summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zsqrt.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/ZArith/Zsqrt.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/ZArith/Zsqrt.v')
-rw-r--r--theories7/ZArith/Zsqrt.v136
1 files changed, 136 insertions, 0 deletions
diff --git a/theories7/ZArith/Zsqrt.v b/theories7/ZArith/Zsqrt.v
new file mode 100644
index 00000000..72a2e9cf
--- /dev/null
+++ b/theories7/ZArith/Zsqrt.v
@@ -0,0 +1,136 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Zsqrt.v,v 1.1.2.1 2004/07/16 19:31:44 herbelin Exp $ *)
+
+Require Omega.
+Require Export ZArith_base.
+Require Export ZArithRing.
+V7only [Import Z_scope.].
+Open Local Scope Z_scope.
+
+(**********************************************************************)
+(** Definition and properties of square root on Z *)
+
+(** The following tactic replaces all instances of (POS (xI ...)) by
+ `2*(POS ...)+1` , but only when ... is not made only with xO, XI, or xH. *)
+Tactic Definition compute_POS :=
+ Match Context With
+ | [|- [(POS (xI ?1))]] ->
+ (Match ?1 With
+ | [[xH]] -> Fail
+ | _ -> Rewrite (POS_xI ?1))
+ | [|- [(POS (xO ?1))]] ->
+ (Match ?1 With
+ | [[xH]] -> Fail
+ | _ -> Rewrite (POS_xO ?1)).
+
+Inductive sqrt_data [n : Z] : Set :=
+ c_sqrt: (s, r :Z)`n=s*s+r`->`0<=r<=2*s`->(sqrt_data n) .
+
+Definition sqrtrempos: (p : positive) (sqrt_data (POS p)).
+Refine (Fix sqrtrempos {
+ sqrtrempos [p : positive] : (sqrt_data (POS p)) :=
+ <[p : ?] (sqrt_data (POS p))> Cases p of
+ xH => (c_sqrt `1` `1` `0` ? ?)
+ | (xO xH) => (c_sqrt `2` `1` `1` ? ?)
+ | (xI xH) => (c_sqrt `3` `1` `2` ? ?)
+ | (xO (xO p')) =>
+ Cases (sqrtrempos p') of
+ (c_sqrt s' r' Heq Hint) =>
+ Cases (Z_le_gt_dec `4*s'+1` `4*r'`) of
+ (left Hle) =>
+ (c_sqrt (POS (xO (xO p'))) `2*s'+1` `4*r'-(4*s'+1)` ? ?)
+ | (right Hgt) =>
+ (c_sqrt (POS (xO (xO p'))) `2*s'` `4*r'` ? ?)
+ end
+ end
+ | (xO (xI p')) =>
+ Cases (sqrtrempos p') of
+ (c_sqrt s' r' Heq Hint) =>
+ Cases
+ (Z_le_gt_dec `4*s'+1` `4*r'+2`) of
+ (left Hle) =>
+ (c_sqrt
+ (POS (xO (xI p'))) `2*s'+1` `4*r'+2-(4*s'+1)` ? ?)
+ | (right Hgt) =>
+ (c_sqrt (POS (xO (xI p'))) `2*s'` `4*r'+2` ? ?)
+ end
+ end
+ | (xI (xO p')) =>
+ Cases (sqrtrempos p') of
+ (c_sqrt s' r' Heq Hint) =>
+ Cases
+ (Z_le_gt_dec `4*s'+1` `4*r'+1`) of
+ (left Hle) =>
+ (c_sqrt
+ (POS (xI (xO p'))) `2*s'+1` `4*r'+1-(4*s'+1)` ? ?)
+ | (right Hgt) =>
+ (c_sqrt (POS (xI (xO p'))) `2*s'` `4*r'+1` ? ?)
+ end
+ end
+ | (xI (xI p')) =>
+ Cases (sqrtrempos p') of
+ (c_sqrt s' r' Heq Hint) =>
+ Cases
+ (Z_le_gt_dec `4*s'+1` `4*r'+3`) of
+ (left Hle) =>
+ (c_sqrt
+ (POS (xI (xI p'))) `2*s'+1` `4*r'+3-(4*s'+1)` ? ?)
+ | (right Hgt) =>
+ (c_sqrt (POS (xI (xI p'))) `2*s'` `4*r'+3` ? ?)
+ end
+ end
+ end
+ }); Clear sqrtrempos; Repeat compute_POS;
+ Try (Try Rewrite Heq; Ring; Fail); Try Omega.
+Defined.
+
+(** Define with integer input, but with a strong (readable) specification. *)
+Definition Zsqrt : (x:Z)`0<=x`->{s:Z & {r:Z | x=`s*s+r` /\ `s*s<=x<(s+1)*(s+1)`}}.
+Refine [x]
+ <[x:Z]`0<=x`->{s:Z & {r:Z | x=`s*s+r` /\ `s*s<=x<(s+1)*(s+1)`}}>Cases x of
+ (POS p) => [h]Cases (sqrtrempos p) of
+ (c_sqrt s r Heq Hint) =>
+ (existS ? [s:Z]{r:Z | `(POS p)=s*s+r` /\
+ `s*s<=(POS p)<(s+1)*(s+1)`}
+ s
+ (exist Z [r:Z]((POS p)=`s*s+r` /\ `s*s<=(POS p)<(s+1)*(s+1)`)
+ r ?))
+ end
+ | (NEG p) => [h](False_rec
+ {s:Z & {r:Z |
+ (NEG p)=`s*s+r` /\ `s*s<=(NEG p)<(s+1)*(s+1)`}}
+ (h (refl_equal ? SUPERIEUR)))
+ | ZERO => [h](existS ? [s:Z]{r:Z | `0=s*s+r` /\ `s*s<=0<(s+1)*(s+1)`}
+ `0` (exist Z [r:Z](`0=0*0+r`/\`0*0<=0<(0+1)*(0+1)`)
+ `0` ?))
+ end;Try Omega.
+Split;[Omega|Rewrite Heq;Ring `(s+1)*(s+1)`;Omega].
+Defined.
+
+(** Define a function of type Z->Z that computes the integer square root,
+ but only for positive numbers, and 0 for others. *)
+Definition Zsqrt_plain : Z->Z :=
+ [x]Cases x of
+ (POS p)=>Cases (Zsqrt (POS p) (ZERO_le_POS p)) of (existS s _) => s end
+ |(NEG p)=>`0`
+ |ZERO=>`0`
+ end.
+
+(** A basic theorem about Zsqrt_plain *)
+Theorem Zsqrt_interval :(x:Z)`0<=x`->
+ `(Zsqrt_plain x)*(Zsqrt_plain x)<= x < ((Zsqrt_plain x)+1)*((Zsqrt_plain x)+1)`.
+Intros x;Case x.
+Unfold Zsqrt_plain;Omega.
+Intros p;Unfold Zsqrt_plain;Case (Zsqrt (POS p) (ZERO_le_POS p)).
+Intros s (r,(Heq,Hint)) Hle;Assumption.
+Intros p Hle;Elim Hle;Auto.
+Qed.
+
+