summaryrefslogtreecommitdiff
path: root/theories7/Wellfounded/Inverse_Image.v
diff options
context:
space:
mode:
authorGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
committerGravatar Samuel Mimram <samuel.mimram@ens-lyon.org>2004-07-28 21:54:47 +0000
commit6b649aba925b6f7462da07599fe67ebb12a3460e (patch)
tree43656bcaa51164548f3fa14e5b10de5ef1088574 /theories7/Wellfounded/Inverse_Image.v
Imported Upstream version 8.0pl1upstream/8.0pl1
Diffstat (limited to 'theories7/Wellfounded/Inverse_Image.v')
-rw-r--r--theories7/Wellfounded/Inverse_Image.v58
1 files changed, 58 insertions, 0 deletions
diff --git a/theories7/Wellfounded/Inverse_Image.v b/theories7/Wellfounded/Inverse_Image.v
new file mode 100644
index 00000000..6c9c3e65
--- /dev/null
+++ b/theories7/Wellfounded/Inverse_Image.v
@@ -0,0 +1,58 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Inverse_Image.v,v 1.1.2.1 2004/07/16 19:31:41 herbelin Exp $ i*)
+
+(** Author: Bruno Barras *)
+
+Section Inverse_Image.
+
+ Variables A,B:Set.
+ Variable R : B->B->Prop.
+ Variable f:A->B.
+
+ Local Rof : A->A->Prop := [x,y:A](R (f x) (f y)).
+
+ Remark Acc_lemma : (y:B)(Acc B R y)->(x:A)(y=(f x))->(Acc A Rof x).
+ NewInduction 1 as [y _ IHAcc]; Intros x H.
+ Apply Acc_intro; Intros y0 H1.
+ Apply (IHAcc (f y0)); Try Trivial.
+ Rewrite H; Trivial.
+ Qed.
+
+ Lemma Acc_inverse_image : (x:A)(Acc B R (f x)) -> (Acc A Rof x).
+ Intros; Apply (Acc_lemma (f x)); Trivial.
+ Qed.
+
+ Theorem wf_inverse_image: (well_founded B R)->(well_founded A Rof).
+ Red; Intros; Apply Acc_inverse_image; Auto.
+ Qed.
+
+ Variable F : A -> B -> Prop.
+ Local RoF : A -> A -> Prop := [x,y]
+ (EX b : B | (F x b) & (c:B)(F y c)->(R b c)).
+
+Lemma Acc_inverse_rel :
+ (b:B)(Acc B R b)->(x:A)(F x b)->(Acc A RoF x).
+NewInduction 1 as [x _ IHAcc]; Intros x0 H2.
+Constructor; Intros y H3.
+NewDestruct H3.
+Apply (IHAcc x1); Auto.
+Save.
+
+
+Theorem wf_inverse_rel :
+ (well_founded B R)->(well_founded A RoF).
+ Red; Constructor; Intros.
+ Case H0; Intros.
+ Apply (Acc_inverse_rel x); Auto.
+Save.
+
+End Inverse_Image.
+
+