diff options
author | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
---|---|---|
committer | Samuel Mimram <samuel.mimram@ens-lyon.org> | 2004-07-28 21:54:47 +0000 |
commit | 6b649aba925b6f7462da07599fe67ebb12a3460e (patch) | |
tree | 43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/ZArith/Zsqrt.v |
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/ZArith/Zsqrt.v')
-rw-r--r-- | theories7/ZArith/Zsqrt.v | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/theories7/ZArith/Zsqrt.v b/theories7/ZArith/Zsqrt.v new file mode 100644 index 00000000..72a2e9cf --- /dev/null +++ b/theories7/ZArith/Zsqrt.v @@ -0,0 +1,136 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* $Id: Zsqrt.v,v 1.1.2.1 2004/07/16 19:31:44 herbelin Exp $ *) + +Require Omega. +Require Export ZArith_base. +Require Export ZArithRing. +V7only [Import Z_scope.]. +Open Local Scope Z_scope. + +(**********************************************************************) +(** Definition and properties of square root on Z *) + +(** The following tactic replaces all instances of (POS (xI ...)) by + `2*(POS ...)+1` , but only when ... is not made only with xO, XI, or xH. *) +Tactic Definition compute_POS := + Match Context With + | [|- [(POS (xI ?1))]] -> + (Match ?1 With + | [[xH]] -> Fail + | _ -> Rewrite (POS_xI ?1)) + | [|- [(POS (xO ?1))]] -> + (Match ?1 With + | [[xH]] -> Fail + | _ -> Rewrite (POS_xO ?1)). + +Inductive sqrt_data [n : Z] : Set := + c_sqrt: (s, r :Z)`n=s*s+r`->`0<=r<=2*s`->(sqrt_data n) . + +Definition sqrtrempos: (p : positive) (sqrt_data (POS p)). +Refine (Fix sqrtrempos { + sqrtrempos [p : positive] : (sqrt_data (POS p)) := + <[p : ?] (sqrt_data (POS p))> Cases p of + xH => (c_sqrt `1` `1` `0` ? ?) + | (xO xH) => (c_sqrt `2` `1` `1` ? ?) + | (xI xH) => (c_sqrt `3` `1` `2` ? ?) + | (xO (xO p')) => + Cases (sqrtrempos p') of + (c_sqrt s' r' Heq Hint) => + Cases (Z_le_gt_dec `4*s'+1` `4*r'`) of + (left Hle) => + (c_sqrt (POS (xO (xO p'))) `2*s'+1` `4*r'-(4*s'+1)` ? ?) + | (right Hgt) => + (c_sqrt (POS (xO (xO p'))) `2*s'` `4*r'` ? ?) + end + end + | (xO (xI p')) => + Cases (sqrtrempos p') of + (c_sqrt s' r' Heq Hint) => + Cases + (Z_le_gt_dec `4*s'+1` `4*r'+2`) of + (left Hle) => + (c_sqrt + (POS (xO (xI p'))) `2*s'+1` `4*r'+2-(4*s'+1)` ? ?) + | (right Hgt) => + (c_sqrt (POS (xO (xI p'))) `2*s'` `4*r'+2` ? ?) + end + end + | (xI (xO p')) => + Cases (sqrtrempos p') of + (c_sqrt s' r' Heq Hint) => + Cases + (Z_le_gt_dec `4*s'+1` `4*r'+1`) of + (left Hle) => + (c_sqrt + (POS (xI (xO p'))) `2*s'+1` `4*r'+1-(4*s'+1)` ? ?) + | (right Hgt) => + (c_sqrt (POS (xI (xO p'))) `2*s'` `4*r'+1` ? ?) + end + end + | (xI (xI p')) => + Cases (sqrtrempos p') of + (c_sqrt s' r' Heq Hint) => + Cases + (Z_le_gt_dec `4*s'+1` `4*r'+3`) of + (left Hle) => + (c_sqrt + (POS (xI (xI p'))) `2*s'+1` `4*r'+3-(4*s'+1)` ? ?) + | (right Hgt) => + (c_sqrt (POS (xI (xI p'))) `2*s'` `4*r'+3` ? ?) + end + end + end + }); Clear sqrtrempos; Repeat compute_POS; + Try (Try Rewrite Heq; Ring; Fail); Try Omega. +Defined. + +(** Define with integer input, but with a strong (readable) specification. *) +Definition Zsqrt : (x:Z)`0<=x`->{s:Z & {r:Z | x=`s*s+r` /\ `s*s<=x<(s+1)*(s+1)`}}. +Refine [x] + <[x:Z]`0<=x`->{s:Z & {r:Z | x=`s*s+r` /\ `s*s<=x<(s+1)*(s+1)`}}>Cases x of + (POS p) => [h]Cases (sqrtrempos p) of + (c_sqrt s r Heq Hint) => + (existS ? [s:Z]{r:Z | `(POS p)=s*s+r` /\ + `s*s<=(POS p)<(s+1)*(s+1)`} + s + (exist Z [r:Z]((POS p)=`s*s+r` /\ `s*s<=(POS p)<(s+1)*(s+1)`) + r ?)) + end + | (NEG p) => [h](False_rec + {s:Z & {r:Z | + (NEG p)=`s*s+r` /\ `s*s<=(NEG p)<(s+1)*(s+1)`}} + (h (refl_equal ? SUPERIEUR))) + | ZERO => [h](existS ? [s:Z]{r:Z | `0=s*s+r` /\ `s*s<=0<(s+1)*(s+1)`} + `0` (exist Z [r:Z](`0=0*0+r`/\`0*0<=0<(0+1)*(0+1)`) + `0` ?)) + end;Try Omega. +Split;[Omega|Rewrite Heq;Ring `(s+1)*(s+1)`;Omega]. +Defined. + +(** Define a function of type Z->Z that computes the integer square root, + but only for positive numbers, and 0 for others. *) +Definition Zsqrt_plain : Z->Z := + [x]Cases x of + (POS p)=>Cases (Zsqrt (POS p) (ZERO_le_POS p)) of (existS s _) => s end + |(NEG p)=>`0` + |ZERO=>`0` + end. + +(** A basic theorem about Zsqrt_plain *) +Theorem Zsqrt_interval :(x:Z)`0<=x`-> + `(Zsqrt_plain x)*(Zsqrt_plain x)<= x < ((Zsqrt_plain x)+1)*((Zsqrt_plain x)+1)`. +Intros x;Case x. +Unfold Zsqrt_plain;Omega. +Intros p;Unfold Zsqrt_plain;Case (Zsqrt (POS p) (ZERO_le_POS p)). +Intros s (r,(Heq,Hint)) Hle;Assumption. +Intros p Hle;Elim Hle;Auto. +Qed. + + |