BigN.spec_square; apply Zmult_lt_0_compat;
+ auto with zarith.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ repeat rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigN.spec_square; auto with zarith.
+ repeat rewrite BigN.spec_succ; auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.pred (BigN.power_pos (BigN.succ dx) p))
+ end.
+
+
+ Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z (BigN.succ dx) ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ rewrite BigN.succ_pred, BigN.spec_power_pos.
+ rewrite Z2P_correct; auto.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z (BigN.succ dx)))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ rewrite Nspec_lt, BigN.spec_0, BigN.spec_power_pos; auto.
+ Qed.
+
+ Theorem spec_power_posc x p: [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos dx);
+ auto with zarith.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qp.
diff --git a/theories/Numbers/Rational/BigQ/QvMake.v b/theories/Numbers/Rational/BigQ/QvMake.v
new file mode 100644
index 00000000..4523e241
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QvMake.v
@@ -0,0 +1,1151 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QvMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qv.
+
+ Import BinInt Zorder.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. All functions maintain the invariant
+ that y is never zero. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition wf x :=
+ match x with
+ | Qz _ => True
+ | Qq n d => if BigN.eq_bool d BigN.zero then False else True
+ end.
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem wf_opp: forall x, wf x -> wf (opp x).
+ intros [zx | nx dx]; unfold opp, wf; auto.
+ Qed.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ (* Les fonctions doivent assurer que si leur arguments sont valides alors
+ le resultat est correct et valide (si c'est un Q)
+ *)
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end.
+
+ Theorem spec_compare: forall q1 q2, wf q1 -> wf q2 ->
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden, wf.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _ _.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Theorem spec_comparec: forall q1 q2, wf q1 -> wf q2 ->
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ unfold Qccompare, to_Qc.
+ intros q1 q2 Hq1 Hq2; rewrite spec_compare; simpl; auto.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition norm n d: t :=
+ if BigZ.eq_bool n BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ if BigN.eq_bool gcd BigN.one then Qq n d
+ else
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz n
+ else Qq n d.
+
+ Theorem wf_norm: forall n q,
+ (BigN.to_Z q <> 0)%Z -> wf (norm n q).
+ intros p q; unfold norm, wf; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ set (a := BigN.to_Z (BigZ.to_N p)).
+ set (b := (BigN.to_Z q)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH1; case Hq; apply (Zgcd_inv_0_r _ _ (sym_equal HH1)).
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto; fold a; fold b.
+ intros H; case Hq; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ Qed.
+
+ Theorem spec_norm: forall n q,
+ ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ red; simpl; rewrite H1; ring.
+ case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
+ case (Zle_lt_or_eq _ _
+ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
+ 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
+ 2: red; simpl; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1; intros H2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Zmult_1_r.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
+ rewrite H; ring.
+ intros H3.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
+ rewrite BigN.spec_div; auto with zarith.
+ rewrite BigN.spec_gcd.
+ apply Zgcd_div_pos; auto.
+ rewrite BigN.spec_gcd; auto.
+ rewrite Z2P_correct; auto.
+ rewrite Z2P_correct; auto.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite spec_to_N; apply Zgcd_div_swap; auto.
+ case H1; rewrite spec_to_N; rewrite <- Hp; ring.
+ Qed.
+
+ Theorem spec_normc: forall n q,
+ (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n q]].
+ intros n q H; unfold to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_norm; auto.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq nx dx, Qq ny dy =>
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end.
+
+ Theorem wf_add: forall x y, wf x -> wf y -> wf (add x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold add, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros H1 H2 H3.
+ case (Zmult_integral _ _ H1); auto with zarith.
+ Qed.
+
+ Theorem spec_add x y: wf x -> wf y ->
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ simpl; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ assert (F1:= BigN.spec_pos dx).
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ simpl; rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _ _.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ repeat rewrite BigZ.spec_mul; simpl; auto.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y: wf x -> wf y ->
+ [[add x y]] = [[x]] + [[y]].
+ intros x y H1 H2; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy =>
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ | Qq nx dx, Qz zy =>
+ norm (BigZ.add (BigZ.mul zy (BigZ.Pos dx)) nx) dx
+ | Qq nx dx, Qq ny dy =>
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end.
+
+ Theorem wf_add_norm: forall x y, wf x -> wf y -> wf (add_norm x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold add_norm; auto.
+ intros HH1 HH2; apply wf_norm.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros HH1 HH2; apply wf_norm.
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros HH1 HH2; apply wf_norm.
+ rewrite BigN.spec_mul; intros HH3.
+ case (Zmult_integral _ _ HH3).
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ Qed.
+
+ Theorem spec_add_norm x y: wf x -> wf y ->
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y H1 H2; rewrite <- spec_add; auto.
+ generalize H1 H2; unfold add_norm, add, wf; case x; case y; clear H1 H2.
+ intros; apply Qeq_refl.
+ intros p1 n p2 _.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ generalize (BigN.spec_pos n); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool p2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ generalize (BigN.spec_pos p2); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite Zplus_comm.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat.
+ generalize (BigN.spec_pos q2); auto with zarith.
+ generalize (BigN.spec_pos q1); auto with zarith.
+ Qed.
+
+ Theorem spec_add_normc x y: wf x -> wf y ->
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem wf_sub x y: wf x -> wf y -> wf (sub x y).
+ intros x y Hx Hy; unfold sub; apply wf_add; auto.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub x y: wf x -> wf y ->
+ ([sub x y] == [x] - [y])%Q.
+ intros x y Hx Hy; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_subc x y: wf x -> wf y ->
+ [[sub x y]] = [[x]] - [[y]].
+ intros x y Hx Hy; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem wf_sub_norm x y: wf x -> wf y -> wf (sub_norm x y).
+ intros x y Hx Hy; unfold sub_norm; apply wf_add_norm; auto.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub_norm x y: wf x -> wf y ->
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y Hx Hy; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub_normc x y: wf x -> wf y ->
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y Hx Hy; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy =>
+ Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem wf_mul: forall x y, wf x -> wf y -> wf (mul x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold mul, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros H1 H2 H3.
+ case (Zmult_integral _ _ H1); auto with zarith.
+ Qed.
+
+ Theorem spec_mul x y: wf x -> wf y -> ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _ _.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _ _.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ _ _ HH; case HH.
+ rewrite BigN.spec_0; intros H1 H2 _ _.
+ rewrite BigZ.spec_mul; rewrite BigN.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y: wf x -> wf y ->
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zx) dy in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
+ else
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div dy gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) d
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zy) dx in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
+ else
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div dx gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) d
+ | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem wf_mul_norm: forall x y, wf x -> wf y -> wf (mul_norm x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold mul_norm; auto.
+ intros HH1 HH2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto;
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigZ.spec_0.
+ intros H1 H2; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ set (a := BigN.to_Z (BigZ.to_N zx)).
+ set (b := (BigN.to_Z dy)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH3; case H2; rewrite spec_to_N; fold a.
+ rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros H.
+ generalize HH2; simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0; intros HH; case HH; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigN.spec_gcd.
+ intros HH1 H1 H2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigN.spec_gcd.
+ intros HH1 H1 H2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ rewrite BigZ.spec_0.
+ intros HH2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ set (a := BigN.to_Z (BigZ.to_N zy)).
+ set (b := (BigN.to_Z dx)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH3; case HH2; rewrite spec_to_N; fold a.
+ rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros H; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros HH; generalize H1; simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ intros HH3; case HH3; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite HH; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ intros HH1 HH2; apply wf_norm.
+ rewrite BigN.spec_mul; intros HH3.
+ case (Zmult_integral _ _ HH3).
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ Qed.
+
+ Theorem spec_mul_norm x y: wf x -> wf y ->
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y Hx Hy; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; generalize Hx Hy; case x; case y; clear Hx Hy.
+ intros; apply Qeq_refl.
+ intros p1 n p2 Hx Hy.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; auto.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z n)%Z).
+ generalize Hy; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; generalize (BigN.spec_pos n); auto with zarith.
+ set (a := BigN.to_Z (BigZ.to_N p2)).
+ set (b := BigN.to_Z n).
+ assert (F2: (0 < Zgcd a b )%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
+ generalize F; fold a; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; try rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ intros; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith; fold a b; intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; fold a; fold b.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ intros H2; red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p2); fold a b.
+ rewrite Z2P_correct; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (n /
+ BigN.gcd (BigZ.to_N p2)
+ n))%bigN);
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ intros H3.
+ apply False_ind; generalize F1.
+ generalize Hy; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ intros HH; case HH; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite <- H3; ring.
+ assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
+ intros p1 p2 n Hx Hy.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
+ set (a := BigN.to_Z (BigZ.to_N p1)).
+ set (b := BigN.to_Z n).
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < b)%Z).
+ generalize Hx; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n); fold b; auto with zarith.
+ assert (F2: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; fold a b; intros H1.
+ intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ fold a b; intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; fold a b.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p1); fold a b.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (n / BigN.gcd (BigZ.to_N p1) n))%bigN); intros F3.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
+ intros p1 n1 p2 n2 Hn1 Hn2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat.
+ generalize Hn1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ generalize Hn2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ Qed.
+
+ Theorem spec_mul_normc x y: wf x -> wf y ->
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
+ end.
+
+
+ Theorem wf_inv: forall x, wf x -> wf (inv x).
+ intros [ zx | nx dx]; unfold inv, wf; auto.
+ case zx; clear zx.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ case nx; clear nx.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; simpl; auto.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; simpl; auto.
+ Qed.
+
+ Theorem spec_inv x: wf x ->
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] _ | [nx | nx] dx]; unfold inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ unfold to_Q; rewrite BigZ.spec_1.
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; simpl; auto with zarith.
+ intros p Hp; discriminate Hp.
+ simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ intros HH; case HH.
+ intros _.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ intros HH; case HH.
+ intros _.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ simpl; intros.
+ match goal with |- (?X = Zneg ?Y)%Z =>
+ replace (Zneg Y) with (Zopp (Zpos Y));
+ try rewrite Z2P_correct; auto with zarith
+ end.
+ rewrite Zpos_mult_morphism;
+ rewrite Z2P_correct; auto with zarith; try ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_invc x: wf x ->
+ [[inv x]] = /[[x]].
+ intros x Hx; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem wf_div x y: wf x -> wf y -> wf (div x y).
+ intros x y Hx Hy; unfold div; apply wf_mul; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div x y: wf x -> wf y ->
+ ([div x y] == [x] / [y])%Q.
+ intros x y Hx Hy; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: wf x -> wf y ->
+ [[div x y]] = [[x]] / [[y]].
+ intros x y Hx Hy; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem wf_div_norm x y: wf x -> wf y -> wf (div_norm x y).
+ intros x y Hx Hy; unfold div_norm; apply wf_mul_norm; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div_norm x y: wf x -> wf y ->
+ ([div_norm x y] == [x] / [y])%Q.
+ intros x y Hx Hy; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: wf x -> wf y ->
+ [[div_norm x y]] = [[x]] / [[y]].
+ intros x y Hx Hy; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem wf_square: forall x, wf x -> wf (square x).
+ intros [ zx | nx dx]; unfold square, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_square; intros H1 H2; case H2.
+ case (Zmult_integral _ _ H1); auto.
+ Qed.
+
+ Theorem spec_square x: wf x -> ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ intros _.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ unfold wf.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ assert (F: (0 < BigN.to_Z dx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ assert (F1 : (0 < BigN.to_Z (BigN.square dx))%Z).
+ rewrite BigN.spec_square; apply Zmult_lt_0_compat;
+ auto with zarith.
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_square; auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: wf x -> [[square x]] = [[x]]^2.
+ intros x Hx; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem wf_power_pos: forall x p, wf x -> wf (power_pos x p).
+ intros [ zx | nx dx] p; unfold power_pos, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_power_pos; simpl.
+ intros H1 H2 _.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ intros H3; generalize (Zpower_pos_pos _ p H3); auto with zarith.
+ Qed.
+
+ Theorem spec_power_pos x p: wf x -> ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ intros _; unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ rewrite Z2P_correct; rewrite BigN.spec_power_pos; auto.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ Theorem spec_power_posc x p: wf x ->
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p Hx; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; generalize Hx; case x; simpl; clear x Hx Hrec.
+ intros x _; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+End Qv.
+
diff --git a/theories/Numbers/Rational/SpecViaQ/QSig.v b/theories/Numbers/Rational/SpecViaQ/QSig.v
new file mode 100644
index 00000000..a488c7c6
--- /dev/null
+++ b/theories/Numbers/Rational/SpecViaQ/QSig.v
@@ -0,0 +1,84 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: QSig.v 11028 2008-06-01 17:34:19Z letouzey $ i*)
+
+Require Import QArith Qpower.
+
+Open Scope Q_scope.
+
+(** * QSig *)
+
+(** Interface of a rich structure about rational numbers.
+ Specifications are written via translation to Q.
+*)
+
+Module Type QType.
+
+ Parameter t : Type.
+
+ Parameter to_Q : t -> Q.
+ Notation "[ x ]" := (to_Q x).
+
+ Definition eq x y := [x] == [y].
+
+ Parameter of_Q : Q -> t.
+ Parameter spec_of_Q: forall x, to_Q (of_Q x) == x.
+
+ Parameter zero : t.
+ Parameter one : t.
+ Parameter minus_one : t.
+
+ Parameter spec_0: [zero] == 0.
+ Parameter spec_1: [one] == 1.
+ Parameter spec_m1: [minus_one] == -(1).
+
+ Parameter compare : t -> t -> comparison.
+
+ Parameter spec_compare: forall x y, compare x y = ([x] ?= [y]).
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+ Parameter add : t -> t -> t.
+
+ Parameter spec_add: forall x y, [add x y] == [x] + [y].
+
+ Parameter sub : t -> t -> t.
+
+ Parameter spec_sub: forall x y, [sub x y] == [x] - [y].
+
+ Parameter opp : t -> t.
+
+ Parameter spec_opp: forall x, [opp x] == - [x].
+
+ Parameter mul : t -> t -> t.
+
+ Parameter spec_mul: forall x y, [mul x y] == [x] * [y].
+
+ Parameter square : t -> t.
+
+ Parameter spec_square: forall x, [square x] == [x] ^ 2.
+
+ Parameter inv : t -> t.
+
+ Parameter spec_inv : forall x, [inv x] == / [x].
+
+ Parameter div : t -> t -> t.
+
+ Parameter spec_div: forall x y, [div x y] == [x] / [y].
+
+ Parameter power_pos : t -> positive -> t.
+
+ Parameter spec_power_pos: forall x n, [power_pos x n] == [x] ^ Zpos n.
+
+End QType.
+
+(* TODO: add norm function and variants, add eq_bool, what about Qc ? *) \ No newline at end of file
diff --git a/theories/Program/Basics.v b/theories/Program/Basics.v
new file mode 100644
index 00000000..a1a78acc
--- /dev/null
+++ b/theories/Program/Basics.v
@@ -0,0 +1,57 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Standard functions and combinators.
+ * Proofs about them require functional extensionality and can be found in [Combinators].
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(* $Id: Basics.v 11046 2008-06-03 22:48:06Z msozeau $ *)
+
+(** The polymorphic identity function. *)
+
+Definition id {A} := fun x : A => x.
+
+(** Function composition. *)
+
+Definition compose {A B C} (g : B -> C) (f : A -> B) :=
+ fun x : A => g (f x).
+
+Hint Unfold compose.
+
+Notation " g ∘ f " := (compose g f)
+ (at level 40, left associativity) : program_scope.
+
+Open Local Scope program_scope.
+
+(** The non-dependent function space between [A] and [B]. *)
+
+Definition arrow (A B : Type) := A -> B.
+
+(** Logical implication. *)
+
+Definition impl (A B : Prop) : Prop := A -> B.
+
+(** The constant function [const a] always returns [a]. *)
+
+Definition const {A B} (a : A) := fun _ : B => a.
+
+(** The [flip] combinator reverses the first two arguments of a function. *)
+
+Definition flip {A B C} (f : A -> B -> C) x y := f y x.
+
+(** Application as a combinator. *)
+
+Definition apply {A B} (f : A -> B) (x : A) := f x.
+
+(** Curryfication of [prod] is defined in [Logic.Datatypes]. *)
+
+Implicit Arguments prod_curry [[A] [B] [C]].
+Implicit Arguments prod_uncurry [[A] [B] [C]].
diff --git a/theories/Program/Combinators.v b/theories/Program/Combinators.v
new file mode 100644
index 00000000..e267fbbe
--- /dev/null
+++ b/theories/Program/Combinators.v
@@ -0,0 +1,71 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Proofs about standard combinators, exports functional extensionality.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+Require Import Coq.Program.Basics.
+Require Export Coq.Program.FunctionalExtensionality.
+
+Open Scope program_scope.
+
+(** Composition has [id] for neutral element and is associative. *)
+
+Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f.
+Proof.
+ intros.
+ unfold id, compose.
+ symmetry. apply eta_expansion.
+Qed.
+
+Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f.
+Proof.
+ intros.
+ unfold id, compose.
+ symmetry ; apply eta_expansion.
+Qed.
+
+Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D),
+ h ∘ g ∘ f = h ∘ (g ∘ f).
+Proof.
+ intros.
+ reflexivity.
+Qed.
+
+Hint Rewrite @compose_id_left @compose_id_right @compose_assoc : core.
+
+(** [flip] is involutive. *)
+
+Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id.
+Proof.
+ unfold flip, compose.
+ intros.
+ extensionality x ; extensionality y ; extensionality z.
+ reflexivity.
+Qed.
+
+(** [prod_curry] and [prod_uncurry] are each others inverses. *)
+
+Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id.
+Proof.
+ simpl ; intros.
+ unfold prod_uncurry, prod_curry, compose.
+ extensionality x ; extensionality y ; extensionality z.
+ reflexivity.
+Qed.
+
+Lemma prod_curry_uncurry : forall A B C, @prod_curry A B C ∘ prod_uncurry = id.
+Proof.
+ simpl ; intros.
+ unfold prod_uncurry, prod_curry, compose.
+ extensionality x ; extensionality p.
+ destruct p ; simpl ; reflexivity.
+Qed.
diff --git a/theories/Program/Equality.v b/theories/Program/Equality.v
new file mode 100644
index 00000000..d19f29c3
--- /dev/null
+++ b/theories/Program/Equality.v
@@ -0,0 +1,264 @@
+(* -*- coq-prog-args: ("-emacs-U") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Equality.v 11023 2008-05-30 11:08:39Z msozeau $ i*)
+
+(** Tactics related to (dependent) equality and proof irrelevance. *)
+
+Require Export ProofIrrelevance.
+Require Export JMeq.
+
+Require Import Coq.Program.Tactics.
+
+(** Notation for heterogenous equality. *)
+
+Notation " [ x : X ] = [ y : Y ] " := (@JMeq X x Y y) (at level 0, X at next level, Y at next level).
+
+(** Do something on an heterogeneous equality appearing in the context. *)
+
+Ltac on_JMeq tac :=
+ match goal with
+ | [ H : @JMeq ?x ?X ?y ?Y |- _ ] => tac H
+ end.
+
+(** Try to apply [JMeq_eq] to get back a regular equality when the two types are equal. *)
+
+Ltac simpl_one_JMeq :=
+ on_JMeq ltac:(fun H => replace_hyp H (JMeq_eq H)).
+
+(** Repeat it for every possible hypothesis. *)
+
+Ltac simpl_JMeq := repeat simpl_one_JMeq.
+
+(** Just simplify an h.eq. without clearing it. *)
+
+Ltac simpl_one_dep_JMeq :=
+ on_JMeq
+ ltac:(fun H => let H' := fresh "H" in
+ assert (H' := JMeq_eq H)).
+
+Require Import Eqdep.
+
+(** Simplify dependent equality using sigmas to equality of the second projections if possible.
+ Uses UIP. *)
+
+Ltac simpl_existT :=
+ match goal with
+ [ H : existT _ ?x _ = existT _ ?x _ |- _ ] =>
+ let Hi := fresh H in assert(Hi:=inj_pairT2 _ _ _ _ _ H) ; clear H
+ end.
+
+Ltac simpl_existTs := repeat simpl_existT.
+
+(** Tries to eliminate a call to [eq_rect] (the substitution principle) by any means available. *)
+
+Ltac elim_eq_rect :=
+ match goal with
+ | [ |- ?t ] =>
+ match t with
+ | context [ @eq_rect _ _ _ _ _ ?p ] =>
+ let P := fresh "P" in
+ set (P := p); simpl in P ;
+ ((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P))
+ | context [ @eq_rect _ _ _ _ _ ?p _ ] =>
+ let P := fresh "P" in
+ set (P := p); simpl in P ;
+ ((case P ; clear P) || (clearbody P; rewrite (UIP_refl _ _ P); clear P))
+ end
+ end.
+
+(** Rewrite using uniqueness of indentity proofs [H = refl_equal X]. *)
+
+Ltac simpl_uip :=
+ match goal with
+ [ H : ?X = ?X |- _ ] => rewrite (UIP_refl _ _ H) in *; clear H
+ end.
+
+(** Simplify equalities appearing in the context and goal. *)
+
+Ltac simpl_eq := simpl ; repeat (elim_eq_rect ; simpl) ; repeat (simpl_uip ; simpl).
+
+(** Try to abstract a proof of equality, if no proof of the same equality is present in the context. *)
+
+Ltac abstract_eq_hyp H' p :=
+ let ty := type of p in
+ let tyred := eval simpl in ty in
+ match tyred with
+ ?X = ?Y =>
+ match goal with
+ | [ H : X = Y |- _ ] => fail 1
+ | _ => set (H':=p) ; try (change p with H') ; clearbody H' ; simpl in H'
+ end
+ end.
+
+(** Apply the tactic tac to proofs of equality appearing as coercion arguments.
+ Just redefine this tactic (using [Ltac on_coerce_proof tac ::=]) to handle custom coercion operators.
+ *)
+
+Ltac on_coerce_proof tac T :=
+ match T with
+ | context [ eq_rect _ _ _ _ ?p ] => tac p
+ end.
+
+Ltac on_coerce_proof_gl tac :=
+ match goal with
+ [ |- ?T ] => on_coerce_proof tac T
+ end.
+
+(** Abstract proofs of equalities of coercions. *)
+
+Ltac abstract_eq_proof := on_coerce_proof_gl ltac:(fun p => let H := fresh "eqH" in abstract_eq_hyp H p).
+
+Ltac abstract_eq_proofs := repeat abstract_eq_proof.
+
+(** Factorize proofs, by using proof irrelevance so that two proofs of the same equality
+ in the goal become convertible. *)
+
+Ltac pi_eq_proof_hyp p :=
+ let ty := type of p in
+ let tyred := eval simpl in ty in
+ match tyred with
+ ?X = ?Y =>
+ match goal with
+ | [ H : X = Y |- _ ] =>
+ match p with
+ | H => fail 2
+ | _ => rewrite (proof_irrelevance (X = Y) p H)
+ end
+ | _ => fail " No hypothesis with same type "
+ end
+ end.
+
+(** Factorize proofs of equality appearing as coercion arguments. *)
+
+Ltac pi_eq_proof := on_coerce_proof_gl pi_eq_proof_hyp.
+
+Ltac pi_eq_proofs := repeat pi_eq_proof.
+
+(** The two preceding tactics in sequence. *)
+
+Ltac clear_eq_proofs :=
+ abstract_eq_proofs ; pi_eq_proofs.
+
+Hint Rewrite <- eq_rect_eq : refl_id.
+
+(** The refl_id database should be populated with lemmas of the form
+ [coerce_* t (refl_equal _) = t]. *)
+
+Ltac rewrite_refl_id := autorewrite with refl_id.
+
+(** Clear the context and goal of equality proofs. *)
+
+Ltac clear_eq_ctx :=
+ rewrite_refl_id ; clear_eq_proofs.
+
+(** Reapeated elimination of [eq_rect] applications.
+ Abstracting equalities makes it run much faster than an naive implementation. *)
+
+Ltac simpl_eqs :=
+ repeat (elim_eq_rect ; simpl ; clear_eq_ctx).
+
+(** Clear unused reflexivity proofs. *)
+
+Ltac clear_refl_eq :=
+ match goal with [ H : ?X = ?X |- _ ] => clear H end.
+Ltac clear_refl_eqs := repeat clear_refl_eq.
+
+(** Clear unused equality proofs. *)
+
+Ltac clear_eq :=
+ match goal with [ H : _ = _ |- _ ] => clear H end.
+Ltac clear_eqs := repeat clear_eq.
+
+(** Combine all the tactics to simplify goals containing coercions. *)
+
+Ltac simplify_eqs :=
+ simpl ; simpl_eqs ; clear_eq_ctx ; clear_refl_eqs ;
+ try subst ; simpl ; repeat simpl_uip ; rewrite_refl_id.
+
+(** A tactic that tries to remove trivial equality guards in induction hypotheses coming
+ from [dependent induction]/[generalize_eqs] invocations. *)
+
+
+Ltac simpl_IH_eq H :=
+ match type of H with
+ | @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H (JMeq_refl x))
+ | _ -> @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H _ (JMeq_refl x))
+ | _ -> _ -> @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H _ _ (JMeq_refl x))
+ | _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H _ _ _ (JMeq_refl x))
+ | _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H _ _ _ _ (JMeq_refl x))
+ | _ -> _ -> _ -> _ -> _ -> @JMeq _ ?x _ _ -> _ =>
+ refine_hyp (H _ _ _ _ _ (JMeq_refl x))
+ | ?x = _ -> _ =>
+ refine_hyp (H (refl_equal x))
+ | _ -> ?x = _ -> _ =>
+ refine_hyp (H _ (refl_equal x))
+ | _ -> _ -> ?x = _ -> _ =>
+ refine_hyp (H _ _ (refl_equal x))
+ | _ -> _ -> _ -> ?x = _ -> _ =>
+ refine_hyp (H _ _ _ (refl_equal x))
+ | _ -> _ -> _ -> _ -> ?x = _ -> _ =>
+ refine_hyp (H _ _ _ _ (refl_equal x))
+ | _ -> _ -> _ -> _ -> _ -> ?x = _ -> _ =>
+ refine_hyp (H _ _ _ _ _ (refl_equal x))
+ end.
+
+Ltac simpl_IH_eqs H := repeat simpl_IH_eq H.
+
+Ltac do_simpl_IHs_eqs :=
+ match goal with
+ | [ H : context [ @JMeq _ _ _ _ -> _ ] |- _ ] => progress (simpl_IH_eqs H)
+ | [ H : context [ _ = _ -> _ ] |- _ ] => progress (simpl_IH_eqs H)
+ end.
+
+Ltac simpl_IHs_eqs := repeat do_simpl_IHs_eqs.
+
+Ltac simpl_depind := subst* ; autoinjections ; try discriminates ;
+ simpl_JMeq ; simpl_existTs ; simpl_IHs_eqs.
+
+(** The following tactics allow to do induction on an already instantiated inductive predicate
+ by first generalizing it and adding the proper equalities to the context, in a maner similar to
+ the BasicElim tactic of "Elimination with a motive" by Conor McBride. *)
+
+(** The [do_depind] higher-order tactic takes an induction tactic as argument and an hypothesis
+ and starts a dependent induction using this tactic. *)
+
+Ltac do_depind tac H :=
+ generalize_eqs H ; tac H ; repeat progress simpl_depind.
+
+(** Calls [destruct] on the generalized hypothesis, results should be similar to inversion. *)
+
+Tactic Notation "dependent" "destruction" ident(H) :=
+ do_depind ltac:(fun H => destruct H ; intros) H ; subst*.
+
+Tactic Notation "dependent" "destruction" ident(H) "using" constr(c) :=
+ do_depind ltac:(fun H => destruct H using c ; intros) H.
+
+(** Then we have wrappers for usual calls to induction. One can customize the induction tactic by
+ writting another wrapper calling do_depind. *)
+
+Tactic Notation "dependent" "induction" ident(H) :=
+ do_depind ltac:(fun H => induction H ; intros) H.
+
+Tactic Notation "dependent" "induction" ident(H) "using" constr(c) :=
+ do_depind ltac:(fun H => induction H using c ; intros) H.
+
+(** This tactic also generalizes the goal by the given variables before the induction. *)
+
+Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) :=
+ do_depind ltac:(fun H => generalize l ; clear l ; induction H ; intros) H.
+
+Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
+ do_depind ltac:(fun H => generalize l ; clear l ; induction H using c ; intros) H.
+
diff --git a/theories/Program/FunctionalExtensionality.v b/theories/Program/FunctionalExtensionality.v
new file mode 100644
index 00000000..b5ad5b4d
--- /dev/null
+++ b/theories/Program/FunctionalExtensionality.v
@@ -0,0 +1,109 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: FunctionalExtensionality.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
+
+(** This module states the axiom of (dependent) functional extensionality and (dependent) eta-expansion.
+ It introduces a tactic [extensionality] to apply the axiom of extensionality to an equality goal.
+
+ It also defines two lemmas for expansion of fixpoint defs using extensionnality and proof-irrelevance
+ to avoid a side condition on the functionals. *)
+
+Require Import Coq.Program.Utils.
+Require Import Coq.Program.Wf.
+Require Import Coq.Program.Equality.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** The converse of functional equality. *)
+
+Lemma equal_f : forall A B : Type, forall (f g : A -> B),
+ f = g -> forall x, f x = g x.
+Proof.
+ intros.
+ rewrite H.
+ auto.
+Qed.
+
+(** Statements of functional equality for simple and dependent functions. *)
+
+Axiom fun_extensionality_dep : forall A, forall B : (A -> Type),
+ forall (f g : forall x : A, B x),
+ (forall x, f x = g x) -> f = g.
+
+Lemma fun_extensionality : forall A B (f g : A -> B),
+ (forall x, f x = g x) -> f = g.
+Proof.
+ intros ; apply fun_extensionality_dep.
+ assumption.
+Qed.
+
+Hint Resolve fun_extensionality fun_extensionality_dep : program.
+
+(** Apply [fun_extensionality], introducing variable x. *)
+
+Tactic Notation "extensionality" ident(x) :=
+ match goal with
+ [ |- ?X = ?Y ] => apply (@fun_extensionality _ _ X Y) || apply (@fun_extensionality_dep _ _ X Y) ; intro x
+ end.
+
+(** Eta expansion follows from extensionality. *)
+
+Lemma eta_expansion_dep : forall A (B : A -> Type) (f : forall x : A, B x),
+ f = fun x => f x.
+Proof.
+ intros.
+ extensionality x.
+ reflexivity.
+Qed.
+
+Lemma eta_expansion : forall A B (f : A -> B),
+ f = fun x => f x.
+Proof.
+ intros ; apply eta_expansion_dep.
+Qed.
+
+(** The two following lemmas allow to unfold a well-founded fixpoint definition without
+ restriction using the functional extensionality axiom. *)
+
+(** For a function defined with Program using a well-founded order. *)
+
+Program Lemma fix_sub_eq_ext :
+ forall (A : Set) (R : A -> A -> Prop) (Rwf : well_founded R)
+ (P : A -> Set)
+ (F_sub : forall x : A, (forall (y : A | R y x), P y) -> P x),
+ forall x : A,
+ Fix_sub A R Rwf P F_sub x =
+ F_sub x (fun (y : A | R y x) => Fix A R Rwf P F_sub y).
+Proof.
+ intros ; apply Fix_eq ; auto.
+ intros.
+ assert(f = g).
+ extensionality y ; apply H.
+ rewrite H0 ; auto.
+Qed.
+
+(** For a function defined with Program using a measure. *)
+
+Program Lemma fix_sub_measure_eq_ext :
+ forall (A : Type) (f : A -> nat) (P : A -> Type)
+ (F_sub : forall x : A, (forall (y : A | f y < f x), P y) -> P x),
+ forall x : A,
+ Fix_measure_sub A f P F_sub x =
+ F_sub x (fun (y : A | f y < f x) => Fix_measure_sub A f P F_sub y).
+Proof.
+ intros ; apply Fix_measure_eq ; auto.
+ intros.
+ assert(f0 = g).
+ extensionality y ; apply H.
+ rewrite H0 ; auto.
+Qed.
+
+
diff --git a/theories/Program/Program.v b/theories/Program/Program.v
new file mode 100644
index 00000000..b6c3031e
--- /dev/null
+++ b/theories/Program/Program.v
@@ -0,0 +1,7 @@
+Require Export Coq.Program.Utils.
+Require Export Coq.Program.Wf.
+Require Export Coq.Program.Equality.
+Require Export Coq.Program.Subset.
+Require Export Coq.Program.Basics.
+Require Export Coq.Program.Combinators.
+Require Export Coq.Program.Syntax. \ No newline at end of file
diff --git a/theories/Program/Subset.v b/theories/Program/Subset.v
new file mode 100644
index 00000000..d021326a
--- /dev/null
+++ b/theories/Program/Subset.v
@@ -0,0 +1,116 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Coq.Program.Utils.
+Require Import Coq.Program.Equality.
+
+Open Local Scope program_scope.
+
+(** Tactics related to subsets and proof irrelevance. *)
+
+(** The following tactics implement a poor-man's solution for proof-irrelevance: it tries to
+ factorize every proof of the same proposition in a goal so that equality of such proofs becomes trivial. *)
+
+Ltac on_subset_proof_aux tac T :=
+ match T with
+ | context [ exist ?P _ ?p ] => try on_subset_proof_aux tac P ; tac p
+ end.
+
+Ltac on_subset_proof tac :=
+ match goal with
+ [ |- ?T ] => on_subset_proof_aux tac T
+ end.
+
+Ltac abstract_any_hyp H' p :=
+ match type of p with
+ ?X =>
+ match goal with
+ | [ H : X |- _ ] => fail 1
+ | _ => set (H':=p) ; try (change p with H') ; clearbody H'
+ end
+ end.
+
+Ltac abstract_subset_proof :=
+ on_subset_proof ltac:(fun p => let H := fresh "eqH" in abstract_any_hyp H p ; simpl in H).
+
+Ltac abstract_subset_proofs := repeat abstract_subset_proof.
+
+Ltac pi_subset_proof_hyp p :=
+ match type of p with
+ ?X =>
+ match goal with
+ | [ H : X |- _ ] =>
+ match p with
+ | H => fail 2
+ | _ => rewrite (proof_irrelevance X p H)
+ end
+ | _ => fail " No hypothesis with same type "
+ end
+ end.
+
+Ltac pi_subset_proof := on_subset_proof pi_subset_proof_hyp.
+
+Ltac pi_subset_proofs := repeat pi_subset_proof.
+
+(** The two preceding tactics in sequence. *)
+
+Ltac clear_subset_proofs :=
+ abstract_subset_proofs ; simpl in * |- ; pi_subset_proofs ; clear_dups.
+
+Ltac pi := repeat progress f_equal ; apply proof_irrelevance.
+
+Lemma subset_eq : forall A (P : A -> Prop) (n m : sig P), n = m <-> `n = `m.
+Proof.
+ induction n.
+ induction m.
+ simpl.
+ split ; intros ; subst.
+
+ inversion H.
+ reflexivity.
+
+ pi.
+Qed.
+
+(* Somewhat trivial definition, but not unfolded automatically hence we can match on [match_eq ?A ?B ?x ?f]
+ in tactics. *)
+
+Definition match_eq (A B : Type) (x : A) (fn : forall (y : A | y = x), B) : B :=
+ fn (exist _ x (refl_equal x)).
+
+(* This is what we want to be able to do: replace the originaly matched object by a new,
+ propositionally equal one. If [fn] works on [x] it should work on any [y | y = x]. *)
+
+Lemma match_eq_rewrite : forall (A B : Type) (x : A) (fn : forall (y : A | y = x), B)
+ (y : A | y = x),
+ match_eq A B x fn = fn y.
+Proof.
+ intros.
+ unfold match_eq.
+ f_equal.
+ destruct y.
+ (* uses proof-irrelevance *)
+ apply <- subset_eq.
+ symmetry. assumption.
+Qed.
+
+(** Now we make a tactic to be able to rewrite a term [t] which is applied to a [match_eq] using an arbitrary
+ equality [t = u], and [u] is now the subject of the [match]. *)
+
+Ltac rewrite_match_eq H :=
+ match goal with
+ [ |- ?T ] =>
+ match T with
+ context [ match_eq ?A ?B ?t ?f ] =>
+ rewrite (match_eq_rewrite A B t f (exist _ _ (sym_eq H)))
+ end
+ end.
+
+(** Otherwise we can simply unfold [match_eq] and the term trivially reduces to the original definition. *)
+
+Ltac simpl_match_eq := unfold match_eq ; simpl.
diff --git a/theories/Program/Syntax.v b/theories/Program/Syntax.v
new file mode 100644
index 00000000..6cd75257
--- /dev/null
+++ b/theories/Program/Syntax.v
@@ -0,0 +1,59 @@
+(* -*- coq-prog-args: ("-emacs-U") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Custom notations and implicits for Coq prelude definitions.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+(** Notations for the unit type and value. *)
+
+Notation " () " := Datatypes.unit : type_scope.
+Notation " () " := tt.
+
+(** Set maximally inserted implicit arguments for standard definitions. *)
+
+Implicit Arguments eq [[A]].
+
+Implicit Arguments Some [[A]].
+Implicit Arguments None [[A]].
+
+Implicit Arguments inl [[A] [B]].
+Implicit Arguments inr [[A] [B]].
+
+Implicit Arguments left [[A] [B]].
+Implicit Arguments right [[A] [B]].
+
+Require Import Coq.Lists.List.
+
+Implicit Arguments nil [[A]].
+Implicit Arguments cons [[A]].
+
+(** Standard notations for lists. *)
+
+Notation " [ ] " := nil : list_scope.
+Notation " [ x ] " := (cons x nil) : list_scope.
+Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) : list_scope.
+
+(** n-ary exists *)
+
+Notation " 'exists' x y , p" := (ex (fun x => (ex (fun y => p))))
+ (at level 200, x ident, y ident, right associativity) : type_scope.
+
+Notation " 'exists' x y z , p" := (ex (fun x => (ex (fun y => (ex (fun z => p))))))
+ (at level 200, x ident, y ident, z ident, right associativity) : type_scope.
+
+Notation " 'exists' x y z w , p" := (ex (fun x => (ex (fun y => (ex (fun z => (ex (fun w => p))))))))
+ (at level 200, x ident, y ident, z ident, w ident, right associativity) : type_scope.
+
+Tactic Notation "exist" constr(x) := exists x.
+Tactic Notation "exist" constr(x) constr(y) := exists x ; exists y.
+Tactic Notation "exist" constr(x) constr(y) constr(z) := exists x ; exists y ; exists z.
+Tactic Notation "exist" constr(x) constr(y) constr(z) constr(w) := exists x ; exists y ; exists z ; exists w.
diff --git a/theories/Program/Tactics.v b/theories/Program/Tactics.v
new file mode 100644
index 00000000..41b170c9
--- /dev/null
+++ b/theories/Program/Tactics.v
@@ -0,0 +1,234 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Tactics.v 11122 2008-06-13 14:18:44Z msozeau $ i*)
+
+(** This module implements various tactics used to simplify the goals produced by Program,
+ which are also generally useful. *)
+
+(** Destructs one pair, without care regarding naming. *)
+
+Ltac destruct_one_pair :=
+ match goal with
+ | [H : (_ /\ _) |- _] => destruct H
+ | [H : prod _ _ |- _] => destruct H
+ end.
+
+(** Repeateadly destruct pairs. *)
+
+Ltac destruct_pairs := repeat (destruct_one_pair).
+
+(** Destruct one existential package, keeping the name of the hypothesis for the first component. *)
+
+Ltac destruct_one_ex :=
+ let tac H := let ph := fresh "H" in (destruct H as [H ph]) in
+ let tacT H := let ph := fresh "X" in (destruct H as [H ph]) in
+ match goal with
+ | [H : (ex _) |- _] => tac H
+ | [H : (sig ?P) |- _ ] => tac H
+ | [H : (sigT ?P) |- _ ] => tacT H
+ | [H : (ex2 _) |- _] => tac H
+ end.
+
+(** Repeateadly destruct existentials. *)
+
+Ltac destruct_exists := repeat (destruct_one_ex).
+
+(** Repeateadly destruct conjunctions and existentials. *)
+
+Ltac destruct_conjs := repeat (destruct_one_pair || destruct_one_ex).
+
+(** Destruct an existential hypothesis [t] keeping its name for the first component
+ and using [Ht] for the second *)
+
+Tactic Notation "destruct" "exist" ident(t) ident(Ht) := destruct t as [t Ht].
+
+(** Destruct a disjunction keeping its name in both subgoals. *)
+
+Tactic Notation "destruct" "or" ident(H) := destruct H as [H|H].
+
+(** Discriminate that also work on a [x <> x] hypothesis. *)
+
+Ltac discriminates :=
+ match goal with
+ | [ H : ?x <> ?x |- _ ] => elim H ; reflexivity
+ | _ => discriminate
+ end.
+
+(** Revert the last hypothesis. *)
+
+Ltac revert_last :=
+ match goal with
+ [ H : _ |- _ ] => revert H
+ end.
+
+(** Reapeateadly reverse the last hypothesis, putting everything in the goal. *)
+
+Ltac reverse := repeat revert_last.
+
+(** Clear duplicated hypotheses *)
+
+Ltac clear_dup :=
+ match goal with
+ | [ H : ?X |- _ ] =>
+ match goal with
+ | [ H' : X |- _ ] =>
+ match H' with
+ | H => fail 2
+ | _ => clear H' || clear H
+ end
+ end
+ end.
+
+Ltac clear_dups := repeat clear_dup.
+
+(** A non-failing subst that substitutes as much as possible. *)
+
+Ltac subst_no_fail :=
+ repeat (match goal with
+ [ H : ?X = ?Y |- _ ] => subst X || subst Y
+ end).
+
+Tactic Notation "subst" "*" := subst_no_fail.
+
+Ltac on_application f tac T :=
+ match T with
+ | context [f ?x ?y ?z ?w ?v ?u ?a ?b ?c] => tac (f x y z w v u a b c)
+ | context [f ?x ?y ?z ?w ?v ?u ?a ?b] => tac (f x y z w v u a b)
+ | context [f ?x ?y ?z ?w ?v ?u ?a] => tac (f x y z w v u a)
+ | context [f ?x ?y ?z ?w ?v ?u] => tac (f x y z w v u)
+ | context [f ?x ?y ?z ?w ?v] => tac (f x y z w v)
+ | context [f ?x ?y ?z ?w] => tac (f x y z w)
+ | context [f ?x ?y ?z] => tac (f x y z)
+ | context [f ?x ?y] => tac (f x y)
+ | context [f ?x] => tac (f x)
+ end.
+
+(** Tactical [on_call f tac] applies [tac] on any application of [f] in the hypothesis or goal. *)
+
+Ltac on_call f tac :=
+ match goal with
+ | |- ?T => on_application f tac T
+ | H : ?T |- _ => on_application f tac T
+ end.
+
+(* Destructs calls to f in hypothesis or conclusion, useful if f creates a subset object. *)
+
+Ltac destruct_call f :=
+ let tac t := (destruct t) in on_call f tac.
+
+Ltac destruct_calls f := repeat destruct_call f.
+
+Ltac destruct_call_in f H :=
+ let tac t := (destruct t) in
+ let T := type of H in
+ on_application f tac T.
+
+Ltac destruct_call_as f l :=
+ let tac t := (destruct t as l) in on_call f tac.
+
+Ltac destruct_call_as_in f l H :=
+ let tac t := (destruct t as l) in
+ let T := type of H in
+ on_application f tac T.
+
+Tactic Notation "destruct_call" constr(f) := destruct_call f.
+
+(** Permit to name the results of destructing the call to [f]. *)
+
+Tactic Notation "destruct_call" constr(f) "as" simple_intropattern(l) :=
+ destruct_call_as f l.
+
+(** Specify the hypothesis in which the call occurs as well. *)
+
+Tactic Notation "destruct_call" constr(f) "in" hyp(id) :=
+ destruct_call_in f id.
+
+Tactic Notation "destruct_call" constr(f) "as" simple_intropattern(l) "in" hyp(id) :=
+ destruct_call_as_in f l id.
+
+(** Try to inject any potential constructor equality hypothesis. *)
+
+Ltac autoinjection :=
+ let tac H := progress (inversion H ; subst ; clear_dups) ; clear H in
+ match goal with
+ | [ H : ?f ?a = ?f' ?a' |- _ ] => tac H
+ | [ H : ?f ?a ?b = ?f' ?a' ?b' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c = ?f' ?a' ?b' ?c' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d= ?f' ?a' ?b' ?c' ?d' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d ?e= ?f' ?a' ?b' ?c' ?d' ?e' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d ?e ?g= ?f' ?a' ?b' ?c' ?d' ?e' ?g' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d ?e ?g ?h= ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d ?e ?g ?h ?i = ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' ?i' |- _ ] => tac H
+ | [ H : ?f ?a ?b ?c ?d ?e ?g ?h ?i ?j = ?f' ?a' ?b' ?c' ?d' ?e'?g' ?h' ?i' ?j' |- _ ] => tac H
+ end.
+
+Ltac autoinjections := repeat autoinjection.
+
+(** Destruct an hypothesis by first copying it to avoid dependencies. *)
+
+Ltac destruct_nondep H := let H0 := fresh "H" in assert(H0 := H); destruct H0.
+
+(** If bang appears in the goal, it means that we have a proof of False and the goal is solved. *)
+
+Ltac bang :=
+ match goal with
+ | |- ?x =>
+ match x with
+ | context [False_rect _ ?p] => elim p
+ end
+ end.
+
+(** A tactic to show contradiction by first asserting an automatically provable hypothesis. *)
+Tactic Notation "contradiction" "by" constr(t) :=
+ let H := fresh in assert t as H by auto with * ; contradiction.
+
+(** A tactic that adds [H:=p:typeof(p)] to the context if no hypothesis of the same type appears in the goal.
+ Useful to do saturation using tactics. *)
+
+Ltac add_hypothesis H' p :=
+ match type of p with
+ ?X =>
+ match goal with
+ | [ H : X |- _ ] => fail 1
+ | _ => set (H':=p) ; try (change p with H') ; clearbody H'
+ end
+ end.
+
+(** A tactic to replace an hypothesis by another term. *)
+
+Ltac replace_hyp H c :=
+ let H' := fresh "H" in
+ assert(H' := c) ; clear H ; rename H' into H.
+
+(** A tactic to refine an hypothesis by supplying some of its arguments. *)
+
+Ltac refine_hyp c :=
+ let tac H := replace_hyp H c in
+ match c with
+ | ?H _ => tac H
+ | ?H _ _ => tac H
+ | ?H _ _ _ => tac H
+ | ?H _ _ _ _ => tac H
+ | ?H _ _ _ _ _ => tac H
+ | ?H _ _ _ _ _ _ => tac H
+ | ?H _ _ _ _ _ _ _ => tac H
+ | ?H _ _ _ _ _ _ _ _ => tac H
+ end.
+
+(** The default simplification tactic used by Program is defined by [program_simpl], sometimes [auto]
+ is not enough, better rebind using [Obligations Tactic := tac] in this case,
+ possibly using [program_simplify] to use standard goal-cleaning tactics. *)
+
+Ltac program_simplify :=
+ simpl ; intros ; destruct_conjs ; simpl proj1_sig in * ; subst* ; autoinjections ; try discriminates ;
+ try (solve [ red ; intros ; destruct_conjs ; autoinjections ; discriminates ]).
+
+Ltac program_simpl := program_simplify ; auto.
+
+Ltac obligations_tactic := program_simpl.
diff --git a/theories/Program/Utils.v b/theories/Program/Utils.v
new file mode 100644
index 00000000..21eee0ca
--- /dev/null
+++ b/theories/Program/Utils.v
@@ -0,0 +1,56 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Utils.v 10919 2008-05-11 22:04:26Z msozeau $ i*)
+
+Require Export Coq.Program.Tactics.
+
+Set Implicit Arguments.
+
+(** A simpler notation for subsets defined on a cartesian product. *)
+
+Notation "{ ( x , y ) : A | P }" :=
+ (sig (fun anonymous : A => let (x,y) := anonymous in P))
+ (x ident, y ident, at level 10) : type_scope.
+
+(** Generates an obligation to prove False. *)
+
+Notation " ! " := (False_rect _ _) : program_scope.
+
+Delimit Scope program_scope with prg.
+
+(** Abbreviation for first projection and hiding of proofs of subset objects. *)
+
+Notation " ` t " := (proj1_sig t) (at level 10, t at next level) : program_scope.
+
+(** Coerces objects to their support before comparing them. *)
+
+Notation " x '`=' y " := ((x :>) = (y :>)) (at level 70) : program_scope.
+
+Require Import Coq.Bool.Sumbool.
+
+(** Construct a dependent disjunction from a boolean. *)
+
+Notation dec := sumbool_of_bool.
+
+(** The notations [in_right] and [in_left] construct objects of a dependent disjunction. *)
+
+(** Hide proofs and generates obligations when put in a term. *)
+
+Notation "'in_left'" := (@left _ _ _) : program_scope.
+Notation "'in_right'" := (@right _ _ _) : program_scope.
+
+(** Extraction directives *)
+(*
+Extraction Inline proj1_sig.
+Extract Inductive unit => "unit" [ "()" ].
+Extract Inductive bool => "bool" [ "true" "false" ].
+Extract Inductive sumbool => "bool" [ "true" "false" ].
+(* Extract Inductive prod "'a" "'b" => " 'a * 'b " [ "(,)" ]. *)
+(* Extract Inductive sigT => "prod" [ "" ]. *)
+*) \ No newline at end of file
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
new file mode 100644
index 00000000..b6ba5d44
--- /dev/null
+++ b/theories/Program/Wf.v
@@ -0,0 +1,148 @@
+Require Import Coq.Init.Wf.
+Require Import Coq.Program.Utils.
+Require Import ProofIrrelevance.
+
+Open Local Scope program_scope.
+
+Implicit Arguments Acc_inv [A R x y].
+
+(** Reformulation of the Wellfounded module using subsets where possible. *)
+
+Section Well_founded.
+ Variable A : Type.
+ Variable R : A -> A -> Prop.
+ Hypothesis Rwf : well_founded R.
+
+ Section Acc.
+
+ Variable P : A -> Type.
+
+ Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x.
+
+ Fixpoint Fix_F_sub (x : A) (r : Acc R x) {struct r} : P x :=
+ F_sub x (fun y: { y : A | R y x} => Fix_F_sub (proj1_sig y)
+ (Acc_inv r (proj2_sig y))).
+
+ Definition Fix_sub (x : A) := Fix_F_sub x (Rwf x).
+ End Acc.
+
+ Section FixPoint.
+ Variable P : A -> Type.
+
+ Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x.
+
+ Notation Fix_F := (Fix_F_sub P F_sub) (only parsing). (* alias *)
+
+ Definition Fix (x:A) := Fix_F_sub P F_sub x (Rwf x).
+
+ Hypothesis
+ F_ext :
+ forall (x:A) (f g:forall y:{y:A | R y x}, P (`y)),
+ (forall (y : A | R y x), f y = g y) -> F_sub x f = F_sub x g.
+
+ Lemma Fix_F_eq :
+ forall (x:A) (r:Acc R x),
+ F_sub x (fun (y:A|R y x) => Fix_F (`y) (Acc_inv r (proj2_sig y))) = Fix_F x r.
+ Proof.
+ destruct r using Acc_inv_dep; auto.
+ Qed.
+
+ Lemma Fix_F_inv : forall (x:A) (r s:Acc R x), Fix_F x r = Fix_F x s.
+ Proof.
+ intro x; induction (Rwf x); intros.
+ rewrite (proof_irrelevance (Acc R x) r s) ; auto.
+ Qed.
+
+ Lemma Fix_eq : forall x:A, Fix x = F_sub x (fun (y:A|R y x) => Fix (proj1_sig y)).
+ Proof.
+ intro x; unfold Fix in |- *.
+ rewrite <- (Fix_F_eq ).
+ apply F_ext; intros.
+ apply Fix_F_inv.
+ Qed.
+
+ Lemma fix_sub_eq :
+ forall x : A,
+ Fix_sub P F_sub x =
+ let f_sub := F_sub in
+ f_sub x (fun (y : A | R y x) => Fix (`y)).
+ exact Fix_eq.
+ Qed.
+
+ End FixPoint.
+
+End Well_founded.
+
+Extraction Inline Fix_F_sub Fix_sub.
+
+Require Import Wf_nat.
+Require Import Lt.
+
+Section Well_founded_measure.
+ Variable A : Type.
+ Variable m : A -> nat.
+
+ Section Acc.
+
+ Variable P : A -> Type.
+
+ Variable F_sub : forall x:A, (forall y: { y : A | m y < m x }, P (proj1_sig y)) -> P x.
+
+ Program Fixpoint Fix_measure_F_sub (x : A) (r : Acc lt (m x)) {struct r} : P x :=
+ F_sub x (fun (y : A | m y < m x) => Fix_measure_F_sub y
+ (@Acc_inv _ _ _ r (m y) (proj2_sig y))).
+
+ Definition Fix_measure_sub (x : A) := Fix_measure_F_sub x (lt_wf (m x)).
+
+ End Acc.
+
+ Section FixPoint.
+ Variable P : A -> Type.
+
+ Program Variable F_sub : forall x:A, (forall (y : A | m y < m x), P y) -> P x.
+
+ Notation Fix_F := (Fix_measure_F_sub P F_sub) (only parsing). (* alias *)
+
+ Definition Fix_measure (x:A) := Fix_measure_F_sub P F_sub x (lt_wf (m x)).
+
+ Hypothesis
+ F_ext :
+ forall (x:A) (f g:forall y : { y : A | m y < m x}, P (`y)),
+ (forall y : { y : A | m y < m x}, f y = g y) -> F_sub x f = F_sub x g.
+
+ Program Lemma Fix_measure_F_eq :
+ forall (x:A) (r:Acc lt (m x)),
+ F_sub x (fun (y:A | m y < m x) => Fix_F y (Acc_inv r (proj2_sig y))) = Fix_F x r.
+ Proof.
+ intros x.
+ set (y := m x).
+ unfold Fix_measure_F_sub.
+ intros r ; case r ; auto.
+ Qed.
+
+ Lemma Fix_measure_F_inv : forall (x:A) (r s:Acc lt (m x)), Fix_F x r = Fix_F x s.
+ Proof.
+ intros x r s.
+ rewrite (proof_irrelevance (Acc lt (m x)) r s) ; auto.
+ Qed.
+
+ Lemma Fix_measure_eq : forall x:A, Fix_measure x = F_sub x (fun (y:{y:A| m y < m x}) => Fix_measure (proj1_sig y)).
+ Proof.
+ intro x; unfold Fix_measure in |- *.
+ rewrite <- (Fix_measure_F_eq ).
+ apply F_ext; intros.
+ apply Fix_measure_F_inv.
+ Qed.
+
+ Lemma fix_measure_sub_eq : forall x : A,
+ Fix_measure_sub P F_sub x =
+ let f_sub := F_sub in
+ f_sub x (fun (y : A | m y < m x) => Fix_measure (`y)).
+ exact Fix_measure_eq.
+ Qed.
+
+ End FixPoint.
+
+End Well_founded_measure.
+
+Extraction Inline Fix_measure_F_sub Fix_measure_sub.
diff --git a/theories/QArith/QArith.v b/theories/QArith/QArith.v
index 03935e2b..2af65320 100644
--- a/theories/QArith/QArith.v
+++ b/theories/QArith/QArith.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: QArith.v 8883 2006-05-31 21:56:37Z letouzey $ i*)
+(*i $Id: QArith.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Export QArith_base.
Require Export Qring.
diff --git a/theories/QArith/QArith_base.v b/theories/QArith/QArith_base.v
index fc92c678..304fbf77 100644
--- a/theories/QArith/QArith_base.v
+++ b/theories/QArith/QArith_base.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: QArith_base.v 9932 2007-07-02 14:31:33Z notin $ i*)
+(*i $Id: QArith_base.v 10765 2008-04-08 16:15:23Z msozeau $ i*)
Require Export ZArith.
Require Export ZArithRing.
@@ -79,9 +79,9 @@ Qed.
Lemma Qge_alt : forall p q, (p>=q) <-> (p?=q <> Lt).
Proof.
unfold Qle, Qcompare, Zle.
-split; intros; swap H.
+split; intros; contradict H.
rewrite Zcompare_Gt_Lt_antisym; auto.
-rewrite Zcompare_Gt_Lt_antisym in H0; auto.
+rewrite Zcompare_Gt_Lt_antisym in H; auto.
Qed.
Hint Unfold Qeq Qlt Qle: qarith.
@@ -121,7 +121,7 @@ Defined.
Definition Q_Setoid : Setoid_Theory Q Qeq.
Proof.
- split; unfold Qeq in |- *; auto; apply Qeq_trans.
+ split; red; unfold Qeq in |- *; auto; apply Qeq_trans.
Qed.
Add Setoid Q Qeq Q_Setoid as Qsetoid.
@@ -130,6 +130,12 @@ Hint Resolve (Seq_refl Q Qeq Q_Setoid): qarith.
Hint Resolve (Seq_sym Q Qeq Q_Setoid): qarith.
Hint Resolve (Seq_trans Q Qeq Q_Setoid): qarith.
+Theorem Qnot_eq_sym : forall x y, ~x == y -> ~y == x.
+Proof.
+ auto with qarith.
+Qed.
+
+Hint Resolve Qnot_eq_sym : qarith.
(** * Addition, multiplication and opposite *)
@@ -165,6 +171,13 @@ Infix "/" := Qdiv : Q_scope.
Notation " ' x " := (Zpos x) (at level 20, no associativity) : Z_scope.
+Lemma Qmake_Qdiv : forall a b, a#b==inject_Z a/inject_Z ('b).
+Proof.
+intros a b.
+unfold Qeq.
+simpl.
+ring.
+Qed.
(** * Setoid compatibility results *)
@@ -187,7 +200,7 @@ Proof.
unfold Qeq, Qopp; simpl.
Open Scope Z_scope.
intros.
- replace (- Qnum x1 * ' Qden x2) with (- (Qnum x1 * ' Qden x2)) by ring.
+ replace (- Qnum x * ' Qden y) with (- (Qnum x * ' Qden y)) by ring.
rewrite H in |- *; ring.
Close Scope Z_scope.
Qed.
@@ -416,6 +429,11 @@ Qed.
(** * Inverse and division. *)
+Lemma Qinv_involutive : forall q, (/ / q) == q.
+Proof.
+intros [[|n|n] d]; red; simpl; reflexivity.
+Qed.
+
Theorem Qmult_inv_r : forall x, ~ x == 0 -> x*(/x) == 1.
Proof.
intros (x1, x2); unfold Qeq, Qdiv, Qmult; case x1; simpl;
@@ -474,6 +492,8 @@ Proof.
Close Scope Z_scope.
Qed.
+Hint Resolve Qle_trans : qarith.
+
Lemma Qlt_not_eq : forall x y, x<y -> ~ x==y.
Proof.
unfold Qlt, Qeq; auto with zarith.
@@ -552,6 +572,9 @@ Proof.
unfold Qle, Qlt, Qeq; intros; apply Zle_lt_or_eq; auto.
Qed.
+Hint Resolve Qle_not_lt Qlt_not_le Qnot_le_lt Qnot_lt_le
+ Qlt_le_weak Qlt_not_eq Qle_antisym Qle_refl: qartih.
+
(** Some decidability results about orders. *)
Lemma Q_dec : forall x y, {x<y} + {y<x} + {x==y}.
@@ -574,6 +597,8 @@ Proof.
do 2 rewrite <- Zopp_mult_distr_l; omega.
Qed.
+Hint Resolve Qopp_le_compat : qarith.
+
Lemma Qle_minus_iff : forall p q, p <= q <-> 0 <= q+-p.
Proof.
intros (x1,x2) (y1,y2); unfold Qle; simpl.
@@ -641,50 +666,136 @@ Proof.
Close Scope Z_scope.
Qed.
-(** * Rational to the n-th power *)
+Lemma Qmult_le_0_compat : forall a b, 0 <= a -> 0 <= b -> 0 <= a*b.
+Proof.
+intros a b Ha Hb.
+unfold Qle in *.
+simpl in *.
+auto with *.
+Qed.
-Fixpoint Qpower (q:Q)(n:nat) { struct n } : Q :=
- match n with
- | O => 1
- | S n => q * (Qpower q n)
- end.
+Lemma Qinv_le_0_compat : forall a, 0 <= a -> 0 <= /a.
+Proof.
+intros [[|n|n] d] Ha; assumption.
+Qed.
-Notation " q ^ n " := (Qpower q n) : Q_scope.
+Lemma Qle_shift_div_l : forall a b c,
+ 0 < c -> a*c <= b -> a <= b/c.
+Proof.
+intros a b c Hc H.
+apply Qmult_lt_0_le_reg_r with (c).
+ assumption.
+setoid_replace (b/c*c) with (c*(b/c)) by apply Qmult_comm.
+rewrite Qmult_div_r; try assumption.
+auto with *.
+Qed.
-Lemma Qpower_1 : forall n, 1^n == 1.
+Lemma Qle_shift_inv_l : forall a c,
+ 0 < c -> a*c <= 1 -> a <= /c.
Proof.
- induction n; simpl; auto with qarith.
- rewrite IHn; auto with qarith.
+intros a c Hc H.
+setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
+change (a <= 1/c).
+apply Qle_shift_div_l; assumption.
Qed.
-Lemma Qpower_0 : forall n, n<>O -> 0^n == 0.
+Lemma Qle_shift_div_r : forall a b c,
+ 0 < b -> a <= c*b -> a/b <= c.
Proof.
- destruct n; simpl.
- destruct 1; auto.
- intros.
- compute; auto.
+intros a b c Hc H.
+apply Qmult_lt_0_le_reg_r with b.
+ assumption.
+setoid_replace (a/b*b) with (b*(a/b)) by apply Qmult_comm.
+rewrite Qmult_div_r; try assumption.
+auto with *.
Qed.
-Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
+Lemma Qle_shift_inv_r : forall b c,
+ 0 < b -> 1 <= c*b -> /b <= c.
Proof.
- induction n; simpl; auto with qarith.
- intros; compute; intro; discriminate.
- intros.
- apply Qle_trans with (0*(p^n)).
- compute; intro; discriminate.
- apply Qmult_le_compat_r; auto.
+intros b c Hc H.
+setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
+change (1/b <= c).
+apply Qle_shift_div_r; assumption.
Qed.
-Lemma Qinv_power_n : forall n p, (1#p)^n == /(inject_Z ('p))^n.
+Lemma Qinv_lt_0_compat : forall a, 0 < a -> 0 < /a.
Proof.
- induction n.
- compute; auto.
- simpl.
- intros; rewrite IHn; clear IHn.
- unfold Qdiv; rewrite Qinv_mult_distr.
- setoid_replace (1#p) with (/ inject_Z ('p)).
- apply Qeq_refl.
- compute; auto.
+intros [[|n|n] d] Ha; assumption.
+Qed.
+
+Lemma Qlt_shift_div_l : forall a b c,
+ 0 < c -> a*c < b -> a < b/c.
+Proof.
+intros a b c Hc H.
+apply Qnot_le_lt.
+intros H0.
+apply (Qlt_not_le _ _ H).
+apply Qmult_lt_0_le_reg_r with (/c).
+ apply Qinv_lt_0_compat.
+ assumption.
+setoid_replace (a*c/c) with (a) by (apply Qdiv_mult_l; auto with *).
+assumption.
+Qed.
+
+Lemma Qlt_shift_inv_l : forall a c,
+ 0 < c -> a*c < 1 -> a < /c.
+Proof.
+intros a c Hc H.
+setoid_replace (/c) with (1*/c) by (symmetry; apply Qmult_1_l).
+change (a < 1/c).
+apply Qlt_shift_div_l; assumption.
+Qed.
+
+Lemma Qlt_shift_div_r : forall a b c,
+ 0 < b -> a < c*b -> a/b < c.
+Proof.
+intros a b c Hc H.
+apply Qnot_le_lt.
+intros H0.
+apply (Qlt_not_le _ _ H).
+apply Qmult_lt_0_le_reg_r with (/b).
+ apply Qinv_lt_0_compat.
+ assumption.
+setoid_replace (c*b/b) with (c) by (apply Qdiv_mult_l; auto with *).
+assumption.
+Qed.
+
+Lemma Qlt_shift_inv_r : forall b c,
+ 0 < b -> 1 < c*b -> /b < c.
+Proof.
+intros b c Hc H.
+setoid_replace (/b) with (1*/b) by (symmetry; apply Qmult_1_l).
+change (1/b < c).
+apply Qlt_shift_div_r; assumption.
Qed.
+(** * Rational to the n-th power *)
+
+Definition Qpower_positive (q:Q)(p:positive) : Q :=
+ pow_pos Qmult q p.
+Add Morphism Qpower_positive with signature Qeq ==> @eq _ ==> Qeq as Qpower_positive_comp.
+Proof.
+intros x1 x2 Hx y.
+unfold Qpower_positive.
+induction y; simpl;
+try rewrite IHy;
+try rewrite Hx;
+reflexivity.
+Qed.
+
+Definition Qpower (q:Q) (z:Z) :=
+ match z with
+ | Zpos p => Qpower_positive q p
+ | Z0 => 1
+ | Zneg p => /Qpower_positive q p
+ end.
+
+Notation " q ^ z " := (Qpower q z) : Q_scope.
+
+Add Morphism Qpower with signature Qeq ==> @eq _ ==> Qeq as Qpower_comp.
+Proof.
+intros x1 x2 Hx [|y|y]; try reflexivity;
+simpl; rewrite Hx; reflexivity.
+Qed.
diff --git a/theories/QArith/Qabs.v b/theories/QArith/Qabs.v
new file mode 100644
index 00000000..e672016e
--- /dev/null
+++ b/theories/QArith/Qabs.v
@@ -0,0 +1,124 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Export QArith.
+Require Export Qreduction.
+
+Hint Resolve Qlt_le_weak : qarith.
+
+Definition Qabs (x:Q) := let (n,d):=x in (Zabs n#d).
+
+Lemma Qabs_case : forall (x:Q) (P : Q -> Type), (0 <= x -> P x) -> (x <= 0 -> P (- x)) -> P (Qabs x).
+Proof.
+intros x P H1 H2.
+destruct x as [[|xn|xn] xd];
+[apply H1|apply H1|apply H2];
+abstract (compute; discriminate).
+Defined.
+
+Add Morphism Qabs with signature Qeq ==> Qeq as Qabs_wd.
+intros [xn xd] [yn yd] H.
+simpl.
+unfold Qeq in *.
+simpl in *.
+change (' yd)%Z with (Zabs (' yd)).
+change (' xd)%Z with (Zabs (' xd)).
+repeat rewrite <- Zabs_Zmult.
+congruence.
+Qed.
+
+Lemma Qabs_pos : forall x, 0 <= x -> Qabs x == x.
+Proof.
+intros x H.
+apply Qabs_case.
+reflexivity.
+intros H0.
+setoid_replace x with 0.
+reflexivity.
+apply Qle_antisym; assumption.
+Qed.
+
+Lemma Qabs_neg : forall x, x <= 0 -> Qabs x == - x.
+Proof.
+intros x H.
+apply Qabs_case.
+intros H0.
+setoid_replace x with 0.
+reflexivity.
+apply Qle_antisym; assumption.
+reflexivity.
+Qed.
+
+Lemma Qabs_nonneg : forall x, 0 <= (Qabs x).
+intros x.
+apply Qabs_case.
+auto.
+apply (Qopp_le_compat x 0).
+Qed.
+
+Lemma Zabs_Qabs : forall n d, (Zabs n#d)==Qabs (n#d).
+Proof.
+intros [|n|n]; reflexivity.
+Qed.
+
+Lemma Qabs_opp : forall x, Qabs (-x) == Qabs x.
+Proof.
+intros x.
+do 2 apply Qabs_case; try (intros; ring);
+(intros H0 H1;
+setoid_replace x with 0;[reflexivity|];
+apply Qle_antisym);try assumption;
+rewrite Qle_minus_iff in *;
+ring_simplify;
+ring_simplify in H1;
+assumption.
+Qed.
+
+Lemma Qabs_triangle : forall x y, Qabs (x+y) <= Qabs x + Qabs y.
+Proof.
+intros [xn xd] [yn yd].
+unfold Qplus.
+unfold Qle.
+simpl.
+apply Zmult_le_compat_r;auto with *.
+change (' yd)%Z with (Zabs (' yd)).
+change (' xd)%Z with (Zabs (' xd)).
+repeat rewrite <- Zabs_Zmult.
+apply Zabs_triangle.
+Qed.
+
+Lemma Qabs_Qmult : forall a b, Qabs (a*b) == (Qabs a)*(Qabs b).
+Proof.
+intros [an ad] [bn bd].
+simpl.
+rewrite Zabs_Zmult.
+reflexivity.
+Qed.
+
+Lemma Qle_Qabs : forall a, a <= Qabs a.
+Proof.
+intros a.
+apply Qabs_case; auto with *.
+intros H.
+apply Qle_trans with 0; try assumption.
+change 0 with (-0).
+apply Qopp_le_compat.
+assumption.
+Qed.
+
+Lemma Qabs_triangle_reverse : forall x y, Qabs x - Qabs y <= Qabs (x - y).
+Proof.
+intros x y.
+rewrite Qle_minus_iff.
+setoid_replace (Qabs (x - y) + - (Qabs x - Qabs y)) with ((Qabs (x - y) + Qabs y) + - Qabs x) by ring.
+rewrite <- Qle_minus_iff.
+setoid_replace (Qabs x) with (Qabs (x-y+y)).
+apply Qabs_triangle.
+apply Qabs_wd.
+ring.
+Qed.
diff --git a/theories/QArith/Qcanon.v b/theories/QArith/Qcanon.v
index 98c5ff9e..42522468 100644
--- a/theories/QArith/Qcanon.v
+++ b/theories/QArith/Qcanon.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Qcanon.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Qcanon.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Import Field.
Require Import QArith.
@@ -101,6 +101,7 @@ Infix "<=" := Qcle : Qc_scope.
Infix ">" := Qcgt : Qc_scope.
Infix ">=" := Qcge : Qc_scope.
Notation "x <= y <= z" := (x<=y/\y<=z) : Qc_scope.
+Notation "x < y < z" := (x<y/\y<z) : Qc_scope.
Definition Qccompare (p q : Qc) := (Qcompare p q).
Notation "p ?= q" := (Qccompare p q) : Qc_scope.
@@ -139,7 +140,7 @@ Theorem Qc_eq_dec : forall x y:Qc, {x=y} + {x<>y}.
Proof.
intros.
destruct (Qeq_dec x y) as [H|H]; auto.
- right; swap H; subst; auto with qarith.
+ right; contradict H; subst; auto with qarith.
Defined.
(** The addition, multiplication and opposite are defined
@@ -347,7 +348,7 @@ Proof.
unfold Qcle, Qclt; intros; eapply Qlt_le_trans; eauto.
Qed.
-Lemma Qlt_trans : forall x y z, x<y -> y<z -> x<z.
+Lemma Qclt_trans : forall x y z, x<y -> y<z -> x<z.
Proof.
unfold Qclt; intros; eapply Qlt_trans; eauto.
Qed.
@@ -472,7 +473,7 @@ Proof.
compute; auto.
Qed.
-Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
+Lemma Qcpower_pos : forall p n, 0 <= p -> 0 <= p^n.
Proof.
induction n; simpl; auto with qarith.
intros; compute; intro; discriminate.
@@ -495,23 +496,6 @@ Proof.
intros _ H; inversion H.
Qed.
-(*
-Definition Qcrt : Ring_Theory Qcplus Qcmult 1 0 Qcopp Qc_eq_bool.
-Proof.
-constructor.
-exact Qcplus_comm.
-exact Qcplus_assoc.
-exact Qcmult_comm.
-exact Qcmult_assoc.
-exact Qcplus_0_l.
-exact Qcmult_1_l.
-exact Qcplus_opp_r.
-exact Qcmult_plus_distr_l.
-unfold Is_true; intros x y; generalize (Qc_eq_bool_correct x y);
- case (Qc_eq_bool x y); auto.
-Qed.
-Add Ring Qc Qcplus Qcmult 1 0 Qcopp Qc_eq_bool Qcrt [ Qcmake ].
-*)
Definition Qcrt : ring_theory 0 1 Qcplus Qcmult Qcminus Qcopp (eq(A:=Qc)).
Proof.
constructor.
@@ -547,4 +531,14 @@ auto.
Qed.
-
+Theorem Qc_decomp: forall x y: Qc,
+ (Qred x = x -> Qred y = y -> (x:Q) = y)-> x = y.
+Proof.
+ intros (q, Hq) (q', Hq'); simpl; intros H.
+ assert (H1 := H Hq Hq').
+ subst q'.
+ assert (Hq = Hq').
+ apply Eqdep_dec.eq_proofs_unicity; auto; intros.
+ repeat decide equality.
+ congruence.
+Qed.
diff --git a/theories/QArith/Qfield.v b/theories/QArith/Qfield.v
new file mode 100644
index 00000000..5d548aea
--- /dev/null
+++ b/theories/QArith/Qfield.v
@@ -0,0 +1,153 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Qfield.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
+
+Require Export Field.
+Require Export QArith_base.
+Require Import NArithRing.
+
+(** * field and ring tactics for rational numbers *)
+
+Definition Qeq_bool (x y : Q) :=
+ if Qeq_dec x y then true else false.
+
+Lemma Qeq_bool_correct : forall x y : Q, Qeq_bool x y = true -> x==y.
+Proof.
+ intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto.
+ intros _ H; inversion H.
+Qed.
+
+Lemma Qeq_bool_complete : forall x y : Q, x==y -> Qeq_bool x y = true.
+Proof.
+ intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto.
+Qed.
+
+Definition Qsft : field_theory 0 1 Qplus Qmult Qminus Qopp Qdiv Qinv Qeq.
+Proof.
+ constructor.
+ constructor.
+ exact Qplus_0_l.
+ exact Qplus_comm.
+ exact Qplus_assoc.
+ exact Qmult_1_l.
+ exact Qmult_comm.
+ exact Qmult_assoc.
+ exact Qmult_plus_distr_l.
+ reflexivity.
+ exact Qplus_opp_r.
+ discriminate.
+ reflexivity.
+ intros p Hp.
+ rewrite Qmult_comm.
+ apply Qmult_inv_r.
+ exact Hp.
+Qed.
+
+Lemma Qpower_theory : power_theory 1 Qmult Qeq Z_of_N Qpower.
+Proof.
+constructor.
+intros r [|n];
+reflexivity.
+Qed.
+
+Ltac isQcst t :=
+ match t with
+ | inject_Z ?z => isZcst z
+ | Qmake ?n ?d =>
+ match isZcst n with
+ true => isPcst d
+ | _ => false
+ end
+ | _ => false
+ end.
+
+Ltac Qcst t :=
+ match isQcst t with
+ true => t
+ | _ => NotConstant
+ end.
+
+Ltac Qpow_tac t :=
+ match t with
+ | Z0 => N0
+ | Zpos ?n => Ncst (Npos n)
+ | Z_of_N ?n => Ncst n
+ | NtoZ ?n => Ncst n
+ | _ => NotConstant
+ end.
+
+Add Field Qfield : Qsft
+ (decidable Qeq_bool_correct,
+ completeness Qeq_bool_complete,
+ constants [Qcst],
+ power_tac Qpower_theory [Qpow_tac]).
+
+(** Exemple of use: *)
+
+Section Examples.
+
+Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z).
+ intros.
+ ring.
+Qed.
+
+Let ex2 : forall x y : Q, x+y == y+x.
+ intros.
+ ring.
+Qed.
+
+Let ex3 : forall x y z : Q, (x+y)+z == x+(y+z).
+ intros.
+ ring.
+Qed.
+
+Let ex4 : (inject_Z 1)+(inject_Z 1)==(inject_Z 2).
+ ring.
+Qed.
+
+Let ex5 : 1+1 == 2#1.
+ ring.
+Qed.
+
+Let ex6 : (1#1)+(1#1) == 2#1.
+ ring.
+Qed.
+
+Let ex7 : forall x : Q, x-x== 0.
+ intro.
+ ring.
+Qed.
+
+Let ex8 : forall x : Q, x^1 == x.
+ intro.
+ ring.
+Qed.
+
+Let ex9 : forall x : Q, x^0 == 1.
+ intro.
+ ring.
+Qed.
+
+Let ex10 : forall x y : Q, ~(y==0) -> (x/y)*y == x.
+intros.
+field.
+auto.
+Qed.
+
+End Examples.
+
+Lemma Qopp_plus : forall a b, -(a+b) == -a + -b.
+Proof.
+ intros; ring.
+Qed.
+
+Lemma Qopp_opp : forall q, - -q==q.
+Proof.
+ intros; ring.
+Qed.
diff --git a/theories/QArith/Qpower.v b/theories/QArith/Qpower.v
new file mode 100644
index 00000000..8672592d
--- /dev/null
+++ b/theories/QArith/Qpower.v
@@ -0,0 +1,239 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Zpow_facts Qfield Qreduction.
+
+Lemma Qpower_positive_1 : forall n, Qpower_positive 1 n == 1.
+Proof.
+induction n;
+simpl; try rewrite IHn; reflexivity.
+Qed.
+
+Lemma Qpower_1 : forall n, 1^n == 1.
+Proof.
+ intros [|n|n]; simpl; try rewrite Qpower_positive_1; reflexivity.
+Qed.
+
+Lemma Qpower_positive_0 : forall n, Qpower_positive 0 n == 0.
+Proof.
+induction n;
+simpl; try rewrite IHn; reflexivity.
+Qed.
+
+Lemma Qpower_0 : forall n, (n<>0)%Z -> 0^n == 0.
+Proof.
+ intros [|n|n] Hn; try (elim Hn; reflexivity); simpl;
+ rewrite Qpower_positive_0; reflexivity.
+Qed.
+
+Lemma Qpower_not_0_positive : forall a n, ~a==0 -> ~Qpower_positive a n == 0.
+Proof.
+intros a n X H.
+apply X; clear X.
+induction n; simpl in *; try assumption;
+destruct (Qmult_integral _ _ H);
+try destruct (Qmult_integral _ _ H0); auto.
+Qed.
+
+Lemma Qpower_pos_positive : forall p n, 0 <= p -> 0 <= Qpower_positive p n.
+intros p n Hp.
+induction n; simpl; repeat apply Qmult_le_0_compat;assumption.
+Qed.
+
+Lemma Qpower_pos : forall p n, 0 <= p -> 0 <= p^n.
+Proof.
+ intros p [|n|n] Hp; simpl; try discriminate;
+ try apply Qinv_le_0_compat; apply Qpower_pos_positive; assumption.
+Qed.
+
+Lemma Qmult_power_positive : forall a b n, Qpower_positive (a*b) n == (Qpower_positive a n)*(Qpower_positive b n).
+Proof.
+induction n;
+simpl; repeat rewrite IHn; ring.
+Qed.
+
+Lemma Qmult_power : forall a b n, (a*b)^n == a^n*b^n.
+Proof.
+ intros a b [|n|n]; simpl;
+ try rewrite Qmult_power_positive;
+ try rewrite Qinv_mult_distr;
+ reflexivity.
+Qed.
+
+Lemma Qinv_power_positive : forall a n, Qpower_positive (/a) n == /(Qpower_positive a n).
+Proof.
+induction n;
+simpl; repeat (rewrite IHn || rewrite Qinv_mult_distr); reflexivity.
+Qed.
+
+Lemma Qinv_power : forall a n, (/a)^n == /a^n.
+Proof.
+ intros a [|n|n]; simpl;
+ try rewrite Qinv_power_positive;
+ reflexivity.
+Qed.
+
+Lemma Qdiv_power : forall a b n, (a/b)^n == (a^n/b^n).
+Proof.
+unfold Qdiv.
+intros a b n.
+rewrite Qmult_power.
+rewrite Qinv_power.
+reflexivity.
+Qed.
+
+Lemma Qinv_power_n : forall n p, (1#p)^n == /(inject_Z ('p))^n.
+Proof.
+intros n p.
+rewrite Qmake_Qdiv.
+rewrite Qdiv_power.
+rewrite Qpower_1.
+unfold Qdiv.
+ring.
+Qed.
+
+Lemma Qpower_plus_positive : forall a n m, Qpower_positive a (n+m) == (Qpower_positive a n)*(Qpower_positive a m).
+Proof.
+intros a n m.
+unfold Qpower_positive.
+apply pow_pos_Pplus.
+apply Q_Setoid.
+apply Qmult_comp.
+apply Qmult_comm.
+apply Qmult_assoc.
+Qed.
+
+Lemma Qpower_opp : forall a n, a^(-n) == /a^n.
+Proof.
+intros a [|n|n]; simpl; try reflexivity.
+symmetry; apply Qinv_involutive.
+Qed.
+
+Lemma Qpower_minus_positive : forall a (n m:positive), (Pcompare n m Eq=Gt)%positive -> Qpower_positive a (n-m)%positive == (Qpower_positive a n)/(Qpower_positive a m).
+Proof.
+intros a n m H.
+destruct (Qeq_dec a 0).
+ rewrite q.
+ repeat rewrite Qpower_positive_0.
+ reflexivity.
+rewrite <- (Qdiv_mult_l (Qpower_positive a (n - m)) (Qpower_positive a m)) by
+ (apply Qpower_not_0_positive; assumption).
+apply Qdiv_comp;[|reflexivity].
+rewrite Qmult_comm.
+rewrite <- Qpower_plus_positive.
+rewrite Pplus_minus.
+reflexivity.
+assumption.
+Qed.
+
+Lemma Qpower_plus : forall a n m, ~a==0 -> a^(n+m) == a^n*a^m.
+Proof.
+intros a [|n|n] [|m|m] H; simpl; try ring;
+try rewrite Qpower_plus_positive;
+try apply Qinv_mult_distr; try reflexivity;
+case_eq ((n ?= m)%positive Eq); intros H0; simpl;
+ try rewrite Qpower_minus_positive;
+ try rewrite (Pcompare_Eq_eq _ _ H0);
+ try (field; try split; apply Qpower_not_0_positive);
+ try assumption;
+ apply ZC2;
+ assumption.
+Qed.
+
+Lemma Qpower_plus' : forall a n m, (n+m <> 0)%Z -> a^(n+m) == a^n*a^m.
+Proof.
+intros a n m H.
+destruct (Qeq_dec a 0)as [X|X].
+rewrite X.
+rewrite Qpower_0 by assumption.
+destruct n; destruct m; try (elim H; reflexivity);
+ simpl; repeat rewrite Qpower_positive_0; ring_simplify;
+ reflexivity.
+apply Qpower_plus.
+assumption.
+Qed.
+
+Lemma Qpower_mult_positive : forall a n m, Qpower_positive a (n*m) == Qpower_positive (Qpower_positive a n) m.
+Proof.
+intros a n m.
+induction n using Pind.
+ reflexivity.
+rewrite Pmult_Sn_m.
+rewrite Pplus_one_succ_l.
+do 2 rewrite Qpower_plus_positive.
+rewrite IHn.
+rewrite Qmult_power_positive.
+reflexivity.
+Qed.
+
+Lemma Qpower_mult : forall a n m, a^(n*m) == (a^n)^m.
+Proof.
+intros a [|n|n] [|m|m]; simpl;
+ try rewrite Qpower_positive_1;
+ try rewrite Qpower_mult_positive;
+ try rewrite Qinv_power_positive;
+ try rewrite Qinv_involutive;
+ try reflexivity.
+Qed.
+
+Lemma Zpower_Qpower : forall (a n:Z), (0<=n)%Z -> inject_Z (a^n) == (inject_Z a)^n.
+Proof.
+intros a [|n|n] H;[reflexivity| |elim H; reflexivity].
+induction n using Pind.
+ replace (a^1)%Z with a by ring.
+ ring.
+rewrite Zpos_succ_morphism.
+unfold Zsucc.
+rewrite Zpower_exp; auto with *; try discriminate.
+rewrite Qpower_plus' by discriminate.
+rewrite <- IHn by discriminate.
+replace (a^'n*a^1)%Z with (a^'n*a)%Z by ring.
+ring_simplify.
+reflexivity.
+Qed.
+
+Lemma Qsqr_nonneg : forall a, 0 <= a^2.
+Proof.
+intros a.
+destruct (Qlt_le_dec 0 a) as [A|A].
+apply (Qmult_le_0_compat a a);
+ (apply Qlt_le_weak; assumption).
+setoid_replace (a^2) with ((-a)*(-a)) by ring.
+rewrite Qle_minus_iff in A.
+setoid_replace (0+ - a) with (-a) in A by ring.
+apply Qmult_le_0_compat; assumption.
+Qed.
+
+Theorem Qpower_decomp: forall p x y,
+ Qpower_positive (x #y) p == x ^ Zpos p # (Z2P ((Zpos y) ^ Zpos p)).
+Proof.
+induction p; intros; unfold Qmult; simpl.
+(* xI *)
+rewrite IHp, xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
+repeat rewrite Zpower_pos_is_exp.
+red; unfold Qmult, Qnum, Qden, Zpower.
+repeat rewrite Zpos_mult_morphism.
+repeat rewrite Z2P_correct.
+repeat rewrite Zpower_pos_1_r; ring.
+apply Zpower_pos_pos; red; auto.
+repeat apply Zmult_lt_0_compat; auto;
+ apply Zpower_pos_pos; red; auto.
+(* xO *)
+rewrite IHp, <-Pplus_diag.
+repeat rewrite Zpower_pos_is_exp.
+red; unfold Qmult, Qnum, Qden, Zpower.
+repeat rewrite Zpos_mult_morphism.
+repeat rewrite Z2P_correct; try ring.
+apply Zpower_pos_pos; red; auto.
+repeat apply Zmult_lt_0_compat; auto;
+ apply Zpower_pos_pos; red; auto.
+(* xO *)
+unfold Qmult; simpl.
+red; simpl; rewrite Zpower_pos_1_r;
+ rewrite Zpos_mult_morphism; ring.
+Qed.
diff --git a/theories/QArith/Qreals.v b/theories/QArith/Qreals.v
index 6bd161f3..c98cef3f 100644
--- a/theories/QArith/Qreals.v
+++ b/theories/QArith/Qreals.v
@@ -6,24 +6,20 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Qreals.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Qreals.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Export Rbase.
Require Export QArith_base.
-(** A field tactic for rational numbers. *)
+(** Injection of rational numbers into real numbers. *)
-(** Since field cannot operate on setoid datatypes (yet?),
- we translate Q goals into reals before applying field. *)
+Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
Lemma IZR_nz : forall p : positive, IZR (Zpos p) <> 0%R.
intros; apply not_O_IZR; auto with qarith.
Qed.
-Hint Immediate IZR_nz.
-Hint Resolve Rmult_integral_contrapositive.
-
-Definition Q2R (x : Q) : R := (IZR (Qnum x) * / IZR (QDen x))%R.
+Hint Resolve IZR_nz Rmult_integral_contrapositive.
Lemma eqR_Qeq : forall x y : Q, Q2R x = Q2R y -> x==y.
Proof.
@@ -171,7 +167,7 @@ Lemma Q2R_minus : forall x y : Q, Q2R (x-y) = (Q2R x - Q2R y)%R.
unfold Qminus in |- *; intros; rewrite Q2R_plus; rewrite Q2R_opp; auto.
Qed.
-Lemma Q2R_inv : forall x : Q, ~ x==0#1 -> Q2R (/x) = (/ Q2R x)%R.
+Lemma Q2R_inv : forall x : Q, ~ x==0 -> Q2R (/x) = (/ Q2R x)%R.
Proof.
unfold Qinv, Q2R, Qeq in |- *; intros (x1, x2); unfold Qden, Qnum in |- *.
case x1.
@@ -185,7 +181,7 @@ intros;
Qed.
Lemma Q2R_div :
- forall x y : Q, ~ y==0#1 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
+ forall x y : Q, ~ y==0 -> Q2R (x/y) = (Q2R x / Q2R y)%R.
Proof.
unfold Qdiv, Rdiv in |- *.
intros; rewrite Q2R_mult.
@@ -194,16 +190,24 @@ Qed.
Hint Rewrite Q2R_plus Q2R_mult Q2R_opp Q2R_minus Q2R_inv Q2R_div : q2r_simpl.
+Section LegacyQField.
+
+(** In the past, the field tactic was not able to deal with setoid datatypes,
+ so translating from Q to R and applying field on reals was a workaround.
+ See now Qfield for a direct field tactic on Q. *)
+
Ltac QField := apply eqR_Qeq; autorewrite with q2r_simpl; try field; auto.
(** Examples of use: *)
-Goal forall x y z : Q, (x+y)*z == (x*z)+(y*z).
+Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z).
intros; QField.
-Abort.
+Qed.
-Goal forall x y : Q, ~ y==0#1 -> (x/y)*y == x.
+Let ex2 : forall x y : Q, ~ y==0 -> (x/y)*y == x.
intros; QField.
intro; apply H; apply eqR_Qeq.
rewrite H0; unfold Q2R in |- *; simpl in |- *; field; auto with real.
-Abort.
+Qed.
+
+End LegacyQField. \ No newline at end of file
diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v
index 340cac83..9c522f09 100644
--- a/theories/QArith/Qreduction.v
+++ b/theories/QArith/Qreduction.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Qreduction.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Qreduction.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
(** Normalisation functions for rational numbers. *)
@@ -145,6 +145,7 @@ Qed.
Definition Qplus' (p q : Q) := Qred (Qplus p q).
Definition Qmult' (p q : Q) := Qred (Qmult p q).
+Definition Qminus' x y := Qred (Qminus x y).
Lemma Qplus'_correct : forall p q : Q, (Qplus' p q)==(Qplus p q).
Proof.
@@ -156,6 +157,11 @@ Proof.
intros; unfold Qmult' in |- *; apply Qred_correct; auto.
Qed.
+Lemma Qminus'_correct : forall p q : Q, (Qminus' p q)==(Qminus p q).
+Proof.
+ intros; unfold Qminus' in |- *; apply Qred_correct; auto.
+Qed.
+
Add Morphism Qplus' : Qplus'_comp.
Proof.
intros; unfold Qplus' in |- *.
@@ -167,3 +173,21 @@ Add Morphism Qmult' : Qmult'_comp.
rewrite H; rewrite H0; auto with qarith.
Qed.
+Add Morphism Qminus' : Qminus'_comp.
+ intros; unfold Qminus' in |- *.
+ rewrite H; rewrite H0; auto with qarith.
+Qed.
+
+Lemma Qred_opp: forall q, Qred (-q) = - (Qred q).
+Proof.
+ intros (x, y); unfold Qred; simpl.
+ rewrite Zggcd_opp; case Zggcd; intros p1 (p2, p3); simpl.
+ unfold Qopp; auto.
+Qed.
+
+Theorem Qred_compare: forall x y,
+ Qcompare x y = Qcompare (Qred x) (Qred y).
+Proof.
+ intros x y; apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+Qed.
+
diff --git a/theories/QArith/Qring.v b/theories/QArith/Qring.v
index f9aa3e50..2d45d537 100644
--- a/theories/QArith/Qring.v
+++ b/theories/QArith/Qring.v
@@ -6,99 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Qring.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
-
-Require Export Ring.
-Require Export QArith_base.
-
-(** * A ring tactic for rational numbers *)
-
-Definition Qeq_bool (x y : Q) :=
- if Qeq_dec x y then true else false.
-
-Lemma Qeq_bool_correct : forall x y : Q, Qeq_bool x y = true -> x==y.
-Proof.
- intros x y; unfold Qeq_bool in |- *; case (Qeq_dec x y); simpl in |- *; auto.
- intros _ H; inversion H.
-Qed.
-
-Definition Qsrt : ring_theory 0 1 Qplus Qmult Qminus Qopp Qeq.
-Proof.
- constructor.
- exact Qplus_0_l.
- exact Qplus_comm.
- exact Qplus_assoc.
- exact Qmult_1_l.
- exact Qmult_comm.
- exact Qmult_assoc.
- exact Qmult_plus_distr_l.
- reflexivity.
- exact Qplus_opp_r.
-Qed.
-
-Ltac isQcst t :=
- match t with
- | inject_Z ?z => isZcst z
- | Qmake ?n ?d =>
- match isZcst n with
- true => isPcst d
- | _ => false
- end
- | _ => false
- end.
-
-Ltac Qcst t :=
- match isQcst t with
- true => t
- | _ => NotConstant
- end.
-
-Add Ring Qring : Qsrt (decidable Qeq_bool_correct, constants [Qcst]).
-(** Exemple of use: *)
-
-Section Examples.
-
-Let ex1 : forall x y z : Q, (x+y)*z == (x*z)+(y*z).
- intros.
- ring.
-Qed.
-
-Let ex2 : forall x y : Q, x+y == y+x.
- intros.
- ring.
-Qed.
-
-Let ex3 : forall x y z : Q, (x+y)+z == x+(y+z).
- intros.
- ring.
-Qed.
-
-Let ex4 : (inject_Z 1)+(inject_Z 1)==(inject_Z 2).
- ring.
-Qed.
-
-Let ex5 : 1+1 == 2#1.
- ring.
-Qed.
-
-Let ex6 : (1#1)+(1#1) == 2#1.
- ring.
-Qed.
-
-Let ex7 : forall x : Q, x-x== 0#1.
- intro.
- ring.
-Qed.
-
-End Examples.
-
-Lemma Qopp_plus : forall a b, -(a+b) == -a + -b.
-Proof.
- intros; ring.
-Qed.
-
-Lemma Qopp_opp : forall q, - -q==q.
-Proof.
- intros; ring.
-Qed.
+(*i $Id: Qring.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
+Require Export Qfield.
diff --git a/theories/QArith/Qround.v b/theories/QArith/Qround.v
new file mode 100644
index 00000000..3f191c75
--- /dev/null
+++ b/theories/QArith/Qround.v
@@ -0,0 +1,139 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import QArith.
+
+Lemma Qopp_lt_compat: forall p q : Q, p < q -> - q < - p.
+Proof.
+intros (a1,a2) (b1,b2); unfold Qle, Qlt; simpl.
+do 2 rewrite <- Zopp_mult_distr_l; omega.
+Qed.
+
+Hint Resolve Qopp_lt_compat : qarith.
+
+(************)
+
+Coercion Local inject_Z : Z >-> Q.
+
+Definition Qfloor (x:Q) := let (n,d) := x in Zdiv n (Zpos d).
+Definition Qceiling (x:Q) := (-(Qfloor (-x)))%Z.
+
+Lemma Qfloor_Z : forall z:Z, Qfloor z = z.
+Proof.
+intros z.
+simpl.
+auto with *.
+Qed.
+
+Lemma Qceiling_Z : forall z:Z, Qceiling z = z.
+Proof.
+intros z.
+unfold Qceiling.
+simpl.
+rewrite Zdiv_1_r.
+auto with *.
+Qed.
+
+Lemma Qfloor_le : forall x, Qfloor x <= x.
+Proof.
+intros [n d].
+simpl.
+unfold Qle.
+simpl.
+replace (n*1)%Z with n by ring.
+rewrite Zmult_comm.
+apply Z_mult_div_ge.
+auto with *.
+Qed.
+
+Hint Resolve Qfloor_le : qarith.
+
+Lemma Qle_ceiling : forall x, x <= Qceiling x.
+Proof.
+intros x.
+apply Qle_trans with (- - x).
+ rewrite Qopp_involutive.
+ auto with *.
+change (Qceiling x:Q) with (-(Qfloor(-x))).
+auto with *.
+Qed.
+
+Hint Resolve Qle_ceiling : qarith.
+
+Lemma Qle_floor_ceiling : forall x, Qfloor x <= Qceiling x.
+Proof.
+eauto with qarith.
+Qed.
+
+Lemma Qlt_floor : forall x, x < (Qfloor x+1)%Z.
+Proof.
+intros [n d].
+simpl.
+unfold Qlt.
+simpl.
+replace (n*1)%Z with n by ring.
+ring_simplify.
+replace (n / ' d * ' d + ' d)%Z with
+ (('d * (n / 'd) + n mod 'd) + 'd - n mod 'd)%Z by ring.
+rewrite <- Z_div_mod_eq; auto with*.
+rewrite <- Zlt_plus_swap.
+destruct (Z_mod_lt n ('d)); auto with *.
+Qed.
+
+Hint Resolve Qlt_floor : qarith.
+
+Lemma Qceiling_lt : forall x, (Qceiling x-1)%Z < x.
+Proof.
+intros x.
+unfold Qceiling.
+replace (- Qfloor (- x) - 1)%Z with (-(Qfloor (-x) + 1))%Z by ring.
+change ((- (Qfloor (- x) + 1))%Z:Q) with (-(Qfloor (- x) + 1)%Z).
+apply Qlt_le_trans with (- - x); auto with *.
+rewrite Qopp_involutive.
+auto with *.
+Qed.
+
+Hint Resolve Qceiling_lt : qarith.
+
+Lemma Qfloor_resp_le : forall x y, x <= y -> (Qfloor x <= Qfloor y)%Z.
+Proof.
+intros [xn xd] [yn yd] Hxy.
+unfold Qle in *.
+simpl in *.
+rewrite <- (Zdiv_mult_cancel_r xn ('xd) ('yd)); auto with *.
+rewrite <- (Zdiv_mult_cancel_r yn ('yd) ('xd)); auto with *.
+rewrite (Zmult_comm ('yd) ('xd)).
+apply Z_div_le; auto with *.
+Qed.
+
+Hint Resolve Qfloor_resp_le : qarith.
+
+Lemma Qceiling_resp_le : forall x y, x <= y -> (Qceiling x <= Qceiling y)%Z.
+Proof.
+intros x y Hxy.
+unfold Qceiling.
+cut (Qfloor (-y) <= Qfloor (-x))%Z; auto with *.
+Qed.
+
+Hint Resolve Qceiling_resp_le : qarith.
+
+Add Morphism Qfloor with signature Qeq ==> @eq _ as Qfloor_comp.
+Proof.
+intros x y H.
+apply Zle_antisym.
+ auto with *.
+symmetry in H; auto with *.
+Qed.
+
+Add Morphism Qceiling with signature Qeq ==> @eq _ as Qceiling_comp.
+Proof.
+intros x y H.
+apply Zle_antisym.
+ auto with *.
+symmetry in H; auto with *.
+Qed. \ No newline at end of file
diff --git a/theories/Reals/Alembert.v b/theories/Reals/Alembert.v
index 802bfa71..7625cce6 100644
--- a/theories/Reals/Alembert.v
+++ b/theories/Reals/Alembert.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Alembert.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Alembert.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -25,12 +25,12 @@ Lemma Alembert_C1 :
forall An:nat -> R,
(forall n:nat, 0 < An n) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros An H H0.
cut
- (sigT (fun l:R => is_lub (EUn (fun N:nat => sum_f_R0 An N)) l) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+ ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
intro X; apply X.
apply completeness.
unfold Un_cv in H0; unfold bound in |- *; cut (0 < / 2);
@@ -109,18 +109,18 @@ Proof.
symmetry in |- *; apply tech2; assumption.
exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
intro X; elim X; intros.
- apply existT with x; apply tech10;
+ exists x; apply tech10;
[ unfold Un_growing in |- *; intro; rewrite tech5;
pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; left; apply H
| apply p ].
-Qed.
+Defined.
Lemma Alembert_C2 :
forall An:nat -> R,
(forall n:nat, An n <> 0) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros.
set (Vn := fun i:nat => (2 * Rabs (An i) + An i) / 2).
@@ -133,7 +133,7 @@ Proof.
assert (H6 := Alembert_C1 Wn H2 H4).
elim H5; intros.
elim H6; intros.
- apply existT with (x - x0); unfold Un_cv in |- *; unfold Un_cv in p;
+ exists (x - x0); unfold Un_cv in |- *; unfold Un_cv in p;
unfold Un_cv in p0; intros; cut (0 < eps / 2).
intro; elim (p (eps / 2) H8); clear p; intros.
elim (p0 (eps / 2) H8); clear p0; intros.
@@ -334,21 +334,21 @@ Proof.
rewrite <- Rabs_Ropp; apply RRle_abs.
rewrite double; pattern (Rabs (An n)) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_lt_compat_l; apply Rabs_pos_lt; apply H.
-Qed.
+Defined.
Lemma AlembertC3_step1 :
forall (An:nat -> R) (x:R),
x <> 0 ->
(forall n:nat, An n <> 0) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
- sigT (fun l:R => Pser An x l).
+ { l:R | Pser An x l }.
Proof.
intros; set (Bn := fun i:nat => An i * x ^ i).
cut (forall n:nat, Bn n <> 0).
intro; cut (Un_cv (fun n:nat => Rabs (Bn (S n) / Bn n)) 0).
intro; assert (H4 := Alembert_C2 Bn H2 H3).
elim H4; intros.
- apply existT with x0; unfold Bn in p; apply tech12; assumption.
+ exists x0; unfold Bn in p; apply tech12; assumption.
unfold Un_cv in |- *; intros; unfold Un_cv in H1; cut (0 < eps / Rabs x).
intro; elim (H1 (eps / Rabs x) H4); intros.
exists x0; intros; unfold R_dist in |- *; unfold Rminus in |- *;
@@ -379,13 +379,13 @@ Proof.
[ assumption | apply Rinv_0_lt_compat; apply Rabs_pos_lt; assumption ].
intro; unfold Bn in |- *; apply prod_neq_R0;
[ apply H0 | apply pow_nonzero; assumption ].
-Qed.
+Defined.
Lemma AlembertC3_step2 :
- forall (An:nat -> R) (x:R), x = 0 -> sigT (fun l:R => Pser An x l).
+ forall (An:nat -> R) (x:R), x = 0 -> { l:R | Pser An x l }.
Proof.
- intros; apply existT with (An 0%nat).
- unfold Pser in |- *; unfold infinit_sum in |- *; intros; exists 0%nat; intros;
+ intros; exists (An 0%nat).
+ unfold Pser in |- *; unfold infinite_sum in |- *; intros; exists 0%nat; intros;
replace (sum_f_R0 (fun n0:nat => An n0 * x ^ n0) n) with (An 0%nat).
unfold R_dist in |- *; unfold Rminus in |- *; rewrite Rplus_opp_r;
rewrite Rabs_R0; assumption.
@@ -395,12 +395,12 @@ Proof.
[ rewrite H; simpl in |- *; ring | unfold ge in |- *; apply le_O_n ].
Qed.
-(** An useful criterion of convergence for power series *)
+(** A useful criterion of convergence for power series *)
Theorem Alembert_C3 :
forall (An:nat -> R) (x:R),
(forall n:nat, An n <> 0) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) 0 ->
- sigT (fun l:R => Pser An x l).
+ { l:R | Pser An x l }.
Proof.
intros; case (total_order_T x 0); intro.
elim s; intro.
@@ -411,19 +411,19 @@ Proof.
cut (x <> 0).
intro; apply AlembertC3_step1; assumption.
red in |- *; intro; rewrite H1 in r; elim (Rlt_irrefl _ r).
-Qed.
+Defined.
Lemma Alembert_C4 :
forall (An:nat -> R) (k:R),
0 <= k < 1 ->
(forall n:nat, 0 < An n) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros An k Hyp H H0.
cut
- (sigT (fun l:R => is_lub (EUn (fun N:nat => sum_f_R0 An N)) l) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+ ({ l:R | is_lub (EUn (fun N:nat => sum_f_R0 An N)) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
intro X; apply X.
apply completeness.
assert (H1 := tech13 _ _ Hyp H0).
@@ -524,7 +524,7 @@ Proof.
symmetry in |- *; apply tech2; assumption.
exists (sum_f_R0 An 0); unfold EUn in |- *; exists 0%nat; reflexivity.
intro X; elim X; intros.
- apply existT with x; apply tech10;
+ exists x; apply tech10;
[ unfold Un_growing in |- *; intro; rewrite tech5;
pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
apply Rplus_le_compat_l; left; apply H
@@ -536,21 +536,19 @@ Lemma Alembert_C5 :
0 <= k < 1 ->
(forall n:nat, An n <> 0) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros.
cut
- (sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l)).
+ ({ l:R | Un_cv (fun N:nat => sum_f_R0 An N) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }).
intro Hyp0; apply Hyp0.
apply cv_cauchy_2.
apply cauchy_abs.
apply cv_cauchy_1.
cut
- (sigT
- (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l) ->
- sigT
- (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l)).
+ ({ l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => Rabs (An i)) N) l }).
intro Hyp; apply Hyp.
apply (Alembert_C4 (fun i:nat => Rabs (An i)) k).
assumption.
@@ -568,11 +566,11 @@ Proof.
apply H0.
intro X.
elim X; intros.
- apply existT with x.
+ exists x.
assumption.
intro X.
elim X; intros.
- apply existT with x.
+ exists x.
assumption.
Qed.
@@ -583,14 +581,12 @@ Lemma Alembert_C6 :
0 < k ->
(forall n:nat, An n <> 0) ->
Un_cv (fun n:nat => Rabs (An (S n) / An n)) k ->
- Rabs x < / k -> sigT (fun l:R => Pser An x l).
+ Rabs x < / k -> { l:R | Pser An x l }.
intros.
- cut
- (sigT
- (fun l:R => Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l)).
+ cut { l:R | Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l }.
intro X.
elim X; intros.
- apply existT with x0.
+ exists x0.
apply tech12; assumption.
case (total_order_T x 0); intro.
elim s; intro.
@@ -655,7 +651,7 @@ Lemma Alembert_C6 :
assumption.
apply Rinv_0_lt_compat; apply Rabs_pos_lt.
red in |- *; intro H7; rewrite H7 in a; elim (Rlt_irrefl _ a).
- apply existT with (An 0%nat).
+ exists (An 0%nat).
unfold Un_cv in |- *.
intros.
exists 0%nat.
diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v
index 581c181f..5c4bbd6a 100644
--- a/theories/Reals/AltSeries.v
+++ b/theories/Reals/AltSeries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
- (*i $Id: AltSeries.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+ (*i $Id: AltSeries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -153,14 +153,14 @@ Lemma CV_ALT :
Un_decreasing Un ->
positivity_seq Un ->
Un_cv Un 0 ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }.
Proof.
intros.
assert (H2 := CV_ALT_step0 _ H).
assert (H3 := CV_ALT_step4 _ H H0).
assert (X := growing_cv _ H2 H3).
elim X; intros.
- apply existT with x.
+ exists x.
unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p.
intros; cut (0 < eps / 2);
@@ -220,7 +220,7 @@ Theorem alternated_series :
forall Un:nat -> R,
Un_decreasing Un ->
Un_cv Un 0 ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l }.
Proof.
intros; apply CV_ALT.
assumption.
@@ -408,7 +408,7 @@ Proof.
Qed.
Lemma exist_PI :
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt PI_tg) N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 (tg_alt PI_tg) N) l }.
Proof.
apply alternated_series.
apply PI_tg_decreasing.
@@ -416,9 +416,7 @@ Proof.
Qed.
(** Now, PI is defined *)
-Definition PI : R := 4 * match exist_PI with
- | existT a b => a
- end.
+Definition PI : R := 4 * (let (a,_) := exist_PI in a).
(** We can get an approximation of PI with the following inequality *)
Lemma PI_ineq :
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
index 7dbbd605..7327c64c 100644
--- a/theories/Reals/ArithProp.v
+++ b/theories/Reals/ArithProp.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
- (*i $Id: ArithProp.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+ (*i $Id: ArithProp.v 9454 2006-12-15 15:30:59Z bgregoir $ i*)
Require Import Rbase.
Require Import Rbasic_fun.
diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v
index 10965951..0de639e8 100644
--- a/theories/Reals/Cos_plus.v
+++ b/theories/Reals/Cos_plus.v
@@ -6,14 +6,16 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
- (*i $Id: Cos_plus.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+ (*i $Id: Cos_plus.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo_def.
Require Import Cos_rel.
-Require Import Max. Open Local Scope nat_scope. Open Local Scope R_scope.
+Require Import Max.
+Open Local Scope nat_scope.
+Open Local Scope R_scope.
Definition Majxy (x y:R) (n:nat) : R :=
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n) / INR (fact n).
diff --git a/theories/Reals/Cos_rel.v b/theories/Reals/Cos_rel.v
index d410e14a..aed481c7 100644
--- a/theories/Reals/Cos_rel.v
+++ b/theories/Reals/Cos_rel.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Cos_rel.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Cos_rel.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -263,7 +263,7 @@ assert (H := exist_cos (x * x)).
elim H; intros.
assert (p_i := p).
unfold cos_in in p.
-unfold cos_n, infinit_sum in p.
+unfold cos_n, infinite_sum in p.
unfold R_dist in p.
cut (cos x = x0).
intro.
@@ -295,7 +295,7 @@ assert (H := exist_cos ((x + y) * (x + y))).
elim H; intros.
assert (p_i := p).
unfold cos_in in p.
-unfold cos_n, infinit_sum in p.
+unfold cos_n, infinite_sum in p.
unfold R_dist in p.
cut (cos (x + y) = x0).
intro.
@@ -344,7 +344,7 @@ assert (H0 := exist_sin (x * x)).
elim H0; intros.
assert (p_i := p).
unfold sin_in in p.
-unfold sin_n, infinit_sum in p.
+unfold sin_n, infinite_sum in p.
unfold R_dist in p.
cut (sin x = x * x0).
intro.
diff --git a/theories/Reals/DiscrR.v b/theories/Reals/DiscrR.v
index a16af05c..22a52e67 100644
--- a/theories/Reals/DiscrR.v
+++ b/theories/Reals/DiscrR.v
@@ -6,10 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: DiscrR.v 9178 2006-09-26 11:18:22Z barras $ i*)
+(*i $Id: DiscrR.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import RIneq.
-Require Import Omega. Open Local Scope R_scope.
+Require Import Omega.
+Open Local Scope R_scope.
Lemma Rlt_R0_R2 : 0 < 2.
change 2 with (INR 2); apply lt_INR_0; apply lt_O_Sn.
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index beb4b744..bf729526 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Exp_prop.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Exp_prop.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -27,7 +27,7 @@ Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x).
Proof.
intro; unfold exp in |- *; unfold projT1 in |- *.
case (exist_exp x); intro.
- unfold exp_in, Un_cv in |- *; unfold infinit_sum, E1 in |- *; trivial.
+ unfold exp_in, Un_cv in |- *; unfold infinite_sum, E1 in |- *; trivial.
Qed.
Definition Reste_E (x y:R) (N:nat) : R :=
@@ -734,7 +734,7 @@ Proof.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply (pow_lt _ n H).
unfold exp in |- *; unfold projT1 in |- *; case (exist_exp x); intro.
- unfold exp_in in |- *; unfold infinit_sum, Un_cv in |- *; trivial.
+ unfold exp_in in |- *; unfold infinite_sum, Un_cv in |- *; trivial.
Qed.
(**********)
@@ -769,7 +769,7 @@ Proof.
unfold derivable_pt_lim in |- *; intros.
set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))).
cut (CVN_R fn).
- intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
+ intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (continuity (SFL fn cv)).
intro; unfold continuity in H1.
@@ -809,13 +809,12 @@ Proof.
unfold Rdiv in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ].
unfold SFL, exp in |- *.
- unfold projT1 in |- *.
- case (cv h); case (exist_exp h); intros.
+ case (cv h); case (exist_exp h); simpl; intros.
eapply UL_sequence.
apply u.
unfold Un_cv in |- *; intros.
unfold exp_in in e.
- unfold infinit_sum in e.
+ unfold infinite_sum in e.
cut (0 < eps0 * Rabs h).
intro; elim (e _ H9); intros N0 H10.
exists N0; intros.
@@ -871,13 +870,12 @@ Proof.
assert (H0 := Alembert_exp).
unfold CVN_R in |- *.
intro; unfold CVN_r in |- *.
- apply existT with (fun N:nat => r ^ N / INR (fact (S N))).
+ exists (fun N:nat => r ^ N / INR (fact (S N))).
cut
- (sigT
- (fun l:R =>
+ { l:R |
Un_cv
(fun n:nat =>
- sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l)).
+ sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l }.
intro X.
elim X; intros.
exists x; intros.
diff --git a/theories/Reals/LegacyRfield.v b/theories/Reals/LegacyRfield.v
index b33274af..3f76e77a 100644
--- a/theories/Reals/LegacyRfield.v
+++ b/theories/Reals/LegacyRfield.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id$ i*)
+(*i $Id: LegacyRfield.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
Require Export Raxioms.
Require Export LegacyField.
diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v
index 8bb9298a..f22e49e1 100644
--- a/theories/Reals/MVT.v
+++ b/theories/Reals/MVT.v
@@ -6,12 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: MVT.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: MVT.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
-Require Import Rtopology. Open Local Scope R_scope.
+Require Import Rtopology.
+Open Local Scope R_scope.
(* The Mean Value Theorem *)
Theorem MVT :
@@ -189,7 +190,7 @@ Proof.
intros; apply derivable_pt_id.
intros; apply derivable_continuous_pt; apply X; assumption.
intros; elim H1; intros; apply X; split; left; assumption.
- intros; unfold derivable_pt in |- *; apply existT with (f' c); apply H0;
+ intros; unfold derivable_pt in |- *; exists (f' c); apply H0;
apply H1.
Qed.
@@ -695,11 +696,11 @@ Proof.
unfold antiderivative in |- *; intros; elim H; clear H; intros; elim H0;
clear H0; intros H0 _; exists (g1 a - g2 a); intros;
assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x).
- intros; unfold derivable_pt in |- *; apply existT with (f x0); elim (H x0 H3);
+ intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3);
intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H4.
assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x).
- intros; unfold derivable_pt in |- *; apply existT with (f x0);
+ intros; unfold derivable_pt in |- *; exists (f x0);
elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H5.
assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x).
diff --git a/theories/Reals/NewtonInt.v b/theories/Reals/NewtonInt.v
index 306d5ac4..47ae149e 100644
--- a/theories/Reals/NewtonInt.v
+++ b/theories/Reals/NewtonInt.v
@@ -6,32 +6,31 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: NewtonInt.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: NewtonInt.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo.
-Require Import Ranalysis. Open Local Scope R_scope.
+Require Import Ranalysis.
+Open Local Scope R_scope.
(*******************************************)
(* Newton's Integral *)
(*******************************************)
Definition Newton_integrable (f:R -> R) (a b:R) : Type :=
- sigT (fun g:R -> R => antiderivative f g a b \/ antiderivative f g b a).
+ { g:R -> R | antiderivative f g a b \/ antiderivative f g b a }.
Definition NewtonInt (f:R -> R) (a b:R) (pr:Newton_integrable f a b) : R :=
- let g := match pr with
- | existT a b => a
- end in g b - g a.
+ let (g,_) := pr in g b - g a.
(* If f is differentiable, then f' is Newton integrable (Tautology ?) *)
Lemma FTCN_step1 :
forall (f:Differential) (a b:R),
Newton_integrable (fun x:R => derive_pt f x (cond_diff f x)) a b.
Proof.
- intros f a b; unfold Newton_integrable in |- *; apply existT with (d1 f);
+ intros f a b; unfold Newton_integrable in |- *; exists (d1 f);
unfold antiderivative in |- *; intros; case (Rle_dec a b);
intro;
[ left; split; [ intros; exists (cond_diff f x); reflexivity | assumption ]
@@ -52,7 +51,7 @@ Qed.
Lemma NewtonInt_P1 : forall (f:R -> R) (a:R), Newton_integrable f a a.
Proof.
intros f a; unfold Newton_integrable in |- *;
- apply existT with (fct_cte (f a) * id)%F; left;
+ exists (fct_cte (f a) * id)%F; left;
unfold antiderivative in |- *; split.
intros; assert (H1 : derivable_pt (fct_cte (f a) * id) x).
apply derivable_pt_mult.
@@ -82,7 +81,7 @@ Lemma NewtonInt_P3 :
Newton_integrable f b a.
Proof.
unfold Newton_integrable in |- *; intros; elim X; intros g H;
- apply existT with g; tauto.
+ exists g; tauto.
Defined.
(* $\int_a^b f = -\int_b^a f$ *)
@@ -94,7 +93,7 @@ Proof.
unfold NewtonInt in |- *;
case
(NewtonInt_P3 f a b
- (existT
+ (exist
(fun g:R -> R => antiderivative f g a b \/ antiderivative f g b a) x
p)).
intros; elim o; intro.
@@ -112,7 +111,7 @@ Proof.
unfold NewtonInt in |- *;
case
(NewtonInt_P3 f a b
- (existT
+ (exist
(fun g:R -> R => antiderivative f g a b \/ antiderivative f g b a) x
p)); intros; elim o; intro.
assert (H1 := antiderivative_Ucte f x x0 b a H H0); elim H1; intros;
@@ -325,7 +324,7 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; apply existT with (f x); apply H7.
+ unfold derivable_pt in |- *; exists (f x); apply H7.
exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7.
assert (H5 : a <= x <= b).
split; [ assumption | right; assumption ].
@@ -370,7 +369,7 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; apply existT with (f x); apply H13.
+ unfold derivable_pt in |- *; exists (f x); apply H13.
exists H14; symmetry in |- *; apply derive_pt_eq_0; apply H13.
assert (H5 : b <= x <= c).
split; [ left; assumption | assumption ].
@@ -417,7 +416,7 @@ Proof.
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
end) x).
- unfold derivable_pt in |- *; apply existT with (f x); apply H7.
+ unfold derivable_pt in |- *; exists (f x); apply H7.
exists H8; symmetry in |- *; apply derive_pt_eq_0; apply H7.
Qed.
@@ -482,7 +481,7 @@ Proof.
match Rle_dec x b with
| left _ => F0 x
| right _ => F1 x + (F0 b - F1 b)
- end); apply existT with g; left; unfold g in |- *;
+ end); exists g; left; unfold g in |- *;
apply antiderivative_P2.
elim H0; intro.
assumption.
@@ -508,7 +507,7 @@ Proof.
elim s0; intro.
(* a<b & b<c *)
unfold Newton_integrable in |- *;
- apply existT with
+ exists
(fun x:R =>
match Rle_dec x b with
| left _ => F0 x
@@ -526,7 +525,7 @@ Proof.
(* a<b & b>c *)
case (total_order_T a c); intro.
elim s0; intro.
- unfold Newton_integrable in |- *; apply existT with F0.
+ unfold Newton_integrable in |- *; exists F0.
left.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
@@ -540,7 +539,7 @@ Proof.
unfold antiderivative in H2; elim H2; clear H2; intros _ H2.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H2 a0)).
rewrite b0; apply NewtonInt_P1.
- unfold Newton_integrable in |- *; apply existT with F1.
+ unfold Newton_integrable in |- *; exists F1.
right.
elim H1; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
@@ -560,7 +559,7 @@ Proof.
(* a>b & b<c *)
case (total_order_T a c); intro.
elim s0; intro.
- unfold Newton_integrable in |- *; apply existT with F1.
+ unfold Newton_integrable in |- *; exists F1.
left.
elim H1; intro.
(*****************)
@@ -575,7 +574,7 @@ Proof.
unfold antiderivative in H; elim H; clear H; intros _ H.
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H a0)).
rewrite b0; apply NewtonInt_P1.
- unfold Newton_integrable in |- *; apply existT with F0.
+ unfold Newton_integrable in |- *; exists F0.
right.
elim H0; intro.
unfold antiderivative in H; elim H; clear H; intros _ H.
diff --git a/theories/Reals/PSeries_reg.v b/theories/Reals/PSeries_reg.v
index 64b8e0af..e122a26a 100644
--- a/theories/Reals/PSeries_reg.v
+++ b/theories/Reals/PSeries_reg.v
@@ -6,14 +6,15 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: PSeries_reg.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: PSeries_reg.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
Require Import Max.
-Require Import Even. Open Local Scope R_scope.
+Require Import Even.
+Open Local Scope R_scope.
Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.
@@ -28,25 +29,21 @@ Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
(** Normal convergence *)
Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type :=
- sigT
- (fun An:nat -> R =>
- sigT
- (fun l:R =>
+ { An:nat -> R &
+ { l:R |
Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
- (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n))).
+ (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }.
Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.
Definition SFL (fn:nat -> R -> R)
- (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
- (y:R) : R := match cv y with
- | existT a b => a
- end.
+ (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
+ (y:R) : R := let (a,_) := cv y in a.
(** In a complete space, normal convergence implies uniform convergence *)
Lemma CVN_CVU :
forall (fn:nat -> R -> R)
- (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
+ (cv:forall x:R, {l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal), CVN_r fn r -> CVU (fun n:nat => SP fn n) (SFL fn cv) 0 r.
Proof.
intros; unfold CVU in |- *; intros.
@@ -193,7 +190,7 @@ Qed.
(** Continuity and normal convergence *)
Lemma SFL_continuity_pt :
forall (fn:nat -> R -> R)
- (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l))
+ (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
(r:posreal),
CVN_r fn r ->
(forall (n:nat) (y:R), Boule 0 r y -> continuity_pt (fn n) y) ->
@@ -210,7 +207,7 @@ Qed.
Lemma SFL_continuity :
forall (fn:nat -> R -> R)
- (cv:forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)),
+ (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }),
CVN_R fn -> (forall n:nat, continuity (fn n)) -> continuity (SFL fn cv).
Proof.
intros; unfold continuity in |- *; intro.
@@ -229,7 +226,7 @@ Qed.
(** As R is complete, normal convergence implies that (fn) is simply-uniformly convergent *)
Lemma CVN_R_CVS :
forall fn:nat -> R -> R,
- CVN_R fn -> forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l).
+ CVN_R fn -> forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }.
Proof.
intros; apply R_complete.
unfold SP in |- *; set (An := fun N:nat => fn N x).
@@ -248,7 +245,7 @@ Proof.
rewrite Rminus_0_r.
pattern (Rabs x) at 1 in |- *; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l;
apply Rlt_0_1.
- apply existT with l.
+ exists l.
cut (forall n:nat, 0 <= Bn n).
intro; unfold Un_cv in H3; unfold Un_cv in |- *; intros.
elim (H3 _ H6); intros.
diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v
index a8f72302..d5ae2aca 100644
--- a/theories/Reals/PartSum.v
+++ b/theories/Reals/PartSum.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: PartSum.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: PartSum.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -153,7 +153,7 @@ Lemma tech12 :
Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
Pser An x l.
Proof.
- intros; unfold Pser in |- *; unfold infinit_sum in |- *; unfold Un_cv in H;
+ intros; unfold Pser in |- *; unfold infinite_sum in |- *; unfold Un_cv in H;
assumption.
Qed.
@@ -218,9 +218,9 @@ Qed.
(* Unicity of the limit defined by convergent series *)
Lemma uniqueness_sum :
forall (An:nat -> R) (l1 l2:R),
- infinit_sum An l1 -> infinit_sum An l2 -> l1 = l2.
+ infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2.
Proof.
- unfold infinit_sum in |- *; intros.
+ unfold infinite_sum in |- *; intros.
case (Req_dec l1 l2); intro.
assumption.
cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
@@ -450,7 +450,7 @@ Qed.
(**********)
Lemma cv_cauchy_1 :
forall An:nat -> R,
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l } ->
Cauchy_crit_series An.
Proof.
intros An X.
@@ -481,7 +481,7 @@ Qed.
Lemma cv_cauchy_2 :
forall An:nat -> R,
Cauchy_crit_series An ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros.
apply R_complete.
diff --git a/theories/Reals/RIneq.v b/theories/Reals/RIneq.v
index 7d98a844..19bdeccd 100644
--- a/theories/Reals/RIneq.v
+++ b/theories/Reals/RIneq.v
@@ -6,11 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RIneq.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: RIneq.v 10762 2008-04-06 16:57:31Z herbelin $ i*)
-(***************************************************************************)
-(** Basic lemmas for the classical reals numbers *)
-(***************************************************************************)
+(*********************************************************)
+(** * Basic lemmas for the classical real numbers *)
+(*********************************************************)
Require Export Raxioms.
Require Import Rpow_def.
@@ -24,21 +24,32 @@ Open Local Scope R_scope.
Implicit Type r : R.
-(**************************************************************************)
-(** * Relation between orders and equality *)
-(**************************************************************************)
+(*********************************************************)
+(** ** Relation between orders and equality *)
+(*********************************************************)
+
+(** Reflexivity of the large order *)
+
+Lemma Rle_refl : forall r, r <= r.
+Proof.
+ intro; right; reflexivity.
+Qed.
+Hint Immediate Rle_refl: rorders.
+
+Lemma Rge_refl : forall r, r <= r.
+Proof. exact Rle_refl. Qed.
+Hint Immediate Rge_refl: rorders.
+
+(** Irreflexivity of the strict order *)
-(**********)
Lemma Rlt_irrefl : forall r, ~ r < r.
Proof.
generalize Rlt_asym. intuition eauto.
Qed.
Hint Resolve Rlt_irrefl: real.
-Lemma Rle_refl : forall r, r <= r.
-Proof.
- intro; right; reflexivity.
-Qed.
+Lemma Rgt_irrefl : forall r, ~ r > r.
+Proof. exact Rlt_irrefl. Qed.
Lemma Rlt_not_eq : forall r1 r2, r1 < r2 -> r1 <> r2.
Proof.
@@ -58,7 +69,7 @@ Proof.
Qed.
Hint Resolve Rlt_dichotomy_converse: real.
-(** Reasoning by case on equalities and order *)
+(** Reasoning by case on equality and order *)
(**********)
Lemma Req_dec : forall r1 r2, r1 = r2 \/ r1 <> r2.
@@ -80,58 +91,104 @@ Proof.
intros; generalize (total_order_T r1 r2); tauto.
Qed.
+(*********************************************************)
+(** ** Relating [<], [>], [<=] and [>=] *)
+(*********************************************************)
-(*********************************************************************************)
-(** * Order Lemma : relating [<], [>], [<=] and [>=] *)
-(*********************************************************************************)
+(*********************************************************)
+(** ** Order *)
+(*********************************************************)
+
+(** *** Relating strict and large orders *)
-(**********)
Lemma Rlt_le : forall r1 r2, r1 < r2 -> r1 <= r2.
Proof.
intros; red in |- *; tauto.
Qed.
Hint Resolve Rlt_le: real.
+Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2.
+Proof.
+ intros; red; tauto.
+Qed.
+
(**********)
Lemma Rle_ge : forall r1 r2, r1 <= r2 -> r2 >= r1.
Proof.
destruct 1; red in |- *; auto with real.
Qed.
-
Hint Immediate Rle_ge: real.
+Hint Resolve Rle_ge: rorders.
-(**********)
Lemma Rge_le : forall r1 r2, r1 >= r2 -> r2 <= r1.
Proof.
destruct 1; red in |- *; auto with real.
Qed.
-
Hint Resolve Rge_le: real.
+Hint Immediate Rge_le: rorders.
(**********)
+Lemma Rlt_gt : forall r1 r2, r1 < r2 -> r2 > r1.
+Proof.
+ trivial.
+Qed.
+Hint Resolve Rlt_gt: rorders.
+
+Lemma Rgt_lt : forall r1 r2, r1 > r2 -> r2 < r1.
+Proof.
+ trivial.
+Qed.
+Hint Immediate Rgt_lt: rorders.
+
+(**********)
+
Lemma Rnot_le_lt : forall r1 r2, ~ r1 <= r2 -> r2 < r1.
Proof.
intros r1 r2; generalize (Rtotal_order r1 r2); unfold Rle in |- *; tauto.
Qed.
-
Hint Immediate Rnot_le_lt: real.
+Lemma Rnot_ge_gt : forall r1 r2, ~ r1 >= r2 -> r2 > r1.
+Proof. intros; red; apply Rnot_le_lt. auto with real. Qed.
+
+Lemma Rnot_le_gt : forall r1 r2, ~ r1 <= r2 -> r1 > r2.
+Proof. intros; red; apply Rnot_le_lt. auto with real. Qed.
+
Lemma Rnot_ge_lt : forall r1 r2, ~ r1 >= r2 -> r1 < r2.
+Proof. intros; apply Rnot_le_lt. auto with real. Qed.
+
+Lemma Rnot_lt_le : forall r1 r2, ~ r1 < r2 -> r2 <= r1.
Proof.
- intros; apply Rnot_le_lt; auto with real.
+ intros r1 r2 H; destruct (Rtotal_order r1 r2) as [ | [ H0 | H0 ] ].
+ contradiction. subst; auto with rorders. auto with real.
Qed.
+Lemma Rnot_gt_le : forall r1 r2, ~ r1 > r2 -> r1 <= r2.
+Proof. auto using Rnot_lt_le with real. Qed.
+
+Lemma Rnot_gt_ge : forall r1 r2, ~ r1 > r2 -> r2 >= r1.
+Proof. intros; eauto using Rnot_lt_le with rorders. Qed.
+
+Lemma Rnot_lt_ge : forall r1 r2, ~ r1 < r2 -> r1 >= r2.
+Proof. eauto using Rnot_gt_ge with rorders. Qed.
+
(**********)
Lemma Rlt_not_le : forall r1 r2, r2 < r1 -> ~ r1 <= r2.
Proof.
generalize Rlt_asym Rlt_dichotomy_converse; unfold Rle in |- *.
intuition eauto 3.
Qed.
+Hint Immediate Rlt_not_le: real.
Lemma Rgt_not_le : forall r1 r2, r1 > r2 -> ~ r1 <= r2.
-Proof Rlt_not_le.
+Proof. exact Rlt_not_le. Qed.
-Hint Immediate Rlt_not_le: real.
+Lemma Rlt_not_ge : forall r1 r2, r1 < r2 -> ~ r1 >= r2.
+Proof. red; intros; eapply Rlt_not_le; eauto with real. Qed.
+Hint Immediate Rlt_not_ge: real.
+
+Lemma Rgt_not_ge : forall r1 r2, r2 > r1 -> ~ r1 >= r2.
+Proof. exact Rlt_not_ge. Qed.
Lemma Rle_not_lt : forall r1 r2, r2 <= r1 -> ~ r1 < r2.
Proof.
@@ -139,13 +196,14 @@ Proof.
unfold Rle in |- *; intuition.
Qed.
-(**********)
-Lemma Rlt_not_ge : forall r1 r2, r1 < r2 -> ~ r1 >= r2.
-Proof.
- generalize Rlt_not_le. unfold Rle, Rge in |- *. intuition eauto 3.
-Qed.
+Lemma Rge_not_lt : forall r1 r2, r1 >= r2 -> ~ r1 < r2.
+Proof. intros; apply Rle_not_lt; auto with real. Qed.
-Hint Immediate Rlt_not_ge: real.
+Lemma Rle_not_gt : forall r1 r2, r1 <= r2 -> ~ r1 > r2.
+Proof. do 2 intro; apply Rle_not_lt. Qed.
+
+Lemma Rge_not_gt : forall r1 r2, r2 >= r1 -> ~ r1 > r2.
+Proof. do 2 intro; apply Rge_not_lt. Qed.
(**********)
Lemma Req_le : forall r1 r2, r1 = r2 -> r1 <= r2.
@@ -172,25 +230,51 @@ Proof.
Qed.
Hint Immediate Req_ge_sym: real.
+(** *** Asymmetry *)
+
+(** Remark: [Rlt_asym] is an axiom *)
+
+Lemma Rgt_asym : forall r1 r2:R, r1 > r2 -> ~ r2 > r1.
+Proof. do 2 intro; apply Rlt_asym. Qed.
+
+(** *** Antisymmetry *)
+
Lemma Rle_antisym : forall r1 r2, r1 <= r2 -> r2 <= r1 -> r1 = r2.
Proof.
intros r1 r2; generalize (Rlt_asym r1 r2); unfold Rle in |- *; intuition.
Qed.
Hint Resolve Rle_antisym: real.
+Lemma Rge_antisym : forall r1 r2, r1 >= r2 -> r2 >= r1 -> r1 = r2.
+Proof. auto with real. Qed.
+
(**********)
Lemma Rle_le_eq : forall r1 r2, r1 <= r2 /\ r2 <= r1 <-> r1 = r2.
Proof.
intuition.
Qed.
+Lemma Rge_ge_eq : forall r1 r2, r1 >= r2 /\ r2 >= r1 <-> r1 = r2.
+Proof.
+ intuition.
+Qed.
+
+(** *** Compatibility with equality *)
+
Lemma Rlt_eq_compat :
forall r1 r2 r3 r4, r1 = r2 -> r2 < r4 -> r4 = r3 -> r1 < r3.
Proof.
intros x x' y y'; intros; replace x with x'; replace y with y'; assumption.
Qed.
-(**********)
+Lemma Rgt_eq_compat :
+ forall r1 r2 r3 r4, r1 = r2 -> r2 > r4 -> r4 = r3 -> r1 > r3.
+Proof. intros; red; apply Rlt_eq_compat with (r2:=r4) (r4:=r2); auto. Qed.
+
+(** *** Transitivity *)
+
+(** Remark: [Rlt_trans] is an axiom *)
+
Lemma Rle_trans : forall r1 r2 r3, r1 <= r2 -> r2 <= r3 -> r1 <= r3.
Proof.
generalize trans_eq Rlt_trans Rlt_eq_compat.
@@ -198,6 +282,12 @@ Proof.
intuition eauto 2.
Qed.
+Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3.
+Proof. eauto using Rle_trans with rorders. Qed.
+
+Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3.
+Proof. eauto using Rlt_trans with rorders. Qed.
+
(**********)
Lemma Rle_lt_trans : forall r1 r2 r3, r1 <= r2 -> r2 < r3 -> r1 < r3.
Proof.
@@ -206,21 +296,25 @@ Proof.
intuition eauto 2.
Qed.
-(**********)
Lemma Rlt_le_trans : forall r1 r2 r3, r1 < r2 -> r2 <= r3 -> r1 < r3.
Proof.
generalize Rlt_trans Rlt_eq_compat; unfold Rle in |- *; intuition eauto 2.
Qed.
+Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3.
+Proof. eauto using Rlt_le_trans with rorders. Qed.
+
+Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3.
+Proof. eauto using Rle_lt_trans with rorders. Qed.
+
+(** *** (Classical) decidability *)
-(** Decidability of the order *)
Lemma Rlt_dec : forall r1 r2, {r1 < r2} + {~ r1 < r2}.
Proof.
intros; generalize (total_order_T r1 r2) (Rlt_dichotomy_converse r1 r2);
intuition.
Qed.
-(**********)
Lemma Rle_dec : forall r1 r2, {r1 <= r2} + {~ r1 <= r2}.
Proof.
intros r1 r2.
@@ -228,28 +322,44 @@ Proof.
intuition eauto 4 with real.
Qed.
-(**********)
Lemma Rgt_dec : forall r1 r2, {r1 > r2} + {~ r1 > r2}.
-Proof.
- intros; unfold Rgt in |- *; intros; apply Rlt_dec.
-Qed.
+Proof. do 2 intro; apply Rlt_dec. Qed.
-(**********)
Lemma Rge_dec : forall r1 r2, {r1 >= r2} + {~ r1 >= r2}.
+Proof. intros; edestruct Rle_dec; [left|right]; eauto with rorders. Qed.
+
+Lemma Rlt_le_dec : forall r1 r2, {r1 < r2} + {r2 <= r1}.
Proof.
- intros; generalize (Rle_dec r2 r1); intuition.
+ intros; generalize (total_order_T r1 r2); intuition.
Qed.
-Lemma Rlt_le_dec : forall r1 r2, {r1 < r2} + {r2 <= r1}.
+Lemma Rgt_ge_dec : forall r1 r2, {r1 > r2} + {r2 >= r1}.
+Proof. intros; edestruct Rlt_le_dec; [left|right]; eauto with rorders. Qed.
+
+Lemma Rle_lt_dec : forall r1 r2, {r1 <= r2} + {r2 < r1}.
Proof.
intros; generalize (total_order_T r1 r2); intuition.
Qed.
+Lemma Rge_gt_dec : forall r1 r2, {r1 >= r2} + {r2 > r1}.
+Proof. intros; edestruct Rle_lt_dec; [left|right]; eauto with rorders. Qed.
+
+Lemma Rlt_or_le : forall r1 r2, r1 < r2 \/ r2 <= r1.
+Proof.
+ intros n m; elim (Rle_lt_dec m n); auto with real.
+Qed.
+
+Lemma Rgt_or_ge : forall r1 r2, r1 > r2 \/ r2 >= r1.
+Proof. intros; edestruct Rlt_or_le; [left|right]; eauto with rorders. Qed.
+
Lemma Rle_or_lt : forall r1 r2, r1 <= r2 \/ r2 < r1.
Proof.
intros n m; elim (Rlt_le_dec m n); auto with real.
Qed.
+Lemma Rge_or_gt : forall r1 r2, r1 >= r2 \/ r2 > r1.
+Proof. intros; edestruct Rle_or_lt; [left|right]; eauto with rorders. Qed.
+
Lemma Rle_lt_or_eq_dec : forall r1 r2, r1 <= r2 -> {r1 < r2} + {r1 = r2}.
Proof.
intros r1 r2 H; generalize (total_order_T r1 r2); intuition.
@@ -262,19 +372,11 @@ Proof.
intros n m p q; intros; generalize (Rlt_le_dec m q); intuition.
Qed.
-(****************************************************************)
-(** * Field Lemmas *)
-(* This part contains lemma involving the Fields operations *)
-(****************************************************************)
(*********************************************************)
-(** ** Addition *)
+(** ** Addition *)
(*********************************************************)
-Lemma Rplus_ne : forall r, r + 0 = r /\ 0 + r = r.
-Proof.
- split; ring.
-Qed.
-Hint Resolve Rplus_ne: real v62.
+(** Remark: [Rplus_0_l] is an axiom *)
Lemma Rplus_0_r : forall r, r + 0 = r.
Proof.
@@ -282,14 +384,22 @@ Proof.
Qed.
Hint Resolve Rplus_0_r: real.
+Lemma Rplus_ne : forall r, r + 0 = r /\ 0 + r = r.
+Proof.
+ split; ring.
+Qed.
+Hint Resolve Rplus_ne: real v62.
+
(**********)
+
+(** Remark: [Rplus_opp_r] is an axiom *)
+
Lemma Rplus_opp_l : forall r, - r + r = 0.
Proof.
intro; ring.
Qed.
Hint Resolve Rplus_opp_l: real.
-
(**********)
Lemma Rplus_opp_r_uniq : forall r1 r2, r1 + r2 = 0 -> r2 = - r1.
Proof.
@@ -298,7 +408,6 @@ Proof.
rewrite Rplus_assoc; rewrite H; ring.
Qed.
-(*i New i*)
Hint Resolve (f_equal (A:=R)): real.
Lemma Rplus_eq_compat_l : forall r r1 r2, r1 = r2 -> r + r1 = r + r2.
@@ -325,9 +434,31 @@ Proof.
intros r b; pattern r at 2 in |- *; replace r with (r + 0); eauto with real.
Qed.
-(***********************************************************)
-(** ** Multiplication *)
-(***********************************************************)
+(***********)
+Lemma Rplus_eq_0_l :
+ forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0.
+Proof.
+ intros a b H [H0| H0] H1; auto with real.
+ absurd (0 < a + b).
+ rewrite H1; auto with real.
+ apply Rle_lt_trans with (a + 0).
+ rewrite Rplus_0_r in |- *; assumption.
+ auto using Rplus_lt_compat_l with real.
+ rewrite <- H0, Rplus_0_r in H1; assumption.
+Qed.
+
+Lemma Rplus_eq_R0 :
+ forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0 /\ r2 = 0.
+Proof.
+ intros a b; split.
+ apply Rplus_eq_0_l with b; auto with real.
+ apply Rplus_eq_0_l with a; auto with real.
+ rewrite Rplus_comm; auto with real.
+Qed.
+
+(*********************************************************)
+(** ** Multiplication *)
+(*********************************************************)
(**********)
Lemma Rinv_r : forall r, r <> 0 -> r * / r = 1.
@@ -340,13 +471,13 @@ Lemma Rinv_l_sym : forall r, r <> 0 -> 1 = / r * r.
Proof.
intros; field; trivial.
Qed.
+Hint Resolve Rinv_l_sym: real.
Lemma Rinv_r_sym : forall r, r <> 0 -> 1 = r * / r.
Proof.
intros; field; trivial.
Qed.
-Hint Resolve Rinv_l_sym Rinv_r_sym: real.
-
+Hint Resolve Rinv_r_sym: real.
(**********)
Lemma Rmult_0_r : forall r, r * 0 = 0.
@@ -382,7 +513,7 @@ Proof.
auto with real.
Qed.
-(*i OLD i*)Hint Resolve Rmult_eq_compat_l: v62.
+(*i Old i*)Hint Resolve Rmult_eq_compat_l: v62.
(**********)
Lemma Rmult_eq_reg_l : forall r r1 r2, r * r1 = r * r2 -> r <> 0 -> r1 = r2.
@@ -423,7 +554,6 @@ Proof.
auto with real.
Qed.
-
(**********)
Lemma Rmult_neq_0_reg : forall r1 r2, r1 * r2 <> 0 -> r1 <> 0 /\ r2 <> 0.
Proof.
@@ -439,6 +569,10 @@ Proof.
Qed.
Hint Resolve Rmult_integral_contrapositive: real.
+Lemma Rmult_integral_contrapositive_currified :
+ forall r1 r2, r1 <> 0 -> r2 <> 0 -> r1 * r2 <> 0.
+Proof. auto using Rmult_integral_contrapositive. Qed.
+
(**********)
Lemma Rmult_plus_distr_r :
forall r1 r2 r3, (r1 + r2) * r3 = r1 * r3 + r2 * r3.
@@ -446,11 +580,15 @@ Proof.
intros; ring.
Qed.
-(** ** Square function *)
+(*********************************************************)
+(** ** Square function *)
+(*********************************************************)
(***********)
Definition Rsqr r : R := r * r.
+Notation "r ²" := (Rsqr r) (at level 1, format "r ²") : R_scope.
+
(***********)
Lemma Rsqr_0 : Rsqr 0 = 0.
unfold Rsqr in |- *; auto with real.
@@ -462,7 +600,7 @@ Lemma Rsqr_0_uniq : forall r, Rsqr r = 0 -> r = 0.
Qed.
(*********************************************************)
-(** ** Opposite *)
+(** ** Opposite *)
(*********************************************************)
(**********)
@@ -509,8 +647,9 @@ Proof.
Qed.
Hint Resolve Ropp_plus_distr: real.
-
-(** ** Opposite and multiplication *)
+(*********************************************************)
+(** ** Opposite and multiplication *)
+(*********************************************************)
Lemma Ropp_mult_distr_l_reverse : forall r1 r2, - r1 * r2 = - (r1 * r2).
Proof.
@@ -530,7 +669,9 @@ Proof.
intros; ring.
Qed.
-(** ** Substraction *)
+(*********************************************************)
+(** ** Substraction *)
+(*********************************************************)
Lemma Rminus_0_r : forall r, r - 0 = r.
Proof.
@@ -555,7 +696,6 @@ Lemma Ropp_minus_distr' : forall r1 r2, - (r2 - r1) = r1 - r2.
Proof.
intros; ring.
Qed.
-Hint Resolve Ropp_minus_distr': real.
(**********)
Lemma Rminus_diag_eq : forall r1 r2, r1 = r2 -> r1 - r2 = 0.
@@ -605,7 +745,6 @@ Proof.
Qed.
Hint Resolve Rminus_not_eq_right: real.
-
(**********)
Lemma Rmult_minus_distr_l :
forall r1 r2 r3, r1 * (r2 - r3) = r1 * r2 - r1 * r3.
@@ -613,7 +752,10 @@ Proof.
intros; ring.
Qed.
-(** ** Inverse *)
+(*********************************************************)
+(** ** Inverse *)
+(*********************************************************)
+
Lemma Rinv_1 : / 1 = 1.
Proof.
field.
@@ -677,28 +819,28 @@ Proof.
ring.
Qed.
-(** * Field operations and order *)
+(*********************************************************)
+(** ** Order and addition *)
+(*********************************************************)
+
+(** *** Compatibility *)
-(** ** Order and addition *)
+(** Remark: [Rplus_lt_compat_l] is an axiom *)
+Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2.
+Proof. eauto using Rplus_lt_compat_l with rorders. Qed.
+Hint Resolve Rplus_gt_compat_l: real.
+
+(**********)
Lemma Rplus_lt_compat_r : forall r r1 r2, r1 < r2 -> r1 + r < r2 + r.
Proof.
intros.
rewrite (Rplus_comm r1 r); rewrite (Rplus_comm r2 r); auto with real.
Qed.
-
Hint Resolve Rplus_lt_compat_r: real.
-(**********)
-Lemma Rplus_lt_reg_r : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
-Proof.
- intros; cut (- r + r + r1 < - r + r + r2).
- rewrite Rplus_opp_l.
- elim (Rplus_ne r1); elim (Rplus_ne r2); intros; rewrite <- H3; rewrite <- H1;
- auto with zarith real.
- rewrite Rplus_assoc; rewrite Rplus_assoc;
- apply (Rplus_lt_compat_l (- r) (r + r1) (r + r2) H).
-Qed.
+Lemma Rplus_gt_compat_r : forall r r1 r2, r1 > r2 -> r1 + r > r2 + r.
+Proof. do 3 intro; apply Rplus_lt_compat_r. Qed.
(**********)
Lemma Rplus_le_compat_l : forall r r1 r2, r1 <= r2 -> r + r1 <= r + r2.
@@ -708,6 +850,10 @@ Proof.
right; rewrite <- H0; auto with zarith real.
Qed.
+Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2.
+Proof. auto using Rplus_le_compat_l with rorders. Qed.
+Hint Resolve Rplus_ge_compat_l: real.
+
(**********)
Lemma Rplus_le_compat_r : forall r r1 r2, r1 <= r2 -> r1 + r <= r2 + r.
Proof.
@@ -718,23 +864,8 @@ Qed.
Hint Resolve Rplus_le_compat_l Rplus_le_compat_r: real.
-(**********)
-Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
-Proof.
- unfold Rle in |- *; intros; elim H; intro.
- left; apply (Rplus_lt_reg_r r r1 r2 H0).
- right; apply (Rplus_eq_reg_l r r1 r2 H0).
-Qed.
-
-(**********)
-Lemma sum_inequa_Rle_lt :
- forall a x b c y d:R,
- a <= x -> x < b -> c < y -> y <= d -> a + c < x + y < b + d.
-Proof.
- intros; split.
- apply Rlt_le_trans with (a + y); auto with real.
- apply Rlt_le_trans with (b + y); auto with real.
-Qed.
+Lemma Rplus_ge_compat_r : forall r r1 r2, r1 >= r2 -> r1 + r >= r2 + r.
+Proof. auto using Rplus_le_compat_r with rorders. Qed.
(*********)
Lemma Rplus_lt_compat :
@@ -742,12 +873,22 @@ Lemma Rplus_lt_compat :
Proof.
intros; apply Rlt_trans with (r2 + r3); auto with real.
Qed.
+Hint Immediate Rplus_lt_compat: real.
Lemma Rplus_le_compat :
forall r1 r2 r3 r4, r1 <= r2 -> r3 <= r4 -> r1 + r3 <= r2 + r4.
Proof.
intros; apply Rle_trans with (r2 + r3); auto with real.
Qed.
+Hint Immediate Rplus_le_compat: real.
+
+Lemma Rplus_gt_compat :
+ forall r1 r2 r3 r4, r1 > r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
+Proof. auto using Rplus_lt_compat with rorders. Qed.
+
+Lemma Rplus_ge_compat :
+ forall r1 r2 r3 r4, r1 >= r2 -> r3 >= r4 -> r1 + r3 >= r2 + r4.
+Proof. auto using Rplus_le_compat with rorders. Qed.
(*********)
Lemma Rplus_lt_le_compat :
@@ -756,19 +897,133 @@ Proof.
intros; apply Rlt_le_trans with (r2 + r3); auto with real.
Qed.
-(*********)
Lemma Rplus_le_lt_compat :
forall r1 r2 r3 r4, r1 <= r2 -> r3 < r4 -> r1 + r3 < r2 + r4.
Proof.
intros; apply Rle_lt_trans with (r2 + r3); auto with real.
Qed.
-Hint Immediate Rplus_lt_compat Rplus_le_compat Rplus_lt_le_compat
- Rplus_le_lt_compat: real.
+Hint Immediate Rplus_lt_le_compat Rplus_le_lt_compat: real.
+
+Lemma Rplus_gt_ge_compat :
+ forall r1 r2 r3 r4, r1 > r2 -> r3 >= r4 -> r1 + r3 > r2 + r4.
+Proof. auto using Rplus_lt_le_compat with rorders. Qed.
+
+Lemma Rplus_ge_gt_compat :
+ forall r1 r2 r3 r4, r1 >= r2 -> r3 > r4 -> r1 + r3 > r2 + r4.
+Proof. auto using Rplus_le_lt_compat with rorders. Qed.
+
+(**********)
+Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2.
+Proof.
+ intros x y; intros; apply Rlt_trans with x;
+ [ assumption
+ | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
+ assumption ].
+Qed.
+
+Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2.
+Proof.
+ intros x y; intros; apply Rle_lt_trans with x;
+ [ assumption
+ | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
+ assumption ].
+Qed.
+
+Lemma Rplus_lt_le_0_compat : forall r1 r2, 0 < r1 -> 0 <= r2 -> 0 < r1 + r2.
+Proof.
+ intros x y; intros; rewrite <- Rplus_comm; apply Rplus_le_lt_0_compat;
+ assumption.
+Qed.
-(** ** Order and Opposite *)
+Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2.
+Proof.
+ intros x y; intros; apply Rle_trans with x;
+ [ assumption
+ | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ assumption ].
+Qed.
(**********)
+Lemma sum_inequa_Rle_lt :
+ forall a x b c y d:R,
+ a <= x -> x < b -> c < y -> y <= d -> a + c < x + y < b + d.
+Proof.
+ intros; split.
+ apply Rlt_le_trans with (a + y); auto with real.
+ apply Rlt_le_trans with (b + y); auto with real.
+Qed.
+
+(** *** Cancellation *)
+
+Lemma Rplus_lt_reg_r : forall r r1 r2, r + r1 < r + r2 -> r1 < r2.
+Proof.
+ intros; cut (- r + r + r1 < - r + r + r2).
+ rewrite Rplus_opp_l.
+ elim (Rplus_ne r1); elim (Rplus_ne r2); intros; rewrite <- H3; rewrite <- H1;
+ auto with zarith real.
+ rewrite Rplus_assoc; rewrite Rplus_assoc;
+ apply (Rplus_lt_compat_l (- r) (r + r1) (r + r2) H).
+Qed.
+
+Lemma Rplus_le_reg_l : forall r r1 r2, r + r1 <= r + r2 -> r1 <= r2.
+Proof.
+ unfold Rle in |- *; intros; elim H; intro.
+ left; apply (Rplus_lt_reg_r r r1 r2 H0).
+ right; apply (Rplus_eq_reg_l r r1 r2 H0).
+Qed.
+
+Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2.
+Proof.
+ unfold Rgt in |- *; intros; apply (Rplus_lt_reg_r r r2 r1 H).
+Qed.
+
+Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2.
+Proof.
+ intros; apply Rle_ge; apply Rplus_le_reg_l with r; auto with real.
+Qed.
+
+(**********)
+Lemma Rplus_le_reg_pos_r :
+ forall r1 r2 r3, 0 <= r2 -> r1 + r2 <= r3 -> r1 <= r3.
+Proof.
+ intros x y z; intros; apply Rle_trans with (x + y);
+ [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ assumption
+ | assumption ].
+Qed.
+
+Lemma Rplus_lt_reg_pos_r : forall r1 r2 r3, 0 <= r2 -> r1 + r2 < r3 -> r1 < r3.
+Proof.
+ intros x y z; intros; apply Rle_lt_trans with (x + y);
+ [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
+ assumption
+ | assumption ].
+Qed.
+
+Lemma Rplus_ge_reg_neg_r :
+ forall r1 r2 r3, 0 >= r2 -> r1 + r2 >= r3 -> r1 >= r3.
+Proof.
+ intros x y z; intros; apply Rge_trans with (x + y);
+ [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l;
+ assumption
+ | assumption ].
+Qed.
+
+Lemma Rplus_gt_reg_neg_r : forall r1 r2 r3, 0 >= r2 -> r1 + r2 > r3 -> r1 > r3.
+Proof.
+ intros x y z; intros; apply Rge_gt_trans with (x + y);
+ [ pattern x at 1; rewrite <- (Rplus_0_r x); apply Rplus_ge_compat_l;
+ assumption
+ | assumption ].
+Qed.
+
+(*********************************************************)
+(** ** Order and opposite *)
+(*********************************************************)
+
+(** *** Contravariant compatibility *)
+
Lemma Ropp_gt_lt_contravar : forall r1 r2, r1 > r2 -> - r1 < - r2.
Proof.
unfold Rgt in |- *; intros.
@@ -781,55 +1036,44 @@ Proof.
Qed.
Hint Resolve Ropp_gt_lt_contravar.
-(**********)
Lemma Ropp_lt_gt_contravar : forall r1 r2, r1 < r2 -> - r1 > - r2.
Proof.
unfold Rgt in |- *; auto with real.
Qed.
Hint Resolve Ropp_lt_gt_contravar: real.
-Lemma Ropp_lt_cancel : forall r1 r2, - r2 < - r1 -> r1 < r2.
-Proof.
- intros x y H'.
- rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
- auto with real.
-Qed.
-Hint Immediate Ropp_lt_cancel: real.
-
+(**********)
Lemma Ropp_lt_contravar : forall r1 r2, r2 < r1 -> - r1 < - r2.
Proof.
auto with real.
Qed.
Hint Resolve Ropp_lt_contravar: real.
+Lemma Ropp_gt_contravar : forall r1 r2, r2 > r1 -> - r1 > - r2.
+Proof. auto with real. Qed.
+
(**********)
Lemma Ropp_le_ge_contravar : forall r1 r2, r1 <= r2 -> - r1 >= - r2.
Proof.
- unfold Rge in |- *; intros r1 r2 [H| H]; auto with real.
+ unfold Rge; intros r1 r2 [H| H]; auto with real.
Qed.
Hint Resolve Ropp_le_ge_contravar: real.
-Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2.
+Lemma Ropp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2.
Proof.
- intros x y H.
- elim H; auto with real.
- intro H1; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
- rewrite H1; auto with real.
+ unfold Rle; intros r1 r2 [H| H]; auto with real.
Qed.
-Hint Immediate Ropp_le_cancel: real.
+Hint Resolve Ropp_ge_le_contravar: real.
+(**********)
Lemma Ropp_le_contravar : forall r1 r2, r2 <= r1 -> - r1 <= - r2.
Proof.
intros r1 r2 H; elim H; auto with real.
Qed.
Hint Resolve Ropp_le_contravar: real.
-(**********)
-Lemma Ropp_ge_le_contravar : forall r1 r2, r1 >= r2 -> - r1 <= - r2.
-Proof.
- unfold Rge in |- *; intros r1 r2 [H| H]; auto with real.
-Qed.
-Hint Resolve Ropp_ge_le_contravar: real.
+Lemma Ropp_ge_contravar : forall r1 r2, r2 >= r1 -> - r1 >= - r2.
+Proof. auto using Ropp_le_contravar with real. Qed.
(**********)
Lemma Ropp_0_lt_gt_contravar : forall r, 0 < r -> 0 > - r.
@@ -838,7 +1082,6 @@ Proof.
Qed.
Hint Resolve Ropp_0_lt_gt_contravar: real.
-(**********)
Lemma Ropp_0_gt_lt_contravar : forall r, 0 > r -> 0 < - r.
Proof.
intros; replace 0 with (-0); auto with real.
@@ -850,13 +1093,13 @@ Lemma Ropp_lt_gt_0_contravar : forall r, r > 0 -> - r < 0.
Proof.
intros; rewrite <- Ropp_0; auto with real.
Qed.
+Hint Resolve Ropp_lt_gt_0_contravar: real.
-(**********)
Lemma Ropp_gt_lt_0_contravar : forall r, r < 0 -> - r > 0.
Proof.
intros; rewrite <- Ropp_0; auto with real.
Qed.
-Hint Resolve Ropp_lt_gt_0_contravar Ropp_gt_lt_0_contravar: real.
+Hint Resolve Ropp_gt_lt_0_contravar: real.
(**********)
Lemma Ropp_0_le_ge_contravar : forall r, 0 <= r -> 0 >= - r.
@@ -865,40 +1108,56 @@ Proof.
Qed.
Hint Resolve Ropp_0_le_ge_contravar: real.
-(**********)
Lemma Ropp_0_ge_le_contravar : forall r, 0 >= r -> 0 <= - r.
Proof.
intros; replace 0 with (-0); auto with real.
Qed.
Hint Resolve Ropp_0_ge_le_contravar: real.
-(** ** Order and multiplication *)
+(** *** Cancellation *)
-Lemma Rmult_lt_compat_r : forall r r1 r2, 0 < r -> r1 < r2 -> r1 * r < r2 * r.
+Lemma Ropp_lt_cancel : forall r1 r2, - r2 < - r1 -> r1 < r2.
Proof.
- intros; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with real.
+ intros x y H'.
+ rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
+ auto with real.
Qed.
-Hint Resolve Rmult_lt_compat_r.
+Hint Immediate Ropp_lt_cancel: real.
-Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
+Lemma Ropp_gt_cancel : forall r1 r2, - r2 > - r1 -> r1 > r2.
+Proof. auto using Ropp_lt_cancel with rorders. Qed.
+
+Lemma Ropp_le_cancel : forall r1 r2, - r2 <= - r1 -> r1 <= r2.
Proof.
- intros z x y H H0.
- case (Rtotal_order x y); intros Eq0; auto; elim Eq0; clear Eq0; intros Eq0.
- rewrite Eq0 in H0; elimtype False; apply (Rlt_irrefl (z * y)); auto.
- generalize (Rmult_lt_compat_l z y x H Eq0); intro; elimtype False;
- generalize (Rlt_trans (z * x) (z * y) (z * x) H0 H1);
- intro; apply (Rlt_irrefl (z * x)); auto.
+ intros x y H.
+ elim H; auto with real.
+ intro H1; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y);
+ rewrite H1; auto with real.
Qed.
+Hint Immediate Ropp_le_cancel: real.
+Lemma Ropp_ge_cancel : forall r1 r2, - r2 >= - r1 -> r1 >= r2.
+Proof. auto using Ropp_le_cancel with rorders. Qed.
-Lemma Rmult_lt_gt_compat_neg_l :
- forall r r1 r2, r < 0 -> r1 < r2 -> r * r1 > r * r2.
+(*********************************************************)
+(** ** Order and multiplication *)
+(*********************************************************)
+
+(** Remark: [Rmult_lt_compat_l] is an axiom *)
+
+(** *** Covariant compatibility *)
+
+Lemma Rmult_lt_compat_r : forall r r1 r2, 0 < r -> r1 < r2 -> r1 * r < r2 * r.
Proof.
- intros; replace r with (- - r); auto with real.
- rewrite (Ropp_mult_distr_l_reverse (- r));
- rewrite (Ropp_mult_distr_l_reverse (- r)).
- apply Ropp_lt_gt_contravar; auto with real.
+ intros; rewrite (Rmult_comm r1 r); rewrite (Rmult_comm r2 r); auto with real.
Qed.
+Hint Resolve Rmult_lt_compat_r.
+
+Lemma Rmult_gt_compat_r : forall r r1 r2, r > 0 -> r1 > r2 -> r1 * r > r2 * r.
+Proof. eauto using Rmult_lt_compat_r with rorders. Qed.
+
+Lemma Rmult_gt_compat_l : forall r r1 r2, r > 0 -> r1 > r2 -> r * r1 > r * r2.
+Proof. eauto using Rmult_lt_compat_l with rorders. Qed.
(**********)
Lemma Rmult_le_compat_l :
@@ -918,18 +1177,59 @@ Proof.
Qed.
Hint Resolve Rmult_le_compat_r: real.
-Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2.
+Lemma Rmult_ge_compat_l :
+ forall r r1 r2, r >= 0 -> r1 >= r2 -> r * r1 >= r * r2.
+Proof. eauto using Rmult_le_compat_l with rorders. Qed.
+
+Lemma Rmult_ge_compat_r :
+ forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r.
+Proof. eauto using Rmult_le_compat_r with rorders. Qed.
+
+(**********)
+Lemma Rmult_le_compat :
+ forall r1 r2 r3 r4,
+ 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
Proof.
- intros z x y H H0; case H0; auto with real.
- intros H1; apply Rlt_le.
- apply Rmult_lt_reg_l with (r := z); auto.
- intros H1; replace x with (/ z * (z * x)); auto with real.
- replace y with (/ z * (z * y)).
- rewrite H1; auto with real.
- rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
- rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
+ intros x y z t H' H'0 H'1 H'2.
+ apply Rle_trans with (r2 := x * t); auto with real.
+ repeat rewrite (fun x => Rmult_comm x t).
+ apply Rmult_le_compat_l; auto.
+ apply Rle_trans with z; auto.
+Qed.
+Hint Resolve Rmult_le_compat: real.
+
+Lemma Rmult_ge_compat :
+ forall r1 r2 r3 r4,
+ 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
+Proof. auto with real rorders. Qed.
+
+Lemma Rmult_gt_0_lt_compat :
+ forall r1 r2 r3 r4,
+ r3 > 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
+Proof.
+ intros; apply Rlt_trans with (r2 * r3); auto with real.
+Qed.
+
+(*********)
+Lemma Rmult_le_0_lt_compat :
+ forall r1 r2 r3 r4,
+ 0 <= r1 -> 0 <= r3 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
+Proof.
+ intros; apply Rle_lt_trans with (r2 * r3);
+ [ apply Rmult_le_compat_r; [ assumption | left; assumption ]
+ | apply Rmult_lt_compat_l;
+ [ apply Rle_lt_trans with r1; assumption | assumption ] ].
Qed.
+(*********)
+Lemma Rmult_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 * r2.
+Proof. intros; replace 0 with (0 * r2); auto with real. Qed.
+
+Lemma Rmult_gt_0_compat : forall r1 r2, r1 > 0 -> r2 > 0 -> r1 * r2 > 0.
+Proof Rmult_lt_0_compat.
+
+(** *** Contravariant compatibility *)
+
Lemma Rmult_le_compat_neg_l :
forall r r1 r2, r <= 0 -> r1 <= r2 -> r * r2 <= r * r1.
Proof.
@@ -946,35 +1246,45 @@ Proof.
Qed.
Hint Resolve Rmult_le_ge_compat_neg_l: real.
-Lemma Rmult_le_compat :
- forall r1 r2 r3 r4,
- 0 <= r1 -> 0 <= r3 -> r1 <= r2 -> r3 <= r4 -> r1 * r3 <= r2 * r4.
+Lemma Rmult_lt_gt_compat_neg_l :
+ forall r r1 r2, r < 0 -> r1 < r2 -> r * r1 > r * r2.
Proof.
- intros x y z t H' H'0 H'1 H'2.
- apply Rle_trans with (r2 := x * t); auto with real.
- repeat rewrite (fun x => Rmult_comm x t).
- apply Rmult_le_compat_l; auto.
- apply Rle_trans with z; auto.
+ intros; replace r with (- - r); auto with real.
+ rewrite (Ropp_mult_distr_l_reverse (- r));
+ rewrite (Ropp_mult_distr_l_reverse (- r)).
+ apply Ropp_lt_gt_contravar; auto with real.
Qed.
-Hint Resolve Rmult_le_compat: real.
-Lemma Rmult_gt_0_lt_compat :
- forall r1 r2 r3 r4,
- r3 > 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
+(** *** Cancellation *)
+
+Lemma Rmult_lt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
Proof.
- intros; apply Rlt_trans with (r2 * r3); auto with real.
+ intros z x y H H0.
+ case (Rtotal_order x y); intros Eq0; auto; elim Eq0; clear Eq0; intros Eq0.
+ rewrite Eq0 in H0; elimtype False; apply (Rlt_irrefl (z * y)); auto.
+ generalize (Rmult_lt_compat_l z y x H Eq0); intro; elimtype False;
+ generalize (Rlt_trans (z * x) (z * y) (z * x) H0 H1);
+ intro; apply (Rlt_irrefl (z * x)); auto.
Qed.
-(*********)
-Lemma Rmult_ge_0_gt_0_lt_compat :
- forall r1 r2 r3 r4,
- r3 >= 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
+Lemma Rmult_gt_reg_l : forall r r1 r2, 0 < r -> r * r1 < r * r2 -> r1 < r2.
+Proof. eauto using Rmult_lt_reg_l with rorders. Qed.
+
+Lemma Rmult_le_reg_l : forall r r1 r2, 0 < r -> r * r1 <= r * r2 -> r1 <= r2.
Proof.
- intros; apply Rle_lt_trans with (r2 * r3); auto with real.
+ intros z x y H H0; case H0; auto with real.
+ intros H1; apply Rlt_le.
+ apply Rmult_lt_reg_l with (r := z); auto.
+ intros H1; replace x with (/ z * (z * x)); auto with real.
+ replace y with (/ z * (z * y)).
+ rewrite H1; auto with real.
+ rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
+ rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real.
Qed.
-
-(** ** Order and Substractions *)
+(*********************************************************)
+(** ** Order and substraction *)
+(*********************************************************)
Lemma Rlt_minus : forall r1 r2, r1 < r2 -> r1 - r2 < 0.
Proof.
@@ -985,12 +1295,27 @@ Proof.
Qed.
Hint Resolve Rlt_minus: real.
+Lemma Rgt_minus : forall r1 r2, r1 > r2 -> r1 - r2 > 0.
+Proof.
+ intros; apply (Rplus_lt_reg_r r2).
+ replace (r2 + (r1 - r2)) with r1.
+ replace (r2 + 0) with r2; auto with real.
+ ring.
+Qed.
+
(**********)
Lemma Rle_minus : forall r1 r2, r1 <= r2 -> r1 - r2 <= 0.
Proof.
destruct 1; unfold Rle in |- *; auto with real.
Qed.
+Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0.
+Proof.
+ destruct 1.
+ auto using Rgt_minus, Rgt_ge.
+ right; auto using Rminus_diag_eq with rorders.
+Qed.
+
(**********)
Lemma Rminus_lt : forall r1 r2, r1 - r2 < 0 -> r1 < r2.
Proof.
@@ -999,6 +1324,14 @@ Proof.
ring.
Qed.
+Lemma Rminus_gt : forall r1 r2, r1 - r2 > 0 -> r1 > r2.
+Proof.
+ intros; replace r2 with (0 + r2); auto with real.
+ replace r1 with (r1 - r2 + r2).
+ apply Rplus_gt_compat_r; assumption.
+ ring.
+Qed.
+
(**********)
Lemma Rminus_le : forall r1 r2, r1 - r2 <= 0 -> r1 <= r2.
Proof.
@@ -1007,6 +1340,14 @@ Proof.
ring.
Qed.
+Lemma Rminus_ge : forall r1 r2, r1 - r2 >= 0 -> r1 >= r2.
+Proof.
+ intros; replace r2 with (0 + r2); auto with real.
+ replace r1 with (r1 - r2 + r2).
+ apply Rplus_ge_compat_r; assumption.
+ ring.
+Qed.
+
(**********)
Lemma tech_Rplus : forall r (s:R), 0 <= r -> 0 < s -> r + s <> 0.
Proof.
@@ -1015,8 +1356,9 @@ Proof.
Qed.
Hint Immediate tech_Rplus: real.
-
-(** ** Order and the square function *)
+(*********************************************************)
+(** ** Order and square function *)
+(*********************************************************)
Lemma Rle_0_sqr : forall r, 0 <= Rsqr r.
Proof.
@@ -1036,7 +1378,26 @@ Proof.
Qed.
Hint Resolve Rle_0_sqr Rlt_0_sqr: real.
-(** ** Zero is less than one *)
+(***********)
+Lemma Rplus_sqr_eq_0_l : forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0.
+Proof.
+ intros a b; intros; apply Rsqr_0_uniq; apply Rplus_eq_0_l with (Rsqr b);
+ auto with real.
+Qed.
+
+Lemma Rplus_sqr_eq_0 :
+ forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0 /\ r2 = 0.
+Proof.
+ intros a b; split.
+ apply Rplus_sqr_eq_0_l with b; auto with real.
+ apply Rplus_sqr_eq_0_l with a; auto with real.
+ rewrite Rplus_comm; auto with real.
+Qed.
+
+(*********************************************************)
+(** ** Zero is less than one *)
+(*********************************************************)
+
Lemma Rlt_0_1 : 0 < 1.
Proof.
replace 1 with (Rsqr 1); auto with real.
@@ -1050,7 +1411,10 @@ Proof.
exact Rlt_0_1.
Qed.
-(** ** Order and inverse *)
+(*********************************************************)
+(** ** Order and inverse *)
+(*********************************************************)
+
Lemma Rinv_0_lt_compat : forall r, 0 < r -> 0 < / r.
Proof.
intros; apply Rnot_le_lt; red in |- *; intros.
@@ -1099,68 +1463,9 @@ Proof.
Qed.
Hint Resolve Rinv_1_lt_contravar: real.
-(********************************************************)
-(** * Greater *)
-(********************************************************)
-
-(**********)
-Lemma Rge_antisym : forall r1 r2, r1 >= r2 -> r2 >= r1 -> r1 = r2.
-Proof.
- intros; apply Rle_antisym; auto with real.
-Qed.
-
-(**********)
-Lemma Rnot_lt_ge : forall r1 r2, ~ r1 < r2 -> r1 >= r2.
-Proof.
- intros; unfold Rge in |- *; elim (Rtotal_order r1 r2); intro.
- absurd (r1 < r2); trivial.
- case H0; auto.
-Qed.
-
-(**********)
-Lemma Rnot_lt_le : forall r1 r2, ~ r1 < r2 -> r2 <= r1.
-Proof.
- intros; apply Rge_le; apply Rnot_lt_ge; assumption.
-Qed.
-
-(**********)
-Lemma Rnot_gt_le : forall r1 r2, ~ r1 > r2 -> r1 <= r2.
-Proof.
- intros r1 r2 H; apply Rge_le.
- exact (Rnot_lt_ge r2 r1 H).
-Qed.
-
-(**********)
-Lemma Rgt_ge : forall r1 r2, r1 > r2 -> r1 >= r2.
-Proof.
- red in |- *; auto with real.
-Qed.
-
-
-(**********)
-Lemma Rge_gt_trans : forall r1 r2 r3, r1 >= r2 -> r2 > r3 -> r1 > r3.
-Proof.
- unfold Rgt in |- *; intros; apply Rlt_le_trans with r2; auto with real.
-Qed.
-
-(**********)
-Lemma Rgt_ge_trans : forall r1 r2 r3, r1 > r2 -> r2 >= r3 -> r1 > r3.
-Proof.
- unfold Rgt in |- *; intros; apply Rle_lt_trans with r2; auto with real.
-Qed.
-
-(**********)
-Lemma Rgt_trans : forall r1 r2 r3, r1 > r2 -> r2 > r3 -> r1 > r3.
-Proof.
- unfold Rgt in |- *; intros; apply Rlt_trans with r2; auto with real.
-Qed.
-
-(**********)
-Lemma Rge_trans : forall r1 r2 r3, r1 >= r2 -> r2 >= r3 -> r1 >= r3.
-Proof.
- intros; apply Rle_ge.
- apply Rle_trans with r2; auto with real.
-Qed.
+(*********************************************************)
+(** ** Miscellaneous *)
+(*********************************************************)
(**********)
Lemma Rle_lt_0_plus_1 : forall r, 0 <= r -> 0 < r + 1.
@@ -1186,121 +1491,9 @@ Proof.
pattern r1 at 2 in |- *; replace r1 with (r1 + 0); auto with real.
Qed.
-(***********)
-Lemma Rplus_gt_compat_l : forall r r1 r2, r1 > r2 -> r + r1 > r + r2.
-Proof.
- unfold Rgt in |- *; auto with real.
-Qed.
-Hint Resolve Rplus_gt_compat_l: real.
-
-(***********)
-Lemma Rplus_gt_reg_l : forall r r1 r2, r + r1 > r + r2 -> r1 > r2.
-Proof.
- unfold Rgt in |- *; intros; apply (Rplus_lt_reg_r r r2 r1 H).
-Qed.
-
-(***********)
-Lemma Rplus_ge_compat_l : forall r r1 r2, r1 >= r2 -> r + r1 >= r + r2.
-Proof.
- intros; apply Rle_ge; auto with real.
-Qed.
-Hint Resolve Rplus_ge_compat_l: real.
-
-(***********)
-Lemma Rplus_ge_reg_l : forall r r1 r2, r + r1 >= r + r2 -> r1 >= r2.
-Proof.
- intros; apply Rle_ge; apply Rplus_le_reg_l with r; auto with real.
-Qed.
-
-(***********)
-Lemma Rmult_ge_compat_r :
- forall r r1 r2, r >= 0 -> r1 >= r2 -> r1 * r >= r2 * r.
-Proof.
- intros; apply Rle_ge; apply Rmult_le_compat_r; apply Rge_le; assumption.
-Qed.
-
-(***********)
-Lemma Rgt_minus : forall r1 r2, r1 > r2 -> r1 - r2 > 0.
-Proof.
- intros; replace 0 with (r2 - r2); auto with real.
- unfold Rgt, Rminus in |- *; auto with real.
-Qed.
-
-(*********)
-Lemma minus_Rgt : forall r1 r2, r1 - r2 > 0 -> r1 > r2.
-Proof.
- intros; replace r2 with (r2 + 0); auto with real.
- intros; replace r1 with (r2 + (r1 - r2)); auto with real.
-Qed.
-
-(**********)
-Lemma Rge_minus : forall r1 r2, r1 >= r2 -> r1 - r2 >= 0.
-Proof.
- unfold Rge in |- *; intros; elim H; intro.
- left; apply (Rgt_minus r1 r2 H0).
- right; apply (Rminus_diag_eq r1 r2 H0).
-Qed.
-
-(*********)
-Lemma minus_Rge : forall r1 r2, r1 - r2 >= 0 -> r1 >= r2.
-Proof.
- intros; replace r2 with (r2 + 0); auto with real.
- intros; replace r1 with (r2 + (r1 - r2)); auto with real.
-Qed.
-
-
-(*********)
-Lemma Rmult_gt_0_compat : forall r1 r2, r1 > 0 -> r2 > 0 -> r1 * r2 > 0.
-Proof.
- unfold Rgt in |- *; intros.
- replace 0 with (0 * r2); auto with real.
-Qed.
-
-(*********)
-Lemma Rmult_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 * r2.
-Proof Rmult_gt_0_compat.
-
-(***********)
-Lemma Rplus_eq_0_l :
- forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0.
-Proof.
- intros a b [H| H] H0 H1; auto with real.
- absurd (0 < a + b).
- rewrite H1; auto with real.
- replace 0 with (0 + 0); auto with real.
-Qed.
-
-
-Lemma Rplus_eq_R0 :
- forall r1 r2, 0 <= r1 -> 0 <= r2 -> r1 + r2 = 0 -> r1 = 0 /\ r2 = 0.
-Proof.
- intros a b; split.
- apply Rplus_eq_0_l with b; auto with real.
- apply Rplus_eq_0_l with a; auto with real.
- rewrite Rplus_comm; auto with real.
-Qed.
-
-
-(***********)
-Lemma Rplus_sqr_eq_0_l : forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0.
-Proof.
- intros a b; intros; apply Rsqr_0_uniq; apply Rplus_eq_0_l with (Rsqr b);
- auto with real.
-Qed.
-
-Lemma Rplus_sqr_eq_0 :
- forall r1 r2, Rsqr r1 + Rsqr r2 = 0 -> r1 = 0 /\ r2 = 0.
-Proof.
- intros a b; split.
- apply Rplus_sqr_eq_0_l with b; auto with real.
- apply Rplus_sqr_eq_0_l with a; auto with real.
- rewrite Rplus_comm; auto with real.
-Qed.
-
-
-(**********************************************************)
-(** * Injection from [N] to [R] *)
-(**********************************************************)
+(*********************************************************)
+(** ** Injection from [N] to [R] *)
+(*********************************************************)
(**********)
Lemma S_INR : forall n:nat, INR (S n) = INR n + 1.
@@ -1323,6 +1516,7 @@ Proof.
repeat rewrite S_INR.
rewrite Hrecn; ring.
Qed.
+Hint Resolve plus_INR: real.
(**********)
Lemma minus_INR : forall n m:nat, (m <= n)%nat -> INR (n - m) = INR n - INR m.
@@ -1332,6 +1526,7 @@ Proof.
intros; repeat rewrite S_INR; simpl in |- *.
rewrite H0; ring.
Qed.
+Hint Resolve minus_INR: real.
(*********)
Lemma mult_INR : forall n m:nat, INR (n * m) = INR n * INR m.
@@ -1341,16 +1536,15 @@ Proof.
intros; repeat rewrite S_INR; simpl in |- *.
rewrite plus_INR; rewrite Hrecn; ring.
Qed.
-
-Hint Resolve plus_INR minus_INR mult_INR: real.
+Hint Resolve mult_INR: real.
(*********)
-Lemma lt_INR_0 : forall n:nat, (0 < n)%nat -> 0 < INR n.
+Lemma lt_0_INR : forall n:nat, (0 < n)%nat -> 0 < INR n.
Proof.
simple induction 1; intros; auto with real.
rewrite S_INR; auto with real.
Qed.
-Hint Resolve lt_INR_0: real.
+Hint Resolve lt_0_INR: real.
Lemma lt_INR : forall n m:nat, (n < m)%nat -> INR n < INR m.
Proof.
@@ -1360,20 +1554,20 @@ Proof.
Qed.
Hint Resolve lt_INR: real.
-Lemma INR_lt_1 : forall n:nat, (1 < n)%nat -> 1 < INR n.
+Lemma lt_1_INR : forall n:nat, (1 < n)%nat -> 1 < INR n.
Proof.
intros; replace 1 with (INR 1); auto with real.
Qed.
-Hint Resolve INR_lt_1: real.
+Hint Resolve lt_1_INR: real.
(**********)
-Lemma INR_pos : forall p:positive, 0 < INR (nat_of_P p).
+Lemma pos_INR_nat_of_P : forall p:positive, 0 < INR (nat_of_P p).
Proof.
- intro; apply lt_INR_0.
+ intro; apply lt_0_INR.
simpl in |- *; auto with real.
apply lt_O_nat_of_P.
Qed.
-Hint Resolve INR_pos: real.
+Hint Resolve pos_INR_nat_of_P: real.
(**********)
Lemma pos_INR : forall n:nat, 0 <= INR n.
@@ -1410,25 +1604,25 @@ Qed.
Hint Resolve le_INR: real.
(**********)
-Lemma not_INR_O : forall n:nat, INR n <> 0 -> n <> 0%nat.
+Lemma INR_not_0 : forall n:nat, INR n <> 0 -> n <> 0%nat.
Proof.
red in |- *; intros n H H1.
apply H.
rewrite H1; trivial.
Qed.
-Hint Immediate not_INR_O: real.
+Hint Immediate INR_not_0: real.
(**********)
-Lemma not_O_INR : forall n:nat, n <> 0%nat -> INR n <> 0.
+Lemma not_0_INR : forall n:nat, n <> 0%nat -> INR n <> 0.
Proof.
intro n; case n.
intro; absurd (0%nat = 0%nat); trivial.
intros; rewrite S_INR.
apply Rgt_not_eq; red in |- *; auto with real.
Qed.
-Hint Resolve not_O_INR: real.
+Hint Resolve not_0_INR: real.
-Lemma not_nm_INR : forall n m:nat, n <> m -> INR n <> INR m.
+Lemma not_INR : forall n m:nat, n <> m -> INR n <> INR m.
Proof.
intros n m H; case (le_or_lt n m); intros H1.
case (le_lt_or_eq _ _ H1); intros H2.
@@ -1436,17 +1630,17 @@ Proof.
elimtype False; auto.
apply sym_not_eq; apply Rlt_dichotomy_converse; auto with real.
Qed.
-Hint Resolve not_nm_INR: real.
+Hint Resolve not_INR: real.
Lemma INR_eq : forall n m:nat, INR n = INR m -> n = m.
Proof.
intros; case (le_or_lt n m); intros H1.
case (le_lt_or_eq _ _ H1); intros H2; auto.
cut (n <> m).
- intro H3; generalize (not_nm_INR n m H3); intro H4; elimtype False; auto.
+ intro H3; generalize (not_INR n m H3); intro H4; elimtype False; auto.
omega.
symmetry in |- *; cut (m <> n).
- intro H3; generalize (not_nm_INR m n H3); intro H4; elimtype False; auto.
+ intro H3; generalize (not_INR m n H3); intro H4; elimtype False; auto.
omega.
Qed.
Hint Resolve INR_eq: real.
@@ -1465,9 +1659,9 @@ Proof.
Qed.
Hint Resolve not_1_INR: real.
-(**********************************************************)
-(** * Injection from [Z] to [R] *)
-(**********************************************************)
+(*********************************************************)
+(** ** Injection from [Z] to [R] *)
+(*********************************************************)
(**********)
@@ -1541,6 +1735,12 @@ Proof.
Qed.
(**********)
+Lemma succ_IZR : forall n:Z, IZR (Zsucc n) = IZR n + 1.
+Proof.
+ intro; change 1 with (IZR 1); unfold Zsucc; apply plus_IZR.
+Qed.
+
+(**********)
Lemma Ropp_Ropp_IZR : forall n:Z, IZR (- n) = - IZR n.
Proof.
intro z; case z; simpl in |- *; auto with real.
@@ -1554,7 +1754,7 @@ Proof.
Qed.
(**********)
-Lemma lt_O_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
+Lemma lt_0_IZR : forall n:Z, 0 < IZR n -> (0 < n)%Z.
Proof.
intro z; case z; simpl in |- *; intros.
absurd (0 < 0); auto with real.
@@ -1567,7 +1767,7 @@ Qed.
Lemma lt_IZR : forall n m:Z, IZR n < IZR m -> (n < m)%Z.
Proof.
intros z1 z2 H; apply Zlt_0_minus_lt.
- apply lt_O_IZR.
+ apply lt_0_IZR.
rewrite <- Z_R_minus.
exact (Rgt_minus (IZR z2) (IZR z1) H).
Qed.
@@ -1578,7 +1778,7 @@ Proof.
intro z; destruct z; simpl in |- *; intros; auto with zarith.
case (Rlt_not_eq 0 (INR (nat_of_P p))); auto with real.
case (Rlt_not_eq (- INR (nat_of_P p)) 0); auto with real.
- apply Ropp_lt_gt_0_contravar. unfold Rgt in |- *; apply INR_pos.
+ apply Ropp_lt_gt_0_contravar. unfold Rgt in |- *; apply pos_INR_nat_of_P.
Qed.
(**********)
@@ -1590,17 +1790,17 @@ Proof.
Qed.
(**********)
-Lemma not_O_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0.
+Lemma not_0_IZR : forall n:Z, n <> 0%Z -> IZR n <> 0.
Proof.
intros z H; red in |- *; intros H0; case H.
apply eq_IZR; auto.
Qed.
(*********)
-Lemma le_O_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z.
+Lemma le_0_IZR : forall n:Z, 0 <= IZR n -> (0 <= n)%Z.
Proof.
unfold Rle in |- *; intros z [H| H].
- red in |- *; intro; apply (Zlt_le_weak 0 z (lt_O_IZR z H)); assumption.
+ red in |- *; intro; apply (Zlt_le_weak 0 z (lt_0_IZR z H)); assumption.
rewrite (eq_IZR_R0 z); auto with zarith real.
Qed.
@@ -1685,32 +1885,6 @@ Proof.
apply H3; apply single_z_r_R1 with r; trivial.
Qed.
-(*****************************************************************)
-(** * Definitions of new types *)
-(*****************************************************************)
-
-Record nonnegreal : Type := mknonnegreal
- {nonneg :> R; cond_nonneg : 0 <= nonneg}.
-
-Record posreal : Type := mkposreal {pos :> R; cond_pos : 0 < pos}.
-
-Record nonposreal : Type := mknonposreal
- {nonpos :> R; cond_nonpos : nonpos <= 0}.
-
-Record negreal : Type := mknegreal {neg :> R; cond_neg : neg < 0}.
-
-Record nonzeroreal : Type := mknonzeroreal
- {nonzero :> R; cond_nonzero : nonzero <> 0}.
-
-(**********)
-Lemma prod_neq_R0 : forall r1 r2, r1 <> 0 -> r2 <> 0 -> r1 * r2 <> 0.
-Proof.
- intros x y; intros; red in |- *; intro; generalize (Rmult_integral x y H1);
- intro; elim H2; intro;
- [ rewrite H3 in H; elim H | rewrite H3 in H0; elim H0 ];
- reflexivity.
-Qed.
-
(*********)
Lemma Rmult_le_pos : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 * r2.
Proof.
@@ -1728,67 +1902,18 @@ Proof.
intro; rewrite <- double; unfold Rdiv in |- *; rewrite <- Rmult_assoc;
symmetry in |- *; apply Rinv_r_simpl_m.
replace 2 with (INR 2);
- [ apply not_O_INR; discriminate | unfold INR in |- *; ring ].
-Qed.
-
-(**********************************************************)
-(** * Other rules about < and <= *)
-(**********************************************************)
-
-Lemma Rplus_lt_0_compat : forall r1 r2, 0 < r1 -> 0 < r2 -> 0 < r1 + r2.
-Proof.
- intros x y; intros; apply Rlt_trans with x;
- [ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
- assumption ].
-Qed.
-
-Lemma Rplus_le_lt_0_compat : forall r1 r2, 0 <= r1 -> 0 < r2 -> 0 < r1 + r2.
-Proof.
- intros x y; intros; apply Rle_lt_trans with x;
- [ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_lt_compat_l;
- assumption ].
-Qed.
-
-Lemma Rplus_lt_le_0_compat : forall r1 r2, 0 < r1 -> 0 <= r2 -> 0 < r1 + r2.
-Proof.
- intros x y; intros; rewrite <- Rplus_comm; apply Rplus_le_lt_0_compat;
- assumption.
-Qed.
-
-Lemma Rplus_le_le_0_compat : forall r1 r2, 0 <= r1 -> 0 <= r2 -> 0 <= r1 + r2.
-Proof.
- intros x y; intros; apply Rle_trans with x;
- [ assumption
- | pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
- assumption ].
-Qed.
-
-Lemma plus_le_is_le : forall r1 r2 r3, 0 <= r2 -> r1 + r2 <= r3 -> r1 <= r3.
-Proof.
- intros x y z; intros; apply Rle_trans with (x + y);
- [ pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
- assumption
- | assumption ].
+ [ apply not_0_INR; discriminate | unfold INR in |- *; ring ].
Qed.
-Lemma plus_lt_is_lt : forall r1 r2 r3, 0 <= r2 -> r1 + r2 < r3 -> r1 < r3.
-Proof.
- intros x y z; intros; apply Rle_lt_trans with (x + y);
- [ pattern x at 1 in |- *; rewrite <- (Rplus_0_r x); apply Rplus_le_compat_l;
- assumption
- | assumption ].
-Qed.
+(*********************************************************)
+(** ** Other rules about < and <= *)
+(*********************************************************)
-Lemma Rmult_le_0_lt_compat :
+Lemma Rmult_ge_0_gt_0_lt_compat :
forall r1 r2 r3 r4,
- 0 <= r1 -> 0 <= r3 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
+ r3 >= 0 -> r2 > 0 -> r1 < r2 -> r3 < r4 -> r1 * r3 < r2 * r4.
Proof.
- intros; apply Rle_lt_trans with (r2 * r3);
- [ apply Rmult_le_compat_r; [ assumption | left; assumption ]
- | apply Rmult_lt_compat_l;
- [ apply Rle_lt_trans with r1; assumption | assumption ] ].
+ intros; apply Rle_lt_trans with (r2 * r3); auto with real.
Qed.
Lemma le_epsilon :
@@ -1811,7 +1936,7 @@ Proof.
rewrite Rmult_1_r; replace (2 * x) with (x + x).
rewrite (Rplus_comm y); intro H5; apply Rplus_le_reg_l with x; assumption.
ring.
- replace 2 with (INR 2); [ apply not_O_INR; discriminate | reflexivity ].
+ replace 2 with (INR 2); [ apply not_0_INR; discriminate | reflexivity ].
pattern y at 2 in |- *; replace y with (y / 2 + y / 2).
unfold Rminus, Rdiv in |- *.
repeat rewrite Rmult_plus_distr_r.
@@ -1822,12 +1947,12 @@ Proof.
unfold Rdiv in |- *.
rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
replace 2 with (INR 2).
- apply not_O_INR.
+ apply not_0_INR.
discriminate.
unfold INR in |- *; reflexivity.
intro; ring.
cut (0%nat <> 2%nat);
- [ intro H0; generalize (lt_INR_0 2 (neq_O_lt 2 H0)); unfold INR in |- *;
+ [ intro H0; generalize (lt_0_INR 2 (neq_O_lt 2 H0)); unfold INR in |- *;
intro; assumption
| discriminate ].
Qed.
@@ -1839,3 +1964,37 @@ Lemma completeness_weak :
Proof.
intros; elim (completeness E H H0); intros; split with x; assumption.
Qed.
+
+(*********************************************************)
+(** * Definitions of new types *)
+(*********************************************************)
+
+Record nonnegreal : Type := mknonnegreal
+ {nonneg :> R; cond_nonneg : 0 <= nonneg}.
+
+Record posreal : Type := mkposreal {pos :> R; cond_pos : 0 < pos}.
+
+Record nonposreal : Type := mknonposreal
+ {nonpos :> R; cond_nonpos : nonpos <= 0}.
+
+Record negreal : Type := mknegreal {neg :> R; cond_neg : neg < 0}.
+
+Record nonzeroreal : Type := mknonzeroreal
+ {nonzero :> R; cond_nonzero : nonzero <> 0}.
+
+(** Compatibility *)
+
+Notation prod_neq_R0 := Rmult_integral_contrapositive_currified (only parsing).
+Notation minus_Rgt := Rminus_gt (only parsing).
+Notation minus_Rge := Rminus_ge (only parsing).
+Notation plus_le_is_le := Rplus_le_reg_pos_r (only parsing).
+Notation plus_lt_is_lt := Rplus_lt_reg_pos_r (only parsing).
+Notation INR_lt_1 := lt_1_INR (only parsing).
+Notation lt_INR_0 := lt_0_INR (only parsing).
+Notation not_nm_INR := not_INR (only parsing).
+Notation INR_pos := pos_INR_nat_of_P (only parsing).
+Notation not_INR_O := INR_not_0 (only parsing).
+Notation not_O_INR := not_0_INR (only parsing).
+Notation not_O_IZR := not_0_IZR (only parsing).
+Notation le_O_IZR := le_0_IZR (only parsing).
+Notation lt_O_IZR := lt_0_IZR (only parsing).
diff --git a/theories/Reals/R_sqr.v b/theories/Reals/R_sqr.v
index 270ea6da..17b6c60d 100644
--- a/theories/Reals/R_sqr.v
+++ b/theories/Reals/R_sqr.v
@@ -6,10 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: R_sqr.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: R_sqr.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
-Require Import Rbasic_fun. Open Local Scope R_scope.
+Require Import Rbasic_fun.
+Open Local Scope R_scope.
(****************************************************)
(** Rsqr : some results *)
diff --git a/theories/Reals/R_sqrt.v b/theories/Reals/R_sqrt.v
index 736365a0..63b8940b 100644
--- a/theories/Reals/R_sqrt.v
+++ b/theories/Reals/R_sqrt.v
@@ -6,11 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: R_sqrt.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: R_sqrt.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
-Require Import Rsqrt_def. Open Local Scope R_scope.
+Require Import Rsqrt_def.
+Open Local Scope R_scope.
(** * Continuous extension of Rsqrt on R *)
Definition sqrt (x:R) : R :=
diff --git a/theories/Reals/Ranalysis.v b/theories/Reals/Ranalysis.v
index d712f74b..f48ce563 100644
--- a/theories/Reals/Ranalysis.v
+++ b/theories/Reals/Ranalysis.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis.v 9319 2006-10-30 12:41:21Z barras $ i*)
+(*i $Id: Ranalysis.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -27,7 +27,8 @@ Require Export Rgeom.
Require Export RList.
Require Export Sqrt_reg.
Require Export Ranalysis4.
-Require Export Rpower. Open Local Scope R_scope.
+Require Export Rpower.
+Open Local Scope R_scope.
Axiom AppVar : R.
diff --git a/theories/Reals/Ranalysis1.v b/theories/Reals/Ranalysis1.v
index 93a66e70..9414f7c9 100644
--- a/theories/Reals/Ranalysis1.v
+++ b/theories/Reals/Ranalysis1.v
@@ -6,12 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis1.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Ranalysis1.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Export Rlimit.
-Require Export Rderiv. Open Local Scope R_scope.
+Require Export Rderiv.
+Open Local Scope R_scope.
Implicit Type f : R -> R.
(****************************************************)
@@ -269,10 +270,10 @@ Definition derivable_pt_lim f (x l:R) : Prop :=
Definition derivable_pt_abs f (x l:R) : Prop := derivable_pt_lim f x l.
-Definition derivable_pt f (x:R) := sigT (derivable_pt_abs f x).
+Definition derivable_pt f (x:R) := { l:R | derivable_pt_abs f x l }.
Definition derivable f := forall x:R, derivable_pt f x.
-Definition derive_pt f (x:R) (pr:derivable_pt f x) := projT1 pr.
+Definition derive_pt f (x:R) (pr:derivable_pt f x) := proj1_sig pr.
Definition derive f (pr:derivable f) (x:R) := derive_pt f x (pr x).
Arguments Scope derivable_pt_lim [Rfun_scope R_scope].
@@ -380,9 +381,9 @@ Lemma derive_pt_eq :
derive_pt f x pr = l <-> derivable_pt_lim f x l.
Proof.
intros; split.
- intro; assert (H1 := projT2 pr); unfold derive_pt in H; rewrite H in H1;
+ intro; assert (H1 := proj2_sig pr); unfold derive_pt in H; rewrite H in H1;
assumption.
- intro; assert (H1 := projT2 pr); unfold derivable_pt_abs in H1.
+ intro; assert (H1 := proj2_sig pr); unfold derivable_pt_abs in H1.
assert (H2 := uniqueness_limite _ _ _ _ H H1).
unfold derive_pt in |- *; unfold derivable_pt_abs in |- *.
symmetry in |- *; assumption.
@@ -486,7 +487,7 @@ Qed.
Lemma derivable_derive :
forall f (x:R) (pr:derivable_pt f x), exists l : R, derive_pt f x pr = l.
Proof.
- intros; exists (projT1 pr).
+ intros; exists (proj1_sig pr).
unfold derive_pt in |- *; reflexivity.
Qed.
@@ -714,7 +715,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 + x1).
+ exists (x0 + x1).
apply derivable_pt_lim_plus; assumption.
Qed.
@@ -723,7 +724,7 @@ Lemma derivable_pt_opp :
Proof.
unfold derivable_pt in |- *; intros f x X.
elim X; intros.
- apply existT with (- x0).
+ exists (- x0).
apply derivable_pt_lim_opp; assumption.
Qed.
@@ -734,7 +735,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 - x1).
+ exists (x0 - x1).
apply derivable_pt_lim_minus; assumption.
Qed.
@@ -745,14 +746,14 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x0 * f2 x + f1 x * x1).
+ exists (x0 * f2 x + f1 x * x1).
apply derivable_pt_lim_mult; assumption.
Qed.
Lemma derivable_pt_const : forall a x:R, derivable_pt (fct_cte a) x.
Proof.
intros; unfold derivable_pt in |- *.
- apply existT with 0.
+ exists 0.
apply derivable_pt_lim_const.
Qed.
@@ -761,7 +762,7 @@ Lemma derivable_pt_scal :
Proof.
unfold derivable_pt in |- *; intros f1 a x X.
elim X; intros.
- apply existT with (a * x0).
+ exists (a * x0).
apply derivable_pt_lim_scal; assumption.
Qed.
@@ -774,7 +775,7 @@ Qed.
Lemma derivable_pt_Rsqr : forall x:R, derivable_pt Rsqr x.
Proof.
- unfold derivable_pt in |- *; intro; apply existT with (2 * x).
+ unfold derivable_pt in |- *; intro; exists (2 * x).
apply derivable_pt_lim_Rsqr.
Qed.
@@ -785,7 +786,7 @@ Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
- apply existT with (x1 * x0).
+ exists (x1 * x0).
apply derivable_pt_lim_comp; assumption.
Qed.
@@ -860,9 +861,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_plus; assumption.
Qed.
@@ -877,7 +878,7 @@ Proof.
elim H; clear H; intros l1 H.
elim H0; clear H0; intros l2 H0.
rewrite H; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
apply derivable_pt_lim_opp; assumption.
Qed.
@@ -896,9 +897,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_minus; assumption.
Qed.
@@ -917,9 +918,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_mult; assumption.
Qed.
@@ -944,7 +945,7 @@ Proof.
elim H; clear H; intros l1 H.
elim H0; clear H0; intros l2 H0.
rewrite H; apply derive_pt_eq_0.
- assert (H3 := projT2 pr).
+ assert (H3 := proj2_sig pr).
unfold derive_pt in H; rewrite H in H3.
apply derivable_pt_lim_scal; assumption.
Qed.
@@ -978,9 +979,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_comp; assumption.
Qed.
@@ -1046,7 +1047,7 @@ Lemma derivable_pt_pow :
forall (n:nat) (x:R), derivable_pt (fun y:R => y ^ n) x.
Proof.
intros; unfold derivable_pt in |- *.
- apply existT with (INR n * x ^ pred n).
+ exists (INR n * x ^ pred n).
apply derivable_pt_lim_pow.
Qed.
diff --git a/theories/Reals/Ranalysis2.v b/theories/Reals/Ranalysis2.v
index fb89da67..54801eb7 100644
--- a/theories/Reals/Ranalysis2.v
+++ b/theories/Reals/Ranalysis2.v
@@ -6,11 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis2.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Ranalysis2.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
-Require Import Ranalysis1. Open Local Scope R_scope.
+Require Import Ranalysis1.
+Open Local Scope R_scope.
(**********)
Lemma formule :
diff --git a/theories/Reals/Ranalysis3.v b/theories/Reals/Ranalysis3.v
index f50aa2ad..180cf9d6 100644
--- a/theories/Reals/Ranalysis3.v
+++ b/theories/Reals/Ranalysis3.v
@@ -6,12 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis3.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Ranalysis3.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
-Require Import Ranalysis2. Open Local Scope R_scope.
+Require Import Ranalysis2.
+Open Local Scope R_scope.
(** Division *)
Theorem derivable_pt_lim_div :
@@ -23,7 +24,7 @@ Theorem derivable_pt_lim_div :
Proof.
intros f1 f2 x l1 l2 H H0 H1.
cut (derivable_pt f2 x);
- [ intro X | unfold derivable_pt in |- *; apply existT with l2; exact H0 ].
+ [ intro X | unfold derivable_pt in |- *; exists l2; exact H0 ].
assert (H2 := continuous_neq_0 _ _ (derivable_continuous_pt _ _ X) H1).
elim H2; clear H2; intros eps_f2 H2.
unfold div_fct in |- *.
@@ -761,7 +762,7 @@ Proof.
intros f1 f2 x X X0 H.
elim X; intros.
elim X0; intros.
- apply existT with ((x0 * f2 x - x1 * f1 x) / Rsqr (f2 x)).
+ exists ((x0 * f2 x - x1 * f1 x) / Rsqr (f2 x)).
apply derivable_pt_lim_div; assumption.
Qed.
@@ -789,9 +790,9 @@ Proof.
elim H0; clear H0; intros l2 H0.
elim H1; clear H1; intros l H1.
rewrite H; rewrite H0; apply derive_pt_eq_0.
- assert (H3 := projT2 pr1).
+ assert (H3 := proj2_sig pr1).
unfold derive_pt in H; rewrite H in H3.
- assert (H4 := projT2 pr2).
+ assert (H4 := proj2_sig pr2).
unfold derive_pt in H0; rewrite H0 in H4.
apply derivable_pt_lim_div; assumption.
Qed.
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
index 205c06b4..95f6d27e 100644
--- a/theories/Reals/Ranalysis4.v
+++ b/theories/Reals/Ranalysis4.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis4.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Ranalysis4.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -14,7 +14,8 @@ Require Import SeqSeries.
Require Import Rtrigo.
Require Import Ranalysis1.
Require Import Ranalysis3.
-Require Import Exp_prop. Open Local Scope R_scope.
+Require Import Exp_prop.
+Open Local Scope R_scope.
(**********)
Lemma derivable_pt_inv :
@@ -28,7 +29,7 @@ Proof.
assumption.
assumption.
unfold div_fct, inv_fct, fct_cte in |- *; intro X0; elim X0; intros;
- unfold derivable_pt in |- *; apply existT with x0;
+ unfold derivable_pt in |- *; exists x0;
unfold derivable_pt_abs in |- *; unfold derivable_pt_lim in |- *;
unfold derivable_pt_abs in p; unfold derivable_pt_lim in p;
intros; elim (p eps H0); intros; exists x1; intros;
@@ -164,10 +165,10 @@ Proof.
intros.
case (total_order_T x 0); intro.
elim s; intro.
- unfold derivable_pt in |- *; apply existT with (-1).
+ unfold derivable_pt in |- *; exists (-1).
apply (Rabs_derive_2 x a).
elim H; exact b.
- unfold derivable_pt in |- *; apply existT with 1.
+ unfold derivable_pt in |- *; exists 1.
apply (Rabs_derive_1 x r).
Qed.
@@ -294,8 +295,8 @@ Proof.
unfold derivable_pt in |- *.
assert (H := derivable_pt_lim_finite_sum An x N).
induction N as [| N HrecN].
- apply existT with 0; apply H.
- apply existT with
+ exists 0; apply H.
+ exists
(sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N)));
apply H.
Qed.
@@ -352,7 +353,7 @@ Lemma derivable_pt_exp : forall x:R, derivable_pt exp x.
Proof.
intro.
unfold derivable_pt in |- *.
- apply existT with (exp x).
+ exists (exp x).
apply derivable_pt_lim_exp.
Qed.
@@ -360,7 +361,7 @@ Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x.
Proof.
intro.
unfold derivable_pt in |- *.
- apply existT with (sinh x).
+ exists (sinh x).
apply derivable_pt_lim_cosh.
Qed.
@@ -368,7 +369,7 @@ Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x.
Proof.
intro.
unfold derivable_pt in |- *.
- apply existT with (cosh x).
+ exists (cosh x).
apply derivable_pt_lim_sinh.
Qed.
diff --git a/theories/Reals/Raxioms.v b/theories/Reals/Raxioms.v
index aaea59f4..6667d2ec 100644
--- a/theories/Reals/Raxioms.v
+++ b/theories/Reals/Raxioms.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Raxioms.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Raxioms.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Axiomatisation of the classical reals *)
@@ -130,7 +130,7 @@ Definition IZR (z:Z) : R :=
Arguments Scope IZR [Z_scope].
(**********************************************************)
-(** * [R] Archimedian *)
+(** * [R] Archimedean *)
(**********************************************************)
(**********)
@@ -154,4 +154,4 @@ Definition is_lub (E:R -> Prop) (m:R) :=
Axiom
completeness :
forall E:R -> Prop,
- bound E -> (exists x : R, E x) -> sigT (fun m:R => is_lub E m).
+ bound E -> (exists x : R, E x) -> { m:R | is_lub E m }.
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v
index 98bd607b..a5cc9f19 100644
--- a/theories/Reals/Rbasic_fun.v
+++ b/theories/Reals/Rbasic_fun.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rbasic_fun.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rbasic_fun.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Complements for the real numbers *)
@@ -15,7 +15,8 @@
Require Import Rbase.
Require Import R_Ifp.
-Require Import Fourier. Open Local Scope R_scope.
+Require Import Fourier.
+Open Local Scope R_scope.
Implicit Type r : R.
diff --git a/theories/Reals/Rcomplete.v b/theories/Reals/Rcomplete.v
index 16e12d7f..d7fee9c5 100644
--- a/theories/Reals/Rcomplete.v
+++ b/theories/Reals/Rcomplete.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rcomplete.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rcomplete.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -24,7 +24,7 @@ Open Local Scope R_scope.
(****************************************************)
Theorem R_complete :
- forall Un:nat -> R, Cauchy_crit Un -> sigT (fun l:R => Un_cv Un l).
+ forall Un:nat -> R, Cauchy_crit Un -> { l:R | Un_cv Un l } .
Proof.
intros.
set (Vn := sequence_minorant Un (cauchy_min Un H)).
@@ -37,7 +37,7 @@ Proof.
elim H1; intros.
cut (x = x0).
intros.
- apply existT with x.
+ exists x.
rewrite <- H2 in p0.
unfold Un_cv in |- *.
intros.
diff --git a/theories/Reals/Rdefinitions.v b/theories/Reals/Rdefinitions.v
index 330c0042..002ce8d6 100644
--- a/theories/Reals/Rdefinitions.v
+++ b/theories/Reals/Rdefinitions.v
@@ -5,7 +5,7 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rdefinitions.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rdefinitions.v 10751 2008-04-04 10:23:35Z herbelin $ i*)
(*********************************************************)
@@ -22,6 +22,8 @@ Delimit Scope R_scope with R.
(* Automatically open scope R_scope for arguments of type R *)
Bind Scope R_scope with R.
+Open Local Scope R_scope.
+
Parameter R0 : R.
Parameter R1 : R.
Parameter Rplus : R -> R -> R.
@@ -38,33 +40,33 @@ Notation "/ x" := (Rinv x) : R_scope.
Infix "<" := Rlt : R_scope.
-(*i*******************************************************i*)
+(***********************************************************)
(**********)
-Definition Rgt (r1 r2:R) : Prop := (r2 < r1)%R.
+Definition Rgt (r1 r2:R) : Prop := r2 < r1.
(**********)
-Definition Rle (r1 r2:R) : Prop := (r1 < r2)%R \/ r1 = r2.
+Definition Rle (r1 r2:R) : Prop := r1 < r2 \/ r1 = r2.
(**********)
Definition Rge (r1 r2:R) : Prop := Rgt r1 r2 \/ r1 = r2.
(**********)
-Definition Rminus (r1 r2:R) : R := (r1 + - r2)%R.
+Definition Rminus (r1 r2:R) : R := r1 + - r2.
(**********)
-Definition Rdiv (r1 r2:R) : R := (r1 * / r2)%R.
+Definition Rdiv (r1 r2:R) : R := r1 * / r2.
(**********)
Infix "-" := Rminus : R_scope.
-Infix "/" := Rdiv : R_scope.
+Infix "/" := Rdiv : R_scope.
Infix "<=" := Rle : R_scope.
Infix ">=" := Rge : R_scope.
-Infix ">" := Rgt : R_scope.
+Infix ">" := Rgt : R_scope.
-Notation "x <= y <= z" := ((x <= y)%R /\ (y <= z)%R) : R_scope.
-Notation "x <= y < z" := ((x <= y)%R /\ (y < z)%R) : R_scope.
-Notation "x < y < z" := ((x < y)%R /\ (y < z)%R) : R_scope.
-Notation "x < y <= z" := ((x < y)%R /\ (y <= z)%R) : R_scope.
+Notation "x <= y <= z" := (x <= y /\ y <= z) : R_scope.
+Notation "x <= y < z" := (x <= y /\ y < z) : R_scope.
+Notation "x < y < z" := (x < y /\ y < z) : R_scope.
+Notation "x < y <= z" := (x < y /\ y <= z) : R_scope.
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index e2fd2efe..ba42bad9 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rderiv.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rderiv.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Definition of the derivative,continuity *)
@@ -19,7 +19,8 @@ Require Import Rlimit.
Require Import Fourier.
Require Import Classical_Prop.
Require Import Classical_Pred_Type.
-Require Import Omega. Open Local Scope R_scope.
+Require Import Omega.
+Open Local Scope R_scope.
(*********)
Definition D_x (D:R -> Prop) (y x:R) : Prop := D x /\ y <> x.
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v
index 3d1c0375..b9aec1ea 100644
--- a/theories/Reals/Rfunctions.v
+++ b/theories/Reals/Rfunctions.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rfunctions.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rfunctions.v 10762 2008-04-06 16:57:31Z herbelin $ i*)
(*i Some properties about pow and sum have been made with John Harrison i*)
(*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*)
@@ -349,8 +349,7 @@ Proof.
rewrite Rabs_Rinv; auto.
rewrite <- Rinv_pow; auto.
rewrite RPow_abs; auto.
- rewrite H'0; rewrite Rabs_right; auto with real.
- apply Rle_ge; auto with real.
+ rewrite H'0; rewrite Rabs_right; auto with real rorders.
apply Rlt_pow; auto with arith.
rewrite Rabs_Rinv; auto.
apply Rmult_lt_reg_l with (r := Rabs r).
@@ -786,11 +785,14 @@ Proof.
Qed.
(*******************************)
-(** * Infinit Sum *)
+(** * Infinite Sum *)
(*******************************)
(*********)
-Definition infinit_sum (s:nat -> R) (l:R) : Prop :=
+Definition infinite_sum (s:nat -> R) (l:R) : Prop :=
forall eps:R,
eps > 0 ->
exists N : nat,
(forall n:nat, (n >= N)%nat -> R_dist (sum_f_R0 s n) l < eps).
+
+(** Compatibility with previous versions *)
+Notation infinit_sum := infinite_sum (only parsing).
diff --git a/theories/Reals/Rgeom.v b/theories/Reals/Rgeom.v
index 8ac9c07f..c96ae5d6 100644
--- a/theories/Reals/Rgeom.v
+++ b/theories/Reals/Rgeom.v
@@ -6,13 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rgeom.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rgeom.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo.
-Require Import R_sqrt. Open Local Scope R_scope.
+Require Import R_sqrt.
+Open Local Scope R_scope.
(** * Distance *)
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 1cba821e..8d069e2d 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RiemannInt.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: RiemannInt.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rfunctions.
Require Import SeqSeries.
@@ -15,7 +15,8 @@ Require Import Rbase.
Require Import RiemannInt_SF.
Require Import Classical_Prop.
Require Import Classical_Pred_Type.
-Require Import Max. Open Local Scope R_scope.
+Require Import Max.
+Open Local Scope R_scope.
Set Implicit Arguments.
@@ -25,13 +26,11 @@ Set Implicit Arguments.
Definition Riemann_integrable (f:R -> R) (a b:R) : Type :=
forall eps:posreal,
- sigT
- (fun phi:StepFun a b =>
- sigT
- (fun psi:StepFun a b =>
+ { phi:StepFun a b &
+ { psi:StepFun a b |
(forall t:R,
Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\
- Rabs (RiemannInt_SF psi) < eps)).
+ Rabs (RiemannInt_SF psi) < eps } }.
Definition phi_sequence (un:nat -> posreal) (f:R -> R)
(a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
@@ -40,12 +39,11 @@ Definition phi_sequence (un:nat -> posreal) (f:R -> R)
Lemma phi_sequence_prop :
forall (un:nat -> posreal) (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
(N:nat),
- sigT
- (fun psi:StepFun a b =>
+ { psi:StepFun a b |
(forall t:R,
Rmin a b <= t <= Rmax a b ->
Rabs (f t - phi_sequence un pr N t) <= psi t) /\
- Rabs (RiemannInt_SF psi) < un N).
+ Rabs (RiemannInt_SF psi) < un N }.
Proof.
intros; apply (projT2 (pr (un N))).
Qed.
@@ -55,8 +53,8 @@ Lemma RiemannInt_P1 :
Riemann_integrable f a b -> Riemann_integrable f b a.
Proof.
unfold Riemann_integrable in |- *; intros; elim (X eps); clear X; intros;
- elim p; clear p; intros; apply existT with (mkStepFun (StepFun_P6 (pre x)));
- apply existT with (mkStepFun (StepFun_P6 (pre x0)));
+ elim p; clear p; intros; exists (mkStepFun (StepFun_P6 (pre x)));
+ exists (mkStepFun (StepFun_P6 (pre x0)));
elim p; clear p; intros; split.
intros; apply (H t); elim H1; clear H1; intros; split;
[ apply Rle_trans with (Rmin b a); try assumption; right;
@@ -90,7 +88,7 @@ Lemma RiemannInt_P2 :
(forall n:nat,
(forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
Rabs (RiemannInt_SF (wn n)) < un n) ->
- sigT (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (vn N)) l).
+ { l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
intros; apply R_complete; unfold Un_cv in H; unfold Cauchy_crit in |- *;
intros; assert (H3 : 0 < eps / 2).
@@ -143,7 +141,7 @@ Lemma RiemannInt_P3 :
(forall n:nat,
(forall t:R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\
Rabs (RiemannInt_SF (wn n)) < un n) ->
- sigT (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (vn N)) l).
+ { l:R | Un_cv (fun N:nat => RiemannInt_SF (vn N)) l }.
Proof.
intros; case (Rle_dec a b); intro.
apply RiemannInt_P2 with f un wn; assumption.
@@ -181,7 +179,7 @@ Proof.
rewrite Rabs_Ropp in H4; apply H4.
apply H4.
assert (H3 := RiemannInt_P2 _ _ _ _ H H1 H2); elim H3; intros;
- apply existT with (- x); unfold Un_cv in |- *; unfold Un_cv in p;
+ exists (- x); unfold Un_cv in |- *; unfold Un_cv in p;
intros; elim (p _ H4); intros; exists x0; intros;
generalize (H5 _ H6); unfold R_dist, RiemannInt_SF in |- *;
case (Rle_dec b a); case (Rle_dec a b); intros.
@@ -205,13 +203,12 @@ Lemma RiemannInt_exists :
forall (f:R -> R) (a b:R) (pr:Riemann_integrable f a b)
(un:nat -> posreal),
Un_cv un 0 ->
- sigT
- (fun l:R => Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr N)) l).
+ { l:R | Un_cv (fun N:nat => RiemannInt_SF (phi_sequence un pr N)) l }.
Proof.
intros f; intros;
apply RiemannInt_P3 with
- f un (fun n:nat => projT1 (phi_sequence_prop un pr n));
- [ apply H | intro; apply (projT2 (phi_sequence_prop un pr n)) ].
+ f un (fun n:nat => proj1_sig (phi_sequence_prop un pr n));
+ [ apply H | intro; apply (proj2_sig (phi_sequence_prop un pr n)) ].
Qed.
Lemma RiemannInt_P4 :
@@ -411,9 +408,7 @@ Qed.
(**********)
Definition RiemannInt (f:R -> R) (a b:R) (pr:Riemann_integrable f a b) : R :=
- match RiemannInt_exists pr RinvN RinvN_cv with
- | existT a' b' => a'
- end.
+ let (a,_) := RiemannInt_exists pr RinvN RinvN_cv in a.
Lemma RiemannInt_P5 :
forall (f:R -> R) (a b:R) (pr1 pr2:Riemann_integrable f a b),
@@ -433,8 +428,7 @@ Qed.
Lemma maxN :
forall (a b:R) (del:posreal),
- a < b ->
- sigT (fun n:nat => a + INR n * del < b /\ b <= a + INR (S n) * del).
+ a < b -> { n:nat | a + INR n * del < b /\ b <= a + INR (S n) * del }.
Proof.
intros; set (I := fun n:nat => a + INR n * del < b);
assert (H0 : exists n : nat, I n).
@@ -478,9 +472,7 @@ Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) {struct N} : Rlist :=
end.
Definition max_N (a b:R) (del:posreal) (h:a < b) : nat :=
- match maxN del h with
- | existT N H0 => N
- end.
+ let (N,_) := maxN del h in N.
Definition SubEqui (a b:R) (del:posreal) (h:a < b) : Rlist :=
SubEquiN (S (max_N del h)) a b del.
@@ -490,12 +482,11 @@ Lemma Heine_cor1 :
a < b ->
(forall x:R, a <= x <= b -> continuity_pt f x) ->
forall eps:posreal,
- sigT
- (fun delta:posreal =>
+ { delta:posreal |
delta <= b - a /\
(forall x y:R,
a <= x <= b ->
- a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)).
+ a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps) }.
Proof.
intro f; intros;
set
@@ -520,7 +511,7 @@ Proof.
| intros; apply H3; try assumption; apply Rlt_le_trans with (Rmin x (b - a));
[ assumption | apply Rmin_l ] ].
assert (H3 := completeness E H1 H2); elim H3; intros; cut (0 < x <= b - a).
- intro; elim H4; clear H4; intros; apply existT with (mkposreal _ H4); split.
+ intro; elim H4; clear H4; intros; exists (mkposreal _ H4); split.
apply H5.
unfold is_lub in p; elim p; intros; unfold is_upper_bound in H6;
set (D := Rabs (x0 - y)); elim (classic (exists y : R, D < y /\ E y));
@@ -549,22 +540,21 @@ Lemma Heine_cor2 :
forall (f:R -> R) (a b:R),
(forall x:R, a <= x <= b -> continuity_pt f x) ->
forall eps:posreal,
- sigT
- (fun delta:posreal =>
+ { delta:posreal |
forall x y:R,
a <= x <= b ->
- a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps).
+ a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps }.
Proof.
intro f; intros; case (total_order_T a b); intro.
elim s; intro.
- assert (H0 := Heine_cor1 a0 H eps); elim H0; intros; apply existT with x;
+ assert (H0 := Heine_cor1 a0 H eps); elim H0; intros; exists x;
elim p; intros; apply H2; assumption.
- apply existT with (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
+ exists (mkposreal _ Rlt_0_1); intros; assert (H3 : x = y);
[ elim H0; elim H1; intros; rewrite b0 in H3; rewrite b0 in H5;
apply Rle_antisym; apply Rle_trans with b; assumption
| rewrite H3; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0;
apply (cond_pos eps) ].
- apply existT with (mkposreal _ Rlt_0_1); intros; elim H0; intros;
+ exists (mkposreal _ Rlt_0_1); intros; elim H0; intros;
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) r)).
Qed.
@@ -664,15 +654,14 @@ Qed.
Lemma SubEqui_P9 :
forall (a b:R) (del:posreal) (f:R -> R) (h:a < b),
- sigT
- (fun g:StepFun a b =>
+ { g:StepFun a b |
g b = f b /\
(forall i:nat,
(i < pred (Rlength (SubEqui del h)))%nat ->
constant_D_eq g
(co_interval (pos_Rl (SubEqui del h) i)
(pos_Rl (SubEqui del h) (S i)))
- (f (pos_Rl (SubEqui del h) i)))).
+ (f (pos_Rl (SubEqui del h) i))) }.
Proof.
intros; apply StepFun_P38;
[ apply SubEqui_P7 | apply SubEqui_P1 | apply SubEqui_P2 ].
@@ -1003,11 +992,11 @@ Proof.
do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc;
rewrite <- Rinv_l_sym; [ ring | discrR ]
| discrR ].
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
rewrite Rmin_comm; rewrite RmaxSym;
- apply (projT2 (phi_sequence_prop RinvN pr2 n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr1 n)).
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
Qed.
Lemma RiemannInt_P9 :
@@ -1272,11 +1261,11 @@ Proof.
case (RiemannInt_exists pr1 RinvN RinvN_cv); intros;
eapply UL_sequence;
[ apply u0
- | set (psi1 := fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n));
- set (psi2 := fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n));
+ | set (psi1 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n));
+ set (psi2 := fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n));
apply RiemannInt_P11 with f RinvN (phi_sequence RinvN pr1) psi1 psi2;
[ apply RinvN_cv
- | intro; apply (projT2 (phi_sequence_prop RinvN pr1 n))
+ | intro; apply (proj2_sig (phi_sequence_prop RinvN pr1 n))
| intro;
assert
(H1 :
@@ -1284,7 +1273,7 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n);
- [ apply (projT2 (phi_sequence_prop RinvN pr3 n))
+ [ apply (proj2_sig (phi_sequence_prop RinvN pr3 n))
| elim H1; intros; split; try assumption; intros;
replace (f t) with (f t + l * g t);
[ apply H2; assumption | rewrite H0; ring ] ]
@@ -1360,8 +1349,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr1 n0)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n0)).
assert
(H8 :
exists psi2 : nat -> StepFun a b,
@@ -1370,8 +1359,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (g t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr2 n0)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n0)).
assert
(H9 :
exists psi3 : nat -> StepFun a b,
@@ -1380,8 +1369,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr3 n0)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr3 n0)).
elim H7; clear H7; intros psi1 H7; elim H8; clear H8; intros psi2 H8; elim H9;
clear H9; intros psi3 H9;
replace
@@ -1552,8 +1541,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr n)).
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun n:nat => mkStepFun (StepFun_P4 a b c));
set (psi2 := fun n:nat => mkStepFun (StepFun_P4 a b 0));
@@ -1647,8 +1636,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr2 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H1 :
exists psi2 : nat -> StepFun a b,
@@ -1664,8 +1653,8 @@ Proof.
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr1 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi2 H1; split with psi2; intros; elim (H1 n);
clear H1; intros; split; try assumption.
intros; unfold phi2 in |- *; simpl in |- *;
@@ -1698,8 +1687,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr1 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
elim H1; clear H1; intros psi1 H1;
set (phi2 := fun N:nat => phi_sequence RinvN pr2 N).
set
@@ -1722,8 +1711,8 @@ Proof.
(forall t:R,
Rmin a b <= t /\ t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr2 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
elim H2; clear H2; intros psi2 H2;
apply RiemannInt_P11 with f RinvN phi2_m psi2 psi1;
try assumption.
@@ -2378,8 +2367,8 @@ Proof.
Rmin a b <= t /\ t <= Rmax a b ->
Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\
Rabs (RiemannInt_SF (psi1 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr1 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr1 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr1 n)).
assert
(H2 :
exists psi2 : nat -> StepFun b c,
@@ -2388,8 +2377,8 @@ Proof.
Rmin b c <= t /\ t <= Rmax b c ->
Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\
Rabs (RiemannInt_SF (psi2 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr2 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr2 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr2 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr2 n)).
assert
(H3 :
exists psi3 : nat -> StepFun a c,
@@ -2398,8 +2387,8 @@ Proof.
Rmin a c <= t /\ t <= Rmax a c ->
Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\
Rabs (RiemannInt_SF (psi3 n)) < RinvN n)).
- split with (fun n:nat => projT1 (phi_sequence_prop RinvN pr3 n)); intro;
- apply (projT2 (phi_sequence_prop RinvN pr3 n)).
+ split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr3 n)); intro;
+ apply (proj2_sig (phi_sequence_prop RinvN pr3 n)).
elim H1; clear H1; intros psi1 H1; elim H2; clear H2; intros psi2 H2; elim H3;
clear H3; intros psi3 H3; assert (H := RinvN_cv);
unfold Un_cv in |- *; intros; assert (H4 : 0 < eps / 3).
@@ -3259,7 +3248,7 @@ Lemma RiemannInt_P30 :
forall (f:R -> R) (a b:R),
a <= b ->
(forall x:R, a <= x <= b -> continuity_pt f x) ->
- sigT (fun g:R -> R => antiderivative f g a b).
+ { g:R -> R | antiderivative f g a b }.
Proof.
intros; split with (primitive H (FTC_P1 H H0)); apply RiemannInt_P29.
Qed.
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
index 0f91d006..7a02544e 100644
--- a/theories/Reals/RiemannInt_SF.v
+++ b/theories/Reals/RiemannInt_SF.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RiemannInt_SF.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: RiemannInt_SF.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -31,7 +31,7 @@ Qed.
Lemma Nzorn :
forall I:nat -> Prop,
(exists n : nat, I n) ->
- Nbound I -> sigT (fun n:nat => I n /\ (forall i:nat, I i -> (i <= n)%nat)).
+ Nbound I -> { n:nat | I n /\ (forall i:nat, I i -> (i <= n)%nat) }.
Proof.
intros I H H0; set (E := fun x:R => exists i : nat, I i /\ INR i = x);
assert (H1 : bound E).
@@ -133,10 +133,10 @@ Definition adapted_couple_opt (f:R -> R) (a b:R) (l lf:Rlist) :=
(forall i:nat, (i < pred (Rlength l))%nat -> pos_Rl l i <> pos_Rl l (S i)).
Definition is_subdivision (f:R -> R) (a b:R) (l:Rlist) : Type :=
- sigT (fun l0:Rlist => adapted_couple f a b l l0).
+ { l0:Rlist & adapted_couple f a b l l0 }.
Definition IsStepFun (f:R -> R) (a b:R) : Type :=
- sigT (fun l:Rlist => is_subdivision f a b l).
+ { l:Rlist & is_subdivision f a b l }.
(** ** Class of step functions *)
Record StepFun (a b:R) : Type := mkStepFun
@@ -1779,13 +1779,12 @@ Lemma StepFun_P38 :
ordered_Rlist l ->
pos_Rl l 0 = a ->
pos_Rl l (pred (Rlength l)) = b ->
- sigT
- (fun g:StepFun a b =>
+ { g:StepFun a b |
g b = f b /\
(forall i:nat,
(i < pred (Rlength l))%nat ->
constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i)))
- (f (pos_Rl l i)))).
+ (f (pos_Rl l i))) }.
Proof.
intros l a b f; generalize a; clear a; induction l.
intros a H H0 H1; simpl in H0; simpl in H1;
@@ -2206,21 +2205,10 @@ Lemma StepFun_P43 :
RiemannInt_SF (mkStepFun pr1) + RiemannInt_SF (mkStepFun pr2) =
RiemannInt_SF (mkStepFun pr3).
Proof.
- intros f; intros;
- assert
- (H1 :
- sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a b l l0))).
- apply pr1.
- assert
- (H2 :
- sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f b c l l0))).
- apply pr2.
- assert
- (H3 :
- sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a c l l0))).
- apply pr3.
- elim H1; clear H1; intros l1 [lf1 H1]; elim H2; clear H2; intros l2 [lf2 H2];
- elim H3; clear H3; intros l3 [lf3 H3].
+ intros f; intros.
+ pose proof pr1 as (l1,(lf1,H1)).
+ pose proof pr2 as (l2,(lf2,H2)).
+ pose proof pr3 as (l3,(lf3,H3)).
replace (RiemannInt_SF (mkStepFun pr1)) with
match Rle_dec a b with
| left _ => Int_SF lf1 l1
@@ -2462,7 +2450,7 @@ Proof.
(forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
- sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a c l l0))).
+ { l:Rlist & { l0:Rlist & adapted_couple f a c l l0 } }).
intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X.
apply H2.
split; assumption.
@@ -2578,7 +2566,7 @@ Proof.
(forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
adapted_couple f a b l1 lf1 ->
a <= c <= b ->
- sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f c b l l0))).
+ { l:Rlist & { l0:Rlist & adapted_couple f c b l l0 } }).
intro X; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X;
[ apply H2 | split; assumption ].
clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
diff --git a/theories/Reals/Rlimit.v b/theories/Reals/Rlimit.v
index 76579ccb..1a2fa03a 100644
--- a/theories/Reals/Rlimit.v
+++ b/theories/Reals/Rlimit.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rlimit.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rlimit.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*********************************************************)
(** Definition of the limit *)
@@ -16,7 +16,8 @@
Require Import Rbase.
Require Import Rfunctions.
Require Import Classical_Prop.
-Require Import Fourier. Open Local Scope R_scope.
+Require Import Fourier.
+Open Local Scope R_scope.
(*******************************)
(** * Calculus *)
@@ -560,9 +561,9 @@ Proof.
| apply Rlt_le_trans with (Rmin delta1 delta2);
[ assumption | apply Rmin_l ] ].
change (0 < eps * (Rsqr l / 2)) in |- *; unfold Rdiv in |- *;
- repeat rewrite Rmult_assoc; repeat apply Rmult_lt_0_compat.
+ repeat rewrite Rmult_assoc; apply Rmult_lt_0_compat.
assumption.
- apply Rsqr_pos_lt; assumption.
+ apply Rmult_lt_0_compat. apply Rsqr_pos_lt; assumption.
apply Rinv_0_lt_compat; cut (0%nat <> 2%nat);
[ intro H3; generalize (lt_INR_0 2 (neq_O_lt 2 H3)); unfold INR in |- *;
intro; assumption
diff --git a/theories/Reals/Rlogic.v b/theories/Reals/Rlogic.v
new file mode 100644
index 00000000..8aadf8f5
--- /dev/null
+++ b/theories/Reals/Rlogic.v
@@ -0,0 +1,293 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * This module proves some logical properties of the axiomatics of Reals
+
+1. Decidablity of arithmetical statements from
+ the axiom that the order of the real numbers is decidable.
+
+2. Derivability of the archimedean "axiom"
+*)
+
+(** 1- Proof of the decidablity of arithmetical statements from
+excluded middle and the axiom that the order of the real numbers is
+decidable. *)
+
+(** Assuming a decidable predicate [P n], A series is constructed whose
+[n]th term is 1/2^n if [P n] holds and 0 otherwise. This sum reaches 2
+only if [P n] holds for all [n], otherwise the sum is less than 2.
+Comparing the sum to 2 decides if [forall n, P n] or [~forall n, P n] *)
+
+(** One can iterate this lemma and use classical logic to decide any
+statement in the arithmetical hierarchy. *)
+
+(** Contributed by Cezary Kaliszyk and Russell O'Connor *)
+
+Require Import ConstructiveEpsilon.
+Require Import Rfunctions.
+Require Import PartSum.
+Require Import SeqSeries.
+Require Import RiemannInt.
+Require Import Fourier.
+
+Section Arithmetical_dec.
+
+Variable P : nat -> Prop.
+Hypothesis HP : forall n, {P n} + {~P n}.
+
+Let ge_fun_sums_ge_lemma : (forall (m n : nat) (f : nat -> R), (lt m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
+intros m n f mn fpos.
+replace (sum_f_R0 f m) with (sum_f_R0 f m + 0) by ring.
+rewrite (tech2 f m n mn).
+apply Rplus_le_compat_l.
+ induction (n - S m)%nat; simpl in *.
+ apply fpos.
+replace 0 with (0 + 0) by ring.
+apply (Rplus_le_compat _ _ _ _ IHn0 (fpos (S (m + S n0)%nat))).
+Qed.
+
+Let ge_fun_sums_ge : (forall (m n : nat) (f : nat -> R), (le m n) -> (forall i : nat, 0 <= f i) -> sum_f_R0 f m <= sum_f_R0 f n).
+intros m n f mn pos.
+ elim (le_lt_or_eq _ _ mn).
+ intro; apply ge_fun_sums_ge_lemma; assumption.
+intro H; rewrite H; auto with *.
+Qed.
+
+Let f:=fun n => (if HP n then (1/2)^n else 0)%R.
+
+Lemma cauchy_crit_geometric_dec_fun : Cauchy_crit_series f.
+intros e He.
+assert (X:(Pser (fun n:nat => 1) (1/2) (/ (1 - (1/2))))%R).
+ apply GP_infinite.
+ apply Rabs_def1; fourier.
+assert (He':e/2 > 0) by fourier.
+destruct (X _ He') as [N HN].
+clear X.
+exists N.
+intros n m Hn Hm.
+replace e with (e/2 + e/2)%R by field.
+set (g:=(fun n0 : nat => 1 * (1 / 2) ^ n0)) in *.
+assert (R_dist (sum_f_R0 g n) (sum_f_R0 g m) < e / 2 + e / 2).
+ apply Rle_lt_trans with (R_dist (sum_f_R0 g n) 2+R_dist 2 (sum_f_R0 g m))%R.
+ apply R_dist_tri.
+ replace (/(1 - 1/2)) with 2 in HN by field.
+ cut (forall n, (n >= N)%nat -> R_dist (sum_f_R0 g n) 2 < e/2)%R.
+ intros Z.
+ apply Rplus_lt_compat.
+ apply Z; assumption.
+ rewrite R_dist_sym.
+ apply Z; assumption.
+ clear - HN He.
+ intros n Hn.
+ apply HN.
+ auto.
+eapply Rle_lt_trans;[|apply H].
+clear -ge_fun_sums_ge n.
+cut (forall n m, (m <= n)%nat -> R_dist (sum_f_R0 f n) (sum_f_R0 f m) <= R_dist (sum_f_R0 g n) (sum_f_R0 g m)).
+ intros H.
+ destruct (le_lt_dec m n).
+ apply H; assumption.
+ rewrite R_dist_sym.
+ rewrite (R_dist_sym (sum_f_R0 g n)).
+ apply H; auto with *.
+clear n m.
+intros n m Hnm.
+unfold R_dist.
+cut (forall i : nat, (1 / 2) ^ i >= 0). intro RPosPow.
+rewrite Rabs_pos_eq.
+ rewrite Rabs_pos_eq.
+ cut (sum_f_R0 g m - sum_f_R0 f m <= sum_f_R0 g n - sum_f_R0 f n).
+ intros; fourier.
+ do 2 rewrite <- minus_sum.
+ apply (ge_fun_sums_ge m n (fun i : nat => g i - f i) Hnm).
+ intro i.
+ unfold f, g.
+ elim (HP i); intro; ring_simplify; auto with *.
+ cut (sum_f_R0 g m <= sum_f_R0 g n).
+ intro; fourier.
+ apply (ge_fun_sums_ge m n g Hnm).
+ intro. unfold g.
+ ring_simplify.
+ apply Rge_le.
+ apply RPosPow.
+ cut (sum_f_R0 f m <= sum_f_R0 f n).
+ intro; fourier.
+ apply (ge_fun_sums_ge m n f Hnm).
+ intro; unfold f.
+ elim (HP i); intro; simpl.
+ apply Rge_le.
+ apply RPosPow.
+ auto with *.
+intro i.
+apply Rle_ge.
+apply pow_le.
+fourier.
+Qed.
+
+Lemma forall_dec : {forall n, P n} + {~forall n, P n}.
+Proof.
+destruct (cv_cauchy_2 _ cauchy_crit_geometric_dec_fun).
+ cut (2 <= x <-> forall n : nat, P n).
+ intro H.
+ elim (Rle_dec 2 x); intro X.
+ left; tauto.
+ right; tauto.
+assert (A:Rabs(1/2) < 1) by (apply Rabs_def1; fourier).
+assert (A0:=(GP_infinite (1/2) A)).
+symmetry.
+ split; intro.
+ replace 2 with (/ (1 - (1 / 2))) by field.
+ unfold Pser, infinite_sum in A0.
+ eapply Rle_cv_lim;[|unfold Un_cv; apply A0 |apply u].
+ intros n.
+ clear -n H.
+ induction n; unfold f;simpl.
+ destruct (HP 0); auto with *.
+ elim n; auto.
+ apply Rplus_le_compat; auto.
+ destruct (HP (S n)); auto with *.
+ elim n0; auto.
+intros n.
+destruct (HP n); auto.
+elim (RIneq.Rle_not_lt _ _ H).
+assert (B:0< (1/2)^n).
+ apply pow_lt.
+ fourier.
+apply Rle_lt_trans with (2-(1/2)^n);[|fourier].
+replace (/(1-1/2))%R with 2 in A0 by field.
+set (g:= fun m => if (eq_nat_dec m n) then (1/2)^n else 0).
+assert (Z: Un_cv (fun N : nat => sum_f_R0 g N) ((1/2)^n)).
+ intros e He.
+ exists n.
+ intros a Ha.
+ replace (sum_f_R0 g a) with ((1/2)^n).
+ rewrite (R_dist_eq); assumption.
+ symmetry.
+ cut (forall a : nat, ((a >= n)%nat -> sum_f_R0 g a = (1 / 2) ^ n) /\ ((a < n)%nat -> sum_f_R0 g a = 0))%R.
+ intros H0.
+ destruct (H0 a).
+ auto.
+ clear - g.
+ induction a.
+ split;
+ intros H;
+ simpl; unfold g;
+ destruct (eq_nat_dec 0 n); try reflexivity.
+ elim f; auto with *.
+ elimtype False; omega.
+ destruct IHa as [IHa0 IHa1].
+ split;
+ intros H;
+ simpl; unfold g at 2;
+ destruct (eq_nat_dec (S a) n).
+ rewrite IHa1.
+ ring.
+ omega.
+ ring_simplify.
+ apply IHa0.
+ omega.
+ elimtype False; omega.
+ ring_simplify.
+ apply IHa1.
+ omega.
+assert (C:=CV_minus _ _ _ _ A0 Z).
+eapply Rle_cv_lim;[|apply u |apply C].
+clear - n0 B.
+intros m.
+simpl.
+induction m.
+ simpl.
+ unfold f, g.
+ destruct (eq_nat_dec 0 n).
+ destruct (HP 0).
+ elim n0.
+ congruence.
+ clear -n.
+ induction n; simpl; fourier.
+ destruct (HP); simpl; fourier.
+cut (f (S m) <= 1 * ((1 / 2) ^ (S m)) - g (S m)).
+ intros L.
+ eapply Rle_trans.
+ simpl.
+ apply Rplus_le_compat.
+ apply IHm.
+ apply L.
+ simpl; fourier.
+unfold f, g.
+destruct (eq_nat_dec (S m) n).
+ destruct (HP (S m)).
+ elim n0.
+ congruence.
+ rewrite e.
+ fourier.
+destruct (HP (S m)).
+ fourier.
+ring_simplify.
+apply pow_le.
+fourier.
+Qed.
+
+Lemma sig_forall_dec : {n | ~P n}+{forall n, P n}.
+destruct forall_dec.
+ right; assumption.
+left.
+apply constructive_indefinite_description_nat; auto.
+ clear - HP.
+ firstorder.
+apply Classical_Pred_Type.not_all_ex_not.
+assumption.
+Qed.
+
+End Arithmetical_dec.
+
+(** 2- Derivability of the Archimedean axiom *)
+
+(* This is a standard proof (it has been taken from PlanetMath). It is
+formulated negatively so as to avoid the need for classical
+logic. Using a proof of {n | ~P n}+{forall n, P n} (the one above or a
+variant of it that does not need classical axioms) , we can in
+principle also derive [up] and its [specification] *)
+
+Theorem not_not_archimedean :
+ forall r : R, ~ (forall n : nat, (INR n <= r)%R).
+intros r H.
+set (E := fun r => exists n : nat, r = INR n).
+assert (exists x : R, E x) by
+ (exists 0%R; simpl; red; exists 0%nat; reflexivity).
+assert (bound E) by (exists r; intros x (m,H2); rewrite H2; apply H).
+destruct (completeness E) as (M,(H3,H4)); try assumption.
+set (M' := (M + -1)%R).
+assert (H2 : ~ is_upper_bound E M').
+ intro H5.
+ assert (M <= M')%R by (apply H4; exact H5).
+ apply (Rlt_not_le M M').
+ unfold M' in |- *.
+ pattern M at 2 in |- *.
+ rewrite <- Rplus_0_l.
+ pattern (0 + M)%R in |- *.
+ rewrite Rplus_comm.
+ rewrite <- (Rplus_opp_r 1).
+ apply Rplus_lt_compat_l.
+ rewrite Rplus_comm.
+ apply Rlt_plus_1.
+ assumption.
+apply H2.
+intros N (n,H7).
+rewrite H7.
+unfold M' in |- *.
+assert (H5 : (INR (S n) <= M)%R) by (apply H3; exists (S n); reflexivity).
+rewrite S_INR in H5.
+assert (H6 : (INR n + 1 + -1 <= M + -1)%R).
+ apply Rplus_le_compat_r.
+ assumption.
+rewrite Rplus_assoc in H6.
+rewrite Rplus_opp_r in H6.
+rewrite (Rplus_comm (INR n) 0) in H6.
+rewrite Rplus_0_l in H6.
+assumption.
+Qed.
diff --git a/theories/Reals/Rpow_def.v b/theories/Reals/Rpow_def.v
index 5bdbb76b..90ea9726 100644
--- a/theories/Reals/Rpow_def.v
+++ b/theories/Reals/Rpow_def.v
@@ -1,3 +1,13 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Rpow_def.v 10923 2008-05-12 18:25:06Z herbelin $ *)
+
Require Import Rdefinitions.
Fixpoint pow (r:R) (n:nat) {struct n} : R :=
diff --git a/theories/Reals/Rpower.v b/theories/Reals/Rpower.v
index cb6c59d5..adf53ef9 100644
--- a/theories/Reals/Rpower.v
+++ b/theories/Reals/Rpower.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rpower.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rpower.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
(*i Due to L.Thery i*)
(************************************************************)
@@ -22,7 +22,8 @@ Require Import Exp_prop.
Require Import Rsqrt_def.
Require Import R_sqrt.
Require Import MVT.
-Require Import Ranalysis4. Open Local Scope R_scope.
+Require Import Ranalysis4.
+Open Local Scope R_scope.
Lemma P_Rmin : forall (P:R -> Prop) (x y:R), P x -> P y -> P (Rmin x y).
Proof.
@@ -90,7 +91,7 @@ Proof.
replace (/ INR (fact n)) with (1 ^ n / INR (fact n)).
apply (H2 _ H3).
unfold Rdiv in |- *; rewrite pow1; rewrite Rmult_1_l; reflexivity.
- unfold infinit_sum in e; unfold Un_cv, tg_alt in |- *; intros; elim (e _ H0);
+ unfold infinite_sum in e; unfold Un_cv, tg_alt in |- *; intros; elim (e _ H0);
intros; exists x0; intros;
replace (sum_f_R0 (fun i:nat => (-1) ^ i * / INR (fact i)) n) with
(sum_f_R0 (fun i:nat => / INR (fact i) * (-1) ^ i) n).
@@ -150,62 +151,59 @@ Proof.
symmetry in |- *; apply derive_pt_eq_0; apply derivable_pt_lim_exp.
Qed.
-Lemma ln_exists1 : forall y:R, 0 < y -> 1 <= y -> sigT (fun z:R => y = exp z).
+Lemma ln_exists1 : forall y:R, 1 <= y -> { z:R | y = exp z }.
Proof.
- intros; set (f := fun x:R => exp x - y); cut (f 0 <= 0).
- intro; cut (continuity f).
- intro; cut (0 <= f y).
- intro; cut (f 0 * f y <= 0).
- intro; assert (X := IVT_cor f 0 y H2 (Rlt_le _ _ H) H4); elim X; intros t H5;
- apply existT with t; elim H5; intros; unfold f in H7;
- apply Rminus_diag_uniq_sym; exact H7.
+ intros; set (f := fun x:R => exp x - y).
+ assert (H0 : 0 < y) by (apply Rlt_le_trans with 1; auto with real).
+ cut (f 0 <= 0); [intro H1|].
+ cut (continuity f); [intro H2|].
+ cut (0 <= f y); [intro H3|].
+ cut (f 0 * f y <= 0); [intro H4|].
+ pose proof (IVT_cor f 0 y H2 (Rlt_le _ _ H0) H4) as (t,(_,H7));
+ exists t; unfold f in H7; apply Rminus_diag_uniq_sym; exact H7.
pattern 0 at 2 in |- *; rewrite <- (Rmult_0_r (f y));
rewrite (Rmult_comm (f 0)); apply Rmult_le_compat_l;
assumption.
unfold f in |- *; apply Rplus_le_reg_l with y; left;
apply Rlt_trans with (1 + y).
rewrite <- (Rplus_comm y); apply Rplus_lt_compat_l; apply Rlt_0_1.
- replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H) | ring ].
+ replace (y + (exp y - y)) with (exp y); [ apply (exp_ineq1 y H0) | ring ].
unfold f in |- *; change (continuity (exp - fct_cte y)) in |- *;
apply continuity_minus;
[ apply derivable_continuous; apply derivable_exp
| apply derivable_continuous; apply derivable_const ].
unfold f in |- *; rewrite exp_0; apply Rplus_le_reg_l with y;
- rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H0 | ring ].
+ rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ].
Qed.
(**********)
-Lemma ln_exists : forall y:R, 0 < y -> sigT (fun z:R => y = exp z).
+Lemma ln_exists : forall y:R, 0 < y -> { z:R | y = exp z }.
Proof.
intros; case (Rle_dec 1 y); intro.
- apply (ln_exists1 _ H r).
+ apply (ln_exists1 _ r).
assert (H0 : 1 <= / y).
apply Rmult_le_reg_l with y.
apply H.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_r; left; apply (Rnot_le_lt _ _ n).
red in |- *; intro; rewrite H0 in H; elim (Rlt_irrefl _ H).
- assert (H1 : 0 < / y).
- apply Rinv_0_lt_compat; apply H.
- assert (H2 := ln_exists1 _ H1 H0); elim H2; intros; apply existT with (- x);
+ destruct (ln_exists1 _ H0) as (x,p); exists (- x);
apply Rmult_eq_reg_l with (exp x / y).
unfold Rdiv in |- *; rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
rewrite Rmult_1_r; rewrite <- (Rmult_comm (/ y)); rewrite Rmult_assoc;
rewrite <- exp_plus; rewrite Rplus_opp_r; rewrite exp_0;
rewrite Rmult_1_r; symmetry in |- *; apply p.
- red in |- *; intro; rewrite H3 in H; elim (Rlt_irrefl _ H).
+ red in |- *; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H).
unfold Rdiv in |- *; apply prod_neq_R0.
- assert (H3 := exp_pos x); red in |- *; intro; rewrite H4 in H3;
+ assert (H3 := exp_pos x); red in |- *; intro H4; rewrite H4 in H3;
elim (Rlt_irrefl _ H3).
- apply Rinv_neq_0_compat; red in |- *; intro; rewrite H3 in H;
+ apply Rinv_neq_0_compat; red in |- *; intro H3; rewrite H3 in H;
elim (Rlt_irrefl _ H).
Qed.
(* Definition of log R+* -> R *)
Definition Rln (y:posreal) : R :=
- match ln_exists (pos y) (cond_pos y) with
- | existT a b => a
- end.
+ let (a,_) := ln_exists (pos y) (cond_pos y) in a.
(* Extension on R *)
Definition ln (x:R) : R :=
@@ -403,6 +401,16 @@ Infix Local "^R" := Rpower (at level 30, right associativity) : R_scope.
(** * Properties of Rpower *)
(******************************************************************)
+(** Note: [Rpower] is prolongated to [1] on negative real numbers and
+ it thus does not extend integer power. The next two lemmas, which
+ hold for integer power, accidentally hold on negative real numbers
+ as a side effect of the default value taken on negative real
+ numbers. Contrastingly, the lemmas that do not hold for the
+ integer power of a negative number are stated for [Rpower] on the
+ positive numbers only (even if they accidentally hold due to the
+ default value of [Rpower] on the negative side, as it is the case
+ for [Rpower_O]). *)
+
Theorem Rpower_plus : forall x y z:R, z ^R (x + y) = z ^R x * z ^R y.
Proof.
intros x y z; unfold Rpower in |- *.
@@ -420,7 +428,7 @@ Qed.
Theorem Rpower_O : forall x:R, 0 < x -> x ^R 0 = 1.
Proof.
- intros x H; unfold Rpower in |- *.
+ intros x _; unfold Rpower in |- *.
rewrite Rmult_0_l; apply exp_0.
Qed.
diff --git a/theories/Reals/Rprod.v b/theories/Reals/Rprod.v
index a84d5149..2113cc8f 100644
--- a/theories/Reals/Rprod.v
+++ b/theories/Reals/Rprod.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rprod.v 9298 2006-10-27 13:05:29Z notin $ i*)
+(*i $Id: Rprod.v 10146 2007-09-27 12:28:12Z herbelin $ i*)
Require Import Compare.
Require Import Rbase.
@@ -16,41 +16,42 @@ Require Import PartSum.
Require Import Binomial.
Open Local Scope R_scope.
-(** TT Ak; 1<=k<=N *)
-Boxed Fixpoint prod_f_SO (An:nat -> R) (N:nat) {struct N} : R :=
+(** TT Ak; 0<=k<=N *)
+Boxed Fixpoint prod_f_R0 (f:nat -> R) (N:nat) {struct N} : R :=
match N with
- | O => 1
- | S p => prod_f_SO An p * An (S p)
+ | O => f O
+ | S p => prod_f_R0 f p * f (S p)
end.
+Notation prod_f_SO := (fun An N => prod_f_R0 (fun n => An (S n)) N).
+
(**********)
Lemma prod_SO_split :
forall (An:nat -> R) (n k:nat),
- (k <= n)%nat ->
- prod_f_SO An n =
- prod_f_SO An k * prod_f_SO (fun l:nat => An (k + l)%nat) (n - k).
+ (k < n)%nat ->
+ prod_f_R0 An n =
+ prod_f_R0 An k * prod_f_R0 (fun l:nat => An (k +1+l)%nat) (n - k -1).
Proof.
intros; induction n as [| n Hrecn].
- cut (k = 0%nat);
- [ intro; rewrite H0; simpl in |- *; ring | inversion H; reflexivity ].
- cut (k = S n \/ (k <= n)%nat).
- intro; elim H0; intro.
- rewrite H1; simpl in |- *; rewrite <- minus_n_n; simpl in |- *; ring.
- replace (S n - k)%nat with (S (n - k)).
+ absurd (k < 0)%nat; omega.
+ cut (k = n \/ (k < n)%nat);[intro; elim H0; intro|omega].
+ replace (S n - k - 1)%nat with O; [rewrite H1; simpl|omega].
+ replace (n+1+0)%nat with (S n); ring.
+ replace (S n - k-1)%nat with (S (n - k-1));[idtac|omega].
simpl in |- *; replace (k + S (n - k))%nat with (S n).
+ replace (k + 1 + S (n - k - 1))%nat with (S n).
rewrite Hrecn; [ ring | assumption ].
omega.
omega.
- omega.
-Qed.
+Qed.
(**********)
Lemma prod_SO_pos :
forall (An:nat -> R) (N:nat),
- (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_SO An N.
+ (forall n:nat, (n <= N)%nat -> 0 <= An n) -> 0 <= prod_f_R0 An N.
Proof.
intros; induction N as [| N HrecN].
- simpl in |- *; left; apply Rlt_0_1.
+ simpl in |- *; apply H; trivial.
simpl in |- *; apply Rmult_le_pos.
apply HrecN; intros; apply H; apply le_trans with N;
[ assumption | apply le_n_Sn ].
@@ -61,11 +62,11 @@ Qed.
Lemma prod_SO_Rle :
forall (An Bn:nat -> R) (N:nat),
(forall n:nat, (n <= N)%nat -> 0 <= An n <= Bn n) ->
- prod_f_SO An N <= prod_f_SO Bn N.
+ prod_f_R0 An N <= prod_f_R0 Bn N.
Proof.
intros; induction N as [| N HrecN].
- right; reflexivity.
- simpl in |- *; apply Rle_trans with (prod_f_SO An N * Bn (S N)).
+ elim H with O; trivial.
+ simpl in |- *; apply Rle_trans with (prod_f_R0 An N * Bn (S N)).
apply Rmult_le_compat_l.
apply prod_SO_pos; intros; elim (H n (le_trans _ _ _ H0 (le_n_Sn N))); intros;
assumption.
@@ -79,12 +80,17 @@ Qed.
(** Application to factorial *)
Lemma fact_prodSO :
- forall n:nat, INR (fact n) = prod_f_SO (fun k:nat => INR k) n.
+ forall n:nat, INR (fact n) = prod_f_R0 (fun k:nat =>
+ (match (eq_nat_dec k 0) with
+ | left _ => 1%R
+ | right _ => INR k
+ end)) n.
Proof.
intro; induction n as [| n Hrecn].
reflexivity.
- change (INR (S n * fact n) = prod_f_SO (fun k:nat => INR k) (S n)) in |- *.
- rewrite mult_INR; rewrite Rmult_comm; rewrite Hrecn; reflexivity.
+ simpl; rewrite <- Hrecn.
+ case n; auto with real.
+ intros; repeat rewrite plus_INR;rewrite mult_INR;ring.
Qed.
Lemma le_n_2n : forall n:nat, (n <= 2 * n)%nat.
@@ -104,40 +110,58 @@ Lemma RfactN_fact2N_factk :
(k <= 2 * N)%nat ->
Rsqr (INR (fact N)) <= INR (fact (2 * N - k)) * INR (fact k).
Proof.
+ assert (forall (n:nat), 0 <= (if eq_nat_dec n 0 then 1 else INR n)).
+ intros; case (eq_nat_dec n 0); auto with real.
+ assert (forall (n:nat), (0 < n)%nat ->
+ (if eq_nat_dec n 0 then 1 else INR n) = INR n).
+ intros n; case (eq_nat_dec n 0); auto with real.
+ intros; absurd (0 < n)%nat; omega.
intros; unfold Rsqr in |- *; repeat rewrite fact_prodSO.
- cut ((k <= N)%nat \/ (N <= k)%nat).
- intro; elim H0; intro.
- rewrite (prod_SO_split (fun l:nat => INR l) (2 * N - k) N).
+ cut ((k=N)%nat \/ (k < N)%nat \/ (N < k)%nat).
+ intro H2; elim H2; intro H3.
+ rewrite H3; replace (2*N-N)%nat with N;[right; ring|omega].
+ case H3; intro; clear H2 H3.
+ rewrite (prod_SO_split (fun l:nat => if eq_nat_dec l 0 then 1 else INR l) (2 * N - k) N).
rewrite Rmult_assoc; apply Rmult_le_compat_l.
- apply prod_SO_pos; intros; apply pos_INR.
- replace (2 * N - k - N)%nat with (N - k)%nat.
- rewrite Rmult_comm; rewrite (prod_SO_split (fun l:nat => INR l) N k).
+ apply prod_SO_pos; intros; auto.
+ replace (2 * N - k - N-1)%nat with (N - k-1)%nat.
+ rewrite Rmult_comm; rewrite (prod_SO_split
+ (fun l:nat => if eq_nat_dec l 0 then 1 else INR l) N k).
apply Rmult_le_compat_l.
- apply prod_SO_pos; intros; apply pos_INR.
- apply prod_SO_Rle; intros; split.
- apply pos_INR.
- apply le_INR; apply plus_le_compat_r; assumption.
+ apply prod_SO_pos; intros; auto.
+ apply prod_SO_Rle; intros; split; auto.
+ rewrite H0.
+ rewrite H0.
+ apply le_INR; omega.
+ omega.
+ omega.
assumption.
omega.
omega.
- rewrite <- (Rmult_comm (prod_f_SO (fun l:nat => INR l) k));
- rewrite (prod_SO_split (fun l:nat => INR l) k N).
+ rewrite <- (Rmult_comm (prod_f_R0 (fun l:nat =>
+ if eq_nat_dec l 0 then 1 else INR l) k));
+ rewrite (prod_SO_split (fun l:nat =>
+ if eq_nat_dec l 0 then 1 else INR l) k N).
rewrite Rmult_assoc; apply Rmult_le_compat_l.
- apply prod_SO_pos; intros; apply pos_INR.
+ apply prod_SO_pos; intros; auto.
rewrite Rmult_comm;
- rewrite (prod_SO_split (fun l:nat => INR l) N (2 * N - k)).
+ rewrite (prod_SO_split (fun l:nat =>
+ if eq_nat_dec l 0 then 1 else INR l) N (2 * N - k)).
apply Rmult_le_compat_l.
- apply prod_SO_pos; intros; apply pos_INR.
- replace (N - (2 * N - k))%nat with (k - N)%nat.
- apply prod_SO_Rle; intros; split.
- apply pos_INR.
- apply le_INR; apply plus_le_compat_r.
+ apply prod_SO_pos; intros; auto.
+ replace (N - (2 * N - k)-1)%nat with (k - N-1)%nat.
+ apply prod_SO_Rle; intros; split; auto.
+ rewrite H0.
+ rewrite H0.
+ apply le_INR; omega.
+ omega.
omega.
omega.
omega.
assumption.
omega.
-Qed.
+Qed.
+
(**********)
Lemma INR_fact_lt_0 : forall n:nat, 0 < INR (fact n).
diff --git a/theories/Reals/Rseries.v b/theories/Reals/Rseries.v
index 38c39bae..702aafa4 100644
--- a/theories/Reals/Rseries.v
+++ b/theories/Reals/Rseries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rseries.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rseries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -194,14 +194,14 @@ Section Isequence.
Variable An : nat -> R.
(*********)
- Definition Pser (x l:R) : Prop := infinit_sum (fun n:nat => An n * x ^ n) l.
+ Definition Pser (x l:R) : Prop := infinite_sum (fun n:nat => An n * x ^ n) l.
End Isequence.
Lemma GP_infinite :
forall x:R, Rabs x < 1 -> Pser (fun n:nat => 1) x (/ (1 - x)).
Proof.
- intros; unfold Pser in |- *; unfold infinit_sum in |- *; intros;
+ intros; unfold Pser in |- *; unfold infinite_sum in |- *; intros;
elim (Req_dec x 0).
intros; exists 0%nat; intros; rewrite H1; rewrite Rminus_0_r; rewrite Rinv_1;
cut (sum_f_R0 (fun n0:nat => 1 * 0 ^ n0) n = 1).
diff --git a/theories/Reals/Rsigma.v b/theories/Reals/Rsigma.v
index cb31d3b2..7cdd4d02 100644
--- a/theories/Reals/Rsigma.v
+++ b/theories/Reals/Rsigma.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rsigma.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rsigma.v 9454 2006-12-15 15:30:59Z bgregoir $ i*)
Require Import Rbase.
Require Import Rfunctions.
diff --git a/theories/Reals/Rsqrt_def.v b/theories/Reals/Rsqrt_def.v
index 0a9f7754..0a3af6ca 100644
--- a/theories/Reals/Rsqrt_def.v
+++ b/theories/Reals/Rsqrt_def.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rsqrt_def.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rsqrt_def.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Sumbool.
Require Import Rbase.
@@ -192,7 +192,7 @@ Qed.
Lemma dicho_lb_cv :
forall (x y:R) (P:R -> bool),
- x <= y -> sigT (fun l:R => Un_cv (dicho_lb x y P) l).
+ x <= y -> { l:R | Un_cv (dicho_lb x y P) l }.
Proof.
intros.
apply growing_cv.
@@ -202,7 +202,7 @@ Qed.
Lemma dicho_up_cv :
forall (x y:R) (P:R -> bool),
- x <= y -> sigT (fun l:R => Un_cv (dicho_up x y P) l).
+ x <= y -> { l:R | Un_cv (dicho_up x y P) l }.
Proof.
intros.
apply decreasing_cv.
@@ -466,7 +466,7 @@ Qed.
Lemma IVT :
forall (f:R -> R) (x y:R),
continuity f ->
- x < y -> f x < 0 -> 0 < f y -> sigT (fun z:R => x <= z <= y /\ f z = 0).
+ x < y -> f x < 0 -> 0 < f y -> { z:R | x <= z <= y /\ f z = 0 }.
Proof.
intros.
cut (x <= y).
@@ -478,7 +478,7 @@ Proof.
elim X0; intros.
assert (H4 := cv_dicho _ _ _ _ _ H3 p0 p).
rewrite H4 in p0.
- apply existT with x0.
+ exists x0.
split.
split.
apply Rle_trans with (dicho_lb x y (fun z:R => cond_positivity (f z)) 0).
@@ -602,7 +602,7 @@ Qed.
Lemma IVT_cor :
forall (f:R -> R) (x y:R),
continuity f ->
- x <= y -> f x * f y <= 0 -> sigT (fun z:R => x <= z <= y /\ f z = 0).
+ x <= y -> f x * f y <= 0 -> { z:R | x <= z <= y /\ f z = 0 }.
Proof.
intros.
case (total_order_T 0 (f x)); intro.
@@ -628,7 +628,7 @@ Proof.
cut (0 < (- f)%F y).
intros.
elim (H3 H5 H4); intros.
- apply existT with x0.
+ exists x0.
elim p; intros.
split.
assumption.
@@ -643,7 +643,7 @@ Proof.
assumption.
rewrite H2 in a.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
- apply existT with x.
+ exists x.
split.
split; [ right; reflexivity | assumption ].
symmetry in |- *; assumption.
@@ -656,7 +656,7 @@ Proof.
assumption.
rewrite H2 in r.
elim (Rlt_irrefl _ (Rlt_trans _ _ _ r a)).
- apply existT with y.
+ exists y.
split.
split; [ assumption | right; reflexivity ].
symmetry in |- *; assumption.
@@ -670,7 +670,7 @@ Qed.
(** We can now define the square root function as the reciprocal
transformation of the square root function *)
Lemma Rsqrt_exists :
- forall y:R, 0 <= y -> sigT (fun z:R => 0 <= z /\ y = Rsqr z).
+ forall y:R, 0 <= y -> { z:R | 0 <= z /\ y = Rsqr z }.
Proof.
intros.
set (f := fun x:R => Rsqr x - y).
@@ -686,7 +686,7 @@ Proof.
intro.
assert (X := IVT_cor f 0 1 H1 (Rlt_le _ _ Rlt_0_1) H3).
elim X; intros t H4.
- apply existT with t.
+ exists t.
elim H4; intros.
split.
elim H5; intros; assumption.
@@ -700,7 +700,7 @@ Proof.
rewrite Rplus_0_r; rewrite Rplus_comm; unfold Rminus in |- *;
rewrite Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_r;
left; assumption.
- apply existT with 1.
+ exists 1.
split.
left; apply Rlt_0_1.
rewrite b; symmetry in |- *; apply Rsqr_1.
@@ -710,7 +710,7 @@ Proof.
intro.
assert (X := IVT_cor f 0 y H1 H H3).
elim X; intros t H4.
- apply existT with t.
+ exists t.
elim H4; intros.
split.
elim H5; intros; assumption.
@@ -739,9 +739,7 @@ Qed.
(* Definition of the square root: R+->R *)
Definition Rsqrt (y:nonnegreal) : R :=
- match Rsqrt_exists (nonneg y) (cond_nonneg y) with
- | existT a b => a
- end.
+ let (a,_) := Rsqrt_exists (nonneg y) (cond_nonneg y) in a.
(**********)
Lemma Rsqrt_positivity : forall x:nonnegreal, 0 <= Rsqrt x.
diff --git a/theories/Reals/Rtopology.v b/theories/Reals/Rtopology.v
index aa47d72f..9501bc1e 100644
--- a/theories/Reals/Rtopology.v
+++ b/theories/Reals/Rtopology.v
@@ -6,15 +6,15 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtopology.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rtopology.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import RList.
Require Import Classical_Prop.
-Require Import Classical_Pred_Type. Open Local Scope R_scope.
-
+Require Import Classical_Pred_Type.
+Open Local Scope R_scope.
(** * General definitions and propositions *)
diff --git a/theories/Reals/Rtrigo.v b/theories/Reals/Rtrigo.v
index b744c788..0baece39 100644
--- a/theories/Reals/Rtrigo.v
+++ b/theories/Reals/Rtrigo.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rtrigo.v 9454 2006-12-15 15:30:59Z bgregoir $ i*)
Require Import Rbase.
Require Import Rfunctions.
diff --git a/theories/Reals/Rtrigo_alt.v b/theories/Reals/Rtrigo_alt.v
index 89ee1745..d82bafc6 100644
--- a/theories/Reals/Rtrigo_alt.v
+++ b/theories/Reals/Rtrigo_alt.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo_alt.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rtrigo_alt.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -137,7 +137,7 @@ Proof.
ring.
assert (X := exist_sin (Rsqr a)); elim X; intros.
cut (x = sin a / a).
- intro; rewrite H3 in p; unfold sin_in in p; unfold infinit_sum in p;
+ intro; rewrite H3 in p; unfold sin_in in p; unfold infinite_sum in p;
unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
intros.
cut (0 < eps / Rabs a).
@@ -327,7 +327,7 @@ Proof.
apply (fun m n p:nat => mult_le_compat_l p n m); apply le_n_S; assumption.
assert (X := exist_cos (Rsqr a0)); elim X; intros.
cut (x = cos a0).
- intro; rewrite H4 in p; unfold cos_in in p; unfold infinit_sum in p;
+ intro; rewrite H4 in p; unfold cos_in in p; unfold infinite_sum in p;
unfold R_dist in p; unfold Un_cv in |- *; unfold R_dist in |- *;
intros.
elim (p _ H5); intros N H6.
diff --git a/theories/Reals/Rtrigo_def.v b/theories/Reals/Rtrigo_def.v
index b2aeb766..e94d7448 100644
--- a/theories/Reals/Rtrigo_def.v
+++ b/theories/Reals/Rtrigo_def.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo_def.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rtrigo_def.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -19,7 +19,7 @@ Open Local Scope R_scope.
(** * Definition of exponential *)
(********************************)
Definition exp_in (x l:R) : Prop :=
- infinit_sum (fun i:nat => / INR (fact i) * x ^ i) l.
+ infinite_sum (fun i:nat => / INR (fact i) * x ^ i) l.
Lemma exp_cof_no_R0 : forall n:nat, / INR (fact n) <> 0.
Proof.
@@ -28,7 +28,7 @@ Proof.
apply INR_fact_neq_0.
Qed.
-Lemma exist_exp : forall x:R, sigT (fun l:R => exp_in x l).
+Lemma exist_exp : forall x:R, { l:R | exp_in x l }.
Proof.
intro;
generalize
@@ -37,7 +37,7 @@ Proof.
trivial.
Defined.
-Definition exp (x:R) : R := projT1 (exist_exp x).
+Definition exp (x:R) : R := proj1_sig (exist_exp x).
Lemma pow_i : forall i:nat, (0 < i)%nat -> 0 ^ i = 0.
Proof.
@@ -45,11 +45,10 @@ Proof.
red in |- *; intro; rewrite H0 in H; elim (lt_irrefl _ H).
Qed.
-(*i Calculus of $e^0$ *)
-Lemma exist_exp0 : sigT (fun l:R => exp_in 0 l).
+Lemma exist_exp0 : { l:R | exp_in 0 l }.
Proof.
- apply existT with 1.
- unfold exp_in in |- *; unfold infinit_sum in |- *; intros.
+ exists 1.
+ unfold exp_in in |- *; unfold infinite_sum in |- *; intros.
exists 0%nat.
intros; replace (sum_f_R0 (fun i:nat => / INR (fact i) * 0 ^ i) n) with 1.
unfold R_dist in |- *; replace (1 - 1) with 0;
@@ -63,6 +62,7 @@ Proof.
unfold ge in |- *; apply le_O_n.
Defined.
+(* Value of [exp 0] *)
Lemma exp_0 : exp 0 = 1.
Proof.
cut (exp_in 0 (exp 0)).
@@ -70,8 +70,8 @@ Proof.
unfold exp_in in |- *; intros; eapply uniqueness_sum.
apply H0.
apply H.
- exact (projT2 exist_exp0).
- exact (projT2 (exist_exp 0)).
+ exact (proj2_sig exist_exp0).
+ exact (proj2_sig (exist_exp 0)).
Qed.
(*****************************************)
@@ -235,21 +235,17 @@ Qed.
(**********)
Definition cos_in (x l:R) : Prop :=
- infinit_sum (fun i:nat => cos_n i * x ^ i) l.
+ infinite_sum (fun i:nat => cos_n i * x ^ i) l.
(**********)
-Lemma exist_cos : forall x:R, sigT (fun l:R => cos_in x l).
+Lemma exist_cos : forall x:R, { l:R | cos_in x l }.
intro; generalize (Alembert_C3 cos_n x cosn_no_R0 Alembert_cos).
unfold Pser, cos_in in |- *; trivial.
Qed.
(** Definition of cosinus *)
-Definition cos (x:R) : R :=
- match exist_cos (Rsqr x) with
- | existT a b => a
- end.
-
+Definition cos (x:R) : R := let (a,_) := exist_cos (Rsqr x) in a.
Definition sin_n (n:nat) : R := (-1) ^ n / INR (fact (2 * n + 1)).
@@ -348,7 +344,7 @@ Proof.
apply INR_eq; repeat rewrite S_INR; rewrite plus_INR; repeat rewrite mult_INR;
rewrite plus_INR; rewrite mult_INR; repeat rewrite S_INR;
replace (INR 0) with 0; [ ring | reflexivity ].
-Qed.
+Defined.
Lemma sin_no_R0 : forall n:nat, sin_n n <> 0.
Proof.
@@ -359,21 +355,18 @@ Qed.
(**********)
Definition sin_in (x l:R) : Prop :=
- infinit_sum (fun i:nat => sin_n i * x ^ i) l.
+ infinite_sum (fun i:nat => sin_n i * x ^ i) l.
(**********)
-Lemma exist_sin : forall x:R, sigT (fun l:R => sin_in x l).
+Lemma exist_sin : forall x:R, { l:R | sin_in x l }.
Proof.
intro; generalize (Alembert_C3 sin_n x sin_no_R0 Alembert_sin).
unfold Pser, sin_n in |- *; trivial.
-Qed.
+Defined.
(***********************)
(* Definition of sinus *)
-Definition sin (x:R) : R :=
- match exist_sin (Rsqr x) with
- | existT a b => x * a
- end.
+Definition sin (x:R) : R := let (a,_) := exist_sin (Rsqr x) in x * a.
(*********************************************)
(** * Properties *)
@@ -399,10 +392,10 @@ Proof.
intros; ring.
Qed.
-Lemma exist_cos0 : sigT (fun l:R => cos_in 0 l).
+Lemma exist_cos0 : { l:R | cos_in 0 l }.
Proof.
- apply existT with 1.
- unfold cos_in in |- *; unfold infinit_sum in |- *; intros; exists 0%nat.
+ exists 1.
+ unfold cos_in in |- *; unfold infinite_sum in |- *; intros; exists 0%nat.
intros.
unfold R_dist in |- *.
induction n as [| n Hrecn].
@@ -417,7 +410,7 @@ Proof.
simpl in |- *; ring.
Defined.
-(* Calculus of (cos 0) *)
+(* Value of [cos 0] *)
Lemma cos_0 : cos 0 = 1.
Proof.
cut (cos_in 0 (cos 0)).
@@ -425,7 +418,7 @@ Proof.
unfold cos_in in |- *; intros; eapply uniqueness_sum.
apply H0.
apply H.
- exact (projT2 exist_cos0).
- assert (H := projT2 (exist_cos (Rsqr 0))); unfold cos in |- *;
+ exact (proj2_sig exist_cos0).
+ assert (H := proj2_sig (exist_cos (Rsqr 0))); unfold cos in |- *;
pattern 0 at 1 in |- *; replace 0 with (Rsqr 0); [ exact H | apply Rsqr_0 ].
Qed.
diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v
index 78ef847f..6eec0329 100644
--- a/theories/Reals/Rtrigo_fun.v
+++ b/theories/Reals/Rtrigo_fun.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo_fun.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rtrigo_fun.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -15,8 +15,7 @@ Open Local Scope R_scope.
(*****************************************************************)
(** To define transcendental functions *)
-(** for exponential function *)
-(* *)
+(** and exponential function *)
(*****************************************************************)
(*********)
diff --git a/theories/Reals/Rtrigo_reg.v b/theories/Reals/Rtrigo_reg.v
index b105ca69..139563bf 100644
--- a/theories/Reals/Rtrigo_reg.v
+++ b/theories/Reals/Rtrigo_reg.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rtrigo_reg.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Rtrigo_reg.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -25,16 +25,15 @@ Proof.
unfold CVN_R in |- *; intros.
cut ((r:R) <> 0).
intro hyp_r; unfold CVN_r in |- *.
- apply existT with (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
+ exists (fun n:nat => / INR (fact (2 * n)) * r ^ (2 * n)).
cut
- (sigT
- (fun l:R =>
+ { l:R |
Un_cv
(fun n:nat =>
sum_f_R0 (fun k:nat => Rabs (/ INR (fact (2 * k)) * r ^ (2 * k)))
- n) l)).
+ n) l }.
intro X; elim X; intros.
- apply existT with x.
+ exists x.
split.
apply p.
intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult.
@@ -124,7 +123,7 @@ Lemma continuity_cos : continuity cos.
Proof.
set (fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N)) * x ^ (2 * N)).
cut (CVN_R fn).
- intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
+ intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (forall x:R, cos x = SFL fn cv x).
intro; cut (continuity (SFL fn cv) -> continuity cos).
@@ -144,7 +143,7 @@ Proof.
case (cv x); case (exist_cos (Rsqr x)); intros.
symmetry in |- *; eapply UL_sequence.
apply u.
- unfold cos_in in c; unfold infinit_sum in c; unfold Un_cv in |- *; intros.
+ unfold cos_in in c; unfold infinite_sum in c; unfold Un_cv in |- *; intros.
elim (c _ H0); intros N0 H1.
exists N0; intros.
unfold R_dist in H1; unfold R_dist, SP in |- *.
@@ -200,17 +199,16 @@ Lemma CVN_R_sin :
CVN_R fn.
Proof.
unfold CVN_R in |- *; unfold CVN_r in |- *; intros fn H r.
- apply existT with (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)).
+ exists (fun n:nat => / INR (fact (2 * n + 1)) * r ^ (2 * n)).
cut
- (sigT
- (fun l:R =>
+ { l:R |
Un_cv
(fun n:nat =>
sum_f_R0
(fun k:nat => Rabs (/ INR (fact (2 * k + 1)) * r ^ (2 * k))) n)
- l)).
+ l }.
intro X; elim X; intros.
- apply existT with x.
+ exists x.
split.
apply p.
intros; rewrite H; unfold Rdiv in |- *; do 2 rewrite Rabs_mult;
@@ -305,7 +303,7 @@ Proof.
set
(fn := fun (N:nat) (x:R) => (-1) ^ N / INR (fact (2 * N + 1)) * x ^ (2 * N)).
cut (CVN_R fn).
- intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
+ intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv.
set (r := mkposreal _ Rlt_0_1).
cut (CVN_r fn r).
@@ -331,7 +329,7 @@ Proof.
unfold Rdiv in |- *; rewrite (Rinv_r_simpl_m h x0 H6).
eapply UL_sequence.
apply u.
- unfold sin_in in s; unfold sin_n, infinit_sum in s;
+ unfold sin_in in s; unfold sin_n, infinite_sum in s;
unfold SP, fn, Un_cv in |- *; intros.
elim (s _ H10); intros N0 H11.
exists N0; intros.
@@ -584,14 +582,14 @@ Qed.
Lemma derivable_pt_sin : forall x:R, derivable_pt sin x.
Proof.
unfold derivable_pt in |- *; intro.
- apply existT with (cos x).
+ exists (cos x).
apply derivable_pt_lim_sin.
Qed.
Lemma derivable_pt_cos : forall x:R, derivable_pt cos x.
Proof.
unfold derivable_pt in |- *; intro.
- apply existT with (- sin x).
+ exists (- sin x).
apply derivable_pt_lim_cos.
Qed.
diff --git a/theories/Reals/SeqProp.v b/theories/Reals/SeqProp.v
index 96351618..56088a2e 100644
--- a/theories/Reals/SeqProp.v
+++ b/theories/Reals/SeqProp.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: SeqProp.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: SeqProp.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -15,6 +15,10 @@ Require Import Classical.
Require Import Max.
Open Local Scope R_scope.
+(*****************************************************************)
+(** Convergence properties of sequences *)
+(*****************************************************************)
+
Definition Un_decreasing (Un:nat -> R) : Prop :=
forall n:nat, Un (S n) <= Un n.
Definition opp_seq (Un:nat -> R) (n:nat) : R := - Un n.
@@ -23,8 +27,7 @@ Definition has_lb (Un:nat -> R) : Prop := bound (EUn (opp_seq Un)).
(**********)
Lemma growing_cv :
- forall Un:nat -> R,
- Un_growing Un -> has_ub Un -> sigT (fun l:R => Un_cv Un l).
+ forall Un:nat -> R, Un_growing Un -> has_ub Un -> { l:R | Un_cv Un l }.
Proof.
unfold Un_growing, Un_cv in |- *; intros;
destruct (completeness (EUn Un) H0 (EUn_noempty Un)) as [x [H2 H3]].
@@ -64,11 +67,10 @@ Proof.
Qed.
Lemma decreasing_cv :
- forall Un:nat -> R,
- Un_decreasing Un -> has_lb Un -> sigT (fun l:R => Un_cv Un l).
+ forall Un:nat -> R, Un_decreasing Un -> has_lb Un -> { l:R | Un_cv Un l }.
Proof.
intros.
- cut (sigT (fun l:R => Un_cv (opp_seq Un) l) -> sigT (fun l:R => Un_cv Un l)).
+ cut ({ l:R | Un_cv (opp_seq Un) l } -> { l:R | Un_cv Un l }).
intro X.
apply X.
apply growing_cv.
@@ -76,7 +78,7 @@ Proof.
exact H0.
intro X.
elim X; intros.
- apply existT with (- x).
+ exists (- x).
unfold Un_cv in p.
unfold R_dist in p.
unfold opp_seq in p.
@@ -91,8 +93,8 @@ Proof.
Qed.
(***********)
-Lemma maj_sup :
- forall Un:nat -> R, has_ub Un -> sigT (fun l:R => is_lub (EUn Un) l).
+Lemma ub_to_lub :
+ forall Un:nat -> R, has_ub Un -> { l:R | is_lub (EUn Un) l }.
Proof.
intros.
unfold has_ub in H.
@@ -104,9 +106,8 @@ Proof.
Qed.
(**********)
-Lemma min_inf :
- forall Un:nat -> R,
- has_lb Un -> sigT (fun l:R => is_lub (EUn (opp_seq Un)) l).
+Lemma lb_to_glb :
+ forall Un:nat -> R, has_lb Un -> { l:R | is_lub (EUn (opp_seq Un)) l }.
Proof.
intros; unfold has_lb in H.
apply completeness.
@@ -116,15 +117,17 @@ Proof.
reflexivity.
Qed.
-Definition majorant (Un:nat -> R) (pr:has_ub Un) : R :=
- match maj_sup Un pr with
- | existT a b => a
- end.
+Definition lub (Un:nat -> R) (pr:has_ub Un) : R :=
+ let (a,_) := ub_to_lub Un pr in a.
-Definition minorant (Un:nat -> R) (pr:has_lb Un) : R :=
- match min_inf Un pr with
- | existT a b => - a
- end.
+Definition glb (Un:nat -> R) (pr:has_lb Un) : R :=
+ let (a,_) := lb_to_glb Un pr in - a.
+
+(* Compatibility with previous unappropriate terminology *)
+Notation maj_sup := ub_to_lub (only parsing).
+Notation min_inf := lb_to_glb (only parsing).
+Notation majorant := lub (only parsing).
+Notation minorant := glb (only parsing).
Lemma maj_ss :
forall (Un:nat -> R) (k:nat),
@@ -162,26 +165,30 @@ Proof.
exists (k + x1)%nat; assumption.
Qed.
-Definition sequence_majorant (Un:nat -> R) (pr:has_ub Un)
- (i:nat) : R := majorant (fun k:nat => Un (i + k)%nat) (maj_ss Un i pr).
+Definition sequence_ub (Un:nat -> R) (pr:has_ub Un)
+ (i:nat) : R := lub (fun k:nat => Un (i + k)%nat) (maj_ss Un i pr).
+
+Definition sequence_lb (Un:nat -> R) (pr:has_lb Un)
+ (i:nat) : R := glb (fun k:nat => Un (i + k)%nat) (min_ss Un i pr).
-Definition sequence_minorant (Un:nat -> R) (pr:has_lb Un)
- (i:nat) : R := minorant (fun k:nat => Un (i + k)%nat) (min_ss Un i pr).
+(* Compatibility *)
+Notation sequence_majorant := sequence_ub (only parsing).
+Notation sequence_minorant := sequence_lb (only parsing).
Lemma Wn_decreasing :
- forall (Un:nat -> R) (pr:has_ub Un), Un_decreasing (sequence_majorant Un pr).
+ forall (Un:nat -> R) (pr:has_ub Un), Un_decreasing (sequence_ub Un pr).
Proof.
intros.
unfold Un_decreasing in |- *.
intro.
- unfold sequence_majorant in |- *.
- assert (H := maj_sup (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
- assert (H0 := maj_sup (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
+ unfold sequence_ub in |- *.
+ assert (H := ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
+ assert (H0 := ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
elim H; intros.
elim H0; intros.
- cut (majorant (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x);
+ cut (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr) = x);
[ intro Maj1; rewrite Maj1 | idtac ].
- cut (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr) = x0);
+ cut (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr) = x0);
[ intro Maj2; rewrite Maj2 | idtac ].
unfold is_lub in p.
unfold is_lub in p0.
@@ -199,47 +206,47 @@ Proof.
replace (S n) with (1 + n)%nat; [ ring | ring ].
cut
(is_lub (EUn (fun k:nat => Un (n + k)%nat))
- (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr))).
+ (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr))).
intro.
unfold is_lub in p0; unfold is_lub in H1.
elim p0; intros; elim H1; intros.
assert (H6 := H5 x0 H2).
assert
- (H7 := H3 (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) H4).
+ (H7 := H3 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)) H4).
apply Rle_antisym; assumption.
- unfold majorant in |- *.
- case (maj_sup (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
+ unfold lub in |- *.
+ case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr)).
trivial.
cut
(is_lub (EUn (fun k:nat => Un (S n + k)%nat))
- (majorant (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))).
+ (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr))).
intro.
unfold is_lub in p; unfold is_lub in H1.
elim p; intros; elim H1; intros.
assert (H6 := H5 x H2).
assert
(H7 :=
- H3 (majorant (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) H4).
+ H3 (lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)) H4).
apply Rle_antisym; assumption.
- unfold majorant in |- *.
- case (maj_sup (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
+ unfold lub in |- *.
+ case (ub_to_lub (fun k:nat => Un (S n + k)%nat) (maj_ss Un (S n) pr)).
trivial.
Qed.
Lemma Vn_growing :
- forall (Un:nat -> R) (pr:has_lb Un), Un_growing (sequence_minorant Un pr).
+ forall (Un:nat -> R) (pr:has_lb Un), Un_growing (sequence_lb Un pr).
Proof.
intros.
unfold Un_growing in |- *.
intro.
- unfold sequence_minorant in |- *.
- assert (H := min_inf (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)).
- assert (H0 := min_inf (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)).
+ unfold sequence_lb in |- *.
+ assert (H := lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)).
+ assert (H0 := lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)).
elim H; intros.
elim H0; intros.
- cut (minorant (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x);
+ cut (glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr) = - x);
[ intro Maj1; rewrite Maj1 | idtac ].
- cut (minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr) = - x0);
+ cut (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr) = - x0);
[ intro Maj2; rewrite Maj2 | idtac ].
unfold is_lub in p.
unfold is_lub in p0.
@@ -260,38 +267,38 @@ Proof.
replace (S n) with (1 + n)%nat; [ ring | ring ].
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat)))
- (- minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr))).
+ (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr))).
intro.
unfold is_lub in p0; unfold is_lub in H1.
elim p0; intros; elim H1; intros.
assert (H6 := H5 x0 H2).
assert
- (H7 := H3 (- minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)) H4).
+ (H7 := H3 (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)) H4).
rewrite <-
- (Ropp_involutive (minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)))
+ (Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold minorant in |- *.
- case (min_inf (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)).
+ unfold glb in |- *.
+ case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (S n + k)%nat)))
- (- minorant (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr))).
+ (- glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr))).
intro.
unfold is_lub in p; unfold is_lub in H1.
elim p; intros; elim H1; intros.
assert (H6 := H5 x H2).
assert
(H7 :=
- H3 (- minorant (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) H4).
+ H3 (- glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)) H4).
rewrite <-
(Ropp_involutive
- (minorant (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)))
+ (glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold minorant in |- *.
- case (min_inf (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)).
+ unfold glb in |- *.
+ case (lb_to_glb (fun k:nat => Un (S n + k)%nat) (min_ss Un (S n) pr)); simpl.
intro; rewrite Ropp_involutive.
trivial.
Qed.
@@ -299,16 +306,15 @@ Qed.
(**********)
Lemma Vn_Un_Wn_order :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un)
- (n:nat), sequence_minorant Un pr2 n <= Un n <= sequence_majorant Un pr1 n.
+ (n:nat), sequence_lb Un pr2 n <= Un n <= sequence_ub Un pr1 n.
Proof.
intros.
split.
- unfold sequence_minorant in |- *.
- cut
- (sigT (fun l:R => is_lub (EUn (opp_seq (fun i:nat => Un (n + i)%nat))) l)).
+ unfold sequence_lb in |- *.
+ cut { l:R | is_lub (EUn (opp_seq (fun i:nat => Un (n + i)%nat))) l }.
intro X.
elim X; intros.
- replace (minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) with (- x).
+ replace (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) with (- x).
unfold is_lub in p.
elim p; intros.
unfold is_upper_bound in H.
@@ -320,28 +326,28 @@ Proof.
replace (n + 0)%nat with n; [ reflexivity | ring ].
cut
(is_lub (EUn (opp_seq (fun k:nat => Un (n + k)%nat)))
- (- minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2))).
+ (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2))).
intro.
unfold is_lub in p; unfold is_lub in H.
elim p; intros; elim H; intros.
assert (H4 := H3 x H0).
assert
- (H5 := H1 (- minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) H2).
+ (H5 := H1 (- glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)) H2).
rewrite <-
- (Ropp_involutive (minorant (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)))
+ (Ropp_involutive (glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)))
.
apply Ropp_eq_compat; apply Rle_antisym; assumption.
- unfold minorant in |- *.
- case (min_inf (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)).
+ unfold glb in |- *.
+ case (lb_to_glb (fun k:nat => Un (n + k)%nat) (min_ss Un n pr2)); simpl.
intro; rewrite Ropp_involutive.
trivial.
- apply min_inf.
+ apply lb_to_glb.
apply min_ss; assumption.
- unfold sequence_majorant in |- *.
- cut (sigT (fun l:R => is_lub (EUn (fun i:nat => Un (n + i)%nat)) l)).
+ unfold sequence_ub in |- *.
+ cut { l:R | is_lub (EUn (fun i:nat => Un (n + i)%nat)) l }.
intro X.
elim X; intros.
- replace (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) with x.
+ replace (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) with x.
unfold is_lub in p.
elim p; intros.
unfold is_upper_bound in H.
@@ -350,24 +356,24 @@ Proof.
replace (n + 0)%nat with n; [ reflexivity | ring ].
cut
(is_lub (EUn (fun k:nat => Un (n + k)%nat))
- (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1))).
+ (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1))).
intro.
unfold is_lub in p; unfold is_lub in H.
elim p; intros; elim H; intros.
assert (H4 := H3 x H0).
assert
- (H5 := H1 (majorant (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) H2).
+ (H5 := H1 (lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)) H2).
apply Rle_antisym; assumption.
- unfold majorant in |- *.
- case (maj_sup (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)).
+ unfold lub in |- *.
+ case (ub_to_lub (fun k:nat => Un (n + k)%nat) (maj_ss Un n pr1)).
intro; trivial.
- apply maj_sup.
+ apply ub_to_lub.
apply maj_ss; assumption.
Qed.
Lemma min_maj :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un),
- has_ub (sequence_minorant Un pr2).
+ has_ub (sequence_lb Un pr2).
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
@@ -390,7 +396,7 @@ Qed.
Lemma maj_min :
forall (Un:nat -> R) (pr1:has_ub Un) (pr2:has_lb Un),
- has_lb (sequence_majorant Un pr1).
+ has_lb (sequence_ub Un pr1).
Proof.
intros.
assert (H := Vn_Un_Wn_order Un pr1 pr2).
@@ -451,7 +457,7 @@ Qed.
(**********)
Lemma maj_cv :
forall (Un:nat -> R) (pr:Cauchy_crit Un),
- sigT (fun l:R => Un_cv (sequence_majorant Un (cauchy_maj Un pr)) l).
+ { l:R | Un_cv (sequence_ub Un (cauchy_maj Un pr)) l }.
Proof.
intros.
apply decreasing_cv.
@@ -464,7 +470,7 @@ Qed.
(**********)
Lemma min_cv :
forall (Un:nat -> R) (pr:Cauchy_crit Un),
- sigT (fun l:R => Un_cv (sequence_minorant Un (cauchy_min Un pr)) l).
+ { l:R | Un_cv (sequence_lb Un (cauchy_min Un pr)) l }.
Proof.
intros.
apply growing_cv.
@@ -510,40 +516,40 @@ Qed.
(**********)
Lemma approx_maj :
forall (Un:nat -> R) (pr:has_ub Un) (eps:R),
- 0 < eps -> exists k : nat, Rabs (majorant Un pr - Un k) < eps.
+ 0 < eps -> exists k : nat, Rabs (lub Un pr - Un k) < eps.
Proof.
intros.
- set (P := fun k:nat => Rabs (majorant Un pr - Un k) < eps).
+ set (P := fun k:nat => Rabs (lub Un pr - Un k) < eps).
unfold P in |- *.
cut
((exists k : nat, P k) ->
- exists k : nat, Rabs (majorant Un pr - Un k) < eps).
+ exists k : nat, Rabs (lub Un pr - Un k) < eps).
intros.
apply H0.
apply not_all_not_ex.
red in |- *; intro.
2: unfold P in |- *; trivial.
unfold P in H1.
- cut (forall n:nat, Rabs (majorant Un pr - Un n) >= eps).
+ cut (forall n:nat, Rabs (lub Un pr - Un n) >= eps).
intro.
- cut (is_lub (EUn Un) (majorant Un pr)).
+ cut (is_lub (EUn Un) (lub Un pr)).
intro.
unfold is_lub in H3.
unfold is_upper_bound in H3.
elim H3; intros.
- cut (forall n:nat, eps <= majorant Un pr - Un n).
+ cut (forall n:nat, eps <= lub Un pr - Un n).
intro.
- cut (forall n:nat, Un n <= majorant Un pr - eps).
+ cut (forall n:nat, Un n <= lub Un pr - eps).
intro.
- cut (forall x:R, EUn Un x -> x <= majorant Un pr - eps).
+ cut (forall x:R, EUn Un x -> x <= lub Un pr - eps).
intro.
- assert (H9 := H5 (majorant Un pr - eps) H8).
+ assert (H9 := H5 (lub Un pr - eps) H8).
cut (eps <= 0).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H H10)).
- apply Rplus_le_reg_l with (majorant Un pr - eps).
+ apply Rplus_le_reg_l with (lub Un pr - eps).
rewrite Rplus_0_r.
- replace (majorant Un pr - eps + eps) with (majorant Un pr);
+ replace (lub Un pr - eps + eps) with (lub Un pr);
[ assumption | ring ].
intros.
unfold EUn in H8.
@@ -553,7 +559,7 @@ Proof.
assert (H7 := H6 n).
apply Rplus_le_reg_l with (eps - Un n).
replace (eps - Un n + Un n) with eps.
- replace (eps - Un n + (majorant Un pr - eps)) with (majorant Un pr - Un n).
+ replace (eps - Un n + (lub Un pr - eps)) with (lub Un pr - Un n).
assumption.
ring.
ring.
@@ -565,11 +571,11 @@ Proof.
apply Rle_ge.
apply Rplus_le_reg_l with (Un n).
rewrite Rplus_0_r;
- replace (Un n + (majorant Un pr - Un n)) with (majorant Un pr);
+ replace (Un n + (lub Un pr - Un n)) with (lub Un pr);
[ apply H4 | ring ].
exists n; reflexivity.
- unfold majorant in |- *.
- case (maj_sup Un pr).
+ unfold lub in |- *.
+ case (ub_to_lub Un pr).
trivial.
intro.
assert (H2 := H1 n).
@@ -579,40 +585,40 @@ Qed.
(**********)
Lemma approx_min :
forall (Un:nat -> R) (pr:has_lb Un) (eps:R),
- 0 < eps -> exists k : nat, Rabs (minorant Un pr - Un k) < eps.
+ 0 < eps -> exists k : nat, Rabs (glb Un pr - Un k) < eps.
Proof.
intros.
- set (P := fun k:nat => Rabs (minorant Un pr - Un k) < eps).
+ set (P := fun k:nat => Rabs (glb Un pr - Un k) < eps).
unfold P in |- *.
cut
((exists k : nat, P k) ->
- exists k : nat, Rabs (minorant Un pr - Un k) < eps).
+ exists k : nat, Rabs (glb Un pr - Un k) < eps).
intros.
apply H0.
apply not_all_not_ex.
red in |- *; intro.
2: unfold P in |- *; trivial.
unfold P in H1.
- cut (forall n:nat, Rabs (minorant Un pr - Un n) >= eps).
+ cut (forall n:nat, Rabs (glb Un pr - Un n) >= eps).
intro.
- cut (is_lub (EUn (opp_seq Un)) (- minorant Un pr)).
+ cut (is_lub (EUn (opp_seq Un)) (- glb Un pr)).
intro.
unfold is_lub in H3.
unfold is_upper_bound in H3.
elim H3; intros.
- cut (forall n:nat, eps <= Un n - minorant Un pr).
+ cut (forall n:nat, eps <= Un n - glb Un pr).
intro.
- cut (forall n:nat, opp_seq Un n <= - minorant Un pr - eps).
+ cut (forall n:nat, opp_seq Un n <= - glb Un pr - eps).
intro.
- cut (forall x:R, EUn (opp_seq Un) x -> x <= - minorant Un pr - eps).
+ cut (forall x:R, EUn (opp_seq Un) x -> x <= - glb Un pr - eps).
intro.
- assert (H9 := H5 (- minorant Un pr - eps) H8).
+ assert (H9 := H5 (- glb Un pr - eps) H8).
cut (eps <= 0).
intro.
elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H H10)).
- apply Rplus_le_reg_l with (- minorant Un pr - eps).
+ apply Rplus_le_reg_l with (- glb Un pr - eps).
rewrite Rplus_0_r.
- replace (- minorant Un pr - eps + eps) with (- minorant Un pr);
+ replace (- glb Un pr - eps + eps) with (- glb Un pr);
[ assumption | ring ].
intros.
unfold EUn in H8.
@@ -623,7 +629,7 @@ Proof.
unfold opp_seq in |- *.
apply Rplus_le_reg_l with (eps + Un n).
replace (eps + Un n + - Un n) with eps.
- replace (eps + Un n + (- minorant Un pr - eps)) with (Un n - minorant Un pr).
+ replace (eps + Un n + (- glb Un pr - eps)) with (Un n - glb Un pr).
assumption.
ring.
ring.
@@ -631,16 +637,16 @@ Proof.
assert (H6 := H2 n).
rewrite Rabs_left1 in H6.
apply Rge_le.
- replace (Un n - minorant Un pr) with (- (minorant Un pr - Un n));
+ replace (Un n - glb Un pr) with (- (glb Un pr - Un n));
[ assumption | ring ].
- apply Rplus_le_reg_l with (- minorant Un pr).
+ apply Rplus_le_reg_l with (- glb Un pr).
rewrite Rplus_0_r;
- replace (- minorant Un pr + (minorant Un pr - Un n)) with (- Un n).
+ replace (- glb Un pr + (glb Un pr - Un n)) with (- Un n).
apply H4.
exists n; reflexivity.
ring.
- unfold minorant in |- *.
- case (min_inf Un pr).
+ unfold glb in |- *.
+ case (lb_to_glb Un pr); simpl.
intro.
rewrite Ropp_involutive.
trivial.
@@ -711,7 +717,7 @@ Qed.
(**********)
Lemma CV_Cauchy :
- forall Un:nat -> R, sigT (fun l:R => Un_cv Un l) -> Cauchy_crit Un.
+ forall Un:nat -> R, { l:R | Un_cv Un l } -> Cauchy_crit Un.
Proof.
intros Un X; elim X; intros.
unfold Cauchy_crit in |- *; intros.
@@ -734,11 +740,11 @@ Qed.
(**********)
Lemma maj_by_pos :
forall Un:nat -> R,
- sigT (fun l:R => Un_cv Un l) ->
+ { l:R | Un_cv Un l } ->
exists l : R, 0 < l /\ (forall n:nat, Rabs (Un n) <= l).
Proof.
intros Un X; elim X; intros.
- cut (sigT (fun l:R => Un_cv (fun k:nat => Rabs (Un k)) l)).
+ cut { l:R | Un_cv (fun k:nat => Rabs (Un k)) l }.
intro X0.
assert (H := CV_Cauchy (fun k:nat => Rabs (Un k)) X0).
assert (H0 := cauchy_bound (fun k:nat => Rabs (Un k)) H).
@@ -760,7 +766,7 @@ Proof.
unfold is_upper_bound in H1.
apply H1.
exists 0%nat; reflexivity.
- apply existT with (Rabs x).
+ exists (Rabs x).
apply cv_cvabs; assumption.
Qed.
@@ -770,7 +776,7 @@ Lemma CV_mult :
Un_cv An l1 -> Un_cv Bn l2 -> Un_cv (fun i:nat => An i * Bn i) (l1 * l2).
Proof.
intros.
- cut (sigT (fun l:R => Un_cv An l)).
+ cut { l:R | Un_cv An l }.
intro X.
assert (H1 := maj_by_pos An X).
elim H1; intros M H2.
@@ -881,7 +887,7 @@ Proof.
[ assumption
| apply Rinv_0_lt_compat; apply Rmult_lt_0_compat;
[ prove_sup0 | assumption ] ].
- apply existT with l1; assumption.
+ exists l1; assumption.
Qed.
Lemma tech9 :
diff --git a/theories/Reals/SeqSeries.v b/theories/Reals/SeqSeries.v
index bc17cd43..9680b75e 100644
--- a/theories/Reals/SeqSeries.v
+++ b/theories/Reals/SeqSeries.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: SeqSeries.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: SeqSeries.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -33,15 +33,9 @@ Lemma sum_maj1 :
Rabs (l1 - SP fn N x) <= l2 - sum_f_R0 An N.
Proof.
intros;
- cut
- (sigT
- (fun l:R =>
- Un_cv (fun n:nat => sum_f_R0 (fun l:nat => fn (S N + l)%nat x) n) l)).
+ cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => fn (S N + l)%nat x) n) l }.
intro X;
- cut
- (sigT
- (fun l:R =>
- Un_cv (fun n:nat => sum_f_R0 (fun l:nat => An (S N + l)%nat) n) l)).
+ cut { l:R | Un_cv (fun n => sum_f_R0 (fun l => An (S N + l)%nat) n) l }.
intro X0; elim X; intros l1N H2.
elim X0; intros l2N H3.
cut (l1 - SP fn N x = l1N).
@@ -131,7 +125,7 @@ Proof.
apply le_lt_n_Sm.
apply le_plus_l.
apply le_O_n.
- apply existT with (l2 - sum_f_R0 An N).
+ exists (l2 - sum_f_R0 An N).
unfold Un_cv in H0; unfold Un_cv in |- *; intros.
elim (H0 eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
@@ -167,7 +161,7 @@ Proof.
apply le_lt_n_Sm.
apply le_plus_l.
apply le_O_n.
- apply existT with (l1 - SP fn N x).
+ exists (l1 - SP fn N x).
unfold Un_cv in H; unfold Un_cv in |- *; intros.
elim (H eps H2); intros N0 H3.
unfold R_dist in H3; exists N0; intros.
@@ -216,8 +210,8 @@ Qed.
Lemma Rseries_CV_comp :
forall An Bn:nat -> R,
(forall n:nat, 0 <= An n <= Bn n) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 Bn N) l) ->
- sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+ { l:R | Un_cv (fun N:nat => sum_f_R0 Bn N) l } ->
+ { l:R | Un_cv (fun N:nat => sum_f_R0 An N) l }.
Proof.
intros An Bn H X; apply cv_cauchy_2.
assert (H0 := cv_cauchy_1 _ X).
diff --git a/theories/Reals/Sqrt_reg.v b/theories/Reals/Sqrt_reg.v
index ff0a72e8..13be46da 100644
--- a/theories/Reals/Sqrt_reg.v
+++ b/theories/Reals/Sqrt_reg.v
@@ -6,12 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Sqrt_reg.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Sqrt_reg.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
-Require Import R_sqrt. Open Local Scope R_scope.
+Require Import R_sqrt.
+Open Local Scope R_scope.
(**********)
Lemma sqrt_var_maj :
@@ -309,7 +310,7 @@ Qed.
Lemma derivable_pt_sqrt : forall x:R, 0 < x -> derivable_pt sqrt x.
Proof.
unfold derivable_pt in |- *; intros.
- apply existT with (/ (2 * sqrt x)).
+ exists (/ (2 * sqrt x)).
apply derivable_pt_lim_sqrt; assumption.
Qed.
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index 7e202359..0638ca8f 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Operators_Properties.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Operators_Properties.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
(****************************************************************************)
(* Bruno Barras *)
diff --git a/theories/Relations/Relation_Operators.v b/theories/Relations/Relation_Operators.v
index 4c5a6519..87cd1e6f 100644
--- a/theories/Relations/Relation_Operators.v
+++ b/theories/Relations/Relation_Operators.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relation_Operators.v 9610 2007-02-07 14:45:18Z herbelin $ i*)
+(*i $Id: Relation_Operators.v 10681 2008-03-16 13:40:45Z msozeau $ i*)
(****************************************************************************)
(* Bruno Barras, Cristina Cornes *)
@@ -83,9 +83,9 @@ Variable leA : A -> A -> Prop.
Variable leB : B -> B -> Prop.
Inductive le_AsB : A + B -> A + B -> Prop :=
- | le_aa : forall x y:A, leA x y -> le_AsB (inl B x) (inl B y)
- | le_ab : forall (x:A) (y:B), le_AsB (inl B x) (inr A y)
- | le_bb : forall x y:B, leB x y -> le_AsB (inr A x) (inr A y).
+ | le_aa : forall x y:A, leA x y -> le_AsB (inl _ x) (inl _ y)
+ | le_ab : forall (x:A) (y:B), le_AsB (inl _ x) (inr _ y)
+ | le_bb : forall x y:B, leB x y -> le_AsB (inr _ x) (inr _ y).
End Disjoint_Union.
diff --git a/theories/Relations/Relations.v b/theories/Relations/Relations.v
index 9da30e9b..6368ae25 100644
--- a/theories/Relations/Relations.v
+++ b/theories/Relations/Relations.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Relations.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Relations.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
Require Export Relation_Definitions.
Require Export Relation_Operators.
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
index 91d2aaa4..82668006 100644
--- a/theories/Relations/Rstar.v
+++ b/theories/Relations/Rstar.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rstar.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Rstar.v 9642 2007-02-12 10:31:53Z herbelin $ i*)
(** Properties of a binary relation [R] on type [A] *)
@@ -87,7 +87,7 @@ Section Rstar.
(** Property of Commutativity of two relations *)
- Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
+ Definition commut (A:Type) (R1 R2:A -> A -> Prop) :=
forall x y:A,
R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
diff --git a/theories/Setoids/Setoid.v b/theories/Setoids/Setoid.v
index 84af7d5d..d6975e91 100644
--- a/theories/Setoids/Setoid.v
+++ b/theories/Setoids/Setoid.v
@@ -1,4 +1,3 @@
-
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
@@ -7,673 +6,20 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Setoid.v 9245 2006-10-17 12:53:34Z notin $: i*)
-
-Require Export Relation_Definitions.
-
-Set Implicit Arguments.
-
-(** * Definitions of [Relation_Class] and n-ary [Morphism_Theory] *)
-
-(* X will be used to distinguish covariant arguments whose type is an *)
-(* Asymmetric* relation from contravariant arguments of the same type *)
-Inductive X_Relation_Class (X: Type) : Type :=
- SymmetricReflexive :
- forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> X_Relation_Class X
- | AsymmetricReflexive : X -> forall A Aeq, reflexive A Aeq -> X_Relation_Class X
- | SymmetricAreflexive : forall A Aeq, symmetric A Aeq -> X_Relation_Class X
- | AsymmetricAreflexive : X -> forall A (Aeq : relation A), X_Relation_Class X
- | Leibniz : Type -> X_Relation_Class X.
-
-Inductive variance : Set :=
- Covariant
- | Contravariant.
-
-Definition Argument_Class := X_Relation_Class variance.
-Definition Relation_Class := X_Relation_Class unit.
-
-Inductive Reflexive_Relation_Class : Type :=
- RSymmetric :
- forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
- | RAsymmetric :
- forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
- | RLeibniz : Type -> Reflexive_Relation_Class.
-
-Inductive Areflexive_Relation_Class : Type :=
- | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
- | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
-
-Implicit Type Hole Out: Relation_Class.
-
-Definition relation_class_of_argument_class : Argument_Class -> Relation_Class.
- destruct 1.
- exact (SymmetricReflexive _ s r).
- exact (AsymmetricReflexive tt r).
- exact (SymmetricAreflexive _ s).
- exact (AsymmetricAreflexive tt Aeq).
- exact (Leibniz _ T).
-Defined.
-
-Definition carrier_of_relation_class : forall X, X_Relation_Class X -> Type.
- destruct 1.
- exact A.
- exact A.
- exact A.
- exact A.
- exact T.
-Defined.
-
-Definition relation_of_relation_class :
- forall X R, @carrier_of_relation_class X R -> carrier_of_relation_class R -> Prop.
- destruct R.
- exact Aeq.
- exact Aeq.
- exact Aeq.
- exact Aeq.
- exact (@eq T).
-Defined.
-
-Lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
- forall R,
- carrier_of_relation_class (relation_class_of_argument_class R) =
- carrier_of_relation_class R.
- destruct R; reflexivity.
-Defined.
-
-Inductive nelistT (A : Type) : Type :=
- singl : A -> nelistT A
- | necons : A -> nelistT A -> nelistT A.
-
-Definition Arguments := nelistT Argument_Class.
-
-Implicit Type In: Arguments.
-
-Definition function_type_of_morphism_signature :
- Arguments -> Relation_Class -> Type.
- intros In Out.
- induction In.
- exact (carrier_of_relation_class a -> carrier_of_relation_class Out).
- exact (carrier_of_relation_class a -> IHIn).
-Defined.
-
-Definition make_compatibility_goal_aux:
- forall In Out
- (f g: function_type_of_morphism_signature In Out), Prop.
- intros; induction In; simpl in f, g.
- induction a; simpl in f, g.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x, relation_of_relation_class Out (f x) (g x)).
- induction a; simpl in f, g.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
- exact (forall x, IHIn (f x) (g x)).
-Defined.
-
-Definition make_compatibility_goal :=
- (fun In Out f => make_compatibility_goal_aux In Out f f).
-
-Record Morphism_Theory In Out : Type :=
- { Function : function_type_of_morphism_signature In Out;
- Compat : make_compatibility_goal In Out Function }.
-
-(** The [iff] relation class *)
-
-Definition Iff_Relation_Class : Relation_Class.
- eapply (@SymmetricReflexive unit _ iff).
- exact iff_sym.
- exact iff_refl.
-Defined.
-
-(** The [impl] relation class *)
-
-Definition impl (A B: Prop) := A -> B.
-
-Theorem impl_refl: reflexive _ impl.
-Proof.
- hnf; unfold impl; tauto.
-Qed.
-
-Definition Impl_Relation_Class : Relation_Class.
- eapply (@AsymmetricReflexive unit tt _ impl).
- exact impl_refl.
-Defined.
-
-(** Every function is a morphism from Leibniz+ to Leibniz *)
-
-Definition list_of_Leibniz_of_list_of_types: nelistT Type -> Arguments.
- induction 1.
- exact (singl (Leibniz _ a)).
- exact (necons (Leibniz _ a) IHX).
-Defined.
-
-Definition morphism_theory_of_function :
- forall (In: nelistT Type) (Out: Type),
- let In' := list_of_Leibniz_of_list_of_types In in
- let Out' := Leibniz _ Out in
- function_type_of_morphism_signature In' Out' ->
- Morphism_Theory In' Out'.
- intros.
- exists X.
- induction In; unfold make_compatibility_goal; simpl.
- reflexivity.
- intro; apply (IHIn (X x)).
-Defined.
-
-(** Every predicate is a morphism from Leibniz+ to Iff_Relation_Class *)
-
-Definition morphism_theory_of_predicate :
- forall (In: nelistT Type),
- let In' := list_of_Leibniz_of_list_of_types In in
- function_type_of_morphism_signature In' Iff_Relation_Class ->
- Morphism_Theory In' Iff_Relation_Class.
- intros.
- exists X.
- induction In; unfold make_compatibility_goal; simpl.
- intro; apply iff_refl.
- intro; apply (IHIn (X x)).
-Defined.
-
-(** * Utility functions to prove that every transitive relation is a morphism *)
-
-Definition equality_morphism_of_symmetric_areflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(sym: symmetric _ Aeq)(trans: transitive _ Aeq),
- let ASetoidClass := SymmetricAreflexive _ sym in
- (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; split; eauto.
-Defined.
-
-Definition equality_morphism_of_symmetric_reflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(sym: symmetric _ Aeq)
- (trans: transitive _ Aeq), let ASetoidClass := SymmetricReflexive _ sym refl in
- (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; split; eauto.
-Defined.
-
-Definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(trans: transitive _ Aeq),
- let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
- let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
- (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; unfold impl; eauto.
-Defined.
-
-Definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(trans: transitive _ Aeq),
- let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
- let ASetoidClass2 := AsymmetricReflexive Covariant refl in
- (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; unfold impl; eauto.
-Defined.
-
-(** * A few examples on [iff] *)
-
-(** [iff] as a relation *)
-
-Add Relation Prop iff
- reflexivity proved by iff_refl
- symmetry proved by iff_sym
- transitivity proved by iff_trans
-as iff_relation.
-
-(** [impl] as a relation *)
-
-Theorem impl_trans: transitive _ impl.
-Proof.
- hnf; unfold impl; tauto.
-Qed.
-
-Add Relation Prop impl
- reflexivity proved by impl_refl
- transitivity proved by impl_trans
-as impl_relation.
-
-(** [impl] is a morphism *)
-
-Add Morphism impl with signature iff ==> iff ==> iff as Impl_Morphism.
-Proof.
- unfold impl; tauto.
-Qed.
-
-(** [and] is a morphism *)
-
-Add Morphism and with signature iff ==> iff ==> iff as And_Morphism.
- tauto.
-Qed.
-
-(** [or] is a morphism *)
-
-Add Morphism or with signature iff ==> iff ==> iff as Or_Morphism.
-Proof.
- tauto.
-Qed.
-
-(** [not] is a morphism *)
-
-Add Morphism not with signature iff ==> iff as Not_Morphism.
-Proof.
- tauto.
-Qed.
-
-(** The same examples on [impl] *)
-
-Add Morphism and with signature impl ++> impl ++> impl as And_Morphism2.
-Proof.
- unfold impl; tauto.
-Qed.
-
-Add Morphism or with signature impl ++> impl ++> impl as Or_Morphism2.
-Proof.
- unfold impl; tauto.
-Qed.
-
-Add Morphism not with signature impl --> impl as Not_Morphism2.
-Proof.
- unfold impl; tauto.
-Qed.
-
-(** * The CIC part of the reflexive tactic ([setoid_rewrite]) *)
-
-Inductive rewrite_direction : Type :=
- | Left2Right
- | Right2Left.
-
-Implicit Type dir: rewrite_direction.
-
-Definition variance_of_argument_class : Argument_Class -> option variance.
- destruct 1.
- exact None.
- exact (Some v).
- exact None.
- exact (Some v).
- exact None.
-Defined.
-
-Definition opposite_direction :=
- fun dir =>
- match dir with
- | Left2Right => Right2Left
- | Right2Left => Left2Right
- end.
-
-Lemma opposite_direction_idempotent:
- forall dir, (opposite_direction (opposite_direction dir)) = dir.
-Proof.
- destruct dir; reflexivity.
-Qed.
-
-Inductive check_if_variance_is_respected :
- option variance -> rewrite_direction -> rewrite_direction -> Prop :=
- | MSNone : forall dir dir', check_if_variance_is_respected None dir dir'
- | MSCovariant : forall dir, check_if_variance_is_respected (Some Covariant) dir dir
- | MSContravariant :
- forall dir,
- check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
-
-Definition relation_class_of_reflexive_relation_class:
- Reflexive_Relation_Class -> Relation_Class.
- induction 1.
- exact (SymmetricReflexive _ s r).
- exact (AsymmetricReflexive tt r).
- exact (Leibniz _ T).
-Defined.
-
-Definition relation_class_of_areflexive_relation_class:
- Areflexive_Relation_Class -> Relation_Class.
- induction 1.
- exact (SymmetricAreflexive _ s).
- exact (AsymmetricAreflexive tt Aeq).
-Defined.
-
-Definition carrier_of_reflexive_relation_class :=
- fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
-
-Definition carrier_of_areflexive_relation_class :=
- fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
-
-Definition relation_of_areflexive_relation_class :=
- fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
-
-Inductive Morphism_Context Hole dir : Relation_Class -> rewrite_direction -> Type :=
- | App :
- forall In Out dir',
- Morphism_Theory In Out -> Morphism_Context_List Hole dir dir' In ->
- Morphism_Context Hole dir Out dir'
- | ToReplace : Morphism_Context Hole dir Hole dir
- | ToKeep :
- forall S dir',
- carrier_of_reflexive_relation_class S ->
- Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
- | ProperElementToKeep :
- forall S dir' (x: carrier_of_areflexive_relation_class S),
- relation_of_areflexive_relation_class S x x ->
- Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
-with Morphism_Context_List Hole dir :
- rewrite_direction -> Arguments -> Type
-:=
- fcl_singl :
- forall S dir' dir'',
- check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
- Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
- Morphism_Context_List Hole dir dir'' (singl S)
- | fcl_cons :
- forall S L dir' dir'',
- check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
- Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
- Morphism_Context_List Hole dir dir'' L ->
- Morphism_Context_List Hole dir dir'' (necons S L).
-
-Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
-with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
-
-Definition product_of_arguments : Arguments -> Type.
- induction 1.
- exact (carrier_of_relation_class a).
- exact (prod (carrier_of_relation_class a) IHX).
-Defined.
-
-Definition get_rewrite_direction: rewrite_direction -> Argument_Class -> rewrite_direction.
- intros dir R.
- destruct (variance_of_argument_class R).
- destruct v.
- exact dir. (* covariant *)
- exact (opposite_direction dir). (* contravariant *)
- exact dir. (* symmetric relation *)
-Defined.
-
-Definition directed_relation_of_relation_class:
- forall dir (R: Relation_Class),
- carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
- destruct 1.
- exact (@relation_of_relation_class unit).
- intros; exact (relation_of_relation_class _ X0 X).
-Defined.
-
-Definition directed_relation_of_argument_class:
- forall dir (R: Argument_Class),
- carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
- intros dir R.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class R).
- exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
-Defined.
-
-
-Definition relation_of_product_of_arguments:
- forall dir In,
- product_of_arguments In -> product_of_arguments In -> Prop.
- induction In.
- simpl.
- exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
-
- simpl; intros.
- destruct X; destruct X0.
- apply and.
- exact
- (directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
- exact (IHIn p p0).
-Defined.
-
-Definition apply_morphism:
- forall In Out (m: function_type_of_morphism_signature In Out)
- (args: product_of_arguments In), carrier_of_relation_class Out.
- intros.
- induction In.
- exact (m args).
- simpl in m, args.
- destruct args.
- exact (IHIn (m c) p).
-Defined.
-
-Theorem apply_morphism_compatibility_Right2Left:
- forall In Out (m1 m2: function_type_of_morphism_signature In Out)
- (args1 args2: product_of_arguments In),
- make_compatibility_goal_aux _ _ m1 m2 ->
- relation_of_product_of_arguments Right2Left _ args1 args2 ->
- directed_relation_of_relation_class Right2Left _
- (apply_morphism _ _ m2 args1)
- (apply_morphism _ _ m1 args2).
- induction In; intros.
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct a; simpl in H; hnf in H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- rewrite H0; apply H; exact H0.
-
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct args1; destruct args2; simpl.
- destruct H0.
- simpl in H.
- destruct a; simpl in H.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- rewrite H0; apply IHIn.
- apply H.
- exact H1.
-Qed.
-
-Theorem apply_morphism_compatibility_Left2Right:
- forall In Out (m1 m2: function_type_of_morphism_signature In Out)
- (args1 args2: product_of_arguments In),
- make_compatibility_goal_aux _ _ m1 m2 ->
- relation_of_product_of_arguments Left2Right _ args1 args2 ->
- directed_relation_of_relation_class Left2Right _
- (apply_morphism _ _ m1 args1)
- (apply_morphism _ _ m2 args2).
-Proof.
- induction In; intros.
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct a; simpl in H; hnf in H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- rewrite H0; apply H; exact H0.
-
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct args1; destruct args2; simpl.
- destruct H0.
- simpl in H.
- destruct a; simpl in H.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- destruct v; simpl in H, H0; apply H; exact H0.
- exact H1.
- rewrite H0; apply IHIn.
- apply H.
- exact H1.
-Qed.
-
-Definition interp :
- forall Hole dir Out dir', carrier_of_relation_class Hole ->
- Morphism_Context Hole dir Out dir' -> carrier_of_relation_class Out.
- intros Hole dir Out dir' H t.
- elim t using
- (@Morphism_Context_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
- (fun _ L fcl => product_of_arguments L));
- intros.
- exact (apply_morphism _ _ (Function m) X).
- exact H.
- exact c.
- exact x.
- simpl;
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- split.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- exact X0.
-Defined.
-
-(* CSC: interp and interp_relation_class_list should be mutually defined, since
- the proof term of each one contains the proof term of the other one. However
- I cannot do that interactively (I should write the Fix by hand) *)
-Definition interp_relation_class_list :
- forall Hole dir dir' (L: Arguments), carrier_of_relation_class Hole ->
- Morphism_Context_List Hole dir dir' L -> product_of_arguments L.
- intros Hole dir dir' L H t.
- elim t using
- (@Morphism_Context_List_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
- (fun _ L fcl => product_of_arguments L));
- intros.
- exact (apply_morphism _ _ (Function m) X).
- exact H.
- exact c.
- exact x.
- simpl;
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- split.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- exact X0.
-Defined.
-
-Theorem setoid_rewrite:
- forall Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
- (E: Morphism_Context Hole dir Out dir'),
- (directed_relation_of_relation_class dir Hole E1 E2) ->
- (directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
-Proof.
- intros.
- elim E using
- (@Morphism_Context_rect2 Hole dir
- (fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
- (fun dir'' L fcl =>
- relation_of_product_of_arguments dir'' _
- (interp_relation_class_list E1 fcl)
- (interp_relation_class_list E2 fcl))); intros.
- change (directed_relation_of_relation_class dir'0 Out0
- (apply_morphism _ _ (Function m) (interp_relation_class_list E1 m0))
- (apply_morphism _ _ (Function m) (interp_relation_class_list E2 m0))).
- destruct dir'0.
- apply apply_morphism_compatibility_Left2Right.
- exact (Compat m).
- exact H0.
- apply apply_morphism_compatibility_Right2Left.
- exact (Compat m).
- exact H0.
-
- exact H.
-
- unfold interp, Morphism_Context_rect2.
- (* CSC: reflexivity used here *)
- destruct S; destruct dir'0; simpl; (apply r || reflexivity).
-
- destruct dir'0; exact r.
-
- destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
- unfold get_rewrite_direction; simpl.
- destruct dir'0; destruct dir'';
- (exact H0 ||
- unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
- (* the following mess with generalize/clear/intros is to help Coq resolving *)
- (* second order unification problems. *)
- generalize m c H0; clear H0 m c; inversion c;
- generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
- (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
- destruct dir'0; destruct dir'';
- (exact H0 ||
- unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
- (* the following mess with generalize/clear/intros is to help Coq resolving *)
- (* second order unification problems. *)
- generalize m c H0; clear H0 m c; inversion c;
- generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
- (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
- destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
-
- change
- (directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
- (eq_rect _ (fun T : Type => T) (interp E1 m) _
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S))
- (eq_rect _ (fun T : Type => T) (interp E2 m) _
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
- relation_of_product_of_arguments dir'' _
- (interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
- split.
- clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
- destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
- inversion c.
- rewrite <- H3; exact H0.
- rewrite (opposite_direction_idempotent dir'0); exact H0.
- destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
- inversion c.
- rewrite <- H3; exact H0.
- rewrite (opposite_direction_idempotent dir'0); exact H0.
- destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
- exact H1.
- Qed.
-
-(** * Miscelenous *)
-
-(** For backwark compatibility *)
+(*i $Id: Setoid.v 10765 2008-04-08 16:15:23Z msozeau $: i*)
-Record Setoid_Theory (A: Type) (Aeq: relation A) : Prop :=
- { Seq_refl : forall x:A, Aeq x x;
- Seq_sym : forall x y:A, Aeq x y -> Aeq y x;
- Seq_trans : forall x y z:A, Aeq x y -> Aeq y z -> Aeq x z }.
+Require Export Coq.Classes.SetoidTactics.
-Implicit Arguments Setoid_Theory [].
-Implicit Arguments Seq_refl [].
-Implicit Arguments Seq_sym [].
-Implicit Arguments Seq_trans [].
+(** For backward compatibility *)
+Definition Setoid_Theory := @Equivalence.
+Definition Build_Setoid_Theory := @Build_Equivalence.
+Definition Seq_refl A Aeq (s : Setoid_Theory A Aeq) : forall x:A, Aeq x x :=
+ Eval compute in reflexivity.
+Definition Seq_sym A Aeq (s : Setoid_Theory A Aeq) : forall x y:A, Aeq x y -> Aeq y x :=
+ Eval compute in symmetry.
+Definition Seq_trans A Aeq (s : Setoid_Theory A Aeq) : forall x y z:A, Aeq x y -> Aeq y z -> Aeq x z :=
+ Eval compute in transitivity.
(** Some tactics for manipulating Setoid Theory not officially
declared as Setoid. *)
diff --git a/theories/Setoids/Setoid_Prop.v b/theories/Setoids/Setoid_Prop.v
new file mode 100644
index 00000000..7300937e
--- /dev/null
+++ b/theories/Setoids/Setoid_Prop.v
@@ -0,0 +1,79 @@
+
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Setoid_Prop.v 10739 2008-04-01 14:45:20Z herbelin $: i*)
+
+Require Import Setoid_tac.
+
+(** * A few examples on [iff] *)
+
+(** [iff] as a relation *)
+
+Add Relation Prop iff
+ reflexivity proved by iff_refl
+ symmetry proved by iff_sym
+ transitivity proved by iff_trans
+as iff_relation.
+
+(** [impl] as a relation *)
+
+Theorem impl_trans: transitive _ impl.
+Proof.
+ hnf; unfold impl; tauto.
+Qed.
+
+Add Relation Prop impl
+ reflexivity proved by impl_refl
+ transitivity proved by impl_trans
+as impl_relation.
+
+(** [impl] is a morphism *)
+
+Add Morphism impl with signature iff ==> iff ==> iff as Impl_Morphism.
+Proof.
+ unfold impl; tauto.
+Qed.
+
+(** [and] is a morphism *)
+
+Add Morphism and with signature iff ==> iff ==> iff as And_Morphism.
+ tauto.
+Qed.
+
+(** [or] is a morphism *)
+
+Add Morphism or with signature iff ==> iff ==> iff as Or_Morphism.
+Proof.
+ tauto.
+Qed.
+
+(** [not] is a morphism *)
+
+Add Morphism not with signature iff ==> iff as Not_Morphism.
+Proof.
+ tauto.
+Qed.
+
+(** The same examples on [impl] *)
+
+Add Morphism and with signature impl ++> impl ++> impl as And_Morphism2.
+Proof.
+ unfold impl; tauto.
+Qed.
+
+Add Morphism or with signature impl ++> impl ++> impl as Or_Morphism2.
+Proof.
+ unfold impl; tauto.
+Qed.
+
+Add Morphism not with signature impl --> impl as Not_Morphism2.
+Proof.
+ unfold impl; tauto.
+Qed.
+
diff --git a/theories/Setoids/Setoid_tac.v b/theories/Setoids/Setoid_tac.v
new file mode 100644
index 00000000..cdc4eafe
--- /dev/null
+++ b/theories/Setoids/Setoid_tac.v
@@ -0,0 +1,595 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Setoid_tac.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
+
+Require Export Relation_Definitions.
+
+Set Implicit Arguments.
+
+(** * Definitions of [Relation_Class] and n-ary [Morphism_Theory] *)
+
+(* X will be used to distinguish covariant arguments whose type is an *)
+(* Asymmetric* relation from contravariant arguments of the same type *)
+Inductive X_Relation_Class (X: Type) : Type :=
+ SymmetricReflexive :
+ forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> X_Relation_Class X
+ | AsymmetricReflexive : X -> forall A Aeq, reflexive A Aeq -> X_Relation_Class X
+ | SymmetricAreflexive : forall A Aeq, symmetric A Aeq -> X_Relation_Class X
+ | AsymmetricAreflexive : X -> forall A (Aeq : relation A), X_Relation_Class X
+ | Leibniz : Type -> X_Relation_Class X.
+
+Inductive variance : Set :=
+ Covariant
+ | Contravariant.
+
+Definition Argument_Class := X_Relation_Class variance.
+Definition Relation_Class := X_Relation_Class unit.
+
+Inductive Reflexive_Relation_Class : Type :=
+ RSymmetric :
+ forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
+ | RAsymmetric :
+ forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
+ | RLeibniz : Type -> Reflexive_Relation_Class.
+
+Inductive Areflexive_Relation_Class : Type :=
+ | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
+ | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
+
+Implicit Type Hole Out: Relation_Class.
+
+Definition relation_class_of_argument_class : Argument_Class -> Relation_Class.
+ destruct 1.
+ exact (SymmetricReflexive _ s r).
+ exact (AsymmetricReflexive tt r).
+ exact (SymmetricAreflexive _ s).
+ exact (AsymmetricAreflexive tt Aeq).
+ exact (Leibniz _ T).
+Defined.
+
+Definition carrier_of_relation_class : forall X, X_Relation_Class X -> Type.
+ destruct 1.
+ exact A.
+ exact A.
+ exact A.
+ exact A.
+ exact T.
+Defined.
+
+Definition relation_of_relation_class :
+ forall X R, @carrier_of_relation_class X R -> carrier_of_relation_class R -> Prop.
+ destruct R.
+ exact Aeq.
+ exact Aeq.
+ exact Aeq.
+ exact Aeq.
+ exact (@eq T).
+Defined.
+
+Lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
+ forall R,
+ carrier_of_relation_class (relation_class_of_argument_class R) =
+ carrier_of_relation_class R.
+ destruct R; reflexivity.
+Defined.
+
+Inductive nelistT (A : Type) : Type :=
+ singl : A -> nelistT A
+ | necons : A -> nelistT A -> nelistT A.
+
+Definition Arguments := nelistT Argument_Class.
+
+Implicit Type In: Arguments.
+
+Definition function_type_of_morphism_signature :
+ Arguments -> Relation_Class -> Type.
+ intros In Out.
+ induction In.
+ exact (carrier_of_relation_class a -> carrier_of_relation_class Out).
+ exact (carrier_of_relation_class a -> IHIn).
+Defined.
+
+Definition make_compatibility_goal_aux:
+ forall In Out
+ (f g: function_type_of_morphism_signature In Out), Prop.
+ intros; induction In; simpl in f, g.
+ induction a; simpl in f, g.
+ exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
+ destruct x.
+ exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
+ destruct x.
+ exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
+ exact (forall x, relation_of_relation_class Out (f x) (g x)).
+ induction a; simpl in f, g.
+ exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
+ destruct x.
+ exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
+ destruct x.
+ exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
+ exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
+ exact (forall x, IHIn (f x) (g x)).
+Defined.
+
+Definition make_compatibility_goal :=
+ (fun In Out f => make_compatibility_goal_aux In Out f f).
+
+Record Morphism_Theory In Out : Type :=
+ { Function : function_type_of_morphism_signature In Out;
+ Compat : make_compatibility_goal In Out Function }.
+
+
+(** The [iff] relation class *)
+
+Definition Iff_Relation_Class : Relation_Class.
+ eapply (@SymmetricReflexive unit _ iff).
+ exact iff_sym.
+ exact iff_refl.
+Defined.
+
+(** The [impl] relation class *)
+
+Definition impl (A B: Prop) := A -> B.
+
+Theorem impl_refl: reflexive _ impl.
+Proof.
+ hnf; unfold impl; tauto.
+Qed.
+
+Definition Impl_Relation_Class : Relation_Class.
+ eapply (@AsymmetricReflexive unit tt _ impl).
+ exact impl_refl.
+Defined.
+
+(** Every function is a morphism from Leibniz+ to Leibniz *)
+
+Definition list_of_Leibniz_of_list_of_types: nelistT Type -> Arguments.
+ induction 1.
+ exact (singl (Leibniz _ a)).
+ exact (necons (Leibniz _ a) IHX).
+Defined.
+
+Definition morphism_theory_of_function :
+ forall (In: nelistT Type) (Out: Type),
+ let In' := list_of_Leibniz_of_list_of_types In in
+ let Out' := Leibniz _ Out in
+ function_type_of_morphism_signature In' Out' ->
+ Morphism_Theory In' Out'.
+ intros.
+ exists X.
+ induction In; unfold make_compatibility_goal; simpl.
+ reflexivity.
+ intro; apply (IHIn (X x)).
+Defined.
+
+(** Every predicate is a morphism from Leibniz+ to Iff_Relation_Class *)
+
+Definition morphism_theory_of_predicate :
+ forall (In: nelistT Type),
+ let In' := list_of_Leibniz_of_list_of_types In in
+ function_type_of_morphism_signature In' Iff_Relation_Class ->
+ Morphism_Theory In' Iff_Relation_Class.
+ intros.
+ exists X.
+ induction In; unfold make_compatibility_goal; simpl.
+ intro; apply iff_refl.
+ intro; apply (IHIn (X x)).
+Defined.
+
+(** * Utility functions to prove that every transitive relation is a morphism *)
+
+Definition equality_morphism_of_symmetric_areflexive_transitive_relation:
+ forall (A: Type)(Aeq: relation A)(sym: symmetric _ Aeq)(trans: transitive _ Aeq),
+ let ASetoidClass := SymmetricAreflexive _ sym in
+ (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; split; eauto.
+Defined.
+
+Definition equality_morphism_of_symmetric_reflexive_transitive_relation:
+ forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(sym: symmetric _ Aeq)
+ (trans: transitive _ Aeq), let ASetoidClass := SymmetricReflexive _ sym refl in
+ (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; split; eauto.
+Defined.
+
+Definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
+ forall (A: Type)(Aeq: relation A)(trans: transitive _ Aeq),
+ let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
+ let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
+ (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; unfold impl; eauto.
+Defined.
+
+Definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
+ forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(trans: transitive _ Aeq),
+ let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
+ let ASetoidClass2 := AsymmetricReflexive Covariant refl in
+ (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
+ intros.
+ exists Aeq.
+ unfold make_compatibility_goal; simpl; unfold impl; eauto.
+Defined.
+
+(** * The CIC part of the reflexive tactic ([setoid_rewrite]) *)
+
+Inductive rewrite_direction : Type :=
+ | Left2Right
+ | Right2Left.
+
+Implicit Type dir: rewrite_direction.
+
+Definition variance_of_argument_class : Argument_Class -> option variance.
+ destruct 1.
+ exact None.
+ exact (Some v).
+ exact None.
+ exact (Some v).
+ exact None.
+Defined.
+
+Definition opposite_direction :=
+ fun dir =>
+ match dir with
+ | Left2Right => Right2Left
+ | Right2Left => Left2Right
+ end.
+
+Lemma opposite_direction_idempotent:
+ forall dir, (opposite_direction (opposite_direction dir)) = dir.
+Proof.
+ destruct dir; reflexivity.
+Qed.
+
+Inductive check_if_variance_is_respected :
+ option variance -> rewrite_direction -> rewrite_direction -> Prop :=
+ | MSNone : forall dir dir', check_if_variance_is_respected None dir dir'
+ | MSCovariant : forall dir, check_if_variance_is_respected (Some Covariant) dir dir
+ | MSContravariant :
+ forall dir,
+ check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
+
+Definition relation_class_of_reflexive_relation_class:
+ Reflexive_Relation_Class -> Relation_Class.
+ induction 1.
+ exact (SymmetricReflexive _ s r).
+ exact (AsymmetricReflexive tt r).
+ exact (Leibniz _ T).
+Defined.
+
+Definition relation_class_of_areflexive_relation_class:
+ Areflexive_Relation_Class -> Relation_Class.
+ induction 1.
+ exact (SymmetricAreflexive _ s).
+ exact (AsymmetricAreflexive tt Aeq).
+Defined.
+
+Definition carrier_of_reflexive_relation_class :=
+ fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
+
+Definition carrier_of_areflexive_relation_class :=
+ fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
+
+Definition relation_of_areflexive_relation_class :=
+ fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
+
+Inductive Morphism_Context Hole dir : Relation_Class -> rewrite_direction -> Type :=
+ | App :
+ forall In Out dir',
+ Morphism_Theory In Out -> Morphism_Context_List Hole dir dir' In ->
+ Morphism_Context Hole dir Out dir'
+ | ToReplace : Morphism_Context Hole dir Hole dir
+ | ToKeep :
+ forall S dir',
+ carrier_of_reflexive_relation_class S ->
+ Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
+ | ProperElementToKeep :
+ forall S dir' (x: carrier_of_areflexive_relation_class S),
+ relation_of_areflexive_relation_class S x x ->
+ Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
+with Morphism_Context_List Hole dir :
+ rewrite_direction -> Arguments -> Type
+:=
+ fcl_singl :
+ forall S dir' dir'',
+ check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
+ Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
+ Morphism_Context_List Hole dir dir'' (singl S)
+ | fcl_cons :
+ forall S L dir' dir'',
+ check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
+ Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
+ Morphism_Context_List Hole dir dir'' L ->
+ Morphism_Context_List Hole dir dir'' (necons S L).
+
+Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
+with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
+
+Definition product_of_arguments : Arguments -> Type.
+ induction 1.
+ exact (carrier_of_relation_class a).
+ exact (prod (carrier_of_relation_class a) IHX).
+Defined.
+
+Definition get_rewrite_direction: rewrite_direction -> Argument_Class -> rewrite_direction.
+ intros dir R.
+ destruct (variance_of_argument_class R).
+ destruct v.
+ exact dir. (* covariant *)
+ exact (opposite_direction dir). (* contravariant *)
+ exact dir. (* symmetric relation *)
+Defined.
+
+Definition directed_relation_of_relation_class:
+ forall dir (R: Relation_Class),
+ carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
+ destruct 1.
+ exact (@relation_of_relation_class unit).
+ intros; exact (relation_of_relation_class _ X0 X).
+Defined.
+
+Definition directed_relation_of_argument_class:
+ forall dir (R: Argument_Class),
+ carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
+ intros dir R.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class R).
+ exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
+Defined.
+
+
+Definition relation_of_product_of_arguments:
+ forall dir In,
+ product_of_arguments In -> product_of_arguments In -> Prop.
+ induction In.
+ simpl.
+ exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
+
+ simpl; intros.
+ destruct X; destruct X0.
+ apply and.
+ exact
+ (directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
+ exact (IHIn p p0).
+Defined.
+
+Definition apply_morphism:
+ forall In Out (m: function_type_of_morphism_signature In Out)
+ (args: product_of_arguments In), carrier_of_relation_class Out.
+ intros.
+ induction In.
+ exact (m args).
+ simpl in m, args.
+ destruct args.
+ exact (IHIn (m c) p).
+Defined.
+
+Theorem apply_morphism_compatibility_Right2Left:
+ forall In Out (m1 m2: function_type_of_morphism_signature In Out)
+ (args1 args2: product_of_arguments In),
+ make_compatibility_goal_aux _ _ m1 m2 ->
+ relation_of_product_of_arguments Right2Left _ args1 args2 ->
+ directed_relation_of_relation_class Right2Left _
+ (apply_morphism _ _ m2 args1)
+ (apply_morphism _ _ m1 args2).
+ induction In; intros.
+ simpl in m1, m2, args1, args2, H0 |- *.
+ destruct a; simpl in H; hnf in H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ rewrite H0; apply H; exact H0.
+
+ simpl in m1, m2, args1, args2, H0 |- *.
+ destruct args1; destruct args2; simpl.
+ destruct H0.
+ simpl in H.
+ destruct a; simpl in H.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ rewrite H0; apply IHIn.
+ apply H.
+ exact H1.
+Qed.
+
+Theorem apply_morphism_compatibility_Left2Right:
+ forall In Out (m1 m2: function_type_of_morphism_signature In Out)
+ (args1 args2: product_of_arguments In),
+ make_compatibility_goal_aux _ _ m1 m2 ->
+ relation_of_product_of_arguments Left2Right _ args1 args2 ->
+ directed_relation_of_relation_class Left2Right _
+ (apply_morphism _ _ m1 args1)
+ (apply_morphism _ _ m2 args2).
+Proof.
+ induction In; intros.
+ simpl in m1, m2, args1, args2, H0 |- *.
+ destruct a; simpl in H; hnf in H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ apply H; exact H0.
+ destruct v; simpl in H0; apply H; exact H0.
+ rewrite H0; apply H; exact H0.
+
+ simpl in m1, m2, args1, args2, H0 |- *.
+ destruct args1; destruct args2; simpl.
+ destruct H0.
+ simpl in H.
+ destruct a; simpl in H.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ destruct v.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ apply H; exact H0.
+ exact H1.
+ apply IHIn.
+ destruct v; simpl in H, H0; apply H; exact H0.
+ exact H1.
+ rewrite H0; apply IHIn.
+ apply H.
+ exact H1.
+Qed.
+
+Definition interp :
+ forall Hole dir Out dir', carrier_of_relation_class Hole ->
+ Morphism_Context Hole dir Out dir' -> carrier_of_relation_class Out.
+ intros Hole dir Out dir' H t.
+ elim t using
+ (@Morphism_Context_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
+ (fun _ L fcl => product_of_arguments L));
+ intros.
+ exact (apply_morphism _ _ (Function m) X).
+ exact H.
+ exact c.
+ exact x.
+ simpl;
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ split.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ exact X0.
+Defined.
+
+(* CSC: interp and interp_relation_class_list should be mutually defined, since
+ the proof term of each one contains the proof term of the other one. However
+ I cannot do that interactively (I should write the Fix by hand) *)
+Definition interp_relation_class_list :
+ forall Hole dir dir' (L: Arguments), carrier_of_relation_class Hole ->
+ Morphism_Context_List Hole dir dir' L -> product_of_arguments L.
+ intros Hole dir dir' L H t.
+ elim t using
+ (@Morphism_Context_List_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
+ (fun _ L fcl => product_of_arguments L));
+ intros.
+ exact (apply_morphism _ _ (Function m) X).
+ exact H.
+ exact c.
+ exact x.
+ simpl;
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ split.
+ rewrite <-
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
+ exact X.
+ exact X0.
+Defined.
+
+Theorem setoid_rewrite:
+ forall Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
+ (E: Morphism_Context Hole dir Out dir'),
+ (directed_relation_of_relation_class dir Hole E1 E2) ->
+ (directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
+Proof.
+ intros.
+ elim E using
+ (@Morphism_Context_rect2 Hole dir
+ (fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
+ (fun dir'' L fcl =>
+ relation_of_product_of_arguments dir'' _
+ (interp_relation_class_list E1 fcl)
+ (interp_relation_class_list E2 fcl))); intros.
+ change (directed_relation_of_relation_class dir'0 Out0
+ (apply_morphism _ _ (Function m) (interp_relation_class_list E1 m0))
+ (apply_morphism _ _ (Function m) (interp_relation_class_list E2 m0))).
+ destruct dir'0.
+ apply apply_morphism_compatibility_Left2Right.
+ exact (Compat m).
+ exact H0.
+ apply apply_morphism_compatibility_Right2Left.
+ exact (Compat m).
+ exact H0.
+
+ exact H.
+
+ unfold interp, Morphism_Context_rect2.
+ (* CSC: reflexivity used here *)
+ destruct S; destruct dir'0; simpl; (apply r || reflexivity).
+
+ destruct dir'0; exact r.
+
+ destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
+ unfold get_rewrite_direction; simpl.
+ destruct dir'0; destruct dir'';
+ (exact H0 ||
+ unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
+ (* the following mess with generalize/clear/intros is to help Coq resolving *)
+ (* second order unification problems. *)
+ generalize m c H0; clear H0 m c; inversion c;
+ generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
+ (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
+ destruct dir'0; destruct dir'';
+ (exact H0 ||
+ unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
+ (* the following mess with generalize/clear/intros is to help Coq resolving *)
+ (* second order unification problems. *)
+ generalize m c H0; clear H0 m c; inversion c;
+ generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
+ (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
+ destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
+
+ change
+ (directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
+ (eq_rect _ (fun T : Type => T) (interp E1 m) _
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S))
+ (eq_rect _ (fun T : Type => T) (interp E2 m) _
+ (about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
+ relation_of_product_of_arguments dir'' _
+ (interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
+ split.
+ clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
+ inversion c.
+ rewrite <- H3; exact H0.
+ rewrite (opposite_direction_idempotent dir'0); exact H0.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
+ inversion c.
+ rewrite <- H3; exact H0.
+ rewrite (opposite_direction_idempotent dir'0); exact H0.
+ destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
+ exact H1.
+ Qed.
diff --git a/theories/Sets/Infinite_sets.v b/theories/Sets/Infinite_sets.v
index 47554ac4..ae2143c8 100644
--- a/theories/Sets/Infinite_sets.v
+++ b/theories/Sets/Infinite_sets.v
@@ -24,7 +24,7 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Infinite_sets.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Infinite_sets.v 10637 2008-03-07 23:52:56Z letouzey $ i*)
Require Export Finite_sets.
Require Export Constructive_sets.
@@ -162,7 +162,7 @@ Section Infinite_sets.
generalize (H'3 x).
intro H'4; lapply H'4; [ intro H'8; try exact H'8; clear H'4 | clear H'4 ];
auto with sets.
- specialize 5Im_inv with (U := U) (V := V) (X := A) (f := f) (y := x);
+ specialize Im_inv with (U := U) (V := V) (X := A) (f := f) (y := x);
intro H'11; lapply H'11; [ intro H'13; elim H'11; clear H'11 | clear H'11 ];
auto with sets.
intros x1 H'4; try assumption.
diff --git a/theories/Sets/Integers.v b/theories/Sets/Integers.v
index c969ad9c..1786edf1 100644
--- a/theories/Sets/Integers.v
+++ b/theories/Sets/Integers.v
@@ -24,7 +24,7 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Integers.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Integers.v 10637 2008-03-07 23:52:56Z letouzey $ i*)
Require Export Finite_sets.
Require Export Constructive_sets.
@@ -87,7 +87,7 @@ Section Integers_sect.
apply Totally_ordered_definition.
simpl in |- *.
intros H' x y H'0.
- specialize 2le_or_lt with (n := x) (m := y); intro H'2; elim H'2.
+ elim le_or_lt with (n := x) (m := y).
intro H'1; left; auto with sets arith.
intro H'1; right.
cut (y <= x); auto with sets arith.
@@ -142,8 +142,8 @@ Section Integers_sect.
elim H'0; intros H'1 H'2.
cut (In nat Integers (S x)).
intro H'3.
- specialize 1H'2 with (y := S x); intro H'4; lapply H'4;
- [ intro H'5; clear H'4 | try assumption; clear H'4 ].
+ specialize H'2 with (y := S x); lapply H'2;
+ [ intro H'5; clear H'2 | try assumption; clear H'2 ].
simpl in H'5.
absurd (S x <= x); auto with arith.
apply triv_nat.
diff --git a/theories/Sets/Multiset.v b/theories/Sets/Multiset.v
index 7084a82d..d2bff488 100644
--- a/theories/Sets/Multiset.v
+++ b/theories/Sets/Multiset.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Multiset.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Multiset.v 10616 2008-03-04 17:33:35Z letouzey $ i*)
(* G. Huet 1-9-95 *)
@@ -16,11 +16,11 @@ Set Implicit Arguments.
Section multiset_defs.
- Variable A : Set.
+ Variable A : Type.
Variable eqA : A -> A -> Prop.
Hypothesis Aeq_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
- Inductive multiset : Set :=
+ Inductive multiset : Type :=
Bag : (A -> nat) -> multiset.
Definition EmptyBag := Bag (fun a:A => 0).
diff --git a/theories/Sets/Permut.v b/theories/Sets/Permut.v
index a7c3db3a..4380f10c 100644
--- a/theories/Sets/Permut.v
+++ b/theories/Sets/Permut.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Permut.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Permut.v 10616 2008-03-04 17:33:35Z letouzey $ i*)
(* G. Huet 1-9-95 *)
@@ -15,7 +15,7 @@
Section Axiomatisation.
- Variable U : Set.
+ Variable U : Type.
Variable op : U -> U -> U.
Variable cong : U -> U -> Prop.
diff --git a/theories/Sets/Powerset_Classical_facts.v b/theories/Sets/Powerset_Classical_facts.v
index 47857705..34c49409 100644
--- a/theories/Sets/Powerset_Classical_facts.v
+++ b/theories/Sets/Powerset_Classical_facts.v
@@ -24,7 +24,7 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Powerset_Classical_facts.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Powerset_Classical_facts.v 10855 2008-04-27 11:16:15Z msozeau $ i*)
Require Export Ensembles.
Require Export Constructive_sets.
diff --git a/theories/Sets/Relations_2_facts.v b/theories/Sets/Relations_2_facts.v
index 3291f3ee..2374c2bf 100644
--- a/theories/Sets/Relations_2_facts.v
+++ b/theories/Sets/Relations_2_facts.v
@@ -24,7 +24,7 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Relations_2_facts.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Relations_2_facts.v 10637 2008-03-07 23:52:56Z letouzey $ i*)
Require Export Relations_1.
Require Export Relations_1_facts.
@@ -140,10 +140,10 @@ intros U R H' x b H'0; elim H'0.
intros x0 a H'1; exists a; auto with sets.
intros x0 y z H'1 H'2 H'3 a H'4.
red in H'.
-specialize 3H' with (x := x0) (a := a) (b := y); intro H'7; lapply H'7;
+specialize H' with (x := x0) (a := a) (b := y); lapply H';
[ intro H'8; lapply H'8;
- [ intro H'9; try exact H'9; clear H'8 H'7 | clear H'8 H'7 ]
- | clear H'7 ]; auto with sets.
+ [ intro H'9; try exact H'9; clear H'8 H' | clear H'8 H' ]
+ | clear H' ]; auto with sets.
elim H'9.
intros t H'5; elim H'5; intros H'6 H'7; try exact H'6; clear H'5.
elim (H'3 t); auto with sets.
diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v
index e1e026f5..fe7902aa 100644
--- a/theories/Sorting/Heap.v
+++ b/theories/Sorting/Heap.v
@@ -6,18 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Heap.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Heap.v 10698 2008-03-19 18:46:59Z letouzey $ i*)
(** A development of Treesort on Heap trees *)
(* G. Huet 1-9-95 uses Multiset *)
-Require Import List.
-Require Import Multiset.
-Require Import Permutation.
-Require Import Relations.
-Require Import Sorting.
-
+Require Import List Multiset Permutation Relations Sorting.
Section defs.
@@ -25,7 +20,7 @@ Section defs.
(** ** Definition of trees over an ordered set *)
- Variable A : Set.
+ Variable A : Type.
Variable leA : relation A.
Variable eqA : relation A.
@@ -43,7 +38,7 @@ Section defs.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.
- Inductive Tree : Set :=
+ Inductive Tree :=
| Tree_Leaf : Tree
| Tree_Node : A -> Tree -> Tree -> Tree.
@@ -87,6 +82,23 @@ Section defs.
Qed.
(* This lemma ought to be generated automatically by the Inversion tools *)
+ Lemma is_heap_rect :
+ forall P:Tree -> Type,
+ P Tree_Leaf ->
+ (forall (a:A) (T1 T2:Tree),
+ leA_Tree a T1 ->
+ leA_Tree a T2 ->
+ is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
+ forall T:Tree, is_heap T -> P T.
+ Proof.
+ simple induction T; auto with datatypes.
+ intros a G PG D PD PN.
+ elim (invert_heap a G D); auto with datatypes.
+ intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
+ apply X0; auto with datatypes.
+ Qed.
+
+ (* This lemma ought to be generated automatically by the Inversion tools *)
Lemma is_heap_rec :
forall P:Tree -> Set,
P Tree_Leaf ->
@@ -100,7 +112,7 @@ Section defs.
intros a G PG D PD PN.
elim (invert_heap a G D); auto with datatypes.
intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
- apply H0; auto with datatypes.
+ apply X; auto with datatypes.
Qed.
Lemma low_trans :
@@ -136,7 +148,7 @@ Section defs.
(** ** Specification of heap insertion *)
- Inductive insert_spec (a:A) (T:Tree) : Set :=
+ Inductive insert_spec (a:A) (T:Tree) : Type :=
insert_exist :
forall T1:Tree,
is_heap T1 ->
@@ -152,11 +164,11 @@ Section defs.
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
simpl in |- *; unfold meq, munion in |- *; auto using node_is_heap with datatypes.
elim (leA_dec a a0); intros.
- elim (H3 a0); intros.
+ elim (X a0); intros.
apply insert_exist with (Tree_Node a T2 T0);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
simpl in |- *; apply treesort_twist1; trivial with datatypes.
- elim (H3 a); intros T3 HeapT3 ConT3 LeA.
+ elim (X a); intros T3 HeapT3 ConT3 LeA.
apply insert_exist with (Tree_Node a0 T2 T3);
auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
@@ -169,7 +181,7 @@ Section defs.
(** ** Building a heap from a list *)
- Inductive build_heap (l:list A) : Set :=
+ Inductive build_heap (l:list A) : Type :=
heap_exist :
forall T:Tree,
is_heap T ->
@@ -193,7 +205,7 @@ Section defs.
(** ** Building the sorted list *)
- Inductive flat_spec (T:Tree) : Set :=
+ Inductive flat_spec (T:Tree) : Type :=
flat_exist :
forall l:list A,
sort leA l ->
@@ -204,7 +216,7 @@ Section defs.
Proof.
intros T h; elim h; intros.
apply flat_exist with (nil (A:=A)); auto with datatypes.
- elim H2; intros l1 s1 i1 m1; elim H4; intros l2 s2 i2 m2.
+ elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2.
elim (merge _ leA_dec eqA_dec s1 s2); intros.
apply flat_exist with (a :: l); simpl in |- *; auto with datatypes.
apply meq_trans with
diff --git a/theories/Sorting/PermutEq.v b/theories/Sorting/PermutEq.v
index f4986198..084aae92 100644
--- a/theories/Sorting/PermutEq.v
+++ b/theories/Sorting/PermutEq.v
@@ -6,14 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: PermutEq.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: PermutEq.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
-Require Import Omega.
-Require Import Relations.
-Require Import Setoid.
-Require Import List.
-Require Import Multiset.
-Require Import Permutation.
+Require Import Omega Relations Setoid List Multiset Permutation.
Set Implicit Arguments.
@@ -25,7 +20,7 @@ Set Implicit Arguments.
Section Perm.
- Variable A : Set.
+ Variable A : Type.
Hypothesis eq_dec : forall x y:A, {x=y} + {~ x=y}.
Notation permutation := (permutation _ eq_dec).
@@ -214,7 +209,7 @@ Section Perm.
apply permut_remove_hd with a; auto.
Qed.
- Variable B : Set.
+ Variable B : Type.
Variable eqB_dec : forall x y:B, { x=y }+{ ~x=y }.
(** Permutation is compatible with map. *)
diff --git a/theories/Sorting/PermutSetoid.v b/theories/Sorting/PermutSetoid.v
index 65369a01..c3888cfa 100644
--- a/theories/Sorting/PermutSetoid.v
+++ b/theories/Sorting/PermutSetoid.v
@@ -6,14 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: PermutSetoid.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: PermutSetoid.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
-Require Import Omega.
-Require Import Relations.
-Require Import List.
-Require Import Multiset.
-Require Import Permutation.
-Require Import SetoidList.
+Require Import Omega Relations Multiset Permutation SetoidList.
Set Implicit Arguments.
@@ -23,7 +18,7 @@ Set Implicit Arguments.
Section Perm.
-Variable A : Set.
+Variable A : Type.
Variable eqA : relation A.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
@@ -81,7 +76,7 @@ Proof.
rewrite IHl in H1.
intros; destruct (eqA_dec a a0) as [H2|H2]; simpl; auto.
rewrite multiplicity_InA_O; auto.
- swap H0.
+ contradict H0.
apply InA_eqA with a0; auto.
intros; constructor.
rewrite multiplicity_InA.
@@ -185,9 +180,9 @@ Proof.
destruct H2; apply eqA_trans with a; auto.
Qed.
-Lemma NoDupA_eqlistA_permut :
+Lemma NoDupA_equivlistA_permut :
forall l l', NoDupA eqA l -> NoDupA eqA l' ->
- eqlistA eqA l l' -> permutation l l'.
+ equivlistA eqA l l' -> permutation l l'.
Proof.
intros.
red; unfold meq; intros.
@@ -198,7 +193,7 @@ Proof.
Qed.
-Variable B : Set.
+Variable B : Type.
Variable eqB : B->B->Prop.
Variable eqB_dec : forall x y:B, { eqB x y }+{ ~eqB x y }.
Variable eqB_trans : forall x y z, eqB x y -> eqB y z -> eqB x z.
diff --git a/theories/Sorting/Permutation.v b/theories/Sorting/Permutation.v
index 3ff026c2..82294b70 100644
--- a/theories/Sorting/Permutation.v
+++ b/theories/Sorting/Permutation.v
@@ -6,12 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Permutation.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Permutation.v 10698 2008-03-19 18:46:59Z letouzey $ i*)
-Require Import Relations.
-Require Import List.
-Require Import Multiset.
-Require Import Arith.
+Require Import Relations List Multiset Arith.
(** This file define a notion of permutation for lists, based on multisets:
there exists a permutation between two lists iff every elements have
@@ -38,7 +35,7 @@ Section defs.
(** * From lists to multisets *)
- Variable A : Set.
+ Variable A : Type.
Variable eqA : relation A.
Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
diff --git a/theories/Sorting/Sorting.v b/theories/Sorting/Sorting.v
index f895d79e..aed8cd15 100644
--- a/theories/Sorting/Sorting.v
+++ b/theories/Sorting/Sorting.v
@@ -6,18 +6,15 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Sorting.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Sorting.v 10698 2008-03-19 18:46:59Z letouzey $ i*)
-Require Import List.
-Require Import Multiset.
-Require Import Permutation.
-Require Import Relations.
+Require Import List Multiset Permutation Relations.
Set Implicit Arguments.
Section defs.
- Variable A : Set.
+ Variable A : Type.
Variable leA : relation A.
Variable eqA : relation A.
@@ -59,6 +56,16 @@ Section defs.
intros; inversion H; auto with datatypes.
Qed.
+ Lemma sort_rect :
+ forall P:list A -> Type,
+ P nil ->
+ (forall (a:A) (l:list A), sort l -> P l -> lelistA a l -> P (a :: l)) ->
+ forall y:list A, sort y -> P y.
+ Proof.
+ simple induction y; auto with datatypes.
+ intros; elim (sort_inv (a:=a) (l:=l)); auto with datatypes.
+ Qed.
+
Lemma sort_rec :
forall P:list A -> Set,
P nil ->
@@ -71,7 +78,7 @@ Section defs.
(** * Merging two sorted lists *)
- Inductive merge_lem (l1 l2:list A) : Set :=
+ Inductive merge_lem (l1 l2:list A) : Type :=
merge_exist :
forall l:list A,
sort l ->
@@ -85,7 +92,7 @@ Section defs.
Proof.
simple induction 1; intros.
apply merge_exist with l2; auto with datatypes.
- elim H3; intros.
+ elim H2; intros.
apply merge_exist with (a :: l); simpl in |- *; auto using cons_sort with datatypes.
elim (leA_dec a a0); intros.
@@ -104,7 +111,7 @@ Section defs.
apply lelistA_inv with l; trivial with datatypes.
(* 2 (leA a0 a) *)
- elim H5; simpl in |- *; intros.
+ elim X0; simpl in |- *; intros.
apply merge_exist with (a0 :: l3); simpl in |- *;
auto using cons_sort, cons_leA with datatypes.
apply meq_trans with
diff --git a/theories/Strings/String.v b/theories/Strings/String.v
index f2c58364..53260480 100644
--- a/theories/Strings/String.v
+++ b/theories/Strings/String.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: String.v 8026 2006-02-11 19:40:49Z herbelin $ *)
+(* $Id: String.v 10855 2008-04-27 11:16:15Z msozeau $ *)
(** Contributed by Laurent Théry (INRIA);
Adapted to Coq V8 by the Coq Development Team *)
@@ -110,8 +110,8 @@ Proof.
intros s1; elim s1; simpl in |- *; auto.
intros s2 n; rewrite plus_comm; simpl in |- *; auto.
intros a s1' Rec s2 n; case n; simpl in |- *; auto.
-generalize (Rec s2 0); simpl in |- *; auto.
-intros n0; rewrite <- Plus.plus_Snm_nSm; auto.
+generalize (Rec s2 0); simpl in |- *; auto. intros.
+rewrite <- Plus.plus_Snm_nSm; auto.
Qed.
(** *** Substrings *)
diff --git a/theories/Unicode/Utf8.v b/theories/Unicode/Utf8.v
new file mode 100644
index 00000000..32b892b6
--- /dev/null
+++ b/theories/Unicode/Utf8.v
@@ -0,0 +1,60 @@
+(* -*- coding:utf-8 -* *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Logic *)
+Notation "∀ x , P" := (forall x , P)
+ (at level 200, x ident, right associativity) : type_scope.
+Notation "∀ x y , P" := (forall x y , P)
+ (at level 200, x ident, y ident, right associativity) : type_scope.
+Notation "∀ x y z , P" := (forall x y z , P)
+ (at level 200, x ident, y ident, z ident, right associativity) : type_scope.
+Notation "∀ x y z u , P" := (forall x y z u , P)
+ (at level 200, x ident, y ident, z ident, u ident, right associativity)
+ : type_scope.
+Notation "∀ x : t , P" := (forall x : t , P)
+ (at level 200, x ident, right associativity) : type_scope.
+Notation "∀ x y : t , P" := (forall x y : t , P)
+ (at level 200, x ident, y ident, right associativity) : type_scope.
+Notation "∀ x y z : t , P" := (forall x y z : t , P)
+ (at level 200, x ident, y ident, z ident, right associativity) : type_scope.
+Notation "∀ x y z u : t , P" := (forall x y z u : t , P)
+ (at level 200, x ident, y ident, z ident, u ident, right associativity)
+ : type_scope.
+
+Notation "∃ x , P" := (exists x , P)
+ (at level 200, x ident, right associativity) : type_scope.
+Notation "∃ x : t , P" := (exists x : t, P)
+ (at level 200, x ident, right associativity) : type_scope.
+
+Notation "x ∨ y" := (x \/ y) (at level 85, right associativity) : type_scope.
+Notation "x ∧ y" := (x /\ y) (at level 80, right associativity) : type_scope.
+Notation "x → y" := (x -> y) (at level 90, right associativity): type_scope.
+Notation "x ↔ y" := (x <-> y) (at level 95, no associativity): type_scope.
+Notation "⌉ x" := (~x) (at level 75, right associativity) : type_scope.
+Notation "x ≠ y" := (x <> y) (at level 70) : type_scope.
+
+(* Abstraction *)
+(* Not nice
+Notation "'λ' x : T , y" := ([x:T] y) (at level 1, x,T,y at level 10).
+Notation "'λ' x := T , y" := ([x:=T] y) (at level 1, x,T,y at level 10).
+*)
+
+(* Arithmetic *)
+Notation "x ≤ y" := (le x y) (at level 70, no associativity).
+Notation "x ≥ y" := (ge x y) (at level 70, no associativity).
+
+(* test *)
+(*
+Goal ∀ x, True -> (∃ y , x ≥ y + 1) ∨ x ≤ 0.
+*)
+
+(* Integer Arithmetic *)
+(* TODO: this should come after ZArith
+Notation "x ≤ y" := (Zle x y) (at level 1, y at level 10).
+*)
diff --git a/theories/Wellfounded/Disjoint_Union.v b/theories/Wellfounded/Disjoint_Union.v
index 1e22730b..6adf629d 100644
--- a/theories/Wellfounded/Disjoint_Union.v
+++ b/theories/Wellfounded/Disjoint_Union.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Disjoint_Union.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Disjoint_Union.v 10681 2008-03-16 13:40:45Z msozeau $ i*)
(** Author: Cristina Cornes
From : Constructing Recursion Operators in Type Theory
@@ -15,7 +15,7 @@
Require Import Relation_Operators.
Section Wf_Disjoint_Union.
- Variables A B : Set.
+ Variables A B : Type.
Variable leA : A -> A -> Prop.
Variable leB : B -> B -> Prop.
@@ -52,4 +52,4 @@ Section Wf_Disjoint_Union.
apply (H0 b).
Qed.
-End Wf_Disjoint_Union. \ No newline at end of file
+End Wf_Disjoint_Union.
diff --git a/theories/Wellfounded/Inclusion.v b/theories/Wellfounded/Inclusion.v
index 44e07d0b..e5ef4a70 100644
--- a/theories/Wellfounded/Inclusion.v
+++ b/theories/Wellfounded/Inclusion.v
@@ -6,14 +6,14 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Inclusion.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Inclusion.v 9642 2007-02-12 10:31:53Z herbelin $ i*)
(** Author: Bruno Barras *)
Require Import Relation_Definitions.
Section WfInclusion.
- Variable A : Set.
+ Variable A : Type.
Variables R1 R2 : A -> A -> Prop.
Lemma Acc_incl : inclusion A R1 R2 -> forall z:A, Acc R2 z -> Acc R1 z.
@@ -29,4 +29,4 @@ Section WfInclusion.
unfold well_founded in |- *; auto with sets.
Qed.
-End WfInclusion. \ No newline at end of file
+End WfInclusion.
diff --git a/theories/Wellfounded/Inverse_Image.v b/theories/Wellfounded/Inverse_Image.v
index 210cc757..29fe7bb2 100644
--- a/theories/Wellfounded/Inverse_Image.v
+++ b/theories/Wellfounded/Inverse_Image.v
@@ -6,13 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Inverse_Image.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Inverse_Image.v 9642 2007-02-12 10:31:53Z herbelin $ i*)
(** Author: Bruno Barras *)
Section Inverse_Image.
- Variables A B : Set.
+ Variables A B : Type.
Variable R : B -> B -> Prop.
Variable f : A -> B.
diff --git a/theories/Wellfounded/Lexicographic_Exponentiation.v b/theories/Wellfounded/Lexicographic_Exponentiation.v
index efdf0495..4dfcb24b 100644
--- a/theories/Wellfounded/Lexicographic_Exponentiation.v
+++ b/theories/Wellfounded/Lexicographic_Exponentiation.v
@@ -6,14 +6,13 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Lexicographic_Exponentiation.v 9610 2007-02-07 14:45:18Z herbelin $ i*)
+(*i $Id: Lexicographic_Exponentiation.v 9609 2007-02-07 14:42:26Z herbelin $ i*)
(** Author: Cristina Cornes
From : Constructing Recursion Operators in Type Theory
L. Paulson JSC (1986) 2, 325-355 *)
-Require Import Eqdep.
Require Import List.
Require Import Relation_Operators.
Require Import Transitive_Closure.
diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v
index 051c8127..818084b2 100644
--- a/theories/Wellfounded/Lexicographic_Product.v
+++ b/theories/Wellfounded/Lexicographic_Product.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Lexicographic_Product.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Lexicographic_Product.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
(** Authors: Bruno Barras, Cristina Cornes *)
diff --git a/theories/Wellfounded/Transitive_Closure.v b/theories/Wellfounded/Transitive_Closure.v
index bd4e4fec..e552598c 100644
--- a/theories/Wellfounded/Transitive_Closure.v
+++ b/theories/Wellfounded/Transitive_Closure.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Transitive_Closure.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Transitive_Closure.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
(** Author: Bruno Barras *)
diff --git a/theories/Wellfounded/Union.v b/theories/Wellfounded/Union.v
index 634576ad..8589c18f 100644
--- a/theories/Wellfounded/Union.v
+++ b/theories/Wellfounded/Union.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Union.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Union.v 9642 2007-02-12 10:31:53Z herbelin $ i*)
(** Author: Bruno Barras *)
@@ -15,7 +15,7 @@ Require Import Relation_Definitions.
Require Import Transitive_Closure.
Section WfUnion.
- Variable A : Set.
+ Variable A : Type.
Variables R1 R2 : relation A.
Notation Union := (union A R1 R2).
@@ -72,4 +72,4 @@ Section WfUnion.
apply Acc_union; auto with sets.
Qed.
-End WfUnion. \ No newline at end of file
+End WfUnion.
diff --git a/theories/Wellfounded/Well_Ordering.v b/theories/Wellfounded/Well_Ordering.v
index f691f2b7..af8832ec 100644
--- a/theories/Wellfounded/Well_Ordering.v
+++ b/theories/Wellfounded/Well_Ordering.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Well_Ordering.v 9597 2007-02-06 19:44:05Z herbelin $ i*)
+(*i $Id: Well_Ordering.v 9598 2007-02-06 19:45:52Z herbelin $ i*)
(** Author: Cristina Cornes.
From: Constructing Recursion Operators in Type Theory
diff --git a/theories/ZArith/BinInt.v b/theories/ZArith/BinInt.v
index 71e48360..1ff88604 100644
--- a/theories/ZArith/BinInt.v
+++ b/theories/ZArith/BinInt.v
@@ -6,10 +6,10 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: BinInt.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: BinInt.v 11015 2008-05-28 20:06:42Z herbelin $ i*)
(***********************************************************)
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
+(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
(***********************************************************)
Require Export BinPos.
@@ -40,43 +40,48 @@ Arguments Scope Zneg [positive_scope].
Definition Zdouble_plus_one (x:Z) :=
match x with
| Z0 => Zpos 1
- | Zpos p => Zpos (xI p)
+ | Zpos p => Zpos p~1
| Zneg p => Zneg (Pdouble_minus_one p)
end.
Definition Zdouble_minus_one (x:Z) :=
match x with
| Z0 => Zneg 1
- | Zneg p => Zneg (xI p)
+ | Zneg p => Zneg p~1
| Zpos p => Zpos (Pdouble_minus_one p)
end.
Definition Zdouble (x:Z) :=
match x with
| Z0 => Z0
- | Zpos p => Zpos (xO p)
- | Zneg p => Zneg (xO p)
+ | Zpos p => Zpos p~0
+ | Zneg p => Zneg p~0
end.
+Open Local Scope positive_scope.
+
Fixpoint ZPminus (x y:positive) {struct y} : Z :=
match x, y with
- | xI x', xI y' => Zdouble (ZPminus x' y')
- | xI x', xO y' => Zdouble_plus_one (ZPminus x' y')
- | xI x', xH => Zpos (xO x')
- | xO x', xI y' => Zdouble_minus_one (ZPminus x' y')
- | xO x', xO y' => Zdouble (ZPminus x' y')
- | xO x', xH => Zpos (Pdouble_minus_one x')
- | xH, xI y' => Zneg (xO y')
- | xH, xO y' => Zneg (Pdouble_minus_one y')
- | xH, xH => Z0
+ | p~1, q~1 => Zdouble (ZPminus p q)
+ | p~1, q~0 => Zdouble_plus_one (ZPminus p q)
+ | p~1, 1 => Zpos p~0
+ | p~0, q~1 => Zdouble_minus_one (ZPminus p q)
+ | p~0, q~0 => Zdouble (ZPminus p q)
+ | p~0, 1 => Zpos (Pdouble_minus_one p)
+ | 1, q~1 => Zneg q~0
+ | 1, q~0 => Zneg (Pdouble_minus_one q)
+ | 1, 1 => Z0
end.
+Close Local Scope positive_scope.
+
(** ** Addition on integers *)
Definition Zplus (x y:Z) :=
match x, y with
| Z0, y => y
- | x, Z0 => x
+ | Zpos x', Z0 => Zpos x'
+ | Zneg x', Z0 => Zneg x'
| Zpos x', Zpos y' => Zpos (x' + y')
| Zpos x', Zneg y' =>
match (x' ?= y')%positive Eq with
@@ -217,6 +222,7 @@ Qed.
(**********************************************************************)
+
(** ** Properties of opposite on binary integer numbers *)
Theorem Zopp_neg : forall p:positive, - Zneg p = Zpos p.
@@ -247,30 +253,6 @@ Proof.
| simplify_eq H; intro E; rewrite E; trivial ].
Qed.
-(*************************************************************************)
-(** ** Properties of the direct definition of successor and predecessor *)
-
-Lemma Zpred'_succ' : forall n:Z, Zpred' (Zsucc' n) = n.
-Proof.
- intro x; destruct x; simpl in |- *.
- reflexivity.
- destruct p; simpl in |- *; try rewrite Pdouble_minus_one_o_succ_eq_xI;
- reflexivity.
- destruct p; simpl in |- *; try rewrite Psucc_o_double_minus_one_eq_xO;
- reflexivity.
-Qed.
-
-Lemma Zsucc'_discr : forall n:Z, n <> Zsucc' n.
-Proof.
- intro x; destruct x; simpl in |- *.
- discriminate.
- injection; apply Psucc_discr.
- destruct p; simpl in |- *.
- discriminate.
- intro H; symmetry in H; injection H; apply double_moins_un_xO_discr.
- discriminate.
-Qed.
-
(**********************************************************************)
(** ** Other properties of binary integer numbers *)
@@ -313,10 +295,15 @@ Qed.
Theorem Zopp_plus_distr : forall n m:Z, - (n + m) = - n + - m.
Proof.
intro x; destruct x as [| p| p]; intro y; destruct y as [| q| q];
- simpl in |- *; reflexivity || destruct ((p ?= q)%positive Eq);
+ simpl in |- *; reflexivity || destruct ((p ?= q)%positive Eq);
reflexivity.
Qed.
+Theorem Zopp_succ : forall n:Z, Zopp (Zsucc n) = Zpred (Zopp n).
+Proof.
+intro; unfold Zsucc; now rewrite Zopp_plus_distr.
+Qed.
+
(** ** opposite is inverse for addition *)
Theorem Zplus_opp_r : forall n:Z, n + - n = Z0.
@@ -520,11 +507,13 @@ Proof.
trivial with arith.
Qed.
-Lemma Zplus_succ_r : forall n m:Z, Zsucc (n + m) = n + Zsucc m.
+Lemma Zplus_succ_r_reverse : forall n m:Z, Zsucc (n + m) = n + Zsucc m.
Proof.
intros n m; unfold Zsucc in |- *; rewrite Zplus_assoc; trivial with arith.
Qed.
+Notation Zplus_succ_r := Zplus_succ_r_reverse (only parsing).
+
Lemma Zplus_succ_comm : forall n m:Z, Zsucc n + m = n + Zsucc m.
Proof.
unfold Zsucc in |- *; intros n m; rewrite <- Zplus_assoc;
@@ -586,10 +575,10 @@ Theorem Zsucc_pred : forall n:Z, n = Zsucc (Zpred n).
Proof.
intros n; unfold Zsucc, Zpred in |- *; rewrite <- Zplus_assoc; simpl in |- *;
rewrite Zplus_0_r; trivial with arith.
-Qed.
+Qed.
Hint Immediate Zsucc_pred: zarith.
-
+
Theorem Zpred_succ : forall n:Z, n = Zpred (Zsucc n).
Proof.
intros m; unfold Zpred, Zsucc in |- *; rewrite <- Zplus_assoc; simpl in |- *;
@@ -603,7 +592,59 @@ Proof.
do 2 rewrite <- Zplus_assoc; do 2 rewrite (Zplus_comm (Zpos 1));
unfold Zsucc in H; rewrite H; trivial with arith.
Qed.
-
+
+(*************************************************************************)
+(** ** Properties of the direct definition of successor and predecessor *)
+
+Theorem Zsucc_succ' : forall n:Z, Zsucc n = Zsucc' n.
+Proof.
+destruct n as [| p | p]; simpl.
+reflexivity.
+now rewrite Pplus_one_succ_r.
+now destruct p as [q | q |].
+Qed.
+
+Theorem Zpred_pred' : forall n:Z, Zpred n = Zpred' n.
+Proof.
+destruct n as [| p | p]; simpl.
+reflexivity.
+now destruct p as [q | q |].
+now rewrite Pplus_one_succ_r.
+Qed.
+
+Theorem Zsucc'_inj : forall n m:Z, Zsucc' n = Zsucc' m -> n = m.
+Proof.
+intros n m; do 2 rewrite <- Zsucc_succ'; now apply Zsucc_inj.
+Qed.
+
+Theorem Zsucc'_pred' : forall n:Z, Zsucc' (Zpred' n) = n.
+Proof.
+intro; rewrite <- Zsucc_succ'; rewrite <- Zpred_pred';
+symmetry; apply Zsucc_pred.
+Qed.
+
+Theorem Zpred'_succ' : forall n:Z, Zpred' (Zsucc' n) = n.
+Proof.
+intro; apply Zsucc'_inj; now rewrite Zsucc'_pred'.
+Qed.
+
+Theorem Zpred'_inj : forall n m:Z, Zpred' n = Zpred' m -> n = m.
+Proof.
+intros n m H.
+rewrite <- (Zsucc'_pred' n); rewrite <- (Zsucc'_pred' m); now rewrite H.
+Qed.
+
+Theorem Zsucc'_discr : forall n:Z, n <> Zsucc' n.
+Proof.
+ intro x; destruct x; simpl in |- *.
+ discriminate.
+ injection; apply Psucc_discr.
+ destruct p; simpl in |- *.
+ discriminate.
+ intro H; symmetry in H; injection H; apply double_moins_un_xO_discr.
+ discriminate.
+Qed.
+
(** Misc properties, usually redundant or non natural *)
Lemma Zsucc_eq_compat : forall n m:Z, n = m -> Zsucc n = Zsucc m.
@@ -645,6 +686,22 @@ Qed.
(** ** Relating [minus] with [plus] and [Zsucc] *)
+Lemma Zminus_plus_distr : forall n m p:Z, n - (m + p) = n - m - p.
+Proof.
+intros; unfold Zminus; rewrite Zopp_plus_distr; apply Zplus_assoc.
+Qed.
+
+Lemma Zminus_succ_l : forall n m:Z, Zsucc (n - m) = Zsucc n - m.
+Proof.
+ intros n m; unfold Zminus, Zsucc in |- *; rewrite (Zplus_comm n (- m));
+ rewrite <- Zplus_assoc; apply Zplus_comm.
+Qed.
+
+Lemma Zminus_succ_r : forall n m:Z, n - (Zsucc m) = Zpred (n - m).
+Proof.
+intros; unfold Zsucc; now rewrite Zminus_plus_distr.
+Qed.
+
Lemma Zplus_minus_eq : forall n m p:Z, n = m + p -> p = n - m.
Proof.
intros n m p H; unfold Zminus in |- *; apply (Zplus_reg_l m);
@@ -665,12 +722,6 @@ Proof.
apply Zplus_0_r.
Qed.
-Lemma Zminus_succ_l : forall n m:Z, Zsucc (n - m) = Zsucc n - m.
-Proof.
- intros n m; unfold Zminus, Zsucc in |- *; rewrite (Zplus_comm n (- m));
- rewrite <- Zplus_assoc; apply Zplus_comm.
-Qed.
-
Lemma Zminus_plus_simpl_l : forall n m p:Z, p + n - (p + m) = n - m.
Proof.
intros n m p; unfold Zminus in |- *; rewrite Zopp_plus_distr;
@@ -696,6 +747,16 @@ Proof.
reflexivity.
Qed.
+Lemma Zpos_minus_morphism : forall a b:positive, Pcompare a b Eq = Lt ->
+ Zpos (b-a) = Zpos b - Zpos a.
+Proof.
+ intros.
+ simpl.
+ change Eq with (CompOpp Eq).
+ rewrite <- Pcompare_antisym.
+ rewrite H; simpl; auto.
+Qed.
+
(** ** Misc redundant properties *)
Lemma Zeq_minus : forall n m:Z, n = m -> n - m = Z0.
@@ -805,6 +866,19 @@ Proof.
reflexivity).
Qed.
+(** ** Multiplication and Doubling *)
+
+Lemma Zdouble_mult : forall z, Zdouble z = (Zpos 2) * z.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma Zdouble_plus_one_mult : forall z,
+ Zdouble_plus_one z = (Zpos 2) * z + (Zpos 1).
+Proof.
+ destruct z; simpl; auto with zarith.
+Qed.
+
(** ** Multiplication and Opposite *)
Theorem Zopp_mult_distr_l : forall n m:Z, - (n * m) = - n * m.
@@ -967,22 +1041,37 @@ Qed.
(**********************************************************************)
(** * Relating binary positive numbers and binary integers *)
-Lemma Zpos_xI : forall p:positive, Zpos (xI p) = Zpos 2 * Zpos p + Zpos 1.
+Lemma Zpos_eq : forall p q:positive, p = q -> Zpos p = Zpos q.
+Proof.
+ intros; f_equal; auto.
+Qed.
+
+Lemma Zpos_eq_rev : forall p q:positive, Zpos p = Zpos q -> p = q.
+Proof.
+ inversion 1; auto.
+Qed.
+
+Lemma Zpos_eq_iff : forall p q:positive, p = q <-> Zpos p = Zpos q.
+Proof.
+ split; [apply Zpos_eq|apply Zpos_eq_rev].
+Qed.
+
+Lemma Zpos_xI : forall p:positive, Zpos p~1 = Zpos 2 * Zpos p + Zpos 1.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zpos_xO : forall p:positive, Zpos (xO p) = Zpos 2 * Zpos p.
+Lemma Zpos_xO : forall p:positive, Zpos p~0 = Zpos 2 * Zpos p.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zneg_xI : forall p:positive, Zneg (xI p) = Zpos 2 * Zneg p - Zpos 1.
+Lemma Zneg_xI : forall p:positive, Zneg p~1 = Zpos 2 * Zneg p - Zpos 1.
Proof.
intro; apply refl_equal.
Qed.
-Lemma Zneg_xO : forall p:positive, Zneg (xO p) = Zpos 2 * Zneg p.
+Lemma Zneg_xO : forall p:positive, Zneg p~0 = Zpos 2 * Zneg p.
Proof.
reflexivity.
Qed.
@@ -1057,7 +1146,8 @@ Definition Zabs_N (z:Z) :=
| Zneg p => Npos p
end.
-Definition Z_of_N (x:N) := match x with
- | N0 => Z0
- | Npos p => Zpos p
- end.
+Definition Z_of_N (x:N) :=
+ match x with
+ | N0 => Z0
+ | Npos p => Zpos p
+ end.
diff --git a/theories/ZArith/Int.v b/theories/ZArith/Int.v
index 3cee9190..fcb44d6f 100644
--- a/theories/ZArith/Int.v
+++ b/theories/ZArith/Int.v
@@ -7,11 +7,11 @@
(***********************************************************************)
(* Finite sets library.
- * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
- * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
+ * Authors: Pierre Letouzey and Jean-Christophe Filliâtre
+ * Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: Int.v 9319 2006-10-30 12:41:21Z barras $ *)
+(* $Id: Int.v 10739 2008-04-01 14:45:20Z herbelin $ *)
(** An axiomatization of integers. *)
@@ -352,46 +352,15 @@ Module MoreInt (I:Int).
Ltac i2z_refl :=
i2z_gen;
match goal with |- ?t =>
- let e := p2ep t
- in
- (change (ep2p e);
- apply norm_ep_correct2;
- simpl)
+ let e := p2ep t in
+ change (ep2p e); apply norm_ep_correct2; simpl
end.
- Ltac iauto := i2z_refl; auto.
- Ltac iomega := i2z_refl; intros; romega.
-
- Open Scope Z_scope.
-
- Lemma max_spec : forall (x y:Z),
- x >= y /\ Zmax x y = x \/
- x < y /\ Zmax x y = y.
- Proof.
- intros; unfold Zmax, Zlt, Zge.
- destruct (Zcompare x y); [ left | right | left ]; split; auto; discriminate.
- Qed.
-
- Ltac omega_max_genspec x y :=
- generalize (max_spec x y);
- (let z := fresh "z" in let Hz := fresh "Hz" in
- set (z:=Zmax x y); clearbody z).
-
- Ltac omega_max_loop :=
- match goal with
- (* hack: we don't want [i2z (height ...)] to be reduced by romega later... *)
- | |- context [ i2z (?f ?x) ] =>
- let i := fresh "i2z" in (set (i:=i2z (f x)); clearbody i); omega_max_loop
- | |- context [ Zmax ?x ?y ] => omega_max_genspec x y; omega_max_loop
- | _ => intros
- end.
-
- Ltac omega_max := i2z_refl; omega_max_loop; try romega.
+ (* i2z_refl can be replaced below by (simpl in *; i2z).
+ The reflexive version improves compilation of AVL files by about 15% *)
- Ltac false_omega := i2z_refl; intros; romega.
- Ltac false_omega_max := elimtype False; omega_max.
+ Ltac omega_max := i2z_refl; romega with Z.
- Open Scope Int_scope.
End MoreInt.
diff --git a/theories/ZArith/ZArith_dec.v b/theories/ZArith/ZArith_dec.v
index 7febbf6a..b831afee 100644
--- a/theories/ZArith/ZArith_dec.v
+++ b/theories/ZArith/ZArith_dec.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ZArith_dec.v 9958 2007-07-06 22:47:40Z letouzey $ i*)
+(*i $Id: ZArith_dec.v 9759 2007-04-12 17:46:54Z notin $ i*)
Require Import Sumbool.
diff --git a/theories/ZArith/ZOdiv.v b/theories/ZArith/ZOdiv.v
new file mode 100644
index 00000000..03e061f2
--- /dev/null
+++ b/theories/ZArith/ZOdiv.v
@@ -0,0 +1,953 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+
+Require Import BinPos BinNat Nnat ZArith_base ROmega ZArithRing.
+Require Export ZOdiv_def.
+Require Zdiv.
+
+Open Scope Z_scope.
+
+(** This file provides results about the Round-Toward-Zero Euclidean
+ division [ZOdiv_eucl], whose projections are [ZOdiv] and [ZOmod].
+ Definition of this division can be found in file [ZOdiv_def].
+
+ This division and the one defined in Zdiv agree only on positive
+ numbers. Otherwise, Zdiv performs Round-Toward-Bottom.
+
+ The current approach is compatible with the division of usual
+ programming languages such as Ocaml. In addition, it has nicer
+ properties with respect to opposite and other usual operations.
+*)
+
+(** Since ZOdiv and Zdiv are not meant to be used concurrently,
+ we reuse the same notation. *)
+
+Infix "/" := ZOdiv : Z_scope.
+Infix "mod" := ZOmod (at level 40, no associativity) : Z_scope.
+
+Infix "/" := Ndiv : N_scope.
+Infix "mod" := Nmod (at level 40, no associativity) : N_scope.
+
+(** Auxiliary results on the ad-hoc comparison [NPgeb]. *)
+
+Lemma NPgeb_Zge : forall (n:N)(p:positive),
+ NPgeb n p = true -> Z_of_N n >= Zpos p.
+Proof.
+ destruct n as [|n]; simpl; intros.
+ discriminate.
+ red; simpl; destruct Pcompare; now auto.
+Qed.
+
+Lemma NPgeb_Zlt : forall (n:N)(p:positive),
+ NPgeb n p = false -> Z_of_N n < Zpos p.
+Proof.
+ destruct n as [|n]; simpl; intros.
+ red; auto.
+ red; simpl; destruct Pcompare; now auto.
+Qed.
+
+(** * Relation between division on N and on Z. *)
+
+Lemma Ndiv_Z0div : forall a b:N,
+ Z_of_N (a/b) = (Z_of_N a / Z_of_N b).
+Proof.
+ intros.
+ destruct a; destruct b; simpl; auto.
+ unfold Ndiv, ZOdiv; simpl; destruct Pdiv_eucl; auto.
+Qed.
+
+Lemma Nmod_Z0mod : forall a b:N,
+ Z_of_N (a mod b) = (Z_of_N a) mod (Z_of_N b).
+Proof.
+ intros.
+ destruct a; destruct b; simpl; auto.
+ unfold Nmod, ZOmod; simpl; destruct Pdiv_eucl; auto.
+Qed.
+
+(** * Characterization of this euclidean division. *)
+
+(** First, the usual equation [a=q*b+r]. Notice that [a mod 0]
+ has been chosen to be [a], so this equation holds even for [b=0].
+*)
+
+Theorem N_div_mod_eq : forall a b,
+ a = (b * (Ndiv a b) + (Nmod a b))%N.
+Proof.
+ intros; generalize (Ndiv_eucl_correct a b).
+ unfold Ndiv, Nmod; destruct Ndiv_eucl; simpl.
+ intro H; rewrite H; rewrite Nmult_comm; auto.
+Qed.
+
+Theorem ZO_div_mod_eq : forall a b,
+ a = b * (ZOdiv a b) + (ZOmod a b).
+Proof.
+ intros; generalize (ZOdiv_eucl_correct a b).
+ unfold ZOdiv, ZOmod; destruct ZOdiv_eucl; simpl.
+ intro H; rewrite H; rewrite Zmult_comm; auto.
+Qed.
+
+(** Then, the inequalities constraining the remainder. *)
+
+Theorem Pdiv_eucl_remainder : forall a b:positive,
+ Z_of_N (snd (Pdiv_eucl a b)) < Zpos b.
+Proof.
+ induction a; cbv beta iota delta [Pdiv_eucl]; fold Pdiv_eucl; cbv zeta.
+ intros b; generalize (IHa b); case Pdiv_eucl.
+ intros q1 r1 Hr1; simpl in Hr1.
+ case_eq (NPgeb (2*r1+1) b); intros; unfold snd.
+ romega with *.
+ apply NPgeb_Zlt; auto.
+ intros b; generalize (IHa b); case Pdiv_eucl.
+ intros q1 r1 Hr1; simpl in Hr1.
+ case_eq (NPgeb (2*r1) b); intros; unfold snd.
+ romega with *.
+ apply NPgeb_Zlt; auto.
+ destruct b; simpl; romega with *.
+Qed.
+
+Theorem Nmod_lt : forall (a b:N), b<>0%N ->
+ (a mod b < b)%N.
+Proof.
+ destruct b as [ |b]; intro H; try solve [elim H;auto].
+ destruct a as [ |a]; try solve [compute;auto]; unfold Nmod, Ndiv_eucl.
+ generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl.
+ romega with *.
+Qed.
+
+(** The remainder is bounded by the divisor, in term of absolute values *)
+
+Theorem ZOmod_lt : forall a b:Z, b<>0 ->
+ Zabs (a mod b) < Zabs b.
+Proof.
+ destruct b as [ |b|b]; intro H; try solve [elim H;auto];
+ destruct a as [ |a|a]; try solve [compute;auto]; unfold ZOmod, ZOdiv_eucl;
+ generalize (Pdiv_eucl_remainder a b); destruct Pdiv_eucl; simpl;
+ try rewrite Zabs_Zopp; rewrite Zabs_eq; auto; apply Z_of_N_le_0.
+Qed.
+
+(** The sign of the remainder is the one of [a]. Due to the possible
+ nullity of [a], a general result is to be stated in the following form:
+*)
+
+Theorem ZOmod_sgn : forall a b:Z,
+ 0 <= Zsgn (a mod b) * Zsgn a.
+Proof.
+ destruct b as [ |b|b]; destruct a as [ |a|a]; simpl; auto with zarith;
+ unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl;
+ simpl; destruct n0; simpl; auto with zarith.
+Qed.
+
+(** This can also be said in a simplier way: *)
+
+Theorem Zsgn_pos_iff : forall z, 0 <= Zsgn z <-> 0 <= z.
+Proof.
+ destruct z; simpl; intuition auto with zarith.
+Qed.
+
+Theorem ZOmod_sgn2 : forall a b:Z,
+ 0 <= (a mod b) * a.
+Proof.
+ intros; rewrite <-Zsgn_pos_iff, Zsgn_Zmult; apply ZOmod_sgn.
+Qed.
+
+(** Reformulation of [ZOdiv_lt] and [ZOmod_sgn] in 2
+ then 4 particular cases. *)
+
+Theorem ZOmod_lt_pos : forall a b:Z, 0<=a -> b<>0 ->
+ 0 <= a mod b < Zabs b.
+Proof.
+ intros.
+ assert (0 <= a mod b).
+ generalize (ZOmod_sgn a b).
+ destruct (Zle_lt_or_eq 0 a H).
+ rewrite <- Zsgn_pos in H1; rewrite H1; romega with *.
+ subst a; simpl; auto.
+ generalize (ZOmod_lt a b H0); romega with *.
+Qed.
+
+Theorem ZOmod_lt_neg : forall a b:Z, a<=0 -> b<>0 ->
+ -Zabs b < a mod b <= 0.
+Proof.
+ intros.
+ assert (a mod b <= 0).
+ generalize (ZOmod_sgn a b).
+ destruct (Zle_lt_or_eq a 0 H).
+ rewrite <- Zsgn_neg in H1; rewrite H1; romega with *.
+ subst a; simpl; auto.
+ generalize (ZOmod_lt a b H0); romega with *.
+Qed.
+
+Theorem ZOmod_lt_pos_pos : forall a b:Z, 0<=a -> 0<b -> 0 <= a mod b < b.
+Proof.
+ intros; generalize (ZOmod_lt_pos a b); romega with *.
+Qed.
+
+Theorem ZOmod_lt_pos_neg : forall a b:Z, 0<=a -> b<0 -> 0 <= a mod b < -b.
+Proof.
+ intros; generalize (ZOmod_lt_pos a b); romega with *.
+Qed.
+
+Theorem ZOmod_lt_neg_pos : forall a b:Z, a<=0 -> 0<b -> -b < a mod b <= 0.
+Proof.
+ intros; generalize (ZOmod_lt_neg a b); romega with *.
+Qed.
+
+Theorem ZOmod_lt_neg_neg : forall a b:Z, a<=0 -> b<0 -> b < a mod b <= 0.
+Proof.
+ intros; generalize (ZOmod_lt_neg a b); romega with *.
+Qed.
+
+(** * Division and Opposite *)
+
+(* The precise equalities that are invalid with "historic" Zdiv. *)
+
+Theorem ZOdiv_opp_l : forall a b:Z, (-a)/b = -(a/b).
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+Theorem ZOdiv_opp_r : forall a b:Z, a/(-b) = -(a/b).
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+Theorem ZOmod_opp_l : forall a b:Z, (-a) mod b = -(a mod b).
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+Theorem ZOmod_opp_r : forall a b:Z, a mod (-b) = a mod b.
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+Theorem ZOdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b.
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOdiv, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+Theorem ZOmod_opp_opp : forall a b:Z, (-a) mod (-b) = -(a mod b).
+Proof.
+ destruct a; destruct b; simpl; auto;
+ unfold ZOmod, ZOdiv_eucl; destruct Pdiv_eucl; simpl; auto with zarith.
+Qed.
+
+(** * Unicity results *)
+
+Definition Remainder a b r :=
+ (0 <= a /\ 0 <= r < Zabs b) \/ (a <= 0 /\ -Zabs b < r <= 0).
+
+Definition Remainder_alt a b r :=
+ Zabs r < Zabs b /\ 0 <= r * a.
+
+Lemma Remainder_equiv : forall a b r,
+ Remainder a b r <-> Remainder_alt a b r.
+Proof.
+ unfold Remainder, Remainder_alt; intuition.
+ romega with *.
+ romega with *.
+ rewrite <-(Zmult_opp_opp).
+ apply Zmult_le_0_compat; romega.
+ assert (0 <= Zsgn r * Zsgn a) by (rewrite <-Zsgn_Zmult, Zsgn_pos_iff; auto).
+ destruct r; simpl Zsgn in *; romega with *.
+Qed.
+
+Theorem ZOdiv_mod_unique_full:
+ forall a b q r, Remainder a b r ->
+ a = b*q + r -> q = a/b /\ r = a mod b.
+Proof.
+ destruct 1 as [(H,H0)|(H,H0)]; intros.
+ apply Zdiv.Zdiv_mod_unique with b; auto.
+ apply ZOmod_lt_pos; auto.
+ romega with *.
+ rewrite <- H1; apply ZO_div_mod_eq.
+
+ rewrite <- (Zopp_involutive a).
+ rewrite ZOdiv_opp_l, ZOmod_opp_l.
+ generalize (Zdiv.Zdiv_mod_unique b (-q) (-a/b) (-r) (-a mod b)).
+ generalize (ZOmod_lt_pos (-a) b).
+ rewrite <-ZO_div_mod_eq, <-Zopp_mult_distr_r, <-Zopp_plus_distr, <-H1.
+ romega with *.
+Qed.
+
+Theorem ZOdiv_unique_full:
+ forall a b q r, Remainder a b r ->
+ a = b*q + r -> q = a/b.
+Proof.
+ intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
+Qed.
+
+Theorem ZOdiv_unique:
+ forall a b q r, 0 <= a -> 0 <= r < b ->
+ a = b*q + r -> q = a/b.
+Proof.
+ intros; eapply ZOdiv_unique_full; eauto.
+ red; romega with *.
+Qed.
+
+Theorem ZOmod_unique_full:
+ forall a b q r, Remainder a b r ->
+ a = b*q + r -> r = a mod b.
+Proof.
+ intros; destruct (ZOdiv_mod_unique_full a b q r); auto.
+Qed.
+
+Theorem ZOmod_unique:
+ forall a b q r, 0 <= a -> 0 <= r < b ->
+ a = b*q + r -> r = a mod b.
+Proof.
+ intros; eapply ZOmod_unique_full; eauto.
+ red; romega with *.
+Qed.
+
+(** * Basic values of divisions and modulo. *)
+
+Lemma ZOmod_0_l: forall a, 0 mod a = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma ZOmod_0_r: forall a, a mod 0 = a.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma ZOdiv_0_l: forall a, 0/a = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma ZOdiv_0_r: forall a, a/0 = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma ZOmod_1_r: forall a, a mod 1 = 0.
+Proof.
+ intros; symmetry; apply ZOmod_unique_full with a; auto with zarith.
+ rewrite Remainder_equiv; red; simpl; auto with zarith.
+Qed.
+
+Lemma ZOdiv_1_r: forall a, a/1 = a.
+Proof.
+ intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith.
+ rewrite Remainder_equiv; red; simpl; auto with zarith.
+Qed.
+
+Hint Resolve ZOmod_0_l ZOmod_0_r ZOdiv_0_l ZOdiv_0_r ZOdiv_1_r ZOmod_1_r
+ : zarith.
+
+Lemma ZOdiv_1_l: forall a, 1 < a -> 1/a = 0.
+Proof.
+ intros; symmetry; apply ZOdiv_unique with 1; auto with zarith.
+Qed.
+
+Lemma ZOmod_1_l: forall a, 1 < a -> 1 mod a = 1.
+Proof.
+ intros; symmetry; apply ZOmod_unique with 0; auto with zarith.
+Qed.
+
+Lemma ZO_div_same : forall a:Z, a<>0 -> a/a = 1.
+Proof.
+ intros; symmetry; apply ZOdiv_unique_full with 0; auto with *.
+ rewrite Remainder_equiv; red; simpl; romega with *.
+Qed.
+
+Lemma ZO_mod_same : forall a, a mod a = 0.
+Proof.
+ destruct a; intros; symmetry.
+ compute; auto.
+ apply ZOmod_unique with 1; auto with *; romega with *.
+ apply ZOmod_unique_full with 1; auto with *; red; romega with *.
+Qed.
+
+Lemma ZO_mod_mult : forall a b, (a*b) mod b = 0.
+Proof.
+ intros a b; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; simpl; rewrite ZOmod_0_r; auto with zarith.
+ symmetry; apply ZOmod_unique_full with a; [ red; romega with * | ring ].
+Qed.
+
+Lemma ZO_div_mult : forall a b:Z, b <> 0 -> (a*b)/b = a.
+Proof.
+ intros; symmetry; apply ZOdiv_unique_full with 0; auto with zarith;
+ [ red; romega with * | ring].
+Qed.
+
+(** * Order results about ZOmod and ZOdiv *)
+
+(* Division of positive numbers is positive. *)
+
+Lemma ZO_div_pos: forall a b, 0 <= a -> 0 <= b -> 0 <= a/b.
+Proof.
+ intros.
+ destruct (Zle_lt_or_eq 0 b H0).
+ assert (H2:=ZOmod_lt_pos_pos a b H H1).
+ rewrite (ZO_div_mod_eq a b) in H.
+ destruct (Z_lt_le_dec (a/b) 0); auto.
+ assert (b*(a/b) <= -b).
+ replace (-b) with (b*-1); [ | ring].
+ apply Zmult_le_compat_l; auto with zarith.
+ romega.
+ subst b; rewrite ZOdiv_0_r; auto.
+Qed.
+
+(** As soon as the divisor is greater or equal than 2,
+ the division is strictly decreasing. *)
+
+Lemma ZO_div_lt : forall a b:Z, 0 < a -> 2 <= b -> a/b < a.
+Proof.
+ intros.
+ assert (Hb : 0 < b) by romega.
+ assert (H1 : 0 <= a/b) by (apply ZO_div_pos; auto with zarith).
+ assert (H2 : 0 <= a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith).
+ destruct (Zle_lt_or_eq 0 (a/b) H1) as [H3|H3]; [ | rewrite <- H3; auto].
+ pattern a at 2; rewrite (ZO_div_mod_eq a b).
+ apply Zlt_le_trans with (2*(a/b)).
+ romega.
+ apply Zle_trans with (b*(a/b)).
+ apply Zmult_le_compat_r; auto.
+ romega.
+Qed.
+
+(** A division of a small number by a bigger one yields zero. *)
+
+Theorem ZOdiv_small: forall a b, 0 <= a < b -> a/b = 0.
+Proof.
+ intros a b H; apply sym_equal; apply ZOdiv_unique with a; auto with zarith.
+Qed.
+
+(** Same situation, in term of modulo: *)
+
+Theorem ZOmod_small: forall a n, 0 <= a < n -> a mod n = a.
+Proof.
+ intros a b H; apply sym_equal; apply ZOmod_unique with 0; auto with zarith.
+Qed.
+
+(** [Zge] is compatible with a positive division. *)
+
+Lemma ZO_div_monotone_pos : forall a b c:Z, 0<=c -> 0<=a<=b -> a/c <= b/c.
+Proof.
+ intros.
+ destruct H0.
+ destruct (Zle_lt_or_eq 0 c H);
+ [ clear H | subst c; do 2 rewrite ZOdiv_0_r; auto].
+ generalize (ZO_div_mod_eq a c).
+ generalize (ZOmod_lt_pos_pos a c H0 H2).
+ generalize (ZO_div_mod_eq b c).
+ generalize (ZOmod_lt_pos_pos b c (Zle_trans _ _ _ H0 H1) H2).
+ intros.
+ elim (Z_le_gt_dec (a / c) (b / c)); auto with zarith.
+ intro.
+ absurd (a - b >= 1).
+ omega.
+ replace (a-b) with (c * (a/c-b/c) + a mod c - b mod c) by
+ (symmetry; pattern a at 1; rewrite H5; pattern b at 1; rewrite H3; ring).
+ assert (c * (a / c - b / c) >= c * 1).
+ apply Zmult_ge_compat_l.
+ omega.
+ omega.
+ assert (c * 1 = c).
+ ring.
+ omega.
+Qed.
+
+Lemma ZO_div_monotone : forall a b c, 0<=c -> a<=b -> a/c <= b/c.
+Proof.
+ intros.
+ destruct (Z_le_gt_dec 0 a).
+ apply ZO_div_monotone_pos; auto with zarith.
+ destruct (Z_le_gt_dec 0 b).
+ apply Zle_trans with 0.
+ apply Zle_left_rev.
+ simpl.
+ rewrite <- ZOdiv_opp_l.
+ apply ZO_div_pos; auto with zarith.
+ apply ZO_div_pos; auto with zarith.
+ rewrite <-(Zopp_involutive a), (ZOdiv_opp_l (-a)).
+ rewrite <-(Zopp_involutive b), (ZOdiv_opp_l (-b)).
+ generalize (ZO_div_monotone_pos (-b) (-a) c H).
+ romega.
+Qed.
+
+(** With our choice of division, rounding of (a/b) is always done toward zero: *)
+
+Lemma ZO_mult_div_le : forall a b:Z, 0 <= a -> 0 <= b*(a/b) <= a.
+Proof.
+ intros a b Ha.
+ destruct b as [ |b|b].
+ simpl; auto with zarith.
+ split.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply ZO_div_pos; auto with zarith.
+ generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *.
+ change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp.
+ split.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply ZO_div_pos; auto with zarith.
+ generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_pos_pos a (Zpos b) Ha); romega with *.
+Qed.
+
+Lemma ZO_mult_div_ge : forall a b:Z, a <= 0 -> a <= b*(a/b) <= 0.
+Proof.
+ intros a b Ha.
+ destruct b as [ |b|b].
+ simpl; auto with zarith.
+ split.
+ generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *.
+ apply Zle_left_rev; unfold Zplus.
+ rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply ZO_div_pos; auto with zarith.
+ change (Zneg b) with (-Zpos b); rewrite ZOdiv_opp_r, Zmult_opp_opp.
+ split.
+ generalize (ZO_div_mod_eq a (Zpos b)) (ZOmod_lt_neg_pos a (Zpos b) Ha); romega with *.
+ apply Zle_left_rev; unfold Zplus.
+ rewrite Zopp_mult_distr_r, <-ZOdiv_opp_l.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply ZO_div_pos; auto with zarith.
+Qed.
+
+(** The previous inequalities between [b*(a/b)] and [a] are exact
+ iff the modulo is zero. *)
+
+Lemma ZO_div_exact_full_1 : forall a b:Z, a = b*(a/b) -> a mod b = 0.
+Proof.
+ intros; generalize (ZO_div_mod_eq a b); romega.
+Qed.
+
+Lemma ZO_div_exact_full_2 : forall a b:Z, a mod b = 0 -> a = b*(a/b).
+Proof.
+ intros; generalize (ZO_div_mod_eq a b); romega.
+Qed.
+
+(** A modulo cannot grow beyond its starting point. *)
+
+Theorem ZOmod_le: forall a b, 0 <= a -> 0 <= b -> a mod b <= a.
+Proof.
+ intros a b H1 H2.
+ destruct (Zle_lt_or_eq _ _ H2).
+ case (Zle_or_lt b a); intros H3.
+ case (ZOmod_lt_pos_pos a b); auto with zarith.
+ rewrite ZOmod_small; auto with zarith.
+ subst; rewrite ZOmod_0_r; auto with zarith.
+Qed.
+
+(** Some additionnal inequalities about Zdiv. *)
+
+Theorem ZOdiv_le_upper_bound:
+ forall a b q, 0 <= a -> 0 < b -> a <= q*b -> a/b <= q.
+Proof.
+ intros a b q H1 H2 H3.
+ apply Zmult_le_reg_r with b; auto with zarith.
+ apply Zle_trans with (2 := H3).
+ pattern a at 2; rewrite (ZO_div_mod_eq a b); auto with zarith.
+ rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); auto with zarith.
+Qed.
+
+Theorem ZOdiv_lt_upper_bound:
+ forall a b q, 0 <= a -> 0 < b -> a < q*b -> a/b < q.
+Proof.
+ intros a b q H1 H2 H3.
+ apply Zmult_lt_reg_r with b; auto with zarith.
+ apply Zle_lt_trans with (2 := H3).
+ pattern a at 2; rewrite (ZO_div_mod_eq a b); auto with zarith.
+ rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b); auto with zarith.
+Qed.
+
+Theorem ZOdiv_le_lower_bound:
+ forall a b q, 0 <= a -> 0 < b -> q*b <= a -> q <= a/b.
+Proof.
+ intros a b q H1 H2 H3.
+ assert (q < a / b + 1); auto with zarith.
+ apply Zmult_lt_reg_r with b; auto with zarith.
+ apply Zle_lt_trans with (1 := H3).
+ pattern a at 1; rewrite (ZO_div_mod_eq a b); auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite (Zmult_comm b); case (ZOmod_lt_pos_pos a b);
+ auto with zarith.
+Qed.
+
+Theorem ZOdiv_sgn: forall a b,
+ 0 <= Zsgn (a/b) * Zsgn a * Zsgn b.
+Proof.
+ destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
+ unfold ZOdiv; simpl; destruct Pdiv_eucl; simpl; destruct n; simpl; auto with zarith.
+Qed.
+
+(** * Relations between usual operations and Zmod and Zdiv *)
+
+(** First, a result that used to be always valid with Zdiv,
+ but must be restricted here.
+ For instance, now (9+(-5)*2) mod 2 = -1 <> 1 = 9 mod 2 *)
+
+Lemma ZO_mod_plus : forall a b c:Z,
+ 0 <= (a+b*c) * a ->
+ (a + b * c) mod c = a mod c.
+Proof.
+ intros; destruct (Z_eq_dec a 0) as [Ha|Ha].
+ subst; simpl; rewrite ZOmod_0_l; apply ZO_mod_mult.
+ intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
+ subst; do 2 rewrite ZOmod_0_r; romega.
+ symmetry; apply ZOmod_unique_full with (a/c+b); auto with zarith.
+ rewrite Remainder_equiv; split.
+ apply ZOmod_lt; auto.
+ apply Zmult_le_0_reg_r with (a*a); eauto.
+ destruct a; simpl; auto with zarith.
+ replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring.
+ apply Zmult_le_0_compat; auto.
+ apply ZOmod_sgn2.
+ rewrite Zmult_plus_distr_r, Zmult_comm.
+ generalize (ZO_div_mod_eq a c); romega.
+Qed.
+
+Lemma ZO_div_plus : forall a b c:Z,
+ 0 <= (a+b*c) * a -> c<>0 ->
+ (a + b * c) / c = a / c + b.
+Proof.
+ intros; destruct (Z_eq_dec a 0) as [Ha|Ha].
+ subst; simpl; apply ZO_div_mult; auto.
+ symmetry.
+ apply ZOdiv_unique_full with (a mod c); auto with zarith.
+ rewrite Remainder_equiv; split.
+ apply ZOmod_lt; auto.
+ apply Zmult_le_0_reg_r with (a*a); eauto.
+ destruct a; simpl; auto with zarith.
+ replace ((a mod c)*(a+b*c)*(a*a)) with (((a mod c)*a)*((a+b*c)*a)) by ring.
+ apply Zmult_le_0_compat; auto.
+ apply ZOmod_sgn2.
+ rewrite Zmult_plus_distr_r, Zmult_comm.
+ generalize (ZO_div_mod_eq a c); romega.
+Qed.
+
+Theorem ZO_div_plus_l: forall a b c : Z,
+ 0 <= (a*b+c)*c -> b<>0 ->
+ b<>0 -> (a * b + c) / b = a + c / b.
+Proof.
+ intros a b c; rewrite Zplus_comm; intros; rewrite ZO_div_plus;
+ try apply Zplus_comm; auto with zarith.
+Qed.
+
+(** Cancellations. *)
+
+Lemma ZOdiv_mult_cancel_r : forall a b c:Z,
+ c<>0 -> (a*c)/(b*c) = a/b.
+Proof.
+ intros a b c Hc.
+ destruct (Z_eq_dec b 0).
+ subst; simpl; do 2 rewrite ZOdiv_0_r; auto.
+ symmetry.
+ apply ZOdiv_unique_full with ((a mod b)*c); auto with zarith.
+ rewrite Remainder_equiv.
+ split.
+ do 2 rewrite Zabs_Zmult.
+ apply Zmult_lt_compat_r.
+ romega with *.
+ apply ZOmod_lt; auto.
+ replace ((a mod b)*c*(a*c)) with (((a mod b)*a)*(c*c)) by ring.
+ apply Zmult_le_0_compat.
+ apply ZOmod_sgn2.
+ destruct c; simpl; auto with zarith.
+ pattern a at 1; rewrite (ZO_div_mod_eq a b); ring.
+Qed.
+
+Lemma ZOdiv_mult_cancel_l : forall a b c:Z,
+ c<>0 -> (c*a)/(c*b) = a/b.
+Proof.
+ intros.
+ rewrite (Zmult_comm c a); rewrite (Zmult_comm c b).
+ apply ZOdiv_mult_cancel_r; auto.
+Qed.
+
+Lemma ZOmult_mod_distr_l: forall a b c,
+ (c*a) mod (c*b) = c * (a mod b).
+Proof.
+ intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
+ subst; simpl; rewrite ZOmod_0_r; auto.
+ destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; repeat rewrite Zmult_0_r || rewrite ZOmod_0_r; auto.
+ assert (c*b <> 0).
+ contradict Hc; eapply Zmult_integral_l; eauto.
+ rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq (c*a) (c*b))).
+ rewrite (Zplus_minus_eq _ _ _ (ZO_div_mod_eq a b)).
+ rewrite ZOdiv_mult_cancel_l; auto with zarith.
+ ring.
+Qed.
+
+Lemma ZOmult_mod_distr_r: forall a b c,
+ (a*c) mod (b*c) = (a mod b) * c.
+Proof.
+ intros; repeat rewrite (fun x => (Zmult_comm x c)).
+ apply ZOmult_mod_distr_l; auto.
+Qed.
+
+(** Operations modulo. *)
+
+Theorem ZOmod_mod: forall a n, (a mod n) mod n = a mod n.
+Proof.
+ intros.
+ generalize (ZOmod_sgn2 a n).
+ pattern a at 2 4; rewrite (ZO_div_mod_eq a n); auto with zarith.
+ rewrite Zplus_comm; rewrite (Zmult_comm n).
+ intros.
+ apply sym_equal; apply ZO_mod_plus; auto with zarith.
+ rewrite Zmult_comm; auto.
+Qed.
+
+Theorem ZOmult_mod: forall a b n,
+ (a * b) mod n = ((a mod n) * (b mod n)) mod n.
+Proof.
+ intros.
+ generalize (Zmult_le_0_compat _ _ (ZOmod_sgn2 a n) (ZOmod_sgn2 b n)).
+ pattern a at 2 3; rewrite (ZO_div_mod_eq a n); auto with zarith.
+ pattern b at 2 3; rewrite (ZO_div_mod_eq b n); auto with zarith.
+ set (A:=a mod n); set (B:=b mod n); set (A':=a/n); set (B':=b/n).
+ replace (A*(n*A'+A)*(B*(n*B'+B))) with (((n*A' + A) * (n*B' + B))*(A*B))
+ by ring.
+ replace ((n*A' + A) * (n*B' + B))
+ with (A*B + (A'*B+B'*A+n*A'*B')*n) by ring.
+ intros.
+ apply ZO_mod_plus; auto with zarith.
+Qed.
+
+(** addition and modulo
+
+ Generally speaking, unlike with Zdiv, we don't have
+ (a+b) mod n = (a mod n + b mod n) mod n
+ for any a and b.
+ For instance, take (8 + (-10)) mod 3 = -2 whereas
+ (8 mod 3 + (-10 mod 3)) mod 3 = 1. *)
+
+Theorem ZOplus_mod: forall a b n,
+ 0 <= a * b ->
+ (a + b) mod n = (a mod n + b mod n) mod n.
+Proof.
+ assert (forall a b n, 0<a -> 0<b ->
+ (a + b) mod n = (a mod n + b mod n) mod n).
+ intros a b n Ha Hb.
+ assert (H : 0<=a+b) by (romega with * ); revert H.
+ pattern a at 1 2; rewrite (ZO_div_mod_eq a n); auto with zarith.
+ pattern b at 1 2; rewrite (ZO_div_mod_eq b n); auto with zarith.
+ replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n))
+ with ((a mod n + b mod n) + (a / n + b / n) * n) by ring.
+ intros.
+ apply ZO_mod_plus; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply Zplus_le_0_compat.
+ apply Zmult_le_reg_r with a; auto with zarith.
+ simpl; apply ZOmod_sgn2; auto.
+ apply Zmult_le_reg_r with b; auto with zarith.
+ simpl; apply ZOmod_sgn2; auto.
+ (* general situation *)
+ intros a b n Hab.
+ destruct (Z_eq_dec a 0).
+ subst; simpl; symmetry; apply ZOmod_mod.
+ destruct (Z_eq_dec b 0).
+ subst; simpl; do 2 rewrite Zplus_0_r; symmetry; apply ZOmod_mod.
+ assert (0<a /\ 0<b \/ a<0 /\ b<0).
+ destruct a; destruct b; simpl in *; intuition; romega with *.
+ destruct H0.
+ apply H; intuition.
+ rewrite <-(Zopp_involutive a), <-(Zopp_involutive b).
+ rewrite <- Zopp_plus_distr; rewrite ZOmod_opp_l.
+ rewrite (ZOmod_opp_l (-a)),(ZOmod_opp_l (-b)).
+ match goal with |- _ = (-?x+-?y) mod n =>
+ rewrite <-(Zopp_plus_distr x y), ZOmod_opp_l end.
+ f_equal; apply H; auto with zarith.
+Qed.
+
+Lemma ZOplus_mod_idemp_l: forall a b n,
+ 0 <= a * b ->
+ (a mod n + b) mod n = (a + b) mod n.
+Proof.
+ intros.
+ rewrite ZOplus_mod.
+ rewrite ZOmod_mod.
+ symmetry.
+ apply ZOplus_mod; auto.
+ destruct (Z_eq_dec a 0).
+ subst; rewrite ZOmod_0_l; auto.
+ destruct (Z_eq_dec b 0).
+ subst; rewrite Zmult_0_r; auto with zarith.
+ apply Zmult_le_reg_r with (a*b).
+ assert (a*b <> 0).
+ intro Hab.
+ rewrite (Zmult_integral_l _ _ n1 Hab) in n0; auto with zarith.
+ auto with zarith.
+ simpl.
+ replace (a mod n * b * (a*b)) with ((a mod n * a)*(b*b)) by ring.
+ apply Zmult_le_0_compat.
+ apply ZOmod_sgn2.
+ destruct b; simpl; auto with zarith.
+Qed.
+
+Lemma ZOplus_mod_idemp_r: forall a b n,
+ 0 <= a*b ->
+ (b + a mod n) mod n = (b + a) mod n.
+Proof.
+ intros.
+ rewrite Zplus_comm, (Zplus_comm b a).
+ apply ZOplus_mod_idemp_l; auto.
+Qed.
+
+Lemma ZOmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n.
+Proof.
+ intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto.
+Qed.
+
+Lemma ZOmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n.
+Proof.
+ intros; rewrite ZOmult_mod, ZOmod_mod, <- ZOmult_mod; auto.
+Qed.
+
+(** Unlike with Zdiv, the following result is true without restrictions. *)
+
+Lemma ZOdiv_ZOdiv : forall a b c, (a/b)/c = a/(b*c).
+Proof.
+ (* particular case: a, b, c positive *)
+ assert (forall a b c, a>0 -> b>0 -> c>0 -> (a/b)/c = a/(b*c)).
+ intros a b c H H0 H1.
+ pattern a at 2;rewrite (ZO_div_mod_eq a b).
+ pattern (a/b) at 2;rewrite (ZO_div_mod_eq (a/b) c).
+ replace (b * (c * (a / b / c) + (a / b) mod c) + a mod b) with
+ ((a / b / c)*(b * c) + (b * ((a / b) mod c) + a mod b)) by ring.
+ assert (b*c<>0).
+ intro H2;
+ assert (H3: c <> 0) by auto with zarith;
+ rewrite (Zmult_integral_l _ _ H3 H2) in H0; auto with zarith.
+ assert (0<=a/b) by (apply (ZO_div_pos a b); auto with zarith).
+ assert (0<=a mod b < b) by (apply ZOmod_lt_pos_pos; auto with zarith).
+ assert (0<=(a/b) mod c < c) by
+ (apply ZOmod_lt_pos_pos; auto with zarith).
+ rewrite ZO_div_plus_l; auto with zarith.
+ rewrite (ZOdiv_small (b * ((a / b) mod c) + a mod b)).
+ ring.
+ split.
+ apply Zplus_le_0_compat;auto with zarith.
+ apply Zle_lt_trans with (b * ((a / b) mod c) + (b-1)).
+ apply Zplus_le_compat;auto with zarith.
+ apply Zle_lt_trans with (b * (c-1) + (b - 1)).
+ apply Zplus_le_compat;auto with zarith.
+ replace (b * (c - 1) + (b - 1)) with (b*c-1);try ring;auto with zarith.
+ repeat (apply Zmult_le_0_compat || apply Zplus_le_0_compat); auto with zarith.
+ apply (ZO_div_pos (a/b) c); auto with zarith.
+ (* b c positive, a general *)
+ assert (forall a b c, b>0 -> c>0 -> (a/b)/c = a/(b*c)).
+ intros; destruct a as [ |a|a]; try reflexivity.
+ apply H; auto with zarith.
+ change (Zneg a) with (-Zpos a); repeat rewrite ZOdiv_opp_l.
+ f_equal; apply H; auto with zarith.
+ (* c positive, a b general *)
+ assert (forall a b c, c>0 -> (a/b)/c = a/(b*c)).
+ intros; destruct b as [ |b|b].
+ repeat rewrite ZOdiv_0_r; reflexivity.
+ apply H0; auto with zarith.
+ change (Zneg b) with (-Zpos b);
+ repeat (rewrite ZOdiv_opp_r || rewrite ZOdiv_opp_l || rewrite <- Zopp_mult_distr_l).
+ f_equal; apply H0; auto with zarith.
+ (* a b c general *)
+ intros; destruct c as [ |c|c].
+ rewrite Zmult_0_r; repeat rewrite ZOdiv_0_r; reflexivity.
+ apply H1; auto with zarith.
+ change (Zneg c) with (-Zpos c);
+ rewrite <- Zopp_mult_distr_r; do 2 rewrite ZOdiv_opp_r.
+ f_equal; apply H1; auto with zarith.
+Qed.
+
+(** A last inequality: *)
+
+Theorem ZOdiv_mult_le:
+ forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b.
+Proof.
+ intros a b c Ha Hb Hc.
+ destruct (Zle_lt_or_eq _ _ Ha);
+ [ | subst; rewrite ZOdiv_0_l, Zmult_0_r, ZOdiv_0_l; auto].
+ destruct (Zle_lt_or_eq _ _ Hb);
+ [ | subst; rewrite ZOdiv_0_r, ZOdiv_0_r, Zmult_0_r; auto].
+ destruct (Zle_lt_or_eq _ _ Hc);
+ [ | subst; rewrite ZOdiv_0_l; auto].
+ case (ZOmod_lt_pos_pos a b); auto with zarith; intros Hu1 Hu2.
+ case (ZOmod_lt_pos_pos c b); auto with zarith; intros Hv1 Hv2.
+ apply Zmult_le_reg_r with b; auto with zarith.
+ rewrite <- Zmult_assoc.
+ replace (a / b * b) with (a - a mod b).
+ replace (c * a / b * b) with (c * a - (c * a) mod b).
+ rewrite Zmult_minus_distr_l.
+ unfold Zminus; apply Zplus_le_compat_l.
+ match goal with |- - ?X <= -?Y => assert (Y <= X); auto with zarith end.
+ apply Zle_trans with ((c mod b) * (a mod b)); auto with zarith.
+ rewrite ZOmult_mod; auto with zarith.
+ apply (ZOmod_le ((c mod b) * (a mod b)) b); auto with zarith.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply (ZOmod_le c b); auto.
+ pattern (c * a) at 1; rewrite (ZO_div_mod_eq (c * a) b); try ring;
+ auto with zarith.
+ pattern a at 1; rewrite (ZO_div_mod_eq a b); try ring; auto with zarith.
+Qed.
+
+(** ZOmod is related to divisibility (see more in Znumtheory) *)
+
+Lemma ZOmod_divides : forall a b,
+ a mod b = 0 <-> exists c, a = b*c.
+Proof.
+ split; intros.
+ exists (a/b).
+ pattern a at 1; rewrite (ZO_div_mod_eq a b).
+ rewrite H; auto with zarith.
+ destruct H as [c Hc].
+ destruct (Z_eq_dec b 0).
+ subst b; simpl in *; subst a; auto.
+ symmetry.
+ apply ZOmod_unique_full with c; auto with zarith.
+ red; romega with *.
+Qed.
+
+(** * Interaction with "historic" Zdiv *)
+
+(** They agree at least on positive numbers: *)
+
+Theorem ZOdiv_eucl_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b ->
+ a/b = Zdiv.Zdiv a b /\ a mod b = Zdiv.Zmod a b.
+Proof.
+ intros.
+ apply Zdiv.Zdiv_mod_unique with b.
+ apply ZOmod_lt_pos; auto with zarith.
+ rewrite Zabs_eq; auto with *; apply Zdiv.Z_mod_lt; auto with *.
+ rewrite <- Zdiv.Z_div_mod_eq; auto with *.
+ symmetry; apply ZO_div_mod_eq; auto with *.
+Qed.
+
+Theorem ZOdiv_Zdiv_pos : forall a b, 0 <= a -> 0 <= b ->
+ a/b = Zdiv.Zdiv a b.
+Proof.
+ intros a b Ha Hb.
+ destruct (Zle_lt_or_eq _ _ Hb).
+ generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha H); intuition.
+ subst; rewrite ZOdiv_0_r, Zdiv.Zdiv_0_r; reflexivity.
+Qed.
+
+Theorem ZOmod_Zmod_pos : forall a b, 0 <= a -> 0 < b ->
+ a mod b = Zdiv.Zmod a b.
+Proof.
+ intros a b Ha Hb; generalize (ZOdiv_eucl_Zdiv_eucl_pos a b Ha Hb);
+ intuition.
+Qed.
+
+(** Modulos are null at the same places *)
+
+Theorem ZOmod_Zmod_zero : forall a b, b<>0 ->
+ (a mod b = 0 <-> Zdiv.Zmod a b = 0).
+Proof.
+ intros.
+ rewrite ZOmod_divides, Zdiv.Zmod_divides; intuition.
+Qed.
diff --git a/theories/ZArith/ZOdiv_def.v b/theories/ZArith/ZOdiv_def.v
new file mode 100644
index 00000000..2c84765e
--- /dev/null
+++ b/theories/ZArith/ZOdiv_def.v
@@ -0,0 +1,136 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+
+Require Import BinPos BinNat Nnat ZArith_base.
+
+Open Scope Z_scope.
+
+Definition NPgeb (a:N)(b:positive) :=
+ match a with
+ | N0 => false
+ | Npos na => match Pcompare na b Eq with Lt => false | _ => true end
+ end.
+
+Fixpoint Pdiv_eucl (a b:positive) {struct a} : N * N :=
+ match a with
+ | xH =>
+ match b with xH => (1, 0)%N | _ => (0, 1)%N end
+ | xO a' =>
+ let (q, r) := Pdiv_eucl a' b in
+ let r' := (2 * r)%N in
+ if (NPgeb r' b) then (2 * q + 1, (Nminus r' (Npos b)))%N
+ else (2 * q, r')%N
+ | xI a' =>
+ let (q, r) := Pdiv_eucl a' b in
+ let r' := (2 * r + 1)%N in
+ if (NPgeb r' b) then (2 * q + 1, (Nminus r' (Npos b)))%N
+ else (2 * q, r')%N
+ end.
+
+Definition ZOdiv_eucl (a b:Z) : Z * Z :=
+ match a, b with
+ | Z0, _ => (Z0, Z0)
+ | _, Z0 => (Z0, a)
+ | Zpos na, Zpos nb =>
+ let (nq, nr) := Pdiv_eucl na nb in
+ (Z_of_N nq, Z_of_N nr)
+ | Zneg na, Zpos nb =>
+ let (nq, nr) := Pdiv_eucl na nb in
+ (Zopp (Z_of_N nq), Zopp (Z_of_N nr))
+ | Zpos na, Zneg nb =>
+ let (nq, nr) := Pdiv_eucl na nb in
+ (Zopp (Z_of_N nq), Z_of_N nr)
+ | Zneg na, Zneg nb =>
+ let (nq, nr) := Pdiv_eucl na nb in
+ (Z_of_N nq, Zopp (Z_of_N nr))
+ end.
+
+Definition ZOdiv a b := fst (ZOdiv_eucl a b).
+Definition ZOmod a b := snd (ZOdiv_eucl a b).
+
+
+Definition Ndiv_eucl (a b:N) : N * N :=
+ match a, b with
+ | N0, _ => (N0, N0)
+ | _, N0 => (N0, a)
+ | Npos na, Npos nb => Pdiv_eucl na nb
+ end.
+
+Definition Ndiv a b := fst (Ndiv_eucl a b).
+Definition Nmod a b := snd (Ndiv_eucl a b).
+
+
+(* Proofs of specifications for these euclidean divisions. *)
+
+Theorem NPgeb_correct: forall (a:N)(b:positive),
+ if NPgeb a b then a = (Nminus a (Npos b) + Npos b)%N else True.
+Proof.
+ destruct a; intros; simpl; auto.
+ generalize (Pcompare_Eq_eq p b).
+ case_eq (Pcompare p b Eq); intros; auto.
+ rewrite H0; auto.
+ now rewrite Pminus_mask_diag.
+ destruct (Pminus_mask_Gt p b H) as [d [H2 [H3 _]]].
+ rewrite H2. rewrite <- H3.
+ simpl; f_equal; apply Pplus_comm.
+Qed.
+
+Hint Rewrite Z_of_N_plus Z_of_N_mult Z_of_N_minus Zmult_1_l Zmult_assoc
+ Zmult_plus_distr_l Zmult_plus_distr_r : zdiv.
+Hint Rewrite <- Zplus_assoc : zdiv.
+
+Theorem Pdiv_eucl_correct: forall a b,
+ let (q,r) := Pdiv_eucl a b in
+ Zpos a = Z_of_N q * Zpos b + Z_of_N r.
+Proof.
+ induction a; cbv beta iota delta [Pdiv_eucl]; fold Pdiv_eucl; cbv zeta.
+ intros b; generalize (IHa b); case Pdiv_eucl.
+ intros q1 r1 Hq1.
+ generalize (NPgeb_correct (2 * r1 + 1) b); case NPgeb; intros H.
+ set (u := Nminus (2 * r1 + 1) (Npos b)) in * |- *.
+ assert (HH: Z_of_N u = (Z_of_N (2 * r1 + 1) - Zpos b)%Z).
+ rewrite H; autorewrite with zdiv; simpl.
+ rewrite Zplus_comm, Zminus_plus; trivial.
+ rewrite HH; autorewrite with zdiv; simpl Z_of_N.
+ rewrite Zpos_xI, Hq1.
+ autorewrite with zdiv; f_equal; rewrite Zplus_minus; trivial.
+ rewrite Zpos_xI, Hq1; autorewrite with zdiv; auto.
+ intros b; generalize (IHa b); case Pdiv_eucl.
+ intros q1 r1 Hq1.
+ generalize (NPgeb_correct (2 * r1) b); case NPgeb; intros H.
+ set (u := Nminus (2 * r1) (Npos b)) in * |- *.
+ assert (HH: Z_of_N u = (Z_of_N (2 * r1) - Zpos b)%Z).
+ rewrite H; autorewrite with zdiv; simpl.
+ rewrite Zplus_comm, Zminus_plus; trivial.
+ rewrite HH; autorewrite with zdiv; simpl Z_of_N.
+ rewrite Zpos_xO, Hq1.
+ autorewrite with zdiv; f_equal; rewrite Zplus_minus; trivial.
+ rewrite Zpos_xO, Hq1; autorewrite with zdiv; auto.
+ destruct b; auto.
+Qed.
+
+Theorem ZOdiv_eucl_correct: forall a b,
+ let (q,r) := ZOdiv_eucl a b in a = q * b + r.
+Proof.
+ destruct a; destruct b; simpl; auto;
+ generalize (Pdiv_eucl_correct p p0); case Pdiv_eucl; auto; intros;
+ try change (Zneg p) with (Zopp (Zpos p)); rewrite H.
+ destruct n; auto.
+ repeat (rewrite Zopp_plus_distr || rewrite Zopp_mult_distr_l); trivial.
+ repeat (rewrite Zopp_plus_distr || rewrite Zopp_mult_distr_r); trivial.
+Qed.
+
+Theorem Ndiv_eucl_correct: forall a b,
+ let (q,r) := Ndiv_eucl a b in a = (q * b + r)%N.
+Proof.
+ destruct a; destruct b; simpl; auto;
+ generalize (Pdiv_eucl_correct p p0); case Pdiv_eucl; auto; intros;
+ destruct n; destruct n0; simpl; simpl in H; try discriminate;
+ injection H; intros; subst; trivial.
+Qed.
diff --git a/theories/ZArith/Zabs.v b/theories/ZArith/Zabs.v
index ed641358..c15493e3 100644
--- a/theories/ZArith/Zabs.v
+++ b/theories/ZArith/Zabs.v
@@ -5,14 +5,16 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zabs.v 9302 2006-10-27 21:21:17Z barras $ i*)
+(*i $Id: Zabs.v 10302 2007-11-08 09:54:31Z letouzey $ i*)
-(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
+(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
Require Import Arith_base.
Require Import BinPos.
Require Import BinInt.
Require Import Zorder.
+Require Import Zmax.
+Require Import Znat.
Require Import ZArith_dec.
Open Local Scope Z_scope.
@@ -63,6 +65,11 @@ Lemma Zabs_pos : forall n:Z, 0 <= Zabs n.
intro x; destruct x; auto with arith; compute in |- *; intros H; inversion H.
Qed.
+Lemma Zabs_involutive : forall x:Z, Zabs (Zabs x) = Zabs x.
+Proof.
+ intros; apply Zabs_eq; apply Zabs_pos.
+Qed.
+
Theorem Zabs_eq_case : forall n m:Z, Zabs n = Zabs m -> n = m \/ n = - m.
Proof.
intros z1 z2; case z1; case z2; simpl in |- *; auto;
@@ -70,6 +77,13 @@ Proof.
(intros H2; rewrite H2); auto.
Qed.
+Lemma Zabs_spec : forall x:Z,
+ 0 <= x /\ Zabs x = x \/
+ 0 > x /\ Zabs x = -x.
+Proof.
+ intros; unfold Zabs, Zle, Zgt; destruct x; simpl; intuition discriminate.
+Qed.
+
(** * Triangular inequality *)
Hint Local Resolve Zle_neg_pos: zarith.
@@ -106,25 +120,106 @@ Proof.
intros z1 z2; case z1; case z2; simpl in |- *; auto.
Qed.
-(** * Absolute value in nat is compatible with order *)
+Theorem Zabs_square : forall a, Zabs a * Zabs a = a * a.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+(** * Results about absolute value in nat. *)
+
+Theorem inj_Zabs_nat : forall z:Z, Z_of_nat (Zabs_nat z) = Zabs z.
+Proof.
+ destruct z; simpl; auto; symmetry; apply Zpos_eq_Z_of_nat_o_nat_of_P.
+Qed.
+
+Theorem Zabs_nat_Z_of_nat: forall n, Zabs_nat (Z_of_nat n) = n.
+Proof.
+ destruct n; simpl; auto.
+ apply nat_of_P_o_P_of_succ_nat_eq_succ.
+Qed.
+
+Lemma Zabs_nat_mult: forall n m:Z, Zabs_nat (n*m) = (Zabs_nat n * Zabs_nat m)%nat.
+Proof.
+ intros; apply inj_eq_rev.
+ rewrite inj_mult; repeat rewrite inj_Zabs_nat; apply Zabs_Zmult.
+Qed.
+
+Lemma Zabs_nat_Zsucc:
+ forall p, 0 <= p -> Zabs_nat (Zsucc p) = S (Zabs_nat p).
+Proof.
+ intros; apply inj_eq_rev.
+ rewrite inj_S; repeat rewrite inj_Zabs_nat, Zabs_eq; auto with zarith.
+Qed.
+
+Lemma Zabs_nat_Zplus:
+ forall x y, 0<=x -> 0<=y -> Zabs_nat (x+y) = (Zabs_nat x + Zabs_nat y)%nat.
+Proof.
+ intros; apply inj_eq_rev.
+ rewrite inj_plus; repeat rewrite inj_Zabs_nat, Zabs_eq; auto with zarith.
+ apply Zplus_le_0_compat; auto.
+Qed.
+
+Lemma Zabs_nat_Zminus:
+ forall x y, 0 <= x <= y -> Zabs_nat (y - x) = (Zabs_nat y - Zabs_nat x)%nat.
+Proof.
+ intros x y (H,H').
+ assert (0 <= y) by (apply Zle_trans with x; auto).
+ assert (0 <= y-x) by (apply Zle_minus_le_0; auto).
+ apply inj_eq_rev.
+ rewrite inj_minus; repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
+ rewrite Zmax_right; auto.
+Qed.
+
+Lemma Zabs_nat_le :
+ forall n m:Z, 0 <= n <= m -> (Zabs_nat n <= Zabs_nat m)%nat.
+Proof.
+ intros n m (H,H'); apply inj_le_rev.
+ repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
+ apply Zle_trans with n; auto.
+Qed.
Lemma Zabs_nat_lt :
- forall n m:Z, 0 <= n /\ n < m -> (Zabs_nat n < Zabs_nat m)%nat.
+ forall n m:Z, 0 <= n < m -> (Zabs_nat n < Zabs_nat m)%nat.
+Proof.
+ intros n m (H,H'); apply inj_lt_rev.
+ repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
+ apply Zlt_le_weak; apply Zle_lt_trans with n; auto.
+Qed.
+
+(** * Some results about the sign function. *)
+
+Lemma Zsgn_Zmult : forall a b, Zsgn (a*b) = Zsgn a * Zsgn b.
+Proof.
+ destruct a; destruct b; simpl; auto.
+Qed.
+
+Lemma Zsgn_Zopp : forall a, Zsgn (-a) = - Zsgn a.
Proof.
- intros x y. case x; simpl in |- *. case y; simpl in |- *.
+ destruct a; simpl; auto.
+Qed.
- intro. absurd (0 < 0). compute in |- *. intro H0. discriminate H0. intuition.
- intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
- intros. elim (ZL4 p). intros. rewrite H0. auto with arith.
-
- case y; simpl in |- *.
- intros. absurd (Zpos p < 0). compute in |- *. intro H0. discriminate H0. intuition.
- intros. change (nat_of_P p > nat_of_P p0)%nat in |- *.
- apply nat_of_P_gt_Gt_compare_morphism.
- elim H; auto with arith. intro. exact (ZC2 p0 p).
+(** A characterization of the sign function: *)
- intros. absurd (Zpos p0 < Zneg p).
- compute in |- *. intro H0. discriminate H0. intuition.
+Lemma Zsgn_spec : forall x:Z,
+ 0 < x /\ Zsgn x = 1 \/
+ 0 = x /\ Zsgn x = 0 \/
+ 0 > x /\ Zsgn x = -1.
+Proof.
+ intros; unfold Zsgn, Zle, Zgt; destruct x; compute; intuition.
+Qed.
- intros. absurd (0 <= Zneg p). compute in |- *. auto with arith. intuition.
+Lemma Zsgn_pos : forall x:Z, Zsgn x = 1 <-> 0 < x.
+Proof.
+ destruct x; now intuition.
Qed.
+
+Lemma Zsgn_neg : forall x:Z, Zsgn x = -1 <-> x < 0.
+Proof.
+ destruct x; now intuition.
+Qed.
+
+Lemma Zsgn_null : forall x:Z, Zsgn x = 0 <-> x = 0.
+Proof.
+ destruct x; now intuition.
+Qed.
+
diff --git a/theories/ZArith/Zbool.v b/theories/ZArith/Zbool.v
index 7da91c44..34114d46 100644
--- a/theories/ZArith/Zbool.v
+++ b/theories/ZArith/Zbool.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Zbool.v 9245 2006-10-17 12:53:34Z notin $ *)
+(* $Id: Zbool.v 10063 2007-08-08 14:21:03Z emakarov $ *)
Require Import BinInt.
Require Import Zeven.
@@ -104,7 +104,7 @@ Qed.
Lemma Zle_bool_imp_le : forall n m:Z, Zle_bool n m = true -> (n <= m)%Z.
Proof.
- unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *.
+ unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *.
case (x ?= y)%Z; intros; discriminate.
Qed.
@@ -178,6 +178,18 @@ Proof.
intro. apply Zle_ge. apply Zle_bool_imp_le. assumption.
Qed.
+Lemma Zlt_is_lt_bool : forall n m:Z, (n < m)%Z <-> Zlt_bool n m = true.
+Proof.
+intros n m; unfold Zlt_bool, Zlt.
+destruct (n ?= m)%Z; simpl; split; now intro.
+Qed.
+
+Lemma Zgt_is_gt_bool : forall n m:Z, (n > m)%Z <-> Zgt_bool n m = true.
+Proof.
+intros n m; unfold Zgt_bool, Zgt.
+destruct (n ?= m)%Z; simpl; split; now intro.
+Qed.
+
Lemma Zlt_is_le_bool :
forall n m:Z, (n < m)%Z <-> Zle_bool n (m - 1) = true.
Proof.
diff --git a/theories/ZArith/Zcomplements.v b/theories/ZArith/Zcomplements.v
index 78c8a976..c6ade934 100644
--- a/theories/ZArith/Zcomplements.v
+++ b/theories/ZArith/Zcomplements.v
@@ -6,11 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zcomplements.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Zcomplements.v 10617 2008-03-04 18:07:16Z letouzey $ i*)
Require Import ZArithRing.
Require Import ZArith_base.
-Require Import Omega.
+Require Export Omega.
Require Import Wf_nat.
Open Local Scope Z_scope.
@@ -160,7 +160,7 @@ Qed.
Require Import List.
-Fixpoint Zlength_aux (acc:Z) (A:Set) (l:list A) {struct l} : Z :=
+Fixpoint Zlength_aux (acc:Z) (A:Type) (l:list A) {struct l} : Z :=
match l with
| nil => acc
| _ :: l => Zlength_aux (Zsucc acc) A l
@@ -171,7 +171,7 @@ Implicit Arguments Zlength [A].
Section Zlength_properties.
- Variable A : Set.
+ Variable A : Type.
Implicit Type l : list A.
diff --git a/theories/ZArith/Zdiv.v b/theories/ZArith/Zdiv.v
index 31f68207..4c560c6b 100644
--- a/theories/ZArith/Zdiv.v
+++ b/theories/ZArith/Zdiv.v
@@ -6,9 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zdiv.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Zdiv.v 10999 2008-05-27 15:55:22Z letouzey $ i*)
-(* Contribution by Claude Marché and Xavier Urbain *)
+(* Contribution by Claude Marché and Xavier Urbain *)
(** Euclidean Division
@@ -21,6 +21,7 @@ Require Import Zbool.
Require Import Omega.
Require Import ZArithRing.
Require Import Zcomplements.
+Require Export Setoid.
Open Local Scope Z_scope.
(** * Definitions of Euclidian operations *)
@@ -70,8 +71,21 @@ Unboxed Fixpoint Zdiv_eucl_POS (a:positive) (b:Z) {struct a} :
if r = 0 then (-q,0) else (-(q+1),b+r)
In other word, when b is non-zero, q is chosen to be the greatest integer
- smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b|.
+ smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b| (at least when
+ r is not null).
+*)
+
+(* Nota: At least two others conventions also exist for euclidean division.
+ They all satify the equation a=b*q+r, but differ on the choice of (q,r)
+ on negative numbers.
+
+ * Ocaml uses Round-Toward-Zero division: (-a)/b = a/(-b) = -(a/b).
+ Hence (-a) mod b = - (a mod b)
+ a mod (-b) = a mod b
+ And: |r| < |b| and sgn(r) = sgn(a) (notice the a here instead of b).
+ * Another solution is to always pick a non-negative remainder:
+ a=b*q+r with 0 <= r < |b|
*)
Definition Zdiv_eucl (a b:Z) : Z * Z :=
@@ -96,7 +110,7 @@ Definition Zdiv_eucl (a b:Z) : Z * Z :=
(** Division and modulo are projections of [Zdiv_eucl] *)
-
+
Definition Zdiv (a b:Z) : Z := let (q, _) := Zdiv_eucl a b in q.
Definition Zmod (a b:Z) : Z := let (_, r) := Zdiv_eucl a b in r.
@@ -108,20 +122,20 @@ Infix "mod" := Zmod (at level 40, no associativity) : Z_scope.
(* Tests:
-Eval Compute in `(Zdiv_eucl 7 3)`.
+Eval compute in (Zdiv_eucl 7 3).
-Eval Compute in `(Zdiv_eucl (-7) 3)`.
+Eval compute in (Zdiv_eucl (-7) 3).
-Eval Compute in `(Zdiv_eucl 7 (-3))`.
+Eval compute in (Zdiv_eucl 7 (-3)).
-Eval Compute in `(Zdiv_eucl (-7) (-3))`.
+Eval compute in (Zdiv_eucl (-7) (-3)).
*)
(** * Main division theorem *)
-(** First a lemma for positive *)
+(** First a lemma for two positive arguments *)
Lemma Z_div_mod_POS :
forall b:Z,
@@ -129,7 +143,8 @@ Lemma Z_div_mod_POS :
forall a:positive,
let (q, r) := Zdiv_eucl_POS a b in Zpos a = b * q + r /\ 0 <= r < b.
Proof.
-simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.
+simple induction a; cbv beta iota delta [Zdiv_eucl_POS] in |- *;
+ fold Zdiv_eucl_POS in |- *; cbv zeta.
intro p; case (Zdiv_eucl_POS p b); intros q r [H0 H1].
generalize (Zgt_cases b (2 * r + 1)).
@@ -147,6 +162,7 @@ case (Zge_bool b 2); (intros; split; [ try ring | omega ]).
omega.
Qed.
+(** Then the usual situation of a positive [b] and no restriction on [a] *)
Theorem Z_div_mod :
forall a b:Z,
@@ -166,27 +182,131 @@ Proof.
intros [H1 H2].
split; trivial.
- replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+ change (Zneg p0) with (- Zpos p0); rewrite H1; ring.
intros p1 [H1 H2].
split; trivial.
- replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+ change (Zneg p0) with (- Zpos p0); rewrite H1; ring.
generalize (Zorder.Zgt_pos_0 p1); omega.
intros p1 [H1 H2].
split; trivial.
- replace (Zneg p0) with (- Zpos p0); [ rewrite H1; ring | trivial ].
+ change (Zneg p0) with (- Zpos p0); rewrite H1; ring.
generalize (Zorder.Zlt_neg_0 p1); omega.
intros; discriminate.
Qed.
-(** Existence theorems *)
+(** For stating the fully general result, let's give a short name
+ to the condition on the remainder. *)
-Theorem Zdiv_eucl_exist :
- forall b:Z,
- b > 0 ->
- forall a:Z, {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < b}.
+Definition Remainder r b := 0 <= r < b \/ b < r <= 0.
+
+(** Another equivalent formulation: *)
+
+Definition Remainder_alt r b := Zabs r < Zabs b /\ Zsgn r <> - Zsgn b.
+
+(* In the last formulation, [ Zsgn r <> - Zsgn b ] is less nice than saying
+ [ Zsgn r = Zsgn b ], but at least it works even when [r] is null. *)
+
+Lemma Remainder_equiv : forall r b, Remainder r b <-> Remainder_alt r b.
+Proof.
+ intros; unfold Remainder, Remainder_alt; omega with *.
+Qed.
+
+Hint Unfold Remainder.
+
+(** Now comes the fully general result about Euclidean division. *)
+
+Theorem Z_div_mod_full :
+ forall a b:Z,
+ b <> 0 -> let (q, r) := Zdiv_eucl a b in a = b * q + r /\ Remainder r b.
+Proof.
+ destruct b as [|b|b].
+ (* b = 0 *)
+ intro H; elim H; auto.
+ (* b > 0 *)
+ intros _.
+ assert (Zpos b > 0) by auto with zarith.
+ generalize (Z_div_mod a (Zpos b) H).
+ destruct Zdiv_eucl as (q,r); intuition; simpl; auto.
+ (* b < 0 *)
+ intros _.
+ assert (Zpos b > 0) by auto with zarith.
+ generalize (Z_div_mod a (Zpos b) H).
+ unfold Remainder.
+ destruct a as [|a|a].
+ (* a = 0 *)
+ simpl; intuition.
+ (* a > 0 *)
+ unfold Zdiv_eucl; destruct Zdiv_eucl_POS as (q,r).
+ destruct r as [|r|r]; [ | | omega with *].
+ rewrite <- Zmult_opp_comm; simpl Zopp; intuition.
+ rewrite <- Zmult_opp_comm; simpl Zopp.
+ rewrite Zmult_plus_distr_r; omega with *.
+ (* a < 0 *)
+ unfold Zdiv_eucl.
+ generalize (Z_div_mod_POS (Zpos b) H a).
+ destruct Zdiv_eucl_POS as (q,r).
+ destruct r as [|r|r]; change (Zneg b) with (-Zpos b).
+ rewrite Zmult_opp_comm; omega with *.
+ rewrite <- Zmult_opp_comm, Zmult_plus_distr_r;
+ repeat rewrite Zmult_opp_comm; omega.
+ rewrite Zmult_opp_comm; omega with *.
+Qed.
+
+(** The same results as before, stated separately in terms of Zdiv and Zmod *)
+
+Lemma Z_mod_remainder : forall a b:Z, b<>0 -> Remainder (a mod b) b.
+Proof.
+ unfold Zmod; intros a b Hb; generalize (Z_div_mod_full a b Hb); auto.
+ destruct Zdiv_eucl; tauto.
+Qed.
+
+Lemma Z_mod_lt : forall a b:Z, b > 0 -> 0 <= a mod b < b.
+Proof.
+ unfold Zmod; intros a b Hb; generalize (Z_div_mod a b Hb).
+ destruct Zdiv_eucl; tauto.
+Qed.
+
+Lemma Z_mod_neg : forall a b:Z, b < 0 -> b < a mod b <= 0.
+Proof.
+ unfold Zmod; intros a b Hb.
+ assert (Hb' : b<>0) by (auto with zarith).
+ generalize (Z_div_mod_full a b Hb').
+ destruct Zdiv_eucl.
+ unfold Remainder; intuition.
+Qed.
+
+Lemma Z_div_mod_eq_full : forall a b:Z, b <> 0 -> a = b*(a/b) + (a mod b).
+Proof.
+ unfold Zdiv, Zmod; intros a b Hb; generalize (Z_div_mod_full a b Hb).
+ destruct Zdiv_eucl; tauto.
+Qed.
+
+Lemma Z_div_mod_eq : forall a b:Z, b > 0 -> a = b*(a/b) + (a mod b).
+Proof.
+ intros; apply Z_div_mod_eq_full; auto with zarith.
+Qed.
+
+Lemma Zmod_eq_full : forall a b:Z, b<>0 -> a mod b = a - (a/b)*b.
+Proof.
+ intros.
+ rewrite <- Zeq_plus_swap, Zplus_comm, Zmult_comm; symmetry.
+ apply Z_div_mod_eq_full; auto.
+Qed.
+
+Lemma Zmod_eq : forall a b:Z, b>0 -> a mod b = a - (a/b)*b.
+Proof.
+ intros.
+ rewrite <- Zeq_plus_swap, Zplus_comm, Zmult_comm; symmetry.
+ apply Z_div_mod_eq; auto.
+Qed.
+
+(** Existence theorem *)
+
+Theorem Zdiv_eucl_exist : forall (b:Z)(Hb:b>0)(a:Z),
+ {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < b}.
Proof.
intros b Hb a.
exists (Zdiv_eucl a b).
@@ -195,70 +315,180 @@ Qed.
Implicit Arguments Zdiv_eucl_exist.
-Theorem Zdiv_eucl_extended :
- forall b:Z,
- b <> 0 ->
- forall a:Z,
- {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < Zabs b}.
+
+(** Uniqueness theorems *)
+
+Theorem Zdiv_mod_unique :
+ forall b q1 q2 r1 r2:Z,
+ 0 <= r1 < Zabs b -> 0 <= r2 < Zabs b ->
+ b*q1+r1 = b*q2+r2 -> q1=q2 /\ r1=r2.
Proof.
- intros b Hb a.
- elim (Z_le_gt_dec 0 b); intro Hb'.
- cut (b > 0); [ intro Hb'' | omega ].
- rewrite Zabs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ].
- cut (- b > 0); [ intro Hb'' | omega ].
- elim (Zdiv_eucl_exist Hb'' a); intros qr.
- elim qr; intros q r Hqr.
- exists (- q, r).
- elim Hqr; intros.
- split.
- rewrite <- Zmult_opp_comm; assumption.
- rewrite Zabs_non_eq; [ assumption | omega ].
+intros b q1 q2 r1 r2 Hr1 Hr2 H.
+destruct (Z_eq_dec q1 q2) as [Hq|Hq].
+split; trivial.
+rewrite Hq in H; omega.
+elim (Zlt_not_le (Zabs (r2 - r1)) (Zabs b)).
+omega with *.
+replace (r2-r1) with (b*(q1-q2)) by (rewrite Zmult_minus_distr_l; omega).
+replace (Zabs b) with ((Zabs b)*1) by ring.
+rewrite Zabs_Zmult.
+apply Zmult_le_compat_l; auto with *.
+omega with *.
Qed.
-Implicit Arguments Zdiv_eucl_extended.
+Theorem Zdiv_mod_unique_2 :
+ forall b q1 q2 r1 r2:Z,
+ Remainder r1 b -> Remainder r2 b ->
+ b*q1+r1 = b*q2+r2 -> q1=q2 /\ r1=r2.
+Proof.
+unfold Remainder.
+intros b q1 q2 r1 r2 Hr1 Hr2 H.
+destruct (Z_eq_dec q1 q2) as [Hq|Hq].
+split; trivial.
+rewrite Hq in H; omega.
+elim (Zlt_not_le (Zabs (r2 - r1)) (Zabs b)).
+omega with *.
+replace (r2-r1) with (b*(q1-q2)) by (rewrite Zmult_minus_distr_l; omega).
+replace (Zabs b) with ((Zabs b)*1) by ring.
+rewrite Zabs_Zmult.
+apply Zmult_le_compat_l; auto with *.
+omega with *.
+Qed.
-(** * Auxiliary lemmas about [Zdiv] and [Zmod] *)
+Theorem Zdiv_unique_full:
+ forall a b q r, Remainder r b ->
+ a = b*q + r -> q = a/b.
+Proof.
+ intros.
+ assert (b <> 0) by (unfold Remainder in *; omega with *).
+ generalize (Z_div_mod_full a b H1).
+ unfold Zdiv; destruct Zdiv_eucl as (q',r').
+ intros (H2,H3); rewrite H2 in H0.
+ destruct (Zdiv_mod_unique_2 b q q' r r'); auto.
+Qed.
-Lemma Z_div_mod_eq : forall a b:Z, b > 0 -> a = b * Zdiv a b + Zmod a b.
+Theorem Zdiv_unique:
+ forall a b q r, 0 <= r < b ->
+ a = b*q + r -> q = a/b.
Proof.
- unfold Zdiv, Zmod in |- *.
- intros a b Hb.
- generalize (Z_div_mod a b Hb).
- case Zdiv_eucl; tauto.
+ intros; eapply Zdiv_unique_full; eauto.
Qed.
-Lemma Z_mod_lt : forall a b:Z, b > 0 -> 0 <= Zmod a b < b.
+Theorem Zmod_unique_full:
+ forall a b q r, Remainder r b ->
+ a = b*q + r -> r = a mod b.
Proof.
- unfold Zmod in |- *.
- intros a b Hb.
- generalize (Z_div_mod a b Hb).
- case (Zdiv_eucl a b); tauto.
+ intros.
+ assert (b <> 0) by (unfold Remainder in *; omega with *).
+ generalize (Z_div_mod_full a b H1).
+ unfold Zmod; destruct Zdiv_eucl as (q',r').
+ intros (H2,H3); rewrite H2 in H0.
+ destruct (Zdiv_mod_unique_2 b q q' r r'); auto.
Qed.
-Lemma Z_div_POS_ge0 :
- forall (b:Z) (a:positive), let (q, _) := Zdiv_eucl_POS a b in q >= 0.
+Theorem Zmod_unique:
+ forall a b q r, 0 <= r < b ->
+ a = b*q + r -> r = a mod b.
Proof.
- simple induction a; unfold Zdiv_eucl_POS in |- *; fold Zdiv_eucl_POS in |- *.
- intro p; case (Zdiv_eucl_POS p b).
- intros; case (Zgt_bool b (2 * z0 + 1)); intros; omega.
- intro p; case (Zdiv_eucl_POS p b).
- intros; case (Zgt_bool b (2 * z0)); intros; omega.
- case (Zge_bool b 2); simpl in |- *; omega.
+ intros; eapply Zmod_unique_full; eauto.
Qed.
-Lemma Z_div_ge0 : forall a b:Z, b > 0 -> a >= 0 -> Zdiv a b >= 0.
+(** * Basic values of divisions and modulo. *)
+
+Lemma Zmod_0_l: forall a, 0 mod a = 0.
Proof.
- intros a b Hb; unfold Zdiv, Zdiv_eucl in |- *; case a; simpl in |- *; intros.
- case b; simpl in |- *; trivial.
- generalize Hb; case b; try trivial.
- auto with zarith.
- intros p0 Hp0; generalize (Z_div_POS_ge0 (Zpos p0) p).
- case (Zdiv_eucl_POS p (Zpos p0)); simpl in |- *; tauto.
- intros; discriminate.
- elim H; trivial.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma Zmod_0_r: forall a, a mod 0 = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma Zdiv_0_l: forall a, 0/a = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma Zdiv_0_r: forall a, a/0 = 0.
+Proof.
+ destruct a; simpl; auto.
+Qed.
+
+Lemma Zmod_1_r: forall a, a mod 1 = 0.
+Proof.
+ intros; symmetry; apply Zmod_unique with a; auto with zarith.
Qed.
-Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> Zdiv a b < a.
+Lemma Zdiv_1_r: forall a, a/1 = a.
+Proof.
+ intros; symmetry; apply Zdiv_unique with 0; auto with zarith.
+Qed.
+
+Hint Resolve Zmod_0_l Zmod_0_r Zdiv_0_l Zdiv_0_r Zdiv_1_r Zmod_1_r
+ : zarith.
+
+Lemma Zdiv_1_l: forall a, 1 < a -> 1/a = 0.
+Proof.
+ intros; symmetry; apply Zdiv_unique with 1; auto with zarith.
+Qed.
+
+Lemma Zmod_1_l: forall a, 1 < a -> 1 mod a = 1.
+Proof.
+ intros; symmetry; apply Zmod_unique with 0; auto with zarith.
+Qed.
+
+Lemma Z_div_same_full : forall a:Z, a<>0 -> a/a = 1.
+Proof.
+ intros; symmetry; apply Zdiv_unique_full with 0; auto with *; red; omega.
+Qed.
+
+Lemma Z_mod_same_full : forall a, a mod a = 0.
+Proof.
+ destruct a; intros; symmetry.
+ compute; auto.
+ apply Zmod_unique with 1; auto with *; omega with *.
+ apply Zmod_unique_full with 1; auto with *; red; omega with *.
+Qed.
+
+Lemma Z_mod_mult : forall a b, (a*b) mod b = 0.
+Proof.
+ intros a b; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; simpl; rewrite Zmod_0_r; auto.
+ symmetry; apply Zmod_unique_full with a; [ red; omega | ring ].
+Qed.
+
+Lemma Z_div_mult_full : forall a b:Z, b <> 0 -> (a*b)/b = a.
+Proof.
+ intros; symmetry; apply Zdiv_unique_full with 0; auto with zarith;
+ [ red; omega | ring].
+Qed.
+
+(** * Order results about Zmod and Zdiv *)
+
+(* Division of positive numbers is positive. *)
+
+Lemma Z_div_pos: forall a b, b > 0 -> 0 <= a -> 0 <= a/b.
+Proof.
+ intros.
+ rewrite (Z_div_mod_eq a b H) in H0.
+ assert (H1:=Z_mod_lt a b H).
+ destruct (Z_lt_le_dec (a/b) 0); auto.
+ assert (b*(a/b) <= -b).
+ replace (-b) with (b*-1); [ | ring].
+ apply Zmult_le_compat_l; auto with zarith.
+ omega.
+Qed.
+
+Lemma Z_div_ge0: forall a b, b > 0 -> a >= 0 -> a/b >=0.
+Proof.
+ intros; generalize (Z_div_pos a b H); auto with zarith.
+Qed.
+
+(** As soon as the divisor is greater or equal than 2,
+ the division is strictly decreasing. *)
+
+Lemma Z_div_lt : forall a b:Z, b >= 2 -> a > 0 -> a/b < a.
Proof.
intros. cut (b > 0); [ intro Hb | omega ].
generalize (Z_div_mod a b Hb).
@@ -271,9 +501,24 @@ Proof.
auto with zarith.
Qed.
-(** * Other lemmas (now using the syntax for [Zdiv] and [Zmod]). *)
-Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a / c >= b / c.
+(** A division of a small number by a bigger one yields zero. *)
+
+Theorem Zdiv_small: forall a b, 0 <= a < b -> a/b = 0.
+Proof.
+ intros a b H; apply sym_equal; apply Zdiv_unique with a; auto with zarith.
+Qed.
+
+(** Same situation, in term of modulo: *)
+
+Theorem Zmod_small: forall a n, 0 <= a < n -> a mod n = a.
+Proof.
+ intros a b H; apply sym_equal; apply Zmod_unique with 0; auto with zarith.
+Qed.
+
+(** [Zge] is compatible with a positive division. *)
+
+Lemma Z_div_ge : forall a b c:Z, c > 0 -> a >= b -> a/c >= b/c.
Proof.
intros a b c cPos aGeb.
generalize (Z_div_mod_eq a c cPos).
@@ -285,13 +530,8 @@ Proof.
intro.
absurd (b - a >= 1).
omega.
- rewrite H0.
- rewrite H2.
- assert
- (c * (b / c) + b mod c - (c * (a / c) + a mod c) =
- c * (b / c - a / c) + b mod c - a mod c).
- ring.
- rewrite H3.
+ replace (b-a) with (c * (b/c-a/c) + b mod c - a mod c) by
+ (symmetry; pattern a at 1; rewrite H2; pattern b at 1; rewrite H0; ring).
assert (c * (b / c - a / c) >= c * 1).
apply Zmult_ge_compat_l.
omega.
@@ -301,111 +541,639 @@ Proof.
omega.
Qed.
-Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c.
+(** Same, with [Zle]. *)
+
+Lemma Z_div_le : forall a b c:Z, c > 0 -> a <= b -> a/c <= b/c.
Proof.
- intros a b c cPos.
- generalize (Z_div_mod_eq a c cPos).
- generalize (Z_mod_lt a c cPos).
- generalize (Z_div_mod_eq (a + b * c) c cPos).
- generalize (Z_mod_lt (a + b * c) c cPos).
- intros.
+ intros a b c H H0.
+ apply Zge_le.
+ apply Z_div_ge; auto with *.
+Qed.
- assert ((a + b * c) mod c - a mod c = c * (b + a / c - (a + b * c) / c)).
- replace ((a + b * c) mod c) with (a + b * c - c * ((a + b * c) / c)).
- replace (a mod c) with (a - c * (a / c)).
- ring.
- omega.
- omega.
- set (q := b + a / c - (a + b * c) / c) in *.
- apply (Zcase_sign q); intros.
- assert (c * q = 0).
- rewrite H4; ring.
- rewrite H5 in H3.
- omega.
+(** With our choice of division, rounding of (a/b) is always done toward bottom: *)
- assert (c * q >= c).
- pattern c at 2 in |- *; replace c with (c * 1).
- apply Zmult_ge_compat_l; omega.
- ring.
- omega.
+Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b*(a/b) <= a.
+Proof.
+ intros a b H; generalize (Z_div_mod_eq a b H) (Z_mod_lt a b H); omega.
+Qed.
+
+Lemma Z_mult_div_ge_neg : forall a b:Z, b < 0 -> b*(a/b) >= a.
+Proof.
+ intros a b H.
+ generalize (Z_div_mod_eq_full a _ (Zlt_not_eq _ _ H)) (Z_mod_neg a _ H); omega.
+Qed.
+
+(** The previous inequalities are exact iff the modulo is zero. *)
+
+Lemma Z_div_exact_full_1 : forall a b:Z, a = b*(a/b) -> a mod b = 0.
+Proof.
+ intros; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst b; simpl in *; subst; auto.
+ generalize (Z_div_mod_eq_full a b Hb); omega.
+Qed.
+
+Lemma Z_div_exact_full_2 : forall a b:Z, b <> 0 -> a mod b = 0 -> a = b*(a/b).
+Proof.
+ intros; generalize (Z_div_mod_eq_full a b H); omega.
+Qed.
+
+(** A modulo cannot grow beyond its starting point. *)
+
+Theorem Zmod_le: forall a b, 0 < b -> 0 <= a -> a mod b <= a.
+Proof.
+ intros a b H1 H2; case (Zle_or_lt b a); intros H3.
+ case (Z_mod_lt a b); auto with zarith.
+ rewrite Zmod_small; auto with zarith.
+Qed.
+
+(** Some additionnal inequalities about Zdiv. *)
+
+Theorem Zdiv_le_upper_bound:
+ forall a b q, 0 <= a -> 0 < b -> a <= q*b -> a/b <= q.
+Proof.
+ intros a b q H1 H2 H3.
+ apply Zmult_le_reg_r with b; auto with zarith.
+ apply Zle_trans with (2 := H3).
+ pattern a at 2; rewrite (Z_div_mod_eq a b); auto with zarith.
+ rewrite (Zmult_comm b); case (Z_mod_lt a b); auto with zarith.
+Qed.
+
+Theorem Zdiv_lt_upper_bound:
+ forall a b q, 0 <= a -> 0 < b -> a < q*b -> a/b < q.
+Proof.
+ intros a b q H1 H2 H3.
+ apply Zmult_lt_reg_r with b; auto with zarith.
+ apply Zle_lt_trans with (2 := H3).
+ pattern a at 2; rewrite (Z_div_mod_eq a b); auto with zarith.
+ rewrite (Zmult_comm b); case (Z_mod_lt a b); auto with zarith.
+Qed.
+
+Theorem Zdiv_le_lower_bound:
+ forall a b q, 0 <= a -> 0 < b -> q*b <= a -> q <= a/b.
+Proof.
+ intros a b q H1 H2 H3.
+ assert (q < a / b + 1); auto with zarith.
+ apply Zmult_lt_reg_r with b; auto with zarith.
+ apply Zle_lt_trans with (1 := H3).
+ pattern a at 1; rewrite (Z_div_mod_eq a b); auto with zarith.
+ rewrite Zmult_plus_distr_l; rewrite (Zmult_comm b); case (Z_mod_lt a b);
+ auto with zarith.
+Qed.
+
+
+(** A division of respect opposite monotonicity for the divisor *)
+
+Lemma Zdiv_le_compat_l: forall p q r, 0 <= p -> 0 < q < r ->
+ p / r <= p / q.
+Proof.
+ intros p q r H H1.
+ apply Zdiv_le_lower_bound; auto with zarith.
+ rewrite Zmult_comm.
+ pattern p at 2; rewrite (Z_div_mod_eq p r); auto with zarith.
+ apply Zle_trans with (r * (p / r)); auto with zarith.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply Zdiv_le_lower_bound; auto with zarith.
+ case (Z_mod_lt p r); auto with zarith.
+Qed.
+
+Theorem Zdiv_sgn: forall a b,
+ 0 <= Zsgn (a/b) * Zsgn a * Zsgn b.
+Proof.
+ destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith;
+ generalize (Z_div_pos (Zpos a) (Zpos b)); unfold Zdiv, Zdiv_eucl;
+ destruct Zdiv_eucl_POS as (q,r); destruct r; omega with *.
+Qed.
+
+(** * Relations between usual operations and Zmod and Zdiv *)
+
+Lemma Z_mod_plus_full : forall a b c:Z, (a + b * c) mod c = a mod c.
+Proof.
+ intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
+ subst; do 2 rewrite Zmod_0_r; auto.
+ symmetry; apply Zmod_unique_full with (a/c+b); auto with zarith.
+ red; generalize (Z_mod_lt a c)(Z_mod_neg a c); omega.
+ rewrite Zmult_plus_distr_r, Zmult_comm.
+ generalize (Z_div_mod_eq_full a c Hc); omega.
+Qed.
+
+Lemma Z_div_plus_full : forall a b c:Z, c <> 0 -> (a + b * c) / c = a / c + b.
+Proof.
+ intro; symmetry.
+ apply Zdiv_unique_full with (a mod c); auto with zarith.
+ red; generalize (Z_mod_lt a c)(Z_mod_neg a c); omega.
+ rewrite Zmult_plus_distr_r, Zmult_comm.
+ generalize (Z_div_mod_eq_full a c H); omega.
+Qed.
+
+Theorem Z_div_plus_full_l: forall a b c : Z, b <> 0 -> (a * b + c) / b = a + c / b.
+Proof.
+ intros a b c H; rewrite Zplus_comm; rewrite Z_div_plus_full;
+ try apply Zplus_comm; auto with zarith.
+Qed.
- assert (c * q <= - c).
- replace (- c) with (c * -1).
- apply Zmult_le_compat_l; omega.
+(** [Zopp] and [Zdiv], [Zmod].
+ Due to the choice of convention for our Euclidean division,
+ some of the relations about [Zopp] and divisions are rather complex. *)
+
+Lemma Zdiv_opp_opp : forall a b:Z, (-a)/(-b) = a/b.
+Proof.
+ intros [|a|a] [|b|b]; try reflexivity; unfold Zdiv; simpl;
+ destruct (Zdiv_eucl_POS a (Zpos b)); destruct z0; try reflexivity.
+Qed.
+
+Lemma Zmod_opp_opp : forall a b:Z, (-a) mod (-b) = - (a mod b).
+Proof.
+ intros; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; do 2 rewrite Zmod_0_r; auto.
+ intros; symmetry.
+ apply Zmod_unique_full with ((-a)/(-b)); auto.
+ generalize (Z_mod_remainder a b Hb); destruct 1; [right|left]; omega.
+ rewrite Zdiv_opp_opp.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a b Hb); ring.
+Qed.
+
+Lemma Z_mod_zero_opp_full : forall a b:Z, a mod b = 0 -> (-a) mod b = 0.
+Proof.
+ intros; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; rewrite Zmod_0_r; auto.
+ rewrite Z_div_exact_full_2 with a b; auto.
+ replace (- (b * (a / b))) with (0 + - (a / b) * b).
+ rewrite Z_mod_plus_full; auto.
ring.
- omega.
Qed.
-Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b.
+Lemma Z_mod_nz_opp_full : forall a b:Z, a mod b <> 0 ->
+ (-a) mod b = b - (a mod b).
Proof.
- intros a b c cPos.
- generalize (Z_div_mod_eq a c cPos).
- generalize (Z_mod_lt a c cPos).
- generalize (Z_div_mod_eq (a + b * c) c cPos).
- generalize (Z_mod_lt (a + b * c) c cPos).
intros.
- apply Zmult_reg_l with c. omega.
- replace (c * ((a + b * c) / c)) with (a + b * c - (a + b * c) mod c).
- rewrite (Z_mod_plus a b c cPos).
- pattern a at 1 in |- *; rewrite H2.
- ring.
- pattern (a + b * c) at 1 in |- *; rewrite H0.
- ring.
+ assert (b<>0) by (contradict H; subst; rewrite Zmod_0_r; auto).
+ symmetry; apply Zmod_unique_full with (-1-a/b); auto.
+ generalize (Z_mod_remainder a b H0); destruct 1; [left|right]; omega.
+ rewrite Zmult_minus_distr_l.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a b H0); ring.
Qed.
-Lemma Z_div_mult : forall a b:Z, b > 0 -> a * b / b = a.
- intros; replace (a * b) with (0 + a * b); auto.
- rewrite Z_div_plus; auto.
+Lemma Z_mod_zero_opp_r : forall a b:Z, a mod b = 0 -> a mod (-b) = 0.
+Proof.
+ intros.
+ rewrite <- (Zopp_involutive a).
+ rewrite Zmod_opp_opp.
+ rewrite Z_mod_zero_opp_full; auto.
Qed.
-Lemma Z_mult_div_ge : forall a b:Z, b > 0 -> b * (a / b) <= a.
+Lemma Z_mod_nz_opp_r : forall a b:Z, a mod b <> 0 ->
+ a mod (-b) = (a mod b) - b.
Proof.
- intros a b bPos.
- generalize (Z_div_mod_eq a _ bPos); intros.
- generalize (Z_mod_lt a _ bPos); intros.
- pattern a at 2 in |- *; rewrite H.
- omega.
+ intros.
+ pattern a at 1; rewrite <- (Zopp_involutive a).
+ rewrite Zmod_opp_opp.
+ rewrite Z_mod_nz_opp_full; auto; omega.
+Qed.
+
+Lemma Z_div_zero_opp_full : forall a b:Z, a mod b = 0 -> (-a)/b = -(a/b).
+Proof.
+ intros; destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; do 2 rewrite Zdiv_0_r; auto.
+ symmetry; apply Zdiv_unique_full with 0; auto.
+ red; omega.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a b Hb).
+ rewrite H; ring.
Qed.
-Lemma Z_mod_same : forall a:Z, a > 0 -> a mod a = 0.
+Lemma Z_div_nz_opp_full : forall a b:Z, a mod b <> 0 ->
+ (-a)/b = -(a/b)-1.
Proof.
- intros a aPos.
- generalize (Z_mod_plus 0 1 a aPos).
- replace (0 + 1 * a) with a.
intros.
- rewrite H.
- compute in |- *.
- trivial.
- ring.
+ assert (b<>0) by (contradict H; subst; rewrite Zmod_0_r; auto).
+ symmetry; apply Zdiv_unique_full with (b-a mod b); auto.
+ generalize (Z_mod_remainder a b H0); destruct 1; [left|right]; omega.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a b H0); ring.
+Qed.
+
+Lemma Z_div_zero_opp_r : forall a b:Z, a mod b = 0 -> a/(-b) = -(a/b).
+Proof.
+ intros.
+ pattern a at 1; rewrite <- (Zopp_involutive a).
+ rewrite Zdiv_opp_opp.
+ rewrite Z_div_zero_opp_full; auto.
+Qed.
+
+Lemma Z_div_nz_opp_r : forall a b:Z, a mod b <> 0 ->
+ a/(-b) = -(a/b)-1.
+Proof.
+ intros.
+ pattern a at 1; rewrite <- (Zopp_involutive a).
+ rewrite Zdiv_opp_opp.
+ rewrite Z_div_nz_opp_full; auto; omega.
+Qed.
+
+(** Cancellations. *)
+
+Lemma Zdiv_mult_cancel_r : forall a b c:Z,
+ c <> 0 -> (a*c)/(b*c) = a/b.
+Proof.
+assert (X: forall a b c, b > 0 -> c > 0 -> (a*c) / (b*c) = a / b).
+ intros a b c Hb Hc.
+ symmetry.
+ apply Zdiv_unique with ((a mod b)*c); auto with zarith.
+ destruct (Z_mod_lt a b Hb); split.
+ apply Zmult_le_0_compat; auto with zarith.
+ apply Zmult_lt_compat_r; auto with zarith.
+ pattern a at 1; rewrite (Z_div_mod_eq a b Hb); ring.
+intros a b c Hc.
+destruct (Z_dec b 0) as [Hb|Hb].
+destruct Hb as [Hb|Hb]; destruct (not_Zeq_inf _ _ Hc); auto with *.
+rewrite <- (Zdiv_opp_opp a), <- (Zmult_opp_opp b), <-(Zmult_opp_opp a);
+ auto with *.
+rewrite <- (Zdiv_opp_opp a), <- Zdiv_opp_opp, Zopp_mult_distr_l,
+ Zopp_mult_distr_l; auto with *.
+rewrite <- Zdiv_opp_opp, Zopp_mult_distr_r, Zopp_mult_distr_r; auto with *.
+rewrite Hb; simpl; do 2 rewrite Zdiv_0_r; auto.
Qed.
-Lemma Z_div_same : forall a:Z, a > 0 -> a / a = 1.
+Lemma Zdiv_mult_cancel_l : forall a b c:Z,
+ c<>0 -> (c*a)/(c*b) = a/b.
Proof.
- intros a aPos.
- generalize (Z_div_plus 0 1 a aPos).
- replace (0 + 1 * a) with a.
intros.
- rewrite H.
- compute in |- *.
- trivial.
+ rewrite (Zmult_comm c a); rewrite (Zmult_comm c b).
+ apply Zdiv_mult_cancel_r; auto.
+Qed.
+
+Lemma Zmult_mod_distr_l: forall a b c,
+ (c*a) mod (c*b) = c * (a mod b).
+Proof.
+ intros; destruct (Z_eq_dec c 0) as [Hc|Hc].
+ subst; simpl; rewrite Zmod_0_r; auto.
+ destruct (Z_eq_dec b 0) as [Hb|Hb].
+ subst; repeat rewrite Zmult_0_r || rewrite Zmod_0_r; auto.
+ assert (c*b <> 0).
+ contradict Hc; eapply Zmult_integral_l; eauto.
+ rewrite (Zplus_minus_eq _ _ _ (Z_div_mod_eq_full (c*a) (c*b) H)).
+ rewrite (Zplus_minus_eq _ _ _ (Z_div_mod_eq_full a b Hb)).
+ rewrite Zdiv_mult_cancel_l; auto with zarith.
ring.
Qed.
-Lemma Z_div_exact_1 : forall a b:Z, b > 0 -> a = b * (a / b) -> a mod b = 0.
- intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
- case (Zdiv_eucl a b); intros q r; omega.
+Lemma Zmult_mod_distr_r: forall a b c,
+ (a*c) mod (b*c) = (a mod b) * c.
+Proof.
+ intros; repeat rewrite (fun x => (Zmult_comm x c)).
+ apply Zmult_mod_distr_l; auto.
+Qed.
+
+(** Operations modulo. *)
+
+Theorem Zmod_mod: forall a n, (a mod n) mod n = a mod n.
+Proof.
+ intros; destruct (Z_eq_dec n 0) as [Hb|Hb].
+ subst; do 2 rewrite Zmod_0_r; auto.
+ pattern a at 2; rewrite (Z_div_mod_eq_full a n); auto with zarith.
+ rewrite Zplus_comm; rewrite Zmult_comm.
+ apply sym_equal; apply Z_mod_plus_full; auto with zarith.
+Qed.
+
+Theorem Zmult_mod: forall a b n,
+ (a * b) mod n = ((a mod n) * (b mod n)) mod n.
+Proof.
+ intros; destruct (Z_eq_dec n 0) as [Hb|Hb].
+ subst; do 2 rewrite Zmod_0_r; auto.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a n); auto with zarith.
+ pattern b at 1; rewrite (Z_div_mod_eq_full b n); auto with zarith.
+ set (A:=a mod n); set (B:=b mod n); set (A':=a/n); set (B':=b/n).
+ replace ((n*A' + A) * (n*B' + B))
+ with (A*B + (A'*B+B'*A+n*A'*B')*n) by ring.
+ apply Z_mod_plus_full; auto with zarith.
Qed.
-Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b * (a / b).
- intros a b Hb; generalize (Z_div_mod a b Hb); unfold Zmod, Zdiv in |- *.
- case (Zdiv_eucl a b); intros q r; omega.
+Theorem Zplus_mod: forall a b n,
+ (a + b) mod n = (a mod n + b mod n) mod n.
+Proof.
+ intros; destruct (Z_eq_dec n 0) as [Hb|Hb].
+ subst; do 2 rewrite Zmod_0_r; auto.
+ pattern a at 1; rewrite (Z_div_mod_eq_full a n); auto with zarith.
+ pattern b at 1; rewrite (Z_div_mod_eq_full b n); auto with zarith.
+ replace ((n * (a / n) + a mod n) + (n * (b / n) + b mod n))
+ with ((a mod n + b mod n) + (a / n + b / n) * n) by ring.
+ apply Z_mod_plus_full; auto with zarith.
Qed.
-Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> - a mod b = 0.
- intros a b Hb.
+Theorem Zminus_mod: forall a b n,
+ (a - b) mod n = (a mod n - b mod n) mod n.
+Proof.
intros.
- rewrite Z_div_exact_2 with a b; auto.
- replace (- (b * (a / b))) with (0 + - (a / b) * b).
- rewrite Z_mod_plus; auto.
+ replace (a - b) with (a + (-1) * b); auto with zarith.
+ replace (a mod n - b mod n) with (a mod n + (-1) * (b mod n)); auto with zarith.
+ rewrite Zplus_mod.
+ rewrite Zmult_mod.
+ rewrite Zplus_mod with (b:=(-1) * (b mod n)).
+ rewrite Zmult_mod.
+ rewrite Zmult_mod with (b:= b mod n).
+ repeat rewrite Zmod_mod; auto.
+Qed.
+
+Lemma Zplus_mod_idemp_l: forall a b n, (a mod n + b) mod n = (a + b) mod n.
+Proof.
+ intros; rewrite Zplus_mod, Zmod_mod, <- Zplus_mod; auto.
+Qed.
+
+Lemma Zplus_mod_idemp_r: forall a b n, (b + a mod n) mod n = (b + a) mod n.
+Proof.
+ intros; rewrite Zplus_mod, Zmod_mod, <- Zplus_mod; auto.
+Qed.
+
+Lemma Zminus_mod_idemp_l: forall a b n, (a mod n - b) mod n = (a - b) mod n.
+Proof.
+ intros; rewrite Zminus_mod, Zmod_mod, <- Zminus_mod; auto.
+Qed.
+
+Lemma Zminus_mod_idemp_r: forall a b n, (a - b mod n) mod n = (a - b) mod n.
+Proof.
+ intros; rewrite Zminus_mod, Zmod_mod, <- Zminus_mod; auto.
+Qed.
+
+Lemma Zmult_mod_idemp_l: forall a b n, (a mod n * b) mod n = (a * b) mod n.
+Proof.
+ intros; rewrite Zmult_mod, Zmod_mod, <- Zmult_mod; auto.
+Qed.
+
+Lemma Zmult_mod_idemp_r: forall a b n, (b * (a mod n)) mod n = (b * a) mod n.
+Proof.
+ intros; rewrite Zmult_mod, Zmod_mod, <- Zmult_mod; auto.
+Qed.
+
+(** For a specific number n, equality modulo n is hence a nice setoid
+ equivalence, compatible with the usual operations. Due to restrictions
+ with Coq setoids, we cannot state this in a section, but it works
+ at least with a module. *)
+
+Module Type SomeNumber.
+ Parameter n:Z.
+End SomeNumber.
+
+Module EqualityModulo (M:SomeNumber).
+
+ Definition eqm a b := (a mod M.n = b mod M.n).
+ Infix "==" := eqm (at level 70).
+
+ Lemma eqm_refl : forall a, a == a.
+ Proof. unfold eqm; auto. Qed.
+
+ Lemma eqm_sym : forall a b, a == b -> b == a.
+ Proof. unfold eqm; auto. Qed.
+
+ Lemma eqm_trans : forall a b c, a == b -> b == c -> a == c.
+ Proof. unfold eqm; eauto with *. Qed.
+
+ Add Relation Z eqm
+ reflexivity proved by eqm_refl
+ symmetry proved by eqm_sym
+ transitivity proved by eqm_trans as eqm_setoid.
+
+ Add Morphism Zplus : Zplus_eqm.
+ Proof.
+ unfold eqm; intros; rewrite Zplus_mod, H, H0, <- Zplus_mod; auto.
+ Qed.
+
+ Add Morphism Zminus : Zminus_eqm.
+ Proof.
+ unfold eqm; intros; rewrite Zminus_mod, H, H0, <- Zminus_mod; auto.
+ Qed.
+
+ Add Morphism Zmult : Zmult_eqm.
+ Proof.
+ unfold eqm; intros; rewrite Zmult_mod, H, H0, <- Zmult_mod; auto.
+ Qed.
+
+ Add Morphism Zopp : Zopp_eqm.
+ Proof.
+ intros; change (-x == -y) with (0-x == 0-y).
+ rewrite H; red; auto.
+ Qed.
+
+ Lemma Zmod_eqm : forall a, a mod M.n == a.
+ Proof.
+ unfold eqm; intros; apply Zmod_mod.
+ Qed.
+
+ (* Zmod and Zdiv are not full morphisms with respect to eqm.
+ For instance, take n=2. Then 3 == 1 but we don't have
+ 1 mod 3 == 1 mod 1 nor 1/3 == 1/1.
+ *)
+
+End EqualityModulo.
+
+Lemma Zdiv_Zdiv : forall a b c, 0<=b -> 0<=c -> (a/b)/c = a/(b*c).
+Proof.
+ intros a b c Hb Hc.
+ destruct (Zle_lt_or_eq _ _ Hb); [ | subst; rewrite Zdiv_0_r, Zdiv_0_r, Zdiv_0_l; auto].
+ destruct (Zle_lt_or_eq _ _ Hc); [ | subst; rewrite Zmult_0_r, Zdiv_0_r, Zdiv_0_r; auto].
+ pattern a at 2;rewrite (Z_div_mod_eq_full a b);auto with zarith.
+ pattern (a/b) at 2;rewrite (Z_div_mod_eq_full (a/b) c);auto with zarith.
+ replace (b * (c * (a / b / c) + (a / b) mod c) + a mod b) with
+ ((a / b / c)*(b * c) + (b * ((a / b) mod c) + a mod b)) by ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite (Zdiv_small (b * ((a / b) mod c) + a mod b)).
ring.
+ split.
+ apply Zplus_le_0_compat;auto with zarith.
+ apply Zmult_le_0_compat;auto with zarith.
+ destruct (Z_mod_lt (a/b) c);auto with zarith.
+ destruct (Z_mod_lt a b);auto with zarith.
+ apply Zle_lt_trans with (b * ((a / b) mod c) + (b-1)).
+ destruct (Z_mod_lt a b);auto with zarith.
+ apply Zle_lt_trans with (b * (c-1) + (b - 1)).
+ apply Zplus_le_compat;auto with zarith.
+ destruct (Z_mod_lt (a/b) c);auto with zarith.
+ replace (b * (c - 1) + (b - 1)) with (b*c-1);try ring;auto with zarith.
+ intro H1;
+ assert (H2: c <> 0) by auto with zarith;
+ rewrite (Zmult_integral_l _ _ H2 H1) in H; auto with zarith.
+Qed.
+
+(** Unfortunately, the previous result isn't always true on negative numbers.
+ For instance: 3/(-2)/(-2) = 1 <> 0 = 3 / (-2*-2) *)
+
+(** A last inequality: *)
+
+Theorem Zdiv_mult_le:
+ forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a/b) <= (c*a)/b.
+Proof.
+ intros a b c H1 H2 H3.
+ destruct (Zle_lt_or_eq _ _ H2);
+ [ | subst; rewrite Zdiv_0_r, Zdiv_0_r, Zmult_0_r; auto].
+ case (Z_mod_lt a b); auto with zarith; intros Hu1 Hu2.
+ case (Z_mod_lt c b); auto with zarith; intros Hv1 Hv2.
+ apply Zmult_le_reg_r with b; auto with zarith.
+ rewrite <- Zmult_assoc.
+ replace (a / b * b) with (a - a mod b).
+ replace (c * a / b * b) with (c * a - (c * a) mod b).
+ rewrite Zmult_minus_distr_l.
+ unfold Zminus; apply Zplus_le_compat_l.
+ match goal with |- - ?X <= -?Y => assert (Y <= X); auto with zarith end.
+ apply Zle_trans with ((c mod b) * (a mod b)); auto with zarith.
+ rewrite Zmult_mod; auto with zarith.
+ apply (Zmod_le ((c mod b) * (a mod b)) b); auto with zarith.
+ apply Zmult_le_compat_r; auto with zarith.
+ apply (Zmod_le c b); auto.
+ pattern (c * a) at 1; rewrite (Z_div_mod_eq (c * a) b); try ring;
+ auto with zarith.
+ pattern a at 1; rewrite (Z_div_mod_eq a b); try ring; auto with zarith.
+Qed.
+
+(** Zmod is related to divisibility (see more in Znumtheory) *)
+
+Lemma Zmod_divides : forall a b, b<>0 ->
+ (a mod b = 0 <-> exists c, a = b*c).
+Proof.
+ split; intros.
+ exists (a/b).
+ pattern a at 1; rewrite (Z_div_mod_eq_full a b); auto with zarith.
+ destruct H0 as [c Hc].
+ symmetry.
+ apply Zmod_unique_full with c; auto with zarith.
+ red; omega with *.
+Qed.
+
+(** * Compatibility *)
+
+(** Weaker results kept only for compatibility *)
+
+Lemma Z_mod_same : forall a, a > 0 -> a mod a = 0.
+Proof.
+ intros; apply Z_mod_same_full.
+Qed.
+
+Lemma Z_div_same : forall a, a > 0 -> a/a = 1.
+Proof.
+ intros; apply Z_div_same_full; auto with zarith.
+Qed.
+
+Lemma Z_div_plus : forall a b c:Z, c > 0 -> (a + b * c) / c = a / c + b.
+Proof.
+ intros; apply Z_div_plus_full; auto with zarith.
+Qed.
+
+Lemma Z_div_mult : forall a b:Z, b > 0 -> (a*b)/b = a.
+Proof.
+ intros; apply Z_div_mult_full; auto with zarith.
Qed.
+
+Lemma Z_mod_plus : forall a b c:Z, c > 0 -> (a + b * c) mod c = a mod c.
+Proof.
+ intros; apply Z_mod_plus_full; auto with zarith.
+Qed.
+
+Lemma Z_div_exact_1 : forall a b:Z, b > 0 -> a = b*(a/b) -> a mod b = 0.
+Proof.
+ intros; apply Z_div_exact_full_1; auto with zarith.
+Qed.
+
+Lemma Z_div_exact_2 : forall a b:Z, b > 0 -> a mod b = 0 -> a = b*(a/b).
+Proof.
+ intros; apply Z_div_exact_full_2; auto with zarith.
+Qed.
+
+Lemma Z_mod_zero_opp : forall a b:Z, b > 0 -> a mod b = 0 -> (-a) mod b = 0.
+Proof.
+ intros; apply Z_mod_zero_opp_full; auto with zarith.
+Qed.
+
+(** * A direct way to compute Zmod *)
+
+Fixpoint Zmod_POS (a : positive) (b : Z) {struct a} : Z :=
+ match a with
+ | xI a' =>
+ let r := Zmod_POS a' b in
+ let r' := (2 * r + 1) in
+ if Zgt_bool b r' then r' else (r' - b)
+ | xO a' =>
+ let r := Zmod_POS a' b in
+ let r' := (2 * r) in
+ if Zgt_bool b r' then r' else (r' - b)
+ | xH => if Zge_bool b 2 then 1 else 0
+ end.
+
+Definition Zmod' a b :=
+ match a with
+ | Z0 => 0
+ | Zpos a' =>
+ match b with
+ | Z0 => 0
+ | Zpos _ => Zmod_POS a' b
+ | Zneg b' =>
+ let r := Zmod_POS a' (Zpos b') in
+ match r with Z0 => 0 | _ => b + r end
+ end
+ | Zneg a' =>
+ match b with
+ | Z0 => 0
+ | Zpos _ =>
+ let r := Zmod_POS a' b in
+ match r with Z0 => 0 | _ => b - r end
+ | Zneg b' => - (Zmod_POS a' (Zpos b'))
+ end
+ end.
+
+
+Theorem Zmod_POS_correct: forall a b, Zmod_POS a b = (snd (Zdiv_eucl_POS a b)).
+Proof.
+ intros a b; elim a; simpl; auto.
+ intros p Rec; rewrite Rec.
+ case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
+ match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
+ intros p Rec; rewrite Rec.
+ case (Zdiv_eucl_POS p b); intros z1 z2; simpl; auto.
+ match goal with |- context [Zgt_bool _ ?X] => case (Zgt_bool b X) end; auto.
+ case (Zge_bool b 2); auto.
+Qed.
+
+Theorem Zmod'_correct: forall a b, Zmod' a b = Zmod a b.
+Proof.
+ intros a b; unfold Zmod; case a; simpl; auto.
+ intros p; case b; simpl; auto.
+ intros p1; refine (Zmod_POS_correct _ _); auto.
+ intros p1; rewrite Zmod_POS_correct; auto.
+ case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
+ intros p; case b; simpl; auto.
+ intros p1; rewrite Zmod_POS_correct; auto.
+ case (Zdiv_eucl_POS p (Zpos p1)); simpl; intros z1 z2; case z2; auto.
+ intros p1; rewrite Zmod_POS_correct; simpl; auto.
+ case (Zdiv_eucl_POS p (Zpos p1)); auto.
+Qed.
+
+
+(** Another convention is possible for division by negative numbers:
+ * quotient is always the biggest integer smaller than or equal to a/b
+ * remainder is hence always positive or null. *)
+
+Theorem Zdiv_eucl_extended :
+ forall b:Z,
+ b <> 0 ->
+ forall a:Z,
+ {qr : Z * Z | let (q, r) := qr in a = b * q + r /\ 0 <= r < Zabs b}.
+Proof.
+ intros b Hb a.
+ elim (Z_le_gt_dec 0 b); intro Hb'.
+ cut (b > 0); [ intro Hb'' | omega ].
+ rewrite Zabs_eq; [ apply Zdiv_eucl_exist; assumption | assumption ].
+ cut (- b > 0); [ intro Hb'' | omega ].
+ elim (Zdiv_eucl_exist Hb'' a); intros qr.
+ elim qr; intros q r Hqr.
+ exists (- q, r).
+ elim Hqr; intros.
+ split.
+ rewrite <- Zmult_opp_comm; assumption.
+ rewrite Zabs_non_eq; [ assumption | omega ].
+Qed.
+
+Implicit Arguments Zdiv_eucl_extended.
+
+(** A third convention: Ocaml.
+
+ See files ZOdiv_def.v and ZOdiv.v.
+
+ Ocaml uses Round-Toward-Zero division: (-a)/b = a/(-b) = -(a/b).
+ Hence (-a) mod b = - (a mod b)
+ a mod (-b) = a mod b
+ And: |r| < |b| and sgn(r) = sgn(a) (notice the a here instead of b).
+*)
diff --git a/theories/ZArith/Zeven.v b/theories/ZArith/Zeven.v
index 6fab4461..4a402c61 100644
--- a/theories/ZArith/Zeven.v
+++ b/theories/ZArith/Zeven.v
@@ -6,10 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zeven.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Zeven.v 10291 2007-11-06 02:18:53Z letouzey $ i*)
Require Import BinInt.
+Open Scope Z_scope.
+
(*******************************************************************)
(** About parity: even and odd predicates on Z, division by 2 on Z *)
@@ -135,14 +137,14 @@ Hint Unfold Zeven Zodd: zarith.
Definition Zdiv2 (z:Z) :=
match z with
- | Z0 => 0%Z
- | Zpos xH => 0%Z
+ | Z0 => 0
+ | Zpos xH => 0
| Zpos p => Zpos (Pdiv2 p)
- | Zneg xH => 0%Z
+ | Zneg xH => 0
| Zneg p => Zneg (Pdiv2 p)
end.
-Lemma Zeven_div2 : forall n:Z, Zeven n -> n = (2 * Zdiv2 n)%Z.
+Lemma Zeven_div2 : forall n:Z, Zeven n -> n = 2 * Zdiv2 n.
Proof.
intro x; destruct x.
auto with arith.
@@ -154,27 +156,27 @@ Proof.
intros. absurd (Zeven (-1)); red in |- *; auto with arith.
Qed.
-Lemma Zodd_div2 : forall n:Z, (n >= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n + 1)%Z.
+Lemma Zodd_div2 : forall n:Z, n >= 0 -> Zodd n -> n = 2 * Zdiv2 n + 1.
Proof.
intro x; destruct x.
intros. absurd (Zodd 0); red in |- *; auto with arith.
destruct p; auto with arith.
intros. absurd (Zodd (Zpos (xO p))); red in |- *; auto with arith.
- intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith.
+ intros. absurd (Zneg p >= 0); red in |- *; auto with arith.
Qed.
Lemma Zodd_div2_neg :
- forall n:Z, (n <= 0)%Z -> Zodd n -> n = (2 * Zdiv2 n - 1)%Z.
+ forall n:Z, n <= 0 -> Zodd n -> n = 2 * Zdiv2 n - 1.
Proof.
intro x; destruct x.
intros. absurd (Zodd 0); red in |- *; auto with arith.
- intros. absurd (Zneg p >= 0)%Z; red in |- *; auto with arith.
+ intros. absurd (Zneg p >= 0); red in |- *; auto with arith.
destruct p; auto with arith.
intros. absurd (Zodd (Zneg (xO p))); red in |- *; auto with arith.
Qed.
Lemma Z_modulo_2 :
- forall n:Z, {y : Z | n = (2 * y)%Z} + {y : Z | n = (2 * y + 1)%Z}.
+ forall n:Z, {y : Z | n = 2 * y} + {y : Z | n = 2 * y + 1}.
Proof.
intros x.
elim (Zeven_odd_dec x); intro.
@@ -193,7 +195,7 @@ Qed.
Lemma Zsplit2 :
forall n:Z,
{p : Z * Z |
- let (x1, x2) := p in n = (x1 + x2)%Z /\ (x1 = x2 \/ x2 = (x1 + 1)%Z)}.
+ let (x1, x2) := p in n = x1 + x2 /\ (x1 = x2 \/ x2 = x1 + 1)}.
Proof.
intros x.
elim (Z_modulo_2 x); intros [y Hy]; rewrite Zmult_comm in Hy;
@@ -206,3 +208,109 @@ Proof.
right; reflexivity.
Qed.
+
+Theorem Zeven_ex: forall n, Zeven n -> exists m, n = 2 * m.
+Proof.
+ intro n; exists (Zdiv2 n); apply Zeven_div2; auto.
+Qed.
+
+Theorem Zodd_ex: forall n, Zodd n -> exists m, n = 2 * m + 1.
+Proof.
+ destruct n; intros.
+ inversion H.
+ exists (Zdiv2 (Zpos p)).
+ apply Zodd_div2; simpl; auto; compute; inversion 1.
+ exists (Zdiv2 (Zneg p) - 1).
+ unfold Zminus.
+ rewrite Zmult_plus_distr_r.
+ rewrite <- Zplus_assoc.
+ assert (Zneg p <= 0) by (compute; inversion 1).
+ exact (Zodd_div2_neg _ H0 H).
+Qed.
+
+Theorem Zeven_2p: forall p, Zeven (2 * p).
+Proof.
+ destruct p; simpl; auto.
+Qed.
+
+Theorem Zodd_2p_plus_1: forall p, Zodd (2 * p + 1).
+Proof.
+ destruct p; simpl; auto.
+ destruct p; simpl; auto.
+Qed.
+
+Theorem Zeven_plus_Zodd: forall a b,
+ Zeven a -> Zodd b -> Zodd (a + b).
+Proof.
+ intros a b H1 H2; case Zeven_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ case Zodd_ex with (1 := H2); intros y H4; try rewrite H4; auto.
+ replace (2 * x + (2 * y + 1)) with (2 * (x + y) + 1); try apply Zodd_2p_plus_1; auto with zarith.
+ rewrite Zmult_plus_distr_r, Zplus_assoc; auto.
+Qed.
+
+Theorem Zeven_plus_Zeven: forall a b,
+ Zeven a -> Zeven b -> Zeven (a + b).
+Proof.
+ intros a b H1 H2; case Zeven_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ case Zeven_ex with (1 := H2); intros y H4; try rewrite H4; auto.
+ replace (2 * x + 2 * y) with (2 * (x + y)); try apply Zeven_2p; auto with zarith.
+ apply Zmult_plus_distr_r; auto.
+Qed.
+
+Theorem Zodd_plus_Zeven: forall a b,
+ Zodd a -> Zeven b -> Zodd (a + b).
+Proof.
+ intros a b H1 H2; rewrite Zplus_comm; apply Zeven_plus_Zodd; auto.
+Qed.
+
+Theorem Zodd_plus_Zodd: forall a b,
+ Zodd a -> Zodd b -> Zeven (a + b).
+Proof.
+ intros a b H1 H2; case Zodd_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ case Zodd_ex with (1 := H2); intros y H4; try rewrite H4; auto.
+ replace ((2 * x + 1) + (2 * y + 1)) with (2 * (x + y + 1)); try apply Zeven_2p; auto.
+ (* ring part *)
+ do 2 rewrite Zmult_plus_distr_r; auto.
+ repeat rewrite <- Zplus_assoc; f_equal.
+ rewrite (Zplus_comm 1).
+ repeat rewrite <- Zplus_assoc; auto.
+Qed.
+
+Theorem Zeven_mult_Zeven_l: forall a b,
+ Zeven a -> Zeven (a * b).
+Proof.
+ intros a b H1; case Zeven_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ replace (2 * x * b) with (2 * (x * b)); try apply Zeven_2p; auto with zarith.
+ (* ring part *)
+ apply Zmult_assoc.
+Qed.
+
+Theorem Zeven_mult_Zeven_r: forall a b,
+ Zeven b -> Zeven (a * b).
+Proof.
+ intros a b H1; case Zeven_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ replace (a * (2 * x)) with (2 * (x * a)); try apply Zeven_2p; auto.
+ (* ring part *)
+ rewrite (Zmult_comm x a).
+ do 2 rewrite Zmult_assoc.
+ rewrite (Zmult_comm 2 a); auto.
+Qed.
+
+Hint Rewrite Zmult_plus_distr_r Zmult_plus_distr_l
+ Zplus_assoc Zmult_1_r Zmult_1_l : Zexpand.
+
+Theorem Zodd_mult_Zodd: forall a b,
+ Zodd a -> Zodd b -> Zodd (a * b).
+Proof.
+ intros a b H1 H2; case Zodd_ex with (1 := H1); intros x H3; try rewrite H3; auto.
+ case Zodd_ex with (1 := H2); intros y H4; try rewrite H4; auto.
+ replace ((2 * x + 1) * (2 * y + 1)) with (2 * (2 * x * y + x + y) + 1); try apply Zodd_2p_plus_1; auto.
+ (* ring part *)
+ autorewrite with Zexpand; f_equal.
+ repeat rewrite <- Zplus_assoc; f_equal.
+ repeat rewrite <- Zmult_assoc; f_equal.
+ repeat rewrite Zmult_assoc; f_equal; apply Zmult_comm.
+Qed.
+
+(* for compatibility *)
+Close Scope Z_scope.
diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v
new file mode 100644
index 00000000..286dd710
--- /dev/null
+++ b/theories/ZArith/Zgcd_alt.v
@@ -0,0 +1,317 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zgcd_alt.v 10997 2008-05-27 15:16:40Z letouzey $ i*)
+
+(** * Zgcd_alt : an alternate version of Zgcd, based on Euler's algorithm *)
+
+(**
+Author: Pierre Letouzey
+*)
+
+(** The alternate [Zgcd_alt] given here used to be the main [Zgcd]
+ function (see file [Znumtheory]), but this main [Zgcd] is now
+ based on a modern binary-efficient algorithm. This earlier
+ version, based on Euler's algorithm of iterated modulo, is kept
+ here due to both its intrinsic interest and its use as reference
+ point when proving gcd on Int31 numbers *)
+
+Require Import ZArith_base.
+Require Import ZArithRing.
+Require Import Zdiv.
+Require Import Znumtheory.
+
+Open Scope Z_scope.
+
+(** In Coq, we need to control the number of iteration of modulo.
+ For that, we use an explicit measure in [nat], and we prove later
+ that using [2*d] is enough, where [d] is the number of binary
+ digits of the first argument. *)
+
+ Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b =>
+ match n with
+ | O => 1 (* arbitrary, since n should be big enough *)
+ | S n => match a with
+ | Z0 => Zabs b
+ | Zpos _ => Zgcdn n (Zmod b a) a
+ | Zneg a => Zgcdn n (Zmod b (Zpos a)) (Zpos a)
+ end
+ end.
+
+ Definition Zgcd_bound (a:Z) :=
+ match a with
+ | Z0 => S O
+ | Zpos p => let n := Psize p in (n+n)%nat
+ | Zneg p => let n := Psize p in (n+n)%nat
+ end.
+
+ Definition Zgcd_alt a b := Zgcdn (Zgcd_bound a) a b.
+
+ (** A first obvious fact : [Zgcd a b] is positive. *)
+
+ Lemma Zgcdn_pos : forall n a b,
+ 0 <= Zgcdn n a b.
+ Proof.
+ induction n.
+ simpl; auto with zarith.
+ destruct a; simpl; intros; auto with zarith; auto.
+ Qed.
+
+ Lemma Zgcd_alt_pos : forall a b, 0 <= Zgcd_alt a b.
+ Proof.
+ intros; unfold Zgcd; apply Zgcdn_pos; auto.
+ Qed.
+
+ (** We now prove that Zgcd is indeed a gcd. *)
+
+ (** 1) We prove a weaker & easier bound. *)
+
+ Lemma Zgcdn_linear_bound : forall n a b,
+ Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b).
+ Proof.
+ induction n.
+ simpl; intros.
+ elimtype False; generalize (Zabs_pos a); omega.
+ destruct a; intros; simpl;
+ [ generalize (Zis_gcd_0_abs b); intuition | | ];
+ unfold Zmod;
+ generalize (Z_div_mod b (Zpos p) (refl_equal Gt));
+ destruct (Zdiv_eucl b (Zpos p)) as (q,r);
+ intros (H0,H1);
+ rewrite inj_S in H; simpl Zabs in H;
+ (assert (H2: Zabs r < Z_of_nat n) by
+ (rewrite Zabs_eq; auto with zarith));
+ assert (IH:=IHn r (Zpos p) H2); clear IHn;
+ simpl in IH |- *;
+ rewrite H0.
+ apply Zis_gcd_for_euclid2; auto.
+ apply Zis_gcd_minus; apply Zis_gcd_sym.
+ apply Zis_gcd_for_euclid2; auto.
+ Qed.
+
+ (** 2) For Euclid's algorithm, the worst-case situation corresponds
+ to Fibonacci numbers. Let's define them: *)
+
+ Fixpoint fibonacci (n:nat) : Z :=
+ match n with
+ | O => 1
+ | S O => 1
+ | S (S n as p) => fibonacci p + fibonacci n
+ end.
+
+ Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
+ Proof.
+ cut (forall N n, (n<N)%nat -> 0<=fibonacci n).
+ eauto.
+ induction N.
+ inversion 1.
+ intros.
+ destruct n.
+ simpl; auto with zarith.
+ destruct n.
+ simpl; auto with zarith.
+ change (0 <= fibonacci (S n) + fibonacci n).
+ generalize (IHN n) (IHN (S n)); omega.
+ Qed.
+
+ Lemma fibonacci_incr :
+ forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m.
+ Proof.
+ induction 1.
+ auto with zarith.
+ apply Zle_trans with (fibonacci m); auto.
+ clear.
+ destruct m.
+ simpl; auto with zarith.
+ change (fibonacci (S m) <= fibonacci (S m)+fibonacci m).
+ generalize (fibonacci_pos m); omega.
+ Qed.
+
+ (** 3) We prove that fibonacci numbers are indeed worst-case:
+ for a given number [n], if we reach a conclusion about [gcd(a,b)] in
+ exactly [n+1] loops, then [fibonacci (n+1)<=a /\ fibonacci(n+2)<=b] *)
+
+ Lemma Zgcdn_worst_is_fibonacci : forall n a b,
+ 0 < a < b ->
+ Zis_gcd a b (Zgcdn (S n) a b) ->
+ Zgcdn n a b <> Zgcdn (S n) a b ->
+ fibonacci (S n) <= a /\
+ fibonacci (S (S n)) <= b.
+ Proof.
+ induction n.
+ simpl; intros.
+ destruct a; omega.
+ intros.
+ destruct a; [simpl in *; omega| | destruct H; discriminate].
+ revert H1; revert H0.
+ set (m:=S n) in *; (assert (m=S n) by auto); clearbody m.
+ pattern m at 2; rewrite H0.
+ simpl Zgcdn.
+ unfold Zmod; generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
+ destruct (Zdiv_eucl b (Zpos p)) as (q,r).
+ intros (H1,H2).
+ destruct H2.
+ destruct (Zle_lt_or_eq _ _ H2).
+ generalize (IHn _ _ (conj H4 H3)).
+ intros H5 H6 H7.
+ replace (fibonacci (S (S m))) with (fibonacci (S m) + fibonacci m) by auto.
+ assert (r = Zpos p * (-q) + b) by (rewrite H1; ring).
+ destruct H5; auto.
+ pattern r at 1; rewrite H8.
+ apply Zis_gcd_sym.
+ apply Zis_gcd_for_euclid2; auto.
+ apply Zis_gcd_sym; auto.
+ split; auto.
+ rewrite H1.
+ apply Zplus_le_compat; auto.
+ apply Zle_trans with (Zpos p * 1); auto.
+ ring_simplify (Zpos p * 1); auto.
+ apply Zmult_le_compat_l.
+ destruct q.
+ omega.
+ assert (0 < Zpos p0) by (compute; auto).
+ omega.
+ assert (Zpos p * Zneg p0 < 0) by (compute; auto).
+ omega.
+ compute; intros; discriminate.
+ (* r=0 *)
+ subst r.
+ simpl; rewrite H0.
+ intros.
+ simpl in H4.
+ simpl in H5.
+ destruct n.
+ simpl in H5.
+ simpl.
+ omega.
+ simpl in H5.
+ elim H5; auto.
+ Qed.
+
+ (** 3b) We reformulate the previous result in a more positive way. *)
+
+ Lemma Zgcdn_ok_before_fibonacci : forall n a b,
+ 0 < a < b -> a < fibonacci (S n) ->
+ Zis_gcd a b (Zgcdn n a b).
+ Proof.
+ destruct a; [ destruct 1; elimtype False; omega | | destruct 1; discriminate].
+ cut (forall k n b,
+ k = (S (nat_of_P p) - n)%nat ->
+ 0 < Zpos p < b -> Zpos p < fibonacci (S n) ->
+ Zis_gcd (Zpos p) b (Zgcdn n (Zpos p) b)).
+ destruct 2; eauto.
+ clear n; induction k.
+ intros.
+ assert (nat_of_P p < n)%nat by omega.
+ apply Zgcdn_linear_bound.
+ simpl.
+ generalize (inj_le _ _ H2).
+ rewrite inj_S.
+ rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P; auto.
+ omega.
+ intros.
+ generalize (Zgcdn_worst_is_fibonacci n (Zpos p) b H0); intros.
+ assert (Zis_gcd (Zpos p) b (Zgcdn (S n) (Zpos p) b)).
+ apply IHk; auto.
+ omega.
+ replace (fibonacci (S (S n))) with (fibonacci (S n)+fibonacci n) by auto.
+ generalize (fibonacci_pos n); omega.
+ replace (Zgcdn n (Zpos p) b) with (Zgcdn (S n) (Zpos p) b); auto.
+ generalize (H2 H3); clear H2 H3; omega.
+ Qed.
+
+ (** 4) The proposed bound leads to a fibonacci number that is big enough. *)
+
+ Lemma Zgcd_bound_fibonacci :
+ forall a, 0 < a -> a < fibonacci (Zgcd_bound a).
+ Proof.
+ destruct a; [omega| | intro H; discriminate].
+ intros _.
+ induction p; [ | | compute; auto ];
+ simpl Zgcd_bound in *;
+ rewrite plus_comm; simpl plus;
+ set (n:= (Psize p+Psize p)%nat) in *; simpl;
+ assert (n <> O) by (unfold n; destruct p; simpl; auto).
+
+ destruct n as [ |m]; [elim H; auto| ].
+ generalize (fibonacci_pos m); rewrite Zpos_xI; omega.
+
+ destruct n as [ |m]; [elim H; auto| ].
+ generalize (fibonacci_pos m); rewrite Zpos_xO; omega.
+ Qed.
+
+ (* 5) the end: we glue everything together and take care of
+ situations not corresponding to [0<a<b]. *)
+
+ Lemma Zgcdn_is_gcd :
+ forall n a b, (Zgcd_bound a <= n)%nat ->
+ Zis_gcd a b (Zgcdn n a b).
+ Proof.
+ destruct a; intros.
+ simpl in H.
+ destruct n; [elimtype False; omega | ].
+ simpl; generalize (Zis_gcd_0_abs b); intuition.
+ (*Zpos*)
+ generalize (Zgcd_bound_fibonacci (Zpos p)).
+ simpl Zgcd_bound in *.
+ remember (Psize p+Psize p)%nat as m.
+ assert (1 < m)%nat.
+ rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
+ auto with arith.
+ destruct m as [ |m]; [inversion H0; auto| ].
+ destruct n as [ |n]; [inversion H; auto| ].
+ simpl Zgcdn.
+ unfold Zmod.
+ generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
+ destruct (Zdiv_eucl b (Zpos p)) as (q,r).
+ intros (H2,H3) H4.
+ rewrite H2.
+ apply Zis_gcd_for_euclid2.
+ destruct H3.
+ destruct (Zle_lt_or_eq _ _ H1).
+ apply Zgcdn_ok_before_fibonacci; auto.
+ apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto].
+ subst r; simpl.
+ destruct m as [ |m]; [elimtype False; omega| ].
+ destruct n as [ |n]; [elimtype False; omega| ].
+ simpl; apply Zis_gcd_sym; apply Zis_gcd_0.
+ (*Zneg*)
+ generalize (Zgcd_bound_fibonacci (Zpos p)).
+ simpl Zgcd_bound in *.
+ remember (Psize p+Psize p)%nat as m.
+ assert (1 < m)%nat.
+ rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
+ auto with arith.
+ destruct m as [ |m]; [inversion H0; auto| ].
+ destruct n as [ |n]; [inversion H; auto| ].
+ simpl Zgcdn.
+ unfold Zmod.
+ generalize (Z_div_mod b (Zpos p) (refl_equal Gt)).
+ destruct (Zdiv_eucl b (Zpos p)) as (q,r).
+ intros (H1,H2) H3.
+ rewrite H1.
+ apply Zis_gcd_minus.
+ apply Zis_gcd_sym.
+ apply Zis_gcd_for_euclid2.
+ destruct H2.
+ destruct (Zle_lt_or_eq _ _ H2).
+ apply Zgcdn_ok_before_fibonacci; auto.
+ apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto].
+ subst r; simpl.
+ destruct m as [ |m]; [elimtype False; omega| ].
+ destruct n as [ |n]; [elimtype False; omega| ].
+ simpl; apply Zis_gcd_sym; apply Zis_gcd_0.
+ Qed.
+
+ Lemma Zgcd_is_gcd :
+ forall a b, Zis_gcd a b (Zgcd_alt a b).
+ Proof.
+ unfold Zgcd_alt; intros; apply Zgcdn_is_gcd; auto.
+ Qed.
+
+
diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v
index 8af9b891..0d6fc94a 100644
--- a/theories/ZArith/Zmax.v
+++ b/theories/ZArith/Zmax.v
@@ -5,7 +5,7 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmax.v 9302 2006-10-27 21:21:17Z barras $ i*)
+(*i $Id: Zmax.v 10291 2007-11-06 02:18:53Z letouzey $ i*)
Require Import Arith_base.
Require Import BinInt.
@@ -38,6 +38,28 @@ Proof.
destruct (n ?= m); (apply H1|| apply H2); discriminate.
Qed.
+Lemma Zmax_spec : forall x y:Z,
+ x >= y /\ Zmax x y = x \/
+ x < y /\ Zmax x y = y.
+Proof.
+ intros; unfold Zmax, Zlt, Zge.
+ destruct (Zcompare x y); [ left | right | left ]; split; auto; discriminate.
+Qed.
+
+Lemma Zmax_left : forall n m:Z, n>=m -> Zmax n m = n.
+Proof.
+ intros n m; unfold Zmax, Zge; destruct (n ?= m); auto.
+ intro H; elim H; auto.
+Qed.
+
+Lemma Zmax_right : forall n m:Z, n<=m -> Zmax n m = m.
+Proof.
+ intros n m; unfold Zmax, Zle.
+ generalize (Zcompare_Eq_eq n m).
+ destruct (n ?= m); auto.
+ intros _ H; elim H; auto.
+Qed.
+
(** * Least upper bound properties of max *)
Lemma Zle_max_l : forall n m:Z, n <= Zmax n m.
@@ -106,3 +128,39 @@ Proof.
rewrite (Zcompare_plus_compat x y n).
case (x ?= y); apply Zplus_comm.
Qed.
+
+(** * Maximum and Zpos *)
+
+Lemma Zpos_max : forall p q, Zpos (Pmax p q) = Zmax (Zpos p) (Zpos q).
+Proof.
+ intros; unfold Zmax, Pmax; simpl; generalize (Pcompare_Eq_eq p q).
+ destruct Pcompare; auto.
+ intro H; rewrite H; auto.
+Qed.
+
+Lemma Zpos_max_1 : forall p, Zmax 1 (Zpos p) = Zpos p.
+Proof.
+ intros; unfold Zmax; simpl; destruct p; simpl; auto.
+Qed.
+
+(** * Characterization of Pminus in term of Zminus and Zmax *)
+
+Lemma Zpos_minus : forall p q, Zpos (Pminus p q) = Zmax 1 (Zpos p - Zpos q).
+Proof.
+ intros.
+ case_eq (Pcompare p q Eq).
+ intros H; rewrite (Pcompare_Eq_eq _ _ H).
+ rewrite Zminus_diag.
+ unfold Zmax; simpl.
+ unfold Pminus; rewrite Pminus_mask_diag; auto.
+ intros; rewrite Pminus_Lt; auto.
+ destruct (Zmax_spec 1 (Zpos p - Zpos q)) as [(H1,H2)|(H1,H2)]; auto.
+ elimtype False; clear H2.
+ assert (H1':=Zlt_trans 0 1 _ Zlt_0_1 H1).
+ generalize (Zlt_0_minus_lt _ _ H1').
+ unfold Zlt; simpl.
+ rewrite (ZC2 _ _ H); intro; discriminate.
+ intros; simpl; rewrite H.
+ symmetry; apply Zpos_max_1.
+Qed.
+
diff --git a/theories/ZArith/Zmin.v b/theories/ZArith/Zmin.v
index 37d78a74..bad40a32 100644
--- a/theories/ZArith/Zmin.v
+++ b/theories/ZArith/Zmin.v
@@ -5,9 +5,9 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmin.v 9302 2006-10-27 21:21:17Z barras $ i*)
+(*i $Id: Zmin.v 10028 2007-07-18 22:38:06Z letouzey $ i*)
-(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996.
+(** Initial version from Pierre Crégut (CNET, Lannion, France), 1996.
Further extensions by the Coq development team, with suggestions
from Russell O'Connor (Radbout U., Nijmegen, The Netherlands).
*)
@@ -43,6 +43,14 @@ Proof.
intros n m P H1 H2; unfold Zmin in |- *; case (n ?= m); auto with arith.
Qed.
+Lemma Zmin_spec : forall x y:Z,
+ x <= y /\ Zmin x y = x \/
+ x > y /\ Zmin x y = y.
+Proof.
+ intros; unfold Zmin, Zle, Zgt.
+ destruct (Zcompare x y); [ left | left | right ]; split; auto; discriminate.
+Qed.
+
(** * Greatest lower bound properties of min *)
Lemma Zle_min_l : forall n m:Z, Zmin n m <= n.
@@ -128,3 +136,11 @@ Proof.
Qed.
Notation Zmin_plus := Zplus_min_distr_r (only parsing).
+
+(** * Minimum and Zpos *)
+
+Lemma Zpos_min : forall p q, Zpos (Pmin p q) = Zmin (Zpos p) (Zpos q).
+Proof.
+ intros; unfold Zmin, Pmin; simpl; destruct Pcompare; auto.
+Qed.
+
diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v
index d01cada6..0634096e 100644
--- a/theories/ZArith/Zmisc.v
+++ b/theories/ZArith/Zmisc.v
@@ -6,8 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmisc.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Zmisc.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
+Require Import Wf_nat.
Require Import BinInt.
Require Import Zcompare.
Require Import Zorder.
@@ -18,37 +19,23 @@ Open Local Scope Z_scope.
(** Iterators *)
(** [n]th iteration of the function [f] *)
-Fixpoint iter_nat (n:nat) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
- match n with
- | O => x
- | S n' => f (iter_nat n' A f x)
- end.
-Fixpoint iter_pos (n:positive) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
+Fixpoint iter_pos (n:positive) (A:Type) (f:A -> A) (x:A) {struct n} : A :=
match n with
| xH => f x
| xO n' => iter_pos n' A f (iter_pos n' A f x)
| xI n' => f (iter_pos n' A f (iter_pos n' A f x))
end.
-Definition iter (n:Z) (A:Set) (f:A -> A) (x:A) :=
+Definition iter (n:Z) (A:Type) (f:A -> A) (x:A) :=
match n with
| Z0 => x
| Zpos p => iter_pos p A f x
| Zneg p => x
end.
-Theorem iter_nat_plus :
- forall (n m:nat) (A:Set) (f:A -> A) (x:A),
- iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
-Proof.
- simple induction n;
- [ simpl in |- *; auto with arith
- | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
-Qed.
-
Theorem iter_nat_of_P :
- forall (p:positive) (A:Set) (f:A -> A) (x:A),
+ forall (p:positive) (A:Type) (f:A -> A) (x:A),
iter_pos p A f x = iter_nat (nat_of_P p) A f x.
Proof.
intro n; induction n as [p H| p H| ];
@@ -63,7 +50,7 @@ Proof.
Qed.
Theorem iter_pos_plus :
- forall (p q:positive) (A:Set) (f:A -> A) (x:A),
+ forall (p q:positive) (A:Type) (f:A -> A) (x:A),
iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
Proof.
intros n m; intros.
@@ -78,7 +65,7 @@ Qed.
then the iterates of [f] also preserve it. *)
Theorem iter_nat_invariant :
- forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop),
+ forall (n:nat) (A:Type) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_nat n A f x).
Proof.
@@ -89,7 +76,7 @@ Proof.
Qed.
Theorem iter_pos_invariant :
- forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop),
+ forall (p:positive) (A:Type) (f:A -> A) (Inv:A -> Prop),
(forall x:A, Inv x -> Inv (f x)) ->
forall x:A, Inv x -> Inv (iter_pos p A f x).
Proof.
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v
index f0a3d47b..c5b5edc1 100644
--- a/theories/ZArith/Znat.v
+++ b/theories/ZArith/Znat.v
@@ -6,9 +6,9 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Znat.v 9302 2006-10-27 21:21:17Z barras $ i*)
+(*i $Id: Znat.v 10726 2008-03-28 18:15:23Z notin $ i*)
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
+(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
Require Export Arith_base.
Require Import BinPos.
@@ -17,6 +17,7 @@ Require Import Zcompare.
Require Import Zorder.
Require Import Decidable.
Require Import Peano_dec.
+Require Import Min Max Zmin Zmax.
Require Export Compare_dec.
Open Local Scope Z_scope.
@@ -26,6 +27,13 @@ Definition neq (x y:nat) := x <> y.
(************************************************)
(** Properties of the injection from nat into Z *)
+(** Injection and successor *)
+
+Theorem inj_0 : Z_of_nat 0 = 0%Z.
+Proof.
+ reflexivity.
+Qed.
+
Theorem inj_S : forall n:nat, Z_of_nat (S n) = Zsucc (Z_of_nat n).
Proof.
intro y; induction y as [| n H];
@@ -33,25 +41,12 @@ Proof.
| change (Zpos (Psucc (P_of_succ_nat n)) = Zsucc (Z_of_nat (S n))) in |- *;
rewrite Zpos_succ_morphism; trivial with arith ].
Qed.
-
-Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
-Proof.
- intro x; induction x as [| n H]; intro y; destruct y as [| m];
- [ simpl in |- *; trivial with arith
- | simpl in |- *; trivial with arith
- | simpl in |- *; rewrite <- plus_n_O; trivial with arith
- | change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
- rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
- trivial with arith ].
-Qed.
-Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
+(** Injection and equality. *)
+
+Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
Proof.
- intro x; induction x as [| n H];
- [ simpl in |- *; trivial with arith
- | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
- rewrite <- inj_plus; simpl in |- *; rewrite plus_comm;
- trivial with arith ].
+ intros x y H; rewrite H; trivial with arith.
Qed.
Theorem inj_neq : forall n m:nat, neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
@@ -66,6 +61,24 @@ Proof.
intros E; rewrite E; auto with arith ].
Qed.
+Theorem inj_eq_rev : forall n m:nat, Z_of_nat n = Z_of_nat m -> n = m.
+Proof.
+ intros x y H.
+ destruct (eq_nat_dec x y) as [H'|H']; auto.
+ elimtype False.
+ exact (inj_neq _ _ H' H).
+Qed.
+
+Theorem inj_eq_iff : forall n m:nat, n=m <-> Z_of_nat n = Z_of_nat m.
+Proof.
+ split; [apply inj_eq | apply inj_eq_rev].
+Qed.
+
+
+(** Injection and order relations: *)
+
+(** One way ... *)
+
Theorem inj_le : forall n m:nat, (n <= m)%nat -> Z_of_nat n <= Z_of_nat m.
Proof.
intros x y; intros H; elim H;
@@ -81,29 +94,100 @@ Proof.
exact H.
Qed.
+Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
+Proof.
+ intros x y H; apply Zle_ge; apply inj_le; apply H.
+Qed.
+
Theorem inj_gt : forall n m:nat, (n > m)%nat -> Z_of_nat n > Z_of_nat m.
Proof.
intros x y H; apply Zlt_gt; apply inj_lt; exact H.
Qed.
-Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
+(** The other way ... *)
+
+Theorem inj_le_rev : forall n m:nat, Z_of_nat n <= Z_of_nat m -> (n <= m)%nat.
Proof.
- intros x y H; apply Zle_ge; apply inj_le; apply H.
+ intros x y H.
+ destruct (le_lt_dec x y) as [H0|H0]; auto.
+ elimtype False.
+ assert (H1:=inj_lt _ _ H0).
+ red in H; red in H1.
+ rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
Qed.
-Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
+Theorem inj_lt_rev : forall n m:nat, Z_of_nat n < Z_of_nat m -> (n < m)%nat.
Proof.
- intros x y H; rewrite H; trivial with arith.
+ intros x y H.
+ destruct (le_lt_dec y x) as [H0|H0]; auto.
+ elimtype False.
+ assert (H1:=inj_le _ _ H0).
+ red in H; red in H1.
+ rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
Qed.
-Theorem intro_Z :
- forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
+Theorem inj_ge_rev : forall n m:nat, Z_of_nat n >= Z_of_nat m -> (n >= m)%nat.
Proof.
- intros x; exists (Z_of_nat x); split;
- [ trivial with arith
- | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
- unfold Zle in |- *; elim x; intros; simpl in |- *;
- discriminate ].
+ intros x y H.
+ destruct (le_lt_dec y x) as [H0|H0]; auto.
+ elimtype False.
+ assert (H1:=inj_gt _ _ H0).
+ red in H; red in H1.
+ rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
+Qed.
+
+Theorem inj_gt_rev : forall n m:nat, Z_of_nat n > Z_of_nat m -> (n > m)%nat.
+Proof.
+ intros x y H.
+ destruct (le_lt_dec x y) as [H0|H0]; auto.
+ elimtype False.
+ assert (H1:=inj_ge _ _ H0).
+ red in H; red in H1.
+ rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
+Qed.
+
+(* Both ways ... *)
+
+Theorem inj_le_iff : forall n m:nat, (n<=m)%nat <-> Z_of_nat n <= Z_of_nat m.
+Proof.
+ split; [apply inj_le | apply inj_le_rev].
+Qed.
+
+Theorem inj_lt_iff : forall n m:nat, (n<m)%nat <-> Z_of_nat n < Z_of_nat m.
+Proof.
+ split; [apply inj_lt | apply inj_lt_rev].
+Qed.
+
+Theorem inj_ge_iff : forall n m:nat, (n>=m)%nat <-> Z_of_nat n >= Z_of_nat m.
+Proof.
+ split; [apply inj_ge | apply inj_ge_rev].
+Qed.
+
+Theorem inj_gt_iff : forall n m:nat, (n>m)%nat <-> Z_of_nat n > Z_of_nat m.
+Proof.
+ split; [apply inj_gt | apply inj_gt_rev].
+Qed.
+
+(** Injection and usual operations *)
+
+Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
+Proof.
+ intro x; induction x as [| n H]; intro y; destruct y as [| m];
+ [ simpl in |- *; trivial with arith
+ | simpl in |- *; trivial with arith
+ | simpl in |- *; rewrite <- plus_n_O; trivial with arith
+ | change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
+ rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
+ trivial with arith ].
+Qed.
+
+Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
+Proof.
+ intro x; induction x as [| n H];
+ [ simpl in |- *; trivial with arith
+ | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
+ rewrite <- inj_plus; simpl in |- *; rewrite plus_comm;
+ trivial with arith ].
Qed.
Theorem inj_minus1 :
@@ -121,6 +205,46 @@ Proof.
[ trivial with arith | apply gt_not_le; assumption ].
Qed.
+Theorem inj_minus : forall n m:nat,
+ Z_of_nat (minus n m) = Zmax 0 (Z_of_nat n - Z_of_nat m).
+Proof.
+ intros.
+ rewrite Zmax_comm.
+ unfold Zmax.
+ destruct (le_lt_dec m n) as [H|H].
+
+ rewrite (inj_minus1 _ _ H).
+ assert (H':=Zle_minus_le_0 _ _ (inj_le _ _ H)).
+ unfold Zle in H'.
+ rewrite <- Zcompare_antisym in H'.
+ destruct Zcompare; simpl in *; intuition.
+
+ rewrite (inj_minus2 _ _ H).
+ assert (H':=Zplus_lt_compat_r _ _ (- Z_of_nat m) (inj_lt _ _ H)).
+ rewrite Zplus_opp_r in H'.
+ unfold Zminus; rewrite H'; auto.
+Qed.
+
+Theorem inj_min : forall n m:nat,
+ Z_of_nat (min n m) = Zmin (Z_of_nat n) (Z_of_nat m).
+Proof.
+ induction n; destruct m; try (compute; auto; fail).
+ simpl min.
+ do 3 rewrite inj_S.
+ rewrite <- Zsucc_min_distr; f_equal; auto.
+Qed.
+
+Theorem inj_max : forall n m:nat,
+ Z_of_nat (max n m) = Zmax (Z_of_nat n) (Z_of_nat m).
+Proof.
+ induction n; destruct m; try (compute; auto; fail).
+ simpl max.
+ do 3 rewrite inj_S.
+ rewrite <- Zsucc_max_distr; f_equal; auto.
+Qed.
+
+(** Composition of injections **)
+
Theorem Zpos_eq_Z_of_nat_o_nat_of_P :
forall p:positive, Zpos p = Z_of_nat (nat_of_P p).
Proof.
@@ -136,3 +260,26 @@ Proof.
rewrite inj_plus; repeat rewrite <- H.
rewrite Zpos_xO; simpl in |- *; rewrite Pplus_diag; reflexivity.
Qed.
+
+(** Misc *)
+
+Theorem intro_Z :
+ forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
+Proof.
+ intros x; exists (Z_of_nat x); split;
+ [ trivial with arith
+ | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
+ unfold Zle in |- *; elim x; intros; simpl in |- *;
+ discriminate ].
+Qed.
+
+Lemma Zpos_P_of_succ_nat : forall n:nat,
+ Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n).
+Proof.
+ intros.
+ unfold Z_of_nat.
+ destruct n.
+ simpl; auto.
+ simpl (P_of_succ_nat (S n)).
+ apply Zpos_succ_morphism.
+Qed.
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
index d89ec052..e77475e0 100644
--- a/theories/ZArith/Znumtheory.v
+++ b/theories/ZArith/Znumtheory.v
@@ -6,13 +6,12 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Znumtheory.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id: Znumtheory.v 10295 2007-11-06 22:46:21Z letouzey $ i*)
Require Import ZArith_base.
Require Import ZArithRing.
Require Import Zcomplements.
Require Import Zdiv.
-Require Import Ndigits.
Require Import Wf_nat.
Open Local Scope Z_scope.
@@ -156,21 +155,27 @@ Qed.
Lemma Zdivide_antisym : forall a b:Z, (a | b) -> (b | a) -> a = b \/ a = - b.
Proof.
-simple induction 1; intros.
-inversion H1.
-rewrite H0 in H2; clear H H1.
-case (Z_zerop a); intro.
-left; rewrite H0; rewrite e; ring.
-assert (Hqq0 : q0 * q = 1).
-apply Zmult_reg_l with a.
-assumption.
-ring_simplify.
-pattern a at 2 in |- *; rewrite H2; ring.
-assert (q | 1).
-rewrite <- Hqq0; auto with zarith.
-elim (Zdivide_1 q H); intros.
-rewrite H1 in H0; left; omega.
-rewrite H1 in H0; right; omega.
+ simple induction 1; intros.
+ inversion H1.
+ rewrite H0 in H2; clear H H1.
+ case (Z_zerop a); intro.
+ left; rewrite H0; rewrite e; ring.
+ assert (Hqq0 : q0 * q = 1).
+ apply Zmult_reg_l with a.
+ assumption.
+ ring_simplify.
+ pattern a at 2 in |- *; rewrite H2; ring.
+ assert (q | 1).
+ rewrite <- Hqq0; auto with zarith.
+ elim (Zdivide_1 q H); intros.
+ rewrite H1 in H0; left; omega.
+ rewrite H1 in H0; right; omega.
+Qed.
+
+Theorem Zdivide_trans: forall a b c, (a | b) -> (b | c) -> (a | c).
+Proof.
+ intros a b c [d H1] [e H2]; exists (d * e); auto with zarith.
+ rewrite H2; rewrite H1; ring.
Qed.
(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
@@ -194,6 +199,134 @@ Proof.
subst q; omega.
Qed.
+(** [Zdivide] can be expressed using [Zmod]. *)
+
+Lemma Zmod_divide : forall a b:Z, b > 0 -> a mod b = 0 -> (b | a).
+Proof.
+ intros a b H H0.
+ apply Zdivide_intro with (a / b).
+ pattern a at 1 in |- *; rewrite (Z_div_mod_eq a b H).
+ rewrite H0; ring.
+Qed.
+
+Lemma Zdivide_mod : forall a b:Z, b > 0 -> (b | a) -> a mod b = 0.
+Proof.
+ intros a b; simple destruct 2; intros; subst.
+ change (q * b) with (0 + q * b) in |- *.
+ rewrite Z_mod_plus; auto.
+Qed.
+
+(** [Zdivide] is hence decidable *)
+
+Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
+Proof.
+ intros a b; elim (Ztrichotomy_inf a 0).
+ (* a<0 *)
+ intros H; elim H; intros.
+ case (Z_eq_dec (b mod - a) 0).
+ left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
+ intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
+ (* a=0 *)
+ case (Z_eq_dec b 0); intro.
+ left; subst; auto with zarith.
+ right; subst; intro H0; inversion H0; omega.
+ (* a>0 *)
+ intro H; case (Z_eq_dec (b mod a) 0).
+ left; apply Zmod_divide; auto with zarith.
+ intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
+Qed.
+
+Theorem Zdivide_Zdiv_eq: forall a b : Z,
+ 0 < a -> (a | b) -> b = a * (b / a).
+Proof.
+ intros a b Hb Hc.
+ pattern b at 1; rewrite (Z_div_mod_eq b a); auto with zarith.
+ rewrite (Zdivide_mod b a); auto with zarith.
+Qed.
+
+Theorem Zdivide_Zdiv_eq_2: forall a b c : Z,
+ 0 < a -> (a | b) -> (c * b)/a = c * (b / a).
+Proof.
+ intros a b c H1 H2.
+ inversion H2 as [z Hz].
+ rewrite Hz; rewrite Zmult_assoc.
+ repeat rewrite Z_div_mult; auto with zarith.
+Qed.
+
+Theorem Zdivide_Zabs_l: forall a b, (Zabs a | b) -> (a | b).
+Proof.
+ intros a b [x H]; subst b.
+ pattern (Zabs a); apply Zabs_intro.
+ exists (- x); ring.
+ exists x; ring.
+Qed.
+
+Theorem Zdivide_Zabs_inv_l: forall a b, (a | b) -> (Zabs a | b).
+Proof.
+ intros a b [x H]; subst b.
+ pattern (Zabs a); apply Zabs_intro.
+ exists (- x); ring.
+ exists x; ring.
+Qed.
+
+Theorem Zdivide_le: forall a b : Z,
+ 0 <= a -> 0 < b -> (a | b) -> a <= b.
+Proof.
+ intros a b H1 H2 [q H3]; subst b.
+ case (Zle_lt_or_eq 0 a); auto with zarith; intros H3.
+ case (Zle_lt_or_eq 0 q); auto with zarith.
+ apply (Zmult_le_0_reg_r a); auto with zarith.
+ intros H4; apply Zle_trans with (1 * a); auto with zarith.
+ intros H4; subst q; omega.
+Qed.
+
+Theorem Zdivide_Zdiv_lt_pos: forall a b : Z,
+ 1 < a -> 0 < b -> (a | b) -> 0 < b / a < b .
+Proof.
+ intros a b H1 H2 H3; split.
+ apply Zmult_lt_reg_r with a; auto with zarith.
+ rewrite (Zmult_comm (Zdiv b a)); rewrite <- Zdivide_Zdiv_eq; auto with zarith.
+ apply Zmult_lt_reg_r with a; auto with zarith.
+ repeat rewrite (fun x => Zmult_comm x a); auto with zarith.
+ rewrite <- Zdivide_Zdiv_eq; auto with zarith.
+ pattern b at 1; replace b with (1 * b); auto with zarith.
+ apply Zmult_lt_compat_r; auto with zarith.
+Qed.
+
+Lemma Zmod_div_mod: forall n m a, 0 < n -> 0 < m ->
+ (n | m) -> a mod n = (a mod m) mod n.
+Proof.
+ intros n m a H1 H2 H3.
+ pattern a at 1; rewrite (Z_div_mod_eq a m); auto with zarith.
+ case H3; intros q Hq; pattern m at 1; rewrite Hq.
+ rewrite (Zmult_comm q).
+ rewrite Zplus_mod; auto with zarith.
+ rewrite <- Zmult_assoc; rewrite Zmult_mod; auto with zarith.
+ rewrite Z_mod_same; try rewrite Zmult_0_l; auto with zarith.
+ rewrite (Zmod_small 0); auto with zarith.
+ rewrite Zplus_0_l; rewrite Zmod_mod; auto with zarith.
+Qed.
+
+Lemma Zmod_divide_minus: forall a b c : Z, 0 < b ->
+ a mod b = c -> (b | a - c).
+Proof.
+ intros a b c H H1; apply Zmod_divide; auto with zarith.
+ rewrite Zminus_mod; auto with zarith.
+ rewrite H1; pattern c at 1; rewrite <- (Zmod_small c b); auto with zarith.
+ rewrite Zminus_diag; apply Zmod_small; auto with zarith.
+ subst; apply Z_mod_lt; auto with zarith.
+Qed.
+
+Lemma Zdivide_mod_minus: forall a b c : Z, 0 <= c < b ->
+ (b | a - c) -> a mod b = c.
+Proof.
+ intros a b c (H1, H2) H3; assert (0 < b); try apply Zle_lt_trans with c; auto.
+ replace a with ((a - c) + c); auto with zarith.
+ rewrite Zplus_mod; auto with zarith.
+ rewrite (Zdivide_mod (a -c) b); try rewrite Zplus_0_l; auto with zarith.
+ rewrite Zmod_mod; try apply Zmod_small; auto with zarith.
+Qed.
+
(** * Greatest common divisor (gcd). *)
(** There is no unicity of the gcd; hence we define the predicate [gcd a b d]
@@ -246,6 +379,18 @@ Proof.
Qed.
Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
+
+Theorem Zis_gcd_unique: forall a b c d : Z,
+ Zis_gcd a b c -> Zis_gcd a b d -> c = d \/ c = (- d).
+Proof.
+intros a b c d H1 H2.
+inversion_clear H1 as [Hc1 Hc2 Hc3].
+inversion_clear H2 as [Hd1 Hd2 Hd3].
+assert (H3: Zdivide c d); auto.
+assert (H4: Zdivide d c); auto.
+apply Zdivide_antisym; auto.
+Qed.
+
(** * Extended Euclid algorithm. *)
@@ -463,6 +608,7 @@ Qed.
Lemma Zis_gcd_rel_prime :
forall a b g:Z,
b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
+Proof.
intros a b g; intros.
assert (g <> 0).
intro.
@@ -491,6 +637,68 @@ Lemma Zis_gcd_rel_prime :
exists q; auto with zarith.
Qed.
+Theorem rel_prime_sym: forall a b, rel_prime a b -> rel_prime b a.
+Proof.
+ intros a b H; auto with zarith.
+ red; apply Zis_gcd_sym; auto with zarith.
+Qed.
+
+Theorem rel_prime_div: forall p q r,
+ rel_prime p q -> (r | p) -> rel_prime r q.
+Proof.
+ intros p q r H (u, H1); subst.
+ inversion_clear H as [H1 H2 H3].
+ red; apply Zis_gcd_intro; try apply Zone_divide.
+ intros x H4 H5; apply H3; auto.
+ apply Zdivide_mult_r; auto.
+Qed.
+
+Theorem rel_prime_1: forall n, rel_prime 1 n.
+Proof.
+ intros n; red; apply Zis_gcd_intro; auto.
+ exists 1; auto with zarith.
+ exists n; auto with zarith.
+Qed.
+
+Theorem not_rel_prime_0: forall n, 1 < n -> ~ rel_prime 0 n.
+Proof.
+ intros n H H1; absurd (n = 1 \/ n = -1).
+ intros [H2 | H2]; subst; contradict H; auto with zarith.
+ case (Zis_gcd_unique 0 n n 1); auto.
+ apply Zis_gcd_intro; auto.
+ exists 0; auto with zarith.
+ exists 1; auto with zarith.
+Qed.
+
+Theorem rel_prime_mod: forall p q, 0 < q ->
+ rel_prime p q -> rel_prime (p mod q) q.
+Proof.
+ intros p q H H0.
+ assert (H1: Bezout p q 1).
+ apply rel_prime_bezout; auto.
+ inversion_clear H1 as [q1 r1 H2].
+ apply bezout_rel_prime.
+ apply Bezout_intro with q1 (r1 + q1 * (p / q)).
+ rewrite <- H2.
+ pattern p at 3; rewrite (Z_div_mod_eq p q); try ring; auto with zarith.
+Qed.
+
+Theorem rel_prime_mod_rev: forall p q, 0 < q ->
+ rel_prime (p mod q) q -> rel_prime p q.
+Proof.
+ intros p q H H0.
+ rewrite (Z_div_mod_eq p q); auto with zarith; red.
+ apply Zis_gcd_sym; apply Zis_gcd_for_euclid2; auto with zarith.
+Qed.
+
+Theorem Zrel_prime_neq_mod_0: forall a b, 1 < b -> rel_prime a b -> a mod b <> 0.
+Proof.
+ intros a b H H1 H2.
+ case (not_rel_prime_0 _ H).
+ rewrite <- H2.
+ apply rel_prime_mod; auto with zarith.
+Qed.
+
(** * Primality *)
Inductive prime (p:Z) : Prop :=
@@ -543,42 +751,19 @@ Qed.
Hint Resolve prime_rel_prime: zarith.
-(** [Zdivide] can be expressed using [Zmod]. *)
+(** As a consequence, a prime number is relatively prime with smaller numbers *)
-Lemma Zmod_divide : forall a b:Z, b > 0 -> a mod b = 0 -> (b | a).
+Theorem rel_prime_le_prime:
+ forall a p, prime p -> 1 <= a < p -> rel_prime a p.
Proof.
- intros a b H H0.
- apply Zdivide_intro with (a / b).
- pattern a at 1 in |- *; rewrite (Z_div_mod_eq a b H).
- rewrite H0; ring.
+ intros a p Hp [H1 H2].
+ apply rel_prime_sym; apply prime_rel_prime; auto.
+ intros [q Hq]; subst a.
+ case (Zle_or_lt q 0); intros Hl.
+ absurd (q * p <= 0 * p); auto with zarith.
+ absurd (1 * p <= q * p); auto with zarith.
Qed.
-Lemma Zdivide_mod : forall a b:Z, b > 0 -> (b | a) -> a mod b = 0.
-Proof.
- intros a b; simple destruct 2; intros; subst.
- change (q * b) with (0 + q * b) in |- *.
- rewrite Z_mod_plus; auto.
-Qed.
-
-(** [Zdivide] is hence decidable *)
-
-Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
-Proof.
- intros a b; elim (Ztrichotomy_inf a 0).
- (* a<0 *)
- intros H; elim H; intros.
- case (Z_eq_dec (b mod - a) 0).
- left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
- intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
- (* a=0 *)
- case (Z_eq_dec b 0); intro.
- left; subst; auto with zarith.
- right; subst; intro H0; inversion H0; omega.
- (* a>0 *)
- intro H; case (Z_eq_dec (b mod a) 0).
- left; apply Zmod_divide; auto with zarith.
- intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
-Qed.
(** If a prime [p] divides [ab] then it divides either [a] or [b] *)
@@ -590,6 +775,108 @@ Proof.
right; apply Gauss with a; auto with zarith.
Qed.
+Lemma not_prime_0: ~ prime 0.
+Proof.
+ intros H1; case (prime_divisors _ H1 2); auto with zarith.
+Qed.
+
+Lemma not_prime_1: ~ prime 1.
+Proof.
+ intros H1; absurd (1 < 1); auto with zarith.
+ inversion H1; auto.
+Qed.
+
+Lemma prime_2: prime 2.
+Proof.
+ apply prime_intro; auto with zarith.
+ intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
+ clear H1; intros H1.
+ contradict H2; auto with zarith.
+ subst n; red; auto with zarith.
+ apply Zis_gcd_intro; auto with zarith.
+Qed.
+
+Theorem prime_3: prime 3.
+Proof.
+ apply prime_intro; auto with zarith.
+ intros n [H1 H2]; case Zle_lt_or_eq with ( 1 := H1 ); auto with zarith;
+ clear H1; intros H1.
+ case (Zle_lt_or_eq 2 n); auto with zarith; clear H1; intros H1.
+ contradict H2; auto with zarith.
+ subst n; red; auto with zarith.
+ apply Zis_gcd_intro; auto with zarith.
+ intros x [q1 Hq1] [q2 Hq2].
+ exists (q2 - q1).
+ apply trans_equal with (3 - 2); auto with zarith.
+ rewrite Hq1; rewrite Hq2; ring.
+ subst n; red; auto with zarith.
+ apply Zis_gcd_intro; auto with zarith.
+Qed.
+
+Theorem prime_ge_2: forall p, prime p -> 2 <= p.
+Proof.
+ intros p Hp; inversion Hp; auto with zarith.
+Qed.
+
+Definition prime' p := 1<p /\ (forall n, 1<n<p -> ~ (n|p)).
+
+Theorem prime_alt:
+ forall p, prime' p <-> prime p.
+Proof.
+ split; destruct 1; intros.
+ (* prime -> prime' *)
+ constructor; auto; intros.
+ red; apply Zis_gcd_intro; auto with zarith; intros.
+ case (Zle_lt_or_eq 0 (Zabs x)); auto with zarith; intros H6.
+ case (Zle_lt_or_eq 1 (Zabs x)); auto with zarith; intros H7.
+ case (Zle_lt_or_eq (Zabs x) p); auto with zarith.
+ apply Zdivide_le; auto with zarith.
+ apply Zdivide_Zabs_inv_l; auto.
+ intros H8; case (H0 (Zabs x)); auto.
+ apply Zdivide_Zabs_inv_l; auto.
+ intros H8; subst p; absurd (Zabs x <= n); auto with zarith.
+ apply Zdivide_le; auto with zarith.
+ apply Zdivide_Zabs_inv_l; auto.
+ rewrite H7; pattern (Zabs x); apply Zabs_intro; auto with zarith.
+ absurd (0%Z = p); auto with zarith.
+ assert (x=0) by (destruct x; simpl in *; now auto).
+ subst x; elim H3; intro q; rewrite Zmult_0_r; auto.
+ (* prime' -> prime *)
+ split; auto; intros.
+ intros H2.
+ case (Zis_gcd_unique n p n 1); auto with zarith.
+ apply Zis_gcd_intro; auto with zarith.
+ apply H0; auto with zarith.
+Qed.
+
+Theorem square_not_prime: forall a, ~ prime (a * a).
+Proof.
+ intros a Ha.
+ rewrite <- (Zabs_square a) in Ha.
+ assert (0 <= Zabs a) by auto with zarith.
+ set (b:=Zabs a) in *; clearbody b.
+ rewrite <- prime_alt in Ha; destruct Ha.
+ case (Zle_lt_or_eq 0 b); auto with zarith; intros Hza1; [ | subst; omega].
+ case (Zle_lt_or_eq 1 b); auto with zarith; intros Hza2; [ | subst; omega].
+ assert (Hza3 := Zmult_lt_compat_r 1 b b Hza1 Hza2).
+ rewrite Zmult_1_l in Hza3.
+ elim (H1 _ (conj Hza2 Hza3)).
+ exists b; auto.
+Qed.
+
+Theorem prime_div_prime: forall p q,
+ prime p -> prime q -> (p | q) -> p = q.
+Proof.
+ intros p q H H1 H2;
+ assert (Hp: 0 < p); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
+ assert (Hq: 0 < q); try apply Zlt_le_trans with 2; try apply prime_ge_2; auto with zarith.
+ case prime_divisors with (2 := H2); auto.
+ intros H4; contradict Hp; subst; auto with zarith.
+ intros [H4| [H4 | H4]]; subst; auto.
+ contradict H; auto; apply not_prime_1.
+ contradict Hp; auto with zarith.
+Qed.
+
(** We could obtain a [Zgcd] function via Euclid algorithm. But we propose
here a binary version of [Zgcd], faster and executable within Coq.
@@ -617,105 +904,34 @@ Fixpoint Pgcdn (n: nat) (a b : positive) { struct n } : positive :=
| xO a, xO b => xO (Pgcdn n a b)
| a, xO b => Pgcdn n a b
| xO a, b => Pgcdn n a b
- | xI a', xI b' => match Pcompare a' b' Eq with
- | Eq => a
- | Lt => Pgcdn n (b'-a') a
- | Gt => Pgcdn n (a'-b') b
- end
- end
- end.
-
-Fixpoint Pggcdn (n: nat) (a b : positive) { struct n } : (positive*(positive*positive)) :=
- match n with
- | O => (1,(a,b))
- | S n =>
- match a,b with
- | xH, b => (1,(1,b))
- | a, xH => (1,(a,1))
- | xO a, xO b =>
- let (g,p) := Pggcdn n a b in
- (xO g,p)
- | a, xO b =>
- let (g,p) := Pggcdn n a b in
- let (aa,bb) := p in
- (g,(aa, xO bb))
- | xO a, b =>
- let (g,p) := Pggcdn n a b in
- let (aa,bb) := p in
- (g,(xO aa, bb))
- | xI a', xI b' => match Pcompare a' b' Eq with
- | Eq => (a,(1,1))
- | Lt =>
- let (g,p) := Pggcdn n (b'-a') a in
- let (ba,aa) := p in
- (g,(aa, aa + xO ba))
- | Gt =>
- let (g,p) := Pggcdn n (a'-b') b in
- let (ab,bb) := p in
- (g,(bb+xO ab, bb))
- end
+ | xI a', xI b' =>
+ match Pcompare a' b' Eq with
+ | Eq => a
+ | Lt => Pgcdn n (b'-a') a
+ | Gt => Pgcdn n (a'-b') b
+ end
end
end.
Definition Pgcd (a b: positive) := Pgcdn (Psize a + Psize b)%nat a b.
-Definition Pggcd (a b: positive) := Pggcdn (Psize a + Psize b)%nat a b.
-Open Scope Z_scope.
+Close Scope positive_scope.
-Definition Zgcd (a b : Z) : Z := match a,b with
- | Z0, _ => Zabs b
- | _, Z0 => Zabs a
- | Zpos a, Zpos b => Zpos (Pgcd a b)
- | Zpos a, Zneg b => Zpos (Pgcd a b)
- | Zneg a, Zpos b => Zpos (Pgcd a b)
- | Zneg a, Zneg b => Zpos (Pgcd a b)
- end.
-
-Definition Zggcd (a b : Z) : Z*(Z*Z) := match a,b with
- | Z0, _ => (Zabs b,(0, Zsgn b))
- | _, Z0 => (Zabs a,(Zsgn a, 0))
- | Zpos a, Zpos b =>
- let (g,p) := Pggcd a b in
- let (aa,bb) := p in
- (Zpos g, (Zpos aa, Zpos bb))
- | Zpos a, Zneg b =>
- let (g,p) := Pggcd a b in
- let (aa,bb) := p in
- (Zpos g, (Zpos aa, Zneg bb))
- | Zneg a, Zpos b =>
- let (g,p) := Pggcd a b in
- let (aa,bb) := p in
- (Zpos g, (Zneg aa, Zpos bb))
- | Zneg a, Zneg b =>
- let (g,p) := Pggcd a b in
- let (aa,bb) := p in
- (Zpos g, (Zneg aa, Zneg bb))
- end.
+Definition Zgcd (a b : Z) : Z :=
+ match a,b with
+ | Z0, _ => Zabs b
+ | _, Z0 => Zabs a
+ | Zpos a, Zpos b => Zpos (Pgcd a b)
+ | Zpos a, Zneg b => Zpos (Pgcd a b)
+ | Zneg a, Zpos b => Zpos (Pgcd a b)
+ | Zneg a, Zneg b => Zpos (Pgcd a b)
+ end.
Lemma Zgcd_is_pos : forall a b, 0 <= Zgcd a b.
Proof.
unfold Zgcd; destruct a; destruct b; auto with zarith.
Qed.
-Lemma Psize_monotone : forall p q, Pcompare p q Eq = Lt -> (Psize p <= Psize q)%nat.
-Proof.
- induction p; destruct q; simpl; auto with arith; intros; try discriminate.
- intros; generalize (Pcompare_Gt_Lt _ _ H); auto with arith.
- intros; destruct (Pcompare_Lt_Lt _ _ H); auto with arith; subst; auto.
-Qed.
-
-Lemma Pminus_Zminus : forall a b, Pcompare a b Eq = Lt ->
- Zpos (b-a) = Zpos b - Zpos a.
-Proof.
- intros.
- repeat rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
- rewrite nat_of_P_minus_morphism.
- apply inj_minus1.
- apply lt_le_weak.
- apply nat_of_P_lt_Lt_compare_morphism; auto.
- rewrite ZC4; rewrite H; auto.
-Qed.
-
Lemma Zis_gcd_even_odd : forall a b g, Zis_gcd (Zpos a) (Zpos (xI b)) g ->
Zis_gcd (Zpos (xO a)) (Zpos (xI b)) g.
Proof.
@@ -758,12 +974,12 @@ Proof.
assert (Psize (b-a) <= Psize b)%nat.
apply Psize_monotone.
change (Zpos (b-a) < Zpos b).
- rewrite (Pminus_Zminus _ _ H1).
+ rewrite (Zpos_minus_morphism _ _ H1).
assert (0 < Zpos a) by (compute; auto).
omega.
omega.
rewrite Zpos_xO; do 2 rewrite Zpos_xI.
- rewrite Pminus_Zminus; auto.
+ rewrite Zpos_minus_morphism; auto.
omega.
(* a = xI, b = xI, compare = Gt *)
apply Zis_gcd_for_euclid with 1.
@@ -775,13 +991,13 @@ Proof.
assert (Psize (a-b) <= Psize a)%nat.
apply Psize_monotone.
change (Zpos (a-b) < Zpos a).
- rewrite (Pminus_Zminus b a).
+ rewrite (Zpos_minus_morphism b a).
assert (0 < Zpos b) by (compute; auto).
omega.
rewrite ZC4; rewrite H1; auto.
omega.
rewrite Zpos_xO; do 2 rewrite Zpos_xI.
- rewrite Pminus_Zminus; auto.
+ rewrite Zpos_minus_morphism; auto.
omega.
rewrite ZC4; rewrite H1; auto.
(* a = xI, b = xO *)
@@ -840,6 +1056,230 @@ Proof.
apply Pgcd_correct.
Qed.
+Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
+Proof.
+ intros x y; exists (Zgcd x y).
+ split; [apply Zgcd_is_gcd | apply Zgcd_is_pos].
+Qed.
+
+Theorem Zdivide_Zgcd: forall p q r : Z,
+ (p | q) -> (p | r) -> (p | Zgcd q r).
+Proof.
+ intros p q r H1 H2.
+ assert (H3: (Zis_gcd q r (Zgcd q r))).
+ apply Zgcd_is_gcd.
+ inversion_clear H3; auto.
+Qed.
+
+Theorem Zis_gcd_gcd: forall a b c : Z,
+ 0 <= c -> Zis_gcd a b c -> Zgcd a b = c.
+Proof.
+ intros a b c H1 H2.
+ case (Zis_gcd_uniqueness_apart_sign a b c (Zgcd a b)); auto.
+ apply Zgcd_is_gcd; auto.
+ case Zle_lt_or_eq with (1 := H1); clear H1; intros H1; subst; auto.
+ intros H3; subst.
+ generalize (Zgcd_is_pos a b); auto with zarith.
+ case (Zgcd a b); simpl; auto; intros; discriminate.
+Qed.
+
+Theorem Zgcd_inv_0_l: forall x y, Zgcd x y = 0 -> x = 0.
+Proof.
+ intros x y H.
+ assert (F1: Zdivide 0 x).
+ rewrite <- H.
+ generalize (Zgcd_is_gcd x y); intros HH; inversion HH; auto.
+ inversion F1 as [z H1].
+ rewrite H1; ring.
+Qed.
+
+Theorem Zgcd_inv_0_r: forall x y, Zgcd x y = 0 -> y = 0.
+Proof.
+ intros x y H.
+ assert (F1: Zdivide 0 y).
+ rewrite <- H.
+ generalize (Zgcd_is_gcd x y); intros HH; inversion HH; auto.
+ inversion F1 as [z H1].
+ rewrite H1; ring.
+Qed.
+
+Theorem Zgcd_div_swap0 : forall a b : Z,
+ 0 < Zgcd a b ->
+ 0 < b ->
+ (a / Zgcd a b) * b = a * (b/Zgcd a b).
+Proof.
+ intros a b Hg Hb.
+ assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
+ pattern b at 2; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ repeat rewrite Zmult_assoc; f_equal.
+ rewrite Zmult_comm.
+ rewrite <- Zdivide_Zdiv_eq; auto.
+Qed.
+
+Theorem Zgcd_div_swap : forall a b c : Z,
+ 0 < Zgcd a b ->
+ 0 < b ->
+ (c * a) / Zgcd a b * b = c * a * (b/Zgcd a b).
+Proof.
+ intros a b c Hg Hb.
+ assert (F := Zgcd_is_gcd a b); inversion F as [F1 F2 F3].
+ pattern b at 2; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ repeat rewrite Zmult_assoc; f_equal.
+ rewrite Zdivide_Zdiv_eq_2; auto.
+ repeat rewrite <- Zmult_assoc; f_equal.
+ rewrite Zmult_comm.
+ rewrite <- Zdivide_Zdiv_eq; auto.
+Qed.
+
+Theorem Zgcd_1_rel_prime : forall a b,
+ Zgcd a b = 1 <-> rel_prime a b.
+Proof.
+ unfold rel_prime; split; intro H.
+ rewrite <- H; apply Zgcd_is_gcd.
+ case (Zis_gcd_unique a b (Zgcd a b) 1); auto.
+ apply Zgcd_is_gcd.
+ intros H2; absurd (0 <= Zgcd a b); auto with zarith.
+ generalize (Zgcd_is_pos a b); auto with zarith.
+Qed.
+
+Definition rel_prime_dec: forall a b,
+ { rel_prime a b }+{ ~ rel_prime a b }.
+Proof.
+ intros a b; case (Z_eq_dec (Zgcd a b) 1); intros H1.
+ left; apply -> Zgcd_1_rel_prime; auto.
+ right; contradict H1; apply <- Zgcd_1_rel_prime; auto.
+Defined.
+
+Definition prime_dec_aux:
+ forall p m,
+ { forall n, 1 < n < m -> rel_prime n p } +
+ { exists n, 1 < n < m /\ ~ rel_prime n p }.
+Proof.
+ intros p m.
+ case (Z_lt_dec 1 m); intros H1;
+ [ | left; intros; elimtype False; omega ].
+ pattern m; apply natlike_rec; auto with zarith.
+ left; intros; elimtype False; omega.
+ intros x Hx IH; destruct IH as [F|E].
+ destruct (rel_prime_dec x p) as [Y|N].
+ left; intros n [HH1 HH2].
+ case (Zgt_succ_gt_or_eq x n); auto with zarith.
+ intros HH3; subst x; auto.
+ case (Z_lt_dec 1 x); intros HH1.
+ right; exists x; split; auto with zarith.
+ left; intros n [HHH1 HHH2]; contradict HHH1; auto with zarith.
+ right; destruct E as (n,((H0,H2),H3)); exists n; auto with zarith.
+Defined.
+
+Definition prime_dec: forall p, { prime p }+{ ~ prime p }.
+Proof.
+ intros p; case (Z_lt_dec 1 p); intros H1.
+ case (prime_dec_aux p p); intros H2.
+ left; apply prime_intro; auto.
+ intros n [Hn1 Hn2]; case Zle_lt_or_eq with ( 1 := Hn1 ); auto.
+ intros HH; subst n.
+ red; apply Zis_gcd_intro; auto with zarith.
+ right; intros H3; inversion_clear H3 as [Hp1 Hp2].
+ case H2; intros n [Hn1 Hn2]; case Hn2; auto with zarith.
+ right; intros H3; inversion_clear H3 as [Hp1 Hp2]; case H1; auto.
+Defined.
+
+Theorem not_prime_divide:
+ forall p, 1 < p -> ~ prime p -> exists n, 1 < n < p /\ (n | p).
+Proof.
+ intros p Hp Hp1.
+ case (prime_dec_aux p p); intros H1.
+ elim Hp1; constructor; auto.
+ intros n [Hn1 Hn2].
+ case Zle_lt_or_eq with ( 1 := Hn1 ); auto with zarith.
+ intros H2; subst n; red; apply Zis_gcd_intro; auto with zarith.
+ case H1; intros n [Hn1 Hn2].
+ generalize (Zgcd_is_pos n p); intros Hpos.
+ case (Zle_lt_or_eq 0 (Zgcd n p)); auto with zarith; intros H3.
+ case (Zle_lt_or_eq 1 (Zgcd n p)); auto with zarith; intros H4.
+ exists (Zgcd n p); split; auto.
+ split; auto.
+ apply Zle_lt_trans with n; auto with zarith.
+ generalize (Zgcd_is_gcd n p); intros tmp; inversion_clear tmp as [Hr1 Hr2 Hr3].
+ case Hr1; intros q Hq.
+ case (Zle_or_lt q 0); auto with zarith; intros Ht.
+ absurd (n <= 0 * Zgcd n p) ; auto with zarith.
+ pattern n at 1; rewrite Hq; auto with zarith.
+ apply Zle_trans with (1 * Zgcd n p); auto with zarith.
+ pattern n at 2; rewrite Hq; auto with zarith.
+ generalize (Zgcd_is_gcd n p); intros Ht; inversion Ht; auto.
+ case Hn2; red.
+ rewrite H4; apply Zgcd_is_gcd.
+ generalize (Zgcd_is_gcd n p); rewrite <- H3; intros tmp;
+ inversion_clear tmp as [Hr1 Hr2 Hr3].
+ absurd (n = 0); auto with zarith.
+ case Hr1; auto with zarith.
+Qed.
+
+(** A Generalized Gcd that also computes Bezout coefficients.
+ The algorithm is the same as for Zgcd. *)
+
+Open Scope positive_scope.
+
+Fixpoint Pggcdn (n: nat) (a b : positive) { struct n } : (positive*(positive*positive)) :=
+ match n with
+ | O => (1,(a,b))
+ | S n =>
+ match a,b with
+ | xH, b => (1,(1,b))
+ | a, xH => (1,(a,1))
+ | xO a, xO b =>
+ let (g,p) := Pggcdn n a b in
+ (xO g,p)
+ | a, xO b =>
+ let (g,p) := Pggcdn n a b in
+ let (aa,bb) := p in
+ (g,(aa, xO bb))
+ | xO a, b =>
+ let (g,p) := Pggcdn n a b in
+ let (aa,bb) := p in
+ (g,(xO aa, bb))
+ | xI a', xI b' =>
+ match Pcompare a' b' Eq with
+ | Eq => (a,(1,1))
+ | Lt =>
+ let (g,p) := Pggcdn n (b'-a') a in
+ let (ba,aa) := p in
+ (g,(aa, aa + xO ba))
+ | Gt =>
+ let (g,p) := Pggcdn n (a'-b') b in
+ let (ab,bb) := p in
+ (g,(bb+xO ab, bb))
+ end
+ end
+ end.
+
+Definition Pggcd (a b: positive) := Pggcdn (Psize a + Psize b)%nat a b.
+
+Open Scope Z_scope.
+
+Definition Zggcd (a b : Z) : Z*(Z*Z) :=
+ match a,b with
+ | Z0, _ => (Zabs b,(0, Zsgn b))
+ | _, Z0 => (Zabs a,(Zsgn a, 0))
+ | Zpos a, Zpos b =>
+ let (g,p) := Pggcd a b in
+ let (aa,bb) := p in
+ (Zpos g, (Zpos aa, Zpos bb))
+ | Zpos a, Zneg b =>
+ let (g,p) := Pggcd a b in
+ let (aa,bb) := p in
+ (Zpos g, (Zpos aa, Zneg bb))
+ | Zneg a, Zpos b =>
+ let (g,p) := Pggcd a b in
+ let (aa,bb) := p in
+ (Zpos g, (Zneg aa, Zpos bb))
+ | Zneg a, Zneg b =>
+ let (g,p) := Pggcd a b in
+ let (aa,bb) := p in
+ (Zpos g, (Zneg aa, Zneg bb))
+ end.
+
Lemma Pggcdn_gcdn : forall n a b,
fst (Pggcdn n a b) = Pgcdn n a b.
@@ -870,8 +1310,8 @@ Open Scope positive_scope.
Lemma Pggcdn_correct_divisors : forall n a b,
let (g,p) := Pggcdn n a b in
- let (aa,bb):=p in
- (a=g*aa) /\ (b=g*bb).
+ let (aa,bb):=p in
+ (a=g*aa) /\ (b=g*bb).
Proof.
induction n.
simpl; auto.
@@ -910,30 +1350,32 @@ Qed.
Lemma Pggcd_correct_divisors : forall a b,
let (g,p) := Pggcd a b in
- let (aa,bb):=p in
- (a=g*aa) /\ (b=g*bb).
+ let (aa,bb):=p in
+ (a=g*aa) /\ (b=g*bb).
Proof.
intros a b; exact (Pggcdn_correct_divisors (Psize a + Psize b)%nat a b).
Qed.
-Open Scope Z_scope.
+Close Scope positive_scope.
Lemma Zggcd_correct_divisors : forall a b,
let (g,p) := Zggcd a b in
- let (aa,bb):=p in
- (a=g*aa) /\ (b=g*bb).
+ let (aa,bb):=p in
+ (a=g*aa) /\ (b=g*bb).
Proof.
destruct a; destruct b; simpl; auto; try solve [rewrite Pmult_comm; simpl; auto];
generalize (Pggcd_correct_divisors p p0); destruct (Pggcd p p0) as (g,(aa,bb));
destruct 1; subst; auto.
Qed.
-Theorem Zgcd_spec : forall x y : Z, {z : Z | Zis_gcd x y z /\ 0 <= z}.
+Theorem Zggcd_opp: forall x y,
+ Zggcd (-x) y = let (p1,p) := Zggcd x y in
+ let (p2,p3) := p in
+ (p1,(-p2,p3)).
Proof.
- intros x y; exists (Zgcd x y).
- split; [apply Zgcd_is_gcd | apply Zgcd_is_pos].
+intros [|x|x] [|y|y]; unfold Zggcd, Zopp; auto.
+case Pggcd; intros p1 (p2, p3); auto.
+case Pggcd; intros p1 (p2, p3); auto.
+case Pggcd; intros p1 (p2, p3); auto.
+case Pggcd; intros p1 (p2, p3); auto.
Qed.
-
-
-
-
diff --git a/theories/ZArith/Zorder.v b/theories/ZArith/Zorder.v
index 47490be6..425aa83b 100644
--- a/theories/ZArith/Zorder.v
+++ b/theories/ZArith/Zorder.v
@@ -5,9 +5,9 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zorder.v 9302 2006-10-27 21:21:17Z barras $ i*)
+(*i $Id: Zorder.v 10291 2007-11-06 02:18:53Z letouzey $ i*)
-(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
+(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
Require Import BinPos.
Require Import BinInt.
@@ -549,7 +549,7 @@ Hint Immediate Zeq_le: zarith.
(** Transitivity using successor *)
-Lemma Zge_trans_succ : forall n m p:Z, Zsucc n > m -> m > p -> n > p.
+Lemma Zgt_trans_succ : forall n m p:Z, Zsucc n > m -> m > p -> n > p.
Proof.
intros n m p H1 H2; apply Zle_gt_trans with (m := m);
[ apply Zgt_succ_le; assumption | assumption ].
@@ -997,5 +997,31 @@ Proof.
rewrite <- Zplus_assoc; rewrite Zplus_opp_l; rewrite Zplus_0_r; exact H.
Qed.
+Lemma Zmult_lt_compat:
+ forall n m p q : Z, 0 <= n < p -> 0 <= m < q -> n * m < p * q.
+Proof.
+ intros n m p q (H1, H2) (H3,H4).
+ assert (0<p) by (apply Zle_lt_trans with n; auto).
+ assert (0<q) by (apply Zle_lt_trans with m; auto).
+ case Zle_lt_or_eq with (1 := H1); intros H5; auto with zarith.
+ case Zle_lt_or_eq with (1 := H3); intros H6; auto with zarith.
+ apply Zlt_trans with (n * q).
+ apply Zmult_lt_compat_l; auto.
+ apply Zmult_lt_compat_r; auto with zarith.
+ rewrite <- H6; rewrite Zmult_0_r; apply Zmult_lt_0_compat; auto with zarith.
+ rewrite <- H5; simpl; apply Zmult_lt_0_compat; auto with zarith.
+Qed.
+
+Lemma Zmult_lt_compat2:
+ forall n m p q : Z, 0 < n <= p -> 0 < m < q -> n * m < p * q.
+Proof.
+ intros n m p q (H1, H2) (H3, H4).
+ apply Zle_lt_trans with (p * m).
+ apply Zmult_le_compat_r; auto.
+ apply Zlt_le_weak; auto.
+ apply Zmult_lt_compat_l; auto.
+ apply Zlt_le_trans with n; auto.
+Qed.
+
(** For compatibility *)
Notation Zlt_O_minus_lt := Zlt_0_minus_lt (only parsing).
diff --git a/theories/ZArith/Zpow_facts.v b/theories/ZArith/Zpow_facts.v
new file mode 100644
index 00000000..3d4d235a
--- /dev/null
+++ b/theories/ZArith/Zpow_facts.v
@@ -0,0 +1,465 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zpow_facts.v 11098 2008-06-11 09:16:22Z letouzey $ i*)
+
+Require Import ZArith_base.
+Require Import ZArithRing.
+Require Import Zcomplements.
+Require Export Zpower.
+Require Import Zdiv.
+Require Import Znumtheory.
+Open Local Scope Z_scope.
+
+Lemma Zpower_pos_1_r: forall x, Zpower_pos x 1 = x.
+Proof.
+ intros x; unfold Zpower_pos; simpl; auto with zarith.
+Qed.
+
+Lemma Zpower_pos_1_l: forall p, Zpower_pos 1 p = 1.
+Proof.
+ induction p.
+ (* xI *)
+ rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r, IHp; auto.
+ (* xO *)
+ rewrite <- Pplus_diag.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite IHp; auto.
+ (* xH *)
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+Lemma Zpower_pos_0_l: forall p, Zpower_pos 0 p = 0.
+Proof.
+ induction p.
+ change (xI p) with (1 + (xO p))%positive.
+ rewrite Zpower_pos_is_exp, Zpower_pos_1_r; auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp, IHp; auto.
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+Lemma Zpower_pos_pos: forall x p,
+ 0 < x -> 0 < Zpower_pos x p.
+Proof.
+ induction p; intros.
+ (* xI *)
+ rewrite xI_succ_xO, <-Pplus_diag, Pplus_one_succ_l.
+ repeat rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r.
+ repeat apply Zmult_lt_0_compat; auto.
+ (* xO *)
+ rewrite <- Pplus_diag.
+ repeat rewrite Zpower_pos_is_exp.
+ repeat apply Zmult_lt_0_compat; auto.
+ (* xH *)
+ rewrite Zpower_pos_1_r; auto.
+Qed.
+
+
+Theorem Zpower_1_r: forall z, z^1 = z.
+Proof.
+ exact Zpower_pos_1_r.
+Qed.
+
+Theorem Zpower_1_l: forall z, 0 <= z -> 1^z = 1.
+Proof.
+ destruct z; simpl; auto.
+ intros; apply Zpower_pos_1_l.
+ intros; compute in H; elim H; auto.
+Qed.
+
+Theorem Zpower_0_l: forall z, z<>0 -> 0^z = 0.
+Proof.
+ destruct z; simpl; auto with zarith.
+ intros; apply Zpower_pos_0_l.
+Qed.
+
+Theorem Zpower_0_r: forall z, z^0 = 1.
+Proof.
+ simpl; auto.
+Qed.
+
+Theorem Zpower_2: forall z, z^2 = z * z.
+Proof.
+ intros; ring.
+Qed.
+
+Theorem Zpower_gt_0: forall x y,
+ 0 < x -> 0 <= y -> 0 < x^y.
+Proof.
+ destruct y; simpl; auto with zarith.
+ intros; apply Zpower_pos_pos; auto.
+ intros; compute in H0; elim H0; auto.
+Qed.
+
+Theorem Zpower_Zabs: forall a b, Zabs (a^b) = (Zabs a)^b.
+Proof.
+ intros a b; case (Zle_or_lt 0 b).
+ intros Hb; pattern b; apply natlike_ind; auto with zarith.
+ intros x Hx Hx1; unfold Zsucc.
+ (repeat rewrite Zpower_exp); auto with zarith.
+ rewrite Zabs_Zmult; rewrite Hx1.
+ f_equal; auto.
+ replace (a ^ 1) with a; auto.
+ simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
+ simpl; unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto.
+ case b; simpl; auto with zarith.
+ intros p Hp; discriminate.
+Qed.
+
+Theorem Zpower_Zsucc: forall p n, 0 <= n -> p^(Zsucc n) = p * p^n.
+Proof.
+ intros p n H.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite Zpower_1_r; apply Zmult_comm.
+Qed.
+
+Theorem Zpower_mult: forall p q r, 0 <= q -> 0 <= r -> p^(q*r) = (p^q)^r.
+Proof.
+ intros p q r H1 H2; generalize H2; pattern r; apply natlike_ind; auto.
+ intros H3; rewrite Zmult_0_r; repeat rewrite Zpower_exp_0; auto.
+ intros r1 H3 H4 H5.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite <- H4; try rewrite Zpower_1_r; try rewrite <- Zpower_exp; try f_equal; auto with zarith.
+ ring.
+ apply Zle_ge; replace 0 with (0 * r1); try apply Zmult_le_compat_r; auto.
+Qed.
+
+Theorem Zpower_le_monotone: forall a b c,
+ 0 < a -> 0 <= b <= c -> a^b <= a^c.
+Proof.
+ intros a b c H (H1, H2).
+ rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_le_compat_l; auto with zarith.
+ assert (0 < a ^ (c - b)); auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ apply Zlt_le_weak; apply Zpower_gt_0; auto with zarith.
+Qed.
+
+Theorem Zpower_lt_monotone: forall a b c,
+ 1 < a -> 0 <= b < c -> a^b < a^c.
+Proof.
+ intros a b c H (H1, H2).
+ rewrite <- (Zmult_1_r (a ^ b)); replace c with (b + (c - b)); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ assert (0 < a ^ (c - b)); auto with zarith.
+ apply Zpower_gt_0; auto with zarith.
+ apply Zlt_le_trans with (a ^1); auto with zarith.
+ rewrite Zpower_1_r; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+Qed.
+
+Theorem Zpower_gt_1 : forall x y,
+ 1 < x -> 0 < y -> 1 < x^y.
+Proof.
+ intros x y H1 H2.
+ replace 1 with (x ^ 0) by apply Zpower_0_r.
+ apply Zpower_lt_monotone; auto with zarith.
+Qed.
+
+Theorem Zpower_ge_0: forall x y, 0 <= x -> 0 <= x^y.
+Proof.
+ intros x y; case y; auto with zarith.
+ simpl ; auto with zarith.
+ intros p H1; assert (H: 0 <= Zpos p); auto with zarith.
+ generalize H; pattern (Zpos p); apply natlike_ind; auto with zarith.
+ intros p1 H2 H3 _; unfold Zsucc; rewrite Zpower_exp; simpl; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ generalize H1; case x; compute; intros; auto; try discriminate.
+Qed.
+
+Theorem Zpower_le_monotone2:
+ forall a b c, 0 < a -> b <= c -> a^b <= a^c.
+Proof.
+ intros a b c H H2.
+ destruct (Z_le_gt_dec 0 b).
+ apply Zpower_le_monotone; auto.
+ replace (a^b) with 0.
+ destruct (Z_le_gt_dec 0 c).
+ destruct (Zle_lt_or_eq _ _ z0).
+ apply Zlt_le_weak;apply Zpower_gt_0;trivial.
+ rewrite <- H0;simpl;auto with zarith.
+ replace (a^c) with 0. auto with zarith.
+ destruct c;trivial;unfold Zgt in z0;discriminate z0.
+ destruct b;trivial;unfold Zgt in z;discriminate z.
+Qed.
+
+Theorem Zmult_power: forall p q r, 0 <= r ->
+ (p*q)^r = p^r * q^r.
+Proof.
+ intros p q r H1; generalize H1; pattern r; apply natlike_ind; auto.
+ clear r H1; intros r H1 H2 H3.
+ unfold Zsucc; rewrite Zpower_exp; auto with zarith.
+ rewrite H2; repeat rewrite Zpower_exp; auto with zarith; ring.
+Qed.
+
+Hint Resolve Zpower_ge_0 Zpower_gt_0: zarith.
+
+Theorem Zpower_le_monotone3: forall a b c,
+ 0 <= c -> 0 <= a <= b -> a^c <= b^c.
+Proof.
+ intros a b c H (H1, H2).
+ generalize H; pattern c; apply natlike_ind; auto.
+ intros x HH HH1 _; unfold Zsucc; repeat rewrite Zpower_exp; auto with zarith.
+ repeat rewrite Zpower_1_r.
+ apply Zle_trans with (a^x * b); auto with zarith.
+Qed.
+
+Lemma Zpower_le_monotone_inv: forall a b c,
+ 1 < a -> 0 < b -> a^b <= a^c -> b <= c.
+Proof.
+ intros a b c H H0 H1.
+ destruct (Z_le_gt_dec b c);trivial.
+ assert (2 <= a^b).
+ apply Zle_trans with (2^b).
+ pattern 2 at 1;replace 2 with (2^1);trivial.
+ apply Zpower_le_monotone;auto with zarith.
+ apply Zpower_le_monotone3;auto with zarith.
+ assert (c > 0).
+ destruct (Z_le_gt_dec 0 c);trivial.
+ destruct (Zle_lt_or_eq _ _ z0);auto with zarith.
+ rewrite <- H3 in H1;simpl in H1; elimtype False;omega.
+ destruct c;try discriminate z0. simpl in H1. elimtype False;omega.
+ assert (H4 := Zpower_lt_monotone a c b H). elimtype False;omega.
+Qed.
+
+Theorem Zpower_nat_Zpower: forall p q, 0 <= q ->
+ p^q = Zpower_nat p (Zabs_nat q).
+Proof.
+ intros p1 q1; case q1; simpl.
+ intros _; exact (refl_equal _).
+ intros p2 _; apply Zpower_pos_nat.
+ intros p2 H1; case H1; auto.
+Qed.
+
+Theorem Zpower2_lt_lin: forall n, 0 <= n -> n < 2^n.
+Proof.
+ intros n; apply (natlike_ind (fun n => n < 2 ^n)); clear n.
+ simpl; auto with zarith.
+ intros n H1 H2; unfold Zsucc.
+ case (Zle_lt_or_eq _ _ H1); clear H1; intros H1.
+ apply Zle_lt_trans with (n + n); auto with zarith.
+ rewrite Zpower_exp; auto with zarith.
+ rewrite Zpower_1_r.
+ assert (tmp: forall p, p * 2 = p + p); intros; try ring;
+ rewrite tmp; auto with zarith.
+ subst n; simpl; unfold Zpower_pos; simpl; auto with zarith.
+Qed.
+
+Theorem Zpower2_le_lin: forall n, 0 <= n -> n <= 2^n.
+Proof.
+ intros; apply Zlt_le_weak; apply Zpower2_lt_lin; auto.
+Qed.
+
+Lemma Zpower2_Psize :
+ forall n p, Zpos p < 2^(Z_of_nat n) <-> (Psize p <= n)%nat.
+Proof.
+ induction n.
+ destruct p; split; intros H; discriminate H || inversion H.
+ destruct p; simpl Psize.
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ rewrite Zpos_xI; specialize IHn with p; omega.
+ rewrite inj_S, Zpower_Zsucc; auto with zarith.
+ rewrite Zpos_xO; specialize IHn with p; omega.
+ split; auto with arith.
+ intros _; apply Zpower_gt_1; auto with zarith.
+ rewrite inj_S; generalize (Zle_0_nat n); omega.
+Qed.
+
+(** * Zpower and modulo *)
+
+Theorem Zpower_mod: forall p q n, 0 < n ->
+ (p^q) mod n = ((p mod n)^q) mod n.
+Proof.
+ intros p q n Hn; case (Zle_or_lt 0 q); intros H1.
+ generalize H1; pattern q; apply natlike_ind; auto.
+ intros q1 Hq1 Rec _; unfold Zsucc; repeat rewrite Zpower_exp; repeat rewrite Zpower_1_r; auto with zarith.
+ rewrite (fun x => (Zmult_mod x p)); try rewrite Rec; auto with zarith.
+ rewrite (fun x y => (Zmult_mod (x ^y))); try f_equal; auto with zarith.
+ f_equal; auto; apply sym_equal; apply Zmod_mod; auto with zarith.
+ generalize H1; case q; simpl; auto.
+ intros; discriminate.
+Qed.
+
+(** A direct way to compute Zpower modulo **)
+
+Fixpoint Zpow_mod_pos (a: Z)(m: positive)(n : Z) {struct m} : Z :=
+ match m with
+ | xH => a mod n
+ | xO m' =>
+ let z := Zpow_mod_pos a m' n in
+ match z with
+ | 0 => 0
+ | _ => (z * z) mod n
+ end
+ | xI m' =>
+ let z := Zpow_mod_pos a m' n in
+ match z with
+ | 0 => 0
+ | _ => (z * z * a) mod n
+ end
+ end.
+
+Definition Zpow_mod a m n :=
+ match m with
+ | 0 => 1
+ | Zpos p => Zpow_mod_pos a p n
+ | Zneg p => 0
+ end.
+
+Theorem Zpow_mod_pos_correct: forall a m n, 0 < n ->
+ Zpow_mod_pos a m n = (Zpower_pos a m) mod n.
+Proof.
+ intros a m; elim m; simpl; auto.
+ intros p Rec n H1; rewrite xI_succ_xO, Pplus_one_succ_r, <-Pplus_diag; auto.
+ repeat rewrite Zpower_pos_is_exp; auto.
+ repeat rewrite Rec; auto.
+ rewrite Zpower_pos_1_r.
+ repeat rewrite (fun x => (Zmult_mod x a)); auto with zarith.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ case (Zpower_pos a p mod n); auto.
+ intros p Rec n H1; rewrite <- Pplus_diag; auto.
+ repeat rewrite Zpower_pos_is_exp; auto.
+ repeat rewrite Rec; auto.
+ rewrite (Zmult_mod (Zpower_pos a p)); auto with zarith.
+ case (Zpower_pos a p mod n); auto.
+ unfold Zpower_pos; simpl; rewrite Zmult_1_r; auto with zarith.
+Qed.
+
+Theorem Zpow_mod_correct: forall a m n, 1 < n -> 0 <= m ->
+ Zpow_mod a m n = (a ^ m) mod n.
+Proof.
+ intros a m n; case m; simpl.
+ intros; apply sym_equal; apply Zmod_small; auto with zarith.
+ intros; apply Zpow_mod_pos_correct; auto with zarith.
+ intros p H H1; case H1; auto.
+Qed.
+
+(* Complements about power and number theory. *)
+
+Lemma Zpower_divide: forall p q, 0 < q -> (p | p ^ q).
+Proof.
+ intros p q H; exists (p ^(q - 1)).
+ pattern p at 3; rewrite <- (Zpower_1_r p); rewrite <- Zpower_exp; try f_equal; auto with zarith.
+Qed.
+
+Theorem rel_prime_Zpower_r: forall i p q, 0 < i ->
+ rel_prime p q -> rel_prime p (q^i).
+Proof.
+ intros i p q Hi Hpq; generalize Hi; pattern i; apply natlike_ind; auto with zarith; clear i Hi.
+ intros H; contradict H; auto with zarith.
+ intros i Hi Rec _; rewrite Zpower_Zsucc; auto.
+ apply rel_prime_mult; auto.
+ case Zle_lt_or_eq with (1 := Hi); intros Hi1; subst; auto.
+ rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
+Qed.
+
+Theorem rel_prime_Zpower: forall i j p q, 0 <= i -> 0 <= j ->
+ rel_prime p q -> rel_prime (p^i) (q^j).
+Proof.
+ intros i j p q Hi; generalize Hi j p q; pattern i; apply natlike_ind; auto with zarith; clear i Hi j p q.
+ intros _ j p q H H1; rewrite Zpower_0_r; apply rel_prime_1.
+ intros n Hn Rec _ j p q Hj Hpq.
+ rewrite Zpower_Zsucc; auto.
+ case Zle_lt_or_eq with (1 := Hj); intros Hj1; subst.
+ apply rel_prime_sym; apply rel_prime_mult; auto.
+ apply rel_prime_sym; apply rel_prime_Zpower_r; auto with arith.
+ apply rel_prime_sym; apply Rec; auto.
+ rewrite Zpower_0_r; apply rel_prime_sym; apply rel_prime_1.
+Qed.
+
+Theorem prime_power_prime: forall p q n, 0 <= n ->
+ prime p -> prime q -> (p | q^n) -> p = q.
+Proof.
+ intros p q n Hn Hp Hq; pattern n; apply natlike_ind; auto; clear n Hn.
+ rewrite Zpower_0_r; intros.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (p<=1) by (apply Zdivide_le; auto with zarith).
+ omega.
+ intros n1 H H1.
+ unfold Zsucc; rewrite Zpower_exp; try rewrite Zpower_1_r; auto with zarith.
+ assert (2<=p) by (apply prime_ge_2; auto).
+ assert (2<=q) by (apply prime_ge_2; auto).
+ intros H3; case prime_mult with (2 := H3); auto.
+ intros; apply prime_div_prime; auto.
+Qed.
+
+Theorem Zdivide_power_2: forall x p n, 0 <= n -> 0 <= x -> prime p ->
+ (x | p^n) -> exists m, x = p^m.
+Proof.
+ intros x p n Hn Hx; revert p n Hn; generalize Hx.
+ pattern x; apply Z_lt_induction; auto.
+ clear x Hx; intros x IH Hx p n Hn Hp H.
+ case Zle_lt_or_eq with (1 := Hx); auto; clear Hx; intros Hx; subst.
+ case (Zle_lt_or_eq 1 x); auto with zarith; clear Hx; intros Hx; subst.
+ (* x > 1 *)
+ case (prime_dec x); intros H2.
+ exists 1; rewrite Zpower_1_r; apply prime_power_prime with n; auto.
+ case not_prime_divide with (2 := H2); auto.
+ intros p1 ((H3, H4), (q1, Hq1)); subst.
+ case (IH p1) with p n; auto with zarith.
+ apply Zdivide_trans with (2 := H); exists q1; auto with zarith.
+ intros r1 Hr1.
+ case (IH q1) with p n; auto with zarith.
+ case (Zle_lt_or_eq 0 q1).
+ apply Zmult_le_0_reg_r with p1; auto with zarith.
+ split; auto with zarith.
+ pattern q1 at 1; replace q1 with (q1 * 1); auto with zarith.
+ apply Zmult_lt_compat_l; auto with zarith.
+ intros H5; subst; contradict Hx; auto with zarith.
+ apply Zmult_le_0_reg_r with p1; auto with zarith.
+ apply Zdivide_trans with (2 := H); exists p1; auto with zarith.
+ intros r2 Hr2; exists (r2 + r1); subst.
+ apply sym_equal; apply Zpower_exp.
+ generalize Hx; case r2; simpl; auto with zarith.
+ intros; red; simpl; intros; discriminate.
+ generalize H3; case r1; simpl; auto with zarith.
+ intros; red; simpl; intros; discriminate.
+ (* x = 1 *)
+ exists 0; rewrite Zpower_0_r; auto.
+ (* x = 0 *)
+ exists n; destruct H; rewrite Zmult_0_r in H; auto.
+Qed.
+
+(** * Zsquare: a direct definition of [z^2] *)
+
+Fixpoint Psquare (p: positive): positive :=
+ match p with
+ | xH => xH
+ | xO p => xO (xO (Psquare p))
+ | xI p => xI (xO (Pplus (Psquare p) p))
+ end.
+
+Definition Zsquare p :=
+ match p with
+ | Z0 => Z0
+ | Zpos p => Zpos (Psquare p)
+ | Zneg p => Zpos (Psquare p)
+ end.
+
+Theorem Psquare_correct: forall p, Psquare p = (p * p)%positive.
+Proof.
+ induction p; simpl; auto; f_equal; rewrite IHp.
+ apply trans_equal with (xO p + xO (p*p))%positive; auto.
+ rewrite (Pplus_comm (xO p)); auto.
+ rewrite Pmult_xI_permute_r; rewrite Pplus_assoc.
+ f_equal; auto.
+ symmetry; apply Pplus_diag.
+ symmetry; apply Pmult_xO_permute_r.
+Qed.
+
+Theorem Zsquare_correct: forall p, Zsquare p = p * p.
+Proof.
+ intro p; case p; simpl; auto; intros p1; rewrite Psquare_correct; auto.
+Qed.
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v
index c9cee31d..1912f5e1 100644
--- a/theories/ZArith/Zpower.v
+++ b/theories/ZArith/Zpower.v
@@ -6,89 +6,75 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zpower.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Zpower.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
+Require Import Wf_nat.
Require Import ZArith_base.
Require Export Zpow_def.
Require Import Omega.
Require Import Zcomplements.
Open Local Scope Z_scope.
-Section section1.
+Infix "^" := Zpower : Z_scope.
(** * Definition of powers over [Z]*)
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
- Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
-
- (** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
- [plus : nat->nat] and [Zmult : Z->Z] *)
-
- Lemma Zpower_nat_is_exp :
- forall (n m:nat) (z:Z),
- Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
- Proof.
- intros; elim n;
- [ simpl in |- *; elim (Zpower_nat z m); auto with zarith
- | unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
- apply Zmult_assoc ].
- Qed.
-
- (** This theorem shows that powers of unary and binary integers
- are the same thing, modulo the function convert : [positive -> nat] *)
-
- Theorem Zpower_pos_nat :
- forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
- Proof.
- intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
- apply iter_nat_of_P.
- Qed.
-
- (** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
- deduce that the function [[n:positive](Zpower_pos z n)] is a morphism
- for [add : positive->positive] and [Zmult : Z->Z] *)
-
- Theorem Zpower_pos_is_exp :
- forall (n m:positive) (z:Z),
- Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
- Proof.
- intros.
- rewrite (Zpower_pos_nat z n).
- rewrite (Zpower_pos_nat z m).
- rewrite (Zpower_pos_nat z (n + m)).
- rewrite (nat_of_P_plus_morphism n m).
- apply Zpower_nat_is_exp.
- Qed.
-
- Infix "^" := Zpower : Z_scope.
-
- Hint Immediate Zpower_nat_is_exp: zarith.
- Hint Immediate Zpower_pos_is_exp: zarith.
- Hint Unfold Zpower_pos: zarith.
- Hint Unfold Zpower_nat: zarith.
-
- Lemma Zpower_exp :
- forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
- Proof.
- destruct n; destruct m; auto with zarith.
- simpl in |- *; intros; apply Zred_factor0.
- simpl in |- *; auto with zarith.
- intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
- intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
- Qed.
-
-End section1.
-
-(** Exporting notation "^" *)
-
-Infix "^" := Zpower : Z_scope.
-
-Hint Immediate Zpower_nat_is_exp: zarith.
-Hint Immediate Zpower_pos_is_exp: zarith.
-Hint Unfold Zpower_pos: zarith.
-Hint Unfold Zpower_nat: zarith.
+Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
+
+(** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
+ [plus : nat->nat] and [Zmult : Z->Z] *)
+
+Lemma Zpower_nat_is_exp :
+ forall (n m:nat) (z:Z),
+ Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
+Proof.
+ intros; elim n;
+ [ simpl in |- *; elim (Zpower_nat z m); auto with zarith
+ | unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
+ apply Zmult_assoc ].
+Qed.
+
+(** This theorem shows that powers of unary and binary integers
+ are the same thing, modulo the function convert : [positive -> nat] *)
+
+Lemma Zpower_pos_nat :
+ forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
+Proof.
+ intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
+ apply iter_nat_of_P.
+Qed.
+
+(** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
+ deduce that the function [[n:positive](Zpower_pos z n)] is a morphism
+ for [add : positive->positive] and [Zmult : Z->Z] *)
+
+Lemma Zpower_pos_is_exp :
+ forall (n m:positive) (z:Z),
+ Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
+Proof.
+ intros.
+ rewrite (Zpower_pos_nat z n).
+ rewrite (Zpower_pos_nat z m).
+ rewrite (Zpower_pos_nat z (n + m)).
+ rewrite (nat_of_P_plus_morphism n m).
+ apply Zpower_nat_is_exp.
+Qed.
+
+Hint Immediate Zpower_nat_is_exp Zpower_pos_is_exp : zarith.
+Hint Unfold Zpower_pos Zpower_nat: zarith.
+
+Theorem Zpower_exp :
+ forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
+Proof.
+ destruct n; destruct m; auto with zarith.
+ simpl; intros; apply Zred_factor0.
+ simpl; auto with zarith.
+ intros; compute in H0; elim H0; auto.
+ intros; compute in H; elim H; auto.
+Qed.
Section Powers_of_2.
diff --git a/theories/ZArith/Zsqrt.v b/theories/ZArith/Zsqrt.v
index 3f475a63..6ea952e6 100644
--- a/theories/ZArith/Zsqrt.v
+++ b/theories/ZArith/Zsqrt.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Zsqrt.v 9551 2007-01-29 15:13:35Z bgregoir $ *)
+(* $Id: Zsqrt.v 10295 2007-11-06 22:46:21Z letouzey $ *)
Require Import ZArithRing.
Require Import Omega.
@@ -148,6 +148,7 @@ Definition Zsqrt_plain (x:Z) : Z :=
end.
(** A basic theorem about Zsqrt_plain *)
+
Theorem Zsqrt_interval :
forall n:Z,
0 <= n ->
@@ -162,3 +163,53 @@ Proof.
intros p Hle; elim Hle; auto.
Qed.
+(** Positivity *)
+
+Theorem Zsqrt_plain_is_pos: forall n, 0 <= n -> 0 <= Zsqrt_plain n.
+Proof.
+ intros n m; case (Zsqrt_interval n); auto with zarith.
+ intros H1 H2; case (Zle_or_lt 0 (Zsqrt_plain n)); auto.
+ intros H3; contradict H2; auto; apply Zle_not_lt.
+ apply Zle_trans with ( 2 := H1 ).
+ replace ((Zsqrt_plain n + 1) * (Zsqrt_plain n + 1))
+ with (Zsqrt_plain n * Zsqrt_plain n + (2 * Zsqrt_plain n + 1));
+ auto with zarith.
+ ring.
+Qed.
+
+(** Direct correctness on squares. *)
+
+Theorem Zsqrt_square_id: forall a, 0 <= a -> Zsqrt_plain (a * a) = a.
+Proof.
+ intros a H.
+ generalize (Zsqrt_plain_is_pos (a * a)); auto with zarith; intros Haa.
+ case (Zsqrt_interval (a * a)); auto with zarith.
+ intros H1 H2.
+ case (Zle_or_lt a (Zsqrt_plain (a * a))); intros H3; auto.
+ case Zle_lt_or_eq with (1:=H3); auto; clear H3; intros H3.
+ contradict H1; auto; apply Zlt_not_le; auto with zarith.
+ apply Zle_lt_trans with (a * Zsqrt_plain (a * a)); auto with zarith.
+ apply Zmult_lt_compat_r; auto with zarith.
+ contradict H2; auto; apply Zle_not_lt; auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+Qed.
+
+(** [Zsqrt_plain] is increasing *)
+
+Theorem Zsqrt_le:
+ forall p q, 0 <= p <= q -> Zsqrt_plain p <= Zsqrt_plain q.
+Proof.
+ intros p q [H1 H2]; case Zle_lt_or_eq with (1:=H2); clear H2; intros H2;
+ [ | subst q; auto with zarith].
+ case (Zle_or_lt (Zsqrt_plain p) (Zsqrt_plain q)); auto; intros H3.
+ assert (Hp: (0 <= Zsqrt_plain q)).
+ apply Zsqrt_plain_is_pos; auto with zarith.
+ absurd (q <= p); auto with zarith.
+ apply Zle_trans with ((Zsqrt_plain q + 1) * (Zsqrt_plain q + 1)).
+ case (Zsqrt_interval q); auto with zarith.
+ apply Zle_trans with (Zsqrt_plain p * Zsqrt_plain p); auto with zarith.
+ apply Zmult_le_compat; auto with zarith.
+ case (Zsqrt_interval p); auto with zarith.
+Qed.
+
+